WO2022244118A1 - Measurement data correction device, measurement data correction method, and program - Google Patents

Measurement data correction device, measurement data correction method, and program Download PDF

Info

Publication number
WO2022244118A1
WO2022244118A1 PCT/JP2021/018857 JP2021018857W WO2022244118A1 WO 2022244118 A1 WO2022244118 A1 WO 2022244118A1 JP 2021018857 W JP2021018857 W JP 2021018857W WO 2022244118 A1 WO2022244118 A1 WO 2022244118A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement data
strength
maximum
maximum strength
time
Prior art date
Application number
PCT/JP2021/018857
Other languages
French (fr)
Japanese (ja)
Inventor
陽祐 竹内
久稔 笠原
陽介 岡村
潤一郎 玉松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/018857 priority Critical patent/WO2022244118A1/en
Priority to JP2023522058A priority patent/JPWO2022244118A1/ja
Publication of WO2022244118A1 publication Critical patent/WO2022244118A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces

Definitions

  • the present disclosure relates to a measurement data correction device, a measurement data correction method, and a program for correcting measurement data of deterioration tests.
  • FRP Fiber Reinforced Plastics
  • the properties of FRP vary depending on the type of fiber and the type of resin. Therefore, FRP must be selected according to the application, but since both are non-corrosive materials, they are practically used in a wide range of fields as a substitute material for metals (see, for example, Non-Patent Document 1). .
  • Non-Patent Document 3 For the approximation and extrapolation of the deterioration behavior, a method of estimating deterioration based on the premise of deterioration due to diffusion of moisture into the interior of the FRP has been devised (see, for example, Non-Patent Document 3).
  • Non-Patent Document 3 an approximate estimation method for deterioration behavior is studied, but it is premised that the strength will monotonically decrease from the start of FRP operation.
  • the strength of FRP actually not only decreases monotonically but also increases in some cases. Therefore, it is necessary to consider the phenomenon of strength increase for appropriate approximate estimation, but no deterioration estimation method considering this phenomenon has been established.
  • Many of the types of FRP that have increased strength are produced by hand layup. This is presumably because, in the case of many hand lay-up productions, post-curing treatment with heat is not applied during or after curing, so that unreacted components remain in the resin component.
  • An object of the present disclosure which has been made in view of such circumstances, is to provide a measurement data correction device, a deterioration estimation, and a program capable of correcting the measurement data of an FRP deterioration test in which the strength can be temporarily increased. be.
  • a measurement data correction device is a measurement data correction device for correcting measurement data of a deterioration test of a material whose strength can temporarily increase, wherein the relationship between time and the strength of the material is corrected for each temperature condition.
  • a measurement data acquisition unit that acquires the measurement data shown in the measurement data;
  • An extraction unit that extracts the first maximum intensity and extracts the maximum intensity reaching time until the second maximum intensity is reached for each temperature condition, and predicts the chemical reaction rate of the maximum intensity reaching time.
  • an approximate estimator for deriving a corrected value for the maximum strength arrival time, modified to conform to a formula; a measurement data correction unit that adds the measurement data as the first maximum intensity to the measurement data.
  • a deterioration estimation method is a measurement data correction method for correcting measurement data of a deterioration test of a material whose strength can temporarily increase, wherein the measurement data correction device corrects time and temperature for each temperature condition. obtaining the measurement data indicating the relationship between the strengths of the material; and setting the maximum strength of the material among all the temperature conditions among the measurement data as a first maximum strength, and the maximum strength of the material for each temperature condition.
  • the step of extracting the first maximum intensity with the intensity as the second maximum intensity extracting the maximum intensity reaching time until reaching the second maximum intensity for each temperature condition, and chemically reacting the maximum intensity reaching time deriving a corrected value for the time to maximum strength attained by correcting it to follow a prediction formula for velocity; to the measured data as the first maximum intensity.
  • a program causes a computer to function as the measurement data correction device.
  • the present disclosure it is possible to correct the measurement data of the deterioration test of materials whose strength can be temporarily increased. By using the corrected measurement data, it is possible to improve the accuracy of material deterioration behavior estimation and lifetime estimation.
  • FIG. 1 is a block diagram showing a configuration example of a measurement data correction device according to one embodiment
  • FIG. 6 is a flow chart showing an example of a procedure of a degradation estimation method according to one embodiment
  • 4 is a graph showing the results of a GFRP deterioration test
  • FIG. 4 is a graph showing deterioration behavior up to 200 hours in FIG. 3.
  • FIG. It is a figure which shows an example of approximate estimation using the Arrhenius equation. It is a figure which shows the correction example of the measurement data by the measurement data correction apparatus which concerns on one Embodiment.
  • FIG. 1 shows a configuration example of a measurement data correction device according to one embodiment.
  • the measurement data correction device 1 shown in FIG. 1 includes a control section 10, an input section 11, a storage section 12, and an output section 13.
  • the measurement data correction device 1 is a device that corrects the measurement data of deterioration tests of materials whose strength can temporarily increase, performed under multiple temperature conditions.
  • the "material whose strength can be temporarily increased” is, for example, "FRP that has not been post-cured", but is not limited to this.
  • the input unit 11 inputs measurement data of deterioration tests of materials whose strength can temporarily increase, which are performed under a plurality of temperature conditions by user's operation.
  • the input unit 11 outputs the acquired measurement data to the storage unit 12 .
  • the input unit 11 includes one or more input interfaces that receive user's input operations and acquire information based on the user's operations.
  • the input unit 11 is a pointing device, keyboard, mouse, etc., but is not limited to these.
  • the storage unit 12 stores the measurement data input from the input unit 11.
  • the storage unit 12 includes one or more memories, and may include, for example, semiconductor memory, magnetic memory, optical memory, and the like. Each memory included in the storage unit 12 may function, for example, as a main memory device, an auxiliary memory device, or a cache memory.
  • the storage unit 12 does not necessarily have to be provided inside the measurement data correction device 1 , and may be provided outside the measurement data correction device 1 .
  • the output unit 13 outputs the corrected measurement data stored in the storage unit 12 .
  • the output unit 13 includes one or more output interfaces for outputting information.
  • the output unit 13 is a display that outputs information as an image or a speaker that outputs information as sound, but is not limited to these.
  • the output unit 13 also functions as the input unit 11 in the case of a touch panel type display.
  • the measurement data correction device 1 may further include a communication interface for communicating with an external device.
  • the communication interface is, for example, a LAN (Local Area Network) interface.
  • the control unit 10 is a control arithmetic circuit (controller) that performs processing for correcting measurement data.
  • the control unit 10 may be configured by dedicated hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array), may be configured by a processor, or may be configured by including both. may
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the control unit 10 includes a measurement data acquisition unit 101, an extraction unit 102, an approximate estimation unit 103, and a measurement data correction unit 104.
  • the measurement data acquisition unit 101 acquires measurement data from the storage unit 12 .
  • the measurement data is data showing the relationship between time (elapsed time after starting the deterioration test) and material strength for each temperature condition.
  • the measurement data acquisition section 101 outputs the acquired measurement data to the extraction section 102 .
  • the measurement data acquisition section 101 may output the acquired measurement data to the measurement data correction section 104 .
  • the extraction unit 102 sets the maximum strength of the material among all the temperature conditions among the measurement data input from the measurement data acquisition unit 101 as the first maximum strength, and sets the maximum strength of the material for each temperature condition as the second maximum strength. , the first maximum intensity is extracted, and the maximum intensity reaching time until reaching the second maximum intensity is extracted for each temperature condition. That is, the extraction unit 102 extracts the maximum strength value of the material as the first maximum strength ⁇ max from all the measurement data. In addition, the extracting unit 102 extracts the time required for the material to reach the maximum strength (second maximum strength) for each temperature condition from the measurement data as the maximum strength reaching time tmax . The extraction unit 102 outputs the first maximum intensity ⁇ max to the measurement data correction unit 104 and outputs the maximum intensity arrival time t max for each temperature condition to the approximate estimation unit 103 .
  • the approximate estimating unit 103 corrects the maximum intensity reaching time t max for each temperature condition input from the extracting unit 102 so as to follow the chemical reaction rate prediction formula, and derives the maximum intensity reaching time corrected value t′ max .
  • the maximum intensity reaching time t max for each temperature condition is a discrete value
  • the approximate estimating unit 103 approximately estimates it as a continuous value according to the chemical reaction rate prediction formula.
  • Approximate estimating section 103 outputs the corrected value t′ max of the maximum intensity arrival time to measured data correcting section 104 .
  • the approximate estimation unit 103 approximates the maximum intensity arrival time at an arbitrary temperature using the following Arrhenius equation, and corrects the maximum intensity arrival time tmax .
  • k is the reaction rate constant
  • Ea is the activation energy
  • R is the gas constant
  • T is the absolute temperature (a temperature independent constant).
  • the approximate estimation unit 103 can perform approximate estimation using the reaction rate constant k as the reciprocal of the maximum intensity reaching time tmax .
  • the approximate estimation unit 103 can estimate the maximum intensity arrival time at an arbitrary temperature as well as correct the maximum intensity arrival time t max of the measurement result by performing approximate estimation.
  • the approximation estimation unit 103 may output the maximum strength reaching time at an arbitrary temperature to the storage unit 12 as an appropriate post-cure processing time.
  • the measurement data correction unit 104 receives measurement data from the storage unit 12 or the measurement data acquisition unit 101 . Further, the measurement data correction unit 104 receives the first maximum intensity ⁇ max from the extraction unit 102 and inputs the correction value t′ max of the maximum intensity arrival time from the approximate estimation unit 103 . The combination of the modified maximum intensity arrival time t' max and the first maximum intensity ⁇ max can be regarded as the starting point of deterioration. Therefore, the measurement data correction unit 104 deletes the data at the time before the correction value t'max from the measurement data, and adds the strength of the material at the correction value t'max to the measurement data as the first maximum strength ⁇ max . . The measurement data correction section 104 outputs the measurement data corrected in this manner to the storage section 12 .
  • FIG. 2 is a flow chart showing an example of the procedure of the measurement data correction method in the control section 10. As shown in FIG. It is assumed that a deterioration test has been performed in advance on a material whose strength can be temporarily increased under multiple temperature conditions, and measurement data for the deterioration test has been obtained.
  • step S101 the control unit 10 acquires the measurement data of the deterioration test using the measurement data acquisition unit 101.
  • step S102 the control unit 10 uses the extraction unit 102 to determine whether or not there is a measurement result in which the initial intensity ratio exceeds 100%. If there is a measurement result in which the initial intensity ratio exceeds 100%, the control unit 10 advances the process to step S103. If there is no measurement result in which the initial intensity ratio exceeds 100%, the control unit 10 terminates the process.
  • step S103 the control unit 10 causes the extraction unit 102 to extract the first maximum strength ⁇ max at which the strength of the material is maximized under all temperature conditions among the measurement results in which the initial strength ratio exceeds 100%.
  • the control unit 10 extracts the maximum strength reaching time t max until the strength of the material reaches the maximum value for each temperature condition by the extraction unit 102 .
  • step S104 the control unit 10 uses the approximate estimation unit 103 to derive the corrected value t'max of the maximum strength reaching time for each temperature condition according to the chemical reaction rate prediction formula.
  • step S105 the control unit 10 causes the measurement data correction unit 104 to delete the data at the time before the correction value t'max of the maximum intensity reaching time from the measurement data. Further, the measurement data correction unit 104 adds the strength of the material at the corrected maximum strength reaching time value t′ max to the measurement data as the first maximum strength ⁇ max . That is, the measured data correction unit 104 adds (t′ max , ⁇ max ) to the measured data as data of the deterioration starting point.
  • FIG. 3 shows the test results of an accelerated deterioration test (accelerated deterioration test) in which FRP that has not been post-cured is immersed in an alkaline aqueous solution with temperature conditions of 40° C., 60° C. and 80° C.
  • the FRP is GFRP (Glass Fiber Reinforced Plastics) in which the matrix is unsaturated polyester and the fiber is glass fiber.
  • the horizontal axis of FIG. 3 is time, and the vertical axis is the bending strength ratio indicating the ratio of the bending strength to the initial strength.
  • Circle plots show measurement data when the temperature condition is 40°C
  • square plots show measurement data when the temperature condition is 60°C
  • triangle plots show measurement data when the temperature condition is 80°C. Measured data are shown. From this figure, it can be confirmed that the bending strength is 100% or more of the initial strength in less than 500 hours.
  • Fig. 4 shows the deterioration behavior up to 200 hours in Fig. 3.
  • the bending strength shows an increase and decrease rather than a monotonous change. It is considered that this is because it takes time for the sample to become uniform, and is considered to be the result of the decrease in strength due to water absorption, the decomposition and elution of the resin component, and the increase in strength at the same time. If deterioration estimation is performed using this measurement data as it is, the estimation accuracy of deterioration estimation and lifetime estimation will be lowered. Therefore, the measurement data correction device 1 estimates the starting point of deterioration and corrects the measurement data.
  • the maximum strength reaching time t max is 200 hours when the temperature condition is 40 ° C.
  • the maximum strength reaching time t max is 144 hours when the temperature condition is 60 ° C.
  • the temperature condition is 80 ° C.
  • the time to reach maximum intensity t max in case is 24 hours.
  • the first maximum strength ⁇ max is a value corresponding to a bending strength ratio of 110%.
  • FIG. 5 shows the result of approximate estimation derived by applying the Arrhenius equation to the temperature and maximum intensity arrival time shown in FIG.
  • the approximate estimation unit 103 derives t'max by correcting or estimating the maximum intensity arrival time.
  • Table 1 shows the relationship between the maximum intensity reaching time t max shown in FIG. 4 and the corrected value (estimated value) t′ max of the maximum intensity reaching time shown in FIG.
  • the measurement data correction device 1 regards the combination of the correction value t' max and the first maximum intensity ⁇ max as the starting point of deterioration, and deletes the measurement data at the time before the correction value t' max . Long-term estimation can be performed with high accuracy by using the measurement data after the corrected value t'max .
  • FIG. 6 shows the result of correcting the measurement data shown in FIG.
  • the data at the time before the corrected value t'max (256h) is deleted, and the intensity of GFRP at the corrected value t'max (256h) is the first maximum intensity ⁇ added to the measurement data as max .
  • the intensity of GFRP at the corrected value t'max (85h) is the first maximum intensity ⁇ added to the measurement data as max .
  • the estimated value of the time to reach the maximum strength at an arbitrary temperature is the time at which the curing reaction is completed at that temperature, so it can be used as an appropriate post-cure processing time. It is possible.
  • the measurement data correction device 1 may be a computer capable of executing program instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • control unit 10 is a processor such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), and controls
  • the unit 10 may be composed of multiple processors of the same type or different types.
  • the processor reads a program from the storage unit 12 and executes it, thereby controlling the above components and performing various kinds of arithmetic processing. Note that at least part of these processing contents may be realized by hardware.
  • the program may be recorded on a computer-readable recording medium.
  • the recording medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like.
  • this program can be provided via a network.
  • the measurement data correction device 1 acquires the measurement data of the deterioration test of the material whose strength can be temporarily increased, and sets the maximum strength of the material under all temperature conditions to the first maximum strength ⁇ max , the maximum strength of the material for each temperature condition is the second maximum strength, and the first maximum strength ⁇ max is extracted, and the maximum strength reaching time t max until the second maximum strength is reached for each temperature condition is extracted. . Then, the measurement data correction device 1 corrects the maximum intensity reaching time t max so as to follow the chemical reaction rate prediction formula to derive a corrected value t′ max . Then, the measurement data correction device 1 deletes the data at the time before the correction value t'max from the measurement data, and adds the strength of the material at the correction value t'max to the measurement data as the first maximum strength ⁇ max . .
  • the curing reaction proceeds immediately after the completion of molding of the material, and progresses slowly even at room temperature, but the higher the temperature, the faster the reaction rate. Further, when the curing reaction is completed, the strength shifts to a monotonous decrease.
  • the measured data correction device 1 grasps the strength increase at the early stage of deterioration and estimates the correction value t'max as the start time of deterioration. Therefore, by determining the data of the deterioration starting point by the measurement data correction device 1 and correcting the measurement data, the influence of the increase in strength can be corrected, and the accuracy of the deterioration behavior estimation and life estimation of the material can be improved. becomes possible.
  • the measurement data correction device 1 can clarify appropriate post-cure processing conditions by approximating the maximum strength reaching time at an arbitrary temperature.
  • a measurement data correction device for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased, Acquiring the measurement data showing the relationship between time and the strength of the material for each temperature condition; Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted.
  • a measurement data correction device comprising a control unit that deletes data at a time before the correction value from the measurement data and adds the strength of the material at the correction value to the measurement data as the first maximum strength.
  • Appendix 2 2. The measurement data correction device according to claim 1, wherein the control unit corrects the maximum intensity arrival time using the Arrhenius equation.
  • Appendix 3 3. The measurement data correction device according to claim 2, wherein the control unit approximates the maximum intensity reaching time at an arbitrary temperature using the Arrhenius equation, and outputs it as an appropriate post-cure processing time.
  • a measurement data correction method for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased With the measurement data correction device, obtaining the measurement data showing the relationship between time and strength of the material for each temperature condition; Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

This measurement data correction device (1) comprises: a measurement data acquisition unit (101) for acquiring measurement data from a material deterioration test; an extraction unit (102) for setting the maximum material strength under all temperature conditions in the measurement data to a first maximum strength, setting the maximum material strengths under each temperature condition in the measurement data to second maximum strengths, and extracting a maximum strength attainment time to reach the first maximum strength and the second maximum strengths for each temperature condition; an approximation and estimation unit (103) for correcting the maximum strength attainment time so as to conform to a chemical reaction rate prediction formula and deriving a corrected maximum strength attainment time value; and a measurement data correction unit (104) for deleting data from the time before the corrected value from the measurement data and adding the material strength at the corrected value to the measurement data as the first maximum strength.

Description

測定データ修正装置、測定データ修正方法、及びプログラムMeasurement data correction device, measurement data correction method, and program
 本開示は、劣化試験の測定データを修正する測定データ修正装置、測定データ修正方法、及びプログラムに関する。 The present disclosure relates to a measurement data correction device, a measurement data correction method, and a program for correcting measurement data of deterioration tests.
 高強度かつ非腐食性の複合材料として、近年FRP(Fiber Reinforced Plastics:繊維強化プラスチック)が様々な用途に活用されている。FRPは、繊維の種類及び樹脂の種類によりその特性が変化する。そのため、FRPは用途に応じて選定される必要があるが、いずれも非腐食性の材料であることから、金属の代替材料として幅広い分野で実用化されている(例えば、非特許文献1参照)。 In recent years, FRP (Fiber Reinforced Plastics) has been used for various purposes as a high-strength and non-corrosive composite material. The properties of FRP vary depending on the type of fiber and the type of resin. Therefore, FRP must be selected according to the application, but since both are non-corrosive materials, they are practically used in a wide range of fields as a substitute material for metals (see, for example, Non-Patent Document 1). .
 一方、FRPは、電気化学的な腐食は生じないものの、水分が存在する条件下で使用する場合にはマトリックス樹脂の劣化、繊維樹脂界面の劣化などが進行し、強度が低下することが知られている(例えば、非特許文献2参照)。 On the other hand, although FRP does not undergo electrochemical corrosion, it is known that when used in the presence of moisture, deterioration of the matrix resin, deterioration of the fiber-resin interface, etc. progress, resulting in a decrease in strength. (For example, see Non-Patent Document 2).
 そこで、FRPを長期に使用するために、加速試験での劣化情報を基にした挙動推定及び運用期間の策定が行われる。しかし、FRPが複合材料であり複雑な劣化挙動を示すことから、統一的な劣化推定方法の確立には至っていない。劣化推定に際しては、選定したFRPの種類に応じて、高温条件にするなど劣化を加速させた条件での強度変化から、使用環境における劣化挙動を推定する。劣化推定は、実環境下における運用期間を推定するために活用され得る。劣化挙動の近似及び外挿に際しては、FRP内部への水分の拡散による劣化を前提とした劣化推定方法等が考案されている(例えば、非特許文献3参照)。 Therefore, in order to use FRP for a long time, behavior estimation and operation period are determined based on deterioration information in accelerated tests. However, since FRP is a composite material and exhibits complicated deterioration behavior, a unified method for estimating deterioration has not yet been established. When estimating deterioration, depending on the type of FRP selected, the deterioration behavior in the usage environment is estimated from the change in strength under conditions where deterioration is accelerated, such as high temperature conditions. Degradation estimation can be utilized to estimate the operating period under real environment. For the approximation and extrapolation of the deterioration behavior, a method of estimating deterioration based on the premise of deterioration due to diffusion of moisture into the interior of the FRP has been devised (see, for example, Non-Patent Document 3).
 非特許文献3では、劣化挙動に対する近似推定方法が検討されているが、FRPの運用開始から、強度が単調減少することが前提となっている。しかし、非特許文献1に記載されているように、FRPの強度は実際には単調減少するだけでなく増加する場合もある。そのため、適切な近似推定のためには強度増加という現象を考慮する必要があるが、この現象を考慮した劣化推定方法は確立されていない。強度増加が生じるFRPの種類としては、その多くがハンドレイアップで作製されたものである。これは、多くのハンドレイアップで作製される場合には、硬化時又は硬化後に熱を加えるポストキュア処理が施されないため、樹脂成分中に未反応成分が残留するためと考えられる。 In Non-Patent Document 3, an approximate estimation method for deterioration behavior is studied, but it is premised that the strength will monotonically decrease from the start of FRP operation. However, as described in Non-Patent Document 1, the strength of FRP actually not only decreases monotonically but also increases in some cases. Therefore, it is necessary to consider the phenomenon of strength increase for appropriate approximate estimation, but no deterioration estimation method considering this phenomenon has been established. Many of the types of FRP that have increased strength are produced by hand layup. This is presumably because, in the case of many hand lay-up productions, post-curing treatment with heat is not applied during or after curing, so that unreacted components remain in the resin component.
 かかる事情に鑑みてなされた本開示の目的は、一時的に強度が増加し得るFRPの劣化試験の測定データを修正することが可能な測定データ修正装置、劣化推定、及びプログラムを提供することにある。 An object of the present disclosure, which has been made in view of such circumstances, is to provide a measurement data correction device, a deterioration estimation, and a program capable of correcting the measurement data of an FRP deterioration test in which the strength can be temporarily increased. be.
 一実施形態に係る測定データ修正装置は、一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正装置であって、温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得する測定データ取得部と、前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出する抽出部と、前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出する近似推定部と、前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加する測定データ修正部と、を備える。 A measurement data correction device according to one embodiment is a measurement data correction device for correcting measurement data of a deterioration test of a material whose strength can temporarily increase, wherein the relationship between time and the strength of the material is corrected for each temperature condition. a measurement data acquisition unit that acquires the measurement data shown in the measurement data; An extraction unit that extracts the first maximum intensity and extracts the maximum intensity reaching time until the second maximum intensity is reached for each temperature condition, and predicts the chemical reaction rate of the maximum intensity reaching time. an approximate estimator for deriving a corrected value for the maximum strength arrival time, modified to conform to a formula; a measurement data correction unit that adds the measurement data as the first maximum intensity to the measurement data.
 また、一実施形態に係る劣化推定方法は、一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正方法であって、測定データ修正装置により、温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得するステップと、前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出するステップと、前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出するステップと、前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加するステップと、を含む。 In addition, a deterioration estimation method according to one embodiment is a measurement data correction method for correcting measurement data of a deterioration test of a material whose strength can temporarily increase, wherein the measurement data correction device corrects time and temperature for each temperature condition. obtaining the measurement data indicating the relationship between the strengths of the material; and setting the maximum strength of the material among all the temperature conditions among the measurement data as a first maximum strength, and the maximum strength of the material for each temperature condition. The step of extracting the first maximum intensity with the intensity as the second maximum intensity, extracting the maximum intensity reaching time until reaching the second maximum intensity for each temperature condition, and chemically reacting the maximum intensity reaching time deriving a corrected value for the time to maximum strength attained by correcting it to follow a prediction formula for velocity; to the measured data as the first maximum intensity.
 また、一実施形態係るプログラムは、コンピュータを、上記測定データ修正装置として機能させる。 A program according to one embodiment causes a computer to function as the measurement data correction device.
 本開示によれば、一時的に強度が増加し得る材料の劣化試験の測定データを修正することが可能となる。修正された測定データを用いることで、材料の劣化挙動推定及び寿命推定の精度を向上させることが可能となる。 According to the present disclosure, it is possible to correct the measurement data of the deterioration test of materials whose strength can be temporarily increased. By using the corrected measurement data, it is possible to improve the accuracy of material deterioration behavior estimation and lifetime estimation.
一実施形態に係る測定データ修正装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a measurement data correction device according to one embodiment; FIG. 一実施形態に係る劣化推定方法の手順の一例を示すフローチャートである。6 is a flow chart showing an example of a procedure of a degradation estimation method according to one embodiment; GFRPの劣化試験の結果を示すグラフである。4 is a graph showing the results of a GFRP deterioration test; 図3における200時間までの劣化挙動を示すグラフである。FIG. 4 is a graph showing deterioration behavior up to 200 hours in FIG. 3. FIG. アレニウスの式を用いた近似推定の一例を示す図である。It is a figure which shows an example of approximate estimation using the Arrhenius equation. 一実施形態に係る測定データ修正装置による測定データの修正例を示す図である。It is a figure which shows the correction example of the measurement data by the measurement data correction apparatus which concerns on one Embodiment.
 以下、一実施形態について、図面を参照して詳細に説明する。 Hereinafter, one embodiment will be described in detail with reference to the drawings.
 図1に、一実施形態に係る測定データ修正装置の構成例を示す。図1に示す測定データ修正装置1は、制御部10と、入力部11と、記憶部12と、出力部13と、を備える。 FIG. 1 shows a configuration example of a measurement data correction device according to one embodiment. The measurement data correction device 1 shown in FIG. 1 includes a control section 10, an input section 11, a storage section 12, and an output section 13.
 測定データ修正装置1は、複数の温度条件で行われた、一時的に強度が増加し得る材料の劣化試験の測定データを修正する装置である。「一時的に強度が増加し得る材料」とは、例えば「ポストキュア処理が施されていないFRP」であるが、これに限定されるものではない。 The measurement data correction device 1 is a device that corrects the measurement data of deterioration tests of materials whose strength can temporarily increase, performed under multiple temperature conditions. The "material whose strength can be temporarily increased" is, for example, "FRP that has not been post-cured", but is not limited to this.
 入力部11は、ユーザの操作により、複数の温度条件で行われた、一時的に強度が増加し得る材料の劣化試験の測定データを入力する。入力部11は、取得した測定データを記憶部12に出力する。入力部11は、ユーザの入力操作を受け付けて、ユーザの操作に基づく情報を取得する1つ以上の入力インターフェースを含む。例えば、入力部11は、ポインティングデバイス、キーボード、マウスなどであるが、これらに限定されない。 The input unit 11 inputs measurement data of deterioration tests of materials whose strength can temporarily increase, which are performed under a plurality of temperature conditions by user's operation. The input unit 11 outputs the acquired measurement data to the storage unit 12 . The input unit 11 includes one or more input interfaces that receive user's input operations and acquire information based on the user's operations. For example, the input unit 11 is a pointing device, keyboard, mouse, etc., but is not limited to these.
 記憶部12は、入力部11から入力した測定データを記憶する。記憶部12は、1つ以上のメモリを含み、例えば半導体メモリ、磁気メモリ、光メモリなどを含んでもよい。記憶部12に含まれる各メモリは、例えば主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部12は、必ずしも測定データ修正装置1が内部に備える必要はなく、測定データ修正装置1の外部に備える構成としてもよい。 The storage unit 12 stores the measurement data input from the input unit 11. The storage unit 12 includes one or more memories, and may include, for example, semiconductor memory, magnetic memory, optical memory, and the like. Each memory included in the storage unit 12 may function, for example, as a main memory device, an auxiliary memory device, or a cache memory. The storage unit 12 does not necessarily have to be provided inside the measurement data correction device 1 , and may be provided outside the measurement data correction device 1 .
 出力部13は、記憶部12に記憶された修正後の測定データを出力する。出力部13は、情報を出力する1つ以上の出力インターフェースを含む。例えば、出力部13は、情報を画像で出力するディスプレイ、又は情報を音声で出力するスピーカであるが、これらに限定されない。なお、出力部13は、タッチパネル方式のディスプレイである場合には、入力部11としても機能する。 The output unit 13 outputs the corrected measurement data stored in the storage unit 12 . The output unit 13 includes one or more output interfaces for outputting information. For example, the output unit 13 is a display that outputs information as an image or a speaker that outputs information as sound, but is not limited to these. Note that the output unit 13 also functions as the input unit 11 in the case of a touch panel type display.
 測定データ修正装置1は、更に外部の装置と通信するための通信インターフェースを備えていてもよい。通信インターフェースは、例えばLAN(Local Area Network)インターフェースである。 The measurement data correction device 1 may further include a communication interface for communicating with an external device. The communication interface is, for example, a LAN (Local Area Network) interface.
 制御部10は、測定データを修正する処理を行う制御演算回路(コントローラ)である。制御部10は、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などの専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。 The control unit 10 is a control arithmetic circuit (controller) that performs processing for correcting measurement data. The control unit 10 may be configured by dedicated hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array), may be configured by a processor, or may be configured by including both. may
 制御部10は、測定データ取得部101と、抽出部102と、近似推定部103と、測定データ修正部104と、を備える。 The control unit 10 includes a measurement data acquisition unit 101, an extraction unit 102, an approximate estimation unit 103, and a measurement data correction unit 104.
 測定データ取得部101は、記憶部12から測定データを取得する。測定データは、温度条件ごとに時間(劣化試験を開始してからの経過時間)及び材料の強度の関係を示すデータである。測定データ取得部101は、取得した測定データを抽出部102に出力する。測定データ取得部101は、取得した測定データを測定データ修正部104に出力してもよい。 The measurement data acquisition unit 101 acquires measurement data from the storage unit 12 . The measurement data is data showing the relationship between time (elapsed time after starting the deterioration test) and material strength for each temperature condition. The measurement data acquisition section 101 outputs the acquired measurement data to the extraction section 102 . The measurement data acquisition section 101 may output the acquired measurement data to the measurement data correction section 104 .
 抽出部102は、測定データ取得部101から入力した測定データのうち、全ての温度条件の中で材料の最高強度を第1最高強度とし、温度条件ごとの材料の最高強度を第2最高強度とし、第1最高強度を抽出するとともに、温度条件ごとに第2最高強度に到達するまでの最高強度到達時間を抽出する。すなわち、抽出部102は、全測定データの中から、材料の強度の最大値を第1最高強度σmaxとして抽出する。また、抽出部102は、測定データから、温度条件ごとに材料が最高強度(第2最高強度)に到達するまでの時間を最高強度到達時間tmaxとして抽出する。抽出部102は、第1最高強度σmaxを測定データ修正部104に出力し、温度条件ごとの最高強度到達時間tmaxを近似推定部103に出力する。 The extraction unit 102 sets the maximum strength of the material among all the temperature conditions among the measurement data input from the measurement data acquisition unit 101 as the first maximum strength, and sets the maximum strength of the material for each temperature condition as the second maximum strength. , the first maximum intensity is extracted, and the maximum intensity reaching time until reaching the second maximum intensity is extracted for each temperature condition. That is, the extraction unit 102 extracts the maximum strength value of the material as the first maximum strength σ max from all the measurement data. In addition, the extracting unit 102 extracts the time required for the material to reach the maximum strength (second maximum strength) for each temperature condition from the measurement data as the maximum strength reaching time tmax . The extraction unit 102 outputs the first maximum intensity σ max to the measurement data correction unit 104 and outputs the maximum intensity arrival time t max for each temperature condition to the approximate estimation unit 103 .
 近似推定部103は、抽出部102から入力した温度条件ごとの最高強度到達時間tmaxを、化学反応速度の予測式に従うように修正し、最高強度到達時間の修正値t’maxを導出する。温度条件ごとの最高強度到達時間tmaxは離散値であるが、近似推定部103は、化学反応速度の予測式に従い連続値に近似推定する。近似推定部103は、最高強度到達時間の修正値t’maxを測定データ修正部104に出力する。 The approximate estimating unit 103 corrects the maximum intensity reaching time t max for each temperature condition input from the extracting unit 102 so as to follow the chemical reaction rate prediction formula, and derives the maximum intensity reaching time corrected value t′ max . Although the maximum intensity reaching time t max for each temperature condition is a discrete value, the approximate estimating unit 103 approximately estimates it as a continuous value according to the chemical reaction rate prediction formula. Approximate estimating section 103 outputs the corrected value t′ max of the maximum intensity arrival time to measured data correcting section 104 .
 例えば近似推定部103は、下記に示すアレニウスの式を用いて、任意の温度における最高強度到達時間を近似推定し、最高強度到達時間tmaxを修正する。ここで、kは反応速度定数であり、Eaは活性化エネルギーであり、Rは気体定数であり、Tは絶対温度(温度に依存しない定数)である。近似推定部103は、反応速度定数kを最高強度到達時間tmaxの逆数として近似推定を行うことができる。 For example, the approximate estimation unit 103 approximates the maximum intensity arrival time at an arbitrary temperature using the following Arrhenius equation, and corrects the maximum intensity arrival time tmax . where k is the reaction rate constant, Ea is the activation energy, R is the gas constant, and T is the absolute temperature (a temperature independent constant). The approximate estimation unit 103 can perform approximate estimation using the reaction rate constant k as the reciprocal of the maximum intensity reaching time tmax .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、近似推定部103は、近似推定することにより、測定結果の最高強度到達時間tmaxを修正するだけでなく、任意の温度における最高強度到達時間を推定することができる。近似推定部103は、任意の温度における最高強度到達時間を、適切なポストキュア処理時間として記憶部12に出力してもよい。 Moreover, the approximate estimation unit 103 can estimate the maximum intensity arrival time at an arbitrary temperature as well as correct the maximum intensity arrival time t max of the measurement result by performing approximate estimation. The approximation estimation unit 103 may output the maximum strength reaching time at an arbitrary temperature to the storage unit 12 as an appropriate post-cure processing time.
 測定データ修正部104は、記憶部12又は測定データ取得部101から測定データを入力する。また、測定データ修正部104は、抽出部102から第1最高強度σmaxを入力し、近似推定部103から最高強度到達時間の修正値t’maxを入力する。最高強度到達時間の修正値t’maxと第1最高強度σmaxの組み合わせを劣化の開始点とみなすことができる。そのため、測定データ修正部104は、測定データから修正値t’maxよりも前の時間におけるデータを削除し、修正値t’maxにおける材料の強度を第1最高強度σmaxとして測定データに追加する。測定データ修正部104は、このようにして修正した測定データを記憶部12に出力する。 The measurement data correction unit 104 receives measurement data from the storage unit 12 or the measurement data acquisition unit 101 . Further, the measurement data correction unit 104 receives the first maximum intensity σ max from the extraction unit 102 and inputs the correction value t′ max of the maximum intensity arrival time from the approximate estimation unit 103 . The combination of the modified maximum intensity arrival time t' max and the first maximum intensity σ max can be regarded as the starting point of deterioration. Therefore, the measurement data correction unit 104 deletes the data at the time before the correction value t'max from the measurement data, and adds the strength of the material at the correction value t'max to the measurement data as the first maximum strength σmax . . The measurement data correction section 104 outputs the measurement data corrected in this manner to the storage section 12 .
(測定データ修正方法)
 次に、図2を参照して、測定データ修正装置1による測定データ修正方法について説明する。図2は、制御部10における測定データ修正方法の手順の一例を示すフローチャートである。事前に、一時的に強度が増加し得る材料について、複数の温度条件で劣化試験が行われており、劣化試験の測定データが得られているものとする。
(Measurement data correction method)
Next, a measurement data correction method by the measurement data correction device 1 will be described with reference to FIG. FIG. 2 is a flow chart showing an example of the procedure of the measurement data correction method in the control section 10. As shown in FIG. It is assumed that a deterioration test has been performed in advance on a material whose strength can be temporarily increased under multiple temperature conditions, and measurement data for the deterioration test has been obtained.
 ステップS101では、制御部10は、測定データ取得部101により、劣化試験の測定データを取得する。 In step S101, the control unit 10 acquires the measurement data of the deterioration test using the measurement data acquisition unit 101.
 ステップS102では、制御部10は、抽出部102により、初期強度比が100%を超える測定結果の有無を判定する。初期強度比が100%を超える測定結果が存在する場合には、制御部10は処理をステップS103に進める。初期強度比が100%を超える測定結果が存在しない場合には、制御部10は処理を終了する。 In step S102, the control unit 10 uses the extraction unit 102 to determine whether or not there is a measurement result in which the initial intensity ratio exceeds 100%. If there is a measurement result in which the initial intensity ratio exceeds 100%, the control unit 10 advances the process to step S103. If there is no measurement result in which the initial intensity ratio exceeds 100%, the control unit 10 terminates the process.
 ステップS103では、制御部10は、抽出部102により、初期強度比が100%を超える測定結果のうち、全ての温度条件の中で材料の強度が最大となる第1最高強度σmaxを抽出する。また、制御部10は、抽出部102により、温度条件ごとに材料の強度が最大値に到達するまでの最高強度到達時間tmaxを抽出する。 In step S103, the control unit 10 causes the extraction unit 102 to extract the first maximum strength σ max at which the strength of the material is maximized under all temperature conditions among the measurement results in which the initial strength ratio exceeds 100%. . In addition, the control unit 10 extracts the maximum strength reaching time t max until the strength of the material reaches the maximum value for each temperature condition by the extraction unit 102 .
 ステップS104では、制御部10は、近似推定部103により、化学反応速度の予測式に従い、温度条件ごとに最高強度到達時間の修正値t’maxを導出する。 In step S104, the control unit 10 uses the approximate estimation unit 103 to derive the corrected value t'max of the maximum strength reaching time for each temperature condition according to the chemical reaction rate prediction formula.
ステップS105では、制御部10は、測定データ修正部104により、測定データから最高強度到達時間の修正値t’maxよりも前の時間におけるデータを削除する。また、測定データ修正部104により、最高強度到達時間の修正値t’maxにおける材料の強度を第1最高強度σmaxとして測定データに追加する。すなわち、測定データ修正部104は、劣化開始点のデータとして(t’max,σmax)を測定データに追加する。 In step S105, the control unit 10 causes the measurement data correction unit 104 to delete the data at the time before the correction value t'max of the maximum intensity reaching time from the measurement data. Further, the measurement data correction unit 104 adds the strength of the material at the corrected maximum strength reaching time value t′ max to the measurement data as the first maximum strength σ max . That is, the measured data correction unit 104 adds (t′ max , σ max ) to the measured data as data of the deterioration starting point.
(実施例)
 図3に、ポストキュア処理が施されていないFRPを温度条件を40℃、60℃、及び80℃に設定したアルカリ性水溶液に浸漬した促進劣化試験(加速劣化試験)の試験結果を示す。この試験においてFRPは、不飽和ポリエステルをマトリクスとしガラス繊維を繊維としたGFRP(Glass Fiber Reinforced Plastics:ガラス繊維強化プラスチック)である。図3の横軸は時間であり、縦軸は曲げ強度の初期強度に対する比率を示す曲げ強度比である。丸印のプロットは温度条件が40℃の場合の測定データを示し、四角印のプロットは、温度条件が60℃の場合の測定データを示し、三角印のプロットは温度条件が80℃の場合の測定データを示す。この図から、曲げ強度が初期強度の100%以上となっている結果が500時間未満の間に確認できる。
(Example)
FIG. 3 shows the test results of an accelerated deterioration test (accelerated deterioration test) in which FRP that has not been post-cured is immersed in an alkaline aqueous solution with temperature conditions of 40° C., 60° C. and 80° C. In this test, the FRP is GFRP (Glass Fiber Reinforced Plastics) in which the matrix is unsaturated polyester and the fiber is glass fiber. The horizontal axis of FIG. 3 is time, and the vertical axis is the bending strength ratio indicating the ratio of the bending strength to the initial strength. Circle plots show measurement data when the temperature condition is 40°C, square plots show measurement data when the temperature condition is 60°C, and triangle plots show measurement data when the temperature condition is 80°C. Measured data are shown. From this figure, it can be confirmed that the bending strength is 100% or more of the initial strength in less than 500 hours.
 図4に、図3における200時間までの劣化挙動を示す。図4で確認できるように、曲げ強度は単調な変化ではなく増減を示している。これは、試料の状態が均一になるまでに時間を要するためと考えられ、水分吸収による強度低下、樹脂成分の分解及び溶出、並びに強度増加が同時に生じた結果と考えられる。この測定データをそのまま用いて劣化推定を行うと、劣化推定及び寿命推定の推定精度が低下する。そこで、測定データ修正装置1は、劣化の開始点を推定し、測定データを修正する。  Fig. 4 shows the deterioration behavior up to 200 hours in Fig. 3. As can be seen in FIG. 4, the bending strength shows an increase and decrease rather than a monotonous change. It is considered that this is because it takes time for the sample to become uniform, and is considered to be the result of the decrease in strength due to water absorption, the decomposition and elution of the resin component, and the increase in strength at the same time. If deterioration estimation is performed using this measurement data as it is, the estimation accuracy of deterioration estimation and lifetime estimation will be lowered. Therefore, the measurement data correction device 1 estimates the starting point of deterioration and corrects the measurement data.
 図4において、温度条件が40℃の場合の最高強度到達時間tmaxは200時間であり、温度条件が60℃の場合の最高強度到達時間tmaxは144時間であり、温度条件が80℃の場合の最高強度到達時間tmaxは24時間である。また、第1最高強度σmaxは曲げ強度比110%に対応する値である。 In FIG. 4, the maximum strength reaching time t max is 200 hours when the temperature condition is 40 ° C., the maximum strength reaching time t max is 144 hours when the temperature condition is 60 ° C., and the temperature condition is 80 ° C. The time to reach maximum intensity t max in case is 24 hours. Also, the first maximum strength σ max is a value corresponding to a bending strength ratio of 110%.
 式(1)に示したアレニウスの式において、反応速度定数kをtmaxの逆数1/tmaxとすれば、横軸を1/T、縦軸を1/tmaxとして、任意の温度における1/tmaxを導出することができる。 In the Arrhenius equation shown in formula (1), if the reaction rate constant k is the reciprocal of t max 1/t max , the horizontal axis is 1/T, the vertical axis is 1/t max , and 1 at an arbitrary temperature /t max can be derived.
 図5に、図4に示す温度及び最高強度到達時間に、アレニウスの式を適用して導出された近似推定の結果を示す。このように近似推定を行うことにより、近似推定部103は最高強度到達時間を修正又は推定したt’maxを導出する。 FIG. 5 shows the result of approximate estimation derived by applying the Arrhenius equation to the temperature and maximum intensity arrival time shown in FIG. By performing approximate estimation in this way, the approximate estimation unit 103 derives t'max by correcting or estimating the maximum intensity arrival time.
 表1に、図4に示す最高強度到達時間tmaxと、図5に示す最高強度到達時間の修正値(推定値)t’maxの関係を示す。 Table 1 shows the relationship between the maximum intensity reaching time t max shown in FIG. 4 and the corrected value (estimated value) t′ max of the maximum intensity reaching time shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 測定データ修正装置1は、修正値t’maxと第1最高強度σmaxの組み合わせを劣化の開始点とみなし、修正値t’maxよりも前の時間における測定データを削除する。修正値t’max以降の測定データを用いることにより、長期推定を高精度に行うことができる。 The measurement data correction device 1 regards the combination of the correction value t' max and the first maximum intensity σ max as the starting point of deterioration, and deletes the measurement data at the time before the correction value t' max . Long-term estimation can be performed with high accuracy by using the measurement data after the corrected value t'max .
 図6に、図4に示した測定データを修正した結果を示す。温度条件が40℃の場合の測定データについては、修正値t’max(256h)よりも前の時間におけるデータは削除され、修正値t’max(256h)におけるGFRPの強度を第1最高強度σmaxとして測定データに追加される。温度条件が60℃の場合の測定データについては、修正値t’max(85h)よりも前の時間におけるデータは削除され、修正値t’max(85h)におけるGFRPの強度を第1最高強度σmaxとして測定データに追加される。温度条件が80℃の場合の測定データについては、修正値t’max(32h)よりも前の時間におけるデータは削除され、修正値t’max(32h)におけるGFRPの強度を第1最高強度σmaxとして測定データに追加される。このように測定データを修正することにより、曲げ強度の増減が大幅に改善される。 FIG. 6 shows the result of correcting the measurement data shown in FIG. For the measurement data when the temperature condition is 40 ° C., the data at the time before the corrected value t'max (256h) is deleted, and the intensity of GFRP at the corrected value t'max (256h) is the first maximum intensity σ added to the measurement data as max . For the measurement data when the temperature condition is 60 ° C., the data at the time before the corrected value t'max (85h) is deleted, and the intensity of GFRP at the corrected value t'max (85h) is the first maximum intensity σ added to the measurement data as max . For the measurement data when the temperature condition is 80 ° C., the data at the time before the corrected value t'max (32h) is deleted, and the intensity of GFRP at the corrected value t'max (32h) is the first maximum intensity σ added to the measurement data as max . By correcting the measurement data in this way, the flexural strength gains and losses are greatly improved.
 また、最高強度到達時間の修正値を含む、任意の温度における最高強度到達時間の推定値は、その温度において硬化反応が終了する時間であることから、適切なポストキュアの処理時間として用いることが可能である。 In addition, the estimated value of the time to reach the maximum strength at an arbitrary temperature, including the corrected value of the time to reach the maximum strength, is the time at which the curing reaction is completed at that temperature, so it can be used as an appropriate post-cure processing time. It is possible.
(コンピュータ、プログラム)
 測定データ修正装置1は、プログラム命令を実行可能なコンピュータであってもよい。ここで、コンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。
(computer, program)
The measurement data correction device 1 may be a computer capable of executing program instructions. Here, the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks.
 この場合、制御部10は、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などのプロセッサであり、制御部10は、同種又は異種の複数のプロセッサにより構成されてもよい。プロセッサは、記憶部12からプログラムを読み出して実行することで、上記各構成の制御及び各種の演算処理を行う。なお、これらの処理内容の少なくとも一部をハードウェアで実現することとしてもよい。 In this case, the control unit 10 is a processor such as a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), and controls The unit 10 may be composed of multiple processors of the same type or different types. The processor reads a program from the storage unit 12 and executes it, thereby controlling the above components and performing various kinds of arithmetic processing. Note that at least part of these processing contents may be realized by hardware.
 プログラムは、コンピュータが読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータにインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性(non-transitory)の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリなどであってもよい。また、このプログラムは、ネットワークを介して提供することも可能である。 The program may be recorded on a computer-readable recording medium. By using such a recording medium, it is possible to install the program in the computer. Here, the recording medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like. Also, this program can be provided via a network.
 以上説明したように、測定データ修正装置1は、一時的に強度が増加し得る材料の劣化試験の測定データを取得し、全ての温度条件の中で材料の最高強度を第1最高強度σmaxとし、温度条件ごとの材料の最高強度を第2最高強度とし、第1最高強度σmaxを抽出するとともに、温度条件ごとに第2最高強度に到達するまでの最高強度到達時間tmaxを抽出する。そして、測定データ修正装置1は、最高強度到達時間tmaxを化学反応速度の予測式に従うように修正して修正値t’maxを導出する。そして、測定データ修正装置1は、測定データから修正値t’maxよりも前の時間におけるデータを削除し、修正値t’maxにおける材料の強度を第1最高強度σmaxとして測定データに追加する。 As described above, the measurement data correction device 1 acquires the measurement data of the deterioration test of the material whose strength can be temporarily increased, and sets the maximum strength of the material under all temperature conditions to the first maximum strength σ max , the maximum strength of the material for each temperature condition is the second maximum strength, and the first maximum strength σ max is extracted, and the maximum strength reaching time t max until the second maximum strength is reached for each temperature condition is extracted. . Then, the measurement data correction device 1 corrects the maximum intensity reaching time t max so as to follow the chemical reaction rate prediction formula to derive a corrected value t′ max . Then, the measurement data correction device 1 deletes the data at the time before the correction value t'max from the measurement data, and adds the strength of the material at the correction value t'max to the measurement data as the first maximum strength σmax . .
 図3及び図4に示したように、硬化反応は材料の成形完了直後から進行し、常温でも緩やかに進行するものの、高温であるほど反応速度は増加する。また、硬化反応が完了した場合には強度の単調減少に移行する。このような特性に鑑み、測定データ修正装置1は、劣化初期の強度増加を把握し、修正値t’maxを劣化の開始時間として推定している。したがって、測定データ修正装置1により劣化開始点のデータを決定し、測定データを修正することで、強度増加の影響を補正することができ、材料の劣化挙動推定及び寿命推定の精度を向上させることが可能となる。 As shown in FIGS. 3 and 4, the curing reaction proceeds immediately after the completion of molding of the material, and progresses slowly even at room temperature, but the higher the temperature, the faster the reaction rate. Further, when the curing reaction is completed, the strength shifts to a monotonous decrease. In view of such characteristics, the measured data correction device 1 grasps the strength increase at the early stage of deterioration and estimates the correction value t'max as the start time of deterioration. Therefore, by determining the data of the deterioration starting point by the measurement data correction device 1 and correcting the measurement data, the influence of the increase in strength can be corrected, and the accuracy of the deterioration behavior estimation and life estimation of the material can be improved. becomes possible.
 また、測定データ修正装置1は、任意の温度における最高強度到達時間を近似推定することにより、適切なポストキュアの処理条件を明らかにすることが可能となる。 In addition, the measurement data correction device 1 can clarify appropriate post-cure processing conditions by approximating the maximum strength reaching time at an arbitrary temperature.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional remarks are disclosed.
 (付記項1)
 一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正装置であって、
 温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得し、
 前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出し、
 前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出し、
 前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加する制御部
を備える測定データ修正装置。
 (付記項2)
 前記制御部は、アレニウスの式を用いて、前記最高強度到達時間を修正する、付記項1に記載の測定データ修正装置。
 (付記項3)
 前記制御部は、前記アレニウスの式を用いて、任意の温度における最高強度到達時間を近似推定し、適切なポストキュア処理時間として出力する、付記項2に記載の測定データ修正装置。
 (付記項4)
 前記制御部は、前記アレニウスの式における反応速度定数を前記最高強度到達時間の逆数とする、付記項2又は3に記載の測定データ修正装置。
 (付記項5)
 前記一時的に強度が増加し得る材料は、ポストキュア処理が施されていないFRPである、付記項1から4のいずれか一項に記載の測定データ修正装置。
 (付記項6)
 一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正方法であって、
 測定データ修正装置により、
 温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得するステップと、
 前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出するステップと、
 前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出するステップと、
 前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加するステップと、
を含む測定データ修正方法。
 (付記項6)
 コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、
 前記コンピュータを付記項1から5のいずれか一項に記載の測定データ修正装置として機能させるプログラムを記憶した非一時的記憶媒体。
(Appendix 1)
A measurement data correction device for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased,
Acquiring the measurement data showing the relationship between time and the strength of the material for each temperature condition;
Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted. , extracting the maximum strength reaching time until reaching the second maximum strength for each temperature condition,
Correcting the maximum strength reaching time to follow the chemical reaction rate prediction formula, deriving a corrected value of the maximum strength reaching time,
A measurement data correction device comprising a control unit that deletes data at a time before the correction value from the measurement data and adds the strength of the material at the correction value to the measurement data as the first maximum strength.
(Appendix 2)
2. The measurement data correction device according to claim 1, wherein the control unit corrects the maximum intensity arrival time using the Arrhenius equation.
(Appendix 3)
3. The measurement data correction device according to claim 2, wherein the control unit approximates the maximum intensity reaching time at an arbitrary temperature using the Arrhenius equation, and outputs it as an appropriate post-cure processing time.
(Appendix 4)
4. The measurement data correction device according to additional item 2 or 3, wherein the control unit sets the reaction rate constant in the Arrhenius equation to the reciprocal of the maximum intensity reaching time.
(Appendix 5)
5. The measurement data correction device according to any one of additional items 1 to 4, wherein the material whose strength can be temporarily increased is FRP that has not been post-cured.
(Appendix 6)
A measurement data correction method for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased,
With the measurement data correction device,
obtaining the measurement data showing the relationship between time and strength of the material for each temperature condition;
Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted. , extracting the maximum strength reaching time until reaching the second maximum strength for each temperature condition;
modifying the time to reach maximum intensity so as to follow a chemical reaction rate prediction formula, and deriving a corrected value for the time to reach maximum intensity;
deleting from the measured data data at times prior to the corrected value and adding the strength of the material at the corrected value as the first maximum strength to the measured data;
including measurement data correction methods.
(Appendix 6)
A non-temporary storage medium storing a computer-executable program,
A non-temporary storage medium storing a program that causes the computer to function as the measurement data correction device according to any one of additional items 1 to 5.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形又は変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを統合したり、1つの構成ブロックを分割したりすることが可能である。 Although the above-described embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present invention should not be construed as limited by the embodiments described above, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to integrate a plurality of configuration blocks described in the configuration diagrams of the embodiments, or to divide one configuration block.
 1   測定データ修正装置
 10  制御部
 11  入力部
 12  記憶部
 13  推定結果出力部
 101 測定データ取得部
 102 抽出部
 103 近似推定部
 104 測定データ修正部
 
Reference Signs List 1 measurement data correction device 10 control unit 11 input unit 12 storage unit 13 estimation result output unit 101 measurement data acquisition unit 102 extraction unit 103 approximate estimation unit 104 measurement data correction unit

Claims (7)

  1.  一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正装置であって、
     温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得する測定データ取得部と、
     前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出する抽出部と、
     前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出する近似推定部と、
     前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加する測定データ修正部と、
    を備える測定データ修正装置。
    A measurement data correction device for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased,
    a measurement data acquisition unit that acquires the measurement data indicating the relationship between time and the strength of the material for each temperature condition;
    Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted. , an extraction unit that extracts the maximum strength reaching time until the second maximum strength is reached for each temperature condition;
    an approximation unit that corrects the maximum intensity reaching time to follow a chemical reaction rate prediction formula and derives a corrected value of the maximum intensity reaching time;
    a measurement data correction unit that deletes data at a time before the correction value from the measurement data and adds the strength of the material at the correction value to the measurement data as the first maximum strength;
    A measurement data correction device comprising:
  2.  前記近似推定部は、アレニウスの式を用いて、前記最高強度到達時間を修正する、請求項1に記載の測定データ修正装置。 The measurement data correction device according to claim 1, wherein the approximate estimation unit corrects the maximum intensity arrival time using the Arrhenius equation.
  3.  前記近似推定部は、前記アレニウスの式を用いて、任意の温度における最高強度到達時間を近似推定し、適切なポストキュア処理時間として出力する、請求項2に記載の測定データ修正装置。 3. The measurement data correction device according to claim 2, wherein the approximate estimating unit approximates the maximum intensity reaching time at an arbitrary temperature using the Arrhenius equation, and outputs it as an appropriate post-cure processing time.
  4.  前記近似推定部は、前記アレニウスの式における反応速度定数を前記最高強度到達時間の逆数とする、請求項2又は3に記載の測定データ修正装置。 4. The measurement data correction device according to claim 2 or 3, wherein the approximation estimation unit sets the reaction rate constant in the Arrhenius equation to the reciprocal of the maximum intensity reaching time.
  5.  前記一時的に強度が増加し得る材料は、ポストキュア処理が施されていないFRPである、請求項1から4のいずれか一項に記載の測定データ修正装置。 The measurement data correction device according to any one of claims 1 to 4, wherein the material whose strength can be temporarily increased is FRP that has not been post-cured.
  6.  一時的に強度が増加し得る材料の劣化試験の測定データを修正する測定データ修正方法であって、
     測定データ修正装置により、
     温度条件ごとに時間及び前記材料の強度の関係を示す前記測定データを取得するステップと、
     前記測定データのうち、全ての温度条件の中で前記材料の最高強度を第1最高強度とし、温度条件ごとの前記材料の最高強度を第2最高強度とし、前記第1最高強度を抽出するとともに、温度条件ごとに前記第2最高強度に到達するまでの最高強度到達時間を抽出するステップと、
     前記最高強度到達時間を化学反応速度の予測式に従うように修正し、前記最高強度到達時間の修正値を導出するステップと、
     前記測定データから前記修正値よりも前の時間におけるデータを削除し、前記修正値における前記材料の強度を前記第1最高強度として前記測定データに追加するステップと、
    を含む測定データ修正方法。
    A measurement data correction method for correcting measurement data of a deterioration test of a material whose strength can be temporarily increased,
    With the measurement data correction device,
    obtaining the measurement data showing the relationship between time and strength of the material for each temperature condition;
    Among the measurement data, the maximum strength of the material under all temperature conditions is defined as the first maximum strength, the maximum strength of the material under each temperature condition is defined as the second maximum strength, and the first maximum strength is extracted. , extracting the maximum strength reaching time until reaching the second maximum strength for each temperature condition;
    modifying the time to reach maximum intensity so as to follow a chemical reaction rate prediction formula, and deriving a corrected value for the time to reach maximum intensity;
    deleting from the measured data data at times prior to the corrected value and adding the strength of the material at the corrected value as the first maximum strength to the measured data;
    including measurement data correction methods.
  7.  コンピュータを、請求項1から5のいずれか一項に記載の測定データ修正装置として機能させるためのプログラム。
     
    A program for causing a computer to function as the measurement data correction device according to any one of claims 1 to 5.
PCT/JP2021/018857 2021-05-18 2021-05-18 Measurement data correction device, measurement data correction method, and program WO2022244118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/018857 WO2022244118A1 (en) 2021-05-18 2021-05-18 Measurement data correction device, measurement data correction method, and program
JP2023522058A JPWO2022244118A1 (en) 2021-05-18 2021-05-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018857 WO2022244118A1 (en) 2021-05-18 2021-05-18 Measurement data correction device, measurement data correction method, and program

Publications (1)

Publication Number Publication Date
WO2022244118A1 true WO2022244118A1 (en) 2022-11-24

Family

ID=84141468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018857 WO2022244118A1 (en) 2021-05-18 2021-05-18 Measurement data correction device, measurement data correction method, and program

Country Status (2)

Country Link
JP (1) JPWO2022244118A1 (en)
WO (1) WO2022244118A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101461A (en) * 1987-10-14 1989-04-19 Mitsubishi Cable Ind Ltd Method for estimating crosslinking temperature of crosslinked organic high polymer
US4943930A (en) * 1986-04-18 1990-07-24 Radjy Farrokh F Method and apparatus for non-destructive evaluation of concrete
JPH05133876A (en) * 1991-11-13 1993-05-28 Three Bond Co Ltd Measuring apparatus of change with time of hardening resin
JP2011220870A (en) * 2010-04-12 2011-11-04 Hitachi Ltd Frp evaluation method and evaluation device
US20140192837A1 (en) * 2011-08-25 2014-07-10 Siemens Aktiengesellschaft System and method for generating a combined model for isothermal and anisothermal fatigue life
JP2018179509A (en) * 2017-04-03 2018-11-15 日本電信電話株式会社 Estimation method and estimation system for resin concrete strength
JP2019148458A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 State estimation method of thermosetting resin
JP6818287B1 (en) * 2020-10-13 2021-01-20 セイコー化工機株式会社 Deterioration diagnosis method for plastic materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943930A (en) * 1986-04-18 1990-07-24 Radjy Farrokh F Method and apparatus for non-destructive evaluation of concrete
JPH01101461A (en) * 1987-10-14 1989-04-19 Mitsubishi Cable Ind Ltd Method for estimating crosslinking temperature of crosslinked organic high polymer
JPH05133876A (en) * 1991-11-13 1993-05-28 Three Bond Co Ltd Measuring apparatus of change with time of hardening resin
JP2011220870A (en) * 2010-04-12 2011-11-04 Hitachi Ltd Frp evaluation method and evaluation device
US20140192837A1 (en) * 2011-08-25 2014-07-10 Siemens Aktiengesellschaft System and method for generating a combined model for isothermal and anisothermal fatigue life
JP2018179509A (en) * 2017-04-03 2018-11-15 日本電信電話株式会社 Estimation method and estimation system for resin concrete strength
JP2019148458A (en) * 2018-02-26 2019-09-05 トヨタ自動車株式会社 State estimation method of thermosetting resin
JP6818287B1 (en) * 2020-10-13 2021-01-20 セイコー化工機株式会社 Deterioration diagnosis method for plastic materials

Also Published As

Publication number Publication date
JPWO2022244118A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
Zhang et al. Microstructure-informed modelling of damage evolution in cement paste
JP6815708B2 (en) Influenza prediction model generation method, equipment and computer readable storage medium
WO2022244118A1 (en) Measurement data correction device, measurement data correction method, and program
CN110531977B (en) Automatic control method and device for instrument, computer equipment and storage medium
CN109597881B (en) Matching degree determination method, device, equipment and medium
Liang et al. Predicting early‐age stress evolution in restrained concrete by thermo‐chemo‐mechanical model and active ensemble learning
CN110188798B (en) Object classification method and model training method and device
JP6624533B1 (en) Material property estimation program, Material generation mechanism estimation program
CN113887948A (en) Method and system for analyzing window period and work efficiency of offshore wind power construction
CN113656544A (en) Training method, device, equipment and medium for nested named entity recognition model
CN112417463A (en) Software vulnerability prediction method and device, computer equipment and storage medium
CN112309368A (en) Prosody prediction method, device, equipment and storage medium
CN108831504B (en) Method and device for determining pitch period, computer equipment and storage medium
CN115757788A (en) Text retouching method and device and storage medium
Li et al. Stochastic Dynamic Model of Sulfate Corrosion Reactions in Concrete Materials considering the Effects of Colored Gaussian Noises
Ayorinde et al. On the elastic characterization of composite plates with vibration data
JP2010113527A (en) Bug extraction prediction system
Ahmad Generalized new extended weibull distribution with real life application
Tingjun et al. Finite element model of shape memory alloy incorporating drucker-prager model
CN111753760A (en) Model generation method and device, electronic equipment and storage medium
CN115080402B (en) Whale optimization algorithm-based software defect positioning method and processing device
CN117725664B (en) Method, device, equipment and medium for calculating ultimate bearing capacity of perforated plate connecting piece
CN116461120B (en) Preparation method and system of phenolic composite material
CN111767742B (en) Data enhancement method for chapter translation network
Nguyen-Sy et al. An Adaptive Homogenization Scheme for Modeling the Effective Elastic Properties of Early Age Concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522058

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940735

Country of ref document: EP

Kind code of ref document: A1