WO2022243938A1 - Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos - Google Patents

Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos Download PDF

Info

Publication number
WO2022243938A1
WO2022243938A1 PCT/IB2022/054703 IB2022054703W WO2022243938A1 WO 2022243938 A1 WO2022243938 A1 WO 2022243938A1 IB 2022054703 W IB2022054703 W IB 2022054703W WO 2022243938 A1 WO2022243938 A1 WO 2022243938A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
explosive devices
detectors
improvised
explosive
Prior art date
Application number
PCT/IB2022/054703
Other languages
English (en)
French (fr)
Inventor
Luis Fernando CRISTANCHO MEJÍA
Freddy Alexander Torres Cubides
Eduardo FAJARDO LÓPEZ
Original Assignee
Universidad Nacional De Colombia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Colombia filed Critical Universidad Nacional De Colombia
Publication of WO2022243938A1 publication Critical patent/WO2022243938A1/es

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/13Systems specially adapted for detection of landmines
    • F41H11/136Magnetic, electromagnetic, acoustic or radiation systems, e.g. ground penetrating radars or metal-detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/16Self-propelled mine-clearing vehicles; Mine-clearing devices attachable to vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • G01N23/204Measuring back scattering using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/221Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis
    • G01N23/222Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by activation analysis using neutron activation analysis [NAA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/02Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for surface logging, e.g. from aircraft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/015Boards, panels, desks; Parts thereof or accessories therefor
    • H02B1/04Mounting thereon of switches or of other devices in general, the switch or device having, or being without, casing
    • H02B1/056Mounting on plugboards

Definitions

  • the present invention relates to an instrument and its method of use to locate Improvised Explosive Devices (quiebrapatas mines), known under the abbreviation AEI, buried in soil of any type. More specifically, the present invention manages to locate typical AEIs in a very wide range of moisture in various types of soils.
  • the technology used is the so-called “thermal neutron backscattering”.
  • the invention itself has methodologies to determine the situations in which it is not advisable to use this technique.
  • GPR Ground-Penetrating Radar
  • Nuclear methods they use physical properties of the atomic nuclei in the constituent materials of the explosive and eventually of the container. Examples: Nuclear Quadrupole Resonance; Neutron reactions [Csikai et al., 2004, Datema et al., 2003]. Of these two, the second is the one that has shown the greatest possibility of use in the detection of AEIs. The method used in the invention described here belongs to this group and will be detailed later.
  • a neutron beam provided by a commercial isotope source is sent into the soil volume under inspection [Brooks et al., 2012, Brooks and Drosg, 2005, Brooks et al., 2004, 1999]. .
  • a percentage of these neutrons, after making collisions with the nuclei of the material, will eventually bounce back at a speed low enough for slow neutron detectors A and B to be able to detect them.
  • the number of neutrons detected is proportional to the concentration per unit volume of low atomic number material in the sample. Elements of low atomic number such as hydrogen, carbon, oxygen, nitrogen make up the majority of the mass of AEIs and are also present in the soil.
  • the intensities A(x) and B(x) will exhibit a minimum of magnitude YB - Y0 as in Figure 1(c).
  • the increase or decrease of the signal with respect to that of the soil only in Y0 is due to the presence of the AEI and the differences in concentrations of light elements in AEI and soil.
  • the distance between the detectors (a) as well as the distance between the detectors and the ground surface, z, have an optimal value.
  • the horizontal position, x0, of the suspect object will be determined, in a first approximation, as the midpoint between the maxima or minima of A(x) and B(x). If the quality of the data is good enough, it will be appropriate to use refined mathematical methods that more accurately determine the x0 value.
  • the patent US3146349 called Detecting hidden explosives using neutron beams that uses neutrons as a probe, however, the detected particle is not the neutron, the technique for the operation of the device is neutron activation where the essential part is that a neutron, when reacting with the sample material generates either a ray or an alpha particle.
  • the instrumentation detects one or the other, or both particles.
  • the patent application CN110579137A called Thermal neutron analysis mine detection device based on deuterium and deuterium neutron generator that also uses neutrons as a probe but that uses a neutron generator and not an isotopic source as the invention, the generator produces a monoenergetic beam of neutrons while
  • the invention includes a neutron source (252Cf or Am-Be) that produces a very wide distribution of energy.
  • the detected radiation is a 10:8 MeV gamma ray from the reaction of the neutron with the nitrogen nucleus, while in the invention the detected radiation corresponds to neutrons.
  • Patent US4918315 called Neutron scatter method and apparatus for the noninvasive interrogation of objects also uses neutrons as a probe, but in a similar way to the previous one, the generator produces a monoenergetic beam of neutrons while the invention includes a neutron source (252Cf or Am- Be) which produces a very wide distribution of energy.
  • the device analyzes the energy spectrum of the detected (scattered) neutrons unlike the invention of this document which counts the number of detected neutrons.
  • Patent application DE19600591A1 Location of non-metallic buried mines by neutron reflectometry uses elastic scattering in hydrogen, includes a neutron source, neutron detectors in symmetrical array, and appears to detect non-metallic mines. However, it seems to work preferably with inelastic scattering or inelastic scattering in hydrogen, while the device described here works with elastic scattering producing thermalization (lower speed neutrons) in the nucleus of any element (If there is no hydrogen, it works too).
  • the German application has a neutron beam whereas in the invention of this application the neutrons are leaving the source in all directions.
  • This German application assumes that the mine is essentially made of plastic explosive whereas the invention herein can detect AEIs made of any material containing low atomic number elements, H, C, N, O. pentolite and anfo for example.
  • the device of the German application contains source container and detectors open towards the ground in such a way that neutrons can enter and exit only through such an opening while our application does not have any mechanism or material provided to achieve such an effect because the addition of such an attachment produces greater volume and weight that would make it impractical.
  • the problem referred to above regarding high humidity in the soil can be solved using any background subtraction method that allows subtracting the signal produced by the soil without AEI, from the signal of the soil with AEI.
  • the next problem to solve is to know if the backscatter signals originated in the typical AEIs are sufficiently intense so that they can be differentiated from those of the ground.
  • FIG 2 schematically summarizes the results of a systematic investigation carried out by the Nuclear Physics Group of the National University regarding the relationship between the signal above background, Y0 (quantity explained in Figure 1(b)) , in neutron detectors as a function of humidity.
  • critical moisture 43% in Figure 2.
  • the existence of the critical humidity value explains why in the case of the presence of an AEI the signal can have a maximum, Figure 1(b) or a minimum, Figure 1(c).
  • the value of the critical humidity and the range around it, in which it is not advisable to use the locator instrument, is determinable in laboratory and field tests. This value depends both on the properties of the material from which the AEI is made and on the properties of the soil (eg density, humidity, type), therefore it is necessary to carry out previous calibration and database creation activities.
  • the database will be available to the instrument software, and will allow it to identify its ability or inability to locate AEIs in the given situation. Said evaluation may be communicated by the instrument to its operator.
  • Figure 3(a) shows a schematic of the instrument that consists of a carriage, a nose and an arm or extension that joins them.
  • the cart serves as a transporter for the nose and as part of the electronic instruments for analysis and signal emission; it also has inclination indicators in two axes (also called accelerometers or IMU - Inertial Measurement Unit) to correct changes in the magnitude of the signal associated exclusively with variations in the topography of the ground.
  • the signals are received by a portable computer (laptop or tablet) or a cell phone under the inspection of the operator.
  • the nose ( Figure 3(b)) contains the active detection elements that are the neutron source and detectors.
  • Electronic instruments for pre-processing the signal acquired by the detectors also reside in the nose, which include a preamplifier, amplifier and digitizer of the analog signal; a processor for signal analysis and emission (this emission can be done via wifi or bluetooth) and some databases with the response of the entire device to explosive devices.
  • the arm mounted on a rotating shaft on the carriage, with the nose at its other end, allows the nose to perform arc sweeps to inspect a chosen area.
  • Locating on the entire plane is achieved by sweeping in parallel paths completing the inspection of a certain area.
  • the sweeps are made on arcs, once an arc is completed, the entire instrument moves forward a predetermined distance and performs the inspection on the next arc.
  • the detected neutron intensity signals are converted into a three-dimensional image.
  • the non-background (YB) values in the case of the presence of an AEI, form a surface that is a three-dimensional Gaussian distribution.
  • Red color high probability of presence of AEI.
  • Yellow color Unfinished signal. It is recommended to do a second sweep with a longer reading time. If after this second sweep the yellow color persists, the system will change the diagnostic to red.
  • Green color high probability of absence of AEI.
  • the diagnosis is displayed on a monitor that can be that of a laptop or the screen of a cell phone. With this information the operator will be able to decide the subsequent actions.
  • a prototype equipment has been used for the location of physical simulations of AEIs consisting of plastic and PVC containers containing around 200 grams of pentolite or ANFO, the two most used materials in the AEI invoice in Colombia.
  • the prototype, and its method of use, described below, has shown to be successful in the greatest number of cases tested in different types of soil and humidity, both in the laboratory and in the field with AEIs buried at distances of less than 15 cm. the ground surface.
  • the distance between the near edges of the detectors, a, must be set according to the size and type of detectors.
  • z is the distance between the ground surface and the bottom surface of the detectors.
  • the Y0 value depends on the type of soil, the humidity and the nature of the AEI.
  • the YB value essentially depends on the characteristics of the soil only.
  • the horizontal position of the AEI, x0 can be found by several methods, for example, taking it as the midpoint between the coordinates of the maxima of A(x) and B(x).
  • the nose moves on an arc. Along this arc the nose stops for a certain amount of time (1 to 15 seconds) to take the backscattered intensity measurement.
  • the carriage moves a predetermined distance (5 cm may be a reasonable distance) forward after the nose has completed one arc. This distance can be changed at will to achieve higher or lower sampling density.
  • Walid A Metwally. Multi-parameter optimization of a neutron backscattering landmine detection system. Applied Radiation and Isotopes, 105:290–293, 2015.

Abstract

Método y aparato para localizar Artefactos Explosivos Improvisados (AEI) enterrados bajo la superficie del suelo. El aparato usa una fuente radiactiva emisora de neutrones rápidos y dos detectores de neutrones lentos. Puesto que los materiales usados en la actualidad para la manufactura de AEIs son esencialmente de bajo número atómico, también presentes en el suelo, generalmente en concentraciones diferentes a aquellas de los AEIs, cuando un volumen de suelo es examinado por neutrones rápidos, la detección de una variación local en la intensidad de la señal de neutrones lentos es indicativo de la posible presencia de material explosivo. El método incluye procedimientos de análisis numérico y de comparación con bases de datos previamente construidas que permitirán: (i) Determinar con suficiente precisión la posición del material explosivo sobre un plano paralelo a la superficie del suelo. (ii) Obtener una valoración estadística de la probabilidad de que el objeto localizado sea un AEI.

Description

Dispositivo para la localización de Artefactos Explosivos Improvisados por Retrodispersión de Neutrones Térmicos
La presente invención se relaciona con un instrumento y su método de uso para localizar Artefactos Explosivos Improvisados (minas quiebrapatas), conocidos bajo la abreviatura AEI, enterrados en suelo de cualquier tipo. Más específicamente, la presente invención logra ubicar AEIs típicos en un rango muy amplio de humedad en diversos tipos de suelos. La tecnología usada es la llamada “retrodispersión de neutrones térmicos”. La invención misma dispone de metodologías para determinar las situaciones en las cuales no es aconsejable usar esta técnica.
Detección de materiales explosivos
Existen múltiples técnicas para la detección de explosivos, sin embargo, muchas de las técnicas conocidas, incluyendo el detector de metales, son inútiles cuando el material explosivo y su empaque son construidos con exclusivamente material de bajo número atómico como lo son hidrógeno, carbono, nitrógeno y oxígeno. Ejemplo de estos explosivos son los AEI, conocidos en Colombia como “minas quiebrapatas”, en las cuales los elementos mencionados más arriba están siempre presentes en altos porcentajes. La presencia de muy bajos contenidos de metal o de su total ausencia en este tipo de artefactos explosivos ha provocado la búsqueda de nuevas técnicas, las cuales en este momento pueden ser clasificadas de la siguiente manera:
Electromagnéticas. Ejemplo: Ground-Penetrating Radar (GPR): Radar de penetración en suelo. Ondas de radio son enviadas hacia el volumen bajo inspección, las diferencias en las propiedades dieléctricas de los materiales en el suelo producen ondas reflejadas, las cuales son detectadas e interpretadas.
Acústicos: una onda de sonido es enviada hacia la muestra. Diferencias en la constitución mecánica entre el suelo y el artefacto explosivo produce ondas reflejadas que son detectadas e interpretadas.
Búsqueda de vapores emanados por las sustancias de las que está compuesto el AEI. Búsqueda biológica por perros, ratas, abejas y por métodos químicos, en éstos últimos, artefactos electrónicos simulan el funcionamiento del sistema olfativo de los mamíferos.
Métodos nucleares: usan propiedades físicas de los núcleos atómicos en los materiales constituyentes del explosivo y eventualmente del recipiente. Ejemplos: Resonancia Cuadrupolar Nuclear; Reacciones neutrónicas [Csikai et al., 2004, Datema et al., 2003]. De estas dos, la segunda es la que ha mostrado mayor posibilidad de uso en detección de AEIs. El método usado en la invención descrita acá pertenece a este grupo y será detallado más adelante.
El método de retrodispersión de neutrones térmicos
Siguiendo la Figura 1(a), un haz de neutrones proporcionado por una fuente isotópica comercial es enviado hacia el volumen de suelo bajo inspección [Brooks et al., 2012, Brooks and Drosg, 2005, Brooks et al., 2004, 1999]. Un porcentaje de estos neutrones, después de realizar colisiones con los núcleos del material, eventualmente rebotará a una velocidad suficientemente baja para que detectores de neutrones lentos A y B sean capaces de detectarlos. La cantidad de neutrones detectados es proporcional a la concentración por unidad de volumen de material de bajo número atómico en la muestra. Los elementos de bajo número atómico como hidrógeno, carbono, oxígeno, nitrógeno conforman la mayor parte de la masa de los AEIs y también están presentes en el suelo.
Cuando se hace un barrido con el conjunto de detectores y la fuente de neutrones rígidamente unidos y se registra la intensidad de las señales A(x), B(x), de cada uno de los detectores idénticos, como función de la distancia x (en línea recta o a lo largo de un arco) entre una referencia y la fuente de neutrones, la gráfica de cada intensidad tendrá la apariencia esquematizada en las Figuras 1(b) o 1(c). Los elementos livianos en el suelo provocan una señal de magnitud YB. Si existe un objeto hidrogenado cuya concentración de elementos livianos sea mayor que la del suelo circundante en el rango de distancias x examinado, las intensidades A(x) y B(x) tendrán un máximo de magnitud YB+Y0, como en la Figura 1(b). Si la concentración es menor, las intensidades A(x) y B(x) exhibirán un mínimo de magnitud YB - Y0 como en la Figura 1(c). El aumento o disminución de la señal respecto a la del suelo solo en Y0 es debida a la presencia del AEI y a las diferencias en concentraciones de elementos livianos en AEI y suelo.
La distancia entre los detectores (a) así como la distancia entre los detectores y la superficie del suelo, z, tienen un valor óptimo. La posición horizontal, x0, del objeto sospechoso quedará determinada, en primera aproximación, como el punto medio entre los máximos o mínimos de A(x) y de B(x). Si la calidad de los datos es suficientemente buena, será apropiado usar métodos matemáticos refinados que determinen con mayor precisión el valor x0.
Además del grupo de investigación en Sudáfrica, autor de una extensa investigación mencionada más arriba [Brooks et al., 2012, Brooks and Drosg, 2005, Brooks et al., 2004, 1999], varios otros grupos científicos en diversos lugares del mundo estudiaron la aplicabilidad de la técnica de “Retrodispersión de Neutrones Térmicos” (RNT) en la detección de explosivos [Obhođaš et al., 2004, Viesti et al., 2006, Ochbelagh et al., 2007, 2009, Metwally, 2015]. Estas investigaciones se concentran en experimentos de laboratorio o en simulaciones numéricas del procedimiento descrito más arriba, es decir, se concentraron en el estudio de la física del proceso, no en su aplicación en una situación real. Todas aquellas investigaciones concuerdan en que el método muestra posibilidades en el caso de que fuese implementado para ser usado en un campo real.
Sin embargo, hasta ahora ninguna investigación ha mostrado cómo implementar la técnica para su uso en campo. La invención descrita aquí instrumentaliza y lleva a la práctica los resultados de la investigación mencionada, junto con la realizada por miembros del mismo Grupo de Física Nuclear de la Universidad Nacional [Forero Martínez, 2007, Forero et al., 2007, Cruz, 2009, Cruz and Cristancho, 2009, Abril, 2010, Andrade, 2014, Bautista Sánchez, 2018, Torres Payoma, 2019] orientada, también, a la comprensión de los principios físicos de la retrodispersión de neutrones térmicos. Las investigaciones del GFNUN han tenido difusión en varios medios [UN Periódico digital, 2018, Cote, 2016, Noguera Montoya, 2016, Wade, 2018].
Se han desarrollado algunos dispositivos que resuelven el problema de la detección de minas entre las que se destacan las siguientes:
La patente US3146349 denominada Detecting hidden explosives using neutron beams que usa neutrones como sonda, sin embargo, la partícula detectada no es el neutrón, la técnica para el funcionamiento del dispositivo es la activación neutrónica en donde la parte esencial es que un neutrón, al reaccionar con el material de la muestra genera o un rayo o una partícula alfa. En cada propuesta la instrumentación detecta una u otra, o ambas partículas.
La solicitud de patente CN110579137A denominada Thermal neutron analysis mine detection device based on deuterium and deuterium neutron generator que también usa neutrones como sonda pero que usa generador de neutrones y no una fuente isotópica como la invención, el generador produce un haz monoenergético de neutrones mientras que la invención incluye una fuente de neutrones (252Cf o Am-Be) que produce una distribución muy amplia de energía. En esta solicitud la radiación detectada es un rayo gamma de 10:8 MeV proveniente de la reacción del neutrón con el núcleo nitrógeno mientras que en la invención la radiación detectada corresponde a neutrones.
La patente US4918315 denominada Neutron scatter method and apparatus for the noninvasive interrogation of objects también usa neutrones como sonda, pero de manera similar a la anterior el generador produce un haz monoenergético de neutrones mientras que la invención incluye una fuente de neutrones (252Cf o Am-Be) que produce una distribución muy amplia de energía. En esta solicitud el dispositivo analiza el espectro de energía de los neutrones detectados (dispersados) a diferencia de la invención de este documento que cuenta el número de neutrones detectados.
La solicitud de patente DE19600591A1 Location of non-metallic buried mines by neutron reflectometry utiliza la dispersión elástica en hidrógeno, incluye una fuente de neutrones, detectores de neutrones en arreglo simétrico y parece detectar minas no metálicas. Sin embargo, parece funcionar preferiblemente con dispersión inelástica o dispersión inelástica en hidrógeno, mientras que el dispositivo aquí descrito funciona con dispersión elástica produciendo termalización (neutrones a más baja velocidad) en el núcleo de cualquier elemento (Si no hay hidrógeno, también funciona). La solicitud alemana tiene un haz de neutrones mientras que en la invención de esta solicitud los neutrones salen de la fuente en todas direcciones. Esta solicitud alemana asume que la mina es esencialmente hecha de explosivo plástico mientras que la invención de este documento puede detectar AEIs hechas de cualquier material que contenga elementos de bajo número atómico, H, C, N, O. pentolita y anfo por ejemplo. El dispositivo de la solicitud alemana contiene recipiente de fuente y detectores abierto hacia el suelo de tal manera que los neutrones pueden entrar y salir solamente a través de tal apertura mientras que nuestra solicitud no tiene dispuesto ningún mecanismo ni material para lograr tal efecto porque la adición de tal aditamento produce mayor volumen y peso que lo volverían no practicable.
Descripción de la invención Problema técnico
De los elementos de bajo número atómico el que tiene mayor capacidad de disminuir la velocidad de los neutrones (termalización) es el hidrógeno, debido a que es el más liviano. Con dos átomos de hidrógeno por cada molécula, es el agua uno de los compuestos que más efectivamente termalizan los neutrones. Ahora, una forma de entender la localización de minas explosivas por termalización de neutrones es observando que ésta se logra por la observación de diferencias locales de la capacidad de termalización de neutrones. Estas diferencias provienen esencialmente de diferencias locales en el número de átomos de hidrógeno por unidad de volumen. Este hecho generó una objeción fuerte al uso de esta técnica: si el suelo contiene mucha agua, la señal de neutrones provenientes del suelo mismo podría opacar completamente aquella proveniente del AEI. Esta forma de interpretar los datos disminuyó fuertemente la expectativa en lograr una metodología que localizara AEIs por retrodispersión de neutrones térmicos. La solución a este problema será explicada en la siguiente Sección.
Solución a problema
El tratamiento de la humedad
El problema referido más arriba respecto a humedades altas en el suelo se puede resolver usando cualquier método de sustracción de fondo que permita restar la señal producida por el suelo sin AEI, de la señal del suelo con AEI.
El siguiente problema por resolver es saber si las señales de retrodispersión originadas en los AEIs típicos son suficientemente intensas para que puedan ser diferenciadas de las del suelo. La instrumentación y metodología propuestas en este documento, constituyentes de la invención descrita, lo garantizan.
La Figura 2 resume esquemáticamente los resultados de una investigación sistemática realizada por el Grupo de Física Nuclear de la Universidad Nacional por lo que se refiere a la relación entre la señal por encima del fondo, Y0 (cantidad explicada en la Figura 1(b)), en los detectores de neutrones como función de la humedad. Esta figura muestra claramente lo que sucede para combinaciones frecuentes de tipo de suelo y AEI: el único valor de humedad para el cual la mina se hace indetectable (Y0 = 0) es en uno que aquí se denomina “humedad crítica” (43% en la Figura 2). La existencia del valor de humedad crítica explica por qué en caso de la presencia de un AEI la señal puede tener un máximo, Figura 1(b) o un mínimo, Figura 1(c).
El valor de la humedad crítica y el rango alrededor de ésta, en el cual no es aconsejable usar el instrumento localizador, es determinable en pruebas de laboratorio y de campo. Este valor depende tanto de propiedades del material del cual esté hecho el AEI como de propiedades del suelo (p. ej. densidad, humedad, tipo), por lo tanto, es necesario realizar actividades previas de calibración y creación de una base de datos. La base de datos estará a disposición del software del instrumento, y le permitirá identificar su capacidad o incapacidad de localización de AEIs en la situación dada. Dicha evaluación podrá ser comunicada por el instrumento a su operario.
El instrumento
En la Figura 3(a), se muestra un esquema del instrumento que consta de un carro, una nariz y un brazo o extensión que los une. El carro sirve de transportador de la nariz y de parte de los instrumentos electrónicos de análisis y emisión de señales; también cuenta con indicadores de inclinación en dos ejes (también llamados acelerómetros o IMU - Inertial Measurement Unit) para corregir cambios de la magnitud de la señal asociados exclusivamente a variaciones en la topografía del suelo. Las señales son recibidas por un computador portátil (laptop o tablet) o un teléfono celular bajo inspección del operario. La nariz (Figura 3(b)) contiene los elementos activos de la detección que son la fuente de neutrones y los detectores. En la nariz residen también instrumentos electrónicos de preprocesamiento de la señal adquirida por los detectores que incluyen un preamplificador, amplificador y digitalizador de la señal analógica; un procesador para análisis y emisión de señales (dicha emisión se puede hacer mediante wifi o bluetooth) y unas bases de datos con la respuesta del dispositivo entero a artefactos explosivos. El brazo, montado sobre un eje rotatorio en el carro, con la nariz en su otro extremo, permite a la nariz realizar barridos en arco para inspeccionar el área elegida.
La localización del AEI
En la Sección sobre el estado de la técnica el método de localización del AEI a lo largo de una dirección o de un arco fue descrito. La localización sobre el plano completo se logra haciendo barridos en trayectorias paralelas completando la inspección de cierta área. En el instrumento explicado en este documento (Ver Figura 4) los barridos se hacen sobre arcos, una vez completado un arco, el instrumento entero se desplaza hacia adelante una distancia predeterminada y realiza la inspección sobre el siguiente arco. Las señales de intensidad de neutrones detectados son convertidas en una imagen tridimensional. En esta imagen, los valores diferentes al del fondo (YB), en el caso de la presencia de un AEI, forman una superficie que es una distribución gaussiana tridimensional. Los parámetros matemáticos que ajustan las dos superficies (una por cada detector), desviación estándar, centroide y amplitud, así como la correlación entre las dos señales, serán analizados por el software y comparados con la base de datos para producir un diagnóstico acerca de la probabilidad de presencia de un AEI. De una manera simplificada el diagnóstico puede ser visibilizado en una estrategia de semáforo:
Color rojo: alta probabilidad de presencia de AEI.
Color amarillo: Señal inconclusa. Se recomienda hacer un segundo barrido con un tiempo de lectura más largo. Si después de este segundo barrido el color amarillo persiste, el sistema cambiará el diagnóstico a rojo.
Color verde: alta probabilidad de ausencia de AEI.
El diagnóstico es mostrado en un monitor que puede ser el de un computador portátil o la pantalla de un teléfono celular. Con esta información el operario podrá decidir las acciones subsecuentes.
Un equipo prototipo ha sido usado para la localización de simulaciones físicas de AEIs consistentes en recipientes plásticos y de PVC conteniendo alrededor de 200 gramos de pentolita o de ANFO, los dos materiales más usados en la factura de AEIs en Colombia. El prototipo, y su método de uso, descritos a continuación, ha mostrado ser exitoso en el mayor número de los casos probados en diferentes tipos de suelo y de humedad, tanto en laboratorio como en campo con AEIs enterrados a distancias menores a 15 cm de la superficie del suelo.
Ejecución de la invención
Para poder hacer uso del dispositivo se requieren preferiblemente los siguientes elementos para conformar el equipo necesario de hardware y software:
  1. Fuente de neutrones rápidos (Ejemplo: 252Cf)
  2. Al menos dos detectores de neutrones térmicos.
  3. Preamplificadores de la señal proveniente de cada uno de los detectores.
  4. Sistema electrónico para captura de la señal proveniente de los preamplificadores.
  5. Interfase inalámbrica a computador para visualización de la señal.
  6. Base de datos con la respuesta del equipo a los AEIs típicos en los suelos a examinar.
  7. Sistema de posicionamiento del instrumento capaz de determinar sus coordenadas en un plano, es decir, referencias a puntos externos que determinen los valores (x,y) y capaz además de fijar su orientación.
  8. Base de datos con la respuesta del equipo a los AEIs típicos en los suelos a examinar.
  9. Software capaz de asignar las intensidades leídas en cada uno de los detectores a coordenadas (x,y), es decir, capaz de construir las funciones A(x,y), B(x,y).
  10. Software de ajuste de las señales para obtener sus parámetros desviación estándar, centroide, amplitud y fondo.
  11. Software de evaluación probabilística de los parámetros obtenidos en el ajuste y correlación entre las señales y comparación con las bases de datos con el objetivo de producir una evaluación de la probabilidad de presencia de AEI.
Contando con los elementos necesarios, se procede a hacer uso del dispositivo para desminado de la siguiente manera:
  1. Determinación de la humedad promedio del suelo a examinar usando el medidor de humedad (TDR, por ejemplo).
  2. Determinación aproximada del tipo de suelo.
  3. Determinación de la señal de neutrones en el mismo lugar en donde la medición de humedad y la determinación del tipo de suelo fue hecha.
  4. Los datos de humedad y tipo de suelo son dados al software del instrumento.
  5. El barrido del terreno con el instrumento puede empezar.
    1. La disposición geométrica del arreglo detectores-fuente está ilustrada en la Figura 3. Es esencial que el par de cilindros detectores (detectores A y B en la Figura 1) permanezca en posición perpendicular a la dirección del movimiento y que a su vez esta orientación sea mantenida.
    2. La señal de cada uno de los detectores es guardada en la memoria del computador en grupos de tres números que especifican su intensidad y el valor de la coordenada espacial con algún punto como referencia.
  6. El uso de las bases de datos mencionadas como parte del equipo requerido permitirá al sistema de control del instrumento saber en qué posición de la curva de respuesta en la Figura 2 se encuentra. Esta información es utilísima pues el sistema puede emitir señales de prevención:
    1. Si la medición se está haciendo en un punto ciego (humedad crítica) para determinado tipo de mina.
    2. Si la señal obtenida está dentro de los rangos esperados para el tipo de suelo y humedad y AEIs esperados, o si se trata de una señal completamente desconocida.
Fig.1
Muestra el esquema de los detectores A y B, y la fuente de neutrones a la que están unidos rígidamente. La distancia entre los bordes cercanos de los detectores, a, debe ser fijada de acuerdo con el tamaño y tipo de detectores. z es la distancia entre la superficie del suelo y la superficie inferior de los detectores. Cuando el conjunto detectores-fuente realiza un barrido en presencia de un AEI, las señales en los detectores exhibirán (b) máximos, o, (c) mínimos. El valor Y0 depende del tipo de suelo, de la humedad y de la naturaleza del AEI. El valor YB depende esencialmente de las características del suelo solamente. La posición horizontal del AEI, x0, puede ser hallada por varios métodos, por ejemplo, tomándolo como el punto medio entre las coordenadas de los máximos de A(x) y B(x).
Fig.2
Muestra la amplitud de la señal de neutrones como función de la humedad. La señal es usable en prácticamente todo el rango de humedad, con excepción de una región alrededor de la humedad crítica. La gráfica mostrada es esquemática. Cada combinación entre tipo de suelo y tipo de AEI presenta una curva característica.
Fig.3
Presenta (a) el conjunto completo del dispositivo para la localización de Artefactos Explosivos Improvisados por Retrodispersión de Neutrones Térmicos: nariz, conjunto electrónico, brazo, carro o chasis móvil. (b) se hace énfasis en la nariz o sistema de detección que incluye un arreglo de dos detectores de neutrones y fuente de neutrones. Los dos detectores y la fuente reposan sobre un soporte mecánico que los mantiene rígidamente unidos. Electrónica: La caja sobre el soporte mecánico de los detectores contiene electrónica de procesamiento de la señal proveniente de los detectores. La nariz aloja también un conjunto de sensores: (i) Distancia a la superficie del suelo, (ii) Inclinación.
Fig.4
Muestra el sistema de barrido: la nariz se mueve sobre un arco. A lo largo de este arco la nariz se detiene cierta cantidad de tiempo (de 1 a 15 segundos) para tomar la medida de intensidad retrodispersada. El carro transportador se mueve una distancia predeterminada (5 cm puede ser una distancia razonable) hacia adelante después de que la nariz ha completado un arco. Esta distancia puede ser cambiada a voluntad para lograr mayor o menor densidad de muestreo.
Bibliografía distinta de la de patentes
J. Csikai, R. Dóczi, and B. Király. Investigations on landmine detection by neutron-based techniques. Applied Radiation and Isotopes, 61:11–20, 2004.
Cor P. Datema, Victor R. Bom, and Carel W. E. van Eijk. Monte Carlo simulations of landmine detection using neutron backscattering imaging. Nuclear Instruments and Methods in Physics Research A, 513:398–402, 2003.
F. D. Brooks, M. Drosg, F. D. Smit, and C. Wikner. Detection of explosive remnants of war by neutron thermalisation. Applied Radiation and Isotopes, 70:119, 2012.
F. D. Brooks and M. Drosg. The HYDAD-D antipersonnel landmine detector. Applied Radiation and Isotopes, 63:565, 2005.
F. D. Brooks, M. Drosg, A. Buffler, and M. S. Allie. Detection of anti-personnel landmines by neutron scattering and attenuation. Applied Radiation and Isotopes, 61:27–34, 2004.
F. D. Brooks, A. Buffler, and M. S. Allie. Detection of plastic landmines by neutron backscattering. In Proceedings of the Sixth International Conference on Applications of Neutron Science, Crete, June 1999.
Jasmina Obhođaš,, Davorin Sudac, Karlo Nad, Vlado Valkovic, Giancarlo Nebbia, and Giuseppe Viesti. The soil moisture and its relevance to the landmine detection by neutron backscattering technique. Nuclear Instruments and Methods in Physics Research B, 213:445–451, 2004.
G. Viesti, M. Lunardon, G. Nebbia, M. Barbui, M. Cinausero, G. D0Erasmo, M. Palomba, A. Pantaleo, J. Obhođaš, and V. Valkovic. The detection of landmines by neutron backscattering: Exploring the limits of the technique. Applied Radiation and Isotopes, 64:706–716, 2006.
D. Rezaei Ochbelagh, H. Miri Hakimabad, and R. Izadi Najafabadi. The investigation of Am–Be neutron source shield effect used on landmine detection. Nuclear Instruments and Methods in Physics Research A, 577:756–761, 2007.
D. Rezaei Ochbelagh, H. Miri Hakimabad, and R. Izadi Najafabadi. The soil moisture and its effect on the detection of buried hydrogenous material by neutron backscattering technique. Radiation Physics and Chemistry, 78:303, 2009.
Walid A. Metwally. Multi-parameter optimization of a neutron backscattering landmine detection system. Applied Radiation and Isotopes, 105:290–293, 2015.
Nancy Carolina Forero Martínez. Simulación del proceso de detección de elementos orgánicos por dispersión de neutrones. Tesis de Maestría, Universidad Nacional de Colombia, 2007.
N. C. Forero, A. H. Cruz, and F. Cristancho. Simulation of Neutron Backscattering applied to organic material detection. American Institute of Physics Conference Proceedings, 947:71, 2007.
Angel Humberto Cruz. Neutron Backscattering Technique for the detection of buried organic objects. Tesis de Maestría, Universidad Nacional de Colombia, 2009.
A. H. Cruz and F. Cristancho. Simulación de la interacción neutrónica en un medio como paso a la detección de materiales orgánicos. Revista Colombiana de Física, 41(2):499–501, 2009.
Andrea Abril. Caracterización de la humedad en suelo franco a través del proceso de termalización de neutrones. Trabajo de Grado, Universidad Pedagógica Nacional, Bogotá, 2010.
Daniel Andrade. Geant4 simulation of the Neutron Backscattering Technique in farm soil for landmine detection. Trabajo de Grado, Universidad Nacional de Colombia, 2014.
Doris Alexandra Bautista Sánchez. Correlación de la intensidad y la humedad del suelo en la técnica de Retrodispersión de Neutrones Térmicos. Tesis de Maestría, Universidad Nacional de Colombia, 2018.
Freddy Alexander Torres Payoma. Investigación del efecto de la distancia entre detectores en la técnica de Retrodispersión de Neutrones Térmicos. Tesis de Maestría, Universidad Nacional de Colombia, 2019.
UN Periódico digital. Innovador prototipo detecta minas antipersona. Online, Marzo 2018. URL http://unperiodico.unal.edu.co/pages/detail/innovador-prototipo-detecta-minas-antipersona/. Visitado: 9 Septiembre 2019.
Jorge Cote. Ingenio colombiano al servicio del desminado. Online, Revista Semana Sostenible, Septiembre 2016. URL https://sostenibilidad.semana.com/impacto/articulo/minas-antipersona-y-desminado-una-salida-al-problema-gracias-al-ingenio-colombiano/35491. Visitado: 10 Septiembre 2019.
Susana Noguera Montoya. Ciencia para el desminado. El Espectador. Versión Impresa, 19 Octubre 2016. pp. 1-3.
Lizzie Wade. Cleaning up the killing fields. Science Journal, 360(6387):371, 27 April

Claims (9)

  1. Un dispositivo para la localización de artefactos explosivos (improvisados e industriales) CARACTERIZADO POR estar soportado en un chasis móvil; al dispositivo van unidos mediante un brazo de soporte una fuente radiactiva emisora de neutrones rápidos; dos detectores de neutrones lentos; sensores de distancia, uno por cada detector de neutrones; indicadores de inclinación en dos ejes (también llamados acelerómetros o IMU - Inertial Measurement Unit) para corregir cambios de la magnitud de la señal asociados exclusivamente a variaciones en la topografía del suelo; instrumentos electrónicos de preprocesamiento de la señal adquirida por los detectores, los cuales incluyen un preamplificador, amplificador y digitalizador de la señal analógica; un procesador para análisis y emisión de señales y unas bases de datos con la respuesta del dispositivo entero a artefactos explosivos.
  2. El dispositivo para la localización de artefactos explosivos (improvisados e industriales) de la reivindicación 1 CARACTERIZADO PORQUE el brazo está montado sobre un eje rotatorio en el chasis móvil para poder realizar barridos en arco.
  3. El dispositivo para la localización de artefactos explosivos (improvisados e industriales) de la reivindicación 1 CARACTERIZADO PORQUE la fuente radiactiva emisora de neutrones rápidos puede ser seleccionada del grupo conformado por Cf-252 y Am-Be (Americio-Berilio).
  4. El dispositivo para la localización de artefactos explosivos de la reivindicación 1 CARACTERIZADO PORQUE los detectores de neutrones se encuentran en posición simétrica respecto a la fuente de neutrones.
  5. El dispositivo para la localización de artefactos explosivos improvisados de la reivindicación 1 CARACTERIZADO PORQUE las bases de datos incluyen una referencia para la identificación y respuesta automática del tipo de artefacto explosivo más probable y tipos de suelo.
  6. El dispositivo para la localización de artefactos explosivos improvisados de la reivindicación 1 CARACTERIZADO PORQUE la emisión de señales puede ser llevada a cabo por medio de emisores wifi o bluetooth.
  7. Un método para la detección y localización de artefactos explosivos (improvisados e industriales) mediante un dispositivo móvil transportable que opera in-situ CARACTERIZADO POR las siguientes etapas:
    1. se hacen barridos en trayectorias paralelas con el brazo en cuya punta se encuentra una fuente radiactiva emisora de neutrones rápidos; dos detectores de neutrones lentos determinan la posición del material explosivo sobre un plano paralelo a la superficie del suelo;
    2. las señales de intensidad de neutrones detectados son convertidas en una imagen tridimensional;
    3. en dicha imagen, los valores diferentes al del fondo (YB), en el caso de la presencia de un AEI, forman una superficie que es una distribución gaussiana tridimensional;
    4. Los parámetros matemáticos que ajustan las dos superficies (una por cada detector), desviación estándar, centroide y amplitud, así como la correlación entre las dos señales, son obtenidas por software especializado;
    5. se ejecuta un análisis numérico y de comparación con bases de datos previamente construidas para evaluar (detectar) la probabilidad de la presencia de un artefacto explosivo en el área de análisis;
    6. se obtiene una valoración estadística de la probabilidad de que el objeto localizado sea un artefacto explosivo;
    7. una vez completado un arco, el instrumento entero se desplaza hacia adelante una distancia predeterminada y realiza la inspección sobre el siguiente arco;
    8. los datos obtenidos por los detectores son procesados y enviados vía inalámbrica en tiempo real a una interfaz electrónica (celular o computador). En esta interfaz el operario verá:
      1. imagen de la superficie formada por los valores de las lecturas de los detectores ; una superficie plana o aproximadamente plana es indicativa de no presencia de AEIs. Una superficie con un máximo puede ser indicativo de la presencia de un AEI;
      2. semáforo de tres colores: verde, amarillo, rojo. Tales colores son el resumen de la evaluación estadística que el software hace de los datos obtenidos. Verde: no hay presencia de AEI y el carro puede continuar avanzando. Amarillo: Situación indeterminada. Rojo: Alta probabilidad de la presencia de AEI. Los colores amarillo y verde exigen del operario una acción. Amarillo: repetir la búsqueda usando un tiempo mayor de lectura por punto. Rojo: Iniciar protocolo de neutralización del AEI.
  8. El método para la detección de artefactos explosivos improvisados de la reivindicación 7 CARACTERIZADO POR que el elemento a detectar debe tener una masa mayor a 100 gramos.
  9. El método para la detección de artefactos explosivos improvisados de la reivindicación 7 CARACTERIZADO POR que la parte superior del elemento a detectar debe estar a una profundidad menor a 15 centímetros de la superficie del suelo.
PCT/IB2022/054703 2021-05-20 2022-05-19 Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos WO2022243938A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2021/0006500A CO2021006500A1 (es) 2021-05-20 2021-05-20 Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos
CONC2021/0006500 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022243938A1 true WO2022243938A1 (es) 2022-11-24

Family

ID=77040138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/054703 WO2022243938A1 (es) 2021-05-20 2022-05-19 Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos

Country Status (2)

Country Link
CO (1) CO2021006500A1 (es)
WO (1) WO2022243938A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692029A (en) * 1993-01-15 1997-11-25 Technology International Incorporated Detection of concealed explosives and contraband
JP2004286461A (ja) * 2003-03-19 2004-10-14 Fujitsu Ltd 地中探知方法及び装置
JP2005134084A (ja) * 2003-10-31 2005-05-26 Hitachi Constr Mach Co Ltd 地雷処理管理システム
KR20090121442A (ko) * 2008-05-22 2009-11-26 현대로템 주식회사 지뢰탐지기용 구동 장치
US7683821B1 (en) * 2006-10-25 2010-03-23 Niitek, Inc. Sensor sweeper for detecting surface and subsurface objects
KR20180086831A (ko) * 2017-01-24 2018-08-01 임용균 폭발물 제거용 로봇
KR20190076465A (ko) * 2017-12-22 2019-07-02 정승환 소형 무인 지뢰탐지 로봇
WO2021038537A1 (en) * 2019-08-29 2021-03-04 Tübi̇tak Vehicle mounted metal and mine detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692029A (en) * 1993-01-15 1997-11-25 Technology International Incorporated Detection of concealed explosives and contraband
JP2004286461A (ja) * 2003-03-19 2004-10-14 Fujitsu Ltd 地中探知方法及び装置
JP2005134084A (ja) * 2003-10-31 2005-05-26 Hitachi Constr Mach Co Ltd 地雷処理管理システム
US7683821B1 (en) * 2006-10-25 2010-03-23 Niitek, Inc. Sensor sweeper for detecting surface and subsurface objects
KR20090121442A (ko) * 2008-05-22 2009-11-26 현대로템 주식회사 지뢰탐지기용 구동 장치
KR20180086831A (ko) * 2017-01-24 2018-08-01 임용균 폭발물 제거용 로봇
KR20190076465A (ko) * 2017-12-22 2019-07-02 정승환 소형 무인 지뢰탐지 로봇
WO2021038537A1 (en) * 2019-08-29 2021-03-04 Tübi̇tak Vehicle mounted metal and mine detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROBERTS N J: "PHOTON SPECTRA IN NPL STANDARD RADIONUCLIDE NEUTRON FIELDS", RADIATION PROTECTION DOSIMETRY., NUCLEAR TECHNOLOGY PUBLISHING., GB, vol. 180, no. 1-4, 1 August 2018 (2018-08-01), GB , pages 62 - 65, XP093009763, ISSN: 0144-8420, DOI: 10.1093/rpd/ncx172 *
TORRES PAYOMA FREDDY: " Investigation del Efecto from Distancia entre Detectores in the Técnica of Retrodispersion of Neutrones Térmicos", WORLD PENDULUM ALLIANCE VIEW PROJECT, 31 January 2019 (2019-01-31), XP093009760, [retrieved on 20221220], DOI: 10.13140/RG.2.2.26603.26407 *

Also Published As

Publication number Publication date
CO2021006500A1 (es) 2021-07-30

Similar Documents

Publication Publication Date Title
KR100251345B1 (ko) 금지품 검출 장치 및 검출 방법
EP0396618B1 (en) Neutron scatter method and apparatus for the noninvasive interrogation of objects
KR102055963B1 (ko) 물체식별을 위한 비행시간 중성자심문방법과 장치
US7120226B2 (en) Adaptive scanning of materials using nuclear resonance fluorescence imaging
EP2054741B1 (en) Scatter attenuation tomography
US4864142A (en) Method and apparatus for the noninvasive interrogation of objects
JP5054518B2 (ja) 物質の平均原子番号及び質量を求めるための方法及びシステム
US10753891B2 (en) Methods and systems for non-invasive measurement of soil chlorine and/or nitrogen content and for detecting sub-surface chlorine or nitrogen-containing objects
US8395124B2 (en) Article inspection system and method
Mor et al. Reconstruction of material elemental composition using fast neutron resonance radiography
WO2022243938A1 (es) Dispositivo para la localización de artefactos explosivos improvisados por retrodispersión de neutrones térmicos
WO2019182482A1 (ru) Устройство и способ определения элементного состава материалов методом меченых нейтронов
CN106062540B (zh) 依赖于角度的x射线衍射成像系统及其操作方法
Faust et al. Feasibility of fast neutron analysis for the detection of explosives buried in soil
US9440289B1 (en) Method and apparatus for X-ray laser interrogation
Hernandez-Prieto et al. Study of accuracy in the position determination with SALSA, a γ-scanning system for the characterization of segmented HPGe detectors
Faust et al. Investigation of the feasibility of fast neutron analysis for detection of buried landmines
Arrowsmith LDRD@ SNL August 2015.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE