WO2022243036A1 - Anti-corrosion layer for surfaces of low-aluminum alloys - Google Patents

Anti-corrosion layer for surfaces of low-aluminum alloys Download PDF

Info

Publication number
WO2022243036A1
WO2022243036A1 PCT/EP2022/061936 EP2022061936W WO2022243036A1 WO 2022243036 A1 WO2022243036 A1 WO 2022243036A1 EP 2022061936 W EP2022061936 W EP 2022061936W WO 2022243036 A1 WO2022243036 A1 WO 2022243036A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
metal body
oxide layer
aluminum
metal
Prior art date
Application number
PCT/EP2022/061936
Other languages
German (de)
French (fr)
Inventor
Leszek Niewolak
Thomas Stöcker
Ilka Verena Luck
Mike Löffert
Original Assignee
Heraeus Deutschland GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Deutschland GmbH & Co. KG filed Critical Heraeus Deutschland GmbH & Co. KG
Publication of WO2022243036A1 publication Critical patent/WO2022243036A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Definitions

  • Anti-corrosion layer for surfaces made of low-aluminum alloys are made of low-aluminum alloys
  • the present invention relates to a method for producing an aluminum oxide layer on the surface of a metal body, the metal of the metal body containing aluminum in an amount of 0.3-6% by weight. Furthermore, the invention relates to a metal body having an aluminum oxide layer produced according to the invention.
  • MCrAlY alloys A known class of high-temperature resistant alloys are so-called MCrAlY alloys.
  • M stands for an element from the group consisting of iron, cobalt and nickel.
  • the alloys also contain chromium (Cr), aluminum (Al) and yttrium (Y).
  • FeCrAlY alloys are mainly used for the manufacture of components that are only exposed to low mechanical loads, such as heating elements, resistors or catalyst carriers.
  • Ni(Co)CrAIY are mainly suitable for the production of components that are subject to higher mechanical loads, such as boilers, heat exchangers, valves and pumps, chemical reactors, jet engines, gas turbines, fasteners.
  • MCrAlY alloys are particularly interesting because they can form a passivating aluminum oxide layer on their surface.
  • the aluminum required for the passivation layer comes from the alloy itself.
  • the formation of the passivation layer can deplete the alloy of aluminum, which can lead to a change in the mechanical properties.
  • MCrAlY alloys have their limits.
  • Components made of MCrAlY alloys with a low aluminum content also known as marginal alumina formers
  • they are coated with a layer of high-aluminum MCrAIY, since high-aluminum alloys can form dense passivation layers themselves.
  • a disadvantage of alloys with a high aluminum content is the comparatively low mechanical stability of these alloys. Therefore, barrier layers of porous aluminum oxide can be placed on these alloy layers with a high aluminum content in order to additionally protect them from high temperatures and oxidation.
  • Aluminum oxide layers are known from JP2009280854A, which were produced by means of aerosol deposition of particles with a diameter of ⁇ 1 ⁇ m. These prior art layers are porous to help you keep heat away from the underlying MCrAlY alloys. Other methods by which aluminum oxide can be applied are also known from the prior art. However, these coating methods, such as thermal spraying, sputtering and PVD, are only able to produce amorphous or metastable Al2O3 layers, which, however, do not provide sufficient protection at the operating temperatures of MCrAlY alloys, for example around 900°C, and one or more phase transitions exhibit. This leads to a change in volume, combined with significant crack formation, so that the protective effect of the oxide layer for the above-mentioned alloys is lost.
  • the object of the present invention was to overcome at least one disadvantage of the prior art.
  • the object of the invention was to provide a method with which metal bodies, in particular containing an MCrAlY alloy, can be better protected against corrosion, in particular at temperatures of at least 900.degree.
  • the oxidation protection of metal bodies made of MCrAIY with a low aluminum content of at most 6% by weight should be improved within the scope of the invention.
  • the object is achieved by a method for producing an aluminum oxide layer on the surface of a metal body, having the steps: a. Providing a metal body, wherein the metal of the metal body contains aluminum in an amount of 0.3-6% by weight and wherein the metal body has a surface, b. Providing an aluminum oxide powder having a particle size distribution in the form of an aerosol, c. Spraying the aerosol onto the surface of the metal body using the aerosol deposition method, depositing an aluminum oxide layer with an average thickness in the range of 0.5 ⁇ m - 20 ⁇ m.
  • the method according to the invention allows a particularly dense aluminum oxide layer to be applied directly to a metal body containing a metal according to the invention.
  • This aluminum oxide layer gives the metal body a particularly high level of corrosion resistance.
  • the invention in a first aspect, relates to a method for producing an aluminum oxide layer.
  • This aluminum oxide layer is particularly suitable to protect metal surfaces at temperatures above 400°C in corrosive atmospheres. Corrosion can be understood, for example, as oxidation in an oxygen-containing environment.
  • a metal body with a surface is provided.
  • the metal body to which the aluminum oxide layer is applied comprises a metal, with the metal according to the invention containing aluminum in an amount of 0.3-6% by weight.
  • the metal of the metal body preferably contains a metal alloy or consists of it. In a preferred embodiment of the invention, the metal of the metal body contains aluminum in an amount of 0.5-4% by weight.
  • the metal alloy is preferably an alloy of the type MCrAIY (MCrAlY alloy).
  • M is an element selected from the group consisting of iron, cobalt and nickel and combinations of these elements.
  • MCrAlY alloys contain at least chromium (Cr), aluminum (Al) and yttrium (Y).
  • the MCrAIY alloy can also contain at least one element selected from the group consisting of Mn, Si, Ti, Zr, Cu, La, Ce, Hf, C, P and S and combinations of these elements.
  • Metals, in particular MCrAlY alloys, with the aluminum content according to the invention have the advantage that they have improved mechanical properties compared to such MCrAlY alloys with a higher aluminum content of more than 6% by weight.
  • the metal body can have any shape. Foils, metal sheets and massive molded parts are preferred. In one possible embodiment, the shape of the molded part is designed in such a way that the entire surface is accessible to a spraying process.
  • the metal body can be a component of a turbine or a high-temperature furnace.
  • the metal body has a metallic surface if possible. This means that, apart from unavoidable impurities, there are preferably no intentionally applied substances on the surface, in particular no metal oxides.
  • the metal surface can be stored in air.
  • the surface of the metal body on which the aluminum oxide layer is produced has no bond coat layer, in particular no layer containing an aluminum-rich MCrAlY alloy with more than 6% by weight aluminum.
  • the metallic surface has no alloyed elements, such as platinum, which form a bond coat layer. Platinum is often used in the prior art to enable better bonding of an aluminum oxide layer and is typically introduced into an MCrAlY alloy in a separate step. In the present invention, this step can be omitted.
  • the aluminum oxide layer according to the invention can be used as a bond coat/ayer.
  • an aluminum oxide powder is provided.
  • the aluminum oxide powder preferably has a particle size distribution dso of at least 1 ⁇ m, in particular at least 10 ⁇ m and particularly preferably at least 20 ⁇ m and more preferably at least 30 ⁇ m. Furthermore, the aluminum oxide powder preferably has a particle size distribution dso of at most 150 ⁇ m, in particular at most 125 ⁇ m, very particularly preferably at most 100 ⁇ m and even more preferably at most 80 ⁇ m.
  • the aluminum oxide powder preferably has a particle size distribution with a dso value in the range from 0.1 ⁇ m to 150 ⁇ m. Furthermore, the particle size distribution can have a dgo value of 125 ⁇ m or less.
  • the particle size distribution within the scope of the invention can be determined, for example, by means of laser diffraction in accordance with ISO 13320:2009.
  • the aluminum oxide powder preferably has aluminum oxide in an amount of at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 99% by weight.
  • the alumina powder comprises alpha alumina.
  • the aluminum oxide powder has alpha aluminum oxide in an amount of at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 99% by weight.
  • the alumina may optionally also contain other phases such as beta, theta and gamma alumina, particularly in unavoidable traces.
  • the total amount of alumina not present as alpha-alumina is less than 15 wt%, or less than 5 wt%, or less than 1 wt%, especially less than 0.1 wt% or all more preferably less than 0.001% by weight.
  • the various phases of alumina and the amounts of each can be determined using XRD as described herein. A particularly high corrosion stability can be achieved, in particular at temperatures of 400° C. or more in oxygenated environments.
  • the aluminum oxide powder can optionally contain at least one further component.
  • the at least one further component can be, for example, an impurity or a specifically added component.
  • the at least one further component can be selected, for example, from the group consisting of MgO, MgAhCU, CaO, Y2O3, YAG (yttrium aluminum garnet), YAP (yttrium aluminum perovskite), La 2 0 3 , LaAI0 3 , ZrÜ2, Hf0 2 , TiO x and CeO x , and combinations thereof.
  • the aluminum oxide powder can contain at least one further component which is selected from the group consisting of S1O2, CaO, SrO, BaO, Na2Ü, K2O, Fe oxides, Cr oxides, Mn oxides, Ni oxides, Cu Oxides and Co-oxides.
  • the at least one further component in the aluminum oxide powder can be present in a total amount of less than 15% by weight, in particular less than 5% by weight or less than 1% by weight.
  • the amount of the at least one further component is particularly advantageously present in an amount of at most 0.5 or even at most 0.1% by weight.
  • the aluminum oxide powder does not contain any other component apart from aluminum oxide within the scope of the measurement inaccuracy.
  • the aluminum oxide powder is provided in the form of an aerosol.
  • the aluminum oxide powder used is placed in an aerosol generator.
  • the aluminum oxide powder is converted into an aerosol and finely distributed in the process gas.
  • the process gas can be an inert gas, oxygen or mixtures thereof.
  • the inert gas can be selected from the group consisting of helium, argon and nitrogen and mixtures of these gases.
  • the aerosol is sprayed onto the surface of the metal body to obtain an aluminum oxide layer with an average thickness in the range from 0.5 ⁇ m-20 ⁇ m, in particular in the range from 1 ⁇ m-5 ⁇ m.
  • the aluminum oxide layer preferably has a thickness of at least 0.5 ⁇ m, in particular at least 1 ⁇ m and very particularly preferably at least 2 ⁇ m.
  • the aluminum oxide layer preferably has a thickness of at most 20 ⁇ m, in particular at most 10 ⁇ m and very particularly preferably at most 5 ⁇ m.
  • the aluminum oxide layer has an average thickness which is at most 50%, in particular at most 25%, of the dso value of the particle size distribution of the aluminum oxide powder.
  • the layer thicknesses of the present invention are determined using a mechanical stylus instrument at one edge of the layer.
  • the aluminum oxide layer preferably contains crystallites with a maximum diameter in the range of 15 nm-150 nm. Based on the number, at least 90% of the crystallites, in particular at least 95% of the crystallites, are preferably in this diameter range. The number of crystallites and their size can be determined using image analysis in an SEM image.
  • the aluminum oxide layer produced preferably has a relative density of 96% or more, in particular of 98% or more and very particularly preferably of 99% or more.
  • the aluminum oxide layer has a density of around 99.5%.
  • the relative density refers to the theoretically achievable material density under standard conditions.
  • the spraying of the aerosol generated in step b) takes place in step c) using the aerosol deposition method (ADM) with deposition of an aluminum oxide layer with an average thickness in the range of 0.5 ⁇ m-20 ⁇ m.
  • ADM aerosol deposition method
  • the composition of the alumina layer preferably has the same characteristics as the alumina powder, i. H. During the spraying process, there are no chemical or physical conversion processes or additional contamination.
  • An ADM coating system is used for the aerosol deposition method.
  • This coating installation contains an aerosol generator in which the aluminum oxide powder used is converted into an aerosol as described in step b).
  • the ADM coating system contains a coating chamber in which the coating process takes place.
  • a vacuum in the preferred range of 60 mbar to 1066 mbar prevails in the aerosol generator, particularly during the process.
  • a pressure in the preferred range of 0.2 mbar to 20 mbar prevails in the coating chamber, particularly during the process.
  • the pressure in the coating chamber is lower than the pressure in the aerosol generator.
  • the pressure difference between the aerosol generator and the coating chamber is in the range of 200 mbar - 500 mbar.
  • the aluminum oxide powder is transported from the aerosol generator through a nozzle into the coating chamber via a process gas.
  • the particles are accelerated due to the resulting pressure difference between the aerosol generator and the coating chamber, in particular to a speed in the range of 100 m/s - 600 m/s, and are deposited on the surface of the metal body.
  • the aluminum oxide particles break up into fragments, particularly in the nm range, and form a dense and well-adhering layer. More preferably, substantially all of the alumina particles fracture upon impact.
  • the process gas used can be selected from inert gases, oxygen, air or combinations thereof.
  • the inert gas can preferably be at least one gas selected from the group consisting of helium (He), argon (Ar) and nitrogen (N2) or combinations thereof.
  • the metal body to be coated is preferably moved with an XY table.
  • a nozzle it is possible for a nozzle to be moved over the metal body to be coated.
  • ADM is a cold coating process. Since the particles of the aluminum oxide powder and the resulting aluminum oxide layer are already essentially in the a-phase, there is no phase change when the aluminum oxide layer is exposed to temperature. In this way, leaks in the layer produced due to cracks and pores are avoided.
  • the method according to the invention makes it possible, among other things, to apply aluminum oxide layers to metals according to the invention, which themselves are not capable of forming a stable passivation layer.
  • metal bodies with good mechanical properties of a low-aluminum alloy can be equipped with high corrosion resistance, which can usually only be achieved with high-aluminum alloys.
  • the invention in a second aspect, relates to a metal body comprising a metal containing aluminum in an amount of 0.3-6% by weight, with an aluminum oxide layer having a thickness of 0.5 ⁇ m-20 ⁇ m and a relative density of 96% or more.
  • the relative density is preferably at least 98% and in particular at least 99%.
  • the density of a layer produced by means of aerosol deposition can be measured using a densimeter, for example.
  • the hardness of an aluminum oxide layer according to the invention using the ADM method is preferably 6 GPa or more, in particular 8 GPa or more.
  • the deposited aluminum oxide layer can have one or more beneficial effects. Firstly, the aluminum oxide layer can indicate the depletion of the alloy Reduce aluminum by high temperature corrosion, which can lead to increased life of the metal body.
  • the aluminum oxide layer produced according to the invention can prevent metastable aluminum oxides such as theta-alumina from being formed on the surface of an MCrAlY alloy, or if the aluminum oxide layer according to the invention has alpha-alumina, this can have the formation of further alpha-alumina and a cause high density.
  • the metal body can be used in various applications, for example as a part in turbine construction.
  • the metal body can be a turbine blade.
  • the use of the aluminum oxide layer according to the invention can mean that an aluminum-rich MCrAlY layer can be dispensed with as a bond coat layer.
  • the metal body according to the invention can be used, for example, for high-temperature applications, in particular for applications in which the metal body is exposed to temperatures of >400°C or >600°C, in particular temperatures in the range of 600-900°C.
  • corrosion can be reduced or suppressed by the invention both in the case of static and dynamically changing temperature loads.
  • metal bodies according to the invention include heating elements, resistors, catalyst supports, boilers, heat exchangers, valves, pumps, chemical reactors, high-temperature furnaces, jet engines, gas turbines and fastening parts.
  • the particle size distribution can be determined by laser diffraction according to ISO 13320:2009 using the "Helos BR/R3" device (Sympatec GmbH, Germany). The measuring range is in the range of 0.9 - 875 pm.
  • the dry dispersing system RODODS/M (Sympatec GmbH, Germany) with vibrating channel dosing unit VI BRI (with Venturi nozzle) can be used to disperse the powder particles.
  • the amount of sample is 5 g.
  • the wavelength of the laser radiation used is 632.8 nm.
  • the evaluation can be carried out using the Mie theory.
  • the particle sizes are obtained as a volume distribution, ie within the scope of the present invention the particle size distribution is determined in the form of a volume distribution cumulative curve. From the Particle size distribution (volume distribution) measured by laser diffraction can be calculated as described in ISO 9276-2:2014, dso values.
  • the XRD measurements are carried out in accordance with DIN EN 13925-1:2003-07 and DIN EN 13925-2:2003-07. The measurement is carried out directly on the layer produced.
  • the general measurement details used are summarized as follows: Diffraction: Bragg-Brentano; Detector: scintillation counter; Radiation: CuKa 1.5406 ⁇ ;
  • Source 40kV, 25mA
  • Measurement method reflection.
  • an empty sample holder is first measured to determine the background signal. This background measurement is subtracted from all subsequent measurements of the samples to be examined.
  • Discrete diffraction signals in the diffractogram can be evaluated according to the Debye-Scherrer method using the Bragg equation. From this, the phase of alumina present can be determined.
  • the layer thickness is determined using a mechanical stylus device (perthometer). For this purpose, part of the component to be coated is masked and the layer to be examined is deposited on this masked substrate. After removing the masking, the layer thickness can be determined by measuring a layer step with the perthometer probe.
  • the MarSurf XR1 device from Mahr GmbH can be used for this.
  • the relative density is calculated as follows:
  • the actual density can be measured with a densimeter using the Archimedes method according to DIN EN 623-2:1993-11.
  • the AlfaMirage SD200L device can be used for this.
  • the hardness of a layer produced using ADM can be measured using nanoindentation, for example.
  • the nano test platform controls the movement of a diamond in contact with the sample.
  • a change in current at a coil results in an applied force (electromagnetic force actuator principle) and causes a change in the position of the diamond.
  • the diamond tip continuously penetrates the sample. This change in path is documented as a function of the load via the change in capacitance of a capacitor. Consequently, by exact calibration of the applied coil current and by measuring the change in path, both the penetration depth and the applied load can be determined.
  • the measurement is carried out in accordance with DIN EN ISO 14577:2015-11.
  • Example 1 an aluminum oxide powder was deposited on a FeCrAlY metal plate using the aerosol deposition method. Oxygen was used as the process gas and the pressure in the coating chamber was ⁇ 20 mbar during the coating process, with the pressure in the aerosol generator being about 200 mbar higher than in the coating chamber.
  • an aluminum oxide layer was deposited directly on the surface of a metal plate made of an FeCrAlY alloy with an edge length of 20x20x1 mm.
  • the alumina powder used had particle sizes in the range of 0.1 and 5 pm (dgo ⁇ 125 pm) and oxygen was used as the carrier gas.
  • the sample with the applied layer was statically treated in air at 900° C. for 100 h.
  • the sample was then examined under the scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the sample shows a regular alpha-ALOs oxide layer with no spalling and no theta -AI2O3 formation.
  • Figures 1B and 1D show SEM images taken at different scales. It can be seen here that the layers are uniform and closed.
  • Example 2 an aluminum oxide powder analogous to Example 1 (dgo ⁇ 125 ⁇ m) was deposited on a small metal plate using the aerosol deposition method.
  • An aluminum oxide layer was deposited directly on the surface of a small metal plate made of a NiCrAIY alloy (Alloy 602 CA, (NiCr25FeAIY)) with an edge length of 20 ⁇ 20 ⁇ 1 mm.
  • Oxygen was used as the process gas and the pressure in the coating chamber was ⁇ 20 mbar during the coating process, with the pressure in the aerosol generator being about 200 mbar higher than in the coating chamber.
  • the sample produced in this way was statically heated in air at 1000° C. for 50 h. After the temperature treatment, the sample was examined by SEM. The sample shows a regular protective alpha-alumina layer with no apparent defects.
  • the same metal body without an aluminum oxide protective layer was heated in air at 1000° C. for 50 h. Subsequently, the surface showed an irregular oxide layer in an SEM analysis, which could be due to the formation of Cr,Ni oxides.
  • the change in weight of the uncoated sample after 50 hours of oxidation was about 1 mg/cm 2 .
  • the weight of the small metal plate with the aluminum oxide layer deposited remained unchanged within the framework of the weighing inaccuracy. From this it can be deduced that the sample is corroded due to the missing protective layer.

Abstract

The invention relates to a method for depositing an aluminum oxide layer on the surface of a metal body, the metal of the metal body containing aluminum in an amount of 0.3-6 wt.%. The deposition is carried out by spraying an aerosol onto the surface of the metal body using the aerosol deposition method while an aluminum oxide layer is deposited. The aluminum oxide layer can serve as an anti-corrosion layer. The invention also relates to a metal body comprising an aluminum oxide layer which is produced according to the method.

Description

Korrosionsschutzschicht für Oberflächen aus aluminiumarmen Legierungen Anti-corrosion layer for surfaces made of low-aluminum alloys
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Aluminiumoxidschicht auf der Oberfläche eines Metallkörpers, wobei das Metall des Metallkörpers Aluminium in einer Menge von 0,3 - 6 Gew.-% enthält. Weiterhin betrifft die Erfindung einen Metallkörper aufweisend eine erfindungsgemäß hergestellte Aluminiumoxidschicht. The present invention relates to a method for producing an aluminum oxide layer on the surface of a metal body, the metal of the metal body containing aluminum in an amount of 0.3-6% by weight. Furthermore, the invention relates to a metal body having an aluminum oxide layer produced according to the invention.
Trotz diverser Strategien zur Reduktion und zur Vermeidung der Korrosion von Metallen bleibt diese eine Herausforderung. Dies ist insbesondere der Fall, wenn Metalle unter hohen Temperaturen einer korrosiven Atmosphäre ausgesetzt sind. Despite various strategies to reduce and avoid corrosion of metals, this remains a challenge. This is particularly the case when metals are exposed to a corrosive atmosphere at high temperatures.
Um die Korrosionsbeständigkeit zu verbessern, wurden spezielle Legierungen entwickelt. Eine bekannte Klasse von Hochtemperaturbeständigen Legierungen sind sogenannte MCrAlY-Legierungen. Hierbei steht M für ein Element aus der Gruppe aus Eisen, Cobalt und Nickel. Weiterhin weisen die Legierungen Chrom (Cr), Aluminium (AI) und Yttrium (Y) auf. FeCrAlY-Legierungen werden hauptsächlich für die Herstellung von Komponenten verwendet, die nur geringen mechanischen Belastungen ausgesetzt sind, wie z.B. Heizelemente, Widerstände oder Katalysatorträger. Ni(Co)CrAIY sind hauptsächlich für die Herstellung von Komponenten geeignet, auf die höhere mechanische Lasten wirken, wie z.B. Kessel, Wärmeübertrager, Ventile und Pumpen, chemische Reaktoren, Strahltriebwerke, Gasturbinen, Befestigungsteile. MCrAlY-Legierungen sind insbesondere deshalb interessant, weil sie in der Lage sein können, auf ihrer Oberfläche eine passivierende Aluminiumoxidschicht auszubilden. Das notwendige Aluminium für die Passivierungsschicht stammt in diesem Fall aus der Legierung selbst. Durch das Ausbilden der Passivierungsschicht kann die Legierung an Aluminium verarmen, was zu einer Änderung der mechanischen Eigenschaften führen kann. Special alloys have been developed to improve corrosion resistance. A known class of high-temperature resistant alloys are so-called MCrAlY alloys. Here, M stands for an element from the group consisting of iron, cobalt and nickel. The alloys also contain chromium (Cr), aluminum (Al) and yttrium (Y). FeCrAlY alloys are mainly used for the manufacture of components that are only exposed to low mechanical loads, such as heating elements, resistors or catalyst carriers. Ni(Co)CrAIY are mainly suitable for the production of components that are subject to higher mechanical loads, such as boilers, heat exchangers, valves and pumps, chemical reactors, jet engines, gas turbines, fasteners. MCrAlY alloys are particularly interesting because they can form a passivating aluminum oxide layer on their surface. In this case, the aluminum required for the passivation layer comes from the alloy itself. The formation of the passivation layer can deplete the alloy of aluminum, which can lead to a change in the mechanical properties.
Doch auch diese MCrAlY-Legierungen stoßen an ihre Grenzen. Im Turbinenbau werden Bauteile aus MCrAlY-Legierungen mit niedrigem Aluminiumgehalt (auch marginal alumina former genannt) verwendet, da diese vorteilhafte mechanische Eigenschaften aufweisen. Um diese aluminiumarmen Legierungen vor Korrosion zu schützen, werden sie mit einer Schicht aus MCrAIY mit einem hohen Aluminiumgehalt beschichtet, da Legierungen mit hohem Aluminiumgehalt selbst dichte Passivierungsschichten ausbilden können. Ein Nachteil der Legierungen mit hohem Aluminiumgehalt ist die vergleichsweise geringe mechanische Stabilität dieser Legierungen. Daher können auf diese Legierungsschichten mit hohem Aluminiumgehalt Barriereschichten aus porösem Aluminiumoxid angeordnet sein, um diese zusätzlich vor hohen Temperaturen und Oxidation zu schützen. Aus JP2009280854A sind Aluminiumoxidschichten bekannt, die mittels Aerosol Deposition von Partikeln mit einem Durchmesser von < 1 pm hergestellt wurden. Diese Schichten aus dem Stand der Technik sind porös, damit Sie die Wärme möglichst gut von den darunterliegenden MCrAlY-Legierungen fernhalten können. Aus dem Stand der Technik sind auch andere Verfahren bekannt, mit denen Aluminiumoxid aufgetragen werden kann. Allerdings sind diese Beschichtungsmethoden, wie z.B. thermisches Spritzen, Sputtern und PVD, nur in der Lage amorphe oder metastabile AI2O3- Schichten herzustellen, die jedoch bei den Einsatztemperaturen der MCrAlY-Legierungen z.B. bei ca. 900°C nicht ausreichend schützen und eine oder mehrere Phasenumwandungen aufweisen. Dabei kommt es zu einer Volumenänderung, verbunden mit einer signifikanten Rissausbildung, so dass die Schutzwirkung der Oxidschicht für die o.g. Legierungen verloren geht. But even these MCrAlY alloys have their limits. Components made of MCrAlY alloys with a low aluminum content (also known as marginal alumina formers) are used in turbine construction because they have advantageous mechanical properties. To protect these low-aluminum alloys from corrosion, they are coated with a layer of high-aluminum MCrAIY, since high-aluminum alloys can form dense passivation layers themselves. A disadvantage of alloys with a high aluminum content is the comparatively low mechanical stability of these alloys. Therefore, barrier layers of porous aluminum oxide can be placed on these alloy layers with a high aluminum content in order to additionally protect them from high temperatures and oxidation. Aluminum oxide layers are known from JP2009280854A, which were produced by means of aerosol deposition of particles with a diameter of <1 μm. These prior art layers are porous to help you keep heat away from the underlying MCrAlY alloys. Other methods by which aluminum oxide can be applied are also known from the prior art. However, these coating methods, such as thermal spraying, sputtering and PVD, are only able to produce amorphous or metastable Al2O3 layers, which, however, do not provide sufficient protection at the operating temperatures of MCrAlY alloys, for example around 900°C, and one or more phase transitions exhibit. This leads to a change in volume, combined with significant crack formation, so that the protective effect of the oxide layer for the above-mentioned alloys is lost.
Das zusätzliche Aufbringen einer aluminiumreichen MCrAlY-Schicht auf einer aluminiumarmen MCrAlY-Legierung ist zudem nachteilig, da es in einem separaten Arbeitsschritt aufgebracht werden muss und für den optimalen Schutz mit einer thermischen Schutzschicht (TBC) überzogen werden muss. Wünschenswert wäre es, wenn auf mechanisch stabile MCrAlY-Legierungen direkt eine Korrosionsschutzschicht aufgetragen werden könnte. The additional application of an aluminum-rich MCrAlY layer on an aluminum-poor MCrAlY alloy is also disadvantageous, since it has to be applied in a separate work step and has to be covered with a thermal protection layer (TBC) for optimal protection. It would be desirable if an anti-corrosion layer could be applied directly to mechanically stable MCrAlY alloys.
Aufgabe der vorliegenden Erfindung war es mindestens einen Nachteil des Stands der Technik zu überwinden. Insbesondere bestand die Aufgabe der Erfindung darin, ein Verfahren bereitzustellen, mit dem Metallkörper, insbesondere enthaltend eine MCrAIY Legierung, besser gegen Korrosion, insbesondere bei Temperaturen von mindestens 900°C geschützt werden können. Insbesondere der Oxidationsschutz von Metallkörpern aus MCrAIY mit niedrigem Aluminiumgehalt von höchstens 6 Gew.-% sollte im Rahmen der Erfindung verbessert werden. The object of the present invention was to overcome at least one disadvantage of the prior art. In particular, the object of the invention was to provide a method with which metal bodies, in particular containing an MCrAlY alloy, can be better protected against corrosion, in particular at temperatures of at least 900.degree. In particular, the oxidation protection of metal bodies made of MCrAIY with a low aluminum content of at most 6% by weight should be improved within the scope of the invention.
Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung einer Aluminiumoxidschicht auf der Oberfläche eines Metallkörpers, aufweisend die Schritte: a. Bereitstellen eines Metallkörpers, wobei das Metall des Metallkörpers Aluminium in einer Menge von 0.3 - 6 Gew.-% enthält und wobei der Metallkörper eine Oberfläche aufweist, b. Bereitstellen eines Aluminiumoxidpulvers aufweisend eine Partikelgrößenverteilung in Form eines Aerosols, c. Sprühen des Aerosols auf die Oberfläche des Metallkörpers mit der Aerosol- Depositions-Methode unter Abscheidung einer Aluminiumoxidschicht mit einer mittleren Dicke im Bereich von 0,5 pm - 20 pm. The object is achieved by a method for producing an aluminum oxide layer on the surface of a metal body, having the steps: a. Providing a metal body, wherein the metal of the metal body contains aluminum in an amount of 0.3-6% by weight and wherein the metal body has a surface, b. Providing an aluminum oxide powder having a particle size distribution in the form of an aerosol, c. Spraying the aerosol onto the surface of the metal body using the aerosol deposition method, depositing an aluminum oxide layer with an average thickness in the range of 0.5 μm - 20 μm.
Durch das erfindungsgemäße Verfahren lässt sich eine besonders dichte Aluminiumoxidschicht direkt auf einem Metallkörper enthaltend ein erfindungsgemäßes Metall auftragen. Durch diese Aluminiumoxidschicht wird dem Metallkörper eine besonders hohe Korrosionsbeständigkeit verliehen. The method according to the invention allows a particularly dense aluminum oxide layer to be applied directly to a metal body containing a metal according to the invention. This aluminum oxide layer gives the metal body a particularly high level of corrosion resistance.
In einem ersten Aspekt betrifft die die Erfindung ein Verfahren zur Herstellung einer Aluminiumoxidschicht. Diese Aluminiumoxidschicht ist besonders geeignet, um Metalloberflächen bei Temperaturen über 400°C in korrosiven Atmosphären zu schützen. Unter Korrosion kann beispielsweise die Oxidation in einer sauerstoffhaltigen Umgebung verstanden werden. In a first aspect, the invention relates to a method for producing an aluminum oxide layer. This aluminum oxide layer is particularly suitable to protect metal surfaces at temperatures above 400°C in corrosive atmospheres. Corrosion can be understood, for example, as oxidation in an oxygen-containing environment.
In Schritt a) wird ein Metallkörper mit einer Oberfläche bereitgestellt. Der Metallkörper, auf den die Aluminiumoxidschicht aufgetragen wird, weist ein Metall auf, wobei das erfindungsgemäße Metall Aluminium in einer Menge von 0,3 - 6 Gew.-% enthält. Bevorzugt enthält das Metall des Metallkörpers eine Metalllegierung oder es besteht daraus. In einer bevorzugten Ausführung der Erfindung weist das Metall des Metallkörpers Aluminium in einer Menge von 0,5 - 4 Gew.-% auf. Die Metalllegierung ist bevorzugt eine Legierung des Typs MCrAIY (MCrAlY-Legierung). Hierbei steht M für ein Element, das ausgewählt ist aus der Gruppe bestehend aus Eisen, Kobalt und Nickel sowie Kombinationen dieser Elemente. Weiterhin enthalten MCrAlY-Legierungen zumindest Chrom (Cr), Aluminium (AI) und Yttrium (Y). Optional kann die MCrAIY- Legierung weiterhin mindestens ein Element enthalten, das ausgewählt ist aus der Gruppe bestehend aus Mn, Si, Ti, Zr, Cu, La, Ce, Hf, C, P und S sowie Kombinationen dieser Elemente enthalten. Metalle, insbesondere MCrAlY- Legierungen mit dem erfindungsgemäßen Aluminiumgehalt haben den Vorteil, dass sie verbesserte mechanische Eigenschaften aufweisen, verglichen mit solchen MCrAlY- Legierungen mit einem höheren Aluminiumgehalt über 6 Gew.-%. In step a), a metal body with a surface is provided. The metal body to which the aluminum oxide layer is applied comprises a metal, with the metal according to the invention containing aluminum in an amount of 0.3-6% by weight. The metal of the metal body preferably contains a metal alloy or consists of it. In a preferred embodiment of the invention, the metal of the metal body contains aluminum in an amount of 0.5-4% by weight. The metal alloy is preferably an alloy of the type MCrAIY (MCrAlY alloy). Here M is an element selected from the group consisting of iron, cobalt and nickel and combinations of these elements. Furthermore, MCrAlY alloys contain at least chromium (Cr), aluminum (Al) and yttrium (Y). Optionally, the MCrAIY alloy can also contain at least one element selected from the group consisting of Mn, Si, Ti, Zr, Cu, La, Ce, Hf, C, P and S and combinations of these elements. Metals, in particular MCrAlY alloys, with the aluminum content according to the invention have the advantage that they have improved mechanical properties compared to such MCrAlY alloys with a higher aluminum content of more than 6% by weight.
Der Metallkörper kann eine beliebige Form aufweisen. Bevorzugt sind Folien, Bleche, massive Formteile. Die Form des Formteils ist in einer möglichen Ausführung so ausgestaltet, dass die gesamte Oberfläche einem Sprühprozess zugänglich ist. Beispielsweise kann der Metallkörper ein Bauteil einer Turbine oder eines Hochtemperaturofens sein. The metal body can have any shape. Foils, metal sheets and massive molded parts are preferred. In one possible embodiment, the shape of the molded part is designed in such a way that the entire surface is accessible to a spraying process. For example, the metal body can be a component of a turbine or a high-temperature furnace.
Der Metallkörper weist möglichst eine metallische Oberfläche auf. Das bedeutet, dass außer unvermeidlichen Verunreinigungen bevorzugt keine absichtlich aufgebrachten Substanzen auf der Oberfläche vorliegen, insbesondere keine Metalloxide. Beispielsweise kann die Metalloberfläche an Luft gelagert werden. In einer bevorzugten Ausführung weist die Oberfläche des Metallkörpers, auf dem die Aluminiumoxidschicht hergestellt wird, keine Haftvermittlerschicht ( bond coatlayer ) auf, insbesondere keine Schicht enthaltend eine aluminiumreiche MCrAlY-Legierung mit mehr als 6 Gew.-% Aluminium. In einer bevorzugten Ausführungsform weist die metallische Oberfläche keine einlegierten Elemente, wie z.B. Platin auf, die eine bond coatlayer bilden. Platin wird im Stand der Technik häufig verwendet, um eine bessere Anbindung einer Aluminiumoxidschicht zu ermöglichen und wird typischer Weise in einem separaten Schritt in eine MCrAlY-Legierung eingebracht. In der vorliegenden Erfindung kann auf diesen Schritt verzichtet werden. In einer möglichen Ausführung der Erfindung kann die Erfindungsgemäße Aluminiumoxidschicht als bond coat /ayer verwendet werden. The metal body has a metallic surface if possible. This means that, apart from unavoidable impurities, there are preferably no intentionally applied substances on the surface, in particular no metal oxides. For example, the metal surface can be stored in air. In a preferred embodiment, the surface of the metal body on which the aluminum oxide layer is produced has no bond coat layer, in particular no layer containing an aluminum-rich MCrAlY alloy with more than 6% by weight aluminum. In a preferred embodiment, the metallic surface has no alloyed elements, such as platinum, which form a bond coat layer. Platinum is often used in the prior art to enable better bonding of an aluminum oxide layer and is typically introduced into an MCrAlY alloy in a separate step. In the present invention, this step can be omitted. In one possible embodiment of the invention, the aluminum oxide layer according to the invention can be used as a bond coat/ayer.
In Schritt b) wird ein Aluminiumoxidpulver bereitgestellt. Bevorzugt weist das Aluminiumoxidpulver eine Partikelgrößenverteilung dso von mindestens 1 pm, insbesondere mindestens 10 pm und besonders bevorzugt mindestens 20 pm und weiterhin bevorzugt von mindestens 30 pm auf. Weiterhin weist das Aluminiumoxidpulver bevorzugt eine Partikelgrößenverteilung dso von höchstens 150 pm, insbesondere von höchstens 125 pm, ganz besonders bevorzugt von höchstens 100 pm und noch weiter bevorzugt von höchstens 80 pm auf. Bevorzugt weist das Aluminiumoxidpulver eine Partikelgrößenverteilung mit einem dso- Wert im Bereich von 0,1 pm - 150 pm auf. Weiterhin kann die Partikelgrößenverteilung einen dgo-Wert von 125 pm oder weniger aufweisen. Die Partikelgrößenverteilung im Rahmen der Erfindung kann beispielsweise bestimmt werden mittels Laserbeugung gemäß ISO 13320:2009. In step b) an aluminum oxide powder is provided. The aluminum oxide powder preferably has a particle size distribution dso of at least 1 μm, in particular at least 10 μm and particularly preferably at least 20 μm and more preferably at least 30 μm. Furthermore, the aluminum oxide powder preferably has a particle size distribution dso of at most 150 μm, in particular at most 125 μm, very particularly preferably at most 100 μm and even more preferably at most 80 μm. The aluminum oxide powder preferably has a particle size distribution with a dso value in the range from 0.1 μm to 150 μm. Furthermore, the particle size distribution can have a dgo value of 125 μm or less. The particle size distribution within the scope of the invention can be determined, for example, by means of laser diffraction in accordance with ISO 13320:2009.
Bevorzugt weist das Aluminiumoxidpulver Aluminiumoxid in einer Menge von mindestens 85 Gew.-%, bevorzugt von mindestens 90 Gew.-% und besonders bevorzugt von mindestens 99 Gew.- % auf. In einer besonders bevorzugten Ausführungsform der Erfindung weist das Aluminumoxidpulver alpha-Aluminiumoxid auf. Insbesondere weist das Aluminiumoxidpulver alpha-Aluminiumoxid in einer Menge von mindestens 85 Gew.-% bevorzugt von mindestens 90 Gew.-% und besonders bevorzugt von mindestens 99 Gew.- % auf. The aluminum oxide powder preferably has aluminum oxide in an amount of at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 99% by weight. In a particularly preferred embodiment of the invention, the alumina powder comprises alpha alumina. In particular, the aluminum oxide powder has alpha aluminum oxide in an amount of at least 85% by weight, preferably at least 90% by weight and particularly preferably at least 99% by weight.
Neben alpha-Aluminiumoxid kann das Aluminiumoxid optional auch andere Phasen wie z.B. beta-, theta- und gamma-Aluminiumoxid aufweisen, insbesondere in unvermeidbaren Spuren. Bevorzugt beträgt die Gesamtmenge an Aluminiumoxid, das nicht als alpha- Aluminiumoxid vorliegt, weniger als 15 Gew.-% oder weniger als 5 Gew.-% oder weniger als 1 Gew.-% insbesondere weniger als 0,1 Gew.-% oder ganz besonders bevorzugt weniger als 0,001 Gew.-% auf. Die verschiedenen Phasen von Aluminiumoxid und die jeweiligen Mengen können mittels XRD bestimmt werden, wie hierin beschrieben. Durch eine möglichst hohe Menge an Aluminiumoxid, insbesondere alpha-Aluminiumoxid, kann eine besonders hohe Korrosionsstabilität erreicht werden, insbesondere bei Temperaturen von 400°C oder mehr in sauerstoffhaltigen Umgebungen. Neben Aluminiumoxid, insbesondere alpha- Aluminiumoxid, kann das Aluminiumoxidpulver optional mindestens eine weitere Komponente enthalten. Die mindestens eine weitere Komponente kann beispielsweise eine Verunreinigung oder eine gezielt zugesetzte Komponente sein. In addition to alpha alumina, the alumina may optionally also contain other phases such as beta, theta and gamma alumina, particularly in unavoidable traces. Preferably the total amount of alumina not present as alpha-alumina is less than 15 wt%, or less than 5 wt%, or less than 1 wt%, especially less than 0.1 wt% or all more preferably less than 0.001% by weight. The various phases of alumina and the amounts of each can be determined using XRD as described herein. A particularly high corrosion stability can be achieved, in particular at temperatures of 400° C. or more in oxygenated environments. In addition to aluminum oxide, in particular alpha aluminum oxide, the aluminum oxide powder can optionally contain at least one further component. The at least one further component can be, for example, an impurity or a specifically added component.
Die mindestens eine weitere Komponente kann beispielsweise ausgewählt sein aus der Gruppe bestehend aus MgO, MgAhCU, CaO, Y2O3, YAG (Yttrium-Aluminium Granat), YAP (Yttrium Aluminium Perovskit), La203, LaAI03, ZrÜ2, Hf02, TiOx und CeOx, sowie Kombinationen daraus. The at least one further component can be selected, for example, from the group consisting of MgO, MgAhCU, CaO, Y2O3, YAG (yttrium aluminum garnet), YAP (yttrium aluminum perovskite), La 2 0 3 , LaAI0 3 , ZrÜ2, Hf0 2 , TiO x and CeO x , and combinations thereof.
In einerweiteren möglichen Ausführungsform kann das Aluminiumoxidpulver mindeste eine weitere Komponente enthalten, die ausgewählt ist aus der Gruppe enthaltend S1O2, CaO, SrO, BaO, Na2Ü, K2O, Fe-Oxide, Cr-Oxide, Mn-Oxide, Ni-Oxide, Cu-Oxide und Co-Oxide.In a further possible embodiment, the aluminum oxide powder can contain at least one further component which is selected from the group consisting of S1O2, CaO, SrO, BaO, Na2Ü, K2O, Fe oxides, Cr oxides, Mn oxides, Ni oxides, Cu Oxides and Co-oxides.
Die mindestens eine weitere Komponente in dem Aluminiumoxidpulver kann in einer Menge von insgesamt weniger als 15 Gew.-% vorliegen, insbesondere von weniger als 5 Gew.-% oder weniger als 1 Gew.-%. Besonders vorteilhaft ist die Menge der mindestens einen weiteren Komponente in einer Menge von höchstens 0,5 oder sogar höchstens 0,1 Gew.-% vorhanden. Optional enthält das Aluminiumoxidpulver keine weitere Komponente außer Aluminiumoxid im Rahmen der Messungenauigkeit. The at least one further component in the aluminum oxide powder can be present in a total amount of less than 15% by weight, in particular less than 5% by weight or less than 1% by weight. The amount of the at least one further component is particularly advantageously present in an amount of at most 0.5 or even at most 0.1% by weight. Optionally, the aluminum oxide powder does not contain any other component apart from aluminum oxide within the scope of the measurement inaccuracy.
Erfindungsgemäß wird das Aluminiumoxidpulver in Form eines Aerosols bereitgestellt. According to the invention, the aluminum oxide powder is provided in the form of an aerosol.
Hierfür wird das verwendete Aluminiumoxidpulver in einen Aerosolgenerator vorgelegt.For this purpose, the aluminum oxide powder used is placed in an aerosol generator.
Durch Einleiten eines Prozessgases, wird das Aluminiumoxidpulver in ein Aerosol überführt und im Prozessgas fein verteilt. Das Prozessgas kann ein Inertgas, Sauerstoff oder Mischungen daraus sein. Das Inertgas kann ausgewählt sein aus der Gruppe bestehend aus Helium, Argon und Stickstoff sowie Mischungen dieser Gase. By introducing a process gas, the aluminum oxide powder is converted into an aerosol and finely distributed in the process gas. The process gas can be an inert gas, oxygen or mixtures thereof. The inert gas can be selected from the group consisting of helium, argon and nitrogen and mixtures of these gases.
In Schritt c) erfolgt ein Sprühen des Aerosols auf die Oberfläche des Metallkörpers unter Erhalt einer Aluminiumoxidschicht mit einer mittleren Dicke im Bereich von 0,5 pm - 20 pm, insbesondere im Bereich von 1 pm - 5 pm. Bevorzugt weist die Aluminiumoxidschicht eine Dicke von mindestens 0,5 pm, insbesondere von mindestensl pm und ganz besonders bevorzugt von mindestens 2 pm auf. Weiterhin weist die Aluminiumoxidschicht bevorzugt eine Dicke von höchstens 20 pm insbesondere höchstens 10 pm und ganz besonders bevorzugt von höchstens 5 pm auf. In einer besonders bevorzugten Ausführungsform weist die Aluminiumoxidschicht eine mittlere Dicke auf, die maximal 50%, insbesondere maximal 25% des dso-Wertes der Partikelgrößenverteilung des Aluminiumoxidpulvers beträgt. Besonders vorteilhafte Aluminiumoxidschichten können erhalten werden, wenn diese Schichten im Wesentlichen keine Primärpartikel aus dem Aerosol mehr aufweisen. Die Schichtdicken der vorliegenden Erfindung werden mit Hilfe eines mechanischen Tastschnittgerätes an einer Kante der Schicht ermittelt. Vorzugsweise enthält die Aluminiumoxidschicht Kristallite mit einem maximalen Durchmesser im Bereich von 15 nm - 150 nm. Bevorzugt liegen bezogen auf die Anzahl mindestens 90 % der Kristallite, insbesondere mindestens 95 % der Kristallite in diesem Durchmesserbereich. Die Zahl der Kristallite und ihre Größe kann mittels Bildanalyse in einer REM-Aufnahme ermittelt werden. In step c), the aerosol is sprayed onto the surface of the metal body to obtain an aluminum oxide layer with an average thickness in the range from 0.5 μm-20 μm, in particular in the range from 1 μm-5 μm. The aluminum oxide layer preferably has a thickness of at least 0.5 μm, in particular at least 1 μm and very particularly preferably at least 2 μm. Furthermore, the aluminum oxide layer preferably has a thickness of at most 20 μm, in particular at most 10 μm and very particularly preferably at most 5 μm. In a particularly preferred embodiment, the aluminum oxide layer has an average thickness which is at most 50%, in particular at most 25%, of the dso value of the particle size distribution of the aluminum oxide powder. Particularly advantageous aluminum oxide layers can be obtained if these layers essentially no longer have any primary particles from the aerosol. The layer thicknesses of the present invention are determined using a mechanical stylus instrument at one edge of the layer. The aluminum oxide layer preferably contains crystallites with a maximum diameter in the range of 15 nm-150 nm. Based on the number, at least 90% of the crystallites, in particular at least 95% of the crystallites, are preferably in this diameter range. The number of crystallites and their size can be determined using image analysis in an SEM image.
Die erzeugte Aluminiumoxidschicht weist bevorzugt eine relative Dichte von 96% oder mehr auf, insbesondere von 98% oder mehr und ganz besonders bevorzugt von 99% oder mehr. Beispielsweise weist die Aluminiumoxidschicht eine Dichte auf, die bei etwa 99,5% liegt. Die relative Dichte bezieht sich auf die theoretisch erreichbare Materialdichte unter Standardbedingungen. The aluminum oxide layer produced preferably has a relative density of 96% or more, in particular of 98% or more and very particularly preferably of 99% or more. For example, the aluminum oxide layer has a density of around 99.5%. The relative density refers to the theoretically achievable material density under standard conditions.
Das Sprühen des in Schritt b) erzeugten Aerosols erfolgt in Schritt c) mit der Aerosol- Depositionsmethode (ADM) unter Abscheidung einer Aluminiumoxidschicht mit einer mittleren Dicke im Bereich von 0,5 pm - 20 pm. Die Zusammensetzung der Aluminiumoxidschicht weist bevorzugt dieselben Merkmale auf, wie das Aluminiumoxidpulver, d. h. während des Sprühvorgangs kommt es zu keinen chemischen bzw. physikalischen Umwandlungsprozessen oder einem zusätzlichen Eintrag von Verunreinigungen. The spraying of the aerosol generated in step b) takes place in step c) using the aerosol deposition method (ADM) with deposition of an aluminum oxide layer with an average thickness in the range of 0.5 μm-20 μm. The composition of the alumina layer preferably has the same characteristics as the alumina powder, i. H. During the spraying process, there are no chemical or physical conversion processes or additional contamination.
Für die Abscheidung mit der Aerosol-Depositionsmethode wird eine ADM- Beschichtungsanlage verwendet. Diese Beschichtungsanlage enthält einen Aerosolerzeuger, in dem das verwendete Aluminiumoxidpulver in ein Aerosol überführt wird wie in Schritt b) beschrieben. Zusätzlich enthält die ADM-Beschichtungsanlage eine Beschichtungskammer, in der der Beschichtungsvorgang erfolgt. In dem Aerosolgenerator herrscht insbesondere während des Prozesses ein Vakuum im bevorzugten Bereich von 60 mbar bis 1066 mbar. In der Beschichtungskammer herrscht insbesondere während des Prozesses ein Druck im bevorzugten Bereich von 0,2 mbar- 20 mbar. Dabei ist der Druck in der Beschichtungskammer kleiner als der Druck im Aerosolgenerator. Typischer Weise liegt die Druckdifferenz zwischen Aerosolgenerator und Beschichtungskammer im Bereich von 200 mbar - 500 mbar. Über ein Prozessgas wird das Aluminiumoxidpulver aus dem Aerosolerzeuger durch eine Düse in die Beschichtungskammer transportiert. Dabei werden die Partikel aufgrund des resultierenden Druckunterschieds zwischen Aerosolgenerator und Beschichtungskammer beschleunigt, insbesondere auf eine Geschwindigkeit im Bereich von 100 m/s - 600 m/s, und auf der Oberfläche des Metallkörpers abgeschieden. Die Aluminiumoxidpartikel brechen durch den Aufprall in Bruchstücke, insbesondere im nm- Bereich, auf und bilden eine dichte und gut haftende Schicht. Besonders bevorzugt brechen im Wesentlichen alle Aluminiumoxidpartikel durch den Aufprall auf. Das verwendete Prozessgas kann ausgewählt sein aus Inertgasen, Sauerstoff, Luft oder Kombinationen daraus. Das Inertgas kann bevorzugt mindestens ein Gas sein, das ausgewählt ist aus der Gruppe bestehend aus Helium (He), Argon (Ar) und Stickstoff (N2) oder Kombinationen daraus. An ADM coating system is used for the aerosol deposition method. This coating installation contains an aerosol generator in which the aluminum oxide powder used is converted into an aerosol as described in step b). In addition, the ADM coating system contains a coating chamber in which the coating process takes place. A vacuum in the preferred range of 60 mbar to 1066 mbar prevails in the aerosol generator, particularly during the process. A pressure in the preferred range of 0.2 mbar to 20 mbar prevails in the coating chamber, particularly during the process. The pressure in the coating chamber is lower than the pressure in the aerosol generator. Typically, the pressure difference between the aerosol generator and the coating chamber is in the range of 200 mbar - 500 mbar. The aluminum oxide powder is transported from the aerosol generator through a nozzle into the coating chamber via a process gas. The particles are accelerated due to the resulting pressure difference between the aerosol generator and the coating chamber, in particular to a speed in the range of 100 m/s - 600 m/s, and are deposited on the surface of the metal body. As a result of the impact, the aluminum oxide particles break up into fragments, particularly in the nm range, and form a dense and well-adhering layer. More preferably, substantially all of the alumina particles fracture upon impact. The process gas used can be selected from inert gases, oxygen, air or combinations thereof. The inert gas can preferably be at least one gas selected from the group consisting of helium (He), argon (Ar) and nitrogen (N2) or combinations thereof.
Der zu beschichtende Metallkörper wird vorzugsweise mit einem XY-Tisch bewegt. Alternativ oder zusätzlich ist es möglich, dass eine Düse über der zu beschichtende Metallkörper bewegt wird. Auch eine Kombination von beiden, also einer Bewegung des Tischs und einer Düse in XY-Richtung gegeneinander ist möglich. The metal body to be coated is preferably moved with an XY table. Alternatively or additionally, it is possible for a nozzle to be moved over the metal body to be coated. A combination of both, i.e. a movement of the table and a nozzle in the XY direction against each other, is also possible.
Bei ADM handelt es sich um ein kaltes Beschichtungsverfahren. Da die Partikel des Aluminiumoxidpulvers und die daraus resultierende Aluminiumoxidschicht bereits im Wesentlichen in der a-Phase vorliegen, findet bei einer Temperaturbeaufschlagung der Aluminiumoxidschicht keine Phasenänderung statt. Somit werden Undichtigkeiten in der erzeugten Schicht bedingt durch Risse und Poren vermieden. ADM is a cold coating process. Since the particles of the aluminum oxide powder and the resulting aluminum oxide layer are already essentially in the a-phase, there is no phase change when the aluminum oxide layer is exposed to temperature. In this way, leaks in the layer produced due to cracks and pores are avoided.
Durch das Erfindungsgemäße Verfahren ist es unter anderem möglich Aluminiumoxidschichten auf erfindungsgemäße Metalle aufzubringen, die selbst nicht in der Lage sind, eine stabile Passivierungsschicht auszubilden. Auf diese Weise können Metallkörper mit guten mechanischen Eigenschaften einer aluminiumarmen Legierung mit einer hohen Korrosionsbeständigkeit ausgestattet werden, wie sie üblicher Weise nur mit aluminiumreichen Legierungen erreichbar sind. The method according to the invention makes it possible, among other things, to apply aluminum oxide layers to metals according to the invention, which themselves are not capable of forming a stable passivation layer. In this way, metal bodies with good mechanical properties of a low-aluminum alloy can be equipped with high corrosion resistance, which can usually only be achieved with high-aluminum alloys.
In einem zweiten Aspekt betrifft die Erfindung einen Metallkörper aufweisend ein Metall enthaltend Aluminium in einer Menge von 0,3 - 6 Gew.-%, wobei direkt auf der Oberfläche des Metallkörpers eine Aluminiumoxidschicht mit einer Dicke von 0,5 pm - 20 pm und einer relativen Dichte von 96% oder mehr abgeschieden ist. Bevorzugt beträgt die relative Dichte mindestens 98% und insbesondere mindestens 99%. Die Dichte einer mittels Aerosol- Abscheidung hergestellten Schicht kann beispielsweise mittels Densimeter gemessen werden. In a second aspect, the invention relates to a metal body comprising a metal containing aluminum in an amount of 0.3-6% by weight, with an aluminum oxide layer having a thickness of 0.5 μm-20 μm and a relative density of 96% or more. The relative density is preferably at least 98% and in particular at least 99%. The density of a layer produced by means of aerosol deposition can be measured using a densimeter, for example.
Die Härte einer erfindungsgemäßen Aluminiumoxidschicht nach dem ADM-Verfahren beträgt bevorzugt 6 GPa oder mehr, insbesondere 8 GPa oder mehr. The hardness of an aluminum oxide layer according to the invention using the ADM method is preferably 6 GPa or more, in particular 8 GPa or more.
Die Merkmale, die im ersten Aspekt der Erfindung für das Verfahren beschrieben wurden, gelten, wo anwendbar, auch für den erfindungsgemäßen Metallkörper. Insbesondere gelten die Merkmale für die Zusammensetzung des Aluminiumoxidpulvers auch für die Zusammensetzung der Aluminiumoxidschicht. The features that were described in the first aspect of the invention for the method also apply, where applicable, to the metal body according to the invention. In particular, the features for the composition of the aluminum oxide powder also apply to the composition of the aluminum oxide layer.
Die abgeschiedene Aluminiumoxidschicht kann eine oder mehrere vorteilhafte Wirkungen haben. Zum einen kann die Aluminiumoxidschicht die Verarmung der Legierung an Aluminium durch Hochtemperaturkorrosion reduzieren, was zu einer erhöhten Lebensdauer des Metallkörpers führen kann. The deposited aluminum oxide layer can have one or more beneficial effects. Firstly, the aluminum oxide layer can indicate the depletion of the alloy Reduce aluminum by high temperature corrosion, which can lead to increased life of the metal body.
Weiterhin kann die erfindungsgemäß hergestellte Aluminiumoxidschicht verhindern, dass metastabile Aluminiumoxide, wie z.B. theta-Aluminiumoxid auf der Oberfläche einer MCrAlY- Legierung gebildet werden, bzw. wenn die erfindungsgemäße Aluminiumoxidschicht alpha- Aluminiumoxid aufweist, kann dies die Bildung von weiterem alpha-Aluminiumoxid aufweisen und eine hohe Dichte bewirken. Furthermore, the aluminum oxide layer produced according to the invention can prevent metastable aluminum oxides such as theta-alumina from being formed on the surface of an MCrAlY alloy, or if the aluminum oxide layer according to the invention has alpha-alumina, this can have the formation of further alpha-alumina and a cause high density.
Der Metallkörper kann in unterschiedlichen Anwendungen zum Einsatz kommen, beispielsweise als Teil im Turbinenbau. Insbesondere kann der Metallkörper eine Turbinenschaufel sein. Hier kann die Verwendung der erfindungsgemäße Aluminiumoxidschicht dazu führen, dass auf eine aluminiumreiche MCrAlY-Schicht als bond coat layer verzichtet werden kann. The metal body can be used in various applications, for example as a part in turbine construction. In particular, the metal body can be a turbine blade. Here, the use of the aluminum oxide layer according to the invention can mean that an aluminum-rich MCrAlY layer can be dispensed with as a bond coat layer.
Weiterhin kann der erfindungsgemäße Metallkörper beispielsweise eingesetzt werden für Hochtemperaturanwendungen, insbesondere für Anwendungen, bei denen der Metallkörper Temperaturen von >400°C oder >600°C ausgesetzt ist, insbesondere Temperaturen im Bereich von 600 - 900°C. Vorzugsweise kann durch die Erfindung sowohl bei statischen als auch dynamisch wechselnden Temperaturbelastungen Korrosion reduziert oder unterdrückt werden. Furthermore, the metal body according to the invention can be used, for example, for high-temperature applications, in particular for applications in which the metal body is exposed to temperatures of >400°C or >600°C, in particular temperatures in the range of 600-900°C. Preferably, corrosion can be reduced or suppressed by the invention both in the case of static and dynamically changing temperature loads.
Weitere typische Anwendungen bei denen erfindungsgemäße Metallkörper zum Einsatz kommen können sind unter anderem Heizelemente, Widerstände, Katalysatorträger, Kessel, Wärmeübertrager, Ventile, Pumpen, chemische Reaktoren, Hochtemperaturöfen, Strahltriebwerke, Gasturbinen und Befestigungsteile. Other typical applications in which metal bodies according to the invention can be used include heating elements, resistors, catalyst supports, boilers, heat exchangers, valves, pumps, chemical reactors, high-temperature furnaces, jet engines, gas turbines and fastening parts.
Messmethoden measurement methods
Partikelgrößenverteilung particle size distribution
Die Partikelgrößenverteilung kann durch Laserbeugung gemäß ISO 13320:2009 mit dem Gerät „Helos BR/R3“ (Sympatec GmbH, Deutschland) bestimmt werden. Der Messbereich liegt dabei im Bereich von 0,9 - 875 pm. Für die Dispergierung der Pulverpartikel kann das Trockendispergiersystem RODODS/M (Sympatec GmbH, Deutschland) mit Schwingrinnendosierer VI BRI (mit Venturi-Düse) verwendete werden. Die Probenmenge beträgt dabei 5 g. Die Wellenlänge der verwendeten Laserstrahlung beträgt 632,8 nm. Die Auswertung kann mit Hilfe der Mie-Theorie erfolgen. Die Partikelgrößen werden als Volumenverteilung erhalten, d.h. im Rahmen der vorliegenden Erfindung wird die Partikelgrößenverteilung in Form einer Volumenverteilungssummenkurve bestimmt. Aus der durch Laserbeugung gemessenen Partikelgrößenverteilung (Volumenverteilung) können, wie in der ISO 9276-2:2014 beschrieben, dso - Werte berechnet werden. The particle size distribution can be determined by laser diffraction according to ISO 13320:2009 using the "Helos BR/R3" device (Sympatec GmbH, Germany). The measuring range is in the range of 0.9 - 875 pm. The dry dispersing system RODODS/M (Sympatec GmbH, Germany) with vibrating channel dosing unit VI BRI (with Venturi nozzle) can be used to disperse the powder particles. The amount of sample is 5 g. The wavelength of the laser radiation used is 632.8 nm. The evaluation can be carried out using the Mie theory. The particle sizes are obtained as a volume distribution, ie within the scope of the present invention the particle size distribution is determined in the form of a volume distribution cumulative curve. From the Particle size distribution (volume distribution) measured by laser diffraction can be calculated as described in ISO 9276-2:2014, dso values.
Röntgendiffraktometrie (XRD) X-ray diffraction (XRD)
Die Durchführung der XRD - Messungen wird gemäß DIN EN 13925-1:2003-07 und DIN EN 13925-2:2003-07 durchgeführt. Dabei wird die Messung direkt auf der erzeugten Schicht durchgeführt. Die allgemeine verwendeten Messdetails sind wie folgt zusammengefasst: Beugung: Bragg- Brentano; Detektor: Scintillation Counter; Strahlung: CuKa 1.5406 Ä; The XRD measurements are carried out in accordance with DIN EN 13925-1:2003-07 and DIN EN 13925-2:2003-07. The measurement is carried out directly on the layer produced. The general measurement details used are summarized as follows: Diffraction: Bragg-Brentano; Detector: scintillation counter; Radiation: CuKa 1.5406 Å;
Quelle: 40 kV, 25 mA; Messmethode: Reflektion. Als interne Referenz wird zuerst ein leerer Probenhalter gemessen, um das Hintergrundsignal zu ermitteln. Diese Hintergrundmessung wird von allen folgenden Messungen der zu untersuchenden Proben abgezogen. Source: 40kV, 25mA; Measurement method: reflection. As an internal reference, an empty sample holder is first measured to determine the background signal. This background measurement is subtracted from all subsequent measurements of the samples to be examined.
Diskrete Beugungssignale im Diffraktogramm, können gemäß dem Debye-Scherrer Verfahren unter Verwendung der Bragg-Gleichung ausgewertet werden. Daraus kann die vorliegende Phase von Aluminiumoxid bestimmt werden. Discrete diffraction signals in the diffractogram can be evaluated according to the Debye-Scherrer method using the Bragg equation. From this, the phase of alumina present can be determined.
Schichtdicke layer thickness
Die Schichtdicke wird mit Hilfe eines mechanischen Tastschnittgeräts (Perthometer) ermittelt. Dazu wird ein Teil des zu beschichtenden Bauteils maskiert und die zu untersuchende Schicht auf diesem maskierten Substrat abgeschiedenen. Nach Entfernung der Maskierung kann die Schichtdicke durch Messen einer Schichtstufe mit dem Taster des Perthometers bestimmt werden. Hierfür kann das Gerät MarSurf XR1 der Firma Mahr GmbH verwendet werden. The layer thickness is determined using a mechanical stylus device (perthometer). For this purpose, part of the component to be coated is masked and the layer to be examined is deposited on this masked substrate. After removing the masking, the layer thickness can be determined by measuring a layer step with the perthometer probe. The MarSurf XR1 device from Mahr GmbH can be used for this.
Dichtemessung density measurement
Die relative Dichte berechnet sich folgendermaßen: The relative density is calculated as follows:
(tatsächliche Dichte / theoretische Dichte) c 100%). (actual density / theoretical density) c 100%).
Die tatsächliche Dichte kann mit dem Archimedes-Verfahren gemäß DIN EN 623-2:1993-11 mit einem Densimeter gemessen werden. Hierfür kann das Gerät SD200L von AlfaMirage verwendet werden. The actual density can be measured with a densimeter using the Archimedes method according to DIN EN 623-2:1993-11. The AlfaMirage SD200L device can be used for this.
Härtemessung hardness measurement
Die Härte einer mittels ADM hergestellten Schicht kann beispielsweise mittels Nanoindentation gemessen werden. Die Nano-Test-Plattform kontrolliert die Bewegung eines Diamanten in Kontakt mit der Probe. Eine Stromänderung an einer Spule resultiert in einer aufgeprägten Kraft (elektromagnetisches Kraft-Aktorprinzip) und bewirkt eine Änderung der Diamantposition. Während der Härtemessung dringt die Diamantspitze kontinuierlich in die Probe ein. Über die Kapazitätsänderung eines Kondensators wird diese Wegänderung als Funktion der Last dokumentiert. Folglich können durch exakte Kalibration des angelegten Spulenstroms und durch die Messung der Wegänderung sowohl die Eindringtiefe, wie auch die aufgeprägte Last bestimmt werden. Die Messung erfolgt gemäß DIN EN ISO 14577:2015-11. The hardness of a layer produced using ADM can be measured using nanoindentation, for example. The nano test platform controls the movement of a diamond in contact with the sample. A change in current at a coil results in an applied force (electromagnetic force actuator principle) and causes a change in the position of the diamond. During the hardness measurement, the diamond tip continuously penetrates the sample. This change in path is documented as a function of the load via the change in capacitance of a capacitor. Consequently, by exact calibration of the applied coil current and by measuring the change in path, both the penetration depth and the applied load can be determined. The measurement is carried out in accordance with DIN EN ISO 14577:2015-11.
Beispiele examples
Beispiel 1: Example 1:
In Beispiel 1 wurde mit Hilfe der Aerosol-Depositionsmethode ein Aluminiumoxidpulver auf ein FeCrAIY - Metallplättchen abgeschieden. Als Prozessgas diente Sauerstoff und der Druck in der Beschichtungskammer betrug < 20 mbar während des Beschichtungsvorgangs, wobei der Druck im Aerosolgenerator um ca. 200 mbar höher war als in der Beschichtungskammer. In Example 1, an aluminum oxide powder was deposited on a FeCrAlY metal plate using the aerosol deposition method. Oxygen was used as the process gas and the pressure in the coating chamber was <20 mbar during the coating process, with the pressure in the aerosol generator being about 200 mbar higher than in the coating chamber.
Direkt auf der Oberfläche eines Metallplättchens aus einer FeCrAlY-Legierung mit einer Kantenlänge von 20x20x1 mm wurde mit der Aerosol-Depositionsmethode eine Aluminiumoxidschicht abgeschieden. Das verwendete Aluminiumoxidpulver hatte Partikelgrößen im Bereich von 0,1 und 5 pm (dgo < 125 pm) und Sauerstoff wurde als Trägergas verwendet. Using the aerosol deposition method, an aluminum oxide layer was deposited directly on the surface of a metal plate made of an FeCrAlY alloy with an edge length of 20x20x1 mm. The alumina powder used had particle sizes in the range of 0.1 and 5 pm (dgo < 125 pm) and oxygen was used as the carrier gas.
Die Probe mit der aufgetragenen Schicht wurde für 100 h bei 900°C statisch an Luft behandelt. Anschließend wurde die Probe unter dem Rasterelektronenmikroskop (REM) untersucht. Die Probe zeigt eine regelmäßige alpha-ALOs-Oxidschicht ohne Abplatzung und ohne theta -AI2O3 Bildung. In den Abbildungen 1B und 1D sind REM-Aufnahmen mit unterschiedlichem Maßstab gezeigt. Hier ist zu erkennen, dass es sich um gleichmäßige, geschlossene Schichten handelt. The sample with the applied layer was statically treated in air at 900° C. for 100 h. The sample was then examined under the scanning electron microscope (SEM). The sample shows a regular alpha-ALOs oxide layer with no spalling and no theta -AI2O3 formation. Figures 1B and 1D show SEM images taken at different scales. It can be seen here that the layers are uniform and closed.
Zum Vergleich wurde das gleiche Metallplättchen ohne Aluminiumoxidbeschichtung unter denselben Temperaturbedingungen behandelt. Die Vergleichsprobe ohne Aluminiumoxidschicht zeigt eine unregelmäßige Oxidation mit Abplatzungen, wie in den Abbildungen 1A und 1C zu erkennen ist. For comparison, the same metal plaque without an aluminum oxide coating was treated under the same temperature conditions. The comparison sample without the aluminum oxide layer shows irregular oxidation with spalling, as can be seen in Figures 1A and 1C.
Beispiel 2: Example 2:
In Beispiel 2 wurde mit Hilfe der Aerosol-Depositionsmethode ein Aluminiumoxidpulver analog zu Beispiel 1 (dgo < 125 pm) auf ein Metallplättchen abgeschieden. Direkt auf der Oberfläche eines Metallplättchens aus einer NiCrAIY Legierung (Alloy 602 CA, (NiCr25FeAIY)) mit einer Kantenlänge von 20x20x1 mm wurde eine Aluminiumoxidschicht abgeschieden. Als Prozessgas diente Sauerstoff und der Druck in der Beschichtungskammer betrug < 20 mbar während des Beschichtungsvorgangs, wobei der Druck im Aerosolgenerator um ca. 200 mbar höher war als in der Beschichtungskammer. Die so erstellte Probe wurde 50 h an Luft bei 1000°C statisch erhitzt. Nach der Temperaturbehandlung wurde die Probe mittels REM untersucht. Die Probe zeigt eine regelmäßige alpha-Aluminiumoxid Schutzschicht ohne erkennbare Defekte. In Example 2, an aluminum oxide powder analogous to Example 1 (dgo <125 μm) was deposited on a small metal plate using the aerosol deposition method. An aluminum oxide layer was deposited directly on the surface of a small metal plate made of a NiCrAIY alloy (Alloy 602 CA, (NiCr25FeAIY)) with an edge length of 20×20×1 mm. Oxygen was used as the process gas and the pressure in the coating chamber was <20 mbar during the coating process, with the pressure in the aerosol generator being about 200 mbar higher than in the coating chamber. The sample produced in this way was statically heated in air at 1000° C. for 50 h. After the temperature treatment, the sample was examined by SEM. The sample shows a regular protective alpha-alumina layer with no apparent defects.
Zum Vergleich wurde der gleiche Metallkörper ohne Aluminiumoxidschutzschicht für 50 h bei 1000°C an Luft erhitzt. Anschließend zeigte die Oberfläche in einer REM-Analyse eine unregelmäßige Oxidschicht die auf die Bildung von Cr,Ni-Oxiden zurückzuführen sein könnte. For comparison, the same metal body without an aluminum oxide protective layer was heated in air at 1000° C. for 50 h. Subsequently, the surface showed an irregular oxide layer in an SEM analysis, which could be due to the formation of Cr,Ni oxides.
Die Gewichtsänderung der unbeschichteten Probe nach 50 h Oxidation betrug ca. 1 mg/cm2. Dagegen blieb das Gewicht des Metallplättchens mit der abgeschiedenen Aluminiumoxidschicht im Rahmen der Wiegeungenauigkeit unverändert. Daraus lässt sich ableiten, dass die Probe auf Grund der fehlenden Schutzschicht korrodiert ist. The change in weight of the uncoated sample after 50 hours of oxidation was about 1 mg/cm 2 . In contrast, the weight of the small metal plate with the aluminum oxide layer deposited remained unchanged within the framework of the weighing inaccuracy. From this it can be deduced that the sample is corroded due to the missing protective layer.

Claims

Patentansprüche patent claims
1) Verfahren zum Abscheiden einer Aluminiumoxidschicht auf der Oberfläche eines Metallkörpers wobei das Metall des Metallkörpers Aluminium in einer Menge von 0,3 - 6 Gew.-% enthält, aufweisend die Schritte: a. Bereitstellen eines Metallkörpers aufweisend eine Oberfläche, b. Bereitstellen eines Aluminiumoxidpulvers in Form eines Aerosols und c. Sprühen des Aerosols auf die Oberfläche des Metallkörpers mit der Aerosol- Depositions-Methode unter Abscheidung einer Aluminiumoxidschicht mit einer mittleren Dicke im Bereich von 0,5 pm - 20 pm. 1) Process for depositing an aluminum oxide layer on the surface of a metal body, the metal of the metal body containing aluminum in an amount of 0.3-6% by weight, comprising the steps: a. providing a metal body having a surface, b. providing an alumina powder in the form of an aerosol and c. Spraying the aerosol onto the surface of the metal body using the aerosol deposition method, depositing an aluminum oxide layer with an average thickness in the range of 0.5 μm - 20 μm.
2) Verfahren gemäß Anspruch 1 , wobei das Aluminiumoxidpulver, eine Partikelgrößenverteilung mit einem dso-Wert im Bereich von 0,1 pm - 150 pm aufweist. 2) The method according to claim 1, wherein the aluminum oxide powder has a particle size distribution with a dso value in the range of 0.1 pm - 150 pm.
3) Verfahren gemäß Anspruch 1 oder 2, wobei das Metall des Metallkörper Aluminium in einer Menge von 0,5 bis 4 Gew.-% aufweist. 3) The method according to claim 1 or 2, wherein the metal of the metal body comprises aluminum in an amount of 0.5 to 4% by weight.
4) Verfahren gemäß einem der Ansprüche 1 - 3, wobei der Metallkörper eine Legierung des Typs MCrAIY aufweist oder daraus besteht, wobei M für ein Element steht, das ausgewählt ist aus der Gruppe bestehend aus Cobalt, Nickel und Eisen oder Kombinationen dieser Elemente. 4) The method according to any one of claims 1-3, wherein the metal body comprises or consists of an alloy of the type MCrAIY, where M stands for an element selected from the group consisting of cobalt, nickel and iron or combinations of these elements.
5) Verfahren gemäß einem der Ansprüche 1 - 4, wobei die Aluminiumoxidschicht eine relative Dichte von 96% oder mehr aufweist. 5) The method according to any one of claims 1 - 4, wherein the aluminum oxide layer has a relative density of 96% or more.
6) Verfahren gemäß einem der Ansprüche 1 - 5, wobei die Aluminiumoxidschicht eine relative Dichte von 99% oder mehr aufweist. 6) The method according to any one of claims 1 - 5, wherein the aluminum oxide layer has a relative density of 99% or more.
7) Verfahren gemäß einem der Ansprüche 1 - 6, wobei die Aluminiumoxidschicht alpha- Aluminiumoxid aufweist oder daraus besteht. 7) The method according to any one of claims 1-6, wherein the aluminum oxide layer comprises or consists of alpha aluminum oxide.
8) Verfahren gemäß einem der Ansprüche 1 - 7, wobei die Aluminiumoxidschicht, mindestens 85 Gew.-% a/p/7a-Aluminiumoxid aufweist. 8) The method according to any one of claims 1 - 7, wherein the aluminum oxide layer comprises at least 85% by weight a/p/7a aluminum oxide.
9) Metallkörper enthaltend Aluminium in einer Menge von 0.3 - 6 Gew.-%, wobei direkt auf der Oberfläche des Metallkörpers eine Aluminiumoxidschicht mit einer Dicke von 0,5 pm - 20 pm und einer relativen Dichte von 96% oder mehr abgeschieden ist.9) Metal body containing aluminum in an amount of 0.3 - 6% by weight, with an aluminum oxide layer with a thickness of 0.5 µm - 20 µm and a relative density of 96% or more being deposited directly on the surface of the metal body.
10) Metallkörper gemäß Anspruch 9, wobei das Metall des Metallkörpers eine Legierung des Typs MCrAIY ist. 11) Metallkörper gemäß Anspruch 10, dadurch gekennzeichnet, dass die Aluminiumoxidschicht mit einem Verfahren gemäß einem der Ansprüche 1-8 abgeschieden wird. 10) Metal body according to claim 9, wherein the metal of the metal body is an alloy of the type MCrAIY. 11) Metal body according to claim 10, characterized in that the aluminum oxide layer is deposited using a method according to any one of claims 1-8.
12) Verwendung einer Aluminiumoxidschicht mit einer Dicke von 0,5 pm - 20 pm und einer relativen Dichte von 96% oder mehr zur Verbesserung der Korrosionsstabilität eines Metallkörpers, aufweisend eine Legierung des Typs MCrAIY, wobei die Legierung eine Aluminiumgehalt von 0.3 - 6 Gew.-% aufweist. 12) Use of an aluminum oxide layer with a thickness of 0.5 pm - 20 pm and a relative density of 96% or more to improve the corrosion stability of a metal body comprising an alloy of the MCrAIY type, the alloy having an aluminum content of 0.3 - 6 wt. -% having.
PCT/EP2022/061936 2021-05-20 2022-05-04 Anti-corrosion layer for surfaces of low-aluminum alloys WO2022243036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21174930.4A EP4092158A1 (en) 2021-05-20 2021-05-20 Corrosion protection layer for low-aluminium alloy surfaces
EP21174930.4 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022243036A1 true WO2022243036A1 (en) 2022-11-24

Family

ID=76034500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/061936 WO2022243036A1 (en) 2021-05-20 2022-05-04 Anti-corrosion layer for surfaces of low-aluminum alloys

Country Status (2)

Country Link
EP (1) EP4092158A1 (en)
WO (1) WO2022243036A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707651A1 (en) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Coating system and process of manufacturing a coating system
JP2009280854A (en) 2008-05-21 2009-12-03 Fujifilm Corp Ceramic film and method of manufacturing the same and thermal barrier coating structure
US20180085729A1 (en) * 2016-09-23 2018-03-29 Beijing Huashi United Energy Technology And Development Co., Ltd. Thermal Barrier Coating and An Ultra-High-Temperature Cold-Wall Suspension Bed Hydrogenation Reactor Comprising the Same
JP2019173592A (en) * 2018-03-27 2019-10-10 三菱重工業株式会社 Heat-shielding coating, turbine member, gas turbine and method for manufacturing heat-shielding coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707651A1 (en) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Coating system and process of manufacturing a coating system
JP2009280854A (en) 2008-05-21 2009-12-03 Fujifilm Corp Ceramic film and method of manufacturing the same and thermal barrier coating structure
US20180085729A1 (en) * 2016-09-23 2018-03-29 Beijing Huashi United Energy Technology And Development Co., Ltd. Thermal Barrier Coating and An Ultra-High-Temperature Cold-Wall Suspension Bed Hydrogenation Reactor Comprising the Same
JP2019173592A (en) * 2018-03-27 2019-10-10 三菱重工業株式会社 Heat-shielding coating, turbine member, gas turbine and method for manufacturing heat-shielding coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MULLER J ET AL: "Chemical vapor deposition of smooth @a-Al"2O"3 films on nickel base superalloys as diffusion barriers", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, NL, vol. 120-121, 1 November 1999 (1999-11-01), pages 16 - 21, XP027328865, ISSN: 0257-8972, [retrieved on 19991101] *
WANG F ET AL: "THE EFFECT OF REACTIVELY-SPUTTERED ALUMINA FILMS ON THE OXIDATION RESISTANCE OF COCRAIY COATINGS", JOURNAL DE PHYSIQUE IV, EDITIONS DE PHYSIQUE. LES ULIS CEDEX, FR, vol. 3, no. C09, 1 December 1993 (1993-12-01), pages 551 - 557, XP000991478, ISSN: 1155-4339 *

Also Published As

Publication number Publication date
EP4092158A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
DE60214911T2 (en) Thermally stabilized thermal barrier coating
EP0577678B1 (en) Composite body, its use and process for producing it
DE69925590T2 (en) MULTILAYER ADHESIVE COATING FOR HEAT INSULATION LAYER AND METHOD THEREFOR
EP0944746B1 (en) Hot-gas exposable product fitted with a heat-insulating layer and a method for the production thereof
EP1386017B1 (en) Heat insulating layer based on la2 zr2 o7 for high temperatures
DE3243283C2 (en)
EP2082079A1 (en) Layer system having at least one mixed crystal layer of a polyoxide
DE60002890T2 (en) SILICON NITRIDE COMPONENTS WITH PROTECTIVE LAYER
DE4112218A1 (en) COATING SYSTEMS FOR TITANIUM OXIDATION PROTECTION
EP1498504B1 (en) Multinary aluminium based alloys and their use as thermal and corrosion protecting coating
CH708791A2 (en) Corrosion resistant coating protected turbine component and method of making same.
DE60209661T2 (en) Hafnium-containing nickel aluminide coating and coating systems made therefrom
Shi et al. Corrosion behavior of Al-containing MAX-phase coatings exposed to oxygen containing molten Pb at 600° C
PL168060B1 (en) Method of depositing pseudocrystalline alloy coating ona sustrate and by spraying with a gas torch and stick containing components of such alloy for use in implementing that method
Jung et al. Effect of yttrium coating on the oxidation behavior of Ni 3 Al
DE602004006336T2 (en) Combustion chamber or turbine part of a gas turbine plant
Riviere et al. Corrosion protection of an AISI 321 stainless steel by SiC coatings
DE10200803A1 (en) Production of a ceramic material for a thermal insulation layer and a thermal insulation layer containing the material
WO2022243036A1 (en) Anti-corrosion layer for surfaces of low-aluminum alloys
DE10122545A1 (en) Thermal insulation material with an essentially magnetoplumbitic crystal structure
DE4110005A1 (en) Composite body used for cutting tools - coated with fine crystalline alpha-aluminium oxide to improve adhesion, wear and corrosion resistance
EP0315122B1 (en) Use of nickel-containing alloys and process for their manufacture
EP1464716B1 (en) Quasicrystalline Ti-Cr-Al-Si-O alloy and its use as a coating
DE102009028579B4 (en) Coated bodies of metal, cemented carbide, cermet or ceramic, and methods of coating such bodies
DE4028173A1 (en) CERAMIC MATERIAL AND INSULATION COVER MADE THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22727817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE