WO2022242668A1 - 电弧故障检测装置、方法、设备以及存储介质 - Google Patents

电弧故障检测装置、方法、设备以及存储介质 Download PDF

Info

Publication number
WO2022242668A1
WO2022242668A1 PCT/CN2022/093490 CN2022093490W WO2022242668A1 WO 2022242668 A1 WO2022242668 A1 WO 2022242668A1 CN 2022093490 W CN2022093490 W CN 2022093490W WO 2022242668 A1 WO2022242668 A1 WO 2022242668A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc
wave
preset
detection module
detected
Prior art date
Application number
PCT/CN2022/093490
Other languages
English (en)
French (fr)
Inventor
余昉
Original Assignee
余昉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 余昉 filed Critical 余昉
Priority to EP22803988.9A priority Critical patent/EP4343343A1/en
Publication of WO2022242668A1 publication Critical patent/WO2022242668A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1209Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing using acoustic measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Definitions

  • the present application relates to the electrical field, and in particular to an arc fault detection device, method, equipment and storage medium.
  • arc fault is one of the main causes of electrical fires. Standard for protector products.
  • the arc fault detection method of all current product standards is carried out by detecting the power wave in the power line, that is, to track and analyze the characteristics of the power wave in the power line caused by the arc fault, and then according to the prior forecast
  • the set arc fault simulation threshold is used to determine whether an arc fault occurs.
  • the existing electric wave detection method for arc faults can only distinguish the distortion of electric wave signals caused by arc faults, and misjudgment of faults is prone to occur.
  • This application provides an arc fault detection device, method, equipment and storage medium, which is used to solve the problem that the existing detection method cannot distinguish whether the distortion of the power wave signal in the power line is caused by an arc fault or not caused by an arc fault. The problem of misjudgment of failure occurred.
  • the present application provides an arc fault detection device, including: a power wave detection module, an arc detection module, and a data processing module;
  • the power wave detection module is used to detect the electric energy characteristics of the line to be detected, and the arc detection module is used to detect the arc energy characteristics of the line to be detected,
  • the data processing module is used to determine whether a fault occurs in the line to be detected according to the electric energy feature, the preset electric energy feature, the arc energy feature and the preset arc energy feature.
  • the arc detection module includes: an electromagnetic wave detection module;
  • the electromagnetic wave detection module is used to detect the electromagnetic wave characteristics of the line to be detected, so that the data processing module determines whether the line to be detected is faulty according to the electromagnetic wave characteristics and preset electromagnetic wave characteristics.
  • the electromagnetic wave detection module includes: an arc radio wave detection module;
  • the arc radio wave detection module detects the radio wave characteristics of the line to be detected through the antenna, so that the data processing module determines whether the line to be detected is faulty according to the arc radio wave characteristics and the preset arc radio wave characteristics.
  • the preset arc radio wave features include preset arc radio wave spectrum features, preset arc radio wave phase features, and preset arc radio wave amplitude features.
  • the electromagnetic wave detection module includes: an arc light wave detection module;
  • the arc light wave detection module detects the arc light wave characteristics of the line to be detected by the light wave sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc light wave characteristics and the preset arc light wave characteristics, and the predictive
  • the arc light wave characteristics include a preset arc light wave spectrum feature, a preset arc light wave phase feature, and a preset arc light wave amplitude feature.
  • the arc detection module includes: a mechanical wave detection module
  • the mechanical wave detection module is used to detect the mechanical wave characteristics of the line to be detected, so that the data processing module determines whether the line to be detected is faulty according to the mechanical wave characteristics and preset mechanical wave characteristics.
  • the mechanical wave detection module includes: an arc ultrasonic detection module;
  • the arc ultrasonic detection module detects the arc ultrasonic characteristics of the line to be detected through the ultrasonic sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc ultrasonic characteristics and the preset arc ultrasonic characteristics, and the prediction
  • the arc ultrasonic feature includes a preset arc ultrasonic frequency spectrum feature, a preset arc ultrasonic phase feature, and a preset arc ultrasonic amplitude feature.
  • the mechanical wave detection module includes: an arc sound wave detection module;
  • the arc sound wave detection module detects the arc sound wave characteristics of the line to be detected through the sound wave sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc sound wave characteristics and the preset arc sound wave characteristics.
  • the arc sound wave features include a preset arc sound wave spectrum feature, a preset arc sound wave phase feature, and a preset arc sound wave amplitude feature.
  • the present application also provides an arc fault detection method, which is applied to the arc fault detection device described in any one of the first aspect, including:
  • the present application also provides an arc fault detection device, including: a memory and at least one processor;
  • the memory stores computer-executable instructions
  • the at least one processor executes the computer-implemented instructions stored in the memory, causing the at least one processor to perform the arc fault detection method of the second aspect.
  • the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the processor executes the computer-executable instructions, the electric arc described in the second aspect is realized Fault detection method.
  • the present application further provides a computer program product, including a computer program, which implements the arc fault detection method described in various possible designs of the second aspect above when the computer program is executed by a processor.
  • the arc fault detection device, method, equipment and storage medium detect the electric energy characteristics of the line to be detected through the power wave detection module, use the arc detection module to detect the arc energy characteristics of the line to be detected, and use the data processing module according to Electric energy characteristics, preset electric energy characteristics, arc energy characteristics and preset arc energy characteristics determine whether there is a fault in the line to be detected, so as to achieve accurate arc detection through the method of electric measurement and arc measurement, and then restore the arc fault characteristics more completely to eliminate Arc fault misjudgment rate, to achieve accurate judgment, to improve the accuracy and reliability of arc fault detection.
  • Fig. 1 is a schematic diagram of the electric wave detection technology described in the existing arc fault detection standard
  • Fig. 2 is a detection schematic diagram of an arc fault detection device provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a five-dimensional detection method of an arc fault detection device provided by an embodiment of the present application.
  • arc fault is one of the main causes of electrical fires.
  • Protector product standards such as: "UL1699-1999 Arc Fault Circuit Interrupter", “UL1699B-2011 Photovoltaic DC Arc-Fault Detection Devices", “IEC 62606-2013 General Requirements for Arc Fault Detection Devices (AFDD)” .
  • AFDD Arc Fault Detection Devices
  • my country also promulgated the national standards "GB 14287.4-2014 Arc Fault Detector” and “GB/T 31143-2014 General Requirements for Arc Fault Protective Devices (AFDD)” for corresponding products.
  • the arc fault detection methods of all current product standards are carried out by detecting the electric wave in the power line. in,
  • FIG. 1 is a schematic diagram of the power wave detection technology described in the existing arc fault detection standards.
  • the arc fault detection method is to track and analyze the voltage, current, frequency (phase) or spectrum signal of the power wave in the power line caused by the occurrence of the arc fault.
  • Unit, CPU software and hardware technology for sampling and calculation processing, and then judge according to the preset arc fault simulation threshold: whether the arc fault occurs or not.
  • the above detection method can be called the electric wave detection method of arc fault. All the arc fault detection and protection products currently marketed and applied are products under the above-mentioned standards and specifications.
  • the normal transmission power wave is an AC 50/60Hz sine wave, and when an arc fault occurs, the normal power wave will be distorted, not the power wave distortion caused by the arc fault It can be called arc-like wave.
  • the occurrence of arc faults will cause distortion of power waves.
  • the cause of power wave distortion is not necessarily caused by a single arc fault, such as the pulse width modulation (PWM) adopted by new energy sources such as photovoltaics and wind energy.
  • PWM pulse width modulation
  • the superimposed power wave generated by grid-connected power generated by Pulse Width Modulation (PWM) technology will also bring instantaneous distortion to the pure power frequency power wave in the power line to form an arc-like wave.
  • the detection technology used in the implementation can specifically be: time domain analysis method of power wave, frequency domain analysis method of power wave, mathematical analysis method of power wave, intelligent discrimination algorithm of power wave and many more.
  • time domain analysis method of power wave frequency domain analysis method of power wave
  • mathematical analysis method of power wave intelligent discrimination algorithm of power wave and many more.
  • the purpose is to provide an arc fault detection device, method, equipment and storage medium, so as to pass the five-dimensional detection method of arc fault, that is, to develop the detection of arc fault into: electric wave detection method, mechanical wave (acoustic wave and ultrasonic) detection method and electromagnetic wave (radio wave and light wave) detection method.
  • electric wave detection method mechanical wave (acoustic wave and ultrasonic) detection method
  • electromagnetic wave radio wave and light wave
  • arc is an electrical glow discharge phenomenon that breaks down the insulating medium, usually accompanied by local volatilization of electrodes, and arc fault is usually a comprehensive physical phenomenon that occurs almost simultaneously with sound, light, and electricity.
  • the electrical breakdown and glow discharge generated between the arc electrodes (including the electrodes themselves) caused by the power supply will naturally stimulate the propagation of arc mechanical waves (sound waves and ultrasonic waves) and the radiation of arc electromagnetic waves (radio waves and light waves).
  • tracking and capturing the arc mechanical wave (sound wave and ultrasonic wave) and arc electromagnetic wave (radio wave and light wave) characteristics when the arc occurs can be used as a supplementary basis for detecting whether the arc fault occurs, so that on the basis of the power wave detection method, the superposition
  • P arc electric energy (power wave energy) + P arc energy
  • FIG. 2 is a detection principle diagram of an arc fault detection device provided by an embodiment of the present application. As shown in Figure 2, the following derivation is carried out:
  • P arc P electric wave energy + P sound wave energy + P ultrasonic energy + P radio wave energy + P light wave energy
  • the arc fault detection device includes: a power wave detection module, an arc detection module, and a data processing module, wherein the power wave detection module is used to detect the electric energy characteristics of the line to be detected, and the arc detection module is used to The arc energy feature of the line to be detected is detected, and the data processing module is used to determine whether the line to be detected has a fault according to the electric energy feature, the preset electric energy feature, the arc energy feature and the preset arc energy feature.
  • the power wave detection module is used to detect P power wave energy
  • the arc detection module is used to detect any one or any combination of P sound wave energy , P ultrasonic wave energy , P radio wave energy , and P light wave energy .
  • the preset electric energy characteristics can be obtained through pre-test and analysis, specifically, it can include the frequency spectrum characteristics, phase characteristics and amplitude characteristics corresponding to the electric energy characteristics when an arc fault occurs.
  • the preset arc energy feature it can be obtained through pre-test and analysis. Specifically, it can include the frequency spectrum feature, phase feature and amplitude feature corresponding to the feature when an arc fault occurs.
  • the matching degree between the electric energy feature and the preset electric energy feature and the arc energy feature and the preset arc energy feature can reach a certain threshold through the data processing module, it can be determined that a fault has occurred in the line to be detected, and if the matching degree is not enough When a certain threshold is reached, it is determined that the line to be detected has not failed.
  • the power wave detection module is used to detect the electric energy characteristics of the line to be detected
  • the arc detection module is used to detect the arc energy characteristics of the line to be detected
  • the data processing module is used according to the electric energy characteristics, preset electric energy characteristics, arc energy
  • the characteristics and the preset arc energy characteristics determine whether the line to be detected is faulty, so as to achieve accurate arc detection through the method of electricity measurement and arc measurement, and then restore the arc fault characteristics more completely to eliminate the misjudgment rate of arc faults and achieve accurate judgment. To improve the accuracy and reliability of arc fault detection.
  • the above arc detection module includes: an electromagnetic wave detection module.
  • the electromagnetic wave detection module is used to detect the electromagnetic wave characteristics of the line to be detected, so that the data processing module can determine whether the line to be detected is faulty according to the electromagnetic wave characteristics and the preset electromagnetic wave characteristics.
  • the above-mentioned arc detection module may also include: a mechanical wave detection module; the mechanical wave detection module is used to detect the mechanical wave characteristics of the line to be detected, so that the data processing module determines whether the line to be detected is detected according to the mechanical wave characteristics and the preset mechanical wave characteristics. Fault.
  • Fig. 3 is a schematic diagram of a five-dimensional detection method of an arc fault detection device provided by an embodiment of the present application.
  • the above-mentioned electromagnetic wave detection module may include: an arc radio wave detection module.
  • the arc radio wave detection module detects the radio wave characteristics of the line to be detected through the antenna, so that the data processing module determines whether the line to be detected is faulty according to the arc radio wave characteristics and the preset arc radio wave characteristics.
  • the preset arc radio wave characteristics include preset The arc radio wave spectrum feature, the arc radio wave phase feature and the arc radio wave amplitude feature are preset.
  • radio wave radiation will occur at the same time as electrical breakdown and glow discharge, and arc fault
  • This radio wave radiation feature is unique and has the characteristics of an arc fault, and it is only possessed by an arc fault, that is, the radio wave has the arc radio wave spectrum, phase and amplitude characteristics unique to an arc fault.
  • the arc radio wave spectrum characteristics, phase characteristics and amplitude characteristics can be measured when an arc fault occurs.
  • the application of radio detection technology can use the CPU technology combined with radio receiving antenna, electronic circuit and hardware and software to receive, process and calculate the radio signal reception, processing and calculation of the specific arc radio wave spectrum characteristics, phase characteristics and amplitude characteristics of arc fault radiation. , comparison and discrimination, so as to complete the detection and judgment of the arc fault, which is the basic working principle of the arc radio wave detection module.
  • the above-mentioned electromagnetic wave detection module may further include: an arc light wave detection module.
  • the arc light wave detection module detects the arc light wave characteristics of the line to be detected through the light wave sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc light wave characteristics and the preset arc light wave characteristics.
  • the preset arc light wave characteristics include the preset arc light wave spectrum feature, the preset arc light wave phase feature and the preset arc light wave amplitude feature.
  • the phenomenon of electrical glow discharge will appear.
  • the phenomenon of light wave radiation will occur at the same time as the phenomenon of electrical glow discharge, and the light wave radiation of arc fault.
  • the characteristics are unique, having the characteristics of arc faults, and only possessed by arc faults, that is, the light wave has the unique arc light wave spectrum characteristics, phase characteristics and amplitude characteristics of arc faults.
  • the arc light wave spectrum feature, phase feature and amplitude feature may be measured when an arc fault occurs.
  • the application of light wave detection technology can use specially designed light wave sensor, electronic circuit and CPU technology combined with software and hardware to receive, process, and detect the specific arc light wave spectrum characteristics, phase characteristics and amplitude characteristics of fault arc radiation. Calculation, comparison and discrimination, so as to complete the detection and judgment of arc faults, this is the basic working principle of the arc light wave detection module.
  • the above-mentioned mechanical wave detection module may include: an arc ultrasonic detection module.
  • the arc ultrasonic detection module detects the arc ultrasonic characteristics of the line to be detected through the ultrasonic sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc ultrasonic characteristics and the preset arc ultrasonic characteristics.
  • the preset arc ultrasonic characteristics include the preset arc ultrasonic spectrum feature, preset arc ultrasonic phase feature, and preset arc ultrasonic amplitude feature.
  • the breakdown of the insulating medium and electrode vibration will occur.
  • mechanical wave vibration and propagation will occur at the same time as the breakdown of the insulating medium and electrode vibration, and
  • the mechanical wave vibration and propagation characteristics of arc faults are unique and have the characteristics of arc faults, and only arc faults have them, that is, the mechanical wave vibration and propagation have arc ultrasonic spectrum characteristics, phase characteristics and amplitude characteristics unique to arc faults .
  • the arc ultrasonic frequency spectrum feature, phase feature and amplitude feature can be measured when an arc fault occurs.
  • the application of ultrasonic detection technology can use specially designed ultrasonic sensors, electronic circuits, and CPU technology combining software and hardware to receive ultrasonic signals for specific arc ultrasonic spectrum characteristics, phase characteristics and amplitude characteristics of arc fault mechanical wave vibration and propagation. , processing, calculation, comparison and discrimination, so as to complete the detection and judgment of arc faults.
  • This is the basic working principle of the arc ultrasonic detection module.
  • the above-mentioned mechanical wave detection module may further include: an arc acoustic wave detection module.
  • the arc sound wave detection module detects the arc sound wave characteristics of the line to be detected through the sound wave sensor, so that the data processing module determines whether the line to be detected is faulty according to the arc sound wave characteristics and the preset arc sound wave characteristics.
  • the preset arc sound wave characteristics include the preset arc sound wave spectrum feature, a preset arc sound wave phase feature, and a preset arc sound wave amplitude feature.
  • the breakdown of the insulating medium and electrode vibration will occur.
  • mechanical wave vibration and propagation will occur at the same time as the breakdown of the insulating medium and electrode vibration, and
  • the mechanical wave vibration and propagation characteristics of arc faults are unique, possessing the characteristics of arc faults, and only possessed by arc faults, that is, the mechanical wave vibration and propagation have arc-acoustic spectrum characteristics, phase characteristics and amplitude characteristics unique to arc faults (including infrasound).
  • the arc acoustic wave spectrum feature, phase feature and amplitude feature may be measured when an arc fault occurs.
  • acoustic wave detection technology can use specifically designed acoustic wave sensors (including infrasonic waves), electronic circuits, and CPU technology combined with hardware and software to analyze the specific arc acoustic wave spectrum characteristics, phase characteristics, and amplitude characteristics of arc fault mechanical wave vibration and propagation. Acoustic signal reception, processing, calculation, comparison and discrimination are carried out to complete the detection and judgment of arc faults. This is the basic working principle of the arc acoustic detection module.
  • the above-mentioned five-dimensional arc fault detection method scheme can also be combined and used in any combination according to the actual application scenario of the user's arc fault protection, such as the three-dimensional detection method (power wave + ultrasonic + radio wave) scheme, four-dimensional detection method (electrical wave + ultrasonic + radio wave + light wave) scheme, five-dimensional detection method (electrical wave + sound wave + ultrasonic + radio wave + light wave) scheme, etc., the purpose is to reduce the misjudgment rate and improve reliability while taking into account the economy and practicability, but the specific combination is not specifically limited in this embodiment, it should be understood that any combination is within the scope of the description of the solution of the application, and will not be listed here.
  • the arc fault detection device and scheme provided in this embodiment adopts the five-dimensional detection method, involving electric wave detection method, mechanical wave (sonic wave and ultrasonic wave) detection method and electromagnetic wave (radio wave and light wave) detection method, except
  • the mechanical wave (sonic wave and ultrasonic) detection method and the electromagnetic wave (radio wave and light wave) detection method are also used simultaneously. Therefore, through the five-dimensional detection method, the arc can be accurately measured, and then the characteristics of the arc fault can be completely restored to eliminate the misjudgment rate of the arc fault, realize accurate judgment, and improve the accuracy and reliability of the arc fault detection.
  • an embodiment of the present application also provides an arc fault detection device, including: a memory and at least one processor;
  • the memory stores computer-executable instructions
  • Execution by the at least one processor of computer-implemented instructions stored in the memory causes the at least one processor to perform a corresponding arc fault detection method.
  • an embodiment of the present application provides a computer program product, including a computer program, and when the computer program is executed by a processor, a corresponding arc fault detection method is implemented.
  • the above-mentioned arc fault detection method includes: detecting the electric energy characteristic and the arc energy characteristic of the line to be detected; Whether the line is faulty.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种电弧故障检测装置、方法、设备以及存储介质。电弧故障检测装置通过电力波检测模块检测待检测线路的电能特征,通过电弧检测模块用于检测待检测线路的弧能特征,并利用数据处理模块根据电能特征、预设电能特征、弧能特征以及预设弧能特征确定待检测线路是否发生故障,从而通过测电加测弧的方式,实现精准测电弧,进而更加完整地还原电弧故障特征来消除电弧故障误判率,实现精确判定,以提高电弧故障检测的准确性和可靠性。

Description

电弧故障检测装置、方法、设备以及存储介质
本申请要求于2021年05月18日提交中国专利局、申请号为202110542210.3、申请名称为“电弧故障检测装置、方法、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电气领域,尤其涉及一种电弧故障检测装置、方法、设备以及存储介质。
背景技术
据消防部门统计,电弧故障是引发电气火灾的主要原因之一,为消除电弧故障这一电气火灾隐患,多年来,人们对电弧故障的机理进行了不断研究和探索,也相继出台了有关电弧故障保护器产品的标准。
现行所有产品标准的电弧故障检测方法,均是采用检测电力线路中的电力波方式进行的,即对由电弧故障发生时所引起的电力线路中电力波的特征进行跟踪与分析,然后根据事先预设的电弧故障模拟阈值进行判定是否产生电弧故障。
显然,现有的电弧故障的电力波检测法仅能分辨由电弧故障引起的电力波信号畸变,容易发生故障误判。
发明内容
本申请提供一种电弧故障检测装置、方法、设备以及存储介质,用以解决现有检测方法中无法分辨电力线路中电力波信号畸变是由电弧故障引起的还是非电弧故障引起的问题,进而容易发生故障误判的问题。
第一方面,本申请提供一种电弧故障检测装置,包括:电力波检测模块、电弧检测模块以及数据处理模块;
所述电力波检测模块用于检测待检测线路的电能特征,所述电弧检测模块用于检测所述待检测线路的弧能特征,
所述数据处理模块用于根据所述电能特征、预设电能特征、所述弧能特征以及预设弧能特征确定所述待检测线路是否发生故障。
在一种可能的设计中,所述电弧检测模块,包括:电磁波检测模块;
所述电磁波检测模块用于检测所述待检测线路的电磁波特征,以使所述数据处理模块根据所述电磁波特征以及预设电磁波特征确定所述待检测线路是否发生故障。
在一种可能的设计中,所述电磁波检测模块,包括:电弧无线电波检测模块;
所述电弧无线电波检测模块通过天线检测待检测线路的无线电波特征,以使所述数据处理模块根据所述电弧无线电波特征以及预设电弧无线电波特征确定所述待检测线路是否发生故障,所述预设电弧无线电波特征包括预设电弧无线电波频谱特征、预设电弧无线电波相位特征以及预设电弧无线电波幅值特征。
在一种可能的设计中,所述电磁波检测模块,包括:电弧光波检测模块;
所述电弧光波检测模块通过光波传感器检测待检测线路的电弧光波特征,以使所述数据处理模块根据所述电弧光波特征以及预设电弧光波特征确定所述待检测线路是否发生故障,所述预设电弧光波特征包括预设电弧光波频谱特征、预设电弧光波相位特征以及预设电弧光波幅值特征。
在一种可能的设计中,所述电弧检测模块,包括:机械波检测模块;
所述机械波检测模块用于检测所述待检测线路的机械波特征,以使所述数据处理模块根据所述机械波特征以及预设机械波特征确定所述待检测线路是否发生故障。
在一种可能的设计中,所述机械波检测模块,包括:电弧超声波检测模块;
所述电弧超声波检测模块通过超声传感器检测待检测线路的电弧超声波特征,以使所述数据处理模块根据所述电弧超声波特征以及预设电弧超声波特征确定所述待检测线路是否发生故障,所述预设电弧超声波特征包括预设电弧超声波频谱特征、预设电弧超声波相位特征以及预设电弧超声波幅值特征。
在一种可能的设计中,所述机械波检测模块,包括:电弧声波检测模 块;
所述电弧声波检测模块通过声波传感器检测待检测线路的电弧声波特征,以使所述数据处理模块根据所述电弧声波特征以及预设电弧声波特征确定所述待检测线路是否发生故障,所述预设电弧声波特征包括预设电弧声波频谱特征、预设电弧声波相位特征以及预设电弧声波幅值特征。
第二方面,本申请还提供一种电弧故障检测方法,应用于第一方面中任意一项所述的电弧故障检测装置,包括:
检测待检测线路的电能特征以及弧能特征;
根据所述电能特征、预设电能特征、所述弧能特征以及预设弧能特征确定所述待检测线路是否发生故障。
第三方面,本申请还提供一种电弧故障检测设备,包括:存储器和至少一个处理器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行第二方面中所述的电弧故障检测方法。
第四方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现第二方面中所述的电弧故障检测方法。
第五方面,本申请还提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如上第二方面各种可能的设计中所述的电弧故障检测方法。
本申请提供的电弧故障检测装置、方法、设备以及存储介质,通过电力波检测模块检测待检测线路的电能特征,通过电弧检测模块用于检测待检测线路的弧能特征,并利用数据处理模块根据电能特征、预设电能特征、弧能特征以及预设弧能特征确定待检测线路是否发生故障,从而通过测电加测弧的方式,实现精准测电弧,进而更加完整地还原电弧故障特征来消除电弧故障误判率,实现精确判定,以提高电弧故障检测的准确性和可靠性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本 申请的实施例,并与说明书一起用于解释本申请的原理。
图1为现有电弧故障检测标准描述的电力波检测技术的原理图;
图2为本申请一实施例提供的电弧故障检测装置的检测原理图;
图3为本申请一实施例提供的电弧故障检测装置的五维检测法的原理图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
据消防部门统计,电弧故障是引发电气火灾的主要原因之一,为消除电弧故障这一电气火灾隐患,多年来,人们对电弧故障的机理进行了不断研究和探索,也相继出台了有关电弧故障保护器产品的标准,如:国际上的《UL1699-1999 Arc Fault Circuit Interrupter》、《UL1699B-2011 Photovoltaic DC Arc-Fault Detection Devices》、《IEC 62606-2013 General Requirements for Arc Fault Detection Devices(AFDD)》。2014年,我国也颁布了相应产品所执行的国家标准《GB 14287.4-2014故障电弧探测器》、《GB/T 31143-2014电弧故障保护电器(AFDD)的一般要求》。而现行所有产品标准的电弧故障检测方法,均是采用检测电力线路中的电力波方式进行的。其中,
图1为现有电弧故障检测标准描述的电力波检测技术的原理图。如图1所示,电弧故障检测方法是对由电弧故障发生时所引起的电力线路中电力波的电压、电流、频率(相位)或频谱信号进行跟踪与分析,同时采用中央处理器(Central Processing Unit,CPU)软硬件技术进行采样计算处理后,然后根据事先预设的电弧故障模拟阈值进行判定:电弧故障产生与否。上述检测方法可称之为电弧故障的电力波检测法,目前市场营销和应用的所有电弧故障检测与保护类产品,均为上述各项标准规范下的产品。
但是,上述单一的电力波检测法,存在一个致命的缺陷是:无法分辨电力线路中电力波信号畸变是由电弧故障引起的还是非电弧故障引起的(简称:类弧波)。其中,对于类弧波,从电力传输的角度看,正常传输的电力波是交流50/60Hz正弦波,而电弧故障发生时,正常的电力波会发生畸变,而非电弧故障引起电力波畸变的可称之谓类弧波。
在电力线路中,电弧故障的出现会造成电力波的畸变,而事实上,造成电力波畸变的原因并非一定是由单一的电弧故障引起的,如光伏、风能等新能源采用的脉冲宽度调制(Pulse Width Modulation,简称PWM)技术所并网发电的迭加电力波,也会对电力线路中纯工频电力波带来瞬时的畸变而形成类弧波。又如天空中的闪电打雷也会对电力线路中纯工频电力波带来瞬时的畸变而形成类弧波;再如,处于相同用电线路中大功率容性感性负载的频繁的工作启动与关断,也会对电力线路中纯工频电力波带来瞬时的畸变而形成类弧波等等。因而,现行采用单一电力波检测法的电弧故障保护器类产品,在实际应用中,会时常出现误报警误跳闸现象(并非出现电弧故障的原因),这会对产品应用造成很大的困扰和麻烦,导致用户对该类保护产品的实际使用失去信心,究其原因,现行电弧故障的单一电力波检测法存在理论上的缺失,这是一个无法克服的原理性问题。
具体的,现行的电弧故障单一电力波检测法的科学基础和理论依据,可由下列物理公式概括表达:
P 电弧=P 电力波能
但是,因为P 电弧=P 电力波能+P 弧能,而P 电弧≠P 电力波能,因而,现行的单一电力波检测法检测原理存在着重大的理论缺失,简而言之,测电不测弧,测不准电弧。
也即,仅对电弧故障发生时的电力波特征进行检测,包括电压、电流、频率(相位)或频谱等进行检测,而均未考虑电弧故障发生时的声、光、电等其它特征。可见,现行的电力波检测法(一维检测法)仅实现了:P 电弧=P 电力 波能的等效检测,却忽视了P 弧能特征的存在与检测,而单一的电力波检测法仅仅是抓住了电弧故障的电能特征,但并未抓住电弧故障的所有特征,因而电力波检测法无法真实和仿真地描述出电弧故障完整特征。
此外,对于单一电力波检测法,在实施中采用的检测技术,具体可以是:电力波的时域分析法、电力波的频域分析法、电力波的数理分析法、电力波 的智能判别算法等等。但是,归纳来讲,无论何种方法,单一的电力波检测,是无法完整描述电弧故障全部特征的,也即无法仿真地整体还原出电弧故障这一物理现象的。
而在本申请技术方案中,旨在提供一种电弧故障检测装置、方法、设备以及存储介质,以通过电弧故障五维检测法,即将电弧故障的检测开拓为:电力波检测法、机械波(声波与超声波)检测法以及电磁波(无线电波与光波)检测法。将原有的一维检测法扩展到五维检测法。进而降低一维检测法的误判率,彻底消除误动作,并为电弧故障保护器产品的市场普及和广泛应用,提供坚实的理论基础和可靠的技术保障。
其中,电弧是一种击穿绝缘介质的电气辉光放电现象,通常伴随着电极的局部挥发,而电弧故障通常是声、光、电几乎同时出现的一种综合物理现象,在这一物理现象中,电源功率所引发的电弧电极之间(含电极本身)产生的电气击穿和辉光放电,自然会激发出电弧机械波(声波与超声波)的传播和电弧电磁波(无线电波与光波)的辐射,跟踪与捕捉电弧发生时的电弧机械波(声波与超声波)和电弧电磁波(无线电波与光波)特征,就可以作为检测电弧故障是否产生的补充依据,从而在电力波检测法的基础上,迭加电弧机械波(声波与超声波)和电弧电磁波(无线电波与光波)特征的检测和验证,进而提高检测和判定电弧故障的完整性、准确性和可靠性,从而为根本消除误判误动现象提供理论依据和科学保障,这就是应用于本申请提供的电弧故障检测装置中的电弧故障五维检测法的基本原理。
具体的,当电弧故障发生时,根据能量守恒原理,存在如下功率关系式:
P 电弧电能(电力波能)+P 弧能
据此,按基尔霍夫定律,可推导出P 弧能的理论值参数。其中,图2为本申请一实施例提供的电弧故障检测装置的检测原理图。如图2所示,进行以下推导:
(1)、当电弧=0时:
I L=Ii,U L=Ui,∴P L=Ii·Ui=Pi;
(2)、当电弧≠0时:
设I L=X·Ii,U 电弧=Y·Ui,则U L=(1-Y)·Ui;
∵P 电能=I L·U 电弧=X·Ii·Y·Ui=X·Y·Pi;
P L=I L·U L=X·Ii·(1-Y)·Ui=X·(1-Y)·Pi;
又Pi=P 电弧+P L;而P 电弧=P 电能+P 弧能
∴Pi=P 电能+P 弧能+P L=X·Y·Pi+P 弧能+X·(1-Y)·Pi;
Pi=X·Y·Pi+P 弧能+X·Pi-X·Y·Pi
∴P 弧能=(1-X)·Pi
据此可知:
A、当X=1时(I L=Ii),P 弧能=0,没有电弧产生,电路处于正常输电状态中;
B、当0<X<1时(I L≠Ii),P 弧能≠0,发生串联电弧,电路处于不正常输电状态中;
C、当X=0时(I L=0),P 弧能≠0,发生并联电弧,电路处于短路状态。
由此可见,当电弧发生时,弧能是同步产生的,显然这是无法忽略的,如果忽视对电弧故障中弧能的检测,则电弧故障的特征检测必将是不完整不全面的,现行电弧故障检测技术(一维检测法)存在的缺陷,从而造成市售产品高误判率和高误动作现象的存在,这是必然的。
按上述理论分析,电弧故障发生时的能量守恒式可表达如下:
P 电弧=P 电力波能+P 声波能+P 超声波能+P 无线电波能+P 光波能
相应的,在本实施例提供的电弧故障检测装置,包括:电力波检测模块、电弧检测模块以及数据处理模块,其中,电力波检测模块用于检测待检测线路的电能特征,电弧检测模块用于检测待检测线路的弧能特征,而数据处理模块用于根据电能特征、预设电能特征、弧能特征以及预设弧能特征确定待检测线路是否发生故障。其中,电力波检测模块用于检测P 电力波能,而电弧检测模块用于检测P 声波能、P 超声波能、P 无线电波能、P 光波能中的任意一项或者任意多项的组合。
此外,对于预设电能特征,可以通过预先测试分析的方式进行获取,具体的,可以是包括发生电弧故障时,该电能特征所对应的频谱特征、相位特征以及幅值特征。而对于预设弧能特征,则是可以通过预先测试分析的方式进行获取,具体的,可以是包括发生电弧故障时,该特征所对应的频谱特征、相位特征以及幅值特征。
若通过数据处理模块对电能特征与预设电能特征,以及弧能特征与预设弧能特征之间的匹配程度能够达到一定阈值,则可以确定待检测线路发生了故障,而若匹配程度未能够达到一定阈值,则确定待检测线路并未发 生故障。
在本实施例中,通过电力波检测模块检测待检测线路的电能特征,通过电弧检测模块用于检测待检测线路的弧能特征,并利用数据处理模块根据电能特征、预设电能特征、弧能特征以及预设弧能特征确定待检测线路是否发生故障,从而通过测电加测弧的方式,实现精准测电弧,进而更加完整地还原电弧故障特征来消除电弧故障误判率,实现精确判定,以提高电弧故障检测的准确性和可靠性。
在上述实施例的基础上,上述的电弧检测模块,包括:电磁波检测模块。其中,电磁波检测模块用于检测待检测线路的电磁波特征,以使数据处理模块根据电磁波特征以及预设电磁波特征确定待检测线路是否发生故障。
可选的,上述的电弧检测模块,还可以包括:机械波检测模块;机械波检测模块用于检测待检测线路的机械波特征,以使数据处理模块根据机械波特征以及预设机械波特征确定待检测线路是否发生故障。
图3为本申请一实施例提供的电弧故障检测装置的五维检测法的原理图。如图3所示,上述的电磁波检测模块,可以包括:电弧无线电波检测模块。电弧无线电波检测模块通过天线检测待检测线路的无线电波特征,以使数据处理模块根据电弧无线电波特征以及预设电弧无线电波特征确定待检测线路是否发生故障,预设电弧无线电波特征包括预设电弧无线电波频谱特征、预设电弧无线电波相位特征以及预设电弧无线电波幅值特征。
当电弧故障发生时,会出现电气击穿和辉光放电现象,根据物理学中电磁波感应理论,在电气击穿和辉光放电现象出现的同时,必将会产生无线电波辐射现象,且电弧故障这一无线电波辐射特征是独特的,具备电弧故障的特征,并且也只有电弧故障所具备,即该无线电波具有电弧故障独有的电弧无线电波频谱特征、相位特征和幅值特征。其中,电弧无线电波频谱特征、相位特征和幅值特征,可以是在发生电弧故障时测得。据此,应用无线电检测技术,可以用无线电接收天线、电子电路和软硬件结合的CPU技术,对电弧故障辐射的特定电弧无线电波频谱特征、相位特征和幅值特征进行无线电信号接收、处理、计算、对比与判别,从而完成对电弧故障的检测与判定,这就是电弧无线电波检测模块的基本工作原理。
可选的,上述的电磁波检测模块,还可以包括:电弧光波检测模块。 电弧光波检测模块通过光波传感器检测待检测线路的电弧光波特征,以使数据处理模块根据电弧光波特征以及预设电弧光波特征确定待检测线路是否发生故障,预设电弧光波特征包括预设电弧光波频谱特征、预设电弧光波相位特征以及预设电弧光波幅值特征。
当电弧故障发生时,会出现电气辉光放电现象,根据物理学中光的波粒二重性原理,在电气辉光放电现象出现的同时,必将会产生光波辐射现象,且电弧故障这一光波辐射特征是独特的,具备电弧故障的特征,并且也只有电弧故障所具备,即该光波具有电弧故障独有的电弧光波频谱特征、相位特征和幅值特征。其中,电弧光波频谱特征、相位特征和幅值特征,可以是在发生电弧故障时测得。据此,应用光波检测技术,可以用特定设计的光波传感器、电子电路和软硬件结合的CPU技术,对故障电弧辐射的特定电弧光波频谱特征、相位特征和幅值特征进行光波信号接收、处理、计算、对比与判别,从而完成对电弧故障的检测与判定,这就是电弧光波检测模块的基本工作原理。
此外,上述机械波检测模块,可以包括:电弧超声波检测模块。电弧超声波检测模块通过超声传感器检测待检测线路的电弧超声波特征,以使数据处理模块根据电弧超声波特征以及预设电弧超声波特征确定待检测线路是否发生故障,预设电弧超声波特征包括预设电弧超声波频谱特征、预设电弧超声波相位特征以及预设电弧超声波幅值特征。
当电弧故障发生时,会出现击穿绝缘介质和电极振动现象,根据物理学振动产生机械波的原理,在击穿绝缘介质和电极振动现象出现的同时,必将会产生机械波振动与传播现象,且电弧故障这一机械波振动与传播特征是独特的,具备电弧故障的特征,并且也只有电弧故障所具备,即该机械波振动与传播具有电弧故障独有的电弧超声波频谱特征、相位特征和幅值特征。其中,电弧超声波频谱特征、相位特征和幅值特征可以是在发生电弧故障时测得。据此,应用超声波检测技术,可以用特定设计的超声波传感器、电子电路和软硬件结合的CPU技术,对电弧故障机械波振动与传播的特定电弧超声波频谱特征、相位特征和幅值特征进行超声波信号接收、处理、计算、对比与判别,从而完成对电弧故障的检测与判定,这就是电弧超声波检测模块的基本工作原理。
并且,上述机械波检测模块,还可以包括:电弧声波检测模块。电弧 声波检测模块通过声波传感器检测待检测线路的电弧声波特征,以使数据处理模块根据电弧声波特征以及预设电弧声波特征确定待检测线路是否发生故障,预设电弧声波特征包括预设电弧声波频谱特征、预设电弧声波相位特征以及预设电弧声波幅值特征。
当电弧故障发生时,会出现击穿绝缘介质和电极振动现象,根据物理学振动产生机械波的原理,在击穿绝缘介质和电极振动现象出现的同时,必将会产生机械波振动与传播现象,且电弧故障这一机械波振动与传播特征是独特的,具备电弧故障的特征,并且也只有电弧故障所具备,即该机械波振动与传播具有电弧故障独有的电弧声波频谱特征、相位特征和幅值特征(含次声波)。其中,电弧声波频谱特征、相位特征和幅值特征可以是在发生电弧故障时测得。据此,应用声波检测技术,可以用特定设计的声波传感器(含次声波)、电子电路和软硬件结合的CPU技术,对电弧故障机械波振动与传播的特定电弧声波频谱特征、相位特征和幅值特征进行声波信号接收、处理、计算、对比与判别,从而完成对电弧故障的检测与判定,这就是电弧声波检测模块的基本工作原理。
对于上述实施例的中的各个模块中的检测传感器、信号采集、选频滤波及其处理传输等均各自独立运行,然后各自处理后的信号传输至系统中央CPU进行多重检验与综合运算后给予最终判定是否发生电弧故障。
此外,对于上述的电弧故障五维检测法方案,还可以根据用户的电弧故障保护实际应用场景,进行任意组合搭配使用的,如三维检测法(电力波+超声波+无线电波)方案、四维检测法(电力波+超声波+无线电波+光波)方案、五维检测法(电力波+声波+超声波+无线电波+光波)方案等等,目的是在降低误判率提高可靠性的同时,兼顾经济性和实用性,而对于具体的组合方式,在本实施例中不做具体限定,应理解为任意组合方式均在本申请方案的记载范围之内,此处不再一一列举。
综上,本实施例提供的电弧故障检测装置及方案,采用了五维检测法,涉及到的电力波检测法、机械波(声波与超声波)检测法和电磁波(无线电波与光波)检测法,除电力波检测法外,还同步采用机械波(声波与超声波)检测法以及电磁波(无线电波与光波)检测法。从而通过五维检测的方式,实现精准测电弧,进而完整地还原电弧故障特征来消除电弧故障误判率,实现精确判定,以提高电弧故障检测的准确性和可靠性。
此外,本申请实施例还提供一种电弧故障检测设备,包括:存储器和至少一个处理器;
所述存储器存储计算机执行指令;
所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行对应的电弧故障检测方法。
并且,本申请实施例提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现对应的电弧故障检测方法。
其中,上述电弧故障检测方法,包括:检测待检测线路的电能特征以及弧能特征;并根据所述电能特征、预设电能特征、所述弧能特征以及预设弧能特征确定所述待检测线路是否发生故障。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (10)

  1. 一种电弧故障检测装置,其特征在于,包括:电力波检测模块、电弧检测模块以及数据处理模块;
    所述电力波检测模块用于检测待检测线路的电能特征,所述电弧检测模块用于检测所述待检测线路的弧能特征,
    所述数据处理模块用于根据所述电能特征、预设电能特征、所述弧能特征以及预设弧能特征确定所述待检测线路是否发生故障。
  2. 根据权利要求1所述的电弧故障检测装置,其特征在于,所述电弧检测模块,包括:电磁波检测模块;
    所述电磁波检测模块用于检测所述待检测线路的电磁波特征,以使所述数据处理模块根据所述电磁波特征以及预设电磁波特征确定所述待检测线路是否发生故障。
  3. 根据权利要求2所述的电弧故障检测装置,其特征在于,所述电磁波检测模块,包括:电弧无线电波检测模块;
    所述电弧无线电波检测模块通过天线检测待检测线路的无线电波特征,以使所述数据处理模块根据所述电弧无线电波特征以及预设电弧无线电波特征确定所述待检测线路是否发生故障,所述预设电弧无线电波特征包括预设电弧无线电波频谱特征、预设电弧无线电波相位特征以及预设电弧无线电波幅值特征。
  4. 根据权利要求3所述的电弧故障检测装置,其特征在于,所述电磁波检测模块,包括:电弧光波检测模块;
    所述电弧光波检测模块通过光波传感器检测待检测线路的电弧光波特征,以使所述数据处理模块根据所述电弧光波特征以及预设电弧光波特征确定所述待检测线路是否发生故障,所述预设电弧光波特征包括预设电弧光波频谱特征、预设电弧光波相位特征以及预设电弧光波幅值特征。
  5. 根据权利要求1-4中任意一项所述的电弧故障检测装置,其特征在于,所述电弧检测模块,包括:机械波检测模块;
    所述机械波检测模块用于检测所述待检测线路的机械波特征,以使所述数据处理模块根据所述机械波特征以及预设机械波特征确定所述待检测线路是否发生故障。
  6. 根据权利要求5所述的电弧故障检测装置,其特征在于,所述机械波检测模块,包括:电弧超声波检测模块;
    所述电弧超声波检测模块通过超声传感器检测待检测线路的电弧超声波特征,以使所述数据处理模块根据所述电弧超声波特征以及预设电弧超声波特征确定所述待检测线路是否发生故障,所述预设电弧超声波特征包括预设电弧超声波频谱特征、预设电弧超声波相位特征以及预设电弧超声波幅值特征。
  7. 根据权利要求6所述的电弧故障检测装置,其特征在于,所述机械波检测模块,包括:电弧声波检测模块;
    所述电弧声波检测模块通过声波传感器检测待检测线路的电弧声波特征,以使所述数据处理模块根据所述电弧声波特征以及预设电弧声波特征确定所述待检测线路是否发生故障,所述预设电弧声波特征包括预设电弧声波频谱特征、预设电弧声波相位特征以及预设电弧声波幅值特征。
  8. 一种电弧故障检测方法,应用于权利要求1-7中任意一项所述的电弧故障检测装置,其特征在于,包括:
    检测待检测线路的电能特征以及弧能特征;
    根据所述电能特征、预设电能特征、所述弧能特征以及预设弧能特征确定所述待检测线路是否发生故障。
  9. 一种电弧故障检测设备,其特征在于,包括:存储器和至少一个处理器;
    所述存储器存储计算机执行指令;
    所述至少一个处理器执行所述存储器存储的计算机执行指令,使得所述至少一个处理器执行如权利要求8所述的电弧故障检测方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求8所述的电弧故障检测方法。
PCT/CN2022/093490 2021-05-18 2022-05-18 电弧故障检测装置、方法、设备以及存储介质 WO2022242668A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22803988.9A EP4343343A1 (en) 2021-05-18 2022-05-18 Arc fault detection apparatus and method, device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110542210.3 2021-05-18
CN202110542210.3A CN113125905B (zh) 2021-05-18 2021-05-18 电弧故障检测装置、方法、设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2022242668A1 true WO2022242668A1 (zh) 2022-11-24

Family

ID=76782269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093490 WO2022242668A1 (zh) 2021-05-18 2022-05-18 电弧故障检测装置、方法、设备以及存储介质

Country Status (3)

Country Link
EP (1) EP4343343A1 (zh)
CN (1) CN113125905B (zh)
WO (1) WO2022242668A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125905B (zh) * 2021-05-18 2022-10-21 余昉 电弧故障检测装置、方法、设备以及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340967A (ja) * 2001-05-15 2002-11-27 Furukawa Electric Co Ltd:The 送配電線の故障点検出方法およびその装置
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
CN203981821U (zh) * 2014-06-25 2014-12-03 高军 手持式故障电弧定位探测装置
CN104620119A (zh) * 2012-06-28 2015-05-13 雷比诺电力系统 监测电网的装置和方法
US20150198650A1 (en) * 2014-01-15 2015-07-16 Commissariat A L'energie Atomique Et Aux Ene Alt Method and system for protecting against electrical arcs implementing a modulation specific to a module of the acoustic wave accompanying an electrical arc
US20190296539A1 (en) * 2016-06-21 2019-09-26 Mitsubishi Electric Corporation Dc electrical circuit protection apparatus and arc detection method
CN110632472A (zh) * 2019-09-27 2019-12-31 上海工程技术大学 直流系统放电故障检测方法及系统
WO2020069697A1 (de) * 2018-10-01 2020-04-09 Hochschule Für Technik Und Wirtschaft Berlin Verfahren zum bestimmen eines kurzschlusses mit auftreten eines lichtbogens an einem elektrischen leiter
US20210111549A1 (en) * 2019-10-13 2021-04-15 Schweitzer Engineering Laboratories, Inc. Electrical arc event detection in an electric power system
CN113125905A (zh) * 2021-05-18 2021-07-16 余昉 电弧故障检测装置、方法、设备以及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142291B2 (en) * 2003-12-23 2006-11-28 General Electric Company Detection of partial discharge or arcing in wiring via fiber optics
EP3243195A4 (en) * 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
CN106154120B (zh) * 2015-03-25 2019-04-09 台达电子企业管理(上海)有限公司 光伏逆变器的电弧故障检测方法、装置及光伏逆变器
CN111474451A (zh) * 2020-04-26 2020-07-31 威胜集团有限公司 提高故障电弧准确率的检测方法、装置和可读存储介质
CN112198401A (zh) * 2020-10-09 2021-01-08 南京慧康电子有限公司 一种智能故障电弧探测器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340967A (ja) * 2001-05-15 2002-11-27 Furukawa Electric Co Ltd:The 送配電線の故障点検出方法およびその装置
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
CN104620119A (zh) * 2012-06-28 2015-05-13 雷比诺电力系统 监测电网的装置和方法
US20150198650A1 (en) * 2014-01-15 2015-07-16 Commissariat A L'energie Atomique Et Aux Ene Alt Method and system for protecting against electrical arcs implementing a modulation specific to a module of the acoustic wave accompanying an electrical arc
CN203981821U (zh) * 2014-06-25 2014-12-03 高军 手持式故障电弧定位探测装置
US20190296539A1 (en) * 2016-06-21 2019-09-26 Mitsubishi Electric Corporation Dc electrical circuit protection apparatus and arc detection method
WO2020069697A1 (de) * 2018-10-01 2020-04-09 Hochschule Für Technik Und Wirtschaft Berlin Verfahren zum bestimmen eines kurzschlusses mit auftreten eines lichtbogens an einem elektrischen leiter
CN110632472A (zh) * 2019-09-27 2019-12-31 上海工程技术大学 直流系统放电故障检测方法及系统
US20210111549A1 (en) * 2019-10-13 2021-04-15 Schweitzer Engineering Laboratories, Inc. Electrical arc event detection in an electric power system
CN113125905A (zh) * 2021-05-18 2021-07-16 余昉 电弧故障检测装置、方法、设备以及存储介质

Also Published As

Publication number Publication date
CN113125905A (zh) 2021-07-16
CN113125905B (zh) 2022-10-21
EP4343343A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US20200358283A1 (en) Secured fault detection in a power substation
Johnson et al. Photovoltaic DC arc fault detector testing at Sandia National Laboratories
Alam et al. PV ground-fault detection using spread spectrum time domain reflectometry (SSTDR)
US20220163578A1 (en) Detection of electric discharges that precede fires in electrical wiring
WO2021043027A1 (zh) 一种基于机器学习的光伏系统直流故障电弧检测方法
CN104614608B (zh) 一种低压并联电弧故障检测装置及方法
CN104678265A (zh) 一种串联故障电弧检测装置及检测方法
US10038401B2 (en) Systems and methods for fault detection
CN107340459A (zh) 一种直流故障电弧检测方法及系统
WO2022242668A1 (zh) 电弧故障检测装置、方法、设备以及存储介质
CN103901318B (zh) 在能量转换系统中定位接地故障和绝缘降级状况的方法
CN103439633A (zh) 一种小电流接地故障选线装置
US20150054523A1 (en) Devices and techniques for detecting faults in photovoltaic systems
Tajani et al. A novel differential protection scheme for AC microgrids based on discrete wavelet transform
CN109799432B (zh) 一种电气设备放电故障定位装置
CN107656179B (zh) 一种串联故障电弧检测系统及方法
CN110441645A (zh) 一种工业控制用漏电检测方法及其调节系统
CN104062555B (zh) 配电线路高阻接地故障特征谐波的辨识方法
CN205353294U (zh) 一种故障电弧探测装置的测试设备
CN104090211A (zh) 一种配电线路高阻接地故障的在线检测方法
WO2023231404A1 (zh) 光伏系统直流电弧故障检测方法、装置、设备及介质
CN113783174B (zh) 一种防雷击和异常输电线路保护方法和系统
WO2013013384A1 (zh) 一种识别高压直流输电线路区内、外故障的单端电气量全线速动保护方法
CN114441901A (zh) 结合参数采集模块和智能插座的多负载故障电弧检测方法
CN113848439A (zh) 故障电弧检测方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022803988

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022803988

Country of ref document: EP

Effective date: 20231218