WO2022242624A1 - 一种用于车辆的配电盒 - Google Patents

一种用于车辆的配电盒 Download PDF

Info

Publication number
WO2022242624A1
WO2022242624A1 PCT/CN2022/093241 CN2022093241W WO2022242624A1 WO 2022242624 A1 WO2022242624 A1 WO 2022242624A1 CN 2022093241 W CN2022093241 W CN 2022093241W WO 2022242624 A1 WO2022242624 A1 WO 2022242624A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
distribution box
power distribution
interface
relay
Prior art date
Application number
PCT/CN2022/093241
Other languages
English (en)
French (fr)
Inventor
顾家闻
李威
梁士福
曲振宁
慈伟程
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022242624A1 publication Critical patent/WO2022242624A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Embodiments of the present application relate to power distribution technology, for example, to a power distribution box for a vehicle.
  • the method of placing the charging contactor inside the battery pack makes the wiring of the DC charging harness connected to the power battery too long and the cost is high.
  • the power distribution box in the related art does not have the function of real-time monitoring and recording of the voltage at both ends of the charging contactor and the temperature of key internal positions. The power distribution box cannot actively remind the user of danger and actively cut off the circuit to protect the safety of personnel and vehicles during the charging process.
  • the present application provides a power distribution box for a vehicle to achieve the purpose of reducing the complexity of wiring inside the vehicle and reducing the cost of using the wiring harness.
  • An embodiment of the present application provides a power distribution box for a vehicle, the power distribution box is configured with a low-voltage interface, a charging interface, a battery interface, and a controller;
  • the controller is connected to the low-voltage interface through a low-voltage wire harness;
  • the charging interface is connected to the battery interface through the first positive wire harness and the first negative wire harness respectively, the first positive wire harness is connected in series with a first relay, and the first negative wire harness is connected in series with a second relay;
  • the first end of the first relay is configured with a first voltage sampling point
  • the second end of the first relay is configured with a second voltage sampling point
  • the first end of the second relay is configured with a third voltage sampling point
  • the second terminal of the second relay is configured with a fourth voltage sampling point
  • the controller is respectively connected with the control terminal of the first relay, the first voltage sampling point, the second voltage sampling point, the control terminal of the second relay, the third voltage sampling point, the The fourth voltage sampling point is electrically connected.
  • a temperature sensor is connected in series with the first positive wire harness
  • the controller is connected with the temperature sensor.
  • the first positive wire harness is further connected with a current sensor in series.
  • the interior of the power distribution box is divided into a low-voltage wiring area and a high-voltage wiring area;
  • the controller is configured in the low-voltage wiring area, the low-voltage interface is configured on the first side of the low-voltage wiring area, and in the low-voltage wiring area, the controller communicates with the low-voltage interface through a low-voltage wiring harness connected;
  • the charging interface is arranged on the first side of the high-voltage wiring area, and in the high-voltage wiring area, the charging interface is respectively connected to the battery interface through the first positive wire harness and the first negative wire harness.
  • the electrical accessory interface is arranged on the first side of the high-voltage wiring area, and in the high-voltage wiring area, the electrical accessory interface is connected to the battery interface through a second positive wire harness and a second negative wire harness.
  • a fuse is connected in series with the second positive wire harness.
  • the electric drive interface is arranged on the first side of the high-voltage wiring area, and in the high-voltage wiring area, the electric drive interface is connected to the battery interface through a third positive wire harness and a third negative wire harness.
  • a high-voltage interlock circuit is also configured inside the power distribution box.
  • the power distribution box adopts a metal shell.
  • the distribution box is also equipped with a breather valve.
  • Fig. 1 is a structural block diagram of a distribution box in an embodiment
  • Fig. 2 is a structural block diagram of another power distribution box in the embodiment.
  • FIG. 1 is a structural block diagram of a power distribution box in an embodiment.
  • the power distribution box is equipped with a low-voltage interface PL, a charging interface PC, a battery interface PB, and a controller U1.
  • the controller U1 is connected to the low-voltage interface PL through a low-voltage wire harness.
  • the charging interface PC is connected to the battery interface PB through the first positive wire harness L1+ and the first negative wire harness L1- respectively.
  • the first positive wire harness L1+ is connected in series with the first relay J1
  • the first negative wire harness L1- is connected in series with the first Second relay J2.
  • the first end of the first relay J1 is configured with a first voltage sampling point S1
  • the second end of the first relay J1 is configured with a second voltage sampling point S2
  • the first end of the second relay J2 is configured with a third voltage sampling point S3
  • the second end of the second relay J2 is configured with a fourth voltage sampling point S4.
  • the controller U1 is electrically connected to the control terminal of the first relay J1, the first voltage sampling point S1, the second voltage sampling point S2, the control terminal of the second relay J2, the third voltage sampling point S3, and the fourth voltage sampling point S4 .
  • the low-voltage interface PL may be a communication interface. If the low-voltage interface PL is configured as a Controller Area Network (CAN) communication interface, the low-voltage interface PL includes the positive terminal of the power supply, the negative terminal of the power supply, the high data line (CAN-High, CAN-H) terminal, and the low data line. (CAN-Low, CAN-L) end, inside the power distribution box, the low-voltage interface is connected to the controller U1 through the power line and the signal line.
  • CAN-Low, CAN-L Controller Area Network
  • the power distribution box can realize data interaction with BMS (Battery Management System, battery management system), vehicle controller, etc. through the low-voltage interface, receive charge and discharge control instructions and report charge and discharge monitoring data.
  • BMS Battery Management System
  • vehicle controller etc.
  • the low-voltage interface receive charge and discharge control instructions and report charge and discharge monitoring data.
  • the first relay J1 is configured as a positive charging relay
  • the second relay J2 is configured as a negative charging relay
  • a charging control strategy can be configured in the controller U1, based on the charging control strategy, the first relay and the second relay are controlled to work, and then the charging circuit is controlled to conduct a normal charging process.
  • the charging control strategy may be:
  • the controller U1 sequentially controls the second relay and the first relay to close to turn on the charging circuit; when stopping charging, the controller U1 sequentially controls the first relay and the second relay to turn off and disconnect the charging circuit.
  • a pre-charging relay and a pre-charging resistor can also be configured inside the power distribution box.
  • the pre-charging relay and the pre-charging resistor are connected in series and connected in parallel at both ends of the first relay.
  • the charging control strategy can be:
  • the controller U1 controls the second relay and the pre-charging relay to close sequentially, and firstly charges the capacitor in the battery. After the capacitor in the battery is fully charged, the controller U1 controls the first relay to close, and the pre-charging relay is disconnected; when charging is stopped , the controller U1 sequentially controls the first relay and the second relay to be turned off.
  • two voltage sampling points are respectively configured at both ends of the first relay and the second relay, and the controller can collect the voltage at both ends of a relay through the voltage sampling points at both ends of the relay. terminal voltage, the controller can be configured as:
  • This embodiment proposes that a positive charging relay and a negative charging relay be configured inside the power distribution box, which can avoid the need to configure the charging relay outside the power distribution box, resulting in the need to use a long charging harness to form the charging circuit, resulting in complicated wiring inside the vehicle and the use of wiring harnesses.
  • the problem of high cost is equipped with a voltage sampling point.
  • the controller inside the power distribution box can collect the charging voltage of the battery during charging through the voltage sampling point, and execute the set safety control strategy when the charging is abnormal to ensure that the battery normal charging process.
  • Fig. 2 is a structural block diagram of another power distribution box in the embodiment.
  • the first positive wire harness L1+ is also connected in series with a current sensor T1, and the controller U1 is connected to the current sensor T1.
  • the controller can monitor the charging current during charging, and if the charging current is abnormal, for example, the charging current is too large, the set safety control strategy will be executed.
  • the power distribution box is further configured with a temperature sensor, and the temperature sensor is configured on the current sensor T1.
  • the power distribution box is further equipped with a temperature sensor, and the first positive wire harness L1+ is connected in series with the temperature sensor; the controller U1 is connected to the temperature sensor.
  • the controller can monitor the temperature of the charging wire harness during charging, and if the temperature is abnormal, for example, the temperature is too high, the set safety control strategy will be executed.
  • the safety performance of the power distribution box can be improved by configuring the current sensor and the temperature sensor.
  • the interior of the power distribution box is divided into a low-voltage wiring area and a high-voltage wiring area
  • the controller U1 is configured in the low-voltage wiring area
  • the low-voltage interface PL is configured on the first side of the low-voltage wiring area , in the low-voltage wiring area, the controller U1 is connected to the low-voltage interface PL through the low-voltage wiring harness
  • the charging interface PC is arranged on the first side of the high-voltage wiring area, and in the high-voltage wiring area, the charging interface PC is respectively connected through the first positive wiring harness L1+
  • the first negative wire harness L1- is connected to the battery interface PB.
  • the first side of the low-voltage wiring area is the side away from the high-voltage wiring area
  • the first side of the high-voltage wiring area is the side of the high-voltage wiring area away from the low-voltage wiring area.
  • the low-voltage wiring area is located on the left side inside the power distribution box, and the high-voltage wiring area is located on the right side inside the power distribution box.
  • the inside of the power distribution box is divided into low-voltage wiring areas
  • the high-voltage wiring area can ensure that the high-voltage wiring harness and the low-voltage wiring harness inside the power distribution box have a certain electrical clearance and creepage distance, and ensure the insulation and withstand voltage performance between the high-voltage wiring harness and the low-voltage wiring harness.
  • an electrical accessory interface PF is also provided.
  • the electrical accessory interface PF is arranged on the first side of the high-voltage wiring area. In the high-voltage wiring area, the electrical accessory interface PF passes through the second positive wire harness L2+ , The second negative wire harness L2- is connected to the battery interface PB.
  • the electrical accessory interface is configured to be connected to electrical equipment (such as lights, speakers, etc.), and the battery supplies power to the electrical equipment through the power distribution box.
  • electrical equipment such as lights, speakers, etc.
  • the second positive wire harness and the second negative wire harness may include multiple branches, and fuses may be connected in series on each second positive wire harness.
  • the power distribution box shown in Figure 2 is equipped with three second positive wire harnesses L2+, correspondingly, the content of the power distribution box is equipped with three fuses F1, F2, F3, and one second Connect a fuse in series with the positive wire harness L2+.
  • the power distribution box is also equipped with an electric drive interface PS, and the electric drive interface PS is arranged on the first side of the high-voltage wiring area.
  • the positive wire harness L3+ and the third negative wire harness L3- are connected to the battery interface PB.
  • the electric drive interface is configured to be connected to the electric drive system configured on the vehicle.
  • a high-voltage interlock circuit is also configured inside the power distribution box.
  • a power distribution box cover U2 is disposed on the housing of the power distribution box, and the power distribution box cover U2,
  • the electric accessory interface PF, electric drive interface PS, charging interface PC, and battery interface PB are all equipped with interlock sockets inside.
  • the interlock sockets are connected in series through wires inside the power distribution box, and both ends of the wires of the series interlock sockets are connected to low-voltage Interface PL.
  • the low-voltage interface can be connected to the vehicle controller, and the vehicle controller outputs a low-level signal to the high-voltage interlock circuit through the low-voltage interface PL. If there is an open circuit at the interlock socket, the vehicle controller cannot receive When the low-level signal is output, the vehicle controller can output the interlock abnormal state to the controller U1 through the low-voltage interface, and the controller U1 executes the set safety control strategy.
  • the power distribution box adopts a metal shell, and the electromagnetic compatibility performance of the high-voltage power distribution box can be guaranteed by configuring the metal shell.
  • the distribution box is also equipped with a breather valve.
  • the breathable valve is based on the volume difference between gas molecules and liquid and dust particles, which can allow gas to pass through, but liquid and dust cannot pass through, so that the power distribution box has the ability of waterproof and breathable. By configuring the breathable valve, the distribution box can be guaranteed The balance of pressure inside and outside the electric box.
  • the interior of the power distribution box shown in Figure 2 is equipped with a positive charging relay and a negative charging relay. Compared with configuring the charging relay outside the power distribution box, the length of the charging harness can be reduced, and the wire diameter of the charging harness can be reduced.
  • the interior of the power distribution box is divided into a high-voltage wiring area and a low-voltage wiring area, so that the high-voltage part and the low-voltage part inside the power distribution box have a certain electrical clearance and creepage distance, ensuring that the high-voltage part and the low-voltage part and the metal shell insulation performance and withstand voltage performance.
  • the power distribution box shown in Figure 2 is equipped with voltage sampling points, temperature sampling points, and current sampling points.
  • the controller inside the power distribution box can monitor the charging voltage, charging current, and temperature, which is convenient for charging piles or vehicles.
  • the high-voltage power circuit can be cut off independently through the power distribution box to ensure the safety of personnel and the entire vehicle.

Abstract

提供了一种用于车辆的配电盒,配电盒配置有低压接口(PL)、充电接口(PC)、电池接口(PB)以及控制器(U1);配电盒内部,控制器(U1)通过低压线束与低压接口(PL)相连接;配电盒内部,充电接口(PC)分别通过第一正极线束(L1+)、第一负极线束(L1-)与电池接口(PB)相连接,第一正极线束(L1+)串联有第一继电器(J1),第一负极线束(L1-)串联有第二继电器(J2);第一继电器(J1)的第一端配置有第一电压采样点(S1),第一继电器(J1)的第二端配置有第二电压采样点(S2),第二继电器(J2)的第一端配置有第三电压采样点(S3),第二继电器(J2)的第二端配置有第四电压采样点(S4);控制器(U1)分别与第一继电器(J1)的控制端、第一电压采样点(S1)、第二电压采样点(S2)、第二继电器(J2)的控制端、第三电压采样点(S3)、第四电压采样点(S4)电连接。

Description

一种用于车辆的配电盒
本申请要求在2021年5月20日提交中国专利局、申请号为202121087703.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及配电技术,例如涉及一种用于车辆的配电盒。
背景技术
随着电动汽车的迅速发展,人们对电动汽车的成本、安全要求越来越高,相关技术方案中,多数是将充电接触器放至于电池包内部,直流充电高压线束连接充电口和电池包。
基于上述内容,将充电接触器放至于电池包内部的方式使得连接到动力电池的直流充电线束走线过长、成本偏高。此外,相关技术中的配电盒不具备对充电接触器两端电压、内部关键位置温度的实时监控和记录的功能,一旦出现由于短路或充电桩故障导致的超出预期的电压、电流或温度,配电盒不能主动提示用户危险且主动切断回路,保护充电过程中人员和车辆安全。
发明内容
本申请提供一种用于车辆的配电盒,以达到降低整车内部布线复杂度,减小线束使用成本的目的。
本申请实施例提供了一种用于车辆的配电盒,所述配电盒配置有低压接口、充电接口、电池接口以及控制器;
所述配电盒内部,所述控制器通过低压线束与所述低压接口相连接;
所述配电盒内部,所述充电接口分别通过第一正极线束、第一负极线束与所述电池接口相连接,所述第一正极线束串联有第一继电器,所述第一负极线 束串联有第二继电器;
所述第一继电器的第一端配置有第一电压采样点,所述第一继电器的第二端配置有第二电压采样点,所述第二继电器的第一端配置有第三电压采样点,所述第二继电器的第二端配置有第四电压采样点;
所述控制器分别与所述第一继电器的控制端、所述第一电压采样点、所述第二电压采样点、所述第二继电器的控制端、所述第三电压采样点、所述第四电压采样点电连接。
可选的,所述第一正极线束还串联有温度传感器;
所述控制器与所述温度传感器相连接。
可选的,所述第一正极线束还串联有电流传感器。
可选的,所述配电盒内部分为低压配线区、高压配线区;
所述控制器配置在所述低压配线区,所述低压接口配置在所述低压配线区的第一侧,所述低压配线区内,所述控制器通过低压线束与所述低压接口相连接;
所述充电接口配置在所述高压配线区的第一侧,所述高压配线区内,所述充电接口分别通过所述第一正极线束、第一负极线束与所述电池接口相连接。
可选的,还配有电附件接口;
所述电附件接口配置在所述高压配线区的第一侧,所述高压配线区内,所述电附件接口通过第二正极线束、第二负极线束与所述电池接口相连接。
可选的,所述第二正极线束还串联有熔断器。
可选的,还配置有电驱动接口;
所述电驱动接口配置在所述高压配线区的第一侧,所述高压配线区内,所述电驱动接口通过第三正极线束、第三负极线束与所述电池接口相连接。
可选的,所述配电盒内部还配置有高压互锁回路。
可选的,所述配电盒采用金属壳体。
可选的,所述配电盒还配置有透气阀。
附图说明
图1是实施例中的一种配电盒结构框图;
图2是实施例中的另一种配电盒结构框图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
图1是实施例中的一种配电盒结构框图,参考图1,配电盒配置有低压接口PL、充电接口PC、电池接口PB以及控制器U1。
配电盒内部,控制器U1通过低压线束与低压接口PL相连接。
配电盒内部,充电接口PC分别通过第一正极线束L1+、第一负极线束L1-与电池接口PB相连接,第一正极线束L1+串联有第一继电器J1,第一负极线束L1-串联有第二继电器J2。
第一继电器J1的第一端配置有第一电压采样点S1,第一继电器J1的第二端配置有第二电压采样点S2,第二继电器J2的第一端配置有第三电压采样点S3,第二继电器J2的第二端配置有第四电压采样点S4。
控制器U1分别与第一继电器J1的控制端、第一电压采样点S1、第二电压采样点S2、第二继电器J2的控制端、第三电压采样点S3、第四电压采样点S4电连接。
示例性的,本实施例中,低压接口PL可以为通信接口。若低压接口PL配置为控制器局域网络(Controller Area Network,CAN)通信接口,则低压接口PL包括电源正端、电源负端、高位数据线(CAN-High,CAN-H)端、低位数据线(CAN-Low,CAN-L)端,在配电盒内部,低压接口通过电源线以及信号线与控制器U1相连接。
示例性的,本实施例中,配电盒可以通过低压接口与BMS(Battery Management System,电池管理系统)、整车控制器等实现数据交互,接收充放电 控制指令以及上报充放电监测数据。
示例性的,本实施例中,第一继电器J1配置为正充电继电器,第二继电器J2配置为负充电继电器。
示例性的,本实施例中,控制器U1中可以配置充电控制策略,基于充电控制策略控制第一继电器、第二继电器工作,进而控制充电回路导通,进行正常的充电过程。
示例性的,充电控制策略可以为:
充电时控制器U1依次控制第二继电器、第一继电器闭合,导通充电回路;停止充电时,控制器U1依次控制第一继电器、第二继电器断开,断开充电回路。
作为一种可实施方案,配电盒内部还可以配置预充继电器以及预充电阻,预充继电器与预充电阻串联后并联在第一继电器的两端,此时,充电控制策略可以为:
充电时控制器U1依次控制第二继电器、预充继电器闭合,首先为电池中的电容充电,电池中的电容充满电后,控制器U1控制第一继电器闭合,预充继电器断开;停止充电时,控制器U1依次控制第一继电器、第二继电器断开。
示例性的,本实施例中,第一继电器以及第二继电器的两端分别配置有两个电压采样点,控制器通过一个继电器两端的电压采样点可以采集该继电器两端的电压,基于该继电器两端的电压,控制器可以配置为:
判断该继电器的状态,若该继电器出现异常状态,例如出现黏连,则执行设定的安全控制策略。
判断充电电压是否出现异常,例如充电电压是否过高,若充电电压过高,则执行设定的安全控制策略。
本实施例提出配电盒的内部配置正充电继电器、负充电继电器,可以避免将充电继电器配置在配电盒外部,导致需要采用较长充电线束构成充电回路,造成整车内部布线复杂,线束使用成本高的问题。此外,配电盒内部充电线束上配置有电压采样点,配电盒内部的控制器可以通过电压采样点采集电池充电 时的充电电压,当充电出现异常时执行设定的安全控制策略,保证电池的正常充电过程。
图2是实施例中的另一种配电盒结构框图,参考图2,作为一种可选方案,第一正极线束L1+还串联有电流传感器T1,控制器U1与电流传感器T1相连接。
示例性的,通过配置电流传感器,控制器可以监测充电时的充电电流,若充电电流出现异常,例如充电电流过大时,则执行设定的安全控制策略。
参考图2,作为一种可选方案,配电盒还配置有温度传感器,温度传感器配置在电流传感器T1上。
作为一种可选方案,配电盒还配置有温度传感器,第一正极线束L1+串联该温度传感器;控制器U1与温度传感器相连接。
示例性的,通过配置温度传感器,控制器可以监测充电时充电线束的温度,若温度出现异常,例如温度过高时,则执行设定的安全控制策略。
示例性的,上述方案中,通过配置电流传感器、温度传感器可以提高配电盒的安全性能。
参考图2,作为一种可选方案,配电盒内部分为低压配线区、高压配线区,控制器U1配置在低压配线区,低压接口PL配置在低压配线区的第一侧,低压配线区内,控制器U1通过低压线束与低压接口PL相连接;充电接口PC配置在高压配线区的第一侧,高压配线区内,充电接口PC分别通过第一正极线束L1+、第一负极线束L1-与电池接口PB相连接。需要说明的是,低压配线区的第一侧即低压配线区远离高压配线区的一侧,高压配线区的第一侧即高压配线区远离低压配线区的一侧。
参考图2,低压配线区位于配电盒内部的左侧,高压配线区位于配电盒内部的右侧,示例性的,本实施例中,将配电盒内部划分为低压配线区和高压配线区,可以保证配电盒内部高压线束部分与低压线束部分具备一定的电气间隙和爬电距离,保证高压线束部分、低压线束部分之间的绝缘性能和耐压性能。
参考图2,作为一种可选方案,还配有电附件接口PF,电附件接口PF配置 在高压配线区的第一侧,高压配线区内,电附件接口PF通过第二正极线束L2+、第二负极线束L2-与电池接口PB相连接。
示例性的,本实施例中,电附件接口设置为与用电设备(例如车灯、喇叭等)相连接,电池通过配电盒向上述用电设备供电。
示例性的,第二正极线束、第二负极线束可以包括多条支路,每条第二正极线束上可以串联熔断器。
参考图2,作为一种可实施方案,图2所示的配电盒中配置有三条第二正极线束L2+,相应的,配电盒内容配置三个熔断器F1、F2、F3,一条第二正极线束L2+串联一个熔断器。
参考图2,作为一种可选方案,配电盒还配置有电驱动接口PS,电驱动接口PS配置在高压配线区的第一侧,高压配线区内,电驱动接口PS通过第三正极线束L3+、第三负极线束L3-与电池接口PB相连接。
示例性的,本实施例中,电驱动接口设置为与车辆上配置的电驱动系统相连接。
参考图2,作为一种可选方案,配电盒内部还配置有高压互锁回路,示例性的,配电盒的壳体上配置有配电盒罩盖U2,配电盒罩盖U2、电附件接口PF、电驱动接口PS、充电接口PC、电池接口PB内部均配置有互锁插口,配电盒内部通过导线串联上述互锁插口,并将串联互锁插口的导线两端接入低压接口PL。
示例性的,低压接口可以与整车控制器相连接,整车控制器通过低压接口PL向高压互锁回路中输出低电平信号,若互锁插口处出现断路现象,整车控制器无法接收到输出的低电平信号,则整车控制器可以通过低压接口向控制器U1输出互锁异常状态,控制器U1执行设定的安全控制策略。
作为一种可选方案,本实施例中,配电盒采用金属壳体,通过配置金属壳体可以保证高压配电盒的电磁兼容性能。
作为一种可实施方案,配电盒还配置有透气阀。示例性的,透气阀基于气体分子与液体、灰尘颗粒存在的体积的差值,可以允许气体通过,液体、灰尘 无法通过,从而使配电盒具备防水透气的能力,通过配置透气阀可以保证配电盒内外压力的平衡。
图2所示配电盒的内部配置正充电继电器、负充电继电器,相对于将充电继电器配置在配电盒外部,可以减小充电线束的长度,降低充电线束的线径。此外,配电盒内部划分为高压配线区和低压配线区,使得配电盒内部高压部分与低压部分具备一定的电气间隙和爬电距离,保证高压部分与低压部分、金属壳体之间的绝缘性能和耐压性能。
图2所示配电盒的内部配置有电压采样点、温度采样点以及电流采样点,配电盒内部的控制器可以实现充电电压、充电电流以及温度的监测,便于在充电桩或整车出现问题无法停止充电流程时,通过配电盒可以自主的切断高压用电回路,保证人员及整车的用电安全。

Claims (10)

  1. 一种用于车辆的配电盒,所述配电盒配置有低压接口、充电接口、电池接口以及控制器;
    所述配电盒内部,所述控制器通过低压线束与所述低压接口相连接;
    所述配电盒内部,所述充电接口分别通过第一正极线束、第一负极线束与所述电池接口相连接,所述第一正极线束串联有第一继电器,所述第一负极线束串联有第二继电器;
    所述第一继电器的第一端配置有第一电压采样点,所述第一继电器的第二端配置有第二电压采样点,所述第二继电器的第一端配置有第三电压采样点,所述第二继电器的第二端配置有第四电压采样点;
    所述控制器分别与所述第一继电器的控制端、所述第一电压采样点、所述第二电压采样点、所述第二继电器的控制端、所述第三电压采样点、所述第四电压采样点电连接。
  2. 如权利要求1所述的用于车辆的配电盒,其中,所述第一正极线束还串联有温度传感器;
    所述控制器与所述温度传感器相连接。
  3. 如如权利要求1所述的用于车辆的配电盒,其中,所述第一正极线束还串联有电流传感器;
    所述控制器与所述电流传感器相连接。
  4. 如权利要求1所述的用于车辆的配电盒,其中,所述配电盒内部分为低压配线区、高压配线区;
    所述控制器配置在所述低压配线区,所述低压接口配置在所述低压配线区的第一侧,所述低压配线区内,所述控制器通过低压线束与所述低压接口相连接;
    所述充电接口配置在所述高压配线区的第一侧,所述高压配线区内,所述充电接口分别通过所述第一正极线束、第一负极线束与所述电池接口相连接。
  5. 如权利要求4所述的用于车辆的配电盒,还配置有电附件接口;
    所述电附件接口配置在所述高压配线区的第一侧,所述高压配线区内,所述电附件接口通过第二正极线束、第二负极线束与所述电池接口相连接。
  6. 如权利要求5所述的用于车辆的配电盒,其中,所述第二正极线束还串联有熔断器。
  7. 如权利要求4所述的用于车辆的配电盒,还配置有电驱动接口;
    所述电驱动接口配置在所述高压配线区的第一侧,所述高压配线区内,所述电驱动接口通过第三正极线束、第三负极线束与所述电池接口相连接。
  8. 如权利要求1所述的用于车辆的配电盒,还配置有高压互锁回路,所述高压互锁回路设置在所述配电盒内部。
  9. 如权利要求1所述的用于车辆的配电盒,其中,所述配电盒采用金属壳体。
  10. 如权利要求1所述的用于车辆的配电盒,还配置有透气阀。
PCT/CN2022/093241 2021-05-20 2022-05-17 一种用于车辆的配电盒 WO2022242624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121087703.4U CN215398187U (zh) 2021-05-20 2021-05-20 一种用于车辆的配电盒
CN202121087703.4 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022242624A1 true WO2022242624A1 (zh) 2022-11-24

Family

ID=79676219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093241 WO2022242624A1 (zh) 2021-05-20 2022-05-17 一种用于车辆的配电盒

Country Status (2)

Country Link
CN (1) CN215398187U (zh)
WO (1) WO2022242624A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215398187U (zh) * 2021-05-20 2022-01-04 中国第一汽车股份有限公司 一种用于车辆的配电盒
CN115184664A (zh) * 2022-09-14 2022-10-14 广汽埃安新能源汽车有限公司 一种基于电器盒的配电监控方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204978274U (zh) * 2015-09-08 2016-01-20 厦门马恒达汽车零部件有限公司 一种纯电动汽车高压配电盒
CN106427614A (zh) * 2016-08-31 2017-02-22 天津市捷威动力工业有限公司 电动汽车电池系统总电压采样及继电器诊断系统及方法
US9718420B1 (en) * 2017-02-15 2017-08-01 Bordrin Motor Corporation, Inc. Integrated power electronic device for electric vehicles
CN207345510U (zh) * 2017-09-13 2018-05-11 北汽银翔汽车有限公司 一种汽车用智能型高压控制盒
CN109532496A (zh) * 2018-12-10 2019-03-29 山东国金汽车制造有限公司 一种基于can总线网络的智能高压配电盒
CN215398187U (zh) * 2021-05-20 2022-01-04 中国第一汽车股份有限公司 一种用于车辆的配电盒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204978274U (zh) * 2015-09-08 2016-01-20 厦门马恒达汽车零部件有限公司 一种纯电动汽车高压配电盒
CN106427614A (zh) * 2016-08-31 2017-02-22 天津市捷威动力工业有限公司 电动汽车电池系统总电压采样及继电器诊断系统及方法
US9718420B1 (en) * 2017-02-15 2017-08-01 Bordrin Motor Corporation, Inc. Integrated power electronic device for electric vehicles
CN207345510U (zh) * 2017-09-13 2018-05-11 北汽银翔汽车有限公司 一种汽车用智能型高压控制盒
CN109532496A (zh) * 2018-12-10 2019-03-29 山东国金汽车制造有限公司 一种基于can总线网络的智能高压配电盒
CN215398187U (zh) * 2021-05-20 2022-01-04 中国第一汽车股份有限公司 一种用于车辆的配电盒

Also Published As

Publication number Publication date
CN215398187U (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2022242624A1 (zh) 一种用于车辆的配电盒
CN107953787B (zh) 用于对电池进行充电的系统和方法
EP3699013A2 (en) Electric vehicle charging apparatus
US20160294119A1 (en) High Voltage Connector Assembly
CN107585033A (zh) 一种汽车用智能型高压控制盒
US20130187600A1 (en) Electric Vehicle Charging System Adaptor
CN106585421B (zh) 一种电动汽车智能充电装置
CN103847526B (zh) 一种带高压互锁功能的电动汽车高压配电系统
CN102398524B (zh) 一种用于电动车的电力管理装置
CN103419643A (zh) 一种高压配电控制方法及其装置
US20140339892A1 (en) Disconnection unit for disconnecting a battery from a power system and a motor vehicle having a lithium-ion battery
CN104842814B (zh) 轻型客车双路冗余安全高压设备及其控制系统与控制方法
CN207345510U (zh) 一种汽车用智能型高压控制盒
CN102299533A (zh) 插电式混合动力汽车电池管理系统及其控制识别方法
US9306403B2 (en) Battery module, battery management system, system for supplying a drive of a machine suitable for generating torque with electrical energy, and a motor vehicle
CN109532496A (zh) 一种基于can总线网络的智能高压配电盒
CN103209853A (zh) 用于从连接装置分离蓄电池的供电装置和方法以及机动车
CN113492702A (zh) 双向车载充电机、车载电源系统、充电控制方法及汽车
CN202374016U (zh) 应急电源
CN108275026A (zh) 用于车对车充电的充电装置及方法
CN107364356A (zh) 一种电动汽车充电系统电缆连接状态的监测互锁处理系统及监测和互锁处理方法
US20190308522A1 (en) Method and system for managing a rechargeable electric or hybrid vehicle
CN105680517B (zh) 一种电动汽车车内交流电源
CN106207899B (zh) 高压配电盒
CN209119842U (zh) 一种四轮电动车锂电池控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE