WO2022242345A1 - 干扰信号发送方法和装置、电子设备及计算机可读存储介质 - Google Patents

干扰信号发送方法和装置、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2022242345A1
WO2022242345A1 PCT/CN2022/085267 CN2022085267W WO2022242345A1 WO 2022242345 A1 WO2022242345 A1 WO 2022242345A1 CN 2022085267 W CN2022085267 W CN 2022085267W WO 2022242345 A1 WO2022242345 A1 WO 2022242345A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference signal
target signal
correctly demodulated
target
Prior art date
Application number
PCT/CN2022/085267
Other languages
English (en)
French (fr)
Inventor
李斌
刘伟伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22803670.3A priority Critical patent/EP4329221A1/en
Publication of WO2022242345A1 publication Critical patent/WO2022242345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/43Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/84Jamming or countermeasure characterized by its function related to preventing electromagnetic interference in petrol station, hospital, plane or cinema
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/41Jamming having variable characteristics characterized by the control of the jamming activation or deactivation time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength

Definitions

  • the present application relates to the technical field of communications, and in particular to a method and device for transmitting an interference signal, electronic equipment, and a computer-readable storage medium.
  • the passenger's terminal may be connected to the ground wireless communication system. Because the relevant wireless communication protocols have lower requirements on the radio frequency indicators of passenger terminals, and the performance of power amplifiers and filters of some terminals is relatively poor, resulting in relatively strong spurious signals in certain frequency bands. From the perspective of wireless communication protocols, the When the stray signal requirements of the terminal are relatively high, it is only -50dBm/MHz. These stray signals will interfere with the normal operation of airborne equipment such as the altimeter on the aircraft, resulting in the occurrence of airborne equipment alarm events. , thus forming a major hidden danger to aviation safety.
  • the embodiment of the present application provides a method for transmitting an interference signal, including:
  • the target signal is a signal that needs to be demodulated when a terminal accesses the wireless communication system;
  • the interference signal is sent based on the transmission parameters of the interference signal, so that terminals located in the target area cannot correctly demodulate the target signal.
  • an interference signal sending device including:
  • the obtaining module is configured to obtain the power reception strength of a correctly demodulated target signal in a wireless communication system;
  • the target signal is a signal that needs to be demodulated when a terminal accesses the wireless communication system;
  • the determination module is configured to determine the transmission parameters of the interference signal according to the received power strength of the correctly demodulated target signal
  • the sending module is configured to send the interference signal based on the transmission parameters of the interference signal, so that terminals located in the target area cannot correctly demodulate the target signal.
  • the embodiment of the present application provides an electronic device, including:
  • a memory at least one computer program is stored on the memory, and when the at least one computer program is executed by the at least one processor, the above interference signal sending method is realized.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the foregoing interference signal sending method is implemented.
  • FIG. 1 is a flowchart of a method for transmitting an interference signal provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of time domain and frequency domain positions of a master system information block (MIB, Master Information Block) signal provided in Example 1 of the embodiment of the present application;
  • MIB Master Information Block
  • Fig. 3 is the schematic diagram of the time domain and the frequency domain position of the interfering signal that example 1 of the embodiment of the present application provides;
  • FIG. 4 is a schematic diagram of the time domain and frequency domain positions of the interference signal provided by Example 1 of the embodiment of the present application;
  • FIG. 5 is a schematic diagram of time domain and frequency domain positions of MIB signals provided by Example 2 of the embodiment of the present application;
  • FIG. 6 is a schematic diagram of the time domain and frequency domain positions of the interference signal provided in Example 2 of the embodiment of the present application.
  • FIG. 7 is a block diagram of an interference signal sending device provided by an embodiment of the present application.
  • FIG. 1 is a flow chart of a method for transmitting an interference signal provided in an embodiment of the present application.
  • an embodiment of the present application provides a method for transmitting an interference signal, including steps 100 to 102 .
  • Step 100 Obtain the power receiving strength of a correctly demodulated target signal in a wireless communication system; the target signal is a signal that needs to be demodulated when a terminal accesses the wireless communication system.
  • the terminals refer to terminal devices carried by passengers and flight attendants on the aircraft, excluding on-board devices on the aircraft.
  • obtaining the received power strength of the correctly demodulated target signal in the wireless communication system includes:
  • the received power strength of the correctly demodulated target signal is obtained.
  • the wireless communication system may be all wireless communication systems that the terminal may access, for example, 2G wireless communication system, 3G wireless communication system, 4G wireless communication system, 5G wireless communication system, and future wireless communication systems Wait.
  • the target frequency band refers to the communication frequency band that may be occupied by the target signal in the communication frequency band of the wireless communication system.
  • Different wireless communication systems correspond to different target frequency bands.
  • One wireless communication system may correspond to one target frequency band, Can be two or more.
  • a wireless communication system When a wireless communication system includes two or more target frequency bands, all target frequency bands need to be traversed to determine the target frequency band that can correctly demodulate the target signal.
  • a wireless communication system includes two or more downlink synchronization signals, it is necessary to traverse all the downlink synchronization signals to determine the downlink synchronization signal issued by the wireless communication system.
  • the target signal is a signal that needs to be demodulated when the terminal accesses the wireless communication system. Only by correctly demodulating the target signal can it successfully access the wireless communication system.
  • target signals corresponding to different wireless communication systems may be the same or different.
  • the target signals corresponding to the 4G wireless communication system and the 5G wireless communication system are master system information block (MIB, Master Information Block) signals.
  • MIB Master Information Block
  • the wireless communication system can receive wireless signals within the target frequency band through the first antenna installed inside the aircraft cabin or the first antenna installed outside the aircraft cabin.
  • the method for transmitting an interference signal further includes: if the demodulation of the target signal is correct, acquiring a frequency domain position occupied by the correctly demodulated target signal.
  • the method for transmitting an interference signal further includes: if the demodulation of the target signal is correct, acquiring the time domain position occupied by the correctly demodulated target signal.
  • the power receiving intensity in this embodiment of the present application may refer to the power receiving intensity on a unit frequency spectrum.
  • the unit frequency spectrum may refer to Hertz (Hz), or Resource Element (RE, Resource Element), etc.
  • Step 101 Determine the transmission parameters of the interference signal according to the received power strength of the correctly demodulated target signal.
  • determining the transmission parameters of the interference signal according to the received power strength of the correctly demodulated target signal includes: according to the received power strength of the correctly demodulated target signal and the The frequency domain location determines transmission parameters of the interfering signal.
  • determining the transmission parameters of the interference signal according to the received power intensity of the correctly demodulated target signal and the frequency domain position occupied by the correctly demodulated target signal includes: according to the received power of the correctly demodulated target signal The strength, the frequency domain position occupied by the correctly demodulated target signal and the time domain position occupied by the correctly demodulated target signal determine the transmission parameters of the interference signal.
  • the transmit parameters include transmit power and at least one of:
  • Frequency domain bandwidth number, frequency domain location, or time domain location.
  • the transmit power, frequency domain bandwidth and number of interfering signals are determined according to the received power strength of the correctly demodulated target signal.
  • determining the transmission parameters of the interference signal according to the received power strength of the correctly demodulated target signal includes:
  • the constraint condition is that the difference between the minimum received signal-to-noise ratio of the target signal correctly demodulated by the terminal in the target area and the actual received signal-to-noise ratio of the target signal is greater than or equal to a preset threshold, and the actual received The signal-to-noise ratio is calculated according to the received power strength of the correctly demodulated target signal.
  • the actual received signal-to-noise ratio is the difference between the power received strength of the correctly demodulated target signal and the transmitted power of the interference signal;
  • the power reception strength of the target signal measured by the first antenna is equal to the power reception strength of the target signal received by the terminal inside the aircraft cabin, there is no need to consider the transmission of wireless signals from outside the aircraft cabin to inside the aircraft cabin The influence of the maximum penetration loss;
  • the actual received signal-to-noise ratio is the difference between the power received strength of the correctly demodulated target signal and the transmitted power of the interfering signal, and the maximum penetration loss of the wireless signal transmitted from the outside of the aircraft cabin to the inside of the aircraft cabin; for example, for the first antenna
  • the power receiving strength of the target signal measured by the first antenna is not equal to the power receiving intensity of the target signal received by the terminal inside the aircraft cabin, it is necessary to consider the transmission of wireless signals from outside the aircraft cabin to Effect of maximum penetration loss inside an aircraft cabin.
  • the actual received signal-to-noise ratio of the target signal can be expressed as Then, the constraints can take the formula To represent;
  • SNR min is the minimum received signal-to-noise ratio for the terminal to correctly demodulate the target signal, in dB; ⁇ is the power receiving strength of the correctly demodulated target signal, in dBm /Hz; N is the number of interfering signals;
  • the transmit power of the i interference signal per Hz, the unit is dBm/Hz;
  • W i is the frequency domain bandwidth of the i interference signal, the unit is Hz;
  • B is the frequency domain occupied by the correctly demodulated target signal in the wireless communication system Bandwidth, in Hz;
  • is 0 or 1, and the specific value of ⁇ is related to the position of the first antenna.
  • is 1; when the first antenna is located outside the aircraft cabin In the internal case, ⁇ is taken as 0; PL is the maximum penetration loss of the wireless signal transmitted from the outside of the aircraft cabin to the inside of the aircraft cabin, in dB; and, X is the preset threshold, in dBm.
  • the interference signal sent on one subcarrier is regarded as one interference signal.
  • the sum of the frequency-domain bandwidths of the N interfering signals is the frequency-domain bandwidth of the correctly demodulated target signal.
  • the transmit power and frequency domain bandwidth of each interference signal, as well as the number of interference signals can be obtained through the above formula.
  • the frequency domain position of the interfering signal is determined according to the frequency domain position occupied by the correctly demodulated target signal.
  • the frequency domain position of the interference signal includes: part or all of the frequency domain positions occupied by the correctly demodulated target signal.
  • the time domain position of the interference signal may be determined according to the time domain position occupied by the correctly demodulated target signal, or may be directly determined as all time domain positions of the wireless communication system.
  • the time domain location of the interfering signal includes:
  • the time domain position occupied by the correctly demodulated target signal and the time domain position calculated according to the time domain position occupied by the correctly demodulated target signal and the sending period of the target signal.
  • the embodiment of the present application does not limit the specific form of the interference signal, for example, the interference signal may be a fixed sequence or a randomly generated sequence.
  • the embodiment of the present application does not limit the transmission content of the interference signal, for example, it may be a square wave or a narrowband pulse.
  • Step 102 Send the interference signal based on the transmission parameters of the interference signal, so that terminals located in the target area cannot correctly demodulate the target signal.
  • the target area is an area where the terminal is not allowed to access the wireless communication system in a specific scenario.
  • the target area is the interior of the aircraft cabin, and terminals inside the aircraft cabin are not allowed to access the ground wireless communication system when the aircraft takes off and lands.
  • sending the interference signal based on the transmission parameters of the interference signal includes:
  • the interference signal is transmitted through a second antenna arranged inside the cabin of the aircraft based on the emission parameters of the interference signal.
  • the second antenna for sending the interference signal can be set inside the aircraft cabin to reduce the transmission power of the interference signal ,save resources.
  • the first antenna and the second antenna may be realized by using the same antenna.
  • sending the interference signal based on the transmission parameters of the interference signal includes:
  • a corresponding number of interference signals are sent at corresponding time domain positions and frequency domain positions according to the transmit power, frequency domain bandwidth, and number of interference signals.
  • the embodiment of the present application since the correct demodulation of the target signal by the terminal is a prerequisite for the terminal to successfully access the wireless communication system, the embodiment of the present application transmits the interference signal so that the terminal located in the target area cannot correctly Demodulating the target signal also makes it impossible for terminals located in the target area to successfully access the wireless communication system, thereby avoiding serious consequences or major safety hazards caused by the terminal access to the wireless communication system.
  • the terrestrial wireless communication system is a standard Frequency Division Duplexing (FDD, Frequency Division Duplexing) Long Term Evolution (LTE, Long Term Evolution) wireless communication system based on the 3rd Generation Partnership Project (3GPP, the 3rd Generation Partnership Project),
  • the uplink working frequency band of the wireless communication system is 1755 megahertz (MHz) to 1785MHz, and the downlink working frequency band is 1850MHz to 1880MHz.
  • the downlink working frequency band of some FDD LTE wireless communication systems is divided into two sections: 1850MHz to 1860MHz and 1860MHz to 1880MHz.
  • FIG. 2 is a schematic diagram of time domain and frequency domain positions of MIB signals provided by Example 1 of the embodiment of the present application.
  • the downlink of the LTE wireless communication system adopts the cell-specific reference signal (CRS, Cell-specific Reference Signal) 4-port mode
  • the downlink synchronization channels of the LTE wireless communication system include: Primary Synchronization Channel (P-SCH, Primary Synchronization Channel ) and Secondary Synchronization Channel (S-SCH, Secondary Synchronization Channel)
  • the MIB signal is carried on the physical broadcast channel (PBCH, Physical Broadcast Channel) for transmission, as shown in Figure 2, according to the agreement, PBCH occupies LTE in the frequency domain
  • PBCH occupies LTE in the frequency domain
  • the 72 subcarriers i.e.
  • the two sides of the center frequency point are specifically located in the frequency band from 1869.46MHz to 1870.54MHz.
  • CRC Cyclic Redundancy Check
  • FIG. 3 is a schematic diagram of time domain and frequency domain positions of an interference signal provided in Example 1 of the embodiment of the present application.
  • SNR Signal to Noise Ratio
  • the transmit power of the interfering signal on a unit frequency can be calculated according to the following formula:
  • P i is the transmission power per Hz of the i-th interference signal.
  • each RE corresponds to one interference signal, and the transmission powers of the interference signals corresponding to all REs are equal.
  • the transmit power of the interference signal per unit frequency needs to be greater than or equal to -138dBm/Hz, and the transmit power of the interference signal corresponding to each RE must be greater than -97dBm.
  • the time domain position where the interference signal is sent can be selected to be sent in the entire time domain, as shown in FIG. 3 .
  • the time domain position of the interference signal transmission can also be selected to be transmitted only within the time period of the PBCH transmission, as shown in Figure 4, the specific PBCH transmission time period can be obtained from the MIB signal, the MIB signal in this example
  • the sending time period is 10 milliseconds (ms)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the terminals in the aircraft cabin cannot access the ground FDD LTE wireless communication system, so as to prevent the terminal from accessing the ground FDD LTE wireless communication system. Interference with airborne equipment such as the altimeter.
  • the ground wireless communication system is a 3GPP-based standard Time Division Duplex (TDD, Time Division Duplexing) New Radio (NR, New Radio) wireless communication system
  • TDD Time Division Duplexing
  • NR New Radio
  • the downlink working frequency band is 4800MHz to 4900MHz.
  • FIG. 5 is a schematic diagram of the time domain and frequency domain positions of the MIB signal provided by Example 2 of the embodiment of the present application.
  • the downlink synchronization signal of the NR wireless communication system includes a primary synchronization signal (PSS, Primary Synchronization Signal) and Secondary Synchronization Signal (SSS, Secondary Synchronization Signal), MIB signal is carried in PBCH for transmission, and PSS, SSS, and PBCH are composed of three parts: Synchronization Signal and PBCH block (Synchronization Signal and PBCH block, SSB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the bandwidth of the TDD NR wireless communication system is 100MHz, and the power receiving strength per Hz of the correctly demodulated MIB signal is -145dBm.
  • FIG. 6 is a schematic diagram of time domain and frequency domain positions of an interference signal provided by Example 2 of the embodiment of the present application.
  • the minimum receiving signal-to-noise ratio for the terminal to correctly demodulate PBCH is set to -6dB, and the first antenna in this example is set in the aircraft cabin, then ⁇ is set to 0, PL is 20dB, and the interference signal frequency band is set For the entire 7.2MHz bandwidth, the preset threshold is 5dBm.
  • the transmit power of the interfering signal on a unit frequency can be calculated according to the following formula:
  • P i is the transmission power per Hz of the i-th interference signal.
  • each RE corresponds to one interference signal, and the transmission powers of the interference signals corresponding to all REs are equal.
  • the transmit power of the interference signal per unit frequency needs to be greater than or equal to -134dBm/Hz, and the transmit power of the interference signal corresponding to each RE must be greater than -89dBm.
  • the terminals in the aircraft cabin cannot access the ground TDD NR wireless communication system, thereby preventing the terminal from accessing the ground TDD NR wireless communication system to interfere with the aircraft's altimeter. Waiting for airborne equipment to cause interference.
  • an electronic device including:
  • a memory at least one computer program is stored on the memory, and when the at least one computer program is executed by at least one processor, the above interference signal sending method is realized.
  • a processor is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.; a memory is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically SDRAM, DDR, etc.) , Read Only Memory (ROM), Electric Erasable Programmable Read Only Memory (EEPROM) and Flash Memory (FLASH).
  • RAM random access memory
  • ROM Read Only Memory
  • EEPROM Electric Erasable Programmable Read Only Memory
  • FLASH Flash Memory
  • the processor and the memory are connected to each other through a bus, and further connected to other components of the computing device.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the foregoing interference signal sending method is implemented.
  • FIG. 7 is a block diagram of an interference signal sending device provided by an embodiment of the present application.
  • an embodiment of the present application provides an interference signal sending device, including an acquiring module 701 , a determining module 702 , and a sending module 703 .
  • the obtaining module 701 is configured to obtain the power receiving strength of a correctly demodulated target signal in a wireless communication system; the target signal is a signal that needs to be demodulated when a terminal accesses the wireless communication system.
  • the determination module 702 is configured to determine the transmission parameters of the interference signal according to the received power strength of the correctly demodulated target signal.
  • the sending module 703 is configured to send the interference signal based on the transmission parameters of the interference signal, so that terminals located in the target area cannot correctly demodulate the target signal.
  • the obtaining module 701 is further configured to obtain the frequency domain position occupied by the correctly demodulated target signal.
  • the determining module 702 is configured to determine the transmission parameter of the interference signal according to the received power strength of the correctly demodulated target signal and the frequency domain position occupied by the correctly demodulated target signal.
  • the obtaining module 701 is further configured to obtain the time domain position occupied by the correctly demodulated target signal.
  • the determining module 702 is configured to determine the correct demodulated target signal according to the received power strength of the correctly demodulated target signal, the frequency domain position occupied by the correctly demodulated target signal, and the time domain position occupied by the correctly demodulated target signal.
  • the transmission parameters of the above-mentioned interference signal are configured to determine the correct demodulated target signal according to the received power strength of the correctly demodulated target signal, the frequency domain position occupied by the correctly demodulated target signal, and the time domain position occupied by the correctly demodulated target signal.
  • the transmit parameters include transmit power and at least one of the following:
  • Frequency domain bandwidth number, frequency domain location, or time domain location.
  • the determining module 702 is configured to:
  • the constraint condition is that the difference between the minimum received signal-to-noise ratio of the target signal correctly demodulated by the terminal in the target area and the actual received signal-to-noise ratio of the target signal is greater than or equal to a preset threshold, and the actual received The signal-to-noise ratio is calculated according to the received power strength of the correctly demodulated target signal.
  • the frequency domain position of the interference signal includes: part or all of the frequency domain positions occupied by the correctly demodulated target signal.
  • the time domain location of the interference signal includes:
  • the time domain position occupied by the correctly demodulated target signal and the time domain position calculated according to the time domain position occupied by the correctly demodulated target signal and the sending period of the target signal.
  • the interference signal is a fixed sequence or a randomly generated sequence.
  • the target area is the interior of an aircraft cabin.
  • the sending module 703 is configured to:
  • the interference signal is transmitted through a second antenna arranged inside the cabin of the aircraft based on the emission parameters of the interference signal.
  • the specific implementation process of the interference signal sending device in the embodiment of the present application is similar to the specific implementation process of the interference signal sending method in the foregoing embodiments.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components. Components cooperate to execute.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit circuit.
  • Such software may be distributed on computer readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. permanent, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage, or may be used Any other medium that stores desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Public Health (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种干扰信号发送方法、一种干扰信号发送装置、一种电子设备、以及一种计算机可读存储介质,所述干扰信号发送方法包括:获取无线通信系统中正确解调的目标信号的功率接收强度;所述目标信号为终端接入所述无线通信系统需要解调的信号;根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数;以及基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。

Description

干扰信号发送方法和装置、电子设备及计算机可读存储介质
相关申请的交叉引用
本申请要求于2021年5月21日提交的中国专利申请NO.202110562099.4的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及通信技术领域,特别涉及干扰信号发送方法和装置、电子设备、以及计算机可读存储介质。
背景技术
无线通信技术高速发展,无线通信系统的基站部署越来越多,而且随着5G等无线通信系统的应用,更多的频段资源以及大规模多入多出(Massive MIMO,Massive Multiple Input Multiple Output)技术的使用使得无线信号覆盖范围越来越大,导致终端在某些原本无法接入到地面无线通信系统的场景(例如在飞机机舱内)下,也能接入到地面无线通信系统中。在某些场景下终端接入到地面无线通信系统中会造成严重的后果或形成重大安全隐患,例如,在飞机机舱内,飞机起飞和降落时距离地面较近,如果乘客的终端没有正常关机,则乘客的终端可能会接入到地面无线通信系统。由于相关的无线通信协议对于乘客的终端的射频指标要求较低,部分终端的功率放大器和滤波器的性能比较差,导致在某些频段内杂散信号比较强,从无线通信协议来看,对终端的杂散信号要求比较高的时候其也仅为-50dBm/兆赫兹(MHz),这些杂散信号会干扰飞机上的高度表等机载设备的正常工作,导致机载设备告警事件的发生,从而对航空安全形成了重大隐患。
公开内容
第一方面,本申请实施例提供一种干扰信号发送方法,包括:
获取无线通信系统中正确解调的目标信号的功率接收强度;所述目标信号为终端接入所述无线通信系统需要解调的信号;
根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数;以及
基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
第二方面,本申请实施例提供一种干扰信号发送装置,包括:
获取模块配置为获取无线通信系统中正确解调的目标信号的功率接收强度;所述目标信号为终端接入所述无线通信系统需要解调的信号;
确定模块配置为根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数;以及
发送模块配置为基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
第三方面,本申请实施例提供一种电子设备,包括:
至少一个处理器;以及
存储器,存储器上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,实现上述干扰信号发送方法。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当所述计算机程序被处理器执行时实现上述干扰信号发送方法。
附图说明
图1为本申请实施例提供的一种干扰信号发送方法的流程图;
图2为本申请实施例的示例1提供的主系统信息块(MIB,Master Information Block)信号的时域和频域位置的示意图;
图3为本申请实施例的示例1提供的干扰信号的时域和频域位 置的示意图;
图4为本申请实施例的示例1提供的干扰信号的时域和频域位置的示意图;
图5为本申请实施例的示例2提供的MIB信号的时域和频域位置的示意图;
图6为本申请实施例的示例2提供的干扰信号的时域和频域位置的示意图;以及
图7为本申请实施例提供的一种干扰信号发送装置的组成框图。
具体实施方式
为使本领域的技术人员更好地理解本申请的技术方案,下面结合附图对本申请提供的干扰信号发送方法和装置、电子设备以及计算机可读存储介质进行详细描述。
在下文中将参考附图更充分地描述示例实施例,但是所述示例实施例可以以不同形式来体现且不应当被解释为限于本文阐述的实施例。提供这些实施例的目的在于使本申请更加透彻和完整,并使本领域技术人员充分理解本申请的范围。
在不冲突的情况下,本申请各实施例及实施例中的各特征可相互组合。
如本文所使用的,术语“和/或”包括至少一个相关列举条目的任何和所有组合。
本文所使用的术语仅用于描述特定实施例,且不意欲限制本申请。如本文所使用的,单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。还将理解的是,当本说明书中使用术语“包括”和/或“由……制成”时,指定存在特定特征、整体、步骤、操作、元件和/或组件,但不排除存在或可添加至少一个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本文所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如在常用字典中限定的那些术语应当被解释为具有与其在相关技术以 及本申请的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本文明确如此限定。
图1为本申请实施例提供的一种干扰信号发送方法的流程图。
第一方面,参照图1,本申请实施例提供一种干扰信号发送方法,包括步骤100至102。
步骤100、获取无线通信系统中正确解调的目标信号的功率接收强度;所述目标信号为终端接入所述无线通信系统需要解调的信号。
在本申请实施例中,针对目标区域为飞机机舱内部的场景,终端是指飞机上的乘客以及乘务人员所携带的终端设备,而不包括飞机上的机载设备。
在一些实施方式中,获取无线通信系统中正确解调的目标信号的功率接收强度包括:
计算在无线通信系统的目标频段内接收到的无线信号和下行同步信号之间的相关性;
根据相关性最大的无线信号确定时间和频率同步信息;
根据时间和频率同步信息解调目标信号;以及
在对目标信号解调正确的情况下,获取正确解调的目标信号的功率接收强度。
在本申请实施例中,无线通信系统可以是终端可能接入的所有无线通信系统,例如,2G无线通信系统、3G无线通信系统、4G无线通信系统、5G无线通信系统、以及未来的无线通信系统等。
在本申请实施例中,目标频段是指无线通信系统的通信频段中目标信号可能占用的通信频段,不同的无线通信系统对应的目标频段不同,一个无线通信系统对应的目标频段可以是一个,也可以是两个或两个以上。
在一个无线通信系统包括两个或两个以上目标频段的情况下,需要遍历所有的目标频段,以确定能够正确解调目标信号的目标频段。
在本申请实施例中,一个无线通信系统对应的下行同步信号可以是一个,也可以是两个或两个以上。在一个无线通信系统包括两个或两个以上下行同步信号的情况下,需要遍历所有的下行同步信号, 以确定无线通信系统下发的下行同步信号。
在本申请实施例中,目标信号为终端接入所述无线通信系统需要解调的信号是指,终端正确解调目标信号是终端成功接入无线通信系统的前提条件,也就是说,终端只有正确解调目标信号,才能成功接入无线通信系统。
在本申请实施例中,不同无线通信系统对应的目标信号可能相同,也可能不同。例如,4G无线通信系统和5G无线通信系统对应的目标信号为主系统信息块(MIB,Master Information Block)信号。
在一些实施方式中,针对目标区域为飞机机舱内部的情况,无线通信系统在目标频段内可以通过设置在飞机机舱内部的第一天线、或设置在飞机机舱外部的第一天线接收无线信号。
在一些实施方式中,所述干扰信号发送方法还包括:在对目标信号解调正确的情况下,获取所述正确解调的目标信号所占用的频域位置。
在一些实施方式中,所述干扰信号发送方法还包括:在对目标信号解调正确的情况下,获取所述正确解调的目标信号所占用的时域位置。
本申请实施例的功率接收强度可以是指单位频谱上的功率接收强度。
本申请实施例对单位频谱不作限定,例如单位频谱可以是指赫兹(Hz)、或者资源元素(RE,Resource Element)等。
步骤101、根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数。
在一些实施方式中,根据正确解调的目标信号的功率接收强度确定干扰信号的发射参数包括:根据所述正确解调的目标信号的功率接收强度和所述正确解调的目标信号所占用的频域位置确定所述干扰信号的发射参数。
在一些实施方式中,根据正确解调的目标信号的功率接收强度和正确解调的目标信号所占用的频域位置确定干扰信号的发射参数包括:根据所述正确解调的目标信号的功率接收强度、所述正确解调 的目标信号所占用的频域位置和所述正确解调的目标信号所占用的时域位置确定所述干扰信号的发射参数。
在一些实施方式中,发射参数包括发射功率和以下至少之一:
频域带宽、数目、频域位置、或时域位置。
在一些实施方式中,根据正确解调的目标信号的功率接收强度确定干扰信号的发射功率、频域带宽和数目。
在一些实施方式中,根据正确解调的目标信号的功率接收强度确定干扰信号的发射参数包括:
根据所述正确解调的目标信号的功率接收强度在约束条件的约束下确定所述干扰信号的发射功率、频域带宽和数目;
所述约束条件为所述目标区域内的终端正确解调所述目标信号的最低接收信噪比和对所述目标信号的实际接收信噪比之差大于或等于预设阈值,所述实际接收信噪比根据所述正确解调的目标信号的功率接收强度计算得到。
在一些实施方式中,针对目标区域为飞机机舱内部的场景,实际接收信噪比为正确解调的目标信号的功率接收强度和干扰信号的发射功率之差;例如,针对第一天线设置在飞机机舱内部的情况,由于通过第一天线测量得到的目标信号的功率接收强度和飞机机舱内部的终端接收目标信号的功率接收强度相等,因此,不需要考虑无线信号从飞机机舱外部传输到飞机机舱内部的最大穿透损耗的影响;
或者,实际接收信噪比为正确解调的目标信号的功率接收强度和干扰信号的发射功率、无线信号从飞机机舱外部传输到飞机机舱内部的最大穿透损耗之差;例如,针对第一天线设置在飞机机舱外部的情况,由于通过第一天线测量得到的目标信号的功率接收强度和飞机机舱内部的终端接收目标信号的功率接收强度不相等,因此,需要考虑无线信号从飞机机舱外部传输到飞机机舱内部的最大穿透损耗的影响。
在一些实施方式中,针对目标区域为飞机机舱内部的场景,对目标信号的实际接收信噪比可以表示为
Figure PCTCN2022085267-appb-000001
那么,约束条件可以采用公式
Figure PCTCN2022085267-appb-000002
来表示;
SNR min为终端正确解调目标信号的最低接收信噪比,单位为dB;η为正确解调的目标信号的功率接收强度,单位为dBm/Hz;N为干扰信号的数目;P i为第i个干扰信号每赫兹的发射功率,单位为dBm/Hz;W i为第i个干扰信号的频域带宽,单位为Hz;B为无线通信系统中正确解调的目标信号所占用的频域带宽,单位为Hz;λ取0或1,λ的具体取值与第一天线的位置相关,例如,在第一天线位于飞机机舱外部的情况下,λ取1;在第一天线位于飞机机舱内部的情况下,λ取0;PL为无线信号从飞机机舱外部传输到飞机机舱内部的最大穿透损耗,单位为dB;以及,X为预设阈值,单位为dBm。
本申请实施例中,将在一个子载波上发送的干扰信号看作是一个干扰信号。
在一些实施方式中,N个干扰信号的频域带宽之和为正确解调的目标信号的频域带宽。
通过上述公式可以得到每一个干扰信号的发射功率和频域带宽、以及干扰信号的数目。
在一些实施方式中,根据正确解调的目标信号所占用的频域位置确定干扰信号的频域位置。
在一些实施方式中,干扰信号的频域位置包括:所述正确解调的目标信号所占用的频域位置中的部分或全部频域位置。
在一些实施方式中,可以根据正确解调的目标信号所占用的时域位置确定干扰信号的时域位置,也可以直接确定干扰信号的时域位置为无线通信系统的全部时域位置。
在一些实施方式中,干扰信号的时域位置包括:
所述正确解调的目标信号所占用的时域位置;
或者,所述无线通信系统的全部时域位置;
或者,所述正确解调的目标信号所占用的时域位置、以及根据所述正确解调的目标信号所占用的时域位置和所述目标信号的发送周期计算得到的时域位置。
本申请实施例对干扰信号的具体形式不作限定,例如干扰信号可以为固定序列或随机生成序列。
本申请实施例对干扰信号的发射内容不作限定,例如可以是方波或窄带脉冲等。
步骤102、基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
在一些实施方式中,目标区域为在特定场景下不允许终端接入无线通信系统的区域。例如,目标区域为飞机机舱内部,在飞机起飞和降落时不允许飞机机舱内部的终端接入地面无线通信系统。
在一些实施方式中,基于干扰信号的发射参数发送干扰信号包括:
基于所述干扰信号的发射参数通过设置在所述飞机机舱内部的第二天线发送所述干扰信号。
在本申请实施例中,由于发送干扰信号的目的是对飞机机舱内部的终端接收目标信号产生影响,可以将用于发送干扰信号的第二天线设置在飞机机舱内部,以降低干扰信号的发射功率,节约资源。
在本申请实施例中,在第一天线设置在飞机机舱内部的情况下,第一天线和第二天线可以采用同一个天线实现。
在一些实施方式中,基于干扰信号的发射参数发送干扰信号包括:
根据干扰信号的发射功率、频域带宽和数目在对应的时域位置和频域位置发送对应数量的干扰信号。
本申请实施例提供的干扰信号发送方法,由于终端正确解调目标信号是终端成功接入无线通信系统的前提条件,因此,本申请实施例通过发送干扰信号,使得位于目标区域内的终端无法正确解调目标信号,也就使得位于目标区域内的终端无法成功接入无线通信系统,从而避免了由于终端接入无线通信系统造成的严重后果或形成的重大安全隐患。
下面通过两个具体示例详细说明本申请实施例的干扰信号发送方法的具体实现过程,所列举的示例仅仅是为了说明方便,并不用于 限定本申请实施例的保护范围。
示例1
某场景下地面无线通信系统为基于第三代合作伙伴计划(3GPP,the 3rd Generation Partnership Project)的标准频分双工(FDD,Frequency Division Duplexing)长期演进(LTE,Long Term Evolution)无线通信系统,该无线通信系统的上行工作频段为1755兆赫兹(MHz)至1785MHz,下行工作频段为1850MHz至1880MHz,有的FDD LTE无线通信系统的下行工作频段分为1850MHz至1860MHz和1860MHz至1880MHz两段。
图2为本申请实施例的示例1提供的MIB信号的时域和频域位置的示意图。如图2所示,LTE无线通信系统下行采用小区特定参考信号(CRS,Cell-specific Reference Signal)4端口方式,LTE无线通信系统的下行同步信道包括:主同步信道(P-SCH,Primary Synchronization Channel)和辅同步信道(S-SCH,Secondary Synchronization Channel),MIB信号承载在物理广播信道(PBCH,Physical Broadcast Channel)中进行传输,如图2所示,按照协议规定,PBCH在频域上占用LTE无线通信系统的下行工作频段的中心频点的72个子载波(即72个RE),PBCH占用的频段长度为(72×15千赫兹(kHz))=1080kHz,平均分布在FDD LTE无线通信系统的中心频点的两侧,具体位于1869.46MHz至1870.54MHz的频段。
通过设置在飞机机舱外的第一天线接收FDD LTE无线通信系统的目标频段1860MHz至1880MHz内的无线信号;计算接收到的无线信号和下行同步信号之间的相关性;根据相关性最大的无线信号确定时间和频率同步信息;根据时间和频率同步信息解调PBCH所承载的MIB信号;假定在1869.46MHz至1870.54MHz频段上解调PBCH的循环冗余校验码(CRC,Cyclic Redundancy Check)正确,说明在此频段能够正确解调MIB信号,可知FDD LTE无线通信系统带宽为20MHz,且获得正确解调的MIB信号每赫兹的功率接收强度为-126dBm。
图3为本申请实施例的示例1提供的干扰信号的时域和频域位置的示意图。如图3所示,假设终端正确解调PBCH的最低接收信噪 比(SNR,Signal to Noise Ratio)设定为-5dB,本示例的第一天线设置在飞机机舱外,则PL为20dB,λ取1,设定干扰信号频段为整个1.08MHz带宽,预设阈值为3dBm。
干扰信号在单位频率上的发射功率可根据如下公式计算得到:
Figure PCTCN2022085267-appb-000003
P i为第i个干扰信号每赫兹的发射功率,在本示例中,每个RE对应一个干扰信号,并且所有RE对应的干扰信号的发射功率均相等。
通过上述公式计算得到单位频率的干扰信号的发射功率需要大于等于-138dBm/Hz,对应到每个RE的干扰信号的发射功率要大于-97dBm。
干扰信号发送的时域位置可以选择为在整个时域内进行发送,如图3所示。另外,干扰信号发送的时域位置也可以选择为仅在PBCH所发送的时间周期内进行发送,如图4所示,具体的PBCH发送时间周期可以从MIB信号中获取,本示例中MIB信号的发送时间周期为10毫秒(ms),每个时间周期内干扰信号发送所占用的时间长度为4个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号,大约为(4/14)=0.286ms。
本示例中,通过以上任意一种发送方式发送干扰信号后,飞机机舱内的终端都无法接入到该地面FDD LTE无线通信系统中,从而避免终端接入该地面FDD LTE无线通信系统后对飞机的高度表等机载设备产生干扰。
示例2
某场景下地面无线通信系统为基于3GPP的标准时分双工(TDD,Time Division Duplexing)新无线(NR,New Radio)无线通信系统,下行工作频段为4800MHz至4900MHz。
图5为本申请实施例的示例2提供的MIB信号的时域和频域位置的示意图,如图5所示,NR无线通信系统的下行同步信号包括主同步信号(PSS,Primary Synchronization Signal)和辅同步信号(SSS,Secondary Synchronization Signal),MIB信号承载在PBCH 中进行传输,由PSS、SSS、PBCH三部分共同组成同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)。如图5所示,按照协议规定,SSB的频域映射在NR无线通信系统的下行工作频段的240个子载波上,PBCH占用的频段长度为(240×30kHz)=7200kHz,具体位于频段4800MHz至4807.2MHz。通过设置在飞机机舱内的第一天线接收TDD NR无线通信系统的目标频段4800MHz至4900MHz内的无线信号;计算接收到的无线信号和下行同步信号之间的相关性;根据相关性最大的无线信号确定时间和频率同步信息;根据时间和频率同步信息解调PBCH所承载的MIB信号;假定在4800MHz至4807.2MHz的频段上解调PBCH的CRC正确,说明在此频段能够正确解调MIB信号,可知TDD NR无线通信系统带宽为100MHz,且获得正确解调的MIB信号每赫兹的功率接收强度为-145dBm。
图6为本申请实施例的示例2提供的干扰信号的时域和频域位置的示意图。如图6所示,假设终端正确解调PBCH的最低接收信噪比设定为-6dB,本示例的第一天线设置在飞机机舱内,则λ取0,PL为20dB,设定干扰信号频段为整个7.2MHz带宽,预设阈值为5dBm。
干扰信号在单位频率上的发射功率可根据如下公式计算得到:
Figure PCTCN2022085267-appb-000004
P i为第i个干扰信号每赫兹的发射功率,在本示例中,每个RE对应一个干扰信号,并且所有RE对应的干扰信号的发射功率均相等。
通过上述公式计算得到单位频率的干扰信号的发射功率需要大于等于-134dBm/Hz,对应到每个RE的干扰信号的发射功率要大于-89dBm。
干扰信号发送的时域位置选择为仅在SSB所发送的时间周期内进行发送,如图6所示,具体的SSB发送时间周期可以从MIB信号中获取,每个SSB组内有8个SSB块,本示例中MIB信号的发送时间周期为20ms,每个SSB块的时间周期内干扰信号发送占用的时间长度为3个OFDM符号,大约为(3/28)=0.107ms。
本示例中,通过以上发送方式发送干扰信号后,飞机机舱内的 终端都无法接入到该地面TDD NR无线通信系统中,从而避免终端接入该地面TDD NR无线通信系统后对飞机的高度表等机载设备产生干扰。
第二方面,本申请实施例提供一种电子设备,包括:
至少一个处理器;以及
存储器,存储器上存储有至少一个计算机程序,当至少一个计算机程序被至少一个处理器执行时,实现上述干扰信号发送方法。
处理器为具有数据处理能力的器件,包括但不限于中央处理器(CPU)等;存储器为具有数据存储能力的器件,包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)以及闪存(FLASH)。
在一些实施方式中,处理器、存储器通过总线相互连接,进而与计算设备的其它组件连接。
第三方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当所述计算机程序被处理器执行时实现上述干扰信号发送方法。
图7为本申请实施例提供的干扰信号发送装置的组成框图。
第四方面,参照图7,本申请实施例提供一种干扰信号发送装置,包括获取模块701、确定模块702及发送模块703。
获取模块701配置为获取无线通信系统中正确解调的目标信号的功率接收强度;所述目标信号为终端接入所述无线通信系统需要解调的信号。
确定模块702配置为根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数。
发送模块703配置为基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
在一些实施方式中,获取模块701还配置为获取所述正确解调的目标信号所占用的频域位置;以及
确定模块702配置为根据所述正确解调的目标信号的功率接收强度和所述正确解调的目标信号所占用的频域位置确定所述干扰信 号的发射参数。
在一些实施方式中,获取模块701还配置为获取所述正确解调的目标信号所占用的时域位置;以及
确定模块702配置为根据所述正确解调的目标信号的功率接收强度、所述正确解调的目标信号所占用的频域位置和所述正确解调的目标信号所占用的时域位置确定所述干扰信号的发射参数。
在一些实施方式中,所述发射参数包括发射功率和以下至少之一:
频域带宽、数目、频域位置、或时域位置。
在一些实施方式中,确定模块702配置为:
根据所述正确解调的目标信号的功率接收强度在约束条件的约束下确定所述干扰信号的发射功率、频域带宽和数目;
所述约束条件为所述目标区域内的终端正确解调所述目标信号的最低接收信噪比和对所述目标信号的实际接收信噪比之差大于或等于预设阈值,所述实际接收信噪比根据所述正确解调的目标信号的功率接收强度计算得到。
在一些实施方式中,所述干扰信号的频域位置包括:所述正确解调的目标信号所占用的频域位置中的部分或全部频域位置。
在一些实施方式中,所述干扰信号的时域位置包括:
所述正确解调的目标信号所占用的时域位置;
或者,所述无线通信系统的全部时域位置;
或者,所述正确解调的目标信号所占用的时域位置、以及根据所述正确解调的目标信号所占用的时域位置和所述目标信号的发送周期计算得到的时域位置。
在一些实施方式中,所述干扰信号为固定序列或随机生成序列。
在一些实施方式中,所述目标区域为飞机机舱内部。
在一些实施方式中,发送模块703配置为:
基于所述干扰信号的发射参数通过设置在所述飞机机舱内部的第二天线发送所述干扰信号。
本申请实施例的干扰信号发送装置的具体实现过程与前述实施 例的干扰信号发送方法的具体实现过程类似。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储器、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则与特定实施例相结合描述的特征、特性和/或元素可单独使用,或可结合与其它实施例描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本申请的范围的情况下,可进行各种形式和细节上的改变。

Claims (13)

  1. 一种干扰信号发送方法,包括:
    获取无线通信系统中正确解调的目标信号的功率接收强度;其中,所述目标信号为终端接入所述无线通信系统需要解调的信号;
    根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数;以及
    基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
  2. 根据权利要求1所述的干扰信号发送方法,还包括:
    在所述根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数之前,获取所述正确解调的目标信号所占用的频域位置;
    其中,所述根据所述正确解调的目标信号的功率接收强度确定所述干扰信号的发射参数包括:根据所述正确解调的目标信号的功率接收强度和所述正确解调的目标信号所占用的频域位置确定所述干扰信号的发射参数。
  3. 根据权利要求2所述的干扰信号发送方法,还包括:
    在所述根据所述正确解调的目标信号的功率接收强度和所述正确解调的目标信号所占用的频域位置确定所述干扰信号的发射参数之前,获取所述正确解调的目标信号所占用的时域位置;
    其中,所述根据所述正确解调的目标信号的功率接收强度和所述正确解调的目标信号所占用的频域位置确定所述干扰信号的发射参数包括:根据所述正确解调的目标信号的功率接收强度、所述正确解调的目标信号所占用的频域位置和所述正确解调的目标信号所占用的时域位置确定所述干扰信号的发射参数。
  4. 根据权利要求1至3中任意一项所述的干扰信号发送方法, 其中,所述发射参数包括发射功率和以下至少之一:频域带宽、数目、频域位置、或时域位置。
  5. 根据权利要求4所述的干扰信号发送方法,其中,所述根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数包括:
    根据所述正确解调的目标信号的功率接收强度在约束条件的约束下确定所述干扰信号的发射功率、频域带宽和数目;
    其中,所述约束条件为所述目标区域内的终端正确解调所述目标信号的最低接收信噪比和对所述目标信号的实际接收信噪比之差大于或等于预设阈值,所述实际接收信噪比根据所述正确解调的目标信号的功率接收强度计算得到。
  6. 根据权利要求4所述的干扰信号发送方法,其中,所述干扰信号的频域位置包括:所述正确解调的目标信号所占用的频域位置中的部分或全部频域位置。
  7. 根据权利要求4所述的干扰信号发送方法,其中,所述干扰信号的时域位置包括:
    所述正确解调的目标信号所占用的时域位置;
    或者,所述无线通信系统的全部时域位置;
    或者,所述正确解调的目标信号所占用的时域位置、以及根据所述正确解调的目标信号所占用的时域位置和所述目标信号的发送周期计算得到的时域位置。
  8. 根据权利要求1至3中任意一项所述的干扰信号发送方法,其中,所述干扰信号为固定序列或随机生成序列。
  9. 根据权利要求1至3中任意一项所述的干扰信号发送方法,其中,所述目标区域为飞机机舱内部。
  10. 根据权利要求9所述的干扰信号发送方法,其中,所述基于干扰信号的发射参数发送干扰信号包括:
    基于所述干扰信号的发射参数通过设置在所述飞机机舱内部的第二天线发送所述干扰信号。
  11. 一种干扰信号发送装置,包括:
    获取模块,配置为获取无线通信系统中正确解调的目标信号的功率接收强度;其中,所述目标信号为终端接入所述无线通信系统需要解调的信号;
    确定模块,配置为根据所述正确解调的目标信号的功率接收强度确定干扰信号的发射参数;以及
    发送模块,配置为基于所述干扰信号的发射参数发送所述干扰信号,使得位于目标区域内的终端无法正确解调所述目标信号。
  12. 一种电子设备,包括:
    至少一个处理器;以及
    存储器,所述存储器上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,实现根据权利要求1至10中任意一项所述的干扰信号发送方法。
  13. 一种可读存储介质,所述可读存储介质上存储有计算机程序,当所述计算机程序被处理器执行时实现根据权利要求1至10中任意一项所述的干扰信号发送方法。
PCT/CN2022/085267 2021-05-21 2022-04-06 干扰信号发送方法和装置、电子设备及计算机可读存储介质 WO2022242345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22803670.3A EP4329221A1 (en) 2021-05-21 2022-04-06 Interference signal sending method and apparatus, electronic device, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110562099.4A CN115378541A (zh) 2021-05-21 2021-05-21 干扰信号发送方法和装置、电子设备、可读存储介质
CN202110562099.4 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022242345A1 true WO2022242345A1 (zh) 2022-11-24

Family

ID=84058938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085267 WO2022242345A1 (zh) 2021-05-21 2022-04-06 干扰信号发送方法和装置、电子设备及计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4329221A1 (zh)
CN (1) CN115378541A (zh)
WO (1) WO2022242345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116015531B (zh) * 2022-12-30 2023-09-01 深圳心派科技有限公司 信号干扰方法、信号干扰器及计算机可读存储介质
CN116192325B (zh) * 2023-02-01 2024-03-22 浙江三维通信科技有限公司 基站信号的屏蔽方法、装置、存储介质和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393254B1 (en) * 1998-02-26 2002-05-21 José María Pousada Carballo Disabler for mobile communications
US20040242149A1 (en) * 2003-05-28 2004-12-02 Louis Luneau Flexible mobile base station
CN101341770A (zh) * 2005-12-22 2009-01-07 艾利森电话股份有限公司 用于移动通信的空中机载基站收发台
CN101502197A (zh) * 2006-08-02 2009-08-05 空中客车德国有限公司 用于对空间进行屏蔽的控制装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393254B1 (en) * 1998-02-26 2002-05-21 José María Pousada Carballo Disabler for mobile communications
US20040242149A1 (en) * 2003-05-28 2004-12-02 Louis Luneau Flexible mobile base station
CN101341770A (zh) * 2005-12-22 2009-01-07 艾利森电话股份有限公司 用于移动通信的空中机载基站收发台
CN101502197A (zh) * 2006-08-02 2009-08-05 空中客车德国有限公司 用于对空间进行屏蔽的控制装置

Also Published As

Publication number Publication date
CN115378541A (zh) 2022-11-22
EP4329221A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
KR102587368B1 (ko) 공유 스펙트럼에서의 라디오 링크 모니터링
US10080244B2 (en) Random access channel design for narrowband wireless communication
US11589390B2 (en) Multi-carrier signal transmission method, device, and system
WO2022242345A1 (zh) 干扰信号发送方法和装置、电子设备及计算机可读存储介质
JP6657172B2 (ja) 無認可無線周波数スペクトル帯域の帯域幅をスケーリングするための技術
KR102307319B1 (ko) 비인가 대역에서 채널 엑세스 방법, 장치 및 시스템
CN109076517B (zh) 用户设备、基站装置以及通信方法
CN113711677B (zh) 在无线通信系统中发送和接收信号的方法和支持其的设备
CN107079498B (zh) 在未授权频段中的上行链路授权辅助接入(laa)操作的先听后讲(lbt)设计
CN106161292B (zh) 一种传输数据的方法和设备
EP3217730B1 (en) Power control method and terminal
RU2746577C1 (ru) Пользовательский терминал и способ радиосвязи
CN113557782B (zh) 在无线通信系统中发送和接收信号的方法和支持其的设备
CN111788856A (zh) 用于非授权频谱中的带宽指示的方法和装置
EP3536102B1 (en) Message 3 transmission in random access procedure for nr
KR101730758B1 (ko) 가변 대역폭을 지원하는 통신 방법 및 무선기기
US20230232243A1 (en) Method, apparatus, and system for physical channel transmission in unlicensed band
US20170054535A1 (en) Method for transmitting and receiving signal by aggregating three downlink carriers and two uplink carriers
CN108605322B (zh) 用户设备、基站装置以及通信方法
KR102465148B1 (ko) 비면허 대역에서 제어 채널 전송 방법, 장치 및 시스템
KR20180121350A (ko) 페이징 메시지를 수신하는 방법 및 무선 기기
RU2758469C1 (ru) Терминал, способ радиосвязи и базовая станция
US20230379970A1 (en) User equipment and network node involved in communication
US20220086771A1 (en) Configurable radio frequency exposure compliance based on region
Schneckenburger et al. L-band compatibility of LDACS1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803670

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022803670

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022803670

Country of ref document: EP

Effective date: 20231123

NENP Non-entry into the national phase

Ref country code: DE