WO2022242306A1 - 激光投影系统及图像校正方法、激光投影设备 - Google Patents

激光投影系统及图像校正方法、激光投影设备 Download PDF

Info

Publication number
WO2022242306A1
WO2022242306A1 PCT/CN2022/082628 CN2022082628W WO2022242306A1 WO 2022242306 A1 WO2022242306 A1 WO 2022242306A1 CN 2022082628 W CN2022082628 W CN 2022082628W WO 2022242306 A1 WO2022242306 A1 WO 2022242306A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
image
polarizer
target
screen
Prior art date
Application number
PCT/CN2022/082628
Other languages
English (en)
French (fr)
Inventor
张冬冬
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2022242306A1 publication Critical patent/WO2022242306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor

Definitions

  • the present disclosure relates to the field of projection display, in particular to a laser projection system, an image correction method, and laser projection equipment.
  • Ultra-short-throw laser projection equipment can project and display projected images on a projection screen.
  • the laser beam emitted by the optical engine is obliquely upward, so the position between the optical engine and the projection screen must be strictly aligned, and the ultra-short-focus laser projection equipment has a slight Shifting can also cause deformation or distortion of the picture. If the user accidentally moves the ultra-short-focus laser projection device, the projected image projected and displayed by the ultra-short-focus laser projection device may exceed the projection screen, resulting in a poor display effect of the projected image.
  • a laser projection system includes: a laser projection device, a projection screen, a camera, and a polarizer, and the polarizer is located on a side of the camera close to the projection screen. ;
  • the laser projection device is used for:
  • the projection beams that can be incident on the polarizer are linearly polarized light;
  • the projection position of the projection image to be displayed is corrected according to the captured image.
  • an image correction method is provided, which is applied to a laser projection device in a laser projection system, and the laser projection system further includes: a projection screen, a camera, and a polarizer, and the polarizer is located near the camera one side of a projection screen; the method includes:
  • the projection beams that can be incident on the polarizer are linearly polarized light;
  • the projection position of the projection image to be displayed is corrected according to the captured image.
  • a laser projection device including: a memory, a processor, and a computer program stored on the memory, and the processor implements the image correction method described in the above aspect when executing the computer program.
  • FIG. 1 is a schematic diagram of a projection image displayed on a projection screen provided by the related art
  • FIG. 2 is a schematic diagram of another projection image displayed on a projection screen provided by the related art
  • FIG. 3 is a schematic structural diagram of a laser projection system provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another laser projection system provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a projected image provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of a characteristic graph provided by an embodiment of the present disclosure.
  • Fig. 7 is a schematic diagram of a projected image to be displayed beyond the projection screen provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic diagram of a projected image to be displayed beyond the projection screen provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a projected image to be displayed beyond the projection screen provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another laser projection system provided by an embodiment of the present disclosure.
  • Fig. 11 is a flowchart of an image correction method provided by an embodiment of the present disclosure.
  • Fig. 12 is a flowchart of another image correction method provided by an embodiment of the present disclosure.
  • the background color of the projection image projected and displayed by the laser projection device is white
  • the color of the feature point 00 in the projection image may be black.
  • the feature point 00 will be covered by natural light 01 (such as strong light such as light or sunlight).
  • the background color of the projection image projected and displayed by the laser projection device is black
  • the color of the feature point 00 in the projection image is white
  • the feature point 00 in the projection image will be covered by natural light 01 .
  • the feature points of the projected image in the captured image captured by the camera cannot be clearly displayed, which makes the laser projection equipment unable to accurately treat the displayed projection based on the captured image The image is corrected.
  • the natural light in the embodiments of the present disclosure refers to sunlight emitted by the sun and light emitted by a common light source.
  • the common light source may be light emitted by an incandescent lamp or light-emitting diode (light-emitting diode, LED) of light.
  • FIG. 3 is a schematic structural diagram of a laser projection system provided by an embodiment of the present disclosure.
  • the laser projection system may include a laser projection device 10 , a projection screen 20 , a camera 30 and a polarizer 40 .
  • the polarizer 40 is located on a side of the camera 30 close to the projection screen 20 .
  • the laser projection device 10 may be an ultra-short-focus laser projection device, and correspondingly, the lens of the camera 30 may be an ultra-short-focus ultra-wide-angle lens.
  • the laser projection device 10 may be an ultra-short-throw laser projection TV.
  • the laser projection device 10 can be used to project and display a projected image onto the projection screen 20 in response to a calibration instruction, and can obtain a shot image obtained by shooting the projection screen 20 by the camera 30 through the polarizer 40, and treat the projected image according to the shot image. The projection position of the displayed projected image is corrected.
  • the projection screen 20 can diffusely reflect the light beam projected onto its surface.
  • the polarization direction of the polarizer 40 is parallel to the vibration direction of the target projection beam, which is the projection beam reflected by the projection screen 20 and can enter the polarizer 40 , and the projection beam is linearly polarized light.
  • the target projection beam can completely pass through the polarizer 40 and enter the camera 30 .
  • natural light is not polarized light, it vibrates in all directions, so only a small amount of natural light enters the camera 30 through the polarizer 40 . That is, the use of the polarizer 40 can ensure that the target projected light beam is completely transmitted to the camera 30 , and can effectively reduce the natural light transmitted to the camera 30 , thus ensuring the clarity of the projected image in the captured image captured by the camera 30 . Furthermore, the accuracy of correcting the projection position of the projection image to be displayed based on the captured image can be ensured.
  • the projection screen 20 may include a projection area and a frame surrounding the projection area, and the projection beam projected by the laser projection device 10 to the projection screen 20 covers the projection area and the frame. Therefore, the captured image captured by the camera 30 through the polarizer 40 also includes the frame of the projection screen 20 .
  • the embodiments of the present disclosure provide a laser projection device, which can correct the projection position of the projected image to be displayed based on the captured image, thereby preventing the projected image to be displayed from exceeding the projection screen, The display effect of the projected image to be displayed is ensured.
  • the captured image is obtained by the camera shooting the projection screen through the polarizer, and the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam, it can ensure that the target projection beam is completely transmitted to the camera, and can effectively Reduce the amount of natural light transmitted to the camera. Since the interference of external natural light is reduced, the clarity of the projected image in the captured image is ensured, and the accuracy of correcting the projection position of the projected image to be displayed based on the captured image can be ensured.
  • the laser projection device 10 may include a laser light source 101 , a display control component 102 , a light modulation component 103 and a projection lens 104 . Moreover, a light outlet may be provided on the casing of the laser projection device 10 .
  • the laser light source 101 may include at least one of a red laser, a blue laser and a green laser.
  • the display control component 102 may be a digital light processing (digital light processing, DLP) chip.
  • the light modulation component 103 can be a digital micro-mirror device (digital micro-mirror device, DMD), a liquid crystal display (liquid crystal display, LCD) or a liquid crystal on silicon (liquid crystal on silicon, LCOS) device.
  • the laser light source 101 is used to emit laser beams.
  • the display control component 102 is connected with the light modulation component 103 , and the display control component 102 is used for generating a light modulation signal based on the pixel value of the pixel in the projected image, and transmitting the light modulation signal to the light modulation component 103 .
  • the light modulation component 103 is used to modulate the laser beam irradiated on its surface into an image beam under the control of the light modulation signal, and transmit the image beam to the projection lens 104 .
  • the projection lens 104 is used to project the image beam to the projection screen 20 through the light outlet, thereby realizing projection and display of the projected image on the projection screen 20 . It should be noted that the projection beam reflected by the projection screen 20 is the image beam projected by the projection lens 104 onto the projection screen 20 .
  • the polarizer 40 is located outside the optical path of the projection beam projected by the laser projection device 10 to the projection screen 20 (the projection beam is the image beam projected by the projection lens 104 to the projection screen 20), that is, the laser
  • the optical path of the projection beam projected by the projection device 10 to the projection screen 20 does not overlap with the optical path of the target projection beam. In this way, the problem that the projected light beam interferes with the target projected light beam can be avoided, resulting in unclear images captured by the camera 30, ensuring the clarity of the captured image, and thus ensuring the accuracy of the projection position correction of the projected image to be displayed.
  • the above correction instruction may be triggered by the user through a projection client installed in the terminal.
  • the display interface of the projection client may display a correction button, and the projection client may generate a correction instruction after detecting the user's click operation on the correction button. Then the projection client can send the correction instruction to the laser projection device 10 . After receiving the correction instruction sent by the projection client, the laser projection device 10 may project and display the pre-stored projection image on the projection screen 20 in response to the correction instruction.
  • the calibration instruction may be triggered by the user through a remote control.
  • the laser projection device 10 may project and display the pre-stored projection image on the projection screen 20 in response to the calibration command.
  • a correction button may be provided on the laser projection device 10. After detecting the user's click operation on the correction button, the laser projection device 10 may generate a correction instruction, and in response to the correction instruction, convert the pre-stored projection image to The display is projected onto the projection screen 20 .
  • the laser projection device 10 may periodically generate a correction instruction, and may project and display a pre-stored projection image on the projection screen 20 in response to the correction instruction. That is, the laser projection device 10 may periodically execute a pre-stored calibration process for projected images.
  • the orthographic projection of the lens of the camera 30 on the plane where the polarizer 40 is located is located in the polarizer 40, thereby ensuring that the light beams entering the camera 30 are all light beams allowed by the polarizer 40, thereby ensuring that the camera 30 Reliability of captured captured images.
  • the shape of the polarizer 40 is the same as that of the lens, for example, both the shape of the polarizer 40 and the shape of the lens can be circular, that is, the polarizer 40 is a circular polarizer.
  • the polarizer 40 is fixed on the camera 30 .
  • the polarizer 40 is fixed on the housing of the laser projection device 10.
  • a groove may be provided on the housing of the laser projection device 10, and the polarizer 40 may be fixed in the groove.
  • the projected image may include a plurality of characteristic figures arranged in an array, the background color of the projected image is different from the color of the characteristic figures, and the characteristic figures may be in the shape of a cross or a polygon.
  • the projected image 02 may include a total of 16 characteristic figures 020 of 4 ⁇ 4.
  • the background color of the projected image 02 is white, and each characteristic figure 020 is a black cross.
  • the projection screen 20 may be a polygon, for example, the projection screen 20 may be a quadrangle.
  • the projection screen may be polygonal.
  • the laser projection device 10 After the laser projection device 10 acquires the captured image, it can determine the shooting positions of the multiple vertices of the projection screen 20 in the captured image, and can determine the shooting positions of the multiple vertices of the projection screen 20 according to the initial positions of the multiple vertices of the projection screen 20 and the projection screen 20 in the captured image.
  • the shooting positions of the multiple vertices of the camera 30 are determined to determine the perspective transformation coefficient of the camera 30 .
  • the laser projection device 10 can determine the target projection position of the characteristic pattern on the projection screen 20 according to the perspective transformation coefficient of the camera 30 and the shooting position of the characteristic pattern in the captured image.
  • the projection position of the projection image to be displayed is corrected according to the target projection positions of the plurality of characteristic figures and the initial position of the vertices of the projection screen 20 .
  • the projection screen 20 may be a quadrangle, such as a rectangle.
  • the projection screen 20 may include four vertices including a first vertex, a second vertex, a third vertex and a fourth vertex.
  • the first vertex can be the upper left vertex of the projection screen 20
  • the second vertex can be the upper right vertex of the projection screen 20
  • the third vertex can be the lower left vertex of the projection screen 20
  • the fourth vertex can be The bottom right apex of the projection screen 20 .
  • the frame 20 of the projection screen may include an inner frame and an outer frame, and the four vertices may be the vertices of the inner frame or the vertices of the outer frame, which is not limited in this embodiment of the present disclosure.
  • the position of each vertex is determined by two coordinates, the shooting position of the first vertex of the projection screen 20 is (a1, b1), and the initial position of the first vertex of the projection screen 20 is (x1, y1).
  • the shooting position of the second vertex of the projection screen 20 is (a2, b2), and the initial position of the second vertex of the projection screen 20 is (x2, y2).
  • the shooting position of the third vertex of the projection screen 20 is (a3, b3), and the initial position of the third vertex of the projection screen 20 is (x3, y3).
  • the shooting position of the fourth vertex of the projection screen 20 is (a2, b2), and the initial position of the fourth vertex of the projection screen 20 is (x4, y4).
  • the initial positions of the above four vertices, the shooting positions of the four vertices and the perspective transformation coefficients k0 to k7 can satisfy:
  • the laser projection device 10 can determine the following eight equations, including equation (1) to equation (8), and can determine the perspective transformation coefficients k0 to k7 by solving the eight equations.
  • the laser projection device 10 may determine a perspective transformation matrix according to the plurality of perspective transformation coefficients, and may determine an inverse matrix K ⁇ 1 of the perspective transformation matrix. For each characteristic pattern, the laser projection device 10 can determine the target projection position of the characteristic pattern on the projection screen 20 according to the inverse matrix K ⁇ 1 of the perspective transformation matrix and the shooting position of the characteristic pattern.
  • the perspective transformation matrix K satisfies:
  • the inverse matrix K -1 of the perspective transformation matrix satisfies:
  • the w satisfies: t ij is the parameter of row i and column j in the inverse matrix K -1 , and both i and j are positive integers less than or equal to 3.
  • the laser projection device 10 determines the perspective transformation coefficient of the camera 30 based on the captured image, and determines the target projection position of the characteristic pattern based on the perspective transformation coefficient and the photographing position of the characteristic pattern, thus improving the performance of the characteristic pattern.
  • the accuracy with which the target projection position of the graphics is determined.
  • the laser projection device 10 when the laser projection device 10 determines the shooting positions of the multiple feature figures and the multiple vertices of the projection screen 20 , it may perform grayscale processing on the captured image to obtain a grayscale image. Afterwards, the laser projection device 10 can determine the photographing position of each characteristic figure of the projection screen 20 and the photographing positions of multiple vertices of the projection screen 20 in the photographed image according to the grayscale value of each pixel in the grayscale image.
  • the gray value range of each pixel in the gray image may be [0, 255].
  • a pixel with a grayscale value of 0 appears black in the grayscale image
  • a pixel with a grayscale value of 255 appears white in the grayscale image.
  • each feature pattern may be composed of a plurality of target pixels included in one target pixel group. Since the distance between two adjacent characteristic figures is within the first pixel range, the distance between two adjacent target pixel groups is within the first pixel range, and each target pixel group includes a plurality of target pixels The distance between any two adjacent target pixels in is within the second pixel range. Wherein, both the first pixel range and the second pixel range are fixed ranges pre-stored in the laser projection device.
  • the laser projection device 10 can identify a plurality of pixels in the grayscale image whose grayscale value is smaller than the first grayscale value threshold, and can determine a plurality of target pixel groups from the plurality of pixels, and then can obtain each target pixel group Include the shooting position of multiple target pixels. Afterwards, with reference to FIG. 6 , the laser projection device 10 can determine the shooting position of the vertex pixel (for example, the vertex pixel A shown in FIG. 6 ) of the characteristic pattern formed by each target pixel group in the captured image as being consistent with the target pixel The photographing position of the characteristic figure corresponding to the group.
  • the vertex pixel for example, the vertex pixel A shown in FIG. 6
  • the laser projection device 10 may determine the shooting position of the characteristic pattern corresponding to the target pixel group by the shooting position of the central point pixel of the characteristic pattern formed by the target pixel group in the captured image. If the shape of each feature figure is a polygon, then the laser projection device 10 can determine the shooting positions of a plurality of vertex pixels of the feature figure surrounded by the target pixel group in the captured image, and can take the shooting positions of the multiple vertex pixels The average value of is determined as the shooting position of the feature pattern corresponding to the target pixel group.
  • the first grayscale value threshold is a fixed range pre-stored in the laser projection device 10 .
  • the multiple vertices of the projection screen 20 are taken as the vertices of the outer frame as an example for illustration. If the color of the frame of the projection screen 20 is black, then the laser projection device 10 can determine the pixels whose grayscale value is smaller than the second grayscale value threshold in the grayscale image as edge pixels, wherein the pattern formed by a plurality of edge pixels is The shape is a quadrilateral, and the absolute value of the position of each edge pixel is greater than the absolute value of the position of any characteristic figure.
  • the laser projection device 10 can determine the position of the edge pixel in the grayscale image as the position of each pixel on the frame of the projection screen 20 in the captured image, and can determine the distance from the center point of the grayscale image among the edge pixels.
  • the positions of the far four points are determined as the shooting positions of the four vertices.
  • the second grayscale value threshold may be a fixed value pre-stored in the laser projection device.
  • the position in the degree image is the position of each pixel on the inner frame and outer frame of the projection screen 20 in the captured image.
  • the laser projection device 10 may determine the position of the image to be projected based on the target projection positions of the plurality of characteristic figures and the initial position of the apex of the projection screen 20 . Correction parameters, and based on the correction parameters, the projection image to be displayed can be corrected. Furthermore, the laser projection device can project the corrected projection image to be displayed onto the projection screen, thereby realizing correction of the projection position of the projection image to be displayed.
  • the correction parameters may include correction positions of multiple vertices in the first image coordinate system in the projected image to be displayed. If the projected image to be displayed is a quadrilateral, the vertices of the projected image to be displayed may include an upper left vertex, a lower left vertex, an upper right vertex, and a lower right vertex.
  • the following describes the process of the laser projection device determining the corrected position of the target vertex in the first image coordinate system in the projected image to be displayed, wherein the target vertex can be any vertex of the projected image to be displayed:
  • the laser projection device can determine the actual relative position between the position of the target vertex of the frame of the projection screen and the target projection position of the target feature figure in the multiple feature figures, and the target feature figure can be the distance between the multiple feature figures The feature graph closest to the projected position of the target vertex. For example, assuming that the target vertex of the projected image to be displayed is the upper right vertex, the target feature graphic may be the feature graphic located at the upper right corner among the plurality of feature graphics.
  • the laser projection device can then determine the initial relative position between the position of the target vertex of the frame and the initial projected position of the target characteristic figure, and can determine the target offset according to the actual relative position and the initial relative position.
  • the target offset is the offset of the target projection position of the target vertex of the projection image on the projection screen relative to its initial projection position. It can be understood that the target offset may be a vector including an offset direction and an offset value.
  • the target vertex of the frame may be a vertex in the same orientation as the target vertex in the projection image to be displayed among the multiple vertices of the frame.
  • the target vertex of the projected image is a vertex in the same orientation as the target vertex in the projected image to be displayed among the plurality of vertices in the projected image. For example, if the target vertex in the projected image to be displayed is the upper right vertex of the projected image to be displayed, then the target vertex of the frame is the upper right vertex of the frame, and the target vertex of the projected image is the upper right vertex of the projected image .
  • the laser projection device 10 can determine the pixel offset of the target vertex of the projection image to be displayed in the first image coordinate system from the pre-stored correspondence, so that the pixel can be The offset and the initial position of the target vertex of the projected image to be displayed in the first image coordinate system determine the corrected position of the target vertex of the projected image to be displayed in the first image coordinate system.
  • the pixel offset may be a vector including an offset direction and an offset value.
  • the corresponding relationship may be a corresponding relationship between the offset in the screen coordinate system and the offset in the first image coordinate system.
  • the initial projection position of the target feature figure is the projection position of the target feature figure on the projection screen 20 when the projected image is located in the projection screen 20 .
  • the laser projection device 10 can determine the corrected position of each vertex in the first image coordinate system in the projected image to be displayed, and can Correction processing is performed on the projection image to be displayed, so as to obtain the projection image to be displayed after correction processing.
  • the laser projection device can move the vertex and the pixels between the initial position and the corrected position of the vertex to the corrected position of the vertex, Correction processing of the projection image to be displayed is thereby realized.
  • the target projection position, the initial projection position of the target feature figure, and the initial positions of multiple vertices of the projection screen may all refer to positions in the screen coordinate system of the projection screen.
  • the corrected position and the initial position of the vertex in the projected image to be displayed refer to the position in the first image coordinate system of the projected image to be displayed.
  • the shooting position of each feature figure and the vertex of the projection screen in the captured image refers to the position in the second image coordinate system of the captured image.
  • the origin of the screen coordinate system is the center point of the projection screen
  • the horizontal axis of the screen coordinate system is parallel to the pixel row direction of the projection screen
  • the vertical axis of the screen coordinate system is parallel to the pixel column direction of the projection screen.
  • the origin of the first image coordinate system is the center point of the projection image to be displayed
  • the horizontal axis of the first image coordinate system is parallel to the pixel row direction of the projection image to be displayed
  • the vertical axis of the first image coordinate system is parallel and the pixel column direction of the projected image to be displayed.
  • the origin of the second image coordinate system is the center point of the captured image, the horizontal axis of the second image coordinate system is parallel to the pixel row direction of the captured image, and the vertical axis of the second image coordinate system is parallel to the pixel row direction of the captured image. column direction.
  • the target projection position of the target feature graphic may include an abscissa and a ordinate
  • the initial projection position of the target feature graphic may include an abscissa and a ordinate
  • the position of the target vertex of the frame of the projection screen may include abscissa and ordinate.
  • the actual relative position may include: a first absolute value and a second absolute value.
  • the first absolute value is the absolute value of the first difference
  • the first difference is the difference between the value of the abscissa of the position of the target vertex of the border and the value of the abscissa of the target projection position
  • the second absolute value is the second The absolute value of the difference
  • the second difference is the difference between the value of the ordinate of the position of the target vertex of the frame and the value of the ordinate of the target projection position.
  • the initial relative position may include: a third absolute value and a fourth absolute value, the third absolute value is the absolute value of the third difference, the third difference is the value of the abscissa of the position of the target vertex of the border and the initial projection The difference between the values of the abscissa of the position.
  • the fourth absolute value is the absolute value of the fourth numerical value, and the fourth numerical value is a numerical difference between the numerical value of the vertical coordinate of the position of the target vertex of the frame and the numerical value of the vertical coordinate of the initial projection position.
  • the offset value of the above-mentioned target offset may include a first target offset value and a second target offset value, the first target offset value is the absolute value of the difference between the third absolute value and the first absolute value, and the second The target offset value is an absolute value of a difference between the fourth absolute value and the second absolute value.
  • the offset direction of the target offset may include a first direction and a second direction, and the first direction is a direction parallel to the pixel row direction and away from the center point of the screen coordinate system. The second direction is parallel to the pixel column direction and away from the center point of the screen coordinate system.
  • the offset value of the pixel offset may include a first pixel offset value and a second pixel offset value.
  • the target vertex of the frame of the projection screen 20 is the upper right vertex as an example for illustration. If the third absolute value is smaller than the first absolute value, the laser projection device 10 can determine the target projection position of the upper right vertex of the projected image relative to its initial projection. The position is offset by the first target offset value along the first direction.
  • the laser projection device 10 may determine that the abscissa of the corrected position of the upper right vertex in the projected image to be displayed is the The difference between the abscissa of the initial position of the upper right vertex in the displayed projection image in the first image coordinate system and the first pixel offset value.
  • the laser projection device 10 may determine that the abscissa of the corrected position of the upper right vertex in the projected image to be displayed is the The sum of the abscissa of the initial position of the upper right vertex in the displayed projection image in the first image coordinate system and the first pixel offset value.
  • the laser projection device 10 can determine that the target projection position of the upper right vertex of the projected image is offset by the first target offset in the direction opposite to the first direction relative to its initial projection position value. If the abscissa of the initial position of the upper right vertex in the projected image to be displayed is greater than 0 in the first image coordinate system, the laser projection device 10 may determine that the abscissa of the corrected position of the upper right vertex in the projected image to be displayed is the The sum of the abscissa of the initial position of the upper right vertex in the displayed projection image in the first image coordinate system and the first pixel offset value.
  • the laser projection device 10 may determine that the abscissa of the corrected position of the upper right vertex in the projected image to be displayed is the The difference between the abscissa of the initial position of the upper right vertex in the displayed projection image in the first image coordinate system and the first pixel offset value.
  • the laser projection device 10 may determine that the target projection position of the upper right vertex of the projected image is offset by the second target offset value in the second direction relative to its initial projection position.
  • the laser projection device can use the above method to determine the corrected position of the upper right vertex.
  • the laser projection device 10 may determine that the target projection position of the upper right vertex of the projected image is offset by the second target offset in the direction opposite to the second direction relative to its initial projection position value.
  • the laser projection device 10 can use the above method to determine the corrected position of the upper right vertex.
  • the laser projection device 10 can determine the corrected positions of the upper left vertex, the lower left vertex, the upper right vertex and the lower right vertex of the projection image to be displayed in the first image coordinate system.
  • the laser projection device 10 may place the upper right vertex of the projected image to be displayed and the pixel points between the initial position of the upper right vertex and the corrected position are adjusted to the corrected position.
  • the correction process of the projected image to be displayed is realized, that is, the projected image to be displayed is reduced, so that the projected image to be displayed can be displayed within the frame of the projection screen 20 without deformation.
  • the laser projection device 10 after the laser projection device 10 is displaced, there is an angle between the projection screen 20 and the projected image 030 to be displayed. At this time, the projected image 030 to be displayed will be A trapezoidal deformation occurs, and the projected image to be displayed extends beyond the projection screen 20 .
  • the projection lens 104 of the laser projection device 10 is greatly distorted, the edge of the projected image 030 to be displayed is deformed, and the projected image to be displayed exceeds the projection screen 20 .
  • the projected image to be displayed can be located in the projection screen 20, and the The projected image to be displayed on the projection screen 20 will not be deformed, ensuring a better display effect of the projected image to be displayed.
  • the embodiments of the present disclosure provide a laser projection device, which can correct the projection position of the projected image to be displayed based on the captured image, thereby preventing the projected image to be displayed from exceeding the projection screen and ensuring that the projected image to be displayed The display effect of the projected image.
  • the captured image is obtained by the camera shooting the projection screen through the polarizer, and the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam, it can ensure that the target projection beam is completely transmitted to the camera, and can effectively Reduce the amount of natural light transmitted to the camera. Since the interference of external natural light is reduced, the clarity of the projected image in the captured image is ensured, and the accuracy of correcting the projection position of the projected image to be displayed based on the captured image can be ensured.
  • FIG. 10 is a schematic structural diagram of a laser projection system provided by an embodiment of the present disclosure. As shown in FIG. 10 , the laser projection device 10 in the laser projection system may further include an offset determination circuit 106 and a position determination circuit 107 .
  • the offset determination circuit 106 is connected with the camera 30 and the position determination circuit 107 .
  • the offset determination circuit 106 is used to receive the captured image sent by the camera 30, and determine the aforementioned target offset based on the captured image. And send the target offset to the position determining circuit 107 .
  • the position determination circuit 107 is connected with the display control component 102, and the position determination circuit 107 is used to determine the corrected position of the target vertex of the projected image to be displayed in the first image coordinate system based on the target offset, and treat it based on the corrected position
  • the displayed projected image is corrected, and the corrected projected image to be displayed is sent to the display control component 102 .
  • the display control component 102 can generate a light modulation signal according to the pixel value of the pixel in the projection image to be displayed after correction, and send the light modulation signal to the light modulation component 103 .
  • the light modulation component 103 is used to transmit the laser beam irradiated on its surface to the projection lens 104 under the control of the light modulation signal.
  • the projection lens 104 is used for projecting the image beam to the projection screen 20 , thereby projecting and displaying the corrected projection image to the projection screen 20 , and then realizing the correction of the projection position of the projection image to be displayed.
  • FIG. 11 is a flowchart of an image correction method provided by an embodiment of the present disclosure, and the method may be applied to the laser projection device 10 shown in FIG. 3 , FIG. 4 or FIG. 10 . As shown in Figure 11, the method may include:
  • Step 1101 project and display the projected image on a projected screen in response to a correction instruction.
  • Step 1102 acquiring a photographed image obtained by photographing the projection screen by the camera through the polarizer.
  • the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam
  • the target projection beam is the projection beam that can enter the polarizer among the projection beams reflected by the projection screen
  • the projection beam is linearly polarized light
  • Step 1103 correct the projection position of the projection image to be displayed according to the captured image.
  • the embodiments of the present disclosure provide an image correction method, which can correct the projection position of the projected image to be displayed based on the captured image, thereby preventing the projected image to be displayed from exceeding the projection screen, ensuring The display effect of the projected image to be displayed.
  • the captured image is obtained by the camera shooting the projection screen through the polarizer, and the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam, it can ensure that the target projection beam is completely transmitted to the camera, and can effectively Reduce the amount of natural light transmitted to the camera. Since the interference of external natural light is reduced, the clarity of the projected image in the captured image is ensured, and the accuracy of correcting the projection position of the projected image to be displayed based on the captured image can be ensured.
  • FIG. 12 is a flow chart of another image correction method provided by an embodiment of the present disclosure, which can be applied to the laser projection device 10 shown in FIG. 3 , FIG. 4 or FIG. 10 .
  • the method may include:
  • Step 1201 project and display the projection image on the projection screen in response to the calibration instruction.
  • Step 1202 Obtain the photographed image obtained by the camera shooting the projection screen through the polarizer, wherein the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam, and the target projection beam is the projection beam reflected by the projection screen that can be incident
  • the projection beam to the polarizer is linearly polarized light.
  • Step 1203 Determine the perspective transformation coefficient of the camera according to the initial positions of the multiple vertices of the projection screen and the shooting positions of the multiple vertices of the projection screen in the captured image.
  • Step 1204 for each feature figure, determine the target projection position of the feature figure on the projection screen according to the perspective transformation coefficient of the camera and the shooting position of the feature figure in the captured image.
  • the projection image includes a plurality of characteristic figures, and the projection screen is a polygon;
  • the perspective transformation coefficient of the camera includes multiple, and the laser projection device can determine the perspective transformation matrix according to the multiple perspective transformation coefficients. For each characteristic figure, the laser projection device can determine the perspective transformation matrix according to the inverse matrix of the perspective transformation matrix and the At the shooting position in the captured image, the target projection position of the characteristic figure on the projection screen is determined.
  • Step 1205 correct the projection position of the projection image to be displayed according to the target projection positions of the plurality of feature figures and the position of the apex of the projection screen.
  • the orthographic projection of the lens of the camera on the plane where the polarizer is located is located inside the polarizer.
  • the shape of the polarizer is the same as that of the lens.
  • the polarizer is fixed on the camera, or the polarizer is fixed on the casing of the laser projection device.
  • the embodiments of the present disclosure provide an image correction method, which can correct the projection position of the projected image to be displayed based on the captured image, thereby preventing the projected image to be displayed from exceeding the projection screen, ensuring The display effect of the projected image to be displayed.
  • the captured image is obtained by the camera shooting the projection screen through the polarizer, and the polarization direction of the polarizer is parallel to the vibration direction of the target projection beam, it can ensure that the target projection beam is completely transmitted to the camera, and can effectively Reduce the amount of natural light transmitted to the camera. Since the interference of external natural light is reduced, the clarity of the projected image in the captured image is ensured, and the accuracy of correcting the projection position of the projected image to be displayed based on the captured image can be ensured.
  • An embodiment of the present disclosure provides a laser projection device, including: a memory, a processor, and a computer program stored on the memory.
  • the processor executes the computer program, the image correction method shown in the above embodiment is implemented.
  • the above-mentioned The image correction method shown in FIG. 11 or FIG. 12 is implemented.
  • An embodiment of the present disclosure provides a computer-readable storage medium, and instructions are stored in the computer-readable storage medium.
  • the instructions are loaded and executed by the processor to implement the image correction method shown in the above embodiments, for example, the above image correction method shown in FIG. 11 or FIG. 12 may be executed.
  • An embodiment of the present disclosure provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, it causes the computer to execute the image correction method shown in the above embodiment. image correction method.
  • the terms “first”, “second”, “third”, “fourth”, “fifth” and “sixth” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
  • the term “at least one” in the embodiments of the present application means one or more than one.
  • the term “multiple” in the embodiments of the present application means two or more.
  • the term “and/or” in the embodiments of the present disclosure is just an association relationship describing associated objects, which means that there may be three relationships, for example, A and/or B, which can mean: A exists alone, and A and B exist at the same time , there are three cases of B alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

提供一种激光投影系统及图像校正方法、激光投影设备,属于投影显示领域。激光投影设备(10)可以基于拍摄图像对待显示的投影图像的投影位置进行校正,由此避免待显示的投影图像超出投影屏幕(20)之外,确保了待显示的投影图像的显示效果。并且,由于拍摄图像是摄像机(30)透过偏振片(40)对投影屏幕(20)进行拍摄得到的,且该偏振片(40)的偏振化方向平行于目标投影光束的振动方向,因此可以确保目标投影光束完全传输至摄像机(30),并可以有效减少传输至摄像机(30)的自然光。由于降低了外界自然光的干扰,因此确保了拍摄图像中投影图像的清晰度,进而可以确保基于该拍摄图像对待显示的投影图像的投影位置进行校正的准确性。

Description

激光投影系统及图像校正方法、激光投影设备
相关申请的交叉引用
本申请要求在2021年5月17日提交中国专利局、申请号为202110536036.1,发明名称为激光投影系统及图像校正方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影显示领域,特别涉及一种激光投影系统及图像校正方法、激光投影设备。
背景技术
超短焦激光投影设备可以将投影图像投影显示至投影屏幕上。对于超短焦激光投影设备而言,由于投影成像的原理使得光学引擎出射的激光光束斜向上出射,因此该光学引擎与投影屏幕之间的位置必须严格对位,超短焦激光投影设备轻微的移位也会导致画面的形变或畸变。若用户不小心移动了超短焦激光投影设备,则超短焦激光投影设备投影显示的投影图像可能会超出投影屏幕,导致投影图像的显示效果较差。
发明内容
本公开实施例一方面,提供了一种激光投影系统,所述激光投影系统包括:激光投影设备、投影屏幕、摄像机以及偏振片,所述偏振片位于所述摄像机靠近所述投影屏幕的一侧;所述激光投影设备,用于:
响应于校正指令,将投影图像投影显示至所述投影屏幕;
获取所述摄像机透过所述偏振片对所述投影屏幕进行拍摄得到的拍摄图像,其中,所述偏振片的偏振化方向平行于目标投影光束的振动方向,所述目标投影光束为被所述投影屏幕反射的投影光束中能够入射至所述偏振片的投影光束,所述投影光束为线偏振光;
根据所述拍摄图像对待显示的投影图像的投影位置进行校正。
另一方面,提供了一种图像校正方法,应用于激光投影系统中的激光投影设备,所述激光投影系统还包括:投影屏幕、摄像机以及偏振片,所述偏振片位于所述摄像机靠近所述投影屏幕的一侧;所述方法包括:
响应于校正指令,将投影图像投影显示至所述投影屏幕;
获取所述摄像机透过所述偏振片对所述投影屏幕进行拍摄得到的拍摄图像,其中,所 述偏振片的偏振化方向平行于目标投影光束的振动方向,所述目标投影光束为被所述投影屏幕反射的投影光束中能够入射至所述偏振片的投影光束,所述投影光束为线偏振光;
根据所述拍摄图像对待显示的投影图像的投影位置进行校正。
再一方面,提供了一种激光投影设备,包括:存储器,处理器及存储在存储器上的计算机程序,该处理器执行计算机程序时实现上述方面所述的图像校正方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种在投影屏幕上显示的投影图像的示意图;
图2是相关技术提供的另一种在投影屏幕上显示的投影图像的示意图;
图3是本公开实施例提供的一种激光投影系统的结构示意图;
图4是本公开实施例提供的另一种激光投影系统的结构示意图;
图5是本公开实施例提供的一种投影图像的示意图;
图6是本公开实施例提供的一种特征图形的示意图;
图7是本公开实施例提供的一种待显示的投影图像超出投影屏幕的示意图;
图8是本公开实施例提供的一种待显示的投影图像超出投影屏幕的示意图;
图9是本公开实施例提供的一种待显示的投影图像超出投影屏幕的示意图;
图10是本公开实施例提供的又一种激光投影系统的结构示意图;
图11是本公开实施例提供的一种图像校正方法的流程图;
图12是本公开实施例提供的另一种图像校正方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
相关技术中,参考图1,若激光投影设备投影显示的投影图像的背景色为白色,该投影图像中的特征点00的颜色可以为黑色。该特征点00会被自然光01(例如灯光或太阳光等强光)覆盖。参考图2,激光投影设备投影显示的投影图像的背景色为黑色,该投影图像中的特征点00的颜色为白色,该投影图像中特征点00会被自然光01覆盖。
由于照射至投影屏幕上的自然光会覆盖投影图像中的特征点,因此摄像机拍摄得到的 拍摄图像中投影图像的特征点无法清晰显示,进而导致激光投影设备无法基于该拍摄图像准确地对待显示的投影图像进行校正。
需要说明的是,本公开实施例中的自然光指的是太阳发出的太阳光和普通光源发出的光,该普通光源可以为白炽灯发出的光或者发光二极管(light-emitting diode,LED)灯发出的光。
图3是本公开实施例提供的一种激光投影系统的结构示意图。如图3所示,该激光投影系统可以包括激光投影设备10、投影屏幕20、摄像机30以及偏振片40。其中,该偏振片40位于摄像机30靠近投影屏幕20的一侧。
在一具体实施中,该激光投影设备10可以为超短焦激光投影设备,相应的,该摄像机30的镜头可以为超短焦超广角镜头。示例的,该激光投影设备10可以为超短焦激光投影电视。
该激光投影设备10可以用于响应于校正指令,将投影图像投影显示至投影屏幕20,并可以获取摄像机30透过偏振片40对投影屏幕20进行拍摄得到的拍摄图像,以及根据该拍摄图像对待显示的投影图像的投影位置进行校正。
在本公开实施例中,投影屏幕20可以对投射至其表面的光束进行漫反射。该偏振片40的偏振化方向平行于目标投影光束的振动方向,该目标投影光束为被投影屏幕20反射的投影光束中能够入射至偏振片40的投影光束,该投影光束为线偏振光。
由于偏振片40的偏振化方向平行于目标投影光束的振动方向,因此目标投影光束可以完全通过该偏振片40并进入摄像机30。又由于自然光不是偏振光,其在各个方向振动,因此仅会有少量的自然光透过偏振片40进入摄像机30。也即是,采用该偏振片40可以确保目标投影光束完全传输至摄像机30,并可以有效减少传输至摄像机30的自然光,因此确保了摄像机30拍摄的拍摄图像中投影图像的清晰度。进而,可以确保基于该拍摄图像对待显示的投影图像的投影位置进行校正的准确性。
需要说明的是,投影屏幕20可以包括投影区域和围绕该投影区域的边框,激光投影设备10投射至投影屏幕20的投影光束覆盖该投影区域和边框。因此,摄像机30透过偏振片40拍摄得到的拍摄图像中还包括该投影屏幕20的边框。
综上所述,本公开实施例提供了一种激光投影设备,该激光投影设备可以基于拍摄图像对待显示的投影图像的投影位置进行校正,由此避免待显示的投影图像超出投影屏幕之外,确保了待显示的投影图像的显示效果。
并且,由于拍摄图像是摄像机透过偏振片对投影屏幕进行拍摄得到的,且该偏振片的偏振化方向平行于目标投影光束的振动方向,因此可以确保目标投影光束完全传输至摄像 机,并可以有效减少传输至摄像机的自然光。由于降低了外界自然光的干扰,因此确保了拍摄图像中投影图像的清晰度,进而可以确保基于该拍摄图像对待显示的投影图像的投影位置进行校正的准确性。
参考图3和图4,该激光投影设备10可以包括激光光源101、显示控制组件102、光调制组件103和投影镜头104。并且,该激光投影设备10的壳体上可以设置有出光口。
在一具体实施中,该激光光源101可以包括红色激光器、蓝色激光器和绿色激光器中的至少一种。该显示控制组件102可以为数字光处理(digital light processing,DLP)芯片。该光调制组件103可以为数字微镜器件(digital micro-mirror device,DMD)、液晶显示器(liquid crystal display,LCD)或硅基液晶(liquid crystal on silicon,LCOS)器件。
该激光光源101用于出射激光光束。该显示控制组件102与光调制组件103连接,该显示控制组件102用于基于该投影图像中像素的像素值生成光调制信号,并将该光调制信号传输至光调制组件103。该光调制组件103用于在该光调制信号的控制下将照射至其表面的激光光束调制成影像光束,并将该影像光束传输至投影镜头104。该投影镜头104用于将该影像光束通过出光口投射至投影屏幕20,由此实现将投影图像投影显示至投影屏幕20。需要说明的是,上述被投影屏幕20反射的投影光束即为投影镜头104投射至投影屏幕20的影像光束。
在本公开实施例中,该偏振片40位于激光投影设备10投射至投影屏幕20的投影光束的光路之外(该投影光束即为投影镜头104投射至投影屏幕20的影像光束),即该激光投影设备10投射至投影屏幕20的投影光束的光路与目标投影光束的光路不重叠。由此可以避免出现投影光束对目标投影光束产生干扰,而导致摄像机30拍摄的拍摄图像不清晰的问题,确保了拍摄图像的清晰度,进而确保了对待显示的投影图像的投影位置校正的准确性。
在本公开实施例中,上述校正指令可以是用户通过终端中安装的投影客户端触发的。该投影客户端的显示界面可以显示有校正按钮,该投影客户端在检测到用户针对该校正按钮的点击操作后,可以生成校正指令。之后投影客户端可以将该校正指令发送至激光投影设备10。激光投影设备10在接收到投影客户端发送的校正指令后,可以响应于该校正指令,将预先存储的投影图像投影显示至投影屏幕20。
或者,该校正指令可以是用户通过遥控器触发的,激光投影设备10在接收到遥控器发送的校正指令后,可以响应于该校正指令,将预先存储的投影图像投影显示至投影屏幕20。
或者,激光投影设备10上可以设置有校正按钮,该激光投影设备10在检测到用户针 对该校正按钮的点击操作后,可以生成校正指令,进而可以响应于该校正指令,将预先存储的投影图像投影显示至投影屏幕20。
或者,激光投影设备10可以周期性生成校正指令,并可以响应于该校正指令,将预先存储的投影图像投影显示至投影屏幕20。也即是,该激光投影设备10可以周期性执行预先存储的投影图像的校正流程。
在本公开实施例中,该摄像机30的镜头在偏振片40所在平面内的正投影位于偏振片40内,由此确保进入摄像机30的光束均为偏振片40允许通过的光束,进而确保摄像机30拍摄的拍摄图像的可靠性。
该偏振片40的形状与镜头的形状相同,例如,该偏振片40的形状和镜头的形状均可以为圆形,即该偏振片40为圆形偏振片。
该偏振片40固定在摄像机30上。或者,该偏振片40固定在激光投影设备10的壳体上,在一具体实施中,该激光投影设备10的壳体上可以设置有凹槽,该偏振片40可以固定在该凹槽内。
在本公开实施例中,该投影图像可以包括阵列排布的多个特征图形,该投影图像的背景色与特征图形的颜色不同,且该特征图形可以为十字形或者多边形等。参考图5,投影图像02可以包括4×4共16个特征图形020,该投影图像02的背景色为白色,该每个特征图形020为黑色的十字形。该投影屏幕20可以为多边形,例如,该投影屏幕20可以为四边形。
在本公开实施例中,该投影屏幕可以为多边形。激光投影设备10在获取到拍摄图像之后,可以确定该拍摄图像中投影屏幕20的多个顶点的拍摄位置,并可以根据该投影屏幕20的多个顶点的初始位置,以及拍摄图像中投影屏幕20的多个顶点的拍摄位置,确定该摄像机30的透视变换系数。该对于每个特征图形,激光投影设备10可以根据摄像机30的透视变换系数和该特征图形在拍摄图像中的拍摄位置,确定特征图形在投影屏幕20上的目标投影位置。并根据多个特征图形的目标投影位置和投影屏幕20的顶点的初始位置,对待显示的投影图像的投影位置进行校正。
在一具体实施中,该投影屏幕20可以为四边形,例如可以为矩形。相应的,该投影屏幕20可以包括第一顶点、第二顶点、第三顶点和第四顶点共四个顶点。其中,该第一顶点可以为该投影屏幕20的左上顶点,该第二顶点可以为该投影屏幕20的右上顶点,该第三顶点可以为该投影屏幕20的左下顶点,该第四顶点可以为该投影屏幕20的右下顶点。
在一具体实施中,投影屏幕的边框20可以包括内边框和外边框,该四个顶点可以为该内边框的顶点,也可以为该外边框的顶点,本公开实施例对此不做限定。
其中,每个顶点的位置由两个坐标确定,该投影屏幕20的第一顶点的拍摄位置为(a1,b1),该投影屏幕20的第一顶点的初始位置为(x1,y1)。该投影屏幕20的第二顶点的拍摄位置为(a2,b2),该投影屏幕20的第二顶点的初始位置为(x2,y2)。该投影屏幕20第三顶点的拍摄位置为(a3,b3),投影屏幕20的第三顶点的初始位置为(x3,y3)。该投影屏幕20第四顶点的拍摄位置为(a2,b2),投影屏幕20的第四顶点的初始位置为(x4,y4)。上述四个顶点的初始位置、四个顶点的拍摄位置以及透视变换系数k0至k7可以满足:
Figure PCTCN2022082628-appb-000001
基于上述公式,激光投影设备10可以确定以下方程(1)至方程(8)共8个方程,并可以通过求解该8个方程确定出透视变换系数k0至k7。
方程(1):a1=k0×x1+k1×y1+k2-k6×x1×a1-k7×y1×a1;
方程(2):b1=k3×x1+k4×y1+k5-k6×x1×b1-k7×y1×b1;
方程(3):a2=k0×x2+k1×y2+k2-k6×x2×a2-k7×y2×a2;
方程(4):b2=k3×x2+k4×y2+k5-k6×x2×b2-k7×y2×b2;
方程(5):a3=k0×x3+k1×y3+k2-k6×x3×a3-k7×y3×a3;
方程(6):b3=k3×x3+k4×y3+k5-k6×x3×b3-k7×y3×b3;
方程(7):a4=k0×x4+k1×y4+k2-k6×x4×a4-k7×y4×a4;
方程(8):b4=k3×x4+k4×y4+k5-k6×x4×b4-k7×y4×b4。
激光投影设备10在确定多个透视变换系数之后,可以根据该多个透视变换系数确定透视变换矩阵,并可以确定该透视变换矩阵的逆矩阵K -1。对于每个特征图形,激光投影设备10可以根据该透视变换矩阵的逆矩阵K -1和该特征图形的拍摄位置,确定该特征图形在投影屏幕20上的目标投影位置。
其中,该透视变换矩阵K和透视变换矩阵的逆矩阵K -1均可以为3×3的矩阵,该K×K -1=E,该E为3×3的单位矩阵。该透视变换矩阵K满足:
Figure PCTCN2022082628-appb-000002
透视变 换矩阵的逆矩阵K -1满足:该
Figure PCTCN2022082628-appb-000003
该拍摄图像中拍摄位置为(a,b)的特征图形在投影屏幕20上的目标投影位置(X1,Y1)满足:X1=t 11×w×a+t 12×w×b+t 13×w;Y1=t 21×w×a+t 22×w×b+t 23×w。该w满足:
Figure PCTCN2022082628-appb-000004
t ij为逆矩阵K -1中第i行第j列的参数,i和j均为小于等于3的正整数。
在本公开实施例中,由于透视变换系数与摄像机30的拍摄位置、摄像机30与投影屏幕20的距离以及摄像机30的分辨率相关。对于每张拍摄图像,激光投影设备10均基于该拍摄图像确定摄像机30的透视变换系数,并基于该透视变换系数和特征图形的拍摄位置确定该特征图形的目标投影位置,因此提高了对该特征图形的目标投影位置确定的准确性。
在本公开实施例中,激光投影设备10在确定多个特征图形和投影屏幕20的多个顶点的拍摄位置时,可以对该拍摄图像进行灰度处理,得到灰度图像。之后,激光投影设备10可以根据该灰度图像中每个像素的灰度值,确定该拍摄图像中的投影屏幕20的每个特征图形的拍摄位置和投影屏幕20的多个顶点的拍摄位置。
其中,该灰度图像中每个像素的灰度值范围可以为[0,255]。其中,像素的灰度值为0的像素在该灰度图像中呈现出来是黑色,像素的灰度值为255的像素在该灰度图像中呈现出来是白色。
在本公开实施例中,每个特征图形可以由一个目标像素组所包括的多个目标像素组成。由于相邻两个特征图形之间的间距位于第一像素范围内,因此相邻两个目标像素组之间的间距位于该第一像素范围内,且每个目标像素组包括的多个目标像素中任意相邻两个目标像素的间距位于第二像素范围内。其中,该第一像素范围和第二像素范围均为激光投影设备中预先存储的固定范围。
激光投影设备10可以识别灰度图像中灰度值小于第一灰度值阈值的多个像素,并可以从该多个像素中确定出多个目标像素组,进而可以得到该每个目标像素组包括的多个目标像素的拍摄位置。之后,参考图6,激光投影设备10可以将该每个目标像素组形成的特征图形的顶点像素(例如图6所示的顶点像素A)在拍摄图像中的拍摄位置,确定为与该目标像素组对应的特征图形的拍摄位置。或者,激光投影设备10可以将该目标像素组形成的特征图形的中心点像素在拍摄图像中的拍摄位置,确定与该目标像素组对应的特征图形的拍摄位置。若每个特征图形的形状为多边形,则激光投影设备10可以确定该目标像素组围成的特征图形的多个顶点像素在拍摄图像中的拍摄位置,并可以将该多个顶点像素 的拍摄位置的平均值确定为与该目标像素组对应的特征图形的拍摄位置。其中,该第一灰度值阈值为激光投影设备10中预先存储的固定范围。
本公开实施例以投影屏幕20的多个顶点为外边框的顶点为例进行说明。若投影屏幕20的边框的颜色为黑色,则激光投影设备10可以将该灰度图像中灰度值小于第二灰度值阈值的像素确定为边缘像素,其中,多个边缘像素形成的图案的形状为四边形,每个边缘像素的位置的绝对值大于任一特征图形的位置的绝对值。之后激光投影设备10可以将该边缘像素在灰度图像中的位置确定为拍摄图像中的投影屏幕20的边框上每个像素的位置,并可以将该边缘像素中距离灰度图像的中心点最远的四个点的位置确定为该四个顶点的拍摄位置。其中,该第二灰度值阈值可以为激光投影设备中预先存储的固定数值。
由于投影屏幕20的内边框和外边框的颜色相近,因此投影屏幕20的内边框和外边框之间的像素的灰度值处于一个固定的范围内,采用该方法确定出多个边缘像素在灰度图像中的位置为该拍摄图像中的投影屏幕20的内边框和外边框上每个像素的位置。
在本公开实施例中,激光投影设备10在对待显示的投影图像的投影位置进行校正的过程中,可以基于多个特征图形的目标投影位置和投影屏幕20的顶点的初始位置确定待投影图像的校正参数,并可以基于该校正参数对待显示的投影图像进行校正处理。进而激光投影设备可以将该校正处理后的待显示的投影图像投影至投影屏幕上,由此实现对待显示的投影图像的投影位置的校正。
其中,校正参数可以包括待显示的投影图像中多个顶点在第一图像坐标系的校正位置。若待显示的投影图像为四边形,则该待显示的投影图像的顶点可以包括左上顶点、左下顶点、右上顶点和右下顶点。
下文对激光投影设备确定待显示的投影图像中目标顶点在第一图像坐标系的校正位置的过程进行介绍,其中该目标顶点可以为待显示的投影图像的任一顶点:
首先,激光投影设备可以确定投影屏幕的边框的目标顶点的位置与该多个特征图形中目标特征图形的目标投影位置之间的实际相对位置,该目标特征图形可以为多个特征图形中距离该目标顶点的投影位置最近的特征图形。例如,假设该待显示的投影图像的目标顶点为右上顶点,则该目标特征图形可以为多个特征图形中位于右上角的特征图形。激光投影设备进而可以确定该边框的目标顶点的位置与目标特征图形的初始投影位置的初始相对位置,并可以根据该实际相对位置和初始相对位置确定目标偏移量。
其中,该目标偏移量即为投影图像的目标顶点在投影屏幕的目标投影位置相对于其初始投影位置的偏移量。可以理解的是,该目标偏移量可以为包括偏移方向和偏移数值大小的矢量。
该边框的目标顶点可以为边框的多个顶点中与待显示的投影图像中的目标顶点处于相同方位上的顶点。投影图像的目标顶点为投影图像的多个顶点中与待显示的投影图像中的目标顶点处于相同方位上的顶点。示例的,若待显示的投影图像中的目标顶点为该待显示的投影图像的右上顶点,则该边框的目标顶点为该边框的右上顶点,该投影图像的目标顶点为该投影图像的右上顶点。
之后,激光投影设备10可以基于该目标偏移量,从预先存储的对应关系中确定出待显示的投影图像的目标顶点在第一图像坐标系中的像素偏移量,由此可以根据该像素偏移量以及该待显示的投影图像的目标顶点在第一图像坐标系中初始位置,确定出该待显示的投影图像的目标顶点在第一图像坐标系的校正位置。
其中,该像素偏移量可以为包括偏移方向和偏移数值大小的矢量。该对应关系可以为在屏幕坐标系中的偏移量与在第一图像坐标系中的偏移量的对应关系。该目标特征图形的初始投影位置为该投影图像位于投影屏幕20内时,该目标特征图形在投影屏幕20中的投影位置。
基于上述方法,激光投影设备10可以确定出待显示的投影图像中每个顶点在第一图像坐标系的校正位置,并可以根据待显示的投影图像中每个顶点在第一图像坐标系的校正位置,对待显示的投影图像进行校正处理,从而得到校正处理后的待显示的投影图像。
在一具体实施中,对于待显示的投影图像中的每个顶点,激光投影设备可以将该顶点以及位于该顶点的初始位置与校正位置之间的像素点均移动至该顶点的校正位置处,由此实现对待显示的投影图像的校正处理。
在本公开实施例中,该目标特征图形的目标投影位置、初始投影位置以及投影屏幕的多个顶点的初始位置均可以是指在投影屏幕的屏幕坐标系中的位置。该待显示的投影图像中顶点的校正位置和初始位置是指在待显示的投影图像的第一图像坐标系中的位置。每个特征图形和投影屏幕的顶点在拍摄图像中的拍摄位置是指在拍摄图像的第二图像坐标系中的位置。
其中,该屏幕坐标系的原点为投影屏幕的中心点,该屏幕坐标系的横轴平行于该投影屏幕的像素行方向,该屏幕坐标系的纵轴平行于该投影屏幕的像素列方向。该第一图像坐标系的原点为待显示的投影图像的中心点,该第一图像坐标系的横轴平行与该待显示的投影图像的像素行方向,该第一图像坐标系的纵轴平行与该待显示的投影图像的像素列方向。该第二图像坐标系的原点为拍摄图像的中心点,该第二图像坐标系的横轴平行与该拍摄图像的像素行方向,该第二图像坐标系的纵轴平行与该拍摄图像的像素列方向。
在一具体实施中,目标特征图形的目标投影位置可以包括横坐标和纵坐标,目标特征 图形的初始投影位置可以包括横坐标和纵坐标。投影屏幕的边框的目标顶点的位置可以包括横坐标和纵坐标。实际相对位置可以包括:第一绝对值和第二绝对值。该第一绝对值为第一差值的绝对值,第一差值为边框的目标顶点的位置的横坐标的数值与目标投影位置的横坐标的数值的差值,第二绝对值为第二差值的绝对值,第二差值为边框的目标顶点的位置的纵坐标的数值与目标投影位置的纵坐标的数值的差值。
初始相对位置可以包括:第三绝对值和第四绝对值,该第三绝对值为第三差值的绝对值,该第三差值为边框的目标顶点的位置的横坐标的数值与初始投影位置的横坐标的数值的差值。第四绝对值为第四数值的绝对值,第四数值为边框的目标顶点的位置的纵坐标的数值与初始投影位置的纵坐标的数值差值。
上述目标偏移量的偏移数值可以包括第一目标偏移值和第二目标偏移值,第一目标偏移值为第三绝对值与第一绝对值的差值的绝对值,第二目标偏移值为第四绝对值与第二绝对值的差值的绝对值。目标偏移量的偏移方向可以包括第一方向和第二方向,该第一方向为平行于像素行方向,且远离屏幕坐标系的中心点的方向。第二方向为平行于像素列方向,且远离屏幕坐标系的中心点的方向。像素偏移量的偏移数值可以包括第一像素偏移值和第二像素偏移值。
下文以投影屏幕20的边框的目标顶点为右上顶点为例进行说明,若第三绝对值小于第一绝对值,则激光投影设备10可以确定投影图像的右上顶点的目标投影位置相对于其初始投影位置,沿第一方向偏移了第一目标偏移值。若待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标大于0,则激光投影设备10可以确定待显示的投影图像中的右上顶点的校正位置的横坐标为该待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标与第一像素偏移值的差值。若待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标小于0,则激光投影设备10可以确定待显示的投影图像中的右上顶点的校正位置的横坐标为该待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标与第一像素偏移值之和。
若第三绝对值大于第一绝对值,则激光投影设备10可以确定投影图像的右上顶点的目标投影位置相对于其初始投影位置,沿与第一方向相反的方向偏移了第一目标偏移值。若待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标大于0,则激光投影设备10可以确定待显示的投影图像中的右上顶点的校正位置的横坐标为该待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标与第一像素偏移值之和。若待显示的投影图像中的右上顶点在第一图像坐标系的初始位置的横坐标小于0,则激光投影设备10可以确定待显示的投影图像中的右上顶点的校正位置的横坐标为该待显示的投 影图像中的右上顶点在第一图像坐标系的初始位置的横坐标与第一像素偏移值的差值。
若第四绝对值小于第二绝对值,则激光投影设备10可以确定投影图像的右上顶点的目标投影位置相对于其初始投影位置,沿第二方向偏移了第二目标偏移值。激光投影设备可以采用上述方法确定右上顶点的校正位置。
若第四绝对值大于第二绝对值,则激光投影设备10可以确定投影图像的右上顶点的目标投影位置相对于其初始投影位置,沿与第二方向相反的方向偏移了第二目标偏移值。激光投影设备10可以采用上述方法确定右上顶点的校正位置。
基于上述方法,激光投影设备10可以确定出待显示的投影图像的左上顶点、左下顶点、右上顶点和右下顶点在第一图像坐标系的校正位置。
示例的,假设待显示的投影图像的右上顶点的初始位置大于校正位置,则激光投影设备10可以将待显示的投影图像的右上顶点以及位于该右上顶点的初始位置与校正位置之间的像素点均调整至该校正位置处。由此实现对该待显示的投影图像的校正处理,即缩小该待显示的投影图像,进而实现将待显示的投影图像显示在投影屏幕20的边框内,且不会发生形变。
在本公开实施例中,参考图7和图8,在激光投影设备10发生位移之后,投影屏幕20和待显示的投影图像030之间存在夹角,此时,该待显示的投影图像030会发生梯形形变,且该待显示的投影图像超出投影屏幕20之外。参考图9,在激光投影设备10的投影镜头104发生较大畸变后,该待显示的投影图像030的边缘会存在形变,且该待显示的投影图像超出投影屏幕20之外。
采用本公开实施例提供的方法,即便在激光投影设备10的投影镜头104发生较大畸变或者该激光投影设备10发生位移的情况下,该待显示的投影图像可以位于投影屏幕20内,且该投影显示在投影屏幕20上待显示的投影图像也不会发生形变,确保待显示的投影图像的显示效果较好。
综上所述,本公开实施例提供了一种激光投影设备,可以基于拍摄图像对待显示的投影图像的投影位置进行校正,由此避免待显示的投影图像超出投影屏幕之外,确保了待显示的投影图像的显示效果。
并且,由于拍摄图像是摄像机透过偏振片对投影屏幕进行拍摄得到的,且该偏振片的偏振化方向平行于目标投影光束的振动方向,因此可以确保目标投影光束完全传输至摄像机,并可以有效减少传输至摄像机的自然光。由于降低了外界自然光的干扰,因此确保了拍摄图像中投影图像的清晰度,进而可以确保基于该拍摄图像对待显示的投影图像的投影位置进行校正的准确性。
图10是本公开实施例提供的一种激光投影系统的结构示意图,如图10所示,该激光投影系统中的激光投影设备10还可以包括偏移量确定电路106和位置确定电路107。
其中,该偏移量确定电路106与该摄像机30和位置确定电路107连接。该偏移量确定电路106用于接收摄像机30发送的拍摄图像,并基于该拍摄图像确定上述目标偏移量。并将该目标偏移量发送至位置确定电路107。
该位置确定电路107与显示控制组件102连接,该位置确定电路107用于基于该目标偏移量确定待显示的投影图像的目标顶点在第一图像坐标系的校正位置,并基于该校正位置对待显示的投影图像进行校正处理,以及将该校正处理后的待显示的投影图像发送至显示控制组件102。
该显示控制组件102可以根据该校正处理后的待显示的投影图像中像素的像素值生成光调制信号,并将该光调制信号发送至光调制组件103。该光调制组件103用于在该光调制信号的控制下将照射至其表面的激光光束传输至投影镜头104。该投影镜头104用于将该影像光束投射至投影屏幕20,由此实现将该校正处理后的待显示的投影图像投影显示至投影屏幕20,进而实现对待显示的投影图像的投影位置的校正。
图11是本公开实施例提供的一种图像校正方法的流程图,该方法可以应用于图3、图4或图10所示的激光投影设备10。如图11所示,该方法可以包括:
步骤1101、响应于校正指令,将投影图像投影显示至投影屏幕。
步骤1102、获取摄像机透过偏振片对投影屏幕进行拍摄得到的拍摄图像。
其中,偏振片的偏振化方向平行于目标投影光束的振动方向,目标投影光束为被投影屏幕反射的投影光束中能够入射至偏振片的投影光束,投影光束为线偏振光。
步骤1103、根据拍摄图像对待显示的投影图像的投影位置进行校正。
上述步骤1101至步骤1103的具体实现方式可以参考上述系统实施例,本公开实施例在此不再赘述。
综上所述,本公开实施例提供了一种图像校正方法,该方法可以基于拍摄图像对待显示的投影图像的投影位置进行校正,由此避免待显示的投影图像超出投影屏幕之外,确保了待显示的投影图像的显示效果。
并且,由于拍摄图像是摄像机透过偏振片对投影屏幕进行拍摄得到的,且该偏振片的偏振化方向平行于目标投影光束的振动方向,因此可以确保目标投影光束完全传输至摄像机,并可以有效减少传输至摄像机的自然光。由于降低了外界自然光的干扰,因此确保了拍摄图像中投影图像的清晰度,进而可以确保基于该拍摄图像对待显示的投影图像的投影 位置进行校正的准确性。
图12是本公开实施例提供的另一种图像校正方法的流程图,该方法可以应用于图3、图4或图10所示的激光投影设备10。如图12所示,该方法可以包括:
步骤1201、响应于校正指令,将投影图像投影显示至投影屏幕。
步骤1202、获取摄像机透过偏振片对投影屏幕进行拍摄得到的拍摄图像,其中,偏振片的偏振化方向平行于目标投影光束的振动方向,目标投影光束为被投影屏幕反射的投影光束中能够入射至偏振片的投影光束,投影光束为线偏振光。
步骤1203、根据投影屏幕的多个顶点的初始位置,以及拍摄图像中投影屏幕的多个顶点的拍摄位置,确定摄像机的透视变换系数。
步骤1204、对于每个特征图形,根据摄像机的透视变换系数和特征图形在拍摄图像中的拍摄位置,确定特征图形在投影屏幕上的目标投影位置。
在一具体实施中,投影图像包括多个特征图形,投影屏幕为多边形;
在一具体实施中,摄像机的透视变换系数包括多个,激光投影设备可以根据多个透视变换系数确定透视变换矩阵,对于每个特征图形,激光投影设备可以根据透视变换矩阵的逆矩阵和特征图形在拍摄图像中的拍摄位置,确定特征图形在投影屏幕上的目标投影位置。
步骤1205、根据多个特征图形的目标投影位置和投影屏幕的顶点的位置,对待显示的投影图像的投影位置进行校正。
在本公开实施例中,摄像机的镜头在偏振片所在平面内的正投影位于偏振片内。偏振片的形状与镜头的形状相同。偏振片固定在摄像机上,或者,偏振片固定在激光投影设备的壳体上。
上述步骤1201至步骤1205的具体实现方式可以参考上述系统实施例,本公开实施例在此不再赘述。
综上所述,本公开实施例提供了一种图像校正方法,该方法可以基于拍摄图像对待显示的投影图像的投影位置进行校正,由此避免待显示的投影图像超出投影屏幕之外,确保了待显示的投影图像的显示效果。
并且,由于拍摄图像是摄像机透过偏振片对投影屏幕进行拍摄得到的,且该偏振片的偏振化方向平行于目标投影光束的振动方向,因此可以确保目标投影光束完全传输至摄像机,并可以有效减少传输至摄像机的自然光。由于降低了外界自然光的干扰,因此确保了拍摄图像中投影图像的清晰度,进而可以确保基于该拍摄图像对待显示的投影图像的投影位置进行校正的准确性。
本公开实施例提供了一种激光投影设备,包括:存储器,处理器及存储在存储器上的计算机程序,该处理器执行计算机程序时实现上述实施例所示的图像校正方法,例如,可以执行上述图11或图12所示的图像校正方法。
本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令。当该指令由处理器加载并执行以实现上述实施例所示的图像校正方法,例如,可以执行上述图11或图12所示的图像校正方法。
本公开实施例提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述实施例所示的图像校正方法,例如,可以执行上述图11或图12所示的图像校正方法。
在本公开实施例中,术语“第一”、“第二”、“第三”、“第四”、“第五”和“第六”仅用于描述目的,而不能理解为指示或暗示相对重要性。本申请实施例中术语“至少一个”的含义是指一个或多个以上。本申请实施例中术语“多个”的含义是指两个或两个以上。本公开实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种激光投影系统,其特征在于,所述激光投影系统包括:激光投影设备、投影屏幕、摄像机以及偏振片,所述偏振片位于所述摄像机靠近所述投影屏幕的一侧;所述激光投影设备,用于:
    响应于校正指令,将投影图像投影显示至所述投影屏幕;
    获取所述摄像机透过所述偏振片对所述投影屏幕进行拍摄得到的拍摄图像,其中,所述偏振片的偏振化方向平行于目标投影光束的振动方向,所述目标投影光束为被所述投影屏幕反射的投影光束中能够入射至所述偏振片的投影光束,所述投影光束为线偏振光;
    根据所述拍摄图像对待显示的投影图像的投影位置进行校正。
  2. 根据权利要求1所述的激光投影系统,其特征在于,所述摄像机的镜头在所述偏振片所在平面内的正投影位于所述偏振片内。
  3. 根据权利要求1所述的激光投影系统,其特征在于,所述偏振片的形状与所述镜头的形状相同。
  4. 根据权利要求1至3任一所述的激光投影系统,其特征在于,所述偏振片固定在所述摄像机上,或者,所述偏振片固定在所述激光投影设备的壳体上。
  5. 根据权利要求1至3任一所述的激光投影系统,其特征在于,所述偏振片位于所述激光投影设备投射至所述投影屏幕的投影光束的光路之外。
  6. 根据权利要求1至3任一所述的激光投影系统,其特征在于,所述投影图像包括多个特征图形,所述投影屏幕为多边形;所述激光投影设备,用于:
    对于每个所述特征图形,根据所述摄像机的透视变换系数和所述特征图形在所述拍摄图像中的拍摄位置,确定所述特征图形在所述投影屏幕上的目标投影位置;
    根据所述多个特征图形的目标投影位置和所述投影屏幕的顶点的初始位置,对所述待显示的投影图像的投影位置进行校正。
  7. 一种图像校正方法,其特征在于,应用于激光投影系统中的激光投影设备,所述激光投影系统还包括:投影屏幕、摄像机以及偏振片,所述偏振片位于所述摄像机靠近所述投影屏幕的一侧;所述方法包括:
    响应于校正指令,将投影图像投影显示至所述投影屏幕;
    获取所述摄像机透过所述偏振片对所述投影屏幕进行拍摄得到的拍摄图像,其中,所述偏振片的偏振化方向平行于目标投影光束的振动方向,所述目标投影光束为被所述投影屏幕反射的投影光束中能够入射至所述偏振片的投影光束,所述投影光束为线偏振光;
    根据所述拍摄图像对待显示的投影图像的投影位置进行校正。
  8. 根据权利要求7所述的方法,其特征在于,所述投影图像包括多个特征图形,所述投影屏幕为多边形;所述根据所述拍摄图像对待显示的投影图像的投影位置进行校正,包括:
    对于每个所述特征图形,根据所述摄像机的透视变换系数和所述特征图形在所述拍摄图像中的拍摄位置,确定所述特征图形在所述投影屏幕上的目标投影位置;
    根据所述多个特征图形的目标投影位置和所述投影屏幕的顶点的初始位置,对所述待显示的投影图像的投影位置进行校正。
  9. 根据权利要求8所述的方法,其特征在于,所述摄像机的透视变换系数包括多个;所述对于每个所述特征图形,根据所述摄像机的透视变换系数和所述特征图形在所述拍摄图像中的拍摄位置,确定所述特征图形在所述投影屏幕上的目标投影位置,包括:
    根据多个所述透视变换系数确定透视变换矩阵;
    对于每个所述特征图形,根据所述透视变换矩阵的逆矩阵和所述特征图形在所述拍摄图像中的拍摄位置,确定所述特征图形在所述投影屏幕上的目标投影位置。
  10. 根据权利要求7至9任一所述的方法,其特征在于,所述方法还包括:
    根据所述投影屏幕的多个顶点的初始位置,以及所述拍摄图像中所述投影屏幕的多个顶点的拍摄位置,确定所述摄像机的透视变换系数。
  11. 一种激光投影设备,其特征在于,包括:存储器,处理器及存储在存储器上的计算机程序,该处理器执行计算机程序时实现上述权利要求7至10所述的图像校正方法。
PCT/CN2022/082628 2021-05-17 2022-03-24 激光投影系统及图像校正方法、激光投影设备 WO2022242306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110536036.1A CN113259644B (zh) 2021-05-17 2021-05-17 激光投影系统及图像校正方法
CN202110536036.1 2021-05-17

Publications (1)

Publication Number Publication Date
WO2022242306A1 true WO2022242306A1 (zh) 2022-11-24

Family

ID=77182367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082628 WO2022242306A1 (zh) 2021-05-17 2022-03-24 激光投影系统及图像校正方法、激光投影设备

Country Status (2)

Country Link
CN (1) CN113259644B (zh)
WO (1) WO2022242306A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259644B (zh) * 2021-05-17 2022-07-22 青岛海信激光显示股份有限公司 激光投影系统及图像校正方法
CN113963644B (zh) * 2021-10-29 2024-07-23 青岛海信激光显示股份有限公司 一种激光显示装置、其图像显示方法和可读性存储介质
CN114979600B (zh) * 2022-06-13 2024-04-26 青岛海信激光显示股份有限公司 激光投影设备及投影图像的校正方法
CN116095282A (zh) * 2022-10-27 2023-05-09 中企瑞铭科技(北京)有限公司 用于图像投影的方法、处理设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102391A (zh) * 2006-07-03 2008-01-09 微光科技股份有限公司 指针输入系统的影像处理的校准及追迹方法
CN102263985A (zh) * 2011-07-25 2011-11-30 深圳展景世纪科技有限公司 一种立体投影设备的质量评价方法、装置及系统
CN103189823A (zh) * 2010-11-12 2013-07-03 3M创新有限公司 交互式偏振保持投影显示器
CN204929110U (zh) * 2015-06-23 2015-12-30 深圳市时代华影科技股份有限公司 一种高光效3d投影系统的亮度均匀性参数采集系统
CN107396075A (zh) * 2017-08-08 2017-11-24 海信集团有限公司 一种投影图像校正信息的生成方法及生成装置
CN107547881A (zh) * 2016-06-24 2018-01-05 上海顺久电子科技有限公司 一种投影成像的自动校正方法、装置及激光电视
US20190253679A1 (en) * 2018-02-09 2019-08-15 Panasonic Intellectual Property Management Co., Ltd. Projection system
CN211239951U (zh) * 2020-03-31 2020-08-11 维沃移动通信有限公司 一种摄像模组和电子设备
CN113259644A (zh) * 2021-05-17 2021-08-13 青岛海信激光显示股份有限公司 激光投影系统及图像校正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862360A (zh) * 2006-06-26 2006-11-15 北京理工大学 用于投影屏幕的触摸检测系统
CN105554486A (zh) * 2015-12-22 2016-05-04 Tcl集团股份有限公司 一种投影校正方法和装置
CN106094405B (zh) * 2016-06-03 2017-11-21 海信集团有限公司 投影图像校正方法、装置和投影机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102391A (zh) * 2006-07-03 2008-01-09 微光科技股份有限公司 指针输入系统的影像处理的校准及追迹方法
CN103189823A (zh) * 2010-11-12 2013-07-03 3M创新有限公司 交互式偏振保持投影显示器
CN102263985A (zh) * 2011-07-25 2011-11-30 深圳展景世纪科技有限公司 一种立体投影设备的质量评价方法、装置及系统
CN204929110U (zh) * 2015-06-23 2015-12-30 深圳市时代华影科技股份有限公司 一种高光效3d投影系统的亮度均匀性参数采集系统
CN107547881A (zh) * 2016-06-24 2018-01-05 上海顺久电子科技有限公司 一种投影成像的自动校正方法、装置及激光电视
CN107396075A (zh) * 2017-08-08 2017-11-24 海信集团有限公司 一种投影图像校正信息的生成方法及生成装置
US20190253679A1 (en) * 2018-02-09 2019-08-15 Panasonic Intellectual Property Management Co., Ltd. Projection system
CN211239951U (zh) * 2020-03-31 2020-08-11 维沃移动通信有限公司 一种摄像模组和电子设备
CN113259644A (zh) * 2021-05-17 2021-08-13 青岛海信激光显示股份有限公司 激光投影系统及图像校正方法

Also Published As

Publication number Publication date
CN113259644A (zh) 2021-08-13
CN113259644B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2022242306A1 (zh) 激光投影系统及图像校正方法、激光投影设备
WO2022206527A1 (zh) 投影图像的校正方法及激光投影设备
JP3844076B2 (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
WO2022247418A1 (zh) 图像校正方法及拍摄设备
US9348212B2 (en) Image projection system and image projection method
CN102365865B (zh) 多投影显示系统和屏幕画面形成方法
JP5338718B2 (ja) 補正情報算出装置、画像処理装置、画像表示システム、および画像補正方法
US20070091334A1 (en) Method of calculating correction data for correcting display characteristic, program for calculating correction data for correcting display characteristic and apparatus for calculating correction data for correcting display characteristic
JP2006060447A (ja) スクリーンの一部の辺を用いたキーストーン補正
JP2005124131A (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
WO2022247419A1 (zh) 激光投影设备及图像校正系统
US11218662B2 (en) Image processing device, image processing method, and projection system
CN112954285B (zh) 投影画面的显示方法以及激光投影设备
CN113259637B (zh) 投影图像的校正方法及激光投影系统
CN114979599B (zh) 激光投影设备及投影图像的校正方法
US20220262284A1 (en) Control device, control method, control program, and control system
CN114979600B (zh) 激光投影设备及投影图像的校正方法
CN116866537A (zh) 一种基于角点检测的投影图像畸变校正方法及投影系统
CN114401388B (zh) 投影方法、装置、存储介质以及投影设备
CN114900675A (zh) 激光投影设备及投影图像的校正方法
JP2006214922A (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
JP2011199717A (ja) 投写型表示装置および画像表示方法
CN115134569A (zh) 图像显示方法和投影仪
WO2023115857A1 (zh) 激光投影设备及投影图像的校正方法
CN114765680A (zh) 投影图像的校正方法及激光投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22803632

Country of ref document: EP

Kind code of ref document: A1