WO2022241855A1 - 一种在线测量高温螺栓轴力的超声探头 - Google Patents

一种在线测量高温螺栓轴力的超声探头 Download PDF

Info

Publication number
WO2022241855A1
WO2022241855A1 PCT/CN2021/098225 CN2021098225W WO2022241855A1 WO 2022241855 A1 WO2022241855 A1 WO 2022241855A1 CN 2021098225 W CN2021098225 W CN 2021098225W WO 2022241855 A1 WO2022241855 A1 WO 2022241855A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
damping block
piezoelectric wafer
piezoelectric
waveguide rod
Prior art date
Application number
PCT/CN2021/098225
Other languages
English (en)
French (fr)
Inventor
贾九红
张钰炯
涂善东
轩福贞
Original Assignee
华东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学 filed Critical 华东理工大学
Priority to GB2317628.2A priority Critical patent/GB2621519A/en
Publication of WO2022241855A1 publication Critical patent/WO2022241855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/24Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed
    • G01L5/246Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining value of torque or twisting moment for tightening a nut or other member which is similarly stressed using acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to an ultrasonic probe for online measurement of high-temperature bolt axial force, in particular to an integrated ultrasonic probe and a split-type ultrasonic probe for online measurement of high-temperature bolt axial force.
  • the device can perform online long-term measurement of bolt axial force in a high-temperature environment. It belongs to the field of ultrasonic nondestructive testing.
  • Pressure vessels, pipelines and other pressure-bearing special equipment are widely used in petrochemical, electric power, metallurgy and other pillar fields of the national economy, and most of them work in harsh environments such as high temperature and high pressure.
  • pressure-bearing equipment has developed towards extreme directions such as high parameters, heavy duty, and long-life service.
  • Bolts are key components for the assembly of these pressure-bearing equipment.
  • the resulting leakage is the industry's biggest safety hazard.
  • the pre-tightening force applied to the bolt has a great influence on the use state, performance and life of the bolt.
  • Commonly used methods for measuring bolt axial force include torque wrench method, pasted strain gauge method, stress washer method, implanted strain gauge method, implanted fiber grating method, ultrasonic measurement technology, etc.
  • torque wrench method pasted strain gauge method
  • stress washer method implanted strain gauge method
  • implanted fiber grating method implanted fiber grating method
  • ultrasonic measurement technology etc.
  • construction personnel often use the torque wrench method to control the bolt axial force in the connection structure.
  • Manual torque wrench or pneumatic, hydraulic or electric wrench are usually used to indirectly control the bolt preload through tightening torque. This method is easy to operate and low in cost, but the measurement accuracy of the bolt axial force is not high; the sticking strain gauge method is a commonly used method for measuring the bolt axial force in engineering. Stress, realize bolt axial force detection.
  • strain gauges will experience stress relaxation at high temperatures, which cannot meet the needs of long-term monitoring;
  • the stress washer method is to make the pressure sensor into the shape of a washer, and install it under the bolt head like an ordinary washer to monitor the axial direction of the bolt. force.
  • this method changes the original installation standard of the connector and cannot be used in large quantities;
  • the method of implanting strain gauges is similar to the method of implanting optical fiber gratings, and both need to process a small hole in the axial direction on the top of the bolt, and embed the strain gauge in it.
  • the strain gauge or fiber Bragg grating strain sensor) senses the deformation of the bolt inside the bolt, and then measures the axial force of the bolt in real time. Such methods change the strength of the bolts, and the seals of high-temperature and high-pressure devices do not allow this operation.
  • US2012222485A1 and EP1776571A1 patents released a bolt axial force measurement system based on ultrasonic measurement technology, which improved the stability and reliability of component connections.
  • CN109781332A and CN109668672A measure the acoustic time difference between the free state and the fastened state of the bolt through ultrasonic waves, calculate the elongation of the bolt based on the acoustic time difference, and then obtain the axial force of the bolt to achieve the purpose of measuring the axial force of the bolt.
  • CN108387338A discloses a method and system for real-time and high-precision detection of bolt axial force based on a piezoelectric ultrasonic chip. Utilizing the change law of ultrasonic single-wave flight time difference with stress value, a high-precision fitting relationship between ultrasonic flight time difference and bolt axial force is established to realize real-time detection of bolt axial force. However, these methods cannot monitor the axial force of high-temperature bolts for a long time during service.
  • this patent utilizes the characteristic that the acoustic energy is concentrated in the center of the bolt when the SH0 wave and A0 wave propagate, and the waveguide rod is designed as a gap between the high-temperature bolt and the transducer that is easily affected by temperature
  • the sound wave propagation medium ensures that the ultrasonic transducer can work stably for a long time, so as to achieve the purpose of accurately measuring the bolt axial force in a high temperature environment.
  • the technical problem to be solved by the invention is to provide a reliable and convenient ultrasonic measuring probe for on-line monitoring of bolt axial force in high temperature environment.
  • an integrated ultrasonic probe for online measurement of the axial force of high-temperature bolts includes: piezoelectric wafer I17, piezoelectric wafer II7 and piezoelectric wafer III6 embedded in the upper damping block 5,
  • the upper surface of the upper damping block 5 is provided with a circuit board 16 that matches the impedance of the piezoelectric wafer I17, piezoelectric wafer II7 and piezoelectric wafer III6, and is sealed on the upper damping block 5 by an adhesive layer.
  • the three positive wires and the three negative wires are respectively After connecting the positive and negative poles of the three piezoelectric wafers, pass through the upper damping block 5 and connect to the circuit board 16, and then connect with the threaded joint 12 located outside the cover-shaped housing 1; the upper damping block 5 and the lower damping block 8 of the same diameter Close fit, tightly fixed by the inner shell 18, the upper end of the inner shell 18 is embedded in the cover-shaped shell 1, and the lower end is embedded in the cylindrical shell 9; the upper ends of the waveguide rod I19 and the waveguide rod II11 pass through the circular bottom cover 10 in sequence and the lower damping block 8, connected with the corresponding piezoelectric chip, the lower end surfaces of the waveguide rod I19 and the waveguide rod II11 are in close contact with the top of the measured bolt; the upper end surface of the waveguide rod I19 is connected with the piezoelectric chip 17 to excite the SH0 wave; the left side of the waveguide II11 is connected to the piezoelectric chip II7, the right side of the waveguide rod
  • the waveguide I19 and waveguide II11 are strip-shaped thin plates with a rectangular cross-section; the width of the waveguide is related to the wavelength ⁇ of the ultrasonic signal propagated therein, and the width of the waveguide is equal to 5 ⁇ ; based on the heat dissipation capacity of the waveguide and For wave propagation truncation theory research, the thickness of the waveguide rod can be selected as 1mm; the length of the waveguide rod is based on the temperature t of the measured bolt, and the ANSYS software is used to calculate the required length from the temperature t to the ambient temperature under the condition of air cooling .
  • the piezoelectric wafer I17, piezoelectric wafer II7, and piezoelectric wafer III6 are all cuboids, and their lengths are all 0.9 times the width of the waveguide rod, and their widths are equal to the thickness of the respectively installed waveguide rods.
  • the connection method can be bonding
  • the diameter of the upper damping block 5 is greater than the lengths of the piezoelectric wafer I17, the piezoelectric wafer II7 and the piezoelectric wafer III6, and the lower surface of the upper damping block 5 is flush with the lower surfaces of the three piezoelectric wafers;
  • the upper end surface of the waveguide I19 is flush with the upper surface of the lower damping block 8, and the upper end surface of the waveguide II11 is 2mm higher than the upper surface of the lower damping block 8; the lower surfaces of the waveguide I19 and the waveguide II11 are at On the same plane, the total length of the waveguide rod II11 is 3 mm longer than that of the waveguide rod I19; the through groove of the lower damping block 8 and the through groove of the circular bottom cover 10 can clamp the upper part of the waveguide rod I19 and the waveguide rod II11.
  • the present invention also provides a split-type ultrasonic probe for measuring the axial force of high-temperature bolts, which is characterized in that the split-type ultrasonic probe includes a SH0 probe 30 and an A0 probe 31, and the two probes are used together;
  • the SH0 probe 30 includes: the piezoelectric chip I17 is embedded in the upper damping block 21 of the SH0 probe, and an SH0 probe circuit board 20 matching the impedance of the piezoelectric chip I17 is arranged on the upper surface of the upper damping block 21, and sealed in the On the damping block 21 of the SH0 probe, two wires are respectively connected to the positive and negative poles of the piezoelectric chip I17, pass through the upper damping block 21 of the SH0 probe to connect to the SH0 probe circuit board 20, and connect to the threaded joint 12 located outside the shell 1;
  • the upper damping block 21 of the SH0 probe and the lower damping block 22 of the SH0 probe of the same diameter are closely attached, and are tightly fixed by the inner shell 18.
  • the upper end of the inner shell 18 is embedded in the cover-shaped shell 1, and the lower end is embedded in the cylindrical shell 9;
  • the upper end surface of the waveguide rod I19 passes through the circular bottom cover 23 of the SH0 probe and the lower damping block 22 of the SH0 probe, and is connected to the piezoelectric wafer I17;
  • the A0 probe 31 includes: the piezoelectric wafer II7 and the piezoelectric wafer III6 are embedded in the circular A0 probe upper damping block 25, and the upper surface of the A0 probe upper damping block 25 is provided with a piezoelectric wafer II7 and piezoelectric wafer III6 Impedance-matched A0 probe circuit board 24 is sealed on the damping block 25 on the A0 probe through an adhesive layer, and the four wires are respectively connected to the positive and negative poles of the piezoelectric wafer II7 and piezoelectric wafer III6, and pass through the damping block 25 on the A0 probe Through the A0 probe circuit board 24, it is connected to the threaded joint 12 located outside the cover-shaped shell 1; the upper damping block 25 of the A0 probe and the lower damping block 26 of the A0 probe of the same diameter are closely fitted, and are tightly fixed by the inner shell 18, and the inner shell 18 The upper end is embedded in the cover-shaped casing 1, and the lower end is embedded in the cylindrical casing 9; the upper end surface of
  • the diameter of the damping block 21 on the SH0 probe is greater than the length of the piezoelectric wafer I17, and the lower surface of the damping block 21 on the SH0 probe is flush with the lower surface of the piezoelectric wafer I17.
  • the upper end surface of the waveguide rod I19 is flush with the upper surface of the lower damping block 22 of the SH0 probe, and the through groove of the lower damping block 22 of the SH0 probe and the through groove of the circular bottom cover 23 of the SH0 probe can clamp the upper part of the waveguide rod I19.
  • the diameter of the damping block 25 on the A0 probe is larger than the length of the piezoelectric wafer II7 and the piezoelectric wafer III6, and the lower surface of the damping block 25 on the A0 probe is flush with the lower surfaces of the piezoelectric wafer II7 and the piezoelectric wafer III6.
  • the upper end surface of the waveguide rod II11 is 2 mm higher than the upper surface of the lower damping block 26 of the A0 probe; the through groove of the lower damping block 26 of the A0 probe and the through groove of the circular bottom cover 27 of the A0 probe can clamp the upper part of the waveguide rod II11.
  • the waveguide rod I19 and the waveguide rod II11 are bent along axes parallel to their cross-sectional directions.
  • the ultrasonic probe can simultaneously excite single-mode SH0 wave and A0 wave, and determine the axial force of the bolt through the speed ratio method of A0 wave and SH0 wave. Since the sound wave energy is concentrated in the center of the bolt when the SH0 wave and A0 wave propagate, the interference of the bolt thread on the sound wave propagation can be reduced, and the accurate measurement of the axial force of the high temperature bolt can be realized.
  • the ultrasonic probe can be integrated, or can be divided into SH0 probe and A0 probe split structure according to the actual installation space requirements.
  • the one-piece structure saves manufacturing costs and is easy to install; the split structure can be bent according to the installation environment of the tested piece, thereby improving its usability to the environment.
  • the probe introduces a waveguide rod as the sound wave propagation medium between the high-temperature bolt and the piezoelectric chip that is easily affected by temperature, so that the piezoelectric chip is not affected by high temperature, thus ensuring the long-term monitoring of the axial force of the high-temperature bolt.
  • the ultrasonic probe for measuring the axial force of high-temperature bolts will effectively reduce the tedious auxiliary work such as removing the insulation layer and setting up scaffolding.
  • the waveguide rod extends the monitoring signal of the tested piece from the high temperature zone (50°C to 650°C) to the normal temperature zone for sensing, which improves the working environment of the probe’s piezoelectric chip, circuit and other temperature sensitive components, and can detect the temperature in the high temperature environment.
  • the axial force of the bolt is measured online for a long time.
  • Fig. 1 is a schematic view of the integrated structure of the present invention.
  • FIG. 2 is a schematic structural diagram of the split-type SHO probe of the present invention.
  • FIG. 3 is a schematic structural diagram of the split A0 probe of the present invention.
  • FIG. 4 is a perspective view of a waveguide sensor capable of exciting and receiving SHO waves according to the present invention.
  • FIG. 5 is a perspective view of a waveguide sensor capable of exciting and receiving A0 waves according to the present invention.
  • Fig. 6 is a front view of the waveguide sensor for exciting and receiving A0 waves of the present invention.
  • Fig. 7 is a front view of an installation example of an integrated ultrasonic probe used in the present invention when there is sufficient space for the axial installation of bolts.
  • Fig. 8 is a left side view of an installation example of an integrated ultrasonic probe used in the present invention when there is sufficient space for the axial installation of bolts.
  • Fig. 9 is a front view of an installation example of a split-type ultrasonic probe used when the axial installation space of bolts is limited according to the present invention.
  • Fig. 10 is a top view of an installation example of a split-type ultrasonic probe used when the axial installation space of bolts is limited according to the present invention.
  • Fig. 11 is the second installation example of the split ultrasonic probe of the present invention.
  • Fig. 12 is a top view of the second installation example of the split ultrasonic probe of the present invention.
  • Fig. 13 is a working principle diagram of an implementation case of an ultrasonic probe for measuring wall thickness thinning in an extreme environment of the present invention.
  • the integrated ultrasonic probe for measuring the axial force of high-temperature bolts includes: the lower end surfaces of waveguide rod I19 and waveguide rod II11 are in contact with the top of the measured bolt.
  • the upper end surface of the waveguide rod I19 passes through the circular back cover 10 and the lower damping block 8, and is in close contact with the lower surface of the piezoelectric wafer I17; II7 is connected with piezoelectric wafer III6.
  • Three piezoelectric chips are embedded in the upper damping block 5 , and the lower surface of the piezoelectric chips is flush with the lower surface of the upper damping block 5 .
  • the central part of the circular bottom cover 10 and the lower damping block 8 is provided with a through groove, and the two through grooves tightly clamp the upper ends of the waveguide rod I19 and the waveguide rod II11; the three positive wires are respectively connected to the positive poles of the three piezoelectric chips, and the three negative wires Connect the negative poles of the three electric chips respectively, the six wires pass through the upper damping block 5, connect to the circuit board 16 glued on the upper damping block and connect to the threaded joint 12; the threaded joint 12 is arranged on the outside of the cover-shaped casing 1;
  • the lower surface of the upper damping block 5 is closely attached to the upper surface of the lower damping block 8, and is fixed by the inner shell 18; the upper end of the inner shell 18 is embedded in the cover-shaped outer shell 1, and the lower end of the inner shell 18 is embedded in the cylindrical outer shell 9 .
  • the SH0 probe includes: the lower end surface of the waveguide rod I19 is in contact with the top of the measured bolt, the upper end surface of the waveguide rod I19 passes through the circular bottom cover 23 of the SH0 probe and the lower damping block 22 of the SH0 probe, and the pressure The lower surface of the transistor I17 is closely attached.
  • the piezoelectric chip I17 is embedded in the damping block 21 on the SH0 probe, and the lower surface of the piezoelectric chip I17 is flush with the lower surface of the damping block 21 on the SH0 probe.
  • the circular bottom cover 23 of the SH0 probe and the center of the lower damping block 22 of the SH0 probe have a through groove, and the diameter of the lower damping block 22 of the SH0 probe is greater than the length of the through groove.
  • the two-way slot tightly clamps the upper end of the waveguide rod I19; the piezoelectric chip I17 is connected to the SH0 probe circuit board 20 through a wire and connected to the threaded joint 12; the lower surface of the upper damping block 21 of the SH0 probe is connected to the lower damping block 22 of the SH0 probe
  • the upper surface is closely fitted and fixed by the inner shell 18; the upper end of the inner shell 18 is embedded in the outer shell 1, and the lower end of the inner shell 18 is embedded in the outer shell 9.
  • the A0 probe includes: the lower end surface of the waveguide rod II11 is in contact with the top of the measured bolt, the upper end of the waveguide rod II11 passes through the circular back cover 27 of the A0 probe, the lower damping block 26 of the A0 probe and the piezoelectric wafer The close fit of the right surface of II7 and the left surface of piezoelectric wafer III6. Both the piezoelectric wafer II7 and the piezoelectric wafer III6 are embedded in the upper damping block 31, and their lower surfaces are flush with the lower surface of the upper damping block 25 of the A0 probe.
  • A0 probe circular back cover 27 and central part of A0 probe lower damping block 26 have a through groove, and the diameter of A0 probe lower damping block 26 is greater than the length of the through groove.
  • the two-way groove tightly clamps the upper end of the waveguide rod II11; the piezoelectric wafer II7 and the piezoelectric wafer III6 are connected to the A0 probe circuit board 24 through wires and connected to the threaded joint 12; the lower surface of the damping block 25 on the A0 probe is connected to the lower surface of the A0 probe
  • the upper surface of damping block 26 fits closely, and both are fixed by inner shell 18;
  • the upper and lower surfaces of the piezoelectric chip I17 are electrode surfaces, and the polarization direction is parallel to the electrode surfaces.
  • the positive lead wire 13 of the piezoelectric chip I is connected to the positive electrode on the upper surface of the piezoelectric chip I17, and the negative lead wire 14 of the piezoelectric chip I is connected to the negative electrode on the front side thereof.
  • the center of the cross section of the piezoelectric wafer I17 coincides with the center of the upper end surface of the waveguide rod I19, the lower surface of the piezoelectric wafer I17 is parallel to the upper end surface of the waveguide rod I19, and the joints can be bonded or welded.
  • the combination of piezoelectric chip I17 and waveguide rod I19 can excite and receive SH0 waves.
  • the left and right sides of piezoelectric wafer II7 and piezoelectric wafer III6 are electrode surfaces, and the polarization direction is perpendicular to the electrode surfaces.
  • the positive wire 2 of the piezoelectric chip II7 is connected to the positive electrode on the left side of the piezoelectric chip II7, and the negative electrode lead 15 of the piezoelectric chip II is connected to the negative electrode on the front side of the piezoelectric chip II.
  • the positive wire 3 of the piezoelectric wafer III6 is connected to the positive electrode on the right side of the piezoelectric wafer III6, and the negative electrode wire 4 of the piezoelectric wafer III6 is connected to the negative electrode on the front side of the piezoelectric wafer III6.
  • the right side of the piezoelectric chip II7 is connected to the left side of the waveguide rod II11, and the left side of the piezoelectric chip III6 is connected to the right side of the waveguide rod II11.
  • the joints can be bonded or welded, and the two are symmetrical. Installed on the left and right sides of the waveguide II11, 1mm away from the upper end surface of the waveguide II11.
  • the combination of piezoelectric chip II7, piezoelectric chip III6 and waveguide rod II11 can excite and receive A0 wave.
  • the integrated ultrasonic probe 28 for measuring the axial force of the high-temperature bolt is selected, and the bottom of the two waveguides is in contact with the top of the bolt I 29 to be tested.
  • the piezoelectric wafer I17 vibrates to excite the SH0 wave, which passes through the waveguide rod I19, propagates and enters the bolt I29 to be tested.
  • the reflected echo at the bottom of the bolt returns through the waveguide rod I19, and is sensed by the piezoelectric chip I17 and converted into an electrical signal;
  • the piezoelectric wafer II7 and the piezoelectric wafer III6 vibrate at the same time, and the A0 wave is excited, passes through the waveguide rod II11, propagates and enters the bolt I29 to be tested, and the reflected echo returns through the waveguide rod II11, and is received by the piezoelectric wafer II7 and the piezoelectric Chip III6 senses and transforms into electrical signals.
  • the pretightening force of the bolt is calculated by the speed ratio method of the A0 wave and the SH0 wave.
  • a damping block is designed inside the probe to absorb the interference clutter; in addition, when an electric excitation is applied to the piezoelectric chip, the piezoelectric chip starts to vibrate, and the upper damping block also plays a damping role on the piezoelectric chip, making the piezoelectric chip
  • the chip stops as soon as possible to reduce aftershocks, reduce the ultrasonic pulse width, and improve the resolution of ultrasonic detection;
  • the upper damping block and the lower damping block are mainly composed of epoxy resin, curing agent, rubber, calcium powder, and lead tetraoxide in proportion.
  • the sound-absorbing material formed is directly poured around the piezoelectric wafer after deployment.
  • the lower damping block is slightly harder than the upper damping block, which plays the role of fixing the piezoelectric chip and the waveguide rod, and the upper damping block is slightly soft, which can play the role of protecting the wire.
  • the circular back cover 10, the circular back cover 23 of the SH0 probe, and the circular back cover 27 of the A0 probe can be made of aluminum oxide (corundum) film, which is a commonly used hard protective film for probes to protect the damping block from pollution and damage by the working environment.
  • aluminum oxide (corundum) film which is a commonly used hard protective film for probes to protect the damping block from pollution and damage by the working environment.
  • the threaded joint 12 is externally connected to a wire, and is connected with a signal acquisition device.
  • the integrated ultrasonic probe and the split SH0 probe and A0 probe are respectively designed and processed.
  • Piezoelectric chip I17, piezoelectric chip II7, piezoelectric chip III6 choose 2-2 composite materials
  • round back cover 10, SH0 probe round back cover 23, A0 probe round back cover 27 choose alumina (corundum)
  • inner shell 18 choose Polytetrafluoroethylene
  • the upper damping block 5, the upper damping block 21 of the SH0 probe and the upper damping block 25 of the A0 probe are made of cement material
  • the lower damping block 8 the lower damping block 22 of the SH0 probe and the lower damping block 26 of the A0 probe are made of silicon powder
  • the clay material, the cover-shaped shell 1 is made of hard aluminum alloy 2219.
  • the waveguide I19 and waveguide II11 are made of 42CrMo stainless steel with a thickness of 1mm and a width of 20mm.
  • the length of the waveguide I19 is 300mm, and the length of the waveguide II11 is 303mm.
  • the thickness of piezoelectric wafer I17, piezoelectric wafer II7 and piezoelectric wafer III6 is 1mm, the width is 1mm, and the length is 18mm.
  • the impedance matching between circuit board 16 and piezoelectric wafer I17, piezoelectric wafer II7 and piezoelectric wafer III6 is determined by Commercially available resistors, capacitors and other components are assembled.
  • the present invention selects accessories of Guangdong Fenghua High-tech Co., Ltd. with the following specifications: capacitor model: CC4-0805N200J500F3, resistor model: RC-MTO8W512JT, and inductor model: LGA0204-221KP52E.
  • the sample to be tested is a bolt with a size of M24mm ⁇ 95mm. Put the bolt to be tested into the high-temperature box 35. Two slot holes are opened on the upper part of the high-temperature box 35. Under different working conditions, an integrated ultrasonic probe and a split-type ultrasonic probe are used respectively.
  • SH0 probe and A0 probe Insert the lower end faces of waveguide rod I19 and waveguide rod II11 of the probe into the slot hole of high temperature box 35 from top to bottom, and weld waveguide rod I19 and waveguide rod II11 on the top of the bolt. Except for the lower part of the waveguide I19 and the waveguide II11, other parts of the ultrasonic probe of the present invention are placed outside the high temperature box 35 and connected to the signal acquisition instrument through wires.
  • the temperature of the high-temperature box is heated to 300°C, and the measurement is carried out after 20 minutes of heat preservation.
  • the measurement results of the integrated and split probes are the same, both are 95.2mm, and the error is 2%, which

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明涉及一种测量高温螺栓轴力的一体式和分体式超声探头,一体式超声探头直立安装,分体式超声探头弯曲安装。所述的一体式测量高温螺栓轴力的超声探头可分别激发与接受SH0波和A0波;所述的分体式测量高温螺栓轴力的超声探头,包括可激发与接受SH0波的SH0探头,和可激发与接受A0波的A0探头,两探头需配合使用。本发明基于SH0波与A0波传播时声波能量集中在螺栓中央,且当螺栓轴力变化时SH0波与A0波的波速变化不同的特性,引入波导杆作为高温螺栓与易受温度影响的超声换能器之间的传播媒介,确保超声换能器能长时间在舒适环境中稳定工作,以达到测量高温环境下的螺栓轴力的目的。

Description

一种在线测量高温螺栓轴力的超声探头
相关申请的交叉引用
本申请主张2021年5月20日提交的申请号为202110549336.3的中国发明专利申请的优先权,其内容通过引用的方式并入本申请中。
技术领域
本发明涉及一种在线测量高温螺栓轴力的超声探头,具体涉及在线测量高温螺栓轴力的一体式超声探头和分体式超声探头,该装置可对高温环境中的螺栓轴力进行在线长期测量。属于超声无损检测领域。
背景技术
压力容器、管道等承压类特种设备广泛用于石化、电力、冶金等国民经济支柱领域,大多在高温高压等严苛环境下工作。近年来,随着减碳增效的需求增大,承压设备朝着高参数、重型化和长寿命服役等极端化方向发展,螺栓是这些承压类设备装配的关键元件,螺栓轴力变化引起的泄漏是行业最大的安全隐患。施加于螺栓上的预紧力对于螺栓的使用状态、性能和寿命都有较大的影响。预紧力太小容易导致联接的不可靠,工作时产生振动松弛、结构滑移等现象;预紧力太大就会增加螺栓的负荷,使螺栓极易断裂,从而削弱该节点的承载力,严重时可能诱发结构失稳;而由于交变载荷引发的螺栓松动且很难被检测到,最终造成巨大破坏与损失。因此,实时监测螺栓轴力对于确保螺栓组装结构的稳定性和可靠性至关重要。
常用螺栓轴力的测量方法有扭矩扳手法,黏贴应变片法,应力垫圈法,植入应变片法,植入光纤光栅法、超声波测量技术等。在工程中,施工人员常采用扭矩扳手法控制连接结构中的螺栓轴力,手动扭矩扳手或气动、液压或电动扳手通常用于通过拧紧扭矩间接控制螺栓预载。这种方法操作简单,成本低,但对螺栓轴力的测量精确不高;黏贴应变片法是工程中常用的螺栓轴力测量方法,通过测量螺栓表面的应变,计算出被测螺栓表面的应力,实现螺栓轴力检测。但应变片在高温中会发生应力松弛现象,无法满足长期监测的需求;应力垫圈法是将压力传感器做成垫圈的外形,将其像普通垫圈一样装在螺栓头的下方,监测螺栓的轴向力。但是这种方式改变了连接件原有的安装标准,无法大量使用;植入应变片法与植入光纤光栅法类似,均需在螺栓顶端沿轴向加工一个小孔,并在其中埋入应变片(或光纤光栅应变传感器),应变片(或光纤光栅应变传感器)在螺栓内部感知螺栓变形,进而实时测量螺栓 轴力。这类方法改变了螺栓的强度,高温高压类装置的密封不允许这种操作。
为了寻找一种不对螺栓有任何改变的螺栓轴力测量方法,US2012222485A1和EP1776571A1专利发布了基于超声波测量技术的螺栓轴力测量系统,提升了部件连接稳固性和可靠性。CN109781332A、CN109668672A通过超声波测量螺栓自由状态和紧固状态下的声时差,基于所述声时差计算螺栓的伸长量,进而求出螺栓轴力,达到对螺栓轴力测量的目的。CN108387338A公开了一种基于压电超声晶片的螺栓轴力实时高精度检测方法及系统。利用超声波单波飞行时间差随应力值变化规律,建立起超声波飞行时间差与螺栓轴力之间的高精度拟合关系,实现螺栓轴力的实时检测。但是这些方法不能对高温螺栓在役期间的螺栓轴力进行长期监测。
为了设计一种在线测量高温螺栓轴力的超声探头,本专利利用SH0波与A0波传播时声波能量集中在螺栓中央的特性,设计波导杆作为高温螺栓与易受温度影响的换能器之间的声波传播媒介,确保超声换能器能长时间稳定工作,以达到精确测量高温环境下的螺栓轴力的目的。
发明内容
本发明所要解决的技术问题是为高温环境下螺栓轴力的在线监测提供一种可靠的、便捷的超声测量探头。
本发明是通过下述技术方案实现的:
一种在线测量高温螺栓轴力的一体式超声探头,其主要特点是,所述的一体式超声探头包括:压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6镶嵌于上阻尼块5内,上阻尼块5的上表面设置一块与压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6阻抗匹配的电路板16,由胶层封于上阻尼块5上,三条正极导线和三条负极导线分别连接三个压电晶片的正负极后,穿过上阻尼块5接通电路板16后,与位于盖状外壳1外侧的螺纹接头12相连;上阻尼块5和同直径的下阻尼块8紧密贴合,由内壳18紧密固定,内壳18上端内嵌在盖状外壳1中,下端内嵌在筒状外壳9里;波导杆Ⅰ19和波导杆Ⅱ11的上端依次穿过圆形封底10和下阻尼块8,与对应的压电晶片相连,波导杆Ⅰ19和波导杆Ⅱ11的下端面与被测螺栓的顶部紧密接触;波导杆Ⅰ19的上端面与压电晶片17相连,激励单一模式的SH0波;波导杆Ⅱ11的左侧面与压电晶片Ⅱ7相连,波导杆Ⅱ11的右侧面与压电晶片Ⅲ6相连接,压电晶片Ⅱ7和压电晶片Ⅲ6共同激励,产生单一模式的A0波。
所述的波导杆Ⅰ19和波导杆Ⅱ11为带状薄板,其横截面为矩形;波导杆的宽度与其中所 传播的超声信号波长λ有关,波导杆的宽度等于5λ;基于波导杆的散热能力和波传播截断理论研究,波导杆的厚度可以选择为1mm;波导杆的长度根据被测螺栓的温度t,采用ANSYS软件,计算在空气冷却的情况下从温度t降低至环境温度所需要的长度值。
所述压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6均为长方体,其长度均为波导杆宽度的0.9倍,其宽度均等于各自所安装的波导杆的厚度,压电晶片的厚度t根据所需激励频率,使用公式t=N/f(其中f为压电晶片频率,N为压电材料系统)计算确定;所述的压电晶片Ⅰ17的电极面为其上下表面或者压电晶片Ⅰ17的任何一个侧面;压电晶片Ⅰ17的极化方向与电极面平行;所述的压电晶片Ⅱ7和压电晶片Ⅲ6的电极面为其左右侧面或者与波导杆接触任一邻近的侧面;压电晶片Ⅱ7和压电晶片Ⅲ6的极化方向和电极面垂直,用以激发A0波的压电晶片Ⅱ7和压电晶片Ⅲ6同时使用,由压电晶片Ⅱ7接受A0波;波导杆与压电晶片之间连接方式可以是粘接或焊接。
所述的上阻尼块5的直径大于压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6的长度,上阻尼块5的下表面与三个压电晶片的下表面平齐;
所述的波导杆Ⅰ19上端面与下阻尼块8的上表面平齐,所述的波导杆Ⅱ11上端面高出下阻尼块8的上表面2mm;波导杆Ⅰ19和波导杆Ⅱ11的下表面则处在同一平面,波导杆Ⅱ11总长比波导杆Ⅰ19长3mm;下阻尼块8的通槽和圆形封底10的通槽可卡住波导杆Ⅰ19和波导杆Ⅱ11的上部。
根据安装空间的不同需求,本发明还提供一种测量高温螺栓轴力的分体式超声探头,其特征在于,所述的分体式超声探头包括SH0探头30和A0探头31,两探头配合使用;
所述的SH0探头30包括:压电晶片Ⅰ17镶嵌于SH0探头上阻尼块21内,上阻尼块21的上表面设置一块与压电晶片Ⅰ17阻抗匹配的SH0探头电路板20,通过胶层封于SH0探头上阻尼块21上,两条导线分别连接压电晶片Ⅰ17的正负极后,穿过SH0探头上阻尼块21接通SH0探头电路板20,与位于外壳1外侧的螺纹接头12相连;SH0探头上阻尼块21和同直径的SH0探头下阻尼块22紧密贴合,由内壳18紧密固定,内壳18上端内嵌在盖状外壳1中,下端内嵌在筒状外壳9里;波导杆Ⅰ19的上端面穿过SH0探头圆形封底23和SH0探头下阻尼块22,与压电晶片Ⅰ17相连;
所述的A0探头31包括:压电晶片Ⅱ7和压电晶片Ⅲ6镶嵌于圆形的A0探头上阻尼块25内,A0探头上阻尼块25的上表面设置一块与压电晶片Ⅱ7和压电晶片Ⅲ6阻抗匹配的A0探头电路板24,通过胶层封于A0探头上阻尼块25上,四条导线分别连接压电晶片Ⅱ7和压电晶片Ⅲ6的正、负极后,穿过A0探头上阻尼块25通A0探头电路板24,与位于盖状外壳 1外侧的螺纹接头12相连;A0探头上阻尼块25和同直径的A0探头下阻尼块26紧密贴合,由内壳18紧密固定,内壳18上端内嵌在盖状外壳1中,下端内嵌在筒状外壳9里;波导杆Ⅱ11的上端面穿过A0探头圆形封底27和A0探头下阻尼块26,其左侧面与压电晶片Ⅱ7相连,其右侧面与压电晶片Ⅲ6相连接。
所述的SH0探头上阻尼块21的直径大于压电晶片Ⅰ17的长度,SH0探头上阻尼块21的下表面与压电晶片Ⅰ17的下表面平齐。
所述的波导杆Ⅰ19上端面与SH0探头下阻尼块22的上表面平齐,SH0探头下阻尼块22的通槽和SH0探头圆形封底23的通槽可卡住波导杆Ⅰ19的上部。
所述的A0探头上阻尼块25的直径大于压电晶片Ⅱ7、压电晶片Ⅲ6的长度,A0探头上阻尼块25的下表面与压电晶片Ⅱ7、压电晶片Ⅲ6的下表面平齐。
所述的波导杆Ⅱ11上端面高出A0探头下阻尼块26的上表面2mm;A0探头下阻尼块26的通槽和A0探头圆形封底27的通槽可卡住波导杆Ⅱ11的上部。
所述的波导杆Ⅰ19和波导杆Ⅱ11沿着与其横截面方向平行的轴弯曲。
本发明的优点在于:
1、该超声探头可以同时激发单一模式的SH0波和A0波,通过A0波和SH0波的速度比值法来确定螺栓的轴力。由于SH0波与A0波传播时,声波能量集中在螺栓中央,减少螺栓的螺纹对声波传播的干扰,可实现对高温螺栓轴力的精确测量。
2、该超声探头可以为一体式,也可以根据实际安装空间的需求分割为SH0探头和A0探头分体式结构。一体式结构节省制造成本,安装方便;分体式结构可以根据被测试件的安装环境弯曲,从而提高其对环境的使用性。
3、该探头中引入波导杆作为高温螺栓与易受温度影响的压电晶片之间的声波传播媒介,使得压电晶片不受高温影响,从而确保高温螺栓轴力的长期监测成为可能。
4、测量高温螺栓轴力的超声探头,将有效减少拆保温层、搭脚手架等繁琐的辅助工作。
5、波导杆将被测试件的监测信号从高温区(50℃~650℃)引伸至常温区进行感知,改善了探头的压电晶片、电路等温度敏感部件的工作环境,可以对高温环境中的螺栓的轴力,进行在线长期测量。
附图说明
图1为本发明的一体式结构示意图。
图2为本发明的分体式的SH0探头的结构示意图。
图3为本发明的分体式的A0探头的结构示意图。
图4为本发明的可激发与接受SH0波的波导传感器的立体图。
图5为本发明的可激发与接受A0波的波导传感器的立体图。
图6为本发明的激发与接受A0波的波导传感器的前示图。
图7为本发明的用于螺栓轴向安装空间充足时一体式超声探头的安装示例主视图。
图8为本发明的用于螺栓轴向安装空间充足时一体式超声探头的安装示例左视图。
图9为本发明的用于螺栓轴向安装空间有限时的分体式超声探头的安装示例主视图。
图10为本发明的用于螺栓轴向安装空间有限时的分体式超声探头的安装示例俯视图。
图11为本发明的分体式超声探头的安装示例二。
图12为本发明的分体式超声探头的安装示例二俯视图。
图13为本发明的一种极端环境下壁厚减薄测量的超声探头的实施案例工作原理图。
附图标记:
1       盖状外壳
2       压电晶片Ⅱ正极导线
3       压电晶片Ⅲ正极导线
4       压电晶片Ⅲ负极导线
5       上阻尼块,
6       压电晶片Ⅲ
7       压电晶片Ⅱ
8       下阻尼块
9       筒状外壳
10      圆形封底
11      波导杆Ⅱ
12      螺纹接头
13      压电晶片Ⅰ正极导线
14      压电晶片Ⅰ负极导线
15      压电晶片Ⅱ负极导线
16      电路板
17      压电晶片Ⅰ
18      内壳
19      波导杆Ⅰ
20      SH0探头电路板
21      SH0探头上阻尼块
22      SH0探头下阻尼块
23      SH0探头圆形封底
24      A0探头电路板
25      A0探头上阻尼块
26      A0探头下阻尼块
27      A0探头圆形封底
28      一体式测量高温螺栓轴力的超声探头
29      待测螺栓Ⅰ
30      SH0探头
31      A0探头
32      待测螺栓Ⅱ
33      待测螺栓Ⅲ
34      法兰盘
35      高温箱
具体实施方式
结合附图和具体实施方式对本发明作进一步说明:
请参阅图1所示,一体式测量高温螺栓轴力的超声探头,包括:波导杆Ⅰ19和波导杆Ⅱ11的下端面与被测螺栓顶部接触。波导杆Ⅰ19上端面穿过圆形封底10和下阻尼块8,与压电晶片Ⅰ17的下表面紧密贴合;波导杆Ⅱ11上端面穿过圆形封底10和下阻尼块8,与压电晶片Ⅱ7和压电晶片Ⅲ6连接。三个压电晶片镶嵌在上阻尼块5内,压电晶片的下表面与上阻尼块5的下表面平齐。圆形封底10和下阻尼块8的中心部位设有通槽,两通槽紧密卡住波导杆Ⅰ19和波导杆Ⅱ11的上端部;三条正极导线分别连接三个压电晶片的正极,三条负极导线分别连接压三个电晶片的负极,六条导线穿过上阻尼块5、接通胶在上阻尼块上的电路板16并与螺纹接头12相连;螺纹接头12设置在盖状外壳1的外侧;上阻尼块5的下表面与下阻尼块8的上表面紧密贴合,由内壳18固定;内壳18上端内嵌在盖状外壳1里,内壳18下端内嵌在筒状外壳9里。
请参阅图2所示,所述的SH0探头,包括:波导杆Ⅰ19下端面与被测螺栓顶端接触,波导杆Ⅰ19上端面穿过SH0探头圆形封底23和SH0探头下阻尼块22,与压电晶片Ⅰ17的下表面紧密贴合。压电晶片Ⅰ17镶嵌在SH0探头上阻尼块21内,压电晶片Ⅰ17的下表面与SH0探头上阻尼块21的下表面平齐。SH0探头圆形封底23和SH0探头下阻尼块22中心部位有通槽,SH0探头下阻尼块22的直径大于通槽的长度。两通槽紧密卡住波导杆Ⅰ19的上端部;压电晶片Ⅰ17通过导线接通SH0探头电路板20并与螺纹接头12相连;SH0探头上阻尼块21的下表面与SH0探头下阻尼块22的上表面紧密贴合,由内壳18固定;内壳18的上端内嵌在外壳1里,内壳18的下端内嵌在外壳9里。
请参阅图3所示,所述的A0探头,包括:波导杆Ⅱ11下端面与被测螺栓顶端接触,波导杆Ⅱ11上端穿过A0探头圆形封底27和A0探头下阻尼块26与压电晶片Ⅱ7的右表面和压电晶片Ⅲ6的左表面的紧密贴合。压电晶片Ⅱ7和压电晶片Ⅲ6均镶嵌在上阻尼块31内,他们的下表面与A0探头上阻尼块25的下表面平齐。A0探头圆形封底27和A0探头下阻尼块26中心部位有通槽,A0探头下阻尼块26的直径大于通槽的长度。两通槽紧密卡住波导杆Ⅱ11的上端;压电晶片Ⅱ7和压电晶片Ⅲ6通过导线接通A0探头电路板24并与螺纹接头12相连;A0探头上阻尼块25的下表面与A0探头下阻尼块26的上表面紧密贴合,两者由内壳18固定;内壳18的上端内嵌在盖状外壳1里,内壳18的下端内嵌在筒状外壳9里。
请参阅图4所示,压电晶片Ⅰ17的上下两表面为电极面,极化方向与电极面平行。压电晶片Ⅰ正极导线13连接压电晶片Ⅰ17上表面的正极,压电晶片Ⅰ负极导线14连接其前侧的负极。压电晶片Ⅰ17横截面的中心与波导杆Ⅰ19上端面的中心重合,压电晶片Ⅰ17的下表面与波导杆Ⅰ19的上端面平行,相接处可粘接或焊接。压电晶片Ⅰ17与波导杆Ⅰ19组合可激发与接受SH0波。
请参阅图5和图6所示,压电晶片Ⅱ7和压电晶片Ⅲ6的左右侧面为电极面,极化方向与电极面垂直。压电晶片Ⅱ7正极导线2连接压电晶片Ⅱ7左侧表面的正极,压电晶片Ⅱ负极导线15连接压电晶片Ⅱ前侧的负极。压电晶片Ⅲ6正极导线3连接压电晶片Ⅲ6右侧表面的正极,压电晶片Ⅲ6负极导线4连接压电晶片Ⅲ6前侧的负极。压电晶片Ⅱ7的右侧面与波导杆Ⅱ11的左侧面相接,压电晶片Ⅲ6的左侧面与波导杆Ⅱ11的右侧面相接,相接处可粘接或焊接,两者对称地安装在波导杆Ⅱ11的左右两侧、距离波导杆Ⅱ11的上端面1mm。压电晶片Ⅱ7、压电晶片Ⅲ6与波导杆Ⅱ11组合即可激发与接受A0波。
请参阅图7和图8所示,在螺栓轴向安装空间充足的情况下选用一体式测量高温螺栓轴力的超声探头28,两个波导杆底部与待测螺栓Ⅰ29顶部接触。
请参阅图9和图10所示,在螺栓轴向安装空间有限的情况下可选用分体式的两个测量高温螺栓轴力的超声探头,波导杆Ⅰ19和波导杆Ⅱ11下端面与待测螺栓Ⅱ32顶部接触,SH0探头30和A0探头31向两侧弯曲。如图11和图12所示,当靠近法兰盘34中心位置处的温度较高时,SH0探头30和A0探头31可以向外侧弯曲,以便降低温度对探头的影响。
本发明的一种测量高温螺栓力的超声探头的两种安装结构工作原理相同。以一体式的结构为例,阐述其工作原理如下:
在电压激励下压电晶片Ⅰ17产生振动,激发SH0波,经过波导杆Ⅰ19,传播入射到待测螺栓Ⅰ29。螺栓底部的反射回波通过波导杆Ⅰ19返回,被压电晶片Ⅰ17感知后转换成电信号;
在电压激励下压电晶片Ⅱ7和压电晶片Ⅲ6同时振动,激发A0波,经过波导杆Ⅱ11,传播入射到待测螺栓Ⅰ29,反射回波通过波导杆Ⅱ11返回,被压电晶片Ⅱ7和压电晶片Ⅲ6感知后变转换成电信号。利用压电晶片Ⅰ17接收的SH0波和压电晶片Ⅱ7接收的A0波,采用A0波和SH0波的速度比值法来计算螺栓的预紧力。
由于当压电晶片受到电激励后,声波会向四周传播,部分声波入射波导杆用于监测,部分声波遇到探头内的界面反射后也会入射到波导杆,这些波对于监测而言,是杂波。因此,在探头内部设计上阻尼块,将干扰杂波吸收掉;此外,当给压电晶片施加电激励后,压电晶片开始振动,上阻尼块对压电晶片还起阻尼作用,使得压电晶片尽快停下来,减少余震,减小超声波脉冲宽度,提高超声检测分辨力;上阻尼块和下阻尼块主要是由环氧树脂、固化剂、橡胶、钙粉、四氧化三铅等按比例调配而成的吸声材料,调配好后将其直接浇注在压电晶片周围。下阻尼块比上阻尼块稍硬,起到固定压电晶片和波导杆的作用,上阻尼块稍软,可起到保护导线的作用。
圆形封底10、SH0探头圆形封底23、A0探头圆形封底27的材料可以选用氧化铝(刚玉)薄膜,是一种常用的探头硬保护膜,保护阻尼块不受工作环境污染和破坏。
螺纹接头12外接导线,与信号采集设备连接。
实施案例:
根据安装空间充足和安装空间狭小两种不同的使用工况,分别设计并加工一体式的超声探头和分体式的SH0探头与A0探头。压电晶片Ⅰ17、压电晶片Ⅱ7、压电晶片Ⅲ6选择2-2复合材料,圆形封底10、SH0探头圆形封底23、A0探头圆形封底27选用氧化铝(刚玉),内壳18选用聚四氟乙烯,上阻尼块5、SH0探头上阻尼块21和A0探头上阻尼块25选用胶泥材料,下阻尼块8、SH0探头下阻尼块22和A0探头下阻尼块26选用添加硅粉的胶泥材料, 盖状外壳1选用硬铝合金2219。
波导杆Ⅰ19和波导杆Ⅱ11的材料为42CrMo不锈钢,厚度为1mm,宽度为20mm,波导杆Ⅰ19的长度为300mm,波导杆Ⅱ11的长度为303mm。
压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6的厚度为1mm,宽度为1mm,长度为18mm,电路板16与压电晶片Ⅰ17、压电晶片Ⅱ7和压电晶片Ⅲ6的阻抗匹配,由市售的电阻、电容等部件组装而成。本发明选用广东风华高新科技股份有限公司如下规格的配件:电容型号:CC4-0805N200J500F3,电阻型号:RC-MTO8W512JT,电感型号:LGA0204-221KP52E。
被测试样为尺寸是M24mm×95mm的螺栓,将被测螺栓放入高温箱35内,高温箱35上部开两个槽孔,在不同工况下,分别使用一体式的超声探头和分体式的SH0探头与A0探头:将探头的波导杆Ⅰ19和波导杆Ⅱ11的下端面从上往下插入高温箱35的槽孔中,把波导杆Ⅰ19和波导杆Ⅱ11焊接在螺栓顶部。除了波导杆Ⅰ19和波导杆Ⅱ11的下半部分,本发明超声探头的其他部分均放置在高温箱35外,并通过电线与信号采集仪器连接。高温箱温度加热至300℃,保温20分钟后测量,一体式和分体式的探头测量结果相同,均为95.2mm,误差为2%,满足工程需求。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (9)

  1. 一种在线测量高温螺栓轴力的一体式超声探头,其特征在于,所述的一体式超声探头包括:压电晶片Ⅰ(17)、压电晶片Ⅱ(7)和压电晶片Ⅲ(6)镶嵌于上阻尼块(5)内,上阻尼块(5)的上表面设置一块与压电晶片Ⅰ(17)、压电晶片Ⅱ(7)和压电晶片Ⅲ(6)阻抗匹配的电路板(16),由胶层封于上阻尼块(5)上,三条正极导线和三条负极导线分别连接三个压电晶片的正负极后,穿过上阻尼块(5)接通电路板(16)后,与位于盖状外壳(1)外侧的螺纹接头(12)相连;上阻尼块(5)和同直径的下阻尼块(8)紧密贴合,由内壳(18)紧密固定,内壳(18)上端内嵌在盖状外壳(1)中,下端内嵌在筒状外壳(9)里;波导杆Ⅰ(19)和波导杆Ⅱ(11)的上端依次穿过圆形封底(10)和下阻尼块(8),与对应的压电晶片相连,波导杆Ⅰ(19)和波导杆Ⅱ(11)的下端面与被测螺栓的顶部紧密接触;波导杆Ⅰ(19)的上端面与压电晶片Ⅰ(17)相连,激励单一模式的SH0波;波导杆Ⅱ(11)的左侧面与压电晶片Ⅱ(7)相连,波导杆Ⅱ(11)的右侧面与压电晶片Ⅲ(6)相连接,压电晶片Ⅱ(7)和压电晶片Ⅲ(6)共同激励,产生单一模式的A0波。
  2. 根据权利要求1所述的一体式超声探头,其特征在于,所述的波导杆Ⅰ(19)和波导杆Ⅱ(11)为带状薄板,其横截面为矩形;波导杆的宽度与其中所传播的超声信号波长λ有关,波导杆的宽度等于5λ;波导杆的厚度为为1mm;波导杆的长度根据被测螺栓的温度t,采用ANSYS软件,计算在空气冷却的情况下从温度t降低至环境温度所需要的长度值。
  3. 根据权利要求1所述的一体式超声探头,其特征在于,所述压电晶片Ⅰ(17)、压电晶片Ⅱ(7)和压电晶片Ⅲ(6)均为长方体,其长度均为波导杆宽度的0.9倍,其宽度均等于各自所安装的波导杆的厚度,压电晶片的厚度t根据所需激励频率,使用公式t=N/f计算确定,其中f为压电晶片频率,N为压电材料系统;所述的压电晶片Ⅰ(17)的电极面为其上下表面或者压电晶片Ⅰ(17)的任何一个侧面;压电晶片Ⅰ(17)的极化方向与电极面平行;所述的压电晶片Ⅱ(7)和压电晶片Ⅲ(6)的电极面为其左右侧面或者与波导杆接触任一邻近的侧面;压电晶片Ⅱ(7)和压电晶片Ⅲ(6)的极化方向和电极面垂直,用以激发A0波的压电晶片Ⅱ(7)和压电晶片Ⅲ(6)同时使用,由压电晶片Ⅱ(7)接受A0波;波导杆与压电晶片之间连接方式为粘接或焊接。
  4. 根据权利要求1所述的一体式超声探头,其特征在于,所述的上阻尼块(5)的直径大于压电晶片Ⅰ(17)、压电晶片Ⅱ(7)和压电晶片Ⅲ(6)的长度,上阻尼块(5)的下表面与三个压电晶片的下表面平齐。
  5. 根据权利要求1所述的一体式超声探头,其特征在于,所述的波导杆Ⅰ(19)上端面与下阻尼块(8)的上表面平齐,所述的波导杆Ⅱ(11)上端面高出下阻尼块(8)的上表面2mm;波导杆Ⅰ(19)和波导杆Ⅱ(11)的下表面则处在同一平面,波导杆Ⅱ(11)总长比波导杆Ⅰ(19)长3mm;下阻尼块(8)的通槽和圆形封底(10)的通槽可卡住波导杆Ⅰ(19)和波导杆Ⅱ(11)的上部。
  6. 一种测量高温螺栓轴力的分体式超声探头,其特征在于,所述的分体式超声探头包括SH0探头30和A0探头31,两探头配合使用;
    所述的SH0探头(30)包括:压电晶片Ⅰ(17)镶嵌于SH0探头上阻尼块(21)内,上阻尼块(21)的上表面设置一块与压电晶片Ⅰ(17)阻抗匹配的SH0探头电路板(20),通过胶层封于SH0探头上阻尼块(21)上,两条导线分别连接压电晶片Ⅰ(17)的正负极后,穿过SH0探头上阻尼块(21)接通SH0探头电路板(20),与位于外壳1外侧的螺纹接头(12)相连;SH0探头上阻尼块(21)和同直径的SH0探头下阻尼块(22)紧密贴合,由内壳(18)紧密固定,内壳(18)上端内嵌在盖状外壳(1)中,下端内嵌在筒状外壳(9)里;波导杆Ⅰ(19)的上端面穿过SH0探头圆形封底(23)和SH0探头下阻尼块(22),与压电晶片Ⅰ(17)相连;
    所述的A0探头(31)包括:压电晶片Ⅱ(7)和压电晶片Ⅲ(6)镶嵌于圆形的A0探头上阻尼块(25)内,A0探头上阻尼块(25)的上表面设置一块与压电晶片Ⅱ(7)和压电晶片Ⅲ(6)阻抗匹配的A0探头电路板(24),通过胶层封于A0探头上阻尼块(25)上,四条导线分别连接压电晶片Ⅱ(7)和压电晶片Ⅲ(6)的正、负极后,穿过A0探头上阻尼块(25)通A0探头电路板(24),与位于盖状外壳(1)外侧的螺纹接头(12)相连;A0探头上阻尼块(25)和同直径的A0探头下阻尼块(26)紧密贴合,由内壳(18)紧密固定,内壳(18)上端内嵌在盖状外壳(1)中,下端内嵌在筒状外壳(9)里;波导杆Ⅱ(11)的上端面穿过A0探头圆形封底(27)和A0探头下阻尼块(26),其左侧面与压电晶片Ⅱ(7)相连,其右侧面与压电晶片Ⅲ(6)相连接。
  7. 根据权利要求6所述的分体式超声探头,其特征在于,所述的SH0探头上阻尼块(21)的直径大于压电晶片Ⅰ(17)的长度,SH0探头上阻尼块(21)的下表面与压电晶片Ⅰ(17)的下表面平齐;所述的A0探头上阻尼块(25)的直径大于压电晶片Ⅱ(7)、压电晶片Ⅲ(6)的长度,A0探头上阻尼块(25)的下表面与压电晶片Ⅱ(7)、压电晶片Ⅲ(6)的下表面平齐。
  8. 根据权利要求6所述的分体式超声探头,其特征在于,所述的波导杆Ⅰ(19)上端面与SH0探头下阻尼块(22)的上表面平齐,SH0探头下阻尼块(22)的通槽和SH0探头圆形 封底(23)的通槽卡住波导杆Ⅰ(19)的上部;所述的波导杆Ⅱ(11)上端面高出A0探头下阻尼块(26)的上表面2mm;A0探头下阻尼块26的通槽和A0探头圆形封底27的通槽卡住波导杆Ⅱ(11)的上部。
  9. 根据权利要求6所述的分体式超声探头,其特征在于,所述的波导杆Ⅰ(19)和波导杆Ⅱ(11)沿着与其横截面方向平行的轴弯曲。
PCT/CN2021/098225 2021-05-20 2021-06-04 一种在线测量高温螺栓轴力的超声探头 WO2022241855A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2317628.2A GB2621519A (en) 2021-05-20 2021-06-04 Ultrasonic probe for on-line measurement of axial force of high-temperature bolt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110549336.3A CN113405718B (zh) 2021-05-20 2021-05-20 一种在线测量高温螺栓轴力的超声探头
CN202110549336.3 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022241855A1 true WO2022241855A1 (zh) 2022-11-24

Family

ID=77679010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098225 WO2022241855A1 (zh) 2021-05-20 2021-06-04 一种在线测量高温螺栓轴力的超声探头

Country Status (3)

Country Link
CN (1) CN113405718B (zh)
GB (1) GB2621519A (zh)
WO (1) WO2022241855A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901074A (zh) * 2022-12-13 2023-04-04 重庆大学 一种用于喷管流道内压力测量的可移动探针装置
CN115901074B (zh) * 2022-12-13 2024-06-04 重庆大学 一种用于喷管流道内压力测量的可移动探针装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015813A1 (de) * 2004-08-09 2006-02-16 Pfw Technologies Gmbh Verfahren zur bestimmung der vorspannkraft von verbindungsbauteilen durch ultraschallanregung
EP2490017A1 (en) * 2011-02-18 2012-08-22 AMG Intellifast GmbH Ultrasound measurement system
CN108387338A (zh) * 2018-02-07 2018-08-10 大连理工大学 一种基于压电超声晶片的螺栓预紧力实时高精度检测方法及系统
CN111537132A (zh) * 2020-04-20 2020-08-14 中物院成都科学技术发展中心 一种轴向预紧力双波测量方法
CN111780911A (zh) * 2020-07-14 2020-10-16 零声科技(苏州)有限公司 一种用于螺栓轴力测量的超声波传感器
CN112444337A (zh) * 2020-11-14 2021-03-05 河南九域恩湃电力技术有限公司 一种带温度补偿的输电铁塔螺栓预紧力测量探头和方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232487B (en) * 1989-06-09 1993-08-04 Shimizu Construction Co Ltd Ultrasonic measuring apparatus including a high-damping probe
JPH075974A (ja) * 1993-06-16 1995-01-10 Fujitsu Ltd 超音波座標入力装置
GB2431991A (en) * 2005-11-04 2007-05-09 Imp College Innovations Ltd Waveguide for ultrasonic non-destructive testing
US20080047347A1 (en) * 2006-08-24 2008-02-28 Kabushiki Kaisha Toshiba Ultrasonic stress measuring apparatus
CN106290581A (zh) * 2015-05-27 2017-01-04 中国石油化工股份有限公司 一种超声波晶片组、超声波探头及岩芯超声波测试系统
CN106353408B (zh) * 2016-08-26 2023-06-02 中国科学院声学研究所 一种压电超声直探头
CN108613644B (zh) * 2018-04-18 2020-01-10 华东理工大学 一种极端环境下壁厚减薄测量的超声探头
CN109946379B (zh) * 2019-04-01 2020-02-18 大连理工大学 一种单向应力的电磁超声检测方法
CN112577653B (zh) * 2020-12-11 2022-07-01 中铁大桥局集团有限公司 一种桥梁高强度螺栓紧固轴力的测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015813A1 (de) * 2004-08-09 2006-02-16 Pfw Technologies Gmbh Verfahren zur bestimmung der vorspannkraft von verbindungsbauteilen durch ultraschallanregung
EP2490017A1 (en) * 2011-02-18 2012-08-22 AMG Intellifast GmbH Ultrasound measurement system
CN108387338A (zh) * 2018-02-07 2018-08-10 大连理工大学 一种基于压电超声晶片的螺栓预紧力实时高精度检测方法及系统
CN111537132A (zh) * 2020-04-20 2020-08-14 中物院成都科学技术发展中心 一种轴向预紧力双波测量方法
CN111780911A (zh) * 2020-07-14 2020-10-16 零声科技(苏州)有限公司 一种用于螺栓轴力测量的超声波传感器
CN112444337A (zh) * 2020-11-14 2021-03-05 河南九域恩湃电力技术有限公司 一种带温度补偿的输电铁塔螺栓预紧力测量探头和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FATERI SINA; LOWE PREMESH SHEHAN; ENGINEER BHAVIN; BOULGOURIS NIKOLAOS V.: "Investigation of Ultrasonic Guided Waves Interacting With Piezoelectric Transducers", IEEE SENSORS JOURNAL, IEEE, USA, vol. 15, no. 8, 1 August 2015 (2015-08-01), USA, pages 4319 - 4328, XP011584044, ISSN: 1530-437X, DOI: 10.1109/JSEN.2015.2414874 *
LIAO ZUOYU; ZHANG XIN; LIU TIANYANG; JIA JIUHONG; TU SHAN-TUNG: "Characteristics of high-temperature equipment monitoring using dry-coupled ultrasonic waveguide transducers", ULTRASONICS., IPC SCIENCE AND TECHNOLOGY PRESS LTD. GUILDFORD., GB, vol. 108, 11 August 2020 (2020-08-11), GB , XP086267025, ISSN: 0041-624X, DOI: 10.1016/j.ultras.2020.106236 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901074A (zh) * 2022-12-13 2023-04-04 重庆大学 一种用于喷管流道内压力测量的可移动探针装置
CN115901074B (zh) * 2022-12-13 2024-06-04 重庆大学 一种用于喷管流道内压力测量的可移动探针装置

Also Published As

Publication number Publication date
CN113405718B (zh) 2022-11-11
CN113405718A (zh) 2021-09-17
GB2621519A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
Sun et al. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt
CN111678629B (zh) 一种海洋结构件内部服役应力超声监测探头
US5841034A (en) Bonded joint analysis
US11226246B2 (en) Non-destructive detecting device for component residual stress gradient
US3307393A (en) Stress measuring device
US20080236285A1 (en) Device for measuring bulk stress via insonification and method of use therefor
JPH04231828A (ja) 力、ひずみ及び構造物伝送ノイズ変換器複合体
US20200300812A1 (en) Methods and systems for pipe wall thickness detection
CN108613644B (zh) 一种极端环境下壁厚减薄测量的超声探头
CN111693190A (zh) 一种基于超声波的螺栓轴向应力测量装置及方法
CN109084917B (zh) 一种超声检测结构永存应力的方法
WO2022241855A1 (zh) 一种在线测量高温螺栓轴力的超声探头
Lee An experimental study on bolt looseness monitoring using low-cost transfer impedance technique
Abbas et al. Experimental study of effect of temperature variations on the impedance signature of PZT sensors for fatigue crack detection
JPH06347349A (ja) ボルトの軸力測定器
Liu et al. Metal core piezoelectric ceramic fiber rosettes for acousto-ultrasonic source localization in plate structures
KR20210006372A (ko) 진동현식 마이크로나노 광섬유 기반의 광섬유 격자 마이크로 진동 및 음향 방출 감지 장치
Myers et al. Torque measurements of an automotive halfshaft utilizing a MEMS resonant strain gauge
CN113551824B (zh) 一种基于超声反射系数的螺栓连接界面压力检测方法及装置
CN212645940U (zh) 一种基于超声波的螺栓轴向应力测量装置
CN111855807A (zh) 一种超声检测与防雷固定的装置
Aulakh et al. Non-bonded piezo sensor configuration for strain modal analysis based SHM
WO1997025852A2 (fr) Procede ultrasonique de mesure des caracteristiques de l'etat de tension et de deformation de raccords a boulon et a broche
CN216900919U (zh) 可在线测温的水声换能器
Giurgiutiu et al. Recent progress in the application of E/M impedance method to structural health monitoring, damage detection and failure prevention

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202317628

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210604

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940305

Country of ref document: EP

Kind code of ref document: A1