WO2022241614A1 - 长焦镜组、摄像模组及电子设备 - Google Patents

长焦镜组、摄像模组及电子设备 Download PDF

Info

Publication number
WO2022241614A1
WO2022241614A1 PCT/CN2021/094114 CN2021094114W WO2022241614A1 WO 2022241614 A1 WO2022241614 A1 WO 2022241614A1 CN 2021094114 W CN2021094114 W CN 2021094114W WO 2022241614 A1 WO2022241614 A1 WO 2022241614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
reflection surface
telephoto
included angle
effective light
Prior art date
Application number
PCT/CN2021/094114
Other languages
English (en)
French (fr)
Inventor
江传东
Original Assignee
欧菲光集团股份有限公司
南昌欧菲光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲光电技术有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/094114 priority Critical patent/WO2022241614A1/zh
Publication of WO2022241614A1 publication Critical patent/WO2022241614A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/04Catoptric systems, e.g. image erecting and reversing system using prisms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera

Definitions

  • the present application relates to the field of photography, in particular to a telephoto lens group, a camera module and electronic equipment.
  • a telephoto lens refers to a lens with a longer focal length, which is used to shoot objects or scenes at a longer distance or even a super long distance.
  • the size of the telephoto lens in the axial direction is generally large, so that the telephoto lens generally needs to occupy a relatively large space.
  • the thickness of the electronic equipment is often thick, which makes it difficult to meet people's expectations. The current requirements for thinner and lighter electronic equipment.
  • the embodiment of the present application provides a telephoto lens group, a camera module and electronic equipment, which can realize the telephoto function while compressing the transmission space of the effective light beam used to achieve the same telephoto focal length, thereby reducing the telephoto lens group
  • the overall volume is conducive to the miniaturization of the telephoto lens group.
  • the embodiment of the present application provides a telephoto lens group.
  • the telephoto lens group at least sequentially includes a telephoto optical component and a reflective element, and the reflective element has a plurality of reflective surfaces, wherein One of the reflective surfaces is located on the optical axis of the telephoto optical assembly, and is used to receive the effective light beam emitted by the telephoto optical assembly and reflect the effective light beam to the outside of the optical axis of the telephoto optical assembly;
  • the reflective surface is located outside the optical axis of the telephoto optical assembly, and is used to receive the effective light beam reflected for the first time and emit it after multiple reflections.
  • the reflective element has a plurality of reflective surfaces, which can reflect the effective light beam emitted by the telephoto optical component multiple times, and one reflective surface reflects the effective light beam incident on the reflective element for the first time, and reflects the effective light beam Outside the optical axis of the telephoto optical component, the remaining reflective surfaces outside the optical axis receive the effective light beam after the first reflection, and emit it after multiple reflections.
  • the effective light beam is reflected by the first reflective surface on the optical axis, and reflected by multiple reflective surfaces to change the transmission direction, compressing the volume of the telephoto lens group on the optical axis of the telephoto optical component, and has a longer optical The total length, so that through the reflective element, while realizing the telephoto function of the telephoto optical component, the transmission space of the effective beam used to achieve the same telephoto focal length is compressed, thereby reducing the overall volume of the telephoto lens group, which is conducive to the realization of telephoto Miniaturization of the mirror group.
  • the multiple reflective surfaces at least include: a primary reflective surface, the primary reflective surface is arranged opposite to the telephoto optical component and is located on the optical axis of the telephoto optical component, for receiving The effective light beam emitted by the telephoto optical assembly, and reflects the effective light beam to the outside of the optical axis of the telephoto optical assembly; the last reflection surface is located outside the optical axis of the telephoto optical assembly, and the last reflection surface and The image sensor for receiving the effective light beam is arranged oppositely, and is used for reflecting the effective light beam in the reflective element for the last time.
  • the primary reflection surface can reflect the effective light beam emitted by the telephoto optical assembly to the outside of the optical axis of the telephoto optical assembly, and in the direction in which the effective light beam is incident into the telephoto optical assembly, the final reflection surface and the user It is set opposite to the image sensor that receives the effective light beam, that is, the reflective surface between the first reflection surface and the last reflection surface has the effect of reflecting the effective light beam back, and the back reflection is relative to the direction in which the effective light beam enters the first reflection surface
  • the overall reflection direction of the effective light beam on the reflection surface between the first reflection surface and the last reflection surface is opposite to the direction in which the effective light beam enters the first reflection surface, so that a longer length can be obtained by passing through multiple reflection surfaces.
  • the part with the last reflection surface extends back and is located on the peripheral side of the telephoto optical assembly, so that the volume of the telephoto lens group is reduced in the axial direction of the telephoto optical assembly , which is conducive to the miniaturization of the telephoto lens group.
  • the multiple reflective surfaces further include: at least one intermediate reflective surface, configured to receive and reflect the effective light beam reflected by the primary reflective surface, and reflect the effective light beam to the final reflective surface.
  • At least one intermediate reflective surface is used to receive the effective light beam reflected by the primary reflective surface, and reflect the effective light beam to the last reflective surface, and the last reflective surface reflects the effective light beam out of the reflective element, thereby realizing multiple reflections of the effective light beam reflection.
  • the number of the intermediate reflection surfaces is one, two or three.
  • the intermediate reflective surface is used to receive the effective light beam reflected by the primary reflective surface, and reflect the effective light beam to the last reflective surface, and the last reflective surface reflects the effective light beam out of the reflective element, and the number of intermediate reflective surfaces is set to one or Two or three, multiple reflections of the effective beam can be achieved.
  • At least one of the intermediate reflection surfaces is parallel to the optical axis of the telephoto optical component.
  • At least one intermediate reflective surface is arranged to be parallel to the optical axis of the telephoto optical assembly, and the parallel intermediate reflective surface can shorten the size of the reflective element in the direction perpendicular to the optical axis of the telephoto optical assembly, thereby making the reflective element The whole is close to the telephoto optical component, so that the occupied volume of the reflective element is reduced, and the volume of the telephoto lens group is reduced.
  • the plurality of reflective surfaces further include: a first intermediate reflective surface, used to receive and reflect the effective light beam reflected by the primary reflective surface; a second intermediate reflective surface, used to receive the first intermediate reflective surface The effective light beam reflected by the middle reflective surface, and reflects the effective light beam to the last reflective surface.
  • the second intermediate reflection surface is used to receive the effective light beam reflected by the first intermediate reflection surface, and reflect the effective light beam to the last reflection surface, and the last reflection surface reflects the effective light beam out of the reflection element, thereby realizing Multiple reflections for effective beam.
  • the multiple reflective surfaces further include: a third intermediate reflective surface, configured to receive the effective light beam reflected by the second intermediate reflective surface, and reflect the effective light beam to the last reflective surface; or The effective light beam may be reflected multiple times between the second intermediate reflection surface and the first intermediate reflection surface, and be reflected by the second intermediate reflection surface or the third intermediate reflection surface until the last Reflective surface.
  • the third intermediate reflection surface is used to receive the effective beam reflected by the second intermediate reflection surface, and reflect the effective beam to the last reflection surface, and the last reflection surface reflects the effective beam out of the reflective element, so as to achieve more reflections of the effective light beam, and further extend the total optical length of the effective light beam in the reflective element.
  • the effective light beam can be multiplied between the second intermediate reflective surface and the first intermediate reflective surface second reflection, and reflect to the final reflection surface through the second intermediate reflection surface or the third intermediate reflection surface, so that the effective light beam obtains a longer optical total length.
  • it can be further improved Reducing the volume of the telephoto lens group is more conducive to realizing the miniaturization of the telephoto lens group.
  • the second intermediate reflective surface and/or the third intermediate reflective surface are parallel to the optical axis of the telephoto optical component, or the second intermediate reflective surface and/or the third intermediate reflective surface The three intermediate reflection surfaces intersect the optical axis of the telephoto optical assembly.
  • the second intermediate reflection surface is parallel to or intersects with the optical axis of the telephoto optical assembly, so that the whole telephoto optical assembly can be close to the second intermediate reflection surface.
  • the second intermediate reflection surface is parallel to the optical axis of the telephoto optical assembly, so that the overall telephoto optical assembly can be as far as possible.
  • the volume of the group is conducive to the miniaturization of the telephoto lens group.
  • the included angle between the incident light beam and the reflected light beam on the primary reflection surface is a first included angle
  • the angle between the incident beam and the reflected beam of the first intermediate reflection surface is a second angle
  • the angle between the incident beam and the reflected beam of the last reflection surface is a third angle
  • the included angle between the reflected light beam of the surface and the reflected light beam of the last reflection surface is the fourth included angle
  • the sum of the first included angle and the fourth included angle is 180°
  • the second included angle and The sum of the third included angles is the same as the fourth included angle.
  • the effective light beam is reflected multiple times by setting the primary reflection surface, the first intermediate reflection surface, the second intermediate reflection surface and the last reflection surface, and the first included angle, the second included angle, and the third included angle are defined
  • the first included angle is 90°
  • the fourth included angle is 90°
  • the sum of the second included angle and the third included angle is 90°
  • the first included angle is defined as 90°
  • the fourth included angle is 90°
  • the sum of the second included angle and the third included angle is 90°
  • the reflective element not only realizes The effective beam is emitted after multiple reflections, and the volume of the reflective element is small, which is conducive to the miniaturization of the telephoto lens group.
  • the reflective element has only four reflective surfaces, and the angular relationship between the reflective surfaces is simple and direct. It is easy to manufacture and reduces the cost of production and processing.
  • the included angle between the incident light beam and the reflected light beam on the primary reflection surface is a first included angle
  • the angle between the incident beam and the reflected beam of the first intermediate reflection surface is a second angle
  • the angle between the incident beam and the reflected beam of the last reflection surface is a third angle
  • the included angle between the reflected light beam on the surface and the reflected light beam on the last reflecting surface is the fourth included angle
  • the included angle between the first intermediate reflecting surface and the last reflecting surface is the fifth included angle
  • the sum of the first included angle and the fourth included angle is 180°
  • the sum of the second included angle and the third included angle is the same as the fourth included angle.
  • the fifth included angle is half of the fourth included angle.
  • the reflective element not only realizes multiple reflections of the effective light beam and then exits through as few reflective surfaces as possible, but also the volume of the reflective element The small size is beneficial to realize the miniaturization of the telephoto lens group.
  • the reflective element has only five reflective surfaces, which is simple in structure and easy to manufacture, and reduces the cost of production and processing.
  • the first included angle is 90°
  • the fourth included angle is 90°
  • the sum of the second included angle and the third included angle is 90°
  • the fifth included angle is 45°.
  • the reflection element By using as few reflective surfaces as possible, not only the multiple reflections of the effective light beam are realized, but also the volume of the reflective element is small, which is conducive to the miniaturization of the telephoto lens group.
  • the reflective element only has five reflective surfaces, and The angle relationship between the reflective surfaces is simple and direct, easy to manufacture, and reduces the cost of production and processing.
  • the reflective surfaces are formed on different reflective mirrors, or the reflective surfaces are formed on the same prism or different prisms, or part of the reflective surfaces are formed on different reflective surfaces.
  • the reflective mirror and the rest of the reflective surfaces are formed in the same prism or different prisms.
  • each reflector when the reflective surfaces are formed on different reflectors, each reflector can be independent of each other, which can improve the flexibility of the installation of each reflector; when the reflective surfaces are formed on the same prism or different prisms, it can be Reduce the difficulty of assembling the reflective element and facilitate the installation of the reflective element; when part of the reflective surfaces are formed on different reflectors and the rest of the reflective surfaces are formed on the same prism or different prisms, the reflective surfaces can be formed on reflective mirrors or prisms with different structures, Realize structural diversity and flexibility during installation.
  • the reflective element is an integrally formed prism
  • the prism includes a primary reflector with the primary reflective surface; an intermediate reflector with the first intermediate reflective surface and located on the long Out of the optical axis of the focal optical assembly, the intermediate reflector is integrally formed with the primary reflector; the final reflector at least has the final reflective surface and the second intermediate reflective surface, and the final reflector and the The intermediate reflector is integrally formed, the final reflector extends from the intermediate reflector, and the extension direction of the final reflector is opposite to the direction in which the effective light beam enters the telephoto optical component.
  • the first reflector also has a light incident surface, and the effective light beam emitted by the telephoto optical component is projected onto the primary reflection surface through the light incident surface, and the light incident surface is in contact with the light incident surface.
  • the included angle of the primary reflection surface is 45°
  • the light incident surface is perpendicular to the second intermediate reflection surface
  • part or all of the telephoto optical component is located at the formation of the light incident surface and the second intermediate reflection surface. in the right-angle space.
  • the included angle between the light incident surface and the primary reflection surface is 45°, and when the effective light beam emitted by the telephoto optical component is projected onto the primary reflection surface perpendicular to the light incident surface, the incident light beam on the primary reflection surface can be realized
  • the included angle with the reflected light beam is 90°;
  • the telephoto optical component is arranged in the right-angle space formed by the incident surface and the second intermediate reflection surface, which can reduce the distance between the telephoto optical component and the reflective element.
  • the axial and radial distances of the optical components further reduce the volume of the telephoto lens group, which is beneficial to realize the miniaturization of the telephoto lens group.
  • the telephoto lens group further includes: a reflector, the reflector is used for receiving the effective light beam reflected by the subject and reflecting the effective light beam to the telephoto optical component.
  • the telephoto lens group can form a periscope telephoto lens group.
  • the telephoto The thickness of the lens group when it is in the electronic device is the size of the telephoto lens group in the radial direction of the telephoto optical assembly. In this way, the thickness of the telephoto lens group when it is in the electronic device can be reduced, which is beneficial to realize the thinning of the electronic device.
  • the direction of the effective light beam emitted by the telephoto optical component is the same as the direction of the last effective light beam incident on the reflective element.
  • the direction of the effective light beam emitted by the telephoto optical component is the same as the direction of the last effective light beam incident on the reflective element, that is, the direction of the effective light beam emitted by the telephoto optical component is maintained.
  • the effective light beam passes through the reflective element to change the transmission direction multiple times, and has a longer optical total length, so that the transmission space of the effective light beam used to achieve the same telephoto focal length is compressed while realizing the telephoto function of the telephoto optical component through the reflective element , thereby reducing the overall volume of the telephoto lens group, which is conducive to realizing the miniaturization of the telephoto lens group.
  • an embodiment of the present application provides a camera module, including an image sensor and a telephoto lens group, and the image sensor is used to receive an effective light beam from the telephoto lens group.
  • the telephoto lens includes a telephoto optical component and a reflective element
  • the reflective element has multiple reflective surfaces, and can reflect the effective light beam emitted by the telephoto optical component multiple times
  • One reflective surface reflects the effective light beam incident on the reflective element for the first time, and reflects the effective light beam to the outside of the optical axis of the telephoto optical component, and the other reflective surfaces located outside the optical axis receive the effective light beam after the first reflection. Fired after multiple reflections.
  • the effective light beam is reflected by the first reflective surface on the optical axis, and reflected by multiple reflective surfaces to change the transmission direction, compressing the volume of the telephoto lens group on the optical axis of the telephoto optical component, and has a longer optical The total length, so as to realize the telephoto function of the telephoto optical component through the reflective element, and at the same time compress the transmission space of the effective beam used to achieve the same telephoto focal length, thereby reducing the overall volume of the telephoto lens group, which is conducive to the realization of the telephoto lens group
  • the miniaturization of the camera can realize the miniaturization of the camera module.
  • an embodiment of the present application provides an electronic device, including a casing and a camera module, and the camera module is installed on the casing.
  • the camera module includes a reflective element, and the reflective element has multiple reflective surfaces, which can reflect the effective light beam emitted by the telephoto optical assembly multiple times, One reflective surface reflects the effective light beam incident on the reflective element for the first time, and reflects the effective light beam to the outside of the optical axis of the telephoto optical component, and the other reflective surfaces located outside the optical axis receive the effective light beam after the first reflection. Fired after multiple reflections.
  • the effective light beam is reflected by the first reflective surface on the optical axis, and reflected by multiple reflective surfaces to change the transmission direction, compressing the volume of the telephoto lens group on the optical axis of the telephoto optical component, and has a longer optical The total length, so as to realize the telephoto function of the telephoto optical component through the reflective element, and at the same time compress the transmission space of the effective beam used to achieve the same telephoto focal length, thereby reducing the overall volume of the telephoto lens group, which is conducive to the realization of the telephoto lens group miniaturization, which in turn can realize the miniaturization of the camera module, and finally can realize the thinning and lightening of electronic equipment.
  • Fig. 1 is a schematic structural view of a telephoto lens group in an embodiment of the present application
  • FIG. 2 is a schematic structural view of a telephoto lens group in another embodiment of the present application.
  • FIG. 3 is a schematic structural view of a telephoto lens group in yet another embodiment of the present application.
  • FIG. 4 is a schematic structural view of a telephoto lens group in another embodiment of the present application.
  • FIG. 5 is a schematic structural view of a telephoto lens group in another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a camera module in an embodiment of the present application.
  • Fig. 7 is a structural schematic diagram when viewing the camera module from the Z direction in Fig. 6;
  • Fig. 8 is a schematic diagram of the structure in which the focal length of the camera module is equivalent to the maximum effective focal length EFL in an embodiment of the present application;
  • Fig. 9 is a schematic diagram of the structure in which the focal length of the camera module is equivalent to the maximum effective focal length EFL in another embodiment of the present application;
  • Fig. 10 is a schematic diagram of the structure in which the focal length of the camera module is equivalent to the maximum effective focal length EFL in an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device in another embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of the electronic device viewed from the X direction in FIG. 12 .
  • Telephoto lenses are often used in electronic devices such as smart phones and digital cameras to bring telephoto effects to electronic devices.
  • the electronic equipment needs to be provided with enough space along the axial direction of the lens to accommodate the telephoto lens, which inevitably causes the electronic equipment to be placed on the axis of the lens.
  • the upward dimension becomes larger, which makes it difficult to meet the thinner and lighter design requirements of current electronic equipment.
  • the telephoto lens group 10 can include in sequence along the transmission path 101 of the effective light beam: telephoto optical assembly 110, telephoto optical assembly 110 receives The effective light beam from the object to be photographed is emitted to the reflective element 120; the reflective element 120 receives the effective light beam and performs optical processing.
  • the reflective element 120 has multiple reflective surfaces, and the multiple reflective surfaces can reflect the effective light beam in turn.
  • the beam and the effective beam are emitted out of the reflective element 120, wherein a reflective surface reflects the effective beam of the incident reflective element 120 for the first time, and reflects the effective beam to the outside of the optical axis 111 of the telephoto optical assembly 110, which is located on the optical axis
  • the rest of the reflective surfaces outside 111 receive the effective light beam after the first reflection, and emit it after multiple reflections.
  • the effective beam emitted can be parallel to and in the same direction as the effective beam incident on the reflective element 120, that is, the effective beam incident on the reflective element 120 and the effective beam incident on the reflective element 120.
  • the emitted effective beams are parallel and in the same direction, thereby reducing the risk of changing the installation positions of other components due to changing directions.
  • the effective light beam is reflected by the first reflective surface located on the optical axis 111, and the transmission direction is changed through reflection by multiple reflective surfaces, and the volume of the telephoto lens group 10 is compressed on the optical axis 111 of the telephoto optical assembly 110, and the effective beam is
  • the light beam is reflected by multiple reflective surfaces to change the transmission direction, and has a longer optical total length, so that the telephoto function of the telephoto optical component 110 is realized through the reflective element 120, and the transmission of the effective light beam used to achieve the same telephoto focal length is compressed Space, thereby reducing the overall volume of the telephoto lens group 10, is conducive to realizing the miniaturization of the telephoto lens group 10.
  • the transmission path 101 is a schematic optical path, and the effective light beam has refraction and divergence during actual propagation, and does not completely propagate along a straight line.
  • the telephoto optical assembly 110 includes at least one lens, wherein, when the telephoto optical assembly 110 includes more than two lenses, each lens is coaxially arranged, so the optical axis 111 of the lens can be regarded as the optical axis of the telephoto optical assembly 110 111 , the optical axis 111 described below refers to the optical axis 111 of the telephoto optical component 110 .
  • the reflective surfaces in the reflective element 120 may include a primary reflective surface 121 and a final reflective surface 124 .
  • the primary reflection surface 121 is arranged opposite to the telephoto optical assembly 110.
  • the primary reflection surface 121 can reflect the effective light beam emitted by the telephoto optical assembly 110 to the outside of the optical axis 111 of the telephoto optical assembly 110, and when the effective light beam enters the telephoto optical assembly In the direction within 110, the last reflection surface 124 outside the optical axis 111 of the telephoto optical assembly 110 is arranged opposite to the image sensor for receiving the effective light beam, specifically, opposite to the photosensitive surface of the image sensor for receiving the effective light beam, That is, the reflective surface between the primary reflective surface 121 and the final reflective surface 124 has the effect of reflecting the effective light beam back, and the back reflection is relative to the direction in which the effective light beam enters the primary reflective surface 121.
  • the reflection direction between the primary reflection surface 121 and the final reflection surface 124 is opposite to the direction in which the effective light beam enters the primary reflection surface 121, so that a longer total optical length is obtained by a plurality of reflection surfaces, While realizing the telephoto function, the part having the last reflection surface 124 extends back and is located on the peripheral side of the telephoto optical assembly 110, so that in the axial direction of the telephoto optical assembly 110, the size of the telephoto lens group 10 is reduced.
  • the volume or length is beneficial to miniaturization of the telephoto lens group 10 .
  • the multiple reflective surfaces may also include an intermediate reflective surface, and the number of intermediate reflective surfaces may be one, two or three.
  • the multiple reflective surfaces include a first intermediate reflective surface 122 and a second intermediate reflective surface 123 , the first intermediate reflection surface 122 is used to receive and reflect the effective light beam reflected by the primary reflection surface 121 to the second intermediate reflection surface 123 .
  • the second intermediate reflection surface 123 is used to receive the effective light beam reflected by the first intermediate reflection surface 122 and reflect the effective light beam to the final reflection surface 124 .
  • the last reflection surface 124 reflects the effective light beam out of the reflective element 120, thereby realizing multiple reflections of the effective light beam.
  • At least one of the intermediate reflection surfaces is parallel to the optical axis 111 of the telephoto optical assembly 110, specifically, the second intermediate reflection surface 123 is parallel to or intersects with the optical axis 111 of the telephoto optical assembly 110, so that the telephoto optical assembly 110
  • the focus optical assembly 110 as a whole can be close to the second intermediate reflection surface 123.
  • the second intermediate reflection surface 123 and the telephoto optical assembly 110 are arranged at an included angle.
  • the optical axis 111 of the focus optical assembly 110 is parallel, so that the telephoto optical assembly 110 as a whole can be as close as possible to the second intermediate reflective surface 123, so as to reduce the distance between the reflective element 120 and the telephoto optical assembly 110.
  • the direction perpendicular to the axis of the focal optics assembly 110 that is, the radial direction of the telephoto optics assembly 110 , reduces the volume of the telephoto lens group 10 , which is beneficial to miniaturization of the telephoto lens group 10 .
  • the transmission path 101 of the effective light beam in the reflection element 120 intersects, and under the condition that the stroke of the transmission path 101 of the effective light beam in the reflection element 120 is constant, the more intersection points of the transmission path 101, the space utilization in the reflection element 120
  • the more intersection points of the effective light beam in the reflective element 120 the more beneficial it is to increase the transmission path 101 of the effective light beam in the reflective element 120, thereby enabling telephoto optical Having a longer focal length for the component 110 provides the possibility.
  • the plurality of reflective surfaces may also include a third intermediate reflective surface 125, and the third intermediate reflective surface 125 is parallel to or intersects with the second intermediate reflective surface 123, that is, it is connected to the telephoto optical assembly.
  • the optical axes 111 of 110 are parallel or intersecting.
  • the third intermediate reflection surface 125 is parallel to the second intermediate reflection surface 123 , that is, parallel to the optical axis 111 of the telephoto optical assembly 110 .
  • the third intermediate reflection surface 125 can receive the effective beam reflected by the second intermediate reflection surface 123, and reflect the effective beam to the last reflection surface 124; or, the effective beam can be between the second intermediate reflection surface 123 and the third intermediate reflection surface 125 After undergoing multiple reflections, such as two, three, four times, etc., it is reflected to the last reflection surface 124, and then reflected by the last reflection surface 124 to emit.
  • the third intermediate reflection surface 125 is used to receive the effective light beam reflected by the second intermediate reflection surface 123, and reflect the effective light beam to the last reflection surface 124, and the last reflection surface 124 reflects the effective light beam out of the reflection element 120, thereby realizing effective More reflections of the light beam extend the total optical length of the effective light beam in the reflective element 120.
  • the effective light beam can be reflected multiple times between the second intermediate reflective surface 123 and the first intermediate reflective surface 122, and pass through the second intermediate reflective surface 123 and the first intermediate reflective surface 122.
  • the second intermediate reflection surface 123 or the third intermediate reflection surface 125 is reflected to the last reflection surface 124, further enabling the effective light beam to obtain a longer optical total length, compared with when the effective light beam is incident on the reflection element 120, it can be realized that the effective light beam is reversed by 720°, 1080° and larger angles are output, compared with the prior art, while achieving the same total optical length, the volume of the telephoto lens group 10 can be further reduced, which is more conducive to the miniaturization of the telephoto lens group 10 .
  • the effective light beam intersects the transmission path 101 between the second intermediate reflection surface 123 and the third intermediate reflection surface 125 in the reflection element 120 multiple times.
  • the more intersecting points of the paths 101 the greater the utilization rate of the space inside the reflective element 120 , which further facilitates the reduction of the size of the reflective element 120 , and further facilitates the miniaturization design of the telephoto lens group 10 .
  • the more intersection points of the effective light beam between the second intermediate reflective surface 123 and the third intermediate reflective surface 125 in the reflective element 120 the more beneficial it is to increase the effective light beam in the reflective element 120.
  • the transmission path 101 in the reflective element 120 can provide the possibility for the telephoto optical assembly 110 to have a longer focal length, and finally reduce the axial dimension of the telephoto optical assembly 110 .
  • the angle between the incident light beam and the reflected light beam on the primary reflection surface 121 is set as the first angle A
  • the angle between the incident light beam and the reflected light beam on the first intermediate reflection surface 122 is set as the first angle A.
  • Two included angles B, the included angle between the incident light beam of the last reflection surface 124 and the reflected light beam is set as the third included angle C
  • the included angle between the reflected light beam of the initial reflection surface 121 and the reflected light beam of the last reflected surface 124 is set as The fourth included angle D.
  • the multiple reflective surfaces may have different positional relationships.
  • the sum of the first included angle A and the fourth included angle D is 180 degrees; the sum of the second included angle B and the third included angle C is the same as the fourth included angle D.
  • the first included angle A can be 90°, so that the effective light beam emitted by the telephoto optical assembly 110 can change direction, thereby reducing the axial distance of the telephoto lens group 10. The size in the direction, and then reduce the volume.
  • the sum of the first included angle B and the second included angle C can be 90°, that is, the first included angle B and the second included angle C are complementary, and the fourth included angle D is 90°, so that after 90° reflection After the first reflection surface 121 of the first reflection surface 121, the effective light beam passes through the first middle reflection surface 122, the second middle reflection surface 123 and the final reflection surface 124 respectively, and exits in the same direction as the effective light beam incident on the reflection element 120.
  • the reflecting element 120 has a longer focal length for the telephoto optical assembly 110 through fewer reflecting surfaces It is possible, and the volume of the reflective element 120 is small, which is beneficial to realize the miniaturization of the telephoto lens group 10.
  • the reflective element 120 only has four reflective surfaces, and the angular relationship between the reflective surfaces is simple and direct, and is easy to manufacture. The cost of production and processing is reduced.
  • the effective light beam passing through the second intermediate reflection surface 123 can also be reflected by the third intermediate reflection surface 125, and the angle between the first intermediate reflection surface 122 and the last reflection surface 124 Assuming the fifth included angle E, there is also a certain positional relationship between the first intermediate reflective surface 122 and the last reflective surface 124 , for example, the fifth included angle E is half of the fourth included angle D.
  • the effective light beam passes through the first intermediate reflection surface 122, the second intermediate reflection surface 123, the third intermediate reflection surface 125 and the last reflection surface 124 after being reflected and emitted by the primary reflection surface 121, so as to be identical to the effective light beam of the incident reflection element 120.
  • the effective light beam is reflected multiple times by setting the primary reflection surface 121, the first intermediate reflection surface 122, the second intermediate reflection surface 123, the third intermediate reflection surface 125, and the last reflection surface 124, and the initial reflection surface is strictly limited.
  • the reflective element 120 has only four reflective surfaces, and the angular relationship between the reflective surfaces is simple and direct, which is easy to manufacture and reduces the cost of production
  • each reflective surface can be formed from an independent reflector, specifically, the primary reflective surface 121, the first intermediate reflective surface 122, the second intermediate reflective surface 123, the third intermediate reflector Both the surface 125 and the last reflection surface 124 can be formed on the reflector, so that the flexibility of installing each reflector can be improved.
  • the reflective surfaces are formed on the same prism or different prisms, so that the difficulty of assembling the reflective element 120 can be reduced, and the installation of the reflective element 120 is facilitated; or, as shown in Figure 4 , the initial reflection surface 121 can be formed in a prism, the first intermediate reflection surface 122, the second intermediate reflection surface 123, the third intermediate reflection surface 125 and the last reflection surface 124 can be formed in a reflector, so that the reflection surface is formed in a reflection of different structures mirrors or prisms to achieve structural diversity and flexibility in installation.
  • a reflective coating can be provided on the surface of the prism, so that the surface provided with the reflective coating forms various reflective surfaces, and the effective light beam can be reflected sequentially by multiple reflective surfaces, and finally emerge from the reflective element 120.
  • the reflective coating can be a simple metal coating, a metal-metal coating or a metal-non-metal coating with high reflectivity (eg, higher than 90%).
  • the reflective element 120 may include a primary reflector 120A, an intermediate reflector 120B, and a final reflector 120C.
  • the primary reflector 120A may have a primary reflective surface 121 .
  • the intermediate reflector 120B may have a first intermediate reflective surface 122 , and the intermediate reflector 120B is located outside the optical axis 111 of the telephoto optical assembly 110 .
  • the final reflector 120C may have a final reflective surface 124 and a second intermediate reflective surface 123, or have a final reflective surface 124, a second intermediate reflective surface 123, and a third intermediate reflective surface 125, and the final reflector 120C extends from the intermediate reflector 120B, Moreover, the extension direction of the final reflector 120C is opposite to the transmission direction of the effective light beam incident on the telephoto optical component 110 .
  • the intermediate reflector 120B and the primary reflector 120A can be integrally formed, or they can be separated.
  • the last reflector 120C and the intermediate reflector 120B can be integrally formed, or they can be separated.
  • the multiple reflective surfaces of the reflective element 120 are arranged on the same prism, only one prism needs to be assembled, thereby reducing the difficulty of assembling the reflective element 120.
  • the multiple reflective surfaces of the reflective element 120 are arranged on different prisms , can realize the diversity of structures when the reflective element 120 is a prism, and can more flexibly form the above-mentioned reflective surface on different prisms.
  • the primary reflector 120A also has a light incident surface a, and the effective light beam emitted by the telephoto optical component 110 is projected to the primary reflective surface 121 through the light incident surface a, and the light incident surface
  • the included angle F between a and the primary reflection surface 121 is 45°. In this way, when the effective light beam emitted by the telephoto optical assembly 110 is projected onto the primary reflection surface 121 perpendicular to the incident surface a, the incident light beam of the primary reflection surface 121 and the primary reflection surface 121 can be realized.
  • the angle between the reflected beams is 90°.
  • the light incident surface a is perpendicular to the second intermediate reflection surface 123 , and part or all of the telephoto optical assembly 110 is located in a right-angled space b formed by the light incident surface a and the second intermediate reflection surface 123 .
  • the telephoto optical assembly 110 is arranged in the right-angled space b formed by the incident surface of the reflective element 120 and the second intermediate reflective surface 123, thereby reducing the axial and radial distance between the telephoto optical assembly 110 and the reflective element 120. distance; it also helps to shorten the distance between the telephoto optical assembly 110 and the subsequent optical elements, so that the structure of the telephoto lens group 10 is more compact, so that the telephoto lens group 10 can still be able to Keep the characteristics of miniaturization.
  • the telephoto lens group 10 may further include a mounting part 140 for mounting the reflective element 120 and/or the telephoto optical assembly 110 .
  • the telephoto lens group 10 can also include a reflector 130, which can be used to receive the effective light beam reflected by the subject and reflect the effective light beam to the telephoto lens.
  • Optical assembly 110 Specifically, as shown in FIG. 7 , the reflector 130 can change the direction of the effective light beam entering the telephoto optical assembly 110, such as the effective light beam reflected by the object perpendicular to the axial direction of the telephoto optical assembly 110, after being reflected by the reflective member 130 , the effective light beam is axially transmitted along the telephoto optical assembly 110, so that the telephoto lens group 10 forms a periscope telephoto lens group.
  • the thickness of the telephoto lens group 10 in the electronic device 30 is changed from the size of the telephoto lens group 10 in the axial direction of the telephoto optical assembly 110 to that of the telephoto lens group 10 in the telephoto optical assembly.
  • the size of 110 in the radial direction in this way, can reduce the thickness of the telephoto lens group 10 when it is in the electronic device 30 , which is beneficial to realize the thinning of the electronic device 30 .
  • the reflector 130 can also have an OIS anti-shake function, which can avoid or reduce imaging errors caused by shaking during the shooting process of the telephoto lens group 10 and improve imaging quality.
  • the reflective element 120 if the reflective element 120 is an integrated prism, the reflective member 130 may be a prism or a mirror.
  • different elements may have different functions to achieve optical image stabilization. When the reflective element 120 is an integrated prism, the functions of the different elements are shown in Table 1:
  • Reflector 130 Telephoto Optical Components 110 reflective element 120 Two-axis rotating OIS focus focus Two-axis rotating OIS focus focus One axis rotation OIS Fixed focus + one-axis translation OIS focus One axis rotation OIS Focus + one-axis translation OIS focus
  • the reflective element 120 includes two different prisms, that is, the primary reflector 120A and the intermediate reflector 120B, the functions of the different elements are shown in Table 2:
  • Reflector 130 Telephoto Optical Components 110 Primary reflector 120A Intermediate reflector 120B Two-axis rotating OIS focus focus focus focus Two-axis rotating OIS focus focus focus One axis rotation OIS focus One axis rotation OIS focus One axis rotation OIS focus focus focus One axis rotation OIS focus focus One-axis translation OIS
  • OIS optical image stabilization
  • focusing refers to the process of changing the position of the object distance and image distance to make the image of the subject clear
  • fixed focus refers to the fixed focal length
  • the embodiment of the present application also provides a camera module 20, the camera module 20 includes an image sensor 210 and the telephoto lens group 10 in the above-mentioned embodiment, and the image sensor 210 is used to receive images from The effective light beams of the telephoto lens group 10 are processed together.
  • the image sensor 210 is close to the reflective element 120, and is located in the direction in which the reflective element 120 emits light. Since the reflective element 120 has multiple reflective surfaces, the multiple reflective surfaces can sequentially reflect the effective beam.
  • the beam and the effective beam are emitted out of the reflective element 120, wherein a reflective surface reflects the effective beam of the incident reflective element 120 for the first time, and reflects the effective beam to the outside of the optical axis 111 of the telephoto optical assembly 110, which is located on the optical axis
  • the rest of the reflective surfaces outside 111 receive the effective light beam after the first reflection, and emit it after multiple reflections.
  • the effective light beam incident on the reflective element 120 is parallel to the effective light beam emitted by the reflective element 120 and has the same direction.
  • the image sensor 210 is a CCD (Charge Coupled Device, charge coupled device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • an infrared filter 220 is further arranged between the telephoto lens group 10 and the image sensor 210 to filter out infrared light, and the filter 220 can be installed through a bracket.
  • the camera module 20 further includes a conventional optical system 230, the conventional optical system 230, and the conventional optical system 230 may have a focal length range or field of view different from that of the telephoto optical component 110 It can also have different focal length ranges and different field of view angles at the same time, providing users with shooting in different scenes; users can choose different optical systems to shoot according to their own needs, improve the usability of users, and give users good use experience.
  • reflective element 120 may be combined with telephoto optical assembly 110 having a different effective focal length.
  • the field of view FOV of the telephoto optical assembly 110 is 3.84°
  • the maximum effective focal length EFL of the camera module 20 is 78 mm, which can realize 25 times telephoto shooting.
  • the reflective element 120 reflects the effective light beam emitted by the telephoto optical component 110 to the image sensor 210 after four reflections, wherein the effective light beam enters the transmission path 101 of the image sensor 210 after being emitted by the telephoto optical component 110 and the distance between the maximum effective focal length EFL
  • the lengths are the same to realize the telephoto function of the telephoto optical assembly 110 , thereby compressing the axial dimension of the camera module 20 in the telephoto lens group 10 , thereby reducing the overall volume of the telephoto lens group 10 .
  • the field of view FOV of the telephoto optical assembly is 2.8°
  • the maximum effective focal length EFL of the camera module 20 is 109.5mm
  • the camera module 20 can realize 35 times telephoto shooting; wherein
  • the transmission path 101 where the effective light beam is incident on the image sensor 210 after exiting the telephoto optical assembly 110 is the same as the maximum effective focal length EFL, so as to realize the telephoto function of the telephoto optical assembly 110 and compress the camera module 20 at a long
  • the axial size of the focal lens group 10 further reduces the overall volume of the telephoto lens group 10 .
  • the field of view FOV of the telephoto optical assembly 110 is 1.92° and the maximum effective focal length EFL of the camera module 20 is 156mm, and the camera module 20 can realize 50 times telephoto shooting.
  • the reflective element 120 reflects the effective light beam emitted by the telephoto optical component 110 to the image sensor 210 after five reflections, wherein the effective light beam is incident on the transmission path 101 of the image sensor 210 after being emitted by the telephoto optical component 110 and the distance between the maximum effective focal length EFL
  • the lengths are the same to realize the telephoto function of the telephoto optical assembly 110 , thereby compressing the axial dimension of the camera module 20 in the telephoto lens group 10 , thereby reducing the overall volume of the telephoto lens group 10 .
  • the effective light beams in FIGS. 9-10 are reflected five times in the reflective element 120 and then exit to the image sensor 210, the number of reflections of the effective light beams on the reflective element 120 can be more times, and the effective light beams are reflected on the reflective element 120 for more times.
  • the transmission path in 120 can be longer, so that the telephoto optical assembly 110 with a longer focal length can be used, so that the camera module 20 has a longer effective focal length and can capture objects at a longer distance.
  • the embodiment of the present application also provides an electronic device 30, the electronic device 30 includes a housing 310 and the camera module 20 in the above embodiment, the camera module 20 is installed in the housing Body 310.
  • the camera module 20 may also include a conventional optical system 230 and a wide-angle optical system 240.
  • the conventional optical system 230 may have a different focal length range or field of view than the telephoto optical assembly 110, and may also have a different focal length range and a different viewing angle at the same time.
  • the field angle provides users with normalized and general scene shooting; the wide-angle optical system 240 can have a large imaging range of field angle.
  • the electronic device 30 matched with the camera module 20 can provide the user with a wide field of view for shooting, and the user can choose different optical systems for shooting according to their own needs, thereby improving the usability of the electronic device 30 and giving the user a good use experience.
  • the electronic device 30 may be, but not limited to, a smart phone, a smart watch, an e-book reader, a vehicle-mounted camera device, a monitoring device, a medical device (such as an endoscope), a tablet computer, a biometric device (such as a fingerprint recognition device or a pupil recognition device etc.), PDA (Personal Digital Assistant, personal digital assistant), drone, etc.
  • the camera module 20 includes the above-mentioned telephoto optical assembly 110, the reflective element 120 and the reflector 130.
  • the camera module 20 is a rear camera module, the effective light is taken vertically from the back of the electronic device.
  • the back of the module 20 is incident, and the reflector 130 can reverse the effective light beam entering the telephoto optical assembly 110 to exit by 90 degrees, so that the incident effective light beam is transmitted along the axial direction of the telephoto optical assembly 110, and the camera module 20 is placed in the electronic device
  • the thickness at 30 is changed from the dimension of the camera module 20 in the axial direction of the telephoto optical assembly 110 to the size of the camera module 20 in the radial direction of the telephoto optical assembly 110, so that the camera module 20 can be reduced in electronic
  • the thickness of the device 30 is conducive to realizing the thinning of the electronic device 30 .
  • the camera module 20 when there is no reflector 130, the camera module 20 is a conventional group rather than a periscope module, and the effective light beam reflected by the object can directly enter the telephoto optical assembly 110 and travel along the telephoto optical assembly.
  • the optical axis 111 of 110 propagates.
  • the thickness of the camera module 20 in the electronic device 30 is the size of the camera module 20 in the axial direction of the telephoto optical assembly 110, and the effective light beam passes through multiple reflective surfaces of the reflective element 120.
  • Reflection transforms the transmission direction and has a longer total optical length, thereby realizing the telephoto function of the telephoto optical component 110 through the reflective element 120, while compressing the transmission space of the effective light beam used to achieve the same telephoto focal length, and also realizing the camera mode.
  • the miniaturization of the group 20 can finally realize the thinning of the electronic device 30 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

一种长焦镜组(10)、摄像模组(20)及电子设备(30),沿有效光束的传输路径(101),长焦镜组(10)至少依次包括:长焦光学组件(110)以及反射元件(120),反射元件(120)具有多个反射面(121,122,123,124,125),其中一个反射面(121)位于长焦光学组件(110)的光轴(111)上,用于接收长焦光学组件(110)出射的有效光束,并将有效光束向长焦光学组件(110)的光轴外反射;其余所有反射面(122,123,124,125)位于长焦光学组件(110)的光轴(111)外,用于接收第一次反射后的有效光束并进行多次反射。多个反射面(121,122,123,124,125)可以延长有效光束在反射元件(120)内的传输距离,从而在实现长焦光学组件(110)的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组(10)的整体体积,有利于实现摄像模组(20)的小型化,并最终实现电子设备(30)的轻薄化。

Description

长焦镜组、摄像模组及电子设备 技术领域
本申请涉及摄像领域,特别是涉及一种长焦镜组、摄像模组及电子设备。
背景技术
随着科学的进步与社会的发展,人们对生活产品的质量有了更高的要求,例如,对具有一定拍摄功能的电子设备,人们希望在使用具有长焦镜头的电子设备的同时,可以具有良好的手感,包括但不限于电子产品的轻薄化、小型化等。长焦镜头是指具有较长焦距的镜头,用于拍摄较远距离甚至超远距离的物品或景象。
长焦镜头在轴向上的尺寸一般较大,导致长焦镜头一般需要占据比较大的空间,长焦镜头应用于电子设备中时,往往会导致电子设备的厚度较厚,从而难以满足人们对目前电子设备轻薄化的要求。
发明内容
本申请实施例提供了一种长焦镜组、摄像模组及电子设备,可以在实现长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组的整体体积,有利于实现长焦镜组的小型化。
第一方面,本申请实施例提供了一种长焦镜组,沿有效光束的传输路径,所述长焦镜组至少依次包括长焦光学组件以及反射元件,反射元件具有多个反射面,其中一个所述反射面位于所述长焦光学组件的光轴上,用于接收所述长焦光学组件出射的有效光束,并将有效光束向所述长焦光学组件的光轴外反射;其余所有所述反射面位于所述长焦光学组件的光轴外,用于接收第一次反射后的有效光束并经多次反射后出射。
基于本申请实施例,反射元件具有多个反射面,可以将由长焦光学组件出射的有效光束进行多次反射,一个反射面将入射反射元件的有效光束进行第一次反射,并将有效光束反射至长焦光学组件的光轴外,位于光轴外的其余反射面接收第一次反射后的有效光束,经过多次反射后射出。有效光束经过第一个位于光轴上的反射面反射,并经过多个反射面反射变换传输方向,在长焦光学组件的光轴上压缩了长焦镜组的体积,且具有较长的光学总长,从而通过反射元件,在实现长焦光学组件的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组的整体体积,有利于实现长焦镜组的小型化。
在其中一些实施例中,多个所述反射面至少包括:初次反射面,所述初次反射面与所述长焦光学组件相对设置且位于所述长焦光学组件的光轴上,用于接收所述长焦光学组件出射的有效光束,并将有效光束向所述长焦光学组件的光轴外反射;末次反射面,位于所述长焦光学组件的光轴外,所述末次反射面与用于接收有效光束的图像传感器相对设置,用于在所述反射元件内最后一次反射有效光束。
基于上述实施例,初次反射面可以将长焦光学组件射出的有效光束反射至长焦光学组件的光轴外,且在有效光束入射长焦光学组件内的方向上,所述最后反射面与用于接收有效光束的图像传感器相对设置,也即,初次反射面与末次反射面之间的反射面具有将有效光束往回反射的作用,往回反射是相对于有效光束射入初次反射面的方向而言的,整体而言,初次反射面与末次反射面之间的反射面对有效光束的整体反射方向与有效光束射入初次反射面的方向相反,如此,在通过多个反射面获得较长的光学总长实现长焦功能的同时,使得具有末次反射面的部分往回延伸并位于长焦光学组件的周侧,如此,在长焦光学组件的轴向上,缩小了长焦镜组的体积,有利于实现长焦镜组的小型化。
在其中一些实施例中,多个所述反射面还包括:至少一个中间反射面,用于接收并反射所述初次反射面反射的有效光束,并将有效光束向所述末次反射面反射。
基于上述实施例,至少一个中间反射面用于接收初次反射面反射的有效光束,并将有效光束向末次反射面反射,末次反射面将有效光束反射出反射元件,从而实现对有效光束的多次反射。
在其中一些实施例中,所述中间反射面的数量为一个或两个或三个。
基于上述实施例,中间反射面用于接收初次反射面反射的有效光束,并将有效光束向末次反射面反射,末次反射面将有效光束反射出反射元件,将中间反射面的数量设置为一个或两个或三个,可以实现对有效光束的多次反射。
在其中一些实施例中,至少一个所述中间反射面与所述长焦光学组件的光轴平行。
基于上述实施例,将至少一个中间反射面设置为与长焦光学组件的光轴平行,平行的中间反射面可以缩短反射元件在垂直于长焦光学组件光轴方向上的尺寸,进而使反射元件整体靠近长焦光学组件,如此,缩小反射元件的占用体积,缩小长焦镜组的体积。
在其中一些实施例中,多个所述反射面还包括:第一中间反射面,用于接收并反射所述初次反射面反射的有效光束;第二中间反射面,用于接收所述第一中间反射面反射的有效光束,并将有效光束向所述末次反射面反射。
基于上述实施例,第二中间反射面用于接收所述第一中间反射面反射的有效光束,并将有效光束向所述末次反射面反射,末次反射面将有效光束反射出反射元件,从而实现对有效光束的多次反射。
在其中一些实施例中,多个所述反射面还包括:第三中间反射面,用于接收所述第二中间反射面反射的有效光束,并将有效光束向所述末次反射面反射;或者所述有效光束可在所述第二中间反射面与所述第一中间反射面之间被多次反射,并通过所述第二中间反射面或所述第三中间反射面反射至所述末次反射面。
基于上述实施例,通过设置第三中间反射面,第三中间反射面用于接收所述第二中间反射面反射的有效光束,并将有效光束向末次反射面反射,末次反射面将有效光束反射出反射元件,从而实现对有效光束的更多次反射,进一步延长有效光束在反射元件内的光学总长,更进一步地,有效光束可在第二中间反射面与第一中间反射面之间被多次反射,并通过第二中间反射面或第三中间反射面反射至末次反射面,使有效光束获得更长的光学总长,相比于现有技术,在实现相同的光学总长的同时,可以进一步缩小长焦镜组的体积,更利于实现长焦镜组的小型化。
在其中一些实施例中,所述第二中间反射面和/或所述第三中间反射面与所述长焦光学组件的光轴平行,或者所述第二中间反射面和/或所述第三中间反射面与所述长焦光学组件的光轴相交。
基于上述实施例,第二中间反射面与长焦光学组件的光轴平行或相交,使长焦光学组件整体均可以靠近第二中间反射面。优选地,相比于第二中间反射面与长焦光学组件的光轴呈夹角设置,第二中间反射面与长焦光学组件的光轴的平行,使长焦光学组件整体均可以尽可能地靠近第二中间反射面,以缩小反射元件与长焦光学组件之间的距离,从而在与长焦光学组件的轴向垂直的方向也即长焦光学组件的径向上,缩小了长焦镜组的体积,有利于实现长焦镜组的小型化。
在其中一些实施例中,在通过所述第二中间反射面将有效光束反射至所述末次反射面时:所述初次反射面的入射光束与反射光束之间的夹角为第一夹角;所述第一中间反射面的入射光束与反射光束之间的夹角为第二夹角;所述末次反射面的入射光束与反射光束之间的夹角为第三夹角;所述初次反射面的反射光束与所述末次反射面的反射光束之间的夹角为第四夹角;所述第一夹角与所述第四夹角之和为180°;所述第二夹角与所述第三夹角之和与所述第四夹角相同。
基于上述实施例,通过设置初次反射面、第一中间反射面、第二中间反射面以及末次反射面对有效光束进行多次反射,并限定第一夹角、第二夹角、第三夹角与第四夹角之间的关系,反射元件通过上述较少的反射面,不仅实现了对有效光束的多次反射后出射,而且反射元件的体积较小,利于实现长焦镜组的小型化,此外,反射元件仅具有四个反射面,结构简单、易于制造,降低了生产加工的成本。
在其中一些实施例中,所述第一夹角为90°,所述第四夹角为90°,所述第二夹角与所述第三夹角之和为90°。
基于上述实施例,限定第一夹角为90°,第四夹角为90°,第二夹角与第三夹角之和为90°,反射元件通过上述较少的反射面,不仅实现了对有效光束的多次反射后出射,而且反射元件的体积较小,利于实现长焦镜组的小型化,此外,反射元件仅具有四个反射面, 且反射面之间的角度关系简单直接,易于制造,降低了生产加工的成本。
在其中一些实施例中,在通过所述第三中间反射面将有效光束反射至所述末次反射面时:所述初次反射面的入射光束与反射光束之间的夹角为第一夹角;所述第一中间反射面的入射光束与反射光束之间的夹角为第二夹角;所述末次反射面的入射光束与反射光束之间的夹角为第三夹角;所述初次反射面的反射光束与所述末次反射面的反射光束之间的夹角为第四夹角;所述第一中间反射面与所述末次反射面之间的夹角为第五夹角;所述第一夹角与所述第四夹角之和为180°;所述第二夹角与所述第三夹角之和与所述第四夹角相同。所述第五夹角为所述第四夹角的一半。
基于上述实施例,通过设置初次反射面、第一中间反射面、第二中间反射面、第三中间反射面以及末次反射面对有效光束进行多次反射,并限定第一夹角、第二夹角、第三夹角、第四夹角及第五夹角之间的关系,如此,反射元件通过尽量少的反射面,不仅实现了对有效光束的多次反射后出射,而且反射元件的体积较小,利于实现长焦镜组的小型化,此外,反射元件仅具有五个反射面,结构简单、易于制造,降低了生产加工的成本。
在其中一些实施例中,所述第一夹角为90°,所述第四夹角为90°,所述第二夹角与所述第三夹角之和为90°,所述第五夹角为45°。
基于上述实施例,通过设置第一夹角为90°,第四夹角为90°,第二夹角与第三夹角之和为90°,第五夹角为45°,如此,反射元件通过尽量少的反射面,不仅实现了对有效光束的多次反射后出射,而且反射元件的体积较小,利于实现长焦镜组的小型化,此外,反射元件仅具有五个反射面,且反射面之间的角度关系简单直接,易于制造,降低了生产加工的成本。
在其中一些实施例中,多个所述反射面中,所述反射面各自形成于不同的反射镜,或者所述反射面形成于同一棱镜或者不同棱镜,或者部分所述反射面各自形成于不同反射镜且其余所述反射面形成于同一棱镜或者不同棱镜。
基于上述实施例,在将反射面各自形成于不同的反射镜时,各个反射镜可以相互独立,可以提高各个反射镜安装时的灵活性;在将反射面形成于同一棱镜或者不同棱镜时,可以降低反射元件装配难度,方便反射元件的安装;在将部分反射面各自形成于不同反射镜且其余反射面形成于同一棱镜或者不同棱镜时,可以使反射面形成于不同结构的反射镜或棱镜,实现结构的多样性以及安装时的灵活性。
在其中一些实施例中,所述反射元件为一体成型的棱镜,所述棱镜包括初次反射体,具有所述初次反射面;中间反射体,具有所述第一中间反射面,且位于所述长焦光学组件的光轴外,所述中间反射体与所述初次反射体一体成型;末次反射体,至少具有所述末次反射面和所述第二中间反射面,所述末次反射体与所述中间反射体一体成型,所述末次反射体自所述中间反射体延伸,且所述末次反射体的延伸方向与有效光束入射所述长焦光学组件的方向相反。
基于上述实施例,反射元件的多个反射面设置于同一棱镜时,只需装配一个棱镜即可,从而可以降低反射元件的装配难度,也有利于增强反射元件的整体性和稳定性。
在其中一些实施例中,所述第一反射体还具有入光面,所述长焦光学组件出射的有效光束经所述入光面投射至所述初次反射面,所述入光面与所述初次反射面的夹角为45°,所述入光面与所述第二中间反射面垂直,所述长焦光学组件部分或者全部位于所述入光面与所述第二中间反射面形成的直角空间内。
基于上述实施例,所述入光面与所述初次反射面的夹角为45°,长焦光学组件出射的有效光束垂直入光面投射至初次反射面时,可以实现初次反射面的入射光束与反射光束之间的夹角为90°;进一步地,将长焦光学组件设置在入光面与第二中间反射面所形成的直角空间内,可以缩小长焦光学组件与反射元件在长焦光学组件的轴向以及径向上的距离,进而缩小长焦镜组的体积,有利于实现长焦镜组的小型化。
在其中一些实施例中,所述长焦镜组还包括:反射件,所述反射件用于接收被摄物体反射的有效光束,并将有效光束反射至所述长焦光学组件。
基于上述实施例,通过设置反射件将有效光束反射至长焦光学组件,可以使长焦镜组形成潜望式长焦镜组,此时,长焦镜组应用于电子设备中时,长焦镜组在电子设备中时的 厚度为长焦镜组在长焦光学组件的径向上的尺寸,如此,可以缩小长焦镜组在电子设备中时的厚度,有利于实现电子设备的轻薄化。
在其中一些实施例中,所述长焦光学组件出射的有效光束的方向与入射至所述反射元件最后出射的有效光束的方向相同。
基于上述实施例,所述长焦光学组件出射的有效光束的方向与入射至所述反射元件最后出射的有效光束的方向相同,即维持了长焦光学组件出射的有效光束的方向。有效光束经过反射元件多次变换传输方向,具有较长的光学总长,从而通过反射元件,在实现长焦光学组件的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组的整体体积,有利于实现长焦镜组的小型化。
第二方面,本申请实施例提供了一种摄像模组,包括图像传感器及长焦镜组,所述图像传感器用于接收来自所述长焦镜组的有效光束。
基于本申请实施例:通过设置图像传感器及长焦镜头,长焦镜头包括长焦光学组件和反射元件,反射元件具有多个反射面,可以将由长焦光学组件出射的有效光束进行多次反射,一个反射面将入射反射元件的有效光束进行第一次反射,并将有效光束反射至长焦光学组件的光轴外,位于光轴外的其余反射面接收第一次反射后的有效光束,经过多次反射后射出。有效光束经过第一个位于光轴上的反射面反射,并经过多个反射面反射变换传输方向,在长焦光学组件的光轴上压缩了长焦镜组的体积,且具有较长的光学总长,从而通过反射元件实现长焦光学组件的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组的整体体积,有利于实现长焦镜组的小型化,进而可以实现摄像模组的小型化。
第三方面,本申请实施例提供了一种电子设备,包括壳体及摄像模组,所述摄像模组安装于所述壳体。
基于本申请实施例:通过设置壳体和设置在壳体内的摄像模组,摄像模组包括反射元件,反射元件具有多个反射面,可以将由长焦光学组件出射的有效光束进行多次反射,一个反射面将入射反射元件的有效光束进行第一次反射,并将有效光束反射至长焦光学组件的光轴外,位于光轴外的其余反射面接收第一次反射后的有效光束,经过多次反射后射出。有效光束经过第一个位于光轴上的反射面反射,并经过多个反射面反射变换传输方向,在长焦光学组件的光轴上压缩了长焦镜组的体积,且具有较长的光学总长,从而通过反射元件实现长焦光学组件的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组的整体体积,有利于实现长焦镜组的小型化,进而可以实现摄像模组的小型化,最终可以实现电子设备的轻薄化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中长焦镜组的结构示意图;
图2是本申请另一实施例中长焦镜组的结构示意图;
图3是本申请再一实施例中长焦镜组的结构示意图;
图4是本申请又一实施例中长焦镜组的结构示意图;
图5是本申请另一实施例中长焦镜组的结构示意图;
图6是本申请一实施例中摄像模组的结构示意图;
图7是图6中从Z方向上查看摄像模组时的结构示意图;
图8是本申请一实施例中将摄像模组的焦距等效成最大有效焦距EFL的结构示意图;
图9是本申请另一实施例中将摄像模组的焦距等效成最大有效焦距EFL的结构示意图;
图10本申请一实施例中将摄像模组的焦距等效成最大有效焦距EFL的结构示意图;
图11是本申请一实施例中电子设备的结构示意图;
图12是本申请另一实施例中电子设备的结构示意图;
图13图12中从X方向上查看电子设备时的结构示意图。
附图标记:10、长焦镜组;101、传输路径;110、长焦光学组件;111、光轴;120、反射元件;121、初次反射面;122、第一中间反射面;123、第二中间反射面;124、末次反射面;125、第三中间反射面;A、第一夹角;B、第二夹角;C、第三夹角;D、第四夹角;E、第五夹角;120A、初次反射体;120B、中间反射体;120C、末次反射体;a、入光面;b、直角空间;140、安装件;130、反射件;20、摄像模组;210、图像传感器;220、滤光片;FOV、视场角;EFL、有效焦距;230、常规光学系统;240、广角光学系统;30、电子设备。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的组件和方法的例子。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
智能手机、数码相机等电子设备中常会采用长焦镜头来为电子设备带来远摄效果。但是,碍于长焦镜头的轴向尺寸往往过大,从而导致电子设备在沿镜头的轴向上需要设置足够的空间以容置长焦镜头,而这不可避免地会导致电子设备于该轴向上的尺寸变大,从而难以满足目前电子设备的轻薄化设计需求。
如图1所示,本申请的一些实施例提供了一种长焦镜组10,长焦镜组10沿有效光束的传输路径101可以依次包括:长焦光学组件110,长焦光学组件110接收来自被拍摄对象的有效光束,并将有效光束出射至反射元件120上;反射元件120接收有效光束并进行光学处理,具体地,反射元件120具有多个反射面,多个反射面可以依次反射有效光束并将有效光束射出反射元件120外,其中,一个反射面将入射反射元件120的有效光束进行第一次反射,并将有效光束反射至长焦光学组件110的光轴111外,位于光轴111外的其余反射面接收第一次反射后的有效光束,经过多次反射后射出。射出的有效光束与射入反射元件120的有效光束存在一定的位置关系,具体地,射出的有效光束可以与射入的有效光束平行且方向相同,即入射反射元件120的有效光束与反射元件120射出的有效光束平行且方向一致,进而降低因改变方向而需要改变其余元器件安装位置的风险。有效光束经过第一个位于光轴111上的反射面反射,并经过多个反射面反射变换传输方向,在长焦光学组件110的光轴111上压缩了长焦镜组10的体积,且有效光束经过多个反射面反射变换传输方向,具有较长的光学总长,从而通过反射元件120,实现长焦光学组件110的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组10的整体体积,有利于实现长焦镜组10的小型化。需要注意的是,沿传输路径101传播,并能够最终出射反射元件120到达后续光学元件的有效区域的光束称为有效光束。且需注意的是,传输路径101为示意的光路,有效光束在实际传播时存在折射发散,并不会完全沿直线传播。
长焦光学组件110包括至少一个透镜,其中,当长焦光学组件110包括两个以上的透镜时,各透镜同轴设置,因此透镜的光轴111即可视为长焦光学组件110的光轴111,以下所描述的光轴111均指长焦光学组件110的光轴111。
如图1所示,在一些实施例中,反射元件120中的反射面可以包括初次反射面121和末次反射面124。初次反射面121与长焦光学组件110相对设置,初次反射面121可以将长焦光学组件110射出的有效光束反射至长焦光学组件110的光轴111外,且在有效光束入射长焦光学组件110内的方向上,位于长焦光学组件110的光轴111外的末次反射面124,与用于接收有效光束的图像传感器相对设置,具体地,与图像传感器接收有效光束的感光面相对设置,也即,初次反射面121与末次反射面124之间的反射面具有将有效光束往回反射的作用,往回反射是相对于有效光束射入初次反射面121的方向而言的,整体而言,初次反射面121与末次反射面124之间的反射面对有效光束的整体反射方向与有效光束射入初次反射面121的方向相反,如此,在通过多个反射面获得较长的光学总长,实现长焦功能的同时,使得具有末次反射面124的部分往回延伸并位于长焦光学组件110的周侧,如此,在长焦光学组件110的轴向上,缩小了长焦镜组10的体积或者说长度,有利于实现长焦镜组10的小型化。
进一步地,多个反射面还可以包括中间反射面,中间反射面的数量可以是一个、两个或三个,具体地,多个反射面包括第一中间反射面122和第二中间反射面123,第一中间反射面122用于接收并反射初次反射面121反射的有效光束至第二中间反射面123。第二中间反射面123用于接收第一中间反射面122反射的有效光束,并将有效光束向末次反射面124反射。末次反射面124将有效光束反射出反射元件120,从而实现对有效光束的多次反射。
进一步地,中间反射面中的至少一个中间反射面与长焦光学组件110的光轴111平行,具体地,第二中间反射面123与长焦光学组件110的光轴111平行或相交,使长焦光学组件110整体均可以靠近第二中间反射面123,优选地,相比于第二中间反射面123与长焦光学组件110的光轴111呈夹角设置,第二中间反射面123与长焦光学组件110的光轴111平行,使长焦光学组件110整体均可以尽可能地靠近第二中间反射面123,以缩小反射元件120与长焦光学组件110之间的距离,从而在与长焦光学组件110的轴向垂直的方向,也即长焦光学组件110的径向上,缩小了长焦镜组10的体积,有利于实现长焦镜组10的小型化。
以上,有效光束在反射元件120中的传输路径101相交,在有效光束于反射元件120中的传输路径101的行程一定的情况下,传输路径101的相交点越多,则反射元件120内空间利用率就越大,从而有利于缩小反射元件120的尺寸,进而有利于长焦镜组10的小型化设计。相应地,在反射元件120的尺寸一定的情况下,有效光束在反射元件120中的相交点越多,则越有利于增长有效光束于反射元件120中的传输路径101,从而能够为长焦光学组件110拥有更长的焦距提供了可能。
如图2所示,在另外一些实施例中,多个反射面还可以包括第三中间反射面125,第三中间反射面125与第二中间反射面123平行或相交,即与长焦光学组件110的光轴111平行或相交。优选地,第三中间反射面125与第二中间反射面123平行,即与长焦光学组件110的光轴111平行。第三中间反射面125可以接收第二中间反射面123反射的有效光束,并将有效光束向末次反射面124反射;或者,有效光束可以在第二中间反射面123与第三中间反射面125之间经历多次反射,如两次、三次、四次等,之后反射至末次反射面124,并由末次反射面124反射射出。第三中间反射面125用于接收所述第二中间反射面123反射的有效光束,并将有效光束向末次反射面124反射,末次反射面124将有效光束反射出反射元件120,从而实现对有效光束的更多次反射,延长有效光束在反射元件120内的光学总长,更进一步地,有效光束可在第二中间反射面123与第一中间反射面122之间被多次反射,并通过第二中间反射面123或第三中间反射面125反射至末次反射面124,进一步使有效光束获得更长的光学总长,相比于有效光束入射反射元件120时,可以实现对有效光束翻转720°、1080°以及更大的角度后出射,相比于现有技术,在实现相同的光学总长的同时,可以进一步缩小长焦镜组10的体积,更利于实现长焦镜组10的小 型化。
有效光束在反射元件120中第二中间反射面123与第三中间反射面125之间的传输路径101多次相交,在有效光束于反射元件120中的传输路径101的行程一定的情况下,传输路径101的相交点越多,则反射元件120内空间利用率就越大,进一步有利于缩小反射元件120的尺寸,进而有利于长焦镜组10的小型化设计。相应地,在反射元件120的尺寸一定的情况下,有效光束在反射元件120中第二中间反射面123与第三中间反射面125之间的相交点越多,则越有利于增长有效光束于反射元件120中的传输路径101,能够为长焦光学组件110拥有更长的焦距提供了可能,最终能够减小长焦光学组件110轴向上的尺寸。
在本申请中,将初次反射面121的入射光束与反射光束之间的夹角设为第一夹角A,将第一中间反射面122的入射光束与反射光束之间的夹角设为第二夹角B,末次反射面124的入射光束与反射光束之间的夹角设为第三夹角C,初次反射面121的反射光束与末次反射面124的反射光束之间的夹角设为第四夹角D。
在一些实施例中,为了方便生产加工及应用,保证镜组的小型化,多个反射面之间可以具有不同的位置关系。例如,所述第一夹角A与所述第四夹角D之和为180度;所述第二夹角B与所述第三夹角C之和与所述第四夹角D相同。示例性的,如图1所示,在反射元件120中,第一夹角A可以为90°,以使长焦光学组件110出射的有效光束可以改变方向,进而缩小长焦镜组10在轴向方向上的尺寸,进而缩小体积。第一夹角B与第二夹角C之和可以为90°,也即第一夹角B与第二夹角C互余,第四夹角D为90°,以使在经过90°反射的初次反射面121之后,有效光束分别经过第一中间反射面122、第二中间反射面123和末次反射面124,以与入射反射元件120的有效光束相同的方向射出,如此,通过严格限定初次反射面121、第一中间反射面122以及末次反射面124的对有效光束的入射角度以及出射角度之间关系,反射元件120通过较少的反射面,为长焦光学组件110拥有更长的焦距提供了可能,而且反射元件120的体积较小,利于实现长焦镜组10的小型化,此外,反射元件120仅具有四个反射面,且反射面之间的角度关系简单直接,易于制造,降低了生产加工的成本。
在一些实施例中,如图2所示,经过第二中间反射面123的有效光束还可以经过第三中间反射面125反射,将第一中间反射面122与末次反射面124之间的夹角设为第五夹角E,第一中间反射面122与末次反射面124之间同样具备一定的位置关系,如,所述第五夹角E为所述第四夹角D的一半。有效光束在经过初次反射面121反射射出后,分别经过第一中间反射面122,第二中间反射面123、第三中间反射面125和末次反射面124,以与入射反射元件120的有效光束相同的方向射出,如此,通过设置初次反射面121、第一中间反射面122、第二中间反射面123、第三中间反射面125以及末次反射面124对有效光束进行多次反射,并严格限定初次反射面121、第一中间反射面122以及末次反射面124的对有效光束的入射角度以及出射角度之间关系,以及严格限定第一中间反射面122以及末次反射面124之间的夹角为45°,如此,反射元件120通过尽量少的反射面,不仅实现了对有效光束的多次反射后出射,为长焦光学组件110拥有更长的焦距提供了可能,而且反射元件120的体积较小,利于实现长焦镜组10的小型化,此外,反射元件120仅具有四个反射面,且反射面之间的角度关系简单直接,易于制造,降低了生产加工的成本。
反射元件120的结构可以是多样的。在一些实施例中,如图5所示,每个反射面可以形成于独立的反射镜,具体地,初次反射面121、第一中间反射面122、第二中间反射面123、第三中间反射面125和末次反射面124均可以形成于反射镜上,如此,可以提高各个反射镜安装时的灵活性。或者,如图1、图2、图3所示,将反射面形成于同一棱镜或者不同棱镜,如此,可以降低反射元件120装配难度,方便反射元件120的安装;再或者,如图4所示,初次反射面121可以形成于棱镜,第一中间反射面122、第二中间反射面123、第三中间反射面125和末次反射面124可以形成于反射镜,使反射面形成于不同结构的反射镜或棱镜,实现结构的多样性以及安装时的灵活性。
具体地,如图2、图3所示,在将反射面形成于同一棱镜或者不同棱镜时。可通过在棱镜的表面设置反射镀层,以使设置有反射镀层的表面形成各个反射面,有效光束能够被 多个反射面依次反射,并最终从反射元件120出射。反射镀层可以为具有高反射率(如反射率高于90%)的单质金属镀层、金属-金属镀层或金属-非金属镀层。
在一些实施例中,如图2-图3所示,反射元件120可以包括初次反射体120A、中间反射体120B和末次反射体120C。初次反射体120A可以具有初次反射面121。中间反射体120B可以具有第一中间反射面122,中间反射体120B位于所述长焦光学组件110的光轴111外。末次反射体120C可以具有末次反射面124和第二中间反射面123,或者具有末次反射面124、第二中间反射面123和第三中间反射面125,末次反射体120C自中间反射体120B延伸,且末次反射体120C的延伸方向与入射长焦光学组件110的有效光束的传输方向相反。需要注意的是,中间反射体120B与初次反射体120A可以是一体成型的结构,也可以是分体设置,同样,末次反射体120C与中间反射体120B可以是一体成型的结构,也可以是分体设置,如此,反射元件120的多个反射面设置于同一棱镜时,只需装配一个棱镜即可,从而可以降低反射元件120的装配难度,反射元件120的多个反射面设置于不同棱镜时,可以实现反射元件120为棱镜时结构的多样性,可以更灵活地在不同棱镜上形成上述反射面。
在一些实施例中,如图1-图7所示,初次反射体120A还具有入光面a,长焦光学组件110出射的有效光束经入光面a投射至初次反射面121,入光面a与初次反射面121的夹角F为45°,如此,可以在长焦光学组件110出射的有效光束垂直入光面a投射至初次反射面121时,可以实现初次反射面121的入射光束与反射光束之间的夹角为90°。进一步地,入光面a与第二中间反射面123垂直设置,长焦光学组件110部分或者全部位于入光面a与第二中间反射面123形成的直角空间b内。将长焦光学组件110设置在反射元件120的入光面与第二中间反射面123所形成的直角空间b内,从而减小长焦光学组件110轴向以及径向上与反射元件120之间的距离;同时也有利于缩短长焦光学组件110与后续光学元件之间的距离,从而使长焦镜组10的结构更为紧凑,使长焦镜组10在拥有长焦特性的情况下仍然能够保持小型化的特性。
在一些实施例中,如图1-图6所示,长焦镜组10还可以包括安装件140,所述安装件140用于安装反射元件120和/或长焦光学组件110。
一方面,在一些实施例中,如图6所示,长焦镜组10还可以包括反射件130,反射件130可以用于接收被摄物体反射的有效光束,并将有效光束反射至长焦光学组件110。具体地,如图7所示,反射件130可以改变射入长焦光学组件110有效光束的方向,如垂直长焦光学组件110轴向的被摄物体反射的有效光束,经过反射件130反射后,有效光束沿长焦光学组件110轴向传输,从而使长焦镜组10形成潜望式长焦镜组,此时,如图11、图12及图13所示,长焦镜组10应用于电子设备30中时,长焦镜组10在电子设备30中时的厚度由长焦镜组10在长焦光学组件110的轴向上的尺寸变为长焦镜组10在长焦光学组件110的径向上的尺寸,如此,可以缩小长焦镜组10在电子设备30中时的厚度,有利于实现电子设备30的轻薄化。
在一些实施例中,如图6、图7所示,反射件130还可以具有OIS防抖的功能,可以避免或者减少长焦镜组10拍摄过程中因抖动造成的成像误差,提高成像质量。在长焦镜组10中,若反射元件120为一体成型的棱镜,反射件130可以为棱镜或反射镜。在长焦镜组10中,不同元件可以具有不同的功能以实现光学防抖,当反射元件120为一体成型的棱镜时,不同元件的功能如表1所示:
表1
反射件130 长焦光学组件110 反射元件120
两轴旋转OIS 定焦 对焦
两轴旋转OIS 对焦 定焦
一轴旋转OIS 定焦+一轴平移OIS 对焦
一轴旋转OIS 对焦+一轴平移OIS 定焦
当反射元件120包括两个不同棱镜,也即初次反射体120A与中间反射体120B时,不同元件的功能如表2所示:
表2
反射件130 长焦光学组件110 初次反射体120A 中间反射体120B
两轴旋转OIS 对焦 定焦 定焦
两轴旋转OIS 定焦 对焦 对焦
一轴旋转OIS 对焦 一轴旋转OIS 定焦
一轴旋转OIS 定焦 对焦 对焦
一轴旋转OIS 对焦 定焦 一轴平移OIS
其中,OIS为光学防抖(Optical image stabilization);对焦指变动物距和像距的位置,使被拍物成像清晰的过程;定焦指固定焦距。
如图6、图7所示,本申请实施例还提供了一种摄像模组20,摄像模组20包括图像传感器210和上述实施例中的长焦镜组10,图像传感器210用于接收来自长焦镜组10的有效光束并处理,具体地,图像传感器210靠近反射元件120,位于反射元件120射出光线的方向上,由于反射元件120具有多个反射面,多个反射面可以依次反射有效光束并将有效光束射出反射元件120外,其中,一个反射面将入射反射元件120的有效光束进行第一次反射,并将有效光束反射至长焦光学组件110的光轴111外,位于光轴111外的其余反射面接收第一次反射后的有效光束,经过多次反射后射出。此时,入射反射元件120的有效光束与反射元件120射出的有效光束平行且方向一致,有效光束经过多个反射面反射变换传输方向,有效光束经过第一个位于光轴111上的反射面反射,并经过多个反射面反射变换传输方向,在长焦光学组件110的光轴111上压缩了长焦镜组10的体积,且具有较长的光学总长,从而通过反射元件120实现长焦光学组件110的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,进而缩小长焦镜组10的整体体积,有利于实现长焦镜组10的小型化,进而可以实现摄像模组20的小型化。图像传感器210为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。在一些实施例中,长焦镜组10与图像传感器210之间还设置有红外滤光片220以滤除红外光,滤光片220可以通过支架安装。在一些实施例中,如图8、图10所示,摄像模组20还包括常规光学系统230,常规光学系统230,常规光学系统230可以具备与长焦光学组件110不同的焦距范围或视场角,也可以同时具备不同的焦距范围与不同的视场角,为用户提供不同场景的拍摄;用户可以根据自身的需求选择不同的光学系统进行拍摄,提高用户的使用性,给予用户良好的使用体验。
在一些实施例中,反射元件120可以与具有不同有效焦距的长焦光学组件110组合。具体地,在一实施例中,参考图8,长焦光学组件110的视场角FOV为3.84°,摄像模组20的最大有效焦距EFL为78mm,可以实现25倍长焦拍摄。反射元件120将由长焦光学组件110出射的有效光束经过四次反射出射至图像传感器210,其中,有效光束在长焦光学组件110出射后入射至图像传感器210的传输路径101与最大有效焦距EFL的长度相同,以实现长焦光学组件110的长焦功能,从而压缩了摄像模组20在长焦镜组10的轴向尺寸,进而缩小了长焦镜组10的整体体积。
在另一实施例中,参考图9,长焦光学组件的视场角FOV为2.8°,摄像模组20的最大有效焦距EFL为109.5mm,摄像模组20可以实现35倍长焦拍摄;其中,有效光束在长焦光学组件110出射后入射至图像传感器210的传输路径101与最大有效焦距EFL的长度相同,以实现长焦光学组件110的长焦功能,从压缩了摄像模组20在长焦镜组10的轴向尺寸,进而缩小了长焦镜组10的整体体积。
在又一实施例中,参考图10,长焦光学组件110的视场角FOV为1.92°摄像模组20的最大有效焦距EFL为156mm,摄像模组20可以实现50倍长焦拍摄。反射元件120将由长焦光学组件110出射的有效光束经过五次反射出射至图像传感器210,其中,有效光束在长焦光学组件110出射后入射至图像传感器210的传输路径101与最大有效焦距EFL的长度相同,以实现长焦光学组件110的长焦功能,从而压缩了摄像模组20在长焦镜组10的轴向尺寸,进而缩小了长焦镜组10的整体体积。
需要注意的是,虽然图9-10中有效光束在反射元件120中均经过五次反射后出射至 图像传感器210,但有效光束在反射元件120的反射次数可以更多次,有效光束在反射元件120中的传输路径可以更长,从而可以使用更长焦距的长焦光学组件110,以使摄像模组20具有更长有效焦距,能够拍摄更远距离的物体。
如图11、图12及图13所示,本申请实施例还提供了一种电子设备30,电子设备30包括壳体310及上述实施例中的摄像模组20,摄像模组20安装于壳体310。摄像模组20还可以包括常规光学系统230和广角光学系统240,常规光学系统230可以具备与长焦光学组件110不同的焦距范围或视场角,也可以同时具备不同的焦距范围与不同的视场角,为用户提供常态化、一般性的场景的拍摄;广角光学系统240可以具备较大成像范围的视场角。搭配此摄像模组20的电子设备30,可以为用户提供宽阔视场的拍摄,用户可以根据自身的需求选择不同的光学系统进行拍摄,进而提高电子设备30的使用性,以给予用户良好的使用体验。电子设备30可以为但不限于智能手机、智能手表、电子书阅读器、车载摄像设备、监控设备、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。通过采用上述摄像模组20,摄像模组20包括上述长焦光学组件110、反射元件120以及反射件130,在摄像模组20为后置摄像模组时,有效光线从电子设备的背部垂直摄像模组20背面入射,反射件130可以将射入长焦光学组件110的有效光束翻转90度出射,使得入射的有效光束沿着长焦光学组件110的轴向传输,摄像模组20在电子设备30中时的厚度由摄像模组20在长焦光学组件110的轴向上的尺寸变为摄像模组20在长焦光学组件110的径向上的尺寸,如此,可以缩小摄像模组20在电子设备30中时的厚度,有利于实现电子设备30的轻薄化。
可以理解的是,在没有反射件130时,摄像模组20为常规模组而非潜望式模组,被摄物体反射的有效光束可以直接入射长焦光学组件110并沿着长焦光学组件110的光轴111传播,此时,摄像模组20在电子设备30中的厚度为摄像模组20在长焦光学组件110的轴向上的尺寸,有效光束经过反射元件120的多个反射面反射变换传输方向,具有较长的光学总长,从而通过反射元件120实现长焦光学组件110的长焦功能的同时,压缩用于实现同等长焦焦距的有效光束的传输空间,同样可以实现摄像模组20的小型化,最终可以实现电子设备30的轻薄化。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种长焦镜组,其特征在于,沿有效光束的传输路径,所述长焦镜组至少依次包括:
    长焦光学组件;
    反射元件,具有多个反射面,其中一个所述反射面位于所述长焦光学组件的光轴上,用于接收所述长焦光学组件出射的有效光束,并将有效光束向所述长焦光学组件的光轴外反射;其余所有所述反射面位于所述长焦光学组件的光轴外,用于接收第一次反射后的有效光束并经多次反射后出射。
  2. 根据权利要求1所述的长焦镜组,其特征在于,多个所述反射面至少包括:
    初次反射面,所述初次反射面与所述长焦光学组件相对设置且位于所述长焦光学组件的光轴上,用于接收所述长焦光学组件出射的有效光束,并将有效光束向所述长焦光学组件的光轴外反射;
    末次反射面,位于所述长焦光学组件的光轴外,所述末次反射面与用于接收有效光束的图像传感器相对设置,用于在所述反射元件内最后一次反射有效光束。
  3. 根据权利要求2所述的长焦镜组,其特征在于,多个所述反射面还包括:
    至少一个中间反射面,用于接收并反射所述初次反射面反射的有效光束,并将有效光束向所述末次反射面反射。
  4. 根据权利要求3所述的长焦镜组,其特征在于,所述中间反射面的数量为一个或两个或三个。
  5. 根据权利要求3所述的长焦镜组,其特征在于,至少一个所述中间反射面与所述长焦光学组件的光轴平行。
  6. 根据权利要求5所述的长焦镜组,其特征在于,所述中间反射面包括:
    第一中间反射面,用于接收并反射所述初次反射面反射的有效光束;
    第二中间反射面,用于接收所述第一中间反射面反射的有效光束,并将有效光束向所述末次反射面反射。
  7. 根据权利要求6所述的长焦镜组,其特征在于,多个所述反射面还包括:
    第三中间反射面,用于接收所述第二中间反射面反射的有效光束,并将有效光束向所述末次反射面反射;或者
    所述有效光束可在所述第二中间反射面与所述第三中间反射面之间被多次反射,并通过所述第二中间反射面或所述第三中间反射面反射至所述末次反射面。
  8. 根据权利要求7所述的长焦镜组,其特征在于,所述第二中间反射面和/或所述第三中间反射面与所述长焦光学组件的光轴平行,或者所述第二中间反射面和/或所述第三中间反射面与所述长焦光学组件的光轴相交。
  9. 根据权利要求8所述的长焦镜组,其特征在于,在通过所述第二中间反射面将有效光束反射至所述末次反射面时:
    所述初次反射面的入射光束与反射光束之间的夹角为第一夹角;
    所述第一中间反射面的入射光束与反射光束之间的夹角为第二夹角;
    所述末次反射面的入射光束与反射光束之间的夹角为第三夹角;
    所述初次反射面的反射光束与所述末次反射面的反射光束之间的夹角为第四夹角;
    所述第一夹角与所述第四夹角之和为180°;
    所述第二夹角与所述第三夹角之和与所述第四夹角相同。
  10. 根据权利要求9所述的长焦镜组,其特征在于:
    所述第一夹角为90°,所述第四夹角为90°,所述第二夹角与所述第三夹角之和为90°。
  11. 根据权利要求8所述的长焦镜组,其特征在于,在通过所述第三中间反射面将有效光束反射至所述末次反射面时;
    所述初次反射面的入射光束与反射光束之间的夹角为第一夹角;
    所述第一中间反射面的入射光束与反射光束之间的夹角为第二夹角;
    所述末次反射面的入射光束与反射光束之间的夹角为第三夹角;
    所述初次反射面的反射光束与所述末次反射面的反射光束之间的夹角为第四夹角;
    所述第一中间反射面与所述末次反射面之间的夹角为第五夹角;
    所述第一夹角与所述第四夹角之和为180°;
    所述第二夹角与所述第三夹角之和与所述第四夹角相同;
    所述第五夹角为所述第四夹角的一半。
  12. 根据权利要求11所述的长焦镜组,其特征在于:
    所述第一夹角为90°,所述第四夹角为90°,所述第二夹角与所述第三夹角之和为90°,所述第五夹角为45°。
  13. 根据权利要求1所述的长焦镜组,其特征在于,多个所述反射面中,所述反射面各自形成于不同的反射镜,或者所述反射面形成于同一棱镜或者不同棱镜,或者部分所述反射面各自形成于不同反射镜且其余所述反射面形成于同一棱镜或者不同棱镜。
  14. 根据权利要求13所述的长焦镜组,其特征在于,所述反射元件为一体成型的棱镜,所述棱镜包括:
    初次反射体,具有所述初次反射面;
    中间反射体,具有所述第一中间反射面,且位于所述长焦光学组件的光轴外,所述中间反射体与所述初次反射体一体成型;
    末次反射体,至少具有所述末次反射面和所述第二中间反射面,所述末次反射体与所述中间反射体一体成型,所述末次反射体自所述中间反射体延伸,且所述末次反射体的延伸方向与有效光束入射所述长焦光学组件的方向相反。
  15. 根据权利要求14所述的长焦镜组,其特征在于,所述初次反射体还具有入光面,所述长焦光学组件出射的有效光束经所述入光面投射至所述初次反射面,所述入光面与所述初次反射面的夹角为45°,所述入光面与所述第二中间反射面垂直,所述长焦光学组件部分或者全部位于所述入光面与所述第二中间反射面形成的直角空间内。
  16. 根据权利要求1所述的长焦镜组,其特征在于,所述长焦镜组还包括:
    反射件,所述反射件用于接收被摄物体反射的有效光束,并将有效光束反射至所述长焦光学组件。
  17. 根据权利要求1-16任一项所述的长焦镜组,其特征在于,所述长焦光学组件出射的有效光束的方向与入射至所述反射元件最后出射的有效光束的方向相同。
  18. 一种摄像模组,其特征在于,包括图像传感器及如权利要求1-17任一项所述的长焦镜组,所述图像传感器用于接收来自所述长焦镜组的有效光束。
  19. 一种电子设备,其特征在于,包括壳体及如权利要求18所述的摄像模组,所述摄像模组安装于所述壳体。
PCT/CN2021/094114 2021-05-17 2021-05-17 长焦镜组、摄像模组及电子设备 WO2022241614A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094114 WO2022241614A1 (zh) 2021-05-17 2021-05-17 长焦镜组、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094114 WO2022241614A1 (zh) 2021-05-17 2021-05-17 长焦镜组、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022241614A1 true WO2022241614A1 (zh) 2022-11-24

Family

ID=84140999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094114 WO2022241614A1 (zh) 2021-05-17 2021-05-17 长焦镜组、摄像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022241614A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706758A (zh) * 2024-02-05 2024-03-15 泉州市武荣体育器材有限公司 一种瞄准器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009477A1 (en) * 1996-08-22 2001-07-26 Tsukasa Uehara Optical element, optical system using optical element, and optical device with optical element
CN110058419A (zh) * 2019-04-28 2019-07-26 金华市蓝海光电技术有限公司 一种正像系统及双筒激光测距望远镜
CN111650719A (zh) * 2020-05-11 2020-09-11 南昌欧菲光电技术有限公司 镜头、摄像模组及电子设备
CN211826696U (zh) * 2020-04-29 2020-10-30 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
CN112637467A (zh) * 2020-12-22 2021-04-09 维沃移动通信有限公司 摄像模组及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010009477A1 (en) * 1996-08-22 2001-07-26 Tsukasa Uehara Optical element, optical system using optical element, and optical device with optical element
CN110058419A (zh) * 2019-04-28 2019-07-26 金华市蓝海光电技术有限公司 一种正像系统及双筒激光测距望远镜
CN211826696U (zh) * 2020-04-29 2020-10-30 南昌欧菲精密光学制品有限公司 光学系统、摄像模组及电子设备
CN111650719A (zh) * 2020-05-11 2020-09-11 南昌欧菲光电技术有限公司 镜头、摄像模组及电子设备
CN112637467A (zh) * 2020-12-22 2021-04-09 维沃移动通信有限公司 摄像模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117706758A (zh) * 2024-02-05 2024-03-15 泉州市武荣体育器材有限公司 一种瞄准器
CN117706758B (zh) * 2024-02-05 2024-05-24 泉州市武荣体育器材有限公司 一种瞄准器

Similar Documents

Publication Publication Date Title
CN110888216B (zh) 光学镜头、镜头模组以及终端
CN111650719A (zh) 镜头、摄像模组及电子设备
CN111866328B (zh) 一种摄像头模组及移动终端
CN113740999B (zh) 光学镜头、镜头模组和电子设备
JP2002196243A (ja) 結像光学系
CN110568583A (zh) 一种潜望式摄像头及移动设备
US20230384557A1 (en) Camera module and electronic device
CN112532813B (zh) 潜望式摄像模组及相应的电子设备
CN115327743A (zh) 一种光学成像系统、摄像模组及电子设备
US20210026227A1 (en) Optical system, and imaging apparatus
CN113253545A (zh) 长焦镜组、摄像模组及电子设备
US7515194B2 (en) Image pickup optical system and optical apparatus using the same
WO2022241614A1 (zh) 长焦镜组、摄像模组及电子设备
US6535340B1 (en) Optical element and picture taking system including the optical element
WO2023134724A1 (zh) 摄像模组和电子设备
CN116149033A (zh) 变焦镜头、摄像头模组及移动终端
WO2021226792A1 (zh) 镜头、摄像模组及电子设备
CN115480437A (zh) 摄像模组和电子设备
WO2022022026A1 (zh) 光学镜头、镜头模组和终端
JP2005189284A (ja) 撮像レンズ装置とズームレンズ
US7471477B2 (en) Optical apparatus
CN212410943U (zh) 镜头、摄像模组及电子设备
JP2007148051A (ja) 撮影レンズユニット
CN115396574B (zh) 镜头模组及电子设备
US20230176340A1 (en) Camera module and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE