WO2022240261A1 - 항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커 - Google Patents

항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커 Download PDF

Info

Publication number
WO2022240261A1
WO2022240261A1 PCT/KR2022/006939 KR2022006939W WO2022240261A1 WO 2022240261 A1 WO2022240261 A1 WO 2022240261A1 KR 2022006939 W KR2022006939 W KR 2022006939W WO 2022240261 A1 WO2022240261 A1 WO 2022240261A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
cd300c
cancer
amino acid
antigen
Prior art date
Application number
PCT/KR2022/006939
Other languages
English (en)
French (fr)
Inventor
전재원
김하늘
이수인
김우창
Original Assignee
주식회사 센트릭스바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센트릭스바이오 filed Critical 주식회사 센트릭스바이오
Priority to AU2022272594A priority Critical patent/AU2022272594A1/en
Priority to CN202280049724.8A priority patent/CN117751141A/zh
Priority to CA3218834A priority patent/CA3218834A1/en
Priority to EP22807908.3A priority patent/EP4339211A1/en
Priority to JP2023571116A priority patent/JP2024517985A/ja
Priority to US17/746,569 priority patent/US20220275103A1/en
Publication of WO2022240261A1 publication Critical patent/WO2022240261A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/74Inducing cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to anti-CD300c antibodies or antigen-binding fragments thereof, and biomarkers for preventing or treating cancer comprising the same, compositions, methods, and kits.
  • Cancer is one of the diseases that account for the largest share of the causes of death of modern people. It is a disease caused by changes in normal cells due to mutations in genes caused by various causes. refers to malignant tumors. Cancer is characterized by "uncontrolled cell growth", and by such abnormal cell growth, a cell mass called a tumor is formed and penetrates into surrounding tissues and, in severe cases, metastasizes to other organs of the body. Cancer is an intractable chronic disease that in many cases cannot be fundamentally cured even when treated with surgery, radiation, and drug therapy, causing pain to patients and ultimately leading to death. In particular, in recent years, the incidence of cancer in the world is increasing by more than 5% every year due to the increase in the elderly population and environmental degradation. It is estimated that 10,000 people will die of cancer.
  • Cancer drug treatment that is, anticancer drugs
  • these targeted anticancer drugs although side effects could be lowered, they showed a limitation in that resistance developed with a high probability. Therefore, interest in immuno-cancer agents that reduce problems due to toxicity and resistance by using the body's immune system is rapidly increasing.
  • an immune checkpoint inhibitor that specifically binds to PD-L1 on the surface of cancer cells and inhibits the binding of T cells to PD-1 to activate T cells and attack cancer cells has been developed. have.
  • the types of cancer exhibiting effects are not diverse, the development of new anti-inflammatory immunotherapeutic agents that exhibit the same therapeutic effect in various cancers is urgently needed.
  • Patent Document 1 Korean Patent Publication No. 10-2018-0099557
  • the object of the present invention is to solve all of the above problems.
  • An object of the present invention is to provide an anti-CD300c antibody for preventing or treating cancer.
  • Another object of the present invention is to provide anti-cancer therapy using an anti-CD300c antibody.
  • Another object of the present invention is to provide a pharmaceutical composition for therapy using an anti-CD300c antibody for preventing or treating cancer.
  • Another object of the present invention is to provide a method for preventing or treating cancer using an anti-CD300c antibody.
  • Another object of the present invention is to provide a kit for therapy using an anti-CD300c antibody for preventing or treating cancer.
  • an antibody that specifically binds to CD300c eg, a monoclonal antibody
  • an antigen-binding fragment thereof is provided.
  • an anti-CD300c antibody or antigen-binding fragment thereof and its use for preventing or treating cancer are provided.
  • an anti-CD300c antibody or antigen-binding fragment thereof for the preparation of a drug for preventing or treating cancer is provided.
  • an anti-cancer therapy comprising an anti-CD300c antibody or an antigen-binding fragment thereof as an active ingredient is provided.
  • compositions for preventing or treating cancer comprising an anti-CD300c antibody or an antigen-binding fragment thereof as an active ingredient.
  • a method for preventing or treating cancer comprising administering an anti-CD300c antibody or antigen-binding fragment thereof to a subject in need of such prevention or treatment.
  • kits for preventing or treating cancer comprising a composition comprising an effective amount of an anti-CD300c antibody or antigen-binding fragment thereof, and instructions instructing use of the antibody or antigen-binding fragment thereof. do.
  • the anti-CD300c monoclonal antibody according to the present invention specifically binds to CD300c expressed on the surface of various cancers with high avidity, thereby activating T cells and promoting differentiation into M1 macrophages, it effectively inhibits the proliferation of cancer cells. It can be suppressed and can be effectively used as an immunotherapeutic agent for various cancers.
  • the anti-CD300c monoclonal antibody according to the present invention not only can further increase its therapeutic effect through combined administration with conventional immunocancer drugs, but also has cross-reactivity between species, so it can be widely applied to various mammals. have.
  • cancer cells when resistant cancer cells exhibiting the ability to resist apoptosis are treated with the anti-CD300c monoclonal antibody of the present invention, resistance of cancer cells is significantly weakened, and it is expected to show excellent efficacy in preventing cancer recurrence.
  • cancer cells generally evade the immune system by inhibiting the production of IL-2, a pro-inflammatory cytokine. It has been confirmed that it induces cancer cell death through the
  • 1A to 1Y show the heavy chain variable region and light chain variable region sequences (nucleic acid and amino acid sequences) of each of the 25 anti-CD300c monoclonal antibodies according to the present invention.
  • CDR regions CDR1, CDR2 and CDR3 are indicated in order.
  • Figure 2 is a schematic diagram briefly showing the mechanism by which the anti-CD300c monoclonal antibody and/or CD300c siRNA of the present invention exhibit anticancer effects.
  • FIG. 3 is a schematic diagram briefly showing the mechanisms by which the anti-CD300c monoclonal antibody of the present invention acts on monocytes, T cells, and cancer cells, respectively.
  • Figure 4 shows the SDS-PAGE results of the anti-CD300c monoclonal antibody according to Example 1.4 under non-reducing conditions.
  • Figure 5 shows the SDS-PAGE results of the anti-CD300c monoclonal antibody according to Example 1.4 under reducing conditions.
  • Figure 6 shows the results of comparing the expression of CD300c in normal cells, immune cells, and cancer cell lines according to Experimental Example 1.1.
  • FIG. 7a and 7b show results confirming that CD300c is expressed in cancer tissues (FIG. 7a) and immune cells (FIG. 7b) according to Experimental Example 1.2.
  • FIG. 8a and 8b show the results confirming that CD300c is expressed in tonsil tissue (FIG. 8a) and cancer tissue (FIG. 8b) according to Experimental Example 1.3.
  • 26 shows the results of confirming the differentiation and re-differentiation ability of the anti-CD300c monoclonal antibody according to Experimental Example 3.7 into M1 macrophages.
  • Figure 36 shows the results of comparing the differentiation ability of M0 macrophages into M1 macrophages between the anti-CD300c monoclonal antibody according to Experimental Example 5.2 and the conventional anti-cancer immune agent.
  • Figure 37 shows the results of comparing the differentiation ability into M1 macrophages between the anti-CD300c monoclonal antibody according to Experimental Example 5.3 and the conventional anti-cancer immune agent.
  • Example 49 shows changes in the expression of immune checkpoint markers identified based on the nanostring immunoprofiling results obtained in Example 2.1 according to Example 2.2. * indicates a marker whose expression level was statistically significantly changed compared to before treatment with CL7.
  • FIG. 53 to 55 show the signals of MAPK (FIG. 53), NF-kB (FIG. 54), and IkB (FIG. 55) of M1 macrophage differentiation upon the combined treatment of anti-CD300c monoclonal antibody and immunocancer agent according to Experimental Example 7.4. Indicates the result of confirming signal transmission.
  • 60 shows the in vivo cancer growth inhibitory effect observed when the anti-PD-1 antibody and the anti-CD300c monoclonal antibody according to Experimental Example 9.1 were administered alone or in combination to mice transplanted with colon cancer cell lines.
  • 61 shows the result of confirming whether the anti-CD300c monoclonal antibody according to Experimental Example 9.3 increases M1 macrophages in cancer tissue in a mouse model.
  • Figure 66 is a result confirming the effect of single or combined administration (including double and triple combined administration) of an anti-CD300c monoclonal antibody and an immunotherapeutic agent according to Experimental Example 10.3 on regulatory T cells in a B16F10 melanoma model under in vivo conditions indicates
  • 67 shows the results of confirming the effect of single or combined administration (including double and triple combined administration) of an anti-CD300c monoclonal antibody and an immunotherapeutic agent according to Experimental Example 10.4 on macrophages in a B16F10 melanoma model under in vivo conditions. .
  • 68a and 68b show the results of confirming the anticancer effect of the combined administration of the anti-CD300c monoclonal antibody according to Experimental Example 11 and the immunocancer agent under in vivo conditions.
  • 68A shows the rate of tumor volume reduction
  • FIG. 68B shows the complete remission rate.
  • Figure 69 shows the result of confirming the long-term survival rate improvement effect by the combined administration of the anti-CD300c monoclonal antibody and the immunocancer agent according to Experimental Example 12.
  • 71 shows the result of confirming the immune memory effect by the combined administration of the anti-CD300c monoclonal antibody according to Experimental Example 14 and the immunocancer agent.
  • 73a and 73b show the result of confirming whether the anti-CD300c monoclonal antibody according to Experimental Example 16 can inhibit cancer cell growth by co-administration with an immunocancer agent.
  • antibody is used broadly, and includes monoclonal antibodies (including full length antibodies), polyclonal antibodies, multispecific antibodies of any isotype such as IgG, IgM, IgA, IgD and IgE. (eg, bispecific antibodies), antibody fusions (eg, fusions of an antibody and a (poly)peptide or fusions of an antibody and a compound) and antibody fragments (including antigen-binding fragments).
  • anti- when related to an antigen, means that the antibody is reactive with the antigen.
  • Antibodies reactive with a particular antigen may be generated by synthetic and/or recombinant methods, such as selection of recombinant antibody libraries on phage or similar vectors, or by immunization of animals with antigens or antigen-encoding nucleic acids, but are not limited thereto.
  • a typical IgG antibody is composed of two identical heavy chains and two identical light chains joined by disulfide bonds. Each heavy and light chain comprises a constant region and a variable region.
  • the heavy chain variable region (HVR) and light chain variable region (LVR) each contain three segments called “complementarity determining regions" ("CDRs”) or "hypervariable regions", which are primarily involved in binding antigenic epitopes do.
  • An antibody herein may be, for example, an animal antibody, a chimeric antibody, a humanized antibody or a human antibody.
  • humanization also referred to as reshaping or CDR grafting refers to reducing the immunogenicity of a monoclonal antibody from a heterologous source (usually rodent) and reducing the affinity or effector function (ADCC, complement activation). , Clq binding).
  • monoclonal antibody is used interchangeably with “monoclonal antibody” and refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e., the individual antibodies comprising the population are subject to possible natural mutations and/or mutations that may be present in minor amounts. or identical except for post-translational modifications (eg isomerization, amidation). Monoclonal antibodies are highly specific and directed against one antigenic site. A monoclonal antibody exhibits the character of the antibody as being obtained from a substantially homogeneous population and is not to be construed as requiring production of the antibody by any particular method.
  • monoclonal antibodies to be used in accordance with the present invention can be used in a variety of techniques, including hybridoma methods, recombinant DNA methods, phage-display technology, and methods using transgenic animals containing all or part of the human immunoglobulin locus. can be produced by
  • antigen-binding fragment refers to a portion of an antibody having specific antigen-binding ability or a polypeptide comprising the same. Except where in the context “antibody” is specifically understood to exclude “antigen-binding fragment”, “antibody” and “antigen-binding fragment” may be used interchangeably, and “antibody” refers to "antigen-binding fragment”. It can be interpreted as including. Examples of antigen binding fragments include Fv, Fab, Fab', Fab'-SH, F(ab')2, diabodies, triabodies, tetrabodies, cross-Fab fragments, linear antibodies, single chain antibody molecules (e.g. , scFv), multispecific antibodies formed from antibody fragments and single domain antibodies.
  • anti-cancer agent refers to known drugs used in conventional cancer treatment that exhibit cytotoxic or cytostatic effects on cancer cells by acting on various metabolic pathways of cells, including chemical anti-cancer agents, targeted anti-cancer agents, and immune anti-cancer agents.
  • immune anti-cancer agent refers to a drug that kills cancer cells by activating immune cells.
  • subject is used interchangeably with “patient” and is a mammal in need of prevention or treatment of cancer, such as primates (eg humans), companion animals (eg dogs, cats, etc.), livestock animals (eg, cows, pigs, horses, sheep, goats, etc.) and laboratory animals (eg rats, mice, guinea pigs, etc.).
  • the subject is a human.
  • treatment generally means obtaining a desired pharmacological and/or physiological effect. This effect has a therapeutic effect in terms of partially or completely curing the disease and/or the detrimental effects resulting from such disease. Desirable therapeutic effects include preventing occurrence or recurrence of the disease, amelioration of symptoms, reduction of any direct or indirect pathological consequences of the disease, prevention of metastasis, reduction in the rate of disease progression, amelioration or palliation of the disease state, and remission or including but not limited to improved prognosis.
  • treatment may refer to medical intervention for a pre-existing disease or disorder.
  • prophylactic treatment i.e., an action or procedure aimed at preventing rather than curing a disease.
  • prevention means obtaining a desired prophylactic pharmacological and/or physiological effect in terms of partially or completely preventing a disease or symptom thereof.
  • administration means providing a substance (eg, an anti-CD300c antibody and antigen-binding fragment thereof or other anti-cancer agent) to achieve a prophylactic or therapeutic purpose (eg, prevention or treatment of cancer) to a subject.
  • a substance eg, an anti-CD300c antibody and antigen-binding fragment thereof or other anti-cancer agent
  • a prophylactic or therapeutic purpose eg, prevention or treatment of cancer
  • biological sample encompasses a variety of sample types obtained from a subject and may be used in diagnostic or monitoring assays.
  • Biological samples include, but are not limited to, solid tissue samples such as blood and other liquid samples of biological origin, biopsy samples, tissue cultures, or cells derived therefrom and their progeny.
  • biological samples encompass clinical samples, cells in culture, cell supernatants, cell lysates, serum, plasma, biological fluids and tissue samples, particularly tumor samples.
  • biological data refers to any analytical data obtained using the biological sample.
  • expression level may be determined by measuring the expression level of one or more of mRNA and protein of the marker, and any method known in the art may be used to measure the expression level of mRNA or protein.
  • an agent for measuring mRNA expression level may be a primer pair or probe that specifically binds to a corresponding marker gene
  • an agent for measuring protein expression level may be an antibody, substrate, or ligand that specifically binds to a corresponding marker gene. Or it may be a cofactor.
  • Assay methods for measuring mRNA expression levels include, but are not limited to, reverse transcriptase polymerase reaction, competitive reverse transcriptase polymerase reaction, real-time reverse transcriptase polymerase reaction, RNase protection assay, northern blotting, and DNA chip.
  • Assay methods for measuring protein levels include Western blot, ELISA, radioimmunoassay, radioimmunoassay, Oukteroni immunodiffusion method, rocket immunoelectrophoresis, tissue immunostaining, immunoprecipitation assay, complement fixation assay, FACS, protein chips, etc., but are not limited thereto.
  • therapeutic responsiveness refers to whether an individual suffering from or suspected of having cancer responds favorably or unfavorably to treatment with a therapeutically active ingredient (eg, a CD300c antibody or antigen-binding fragment thereof), wherein anti-CD300c It can be assessed by changes in the immune system associated with tumor treatment that occur after administration of the antibody or antigen-binding fragment thereof.
  • a therapeutically active ingredient eg, a CD300c antibody or antigen-binding fragment thereof
  • an anti-CD300c antibody or antigen-binding fragment thereof is provided.
  • the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention is an antigen-binding molecule that specifically binds to CD300c protein.
  • the anti-CD300c antibody or antigen-binding fragment thereof is a monoclonal antibody or antigen-binding fragment thereof that specifically binds to CD300c protein.
  • CD300c protein is used interchangeably with “CD300c” or "CD300c antigen”, and it is known that a protein encoded by the CD300c gene shows significant sequence identity with B7 family proteins and is expressed on the membrane of antigen presenting cells. . Inhibiting the expression or activity of CD300c protein can lead to activation of T cells and/or promotion of differentiation into M1 macrophages.
  • anti-CD300c antibody may be used interchangeably with a polypeptide that binds to the CD300c protein.
  • polypeptide is intended to mean any polymer composed of amino acids linked together through peptide bonds, regardless of length. That is, polypeptide herein also includes peptides and proteins.
  • the anti-CD00c antibody or antigen-binding fragment thereof is capable of specifically binding to the extracellular domain (ECD) of the CD300c protein.
  • ECD extracellular domain
  • the extracellular domain of CD300c may be an extracellular domain of human CD300c protein.
  • the extracellular domain of CD300c may include the amino acid sequence represented by SEQ ID NO: 402.
  • the expression level of CD300c protein showed a very high correlation with the survival period of various cancer patients. Specifically, it was confirmed that compared to the average CD300c expression level of cancer patients, cancer patients with a high CD300c expression level had a shorter survival period than cancer patients with a low CD300c expression level. This means that inhibition of the expression or activity of CD300c using the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention can result in a cancer treatment effect or an effect of increasing the survival time of cancer patients.
  • the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention can exhibit anticancer effects by specifically binding to CD300c expressed on the surface of various cancer cells. Binding of the anti-CD300c antibody to CD300c can effectively inhibit the proliferation of cancer cells by activating T cells and promoting differentiation into M1 macrophages at the same time, which makes anti-CD300c antibodies effective as immunotherapeutic agents for various cancers. do. In addition, this anti-CD300c antibody can further increase its therapeutic effect through combined administration with existing anticancer drugs, and can be widely applied to various mammals because it has cross-species reactivity (eg, human antigen and mouse antigen). .
  • cross-species reactivity eg, human antigen and mouse antigen
  • the anti-CD300c antibody when the anti-CD300c antibody is treated with resistant cancer cells exhibiting the ability to resist apoptosis, it is expected to show excellent efficacy in preventing cancer recurrence because the resistance of cancer cells is significantly weakened.
  • cancer cells generally evade the immune system by inhibiting the production of IL-2, a pro-inflammatory cytokine. It was confirmed that it induces cancer cell death. Therefore, it is expected that it can be used as a more fundamental immune anti-cancer agent.
  • Korean Patent Publication No. 10-2019-0136949 the contents of which are all incorporated herein.
  • the anti-CD300c monoclonal antibody or antigen-binding fragment thereof is anti-CD300c monoclonal antibody or antigen-binding fragment thereof.
  • SEQ ID NO: 8 SEQ ID NO: 20, SEQ ID NO: 32, SEQ ID NO: 44, SEQ ID NO: 56, SEQ ID NO: 68, SEQ ID NO: 80, SEQ ID NO: 92, SEQ ID NO: 104, SEQ ID NO: 116, SEQ ID NO: 128, SEQ ID NO: 140, SEQ ID NO: 152, SEQ ID NO: 164, SEQ ID NO: 176, SEQ ID NO: 188, SEQ ID NO: 200, SEQ ID NO: 212, SEQ ID NO: 224, SEQ ID NO: 236, SEQ ID NO: 248, SEQ ID NO: 260, SEQ ID NO: 272, SEQ ID NO: 284 and SEQ ID NO: 296 CDR2 comprising or consisting of an amino acid sequence selected from the group consisting of; and
  • SEQ ID NO: 9 SEQ ID NO: 21, SEQ ID NO: 33, SEQ ID NO: 45, SEQ ID NO: 57, SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 93, SEQ ID NO: 105, SEQ ID NO: 117, SEQ ID NO: 129, SEQ ID NO: 141, SEQ ID NO: 153, SEQ ID NO: 165, SEQ ID NO: 177, SEQ ID NO: 189, SEQ ID NO: 201, SEQ ID NO: 213, SEQ ID NO: 225, SEQ ID NO: 237, SEQ ID NO: 249, SEQ ID NO: 261, SEQ ID NO: 273, SEQ ID NO: 285 and SEQ ID NO: 297 a heavy chain variable region comprising a CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of; and
  • SEQ ID NO: 10 SEQ ID NO: 22, SEQ ID NO: 34, SEQ ID NO: 46, SEQ ID NO: 58, SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 94, SEQ ID NO: 106, SEQ ID NO: 118, SEQ ID NO: 130, SEQ ID NO: 142 , SEQ ID NO: 154, SEQ ID NO: 166, SEQ ID NO: 178, SEQ ID NO: 190, SEQ ID NO: 202, SEQ ID NO: 214, SEQ ID NO: 226, SEQ ID NO: 238, SEQ ID NO: 250, SEQ ID NO: 262, SEQ ID NO: 274, SEQ ID NO: 286 and sequences CDR1 comprising or consisting of an amino acid sequence selected from the group consisting of No. 298;
  • SEQ ID NO: 12 SEQ ID NO: 24, SEQ ID NO: 36, SEQ ID NO: 48, SEQ ID NO: 60, SEQ ID NO: 72, SEQ ID NO: 84, SEQ ID NO: 96, SEQ ID NO: 108, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 144, SEQ ID NO: 156, SEQ ID NO: 168, SEQ ID NO: 180, SEQ ID NO: 192, SEQ ID NO: 204, SEQ ID NO: 216, SEQ ID NO: 228, SEQ ID NO: 240, SEQ ID NO: 252, SEQ ID NO: 264, SEQ ID NO: 276, SEQ ID NO: 288 and SEQ ID NO: 300. and a light chain variable region comprising a CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of:
  • the heavy chain variable region is variable
  • SEQ ID NO: 8 SEQ ID NO: 20, SEQ ID NO: 44, SEQ ID NO: 56, SEQ ID NO: 68, SEQ ID NO: 80, SEQ ID NO: 104, SEQ ID NO: 116, SEQ ID NO: 128, SEQ ID NO: 140, SEQ ID NO: 152, SEQ ID NO: 164, SEQ ID NO: CDR2 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 200 and SEQ ID NO: 212; and
  • SEQ ID NO: 9 SEQ ID NO: 21, SEQ ID NO: 45, SEQ ID NO: 57, SEQ ID NO: 69, SEQ ID NO: 81, SEQ ID NO: 105, SEQ ID NO: 117, SEQ ID NO: 129, SEQ ID NO: 141, SEQ ID NO: 153, SEQ ID NO: 165, SEQ ID NO: 201 and SEQ ID NO: 213 comprising a CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of;
  • the light chain variable region is a
  • SEQ ID NO: 10 SEQ ID NO: 22, SEQ ID NO: 46, SEQ ID NO: 58, SEQ ID NO: 70, SEQ ID NO: 82, SEQ ID NO: 106, SEQ ID NO: 118, SEQ ID NO: 130, SEQ ID NO: 142, SEQ ID NO: 154, SEQ ID NO: 166 , CDR1 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 202 and SEQ ID NO: 214;
  • SEQ ID NO: 11 SEQ ID NO: 23, SEQ ID NO: 47, SEQ ID NO: 59, SEQ ID NO: 71, SEQ ID NO: 83, SEQ ID NO: 107, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 143, SEQ ID NO: 155, SEQ ID NO: 167, SEQ ID NO: CDR2 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 203 and SEQ ID NO: 215; and
  • SEQ ID NO: 12 SEQ ID NO: 24, SEQ ID NO: 48, SEQ ID NO: 60, SEQ ID NO: 72, SEQ ID NO: 84, SEQ ID NO: 108, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 144, SEQ ID NO: 156, SEQ ID NO: 168, SEQ ID NO: 204 and SEQ ID NO: 216, and a CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 216.
  • the heavy chain variable region is variable
  • a CDR1 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 43, SEQ ID NO: 79, SEQ ID NO: 115, and SEQ ID NO: 211;
  • CDR2 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 44, SEQ ID NO: 80, SEQ ID NO: 116, and SEQ ID NO: 212;
  • a CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 45, SEQ ID NO: 81, SEQ ID NO: 117, and SEQ ID NO: 213;
  • the light chain variable region is a
  • a CDR1 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 46, SEQ ID NO: 82, SEQ ID NO: 118, and SEQ ID NO: 214;
  • a CDR2 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 47, SEQ ID NO: 83, SEQ ID NO: 119, and SEQ ID NO: 215;
  • CDR3 comprising or consisting of an amino acid sequence selected from the group consisting of SEQ ID NO: 48, SEQ ID NO: 84, SEQ ID NO: 120, and SEQ ID NO: 216.
  • the heavy chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 43, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 44, and SEQ ID NO: 45 CDR3 comprising or consisting of the amino acid sequence
  • the light chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 46, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 47; and a CDR3 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 48.
  • the heavy chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 79, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 80, and SEQ ID NO: 81 CDR3 comprising or consisting of an amino acid sequence
  • the light chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 82, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 83; and a CDR3 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 84.
  • the heavy chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 115, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 116, and SEQ ID NO: 117 CDR3 comprising or consisting of the amino acid sequence
  • the light chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 118, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 119; and a CDR3 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 120.
  • the heavy chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 211, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 212, and SEQ ID NO: 213 CDR3 comprising or consisting of an amino acid sequence
  • the light chain variable region comprises CDR1 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 214, CDR2 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 215, and a CDR3 comprising or consisting of the amino acid sequence represented by SEQ ID NO: 216.
  • the heavy chain variable region is SEQ ID NO: 303, 307, 311, 315, 319, 323, 327, 331, 335, 339, 343, 347, 351, 355, 359, 363, 367, 371, 375 , 379, 383, 387, 391, 395, and 399 comprising an amino acid sequence selected from the group consisting of: 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, and 400.
  • the heavy chain variable region comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 315, 327, 339, and 371, and the light chain variable region comprises SEQ ID NOs: 316, 328, 340, and 372. It may include an amino acid sequence selected from the group.
  • the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 315, and the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 316;
  • the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 327, and the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 328;
  • the heavy chain variable region comprises the amino acid sequence represented by SEQ ID NO: 339, and the light chain variable region comprises the amino acid sequence represented by SEQ ID NO: 340;
  • the heavy chain variable region may include the amino acid sequence represented by SEQ ID NO: 371, and the light chain variable region may include the amino acid sequence represented by SEQ ID NO: 372.
  • a heavy chain variable region comprising CDR1 to CDR3 comprising or consisting of an amino acid sequence represented by the following formulas (1) to (3), respectively, and a heavy chain variable region represented by the following formulas (4) to (6), respectively:
  • an anti-CD300c monoclonal antibody or antigen-binding fragment thereof comprising a light chain variable region comprising CDR1 to CDR3 comprising or consisting of the amino acid sequence, each amino acid sequence being in the N ⁇ C direction:
  • X4 Y, A, G or H
  • X8 R, A, K, or not present
  • X9 R, S, G, or not present
  • the anti-CD300c antibody or antigen-binding fragment is at least 80%, preferably at least 90%, more preferably at least 95% of the CDR sequences or sequences set forth in Tables 3, 4 and 5 below. , most preferably sequences with 98% or greater sequence identity.
  • amino acid sequence variants of the antibodies of the invention are contemplated.
  • Amino acid sequence variants of antibodies can be prepared by introducing appropriate modifications into the nucleotide sequence encoding the molecule or by peptide synthesis. Such modifications include, for example, deletion of residues from the amino acid sequence of the antibody, and/or insertion of residues into such amino acid sequences and/or substitution of residues within such amino acid sequences. Any combination of various alterations, including deletions, insertions and substitutions, can be made to arrive at the final construct, but the final construct must retain the desired properties, eg, antigen-binding properties.
  • Sites of interest for substitutional mutagenesis include the heavy chain variable regions (HVRs) and framework regions (FRs). Conservative substitutions are provided in Table 1 under the heading "preferred substitutions" and are further described in relation to amino acid side chain classes (1) to (6) below. Amino acid substitutions can be introduced into the molecule of interest and the product screened for the desired activity, eg, maintained/improved antigen binding, reduced immunogenicity, or improved ADCC or CDC.
  • Amino acids can be grouped according to common side chain properties:
  • Non-conservative substitutions involve exchanging a member of one of these classes for another class.
  • amino acid sequence variant includes substantial variants in which an amino acid substitution is present in one or more hypervariable region residues of a parent antibody-binding molecule (eg, a humanized or human antibody).
  • a parent antibody-binding molecule eg, a humanized or human antibody.
  • the resulting variant selected for further study has a modification, such as an improvement (e.g., increased affinity, reduced immunogenicity) in a particular biological property relative to the parent antibody binding molecule, and/or has a parent antigen binding molecule.
  • an improvement e.g., increased affinity, reduced immunogenicity
  • Exemplary substitutional variants are affinity matured antibodies, which may conveniently be generated using, for example, phage display-based affinity maturation techniques known in the art.
  • one or more HVR residues are mutated and the variant antigen binding molecules displayed on phage to screen for specific biological activity (eg binding affinity).
  • substitutions, insertions or deletions may be made within one or more HVRs so long as such alterations do not substantially reduce the ability of the antigen binding molecule to bind antigen.
  • conservative alterations eg, conservative substitutions as provided herein
  • that do not substantially reduce binding affinity can be made in the HVRs.
  • Amino acid sequence insertions include insertions into sequences of single or multiple amino acid residues, as well as amino-terminal and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides comprising hundreds or more residues. can do.
  • Examples of terminal insertions include antibodies with an N-terminal methionyl residue.
  • Other insertional variants of the molecule may include fusion to the N-terminus or C-terminus of the polypeptide which increases the serum half-life of the antibody.
  • other insertional variants of the molecule may include fusion to the N- or C-terminus of the polypeptide to facilitate passage across the blood-brain barrier (BBB).
  • BBB blood-brain barrier
  • variants of the antibodies or antigen-binding fragments thereof of the invention that have improved affinity for the CD300c antigen.
  • Such variants include CDR mutation (Yang et al., J. Mol. Biol., 254, 392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10 , 779-783, 1992]), use of mutator strains of E. coli (Low et al., J. Mol. Biol., 250, 359-368, 1996), DNA shuffling ( Patten et al., Curr. Opin. Biotechnol., 8, 724-733, 1997), phage display (Thompson et al., J. Mol.
  • the anti-CD300c monoclonal antibody or antigen-binding fragment thereof may have cross-species reactivity. Specifically, the anti-CD300c monoclonal antibody or antigen-binding fragment thereof may be cross-reactive to both human and mouse CD300c antigens. This cross-reactivity is confirmed in Experimental Examples 4.1 to 4.4.
  • the anti-CD300c monoclonal antibody or antigen-binding fragment thereof may include or be provided in the form of an antibody-drug conjugate conjugated with another drug.
  • antibody-drug conjugate refers to a form in which an antibody and a drug are chemically linked without reducing the biological activity of the antibody and the drug.
  • the antibody-drug conjugate is a form in which a drug is bound to an amino acid residue at the N-terminus of the heavy and/or light chain of an antibody, specifically, to an ⁇ -amine group at the N-terminus of the heavy and/or light chain of an antibody. Refers to the drug in a conjugated form.
  • the “drug” may refer to any substance having a specific biological activity against cells (eg, cancer cells), which includes DNA, RNA, or peptides.
  • the drug may be in a form containing a reactive group capable of reacting with an ⁇ -amine group and crosslinking, and also includes a form in which a linker including a reactive group capable of reacting with an ⁇ -amine group and crosslinking is connected.
  • the type of reactive group capable of reacting with and crosslinking the ⁇ -amine group is not particularly limited as long as it can react with the ⁇ -amine group at the N-terminus of the heavy or light chain of the antibody and crosslink it, and the reactive group capable of reacting with an amine group known in the art Including all types Examples include Isothiocyanates, Isocyanates, Acyl Azides, NHS esters, Sulfonyl chlorides, Aldehydes, Glyoxal , Epoxide, Oxirane, Carbonate, Aryl halide, Imidoester, Carbodiimide, Anhydride and Fluorophenyl ester ( Fluorophenyl ester) may be included, but is not limited thereto.
  • the drug is included regardless of the type as long as it can treat the disease targeted by the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention, but may preferably be an anti-cancer drug.
  • Anti-CD300c monoclonal antibodies or antigen-binding fragments thereof of the present invention can be prepared by any antibody generating technique known in the art.
  • a nucleic acid molecule encoding the anti-CD300c monoclonal antibody or antigen-binding fragment thereof.
  • a nucleic acid molecule may encode an amino acid sequence comprising the heavy chain variable region or heavy chain CDR region and/or an amino acid sequence comprising the light chain variable region or light chain CDR region of the anti-CD300c monoclonal antibody.
  • Sequences of nucleic acid molecules encoding the heavy/light chain variable regions and CDR regions of the anti-CD300c monoclonal antibody according to the present invention may refer to Tables 3 to 5 and FIG. 1.
  • nucleic acid molecule has a meaning comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acid molecules, include not only natural nucleotides, but also analogs in which sugar or base sites are modified. include Sequences of nucleic acid molecules encoding the heavy chain variable region, light chain variable region, and CDR region of the present invention may be modified. Such modifications include additions, deletions, or non-conservative or conservative substitutions of nucleotides. Nucleic acid molecules of the present invention are also construed to include nucleotide sequences exhibiting substantial identity to the above nucleotide sequences.
  • the above substantial identity is 80% when the nucleotide sequence of the present invention and any other sequence described above are aligned so as to correspond as much as possible, and the aligned sequence is analyzed using an algorithm commonly used in the art. It means a nucleotide sequence exhibiting more than 90% homology, in one specific example, 90% or more homology, in another specific example, 95% or more homology, and in another specific example, 98% or more homology.
  • one or more vectors comprising the nucleic acids are provided.
  • the "vector” refers to a nucleic acid molecule capable of carrying another nucleic acid linked thereto.
  • a vector refers to a circular double-stranded DNA loop into which additional DNA segments may be inserted.
  • plasmid refers to a circular double-stranded DNA loop into which additional DNA segments may be inserted.
  • viral vector is another type of vector, wherein DNA or RNA sequences derived from a virus are present in the vector for packaging into a virus.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (eg, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors eg, non-episomal mammalian vectors
  • Other vectors can be integrated into the host cell's genome upon introduction into the host cell, and thus replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors".
  • Common expression vectors useful in recombinant DNA technology are often in the form of plasmids.
  • plasmid and “vector” may be used interchangeably as the plasmid is the most commonly used form of vector.
  • the present invention is intended to include other forms of expression vectors that serve equivalent functions, such as viral vectors (eg, replication defective retroviruses, adenoviruses and adeno-associated viruses).
  • a host cell comprising one or more nucleic acid molecules (eg, polynucleotides) encoding a monoclonal antibody of the invention is provided.
  • nucleic acid molecules eg, polynucleotides
  • the host cell may be a cell transformed with the recombinant vector of the present invention. Any host cell known in the art that allows stable and continuous cloning and expression of the recombinant vector may be used. Suitable prokaryotic host cells include Escherichia coli, Bacillus species strains such as Bacillus subtilis and B. thuringensis, enteric bacteria and strains such as Salmonella typhymurium, Serratia marcescens, and various Pseudomonas species.
  • Suitable eukaryotic host cells to be transformed include yeast such as Saccharomyces cerevisiae, insect cells, plant cells, and animal cells such as Sp2/0, Chinese Hamster Ovary (CHO) K1, CHO DG44, PER .C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, and MDCK cell lines.
  • yeast such as Saccharomyces cerevisiae
  • insect cells insect cells
  • plant cells and animal cells
  • animal cells such as Sp2/0, Chinese Hamster Ovary (CHO) K1, CHO DG44, PER .C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, and MDCK cell lines.
  • the "host cell” is used to refer to a transformed cell or a cell capable of expressing a selected gene of interest after being transformed with a nucleic acid sequence.
  • the term includes the progeny of the parent cell, whether or not the progeny are
  • a method for producing an anti-CD300c monoclonal antibody or antigen-binding fragment thereof comprising culturing the host cell.
  • Culturing of the host cell for the production of the antibody or antigen-binding fragment thereof may be performed according to an appropriate medium and culture conditions known in the art.
  • This culture process can be easily adjusted and used by a person skilled in the art according to the selected host cell.
  • the culture process is divided into suspension culture and adherent culture according to the cell growth type, and is divided into batch, fed-batch and continuous culture according to the culture type.
  • Various culture procedures are described, for example, in "Biochemical Engineering” by James M. Lee, Prentice-Hall International Editions, pp 138-176.
  • any method known in the art for purification of immunoglobulins to recover the antibody such as chromatography (ion exchange, affinity (eg protein A), size exclusion, etc.), centrifugation, differential solubility or Other standard techniques for protein purification may be used.
  • anti-CD300c antibodies or antigen-binding fragments thereof can exhibit enhanced anti-cancer effects when used in combination with one or more other immune anti-cancer agents. Accordingly, the anti-CD300c antibody or antigen-binding fragment thereof of the present invention can be used for cancer prevention or treatment in combination with one or more other immuno-cancer agents.
  • Immune anti-cancer drugs have a new mechanism of activating the body's immune cells to kill cancer cells, and thus have the advantage of being widely used for most cancers without specific genetic mutations.
  • immunocancer drugs have fewer side effects in that they treat cancer by strengthening the patient's own immune system, thereby improving the patient's quality of life and significantly prolonging the survival period.
  • immune anti-cancer agents include immune checkpoint inhibitors, and may be manufactured by known methods or commercially available products.
  • immune anti-cancer agents include anti-PD-1, anti-PD-L1, anti-CTLA-4, anti-CD47, anti-KIR, anti-LAG3, anti-CD137, anti-OX40, anti-CD276, anti-CD27 , anti-GITR, anti-TIM3, anti-41BB, anti-CD226, anti-CD40, anti-CD70, anti-ICOS, anti-CD40L, anti-BTLA, anti-TCR and anti-TIGIT antibodies; Not limited.
  • immunocancer agents include durvalumab (Imfinzi), atezolizumab (Tecentriq), avelumab (Bavencio), pembrolizumab (Keytruda), but is not limited to nivolumab (Opdivo), ⁇ CD47, semiplimab (Libtayo), magnolimab (Hu5F9-G4), and ipilimumab (Yervoy). .
  • the immune anticancer agent is anti-PD-1, anti-PD-L1, anti-CTLA-4, anti-CD47, anti-KIR, anti-LAG3, anti-CD137, anti-OX40, anti-CD276, anti-CD27, anti-GITR, anti-TIM3, anti-41BB, anti-CD226, anti-CD40, anti-CD70, anti-ICOS, anti-CD40L, anti-BTLA, anti-TCR and anti-TIGIT antibodies It may include any one or more selected from the group.
  • the immune anti-cancer agent may include at least one selected from the group consisting of anti-PD-1, anti-PD-L1, anti-CTLA-4, and anti-CD47 antibodies.
  • the immune anticancer agent is durvalumab (Imfinzi), atezolizumab (Tecentriq), pembrolizumab (Keytruda), nivolumab (Opdivo) , ⁇ CD47, and ipilimumab (Yervoy) may include any one or more selected from the group consisting of.
  • the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention is used to prevent or treat cancer in a subject, to ameliorate or reduce the severity of at least one symptom or sign of cancer, or , methods of inhibiting metastasis or inhibiting cancer growth are provided.
  • "preventing or treating cancer” may include inhibiting cancer proliferation, survival, metastasis, recurrence, or anticancer drug resistance.
  • Such a method may include administering an anti-CD300c antibody or antigen-binding fragment thereof according to the present invention to a subject in need of prevention or treatment of cancer.
  • cancer refers to a physiological condition characterized by unregulated cell growth, which is typically in mammals.
  • the cancers to be prevented or treated in the present invention include colorectal cancer, small intestine cancer, rectal cancer, colon cancer, thyroid cancer, endocrine cancer, oral cancer, tongue cancer, pharynx cancer, laryngeal cancer, esophageal cancer, cervical cancer, uterine cancer, and fallopian tube cancer, depending on the site of occurrence.
  • ovarian cancer brain cancer, head and neck cancer, lung cancer, lymph gland cancer, gallbladder cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, prostate cancer, skin cancer (or melanoma), breast cancer, stomach cancer, bone cancer, blood cancer, etc.
  • Any cancer can be included as long as it expresses the CD300c protein on the cell surface.
  • the cancer is colorectal cancer, rectal cancer, colon cancer, thyroid cancer, oral cancer, pharyngeal cancer, laryngeal cancer, cervical cancer, brain cancer, lung cancer, ovarian cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, prostate cancer, skin cancer, tongue cancer, It may include at least one selected from the group consisting of breast cancer, cervical cancer, stomach cancer, bone cancer, and blood cancer. In another embodiment, the cancer may be a solid cancer.
  • the method may further include determining the expression level of the CD300c protein based on a biological sample or data of the subject prior to administration of the anti-CD300c antibody or antigen-binding fragment thereof.
  • the method includes determining that the subject is suitable for treatment using an anti-CD300c antibody or antigen-binding fragment thereof when the expression level of the CD300c protein determined using the biological sample or data of the subject is at least a certain level.
  • the method statistically detects the expression level of the CD300c protein determined using the subject's biological sample or data compared to a control group (eg, the expression level in normal people without cancer or the average expression level in cancer patients). In the case of a significantly high level (eg, higher than 10%), determining that the subject is suitable for treatment with the anti-CD300c antibody or antigen-binding fragment thereof may be included.
  • the difference in the expression level of the CD300c protein presented above is merely exemplary, and may be 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, or 70% or more, but is not limited thereto.
  • the control group may be the average expression level in cancer patients of the same type.
  • the total number of CD300c expression levels As a result of comparing overall survival, cancer patients with a high CD300c expression level compared to the average CD300c expression level by cancer type showed a shorter overall survival time compared to patients without it. Accordingly, it may be desirable to refer to the expression level of the CD300c protein in a subject in order to increase the therapeutic response rate of the anti-CD300c antibody for the subject.
  • the method may further comprise administering one or more immuno-cancer agents.
  • the anti-CD300c antibody or antigen-binding fragment thereof is used in combination with (ii) one or more immuno-cancer agents, (i) and (ii) may be administered simultaneously or sequentially.
  • administering sequentially means that one component is administered and the other components are administered either immediately after administration or at intervals thereafter, wherein the components may be administered in any order. That is, one or more immunocancer agents may be administered immediately after administration of the anti-CD300c antibody or antigen-binding fragment thereof or at regular intervals after administration, or vice versa. Alternatively, any one of the one or more immune anti-cancer agents can be administered first, followed by the administration of an anti-CD300c antibody or antigen-binding fragment thereof, followed by the other one of the one or more immune anti-cancer agents.
  • an anti-CD300c antibody or antigen-binding fragment thereof may be administered with two or more immune anti-cancer agents.
  • an anti-CD300c antibody or antigen-binding fragment thereof is combined with two immune anti-cancer agents (eg, an anti-PD-L1 antibody and an anti-PD-1 antibody, or an anti-PD-1 antibody and an anti-CTLA-4 antibody). It was confirmed that the combination showed the highest cancer cell proliferation inhibitory effect.
  • Each of the antibodies or antigen-binding fragments thereof according to the present invention and optionally one or more additional anti-cancer agents may be administered in a number of ways depending on whether local or systemic treatment is desired and the area to be treated.
  • a method of administering these components to a subject may vary depending on the purpose of administration, the affected site, the condition of the subject, and the like.
  • the route of administration may be oral, parenteral, inhalational, topical or topical administration (eg intralesional administration).
  • parenteral administration includes intravenous, subcutaneous, intraperitoneal, intrapulmonary, intraarterial, intramuscular, rectal, vaginal, intraarticular, intraprostatic, intranasal, intraocular, intravesical, intrathecal or intraventricular administration (eg intraventricular administration), but is not limited thereto.
  • the anti-CD300c antibody and the additional immunocancer agent may be administered by the same route or may be administered by routes different from each other.
  • the effective amount of each of the anti-CD300c antibody or antigen-binding fragment thereof and optionally one or more additional anticancer agents according to the present invention may vary depending on the age, sex, and weight of the individual (patient), and is generally per kg body weight. About 0.01 mg to 100 mg, or 5 mg to about 50 mg can be divided and administered once a day to several times. However, the scope of the present invention is not limited thereto because it may increase or decrease according to the administration route and period, severity of disease, sex, weight, age, etc.
  • the method according to the present invention may include determining the expression level of the CD300c protein from the subject in advance. Depending on its expression level, it can be determined whether to administer the anti-CD300c antibody or antigen-binding fragment thereof.
  • the method according to the present invention measures a change in the expression level of a specific marker after administration of the anti-CD300c antibody or antigen-binding fragment thereof to a subject, thereby further suitable for combination with the anti-CD300c antibody or antigen-binding fragment thereof. and selecting (one or more) immuno-cancer agents.
  • the method may further include determining the expression level of one or more markers selected from the following markers using a biological sample or data from a subject administered with an anti-CD300c antibody or antigen-binding fragment thereof:
  • Bst2 bone marrow stromal antigen 2 also known as Tetherin or CD137, it is a lipid raft-related protein encoded by the BST2 gene.
  • CD40 Cluster of differentiation 40 A costimulatory protein found on antigen-presenting cells and required for their activation. Binding of CD154 (CD40L) on TH cells to CD40 activates antigen-presenting cells and induces various downstream effects.
  • CD70 Cluster of differentiation 70 A protein that in humans is encoded by the CD70 gene.
  • CD70 is a ligand for CD27.
  • CD86 Cluster of differentiation 86 Known as B7-2, it is a protein constitutively expressed in dendritic cells, Langerhans cells, macrophages, B cells (including memory B cells), and other antigen-presenting cells.
  • Ccl8 Chemokine (C-C motif) ligand 8 Known as monocyte chemoattractant protein 2 (MCP2), it is a protein that in humans is encoded by the CCL8 gene.
  • MCP2 monocyte chemoattractant protein 2
  • 6 Xcl1 X-C Motif Chemokine Ligand 1 A small cytokine belonging to the C chemokine family, also known as lymphotactin.
  • 7 Ccr7 C-C chemokine receptor type 7 A protein that in humans is encoded by the CCR7 gene.
  • CD80 Cluster of differentiation 80 A B7 type I membrane protein belonging to the immunoglobulin superfamily, having an extracellular immunoglobulin constant-like domain and a variable-like domain required for receptor binding. It is closely related to another B7 protein (B7-2), CD86, and often acts in tandem to prime T cells by binding to the same receptor.
  • CD206 Clusters of differentiation 206 Known as the mannose receptor, it is a C-type lectin present primarily on the surface of macrophages, immature dendritic cells and hepatic sinusoidal endothelial cells, but also expressed on the surface of skin cells such as human dermal fibroblasts and keratinocytes. 10 Msr1 Macrophage scavenger receptor 1 A protein encoded by the MSR1 gene in humans. MSR1 is also named cluster of differentiation 204 (CD204). 11 Arg1 Arginase 1 The human ARG1 gene encodes protein arginase. 12 Vegfa Vascular endothelial growth factor A A protein encoded by the VEGFA gene in humans.
  • HIF-1-alpha vascular cell adhesion protein 1
  • HIF-1 vascular cell adhesion molecule 1
  • CD106 cluster of differentiation 106
  • Gzma Granzyme A Granzyme A a protein encoded by the Gzma gene, is present in cytotoxic T lymphocyte granules.
  • Gzmb Granzyme B Granzyme B a protein encoded by the Gzmb gene, is expressed by cytotoxic T lymphocytes and natural killer (NK) cells.
  • Icos Inducible T-cell COStimulator An immune checkpoint protein encoded in humans by the ICOS gene.
  • Cd69 Cluster of Difference 69 A human transmembrane C-type lectin protein encoded by the Cd69 gene, which is an early activation marker expressed in hematopoietic stem cells, T cells, and the like. 22 Ifng Interferon gamma A dimerizing soluble cytokine that is the only member of the type II interferon class. 23 Tnf Tumor Necrosis Factor Encoded by the Tnf gene, a multifunctional pro-inflammatory cytokine belonging to the tumor necrosis factor (TNF) superfamily and secreted primarily by macrophages. 24 Cd1d1 CD1d1 antigen Enables T cell receptor binding activity and endogenous lipid antigen binding activity.
  • TNF tumor necrosis factor
  • Cd1d2 CD1d2 antigen Encodes an MHC class I-like molecule involved in the presentation of lipid antigens to T cells and involved in the activation of natural killer T cells.
  • Cd38 Cluster of Differentiation 38 A glycoprotein found on the surface of many immune cells (white blood cells), including CD4 + , CD8 + , B lymphocytes and natural killer cells.
  • Cxcr6 C-X-C chemokine receptor type 6 Also referred to as CD186, it has been identified as an entry co-receptor used by HIV-1 and SIV along with CD4 to enter target cells.
  • Tbx21 T-box transcription factor TBX21 Also referred to as T-bet (T-box expressed in T cells), it is a protein that in humans is encoded by the TBX21 gene.
  • Stat1 Signal transducer and activator of transcription 1 A transcription factor encoded by the STAT1 gene in humans. It is a member of the STAT protein family.
  • Stat4 Signal transducer and activator of transcription 4 A transcription factor belonging to the STAT protein family.
  • 32 Cxcr3 C-X-C Motif Chemokine Receptor 3 It is a G ⁇ i protein-coupled receptor of the CXC chemokine receptor family.
  • 33 IL-12b Subunit beta of interleukin 12 Also known as natural killer cell stimulating factor 2, cytotoxic lymphocyte maturation factor p40 or interleukin-12 subunit p40, which in humans is a protein encoded by the IL12B gene.
  • IL6 Interleukin 6 An interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene. 36 IL13 Interleukin 13 A protein encoded by the IL13 gene in humans. 37 PD-1 Programmed cell death protein 1 Known as CD279 (cluster of differentiation 279), it is a protein responsible for regulating the immune system's response to the body's cells by suppressing T-cell inflammatory activity to down-regulate the immune system and promoting self-tolerance. It prevents autoimmune disease, but may also prevent the immune system from killing cancer cells.
  • PD-L1 Programmed death-ligand 1 Also known as CD274 (cluster of differentiation 274) or B7-H1 (B7 homolog 1), a protein that in humans is encoded by the CD274 gene.
  • CTLA-4 cytotoxic T-lymphocyte-associated protein 4 Known as CD152 (Cluster of Differentiation 152), it is a protein receptor that functions as an immune checkpoint and downregulates the immune response.
  • CD152 Cluster of Differentiation 152
  • Lag3 Lymphocyte-activation gene 3 A protein that in humans is encoded by the LAG3 gene.
  • 41 Tim3 immunoglobulin and mucin-domain containing-3 Also known as HAVCR2 (Hepatitis A virus cellular receptor 2), a protein that in humans is encoded by the HAVCR2 gene.
  • CD134 TNFRSF4
  • TNFRSF4 TNFR receptor superfamily that is not constitutively expressed on resting na ⁇ ve T cells.
  • Hvem Herpesvirus entry mediator A human cell surface receptor of the TNF receptor superfamily.
  • CD27 Cluster of differentiation 27 A member of the tumor necrosis factor receptor superfamily.
  • CD28 Cluster of differentiation 28 One of the proteins expressed in T cells that provide costimulatory signals necessary for T cell activation and survival.
  • Cma1 Chymase 1 An enzyme encoded by the CMA1 gene in humans.
  • T-cell membrane protein 4 (TIM-4), it is a protein encoded by the TIMD4 gene in humans.
  • Cxcl5 C-X-C Motif Chemokine Ligand 5 A protein that in humans is encoded by the CXCL5 gene.
  • Ccl21a Chemokine (C-C motif) ligand 21 It is a small cytokine belonging to the CC chemokine family.
  • the method may further include selecting an additional immuno-cancer agent based on the expression level of the identified marker.
  • the markers may include PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27 and CD28, but are not limited thereto.
  • the marker may include one or more selected from the group consisting of PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27 and CD28.
  • the marker may include one or more selected from the group consisting of PD-1, PD-L1, CTLA-4, Lag3 and Tim3.
  • the marker may include one or more selected from the group consisting of Icos, Ox40, Gitr, Hvem, CD27 and CD28.
  • Changes in the expression level of these markers refer to changes in tumor/immunity-related markers that affect tumor suppression effects when the anti-CD300c antibody or antigen-binding fragment thereof of the present invention is administered to a subject.
  • a change in the expression level of the marker is a protein marker or immune checkpoint protein marker related to the activity of immune cells (eg, dendritic cells, macrophages, T cells, NKT cells), a tumor microenvironment that affects tumor growth (TME) ) protein markers, changes in the expression pattern of markers related to Th1 response and Th2 response.
  • immune cells eg, dendritic cells, macrophages, T cells, NKT cells
  • TME tumor microenvironment that affects tumor growth
  • the probability of a patient's response to a drug can be predicted or anticancer drugs, including other immune checkpoint inhibitors, that can maximize anticancer effects can be selected.
  • the marker it is possible to determine whether or not the patient can be treated with the antibody.
  • the effect of drug treatment can be monitored.
  • it may provide information for treatment methods including drug dosage, regimen, combination therapy, and the like.
  • anti-PD-L1 antibody more Valumab (Imfinzi), anti-PD-1 antibody nivolumab (Opdivo), anti-PD-1 antibody pembrolizumab (Keytruda), anti-CTLA-4 antibody and at least one of anti-CD47 antibody ( ⁇ CD47)
  • anti-PD-L1 antibody more Valumab (Imfinzi)
  • anti-PD-1 antibody nivolumab Opdivo
  • anti-PD-1 antibody pembrolizumab Keytruda
  • anti-CTLA-4 antibody anti-CTLA-4 antibody
  • ⁇ CD47 anti-CD47 antibody
  • the method may further include confirming therapeutic responsiveness of the anti-CD300c antibody or antigen-binding fragment thereof based on the expression level of the identified marker.
  • the markers include vegfa, pdgfrb, Col4a1, Hif1a, Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, IL-6, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr , CD27 and CD28, but are not limited thereto.
  • the markers are vegfa, pdgfrb, Col4a1, Hif1a, Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, IL-6, Gzma, Icos, Cd69, Cd1d1, Cd38 and Cxcr6 It may include one or more selected from the group consisting of.
  • the marker may include one or more selected from the group consisting of vegfa, pdgfrb, Col4a1 and Hif1a.
  • the marker may include one or more selected from the group consisting of Bst2, CCL8 and Xcl1.
  • the marker may include CCR7, CD80 or a combination thereof.
  • the marker may include one or more selected from the group consisting of Tbx21, Stat1, Stat4, Ifng, Cxcr3, and IL-6.
  • the method is performed when the expression level of one or more of the markers is reduced compared to a subject not receiving the anti-CD300c antibody or antigen-binding fragment thereof. It may further include determining that the treatment responsiveness of the treatment is good or excellent.
  • the method may be used when the expression level of one or more markers selected from the group consisting of vegfa, pdgfrb, Col4a1, Hif1a and IL-6 is reduced compared to a subject not receiving an anti-CD300c antibody or antigen-binding fragment thereof, Therapeutic responsiveness of the anti-CD300c antibody or antigen-binding fragment thereof can be determined to be good or excellent.
  • the decrease in expression level means a statistically significant decrease
  • the expression level decrease rate is about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about It may include 70% or more, about 100% or more, but is not limited thereto.
  • the method further increases the therapeutic responsiveness of the anti-CD300c antibody or antigen-binding fragment thereof when the expression level of one or more of the markers is increased compared to a subject not receiving the anti-CD300c antibody or antigen-binding fragment thereof. It may further include determining that it is good or excellent.
  • the method is one selected from the group consisting of Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr, Cd27 and Cd28.
  • the therapeutic response of the anti-CD300c antibody or antigen-binding fragment thereof can be determined to be good or excellent.
  • the increase in expression level means a statistically significant increase, and the expression level increase rate is about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about It may include 70% or more, about 100% or more, but is not limited thereto.
  • compositions for preventing or treating cancer comprising an anti-CD300c antibody or an antigen-binding fragment thereof as an active ingredient.
  • the anti-CD300c antibody or antigen-binding fragment thereof may be included in the composition in a prophylactically or therapeutically effective amount.
  • the pharmaceutical composition may be administered to a subject to inhibit cancer proliferation, survival, metastasis, recurrence or anticancer drug resistance.
  • the pharmaceutical composition may further include one or more immuno-cancer agents.
  • the anti-CD300c antibody or antigen-binding fragment thereof and optionally the additional immunocancer agent may be included in the same composition or may be included in separate compositions.
  • the anti-CD300c antibody or antigen-binding fragment thereof and the additional immunocancer agent may be formulated separately and administered simultaneously or sequentially.
  • the antibody or antigen-binding fragment thereof and optionally an additional immuno-cancer agent may be mixed with a pharmaceutically acceptable carrier and/or excipient.
  • the pharmaceutical composition may be prepared in the form of a lyophilized preparation or an aqueous solution. See, eg, Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack Publishing Company, Easton, PA (1984).
  • Acceptable carriers and/or excipients are nontoxic to subjects at the dosages and concentrations employed, and include buffers (eg, phosphate, citrate, or other organic acids); antioxidants (eg ascorbic acid or methionine); Preservatives (eg octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol cyclohesanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins (eg serum albumin, gelatin, or immunoglobulins); hydrophilic polymers (eg polyvinylpyrrolidone); amino acids (eg glycine, glutamine, asparag
  • composition of the present invention may be formulated in a suitable form known in the art depending on the route of administration.
  • prophylactically or therapeutically effective amount is an amount of an active ingredient of a composition effective for preventing or treating cancer in a subject, preventing or treating cancer at a reasonable benefit/risk ratio applicable to medical treatment. An amount that is sufficient to treat and does not cause side effects.
  • the level of the effective amount is the patient's state of health, type of disease, severity, activity of the drug, sensitivity to the drug, method of administration, time of administration, route of administration and excretion rate, duration of treatment, factors including drugs used in combination or concurrently, and It may be determined according to other factors well known in the medical field. At this time, it is important to administer the amount that can obtain the maximum effect with the minimum amount or without side effects in consideration of all the above factors, which can be easily determined by a person skilled in the art.
  • the effective amount of each active ingredient in the pharmaceutical composition of the present invention may vary depending on the age, sex, and weight of the individual (patient), and is generally about 0.01 mg to 100 mg, or 5 mg to about 50 mg per kg body weight. mg may be administered once a day to several divided doses. However, the scope of the present invention is not limited thereto because it may increase or decrease according to the administration route and period, severity of disease, sex, weight, age, etc.
  • kits for preventing or treating cancer, comprising a composition comprising an anti-CD300c antibody or antigen-binding fragment thereof according to the present invention, and instructions instructing use of the antibody or antigen-binding fragment thereof
  • a kit is provided.
  • the composition may contain a prophylactically or therapeutically effective amount of the anti-CD300c antibody or antigen-binding fragment thereof.
  • the instructions may include instructions directing the combined use of the antibody or antigen-binding fragment thereof and one or more additional anti-cancer agents.
  • the instructions may include instructions including instructions for taking or administering the active ingredient(s).
  • the instructions may include instructions for measuring the expression level of the CD300c protein using a biological sample or data obtained from a subject prior to administration of the antibody or antigen-binding fragment thereof.
  • instruments or devices necessary for administering the active ingredient(s) may be included in the kit.
  • an effective amount or an effective non-toxic amount of each of the anti-CD300c antibody or antigen-binding fragment thereof according to the present invention, and optionally an additional immune anti-cancer agent can be determined by routine experimentation.
  • a therapeutically active amount of an antibody or immuno-anticancer agent may be determined by factors such as the stage of the disease, the severity of the disease, the age, sex, medical complications, and weight of the subject, and the ability of the component to elicit the desired response in the subject, together with It may change depending on the dose of the anticancer agent.
  • the dosage and dosing regimen of each anti-CD300c antibody or antigen-binding fragment thereof or additional immuno-anticancer agent may be adjusted to provide the optimal therapeutic response. For example, several divided doses can be administered daily, weekly, every 2 weeks, every 3 weeks, every 4 weeks, etc., and/or the dose can be proportionally reduced or increased according to the exigencies of the therapeutic situation.
  • providing information for the prevention or treatment of cancer comprising determining the expression level of the CD300c protein using a biological sample or data obtained from a subject in need of prevention or treatment of cancer
  • a method is provided.
  • the method can also be used for pre-screening for administration of an anti-CD300c antibody or antigen-binding fragment thereof.
  • the step of determining the expression level of the CD300c protein is a molecule that specifically binds to the CD300c protein, such as an antibody, substrate, ligand or cofactor, or specifically binds to the mRNA of the CD300c. It may include using a molecule that detects, such as a primer pair or probe. Methods for determining expression levels using these reagents are well known in the art, including those described above.
  • the method determines that the subject is suitable for treatment with an anti-CD300c antibody or antigen-binding fragment thereof when the expression level of the CD300c protein determined using a biological sample or data of the subject is at or above a certain level. steps may be included. Specifically, the method statistically detects the expression level of the CD300c protein determined using the subject's biological sample or data compared to a control group (eg, the expression level in normal people without cancer or the average expression level in cancer patients). In the case of a significantly high level (eg, higher than 10%), determining that the subject is suitable for treatment with the anti-CD300c antibody or antigen-binding fragment thereof may be included.
  • a control group eg, the expression level in normal people without cancer or the average expression level in cancer patients.
  • the difference in the expression level of the CD300c protein presented above is merely exemplary, and may be 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, or 70% or more, but is not limited thereto.
  • the control group may be the average expression level in cancer patients of the same type.
  • the total number of CD300c expression levels As a result of comparing overall survival, cancer patients with a high CD300c expression level compared to the average CD300c expression level by cancer type showed a shorter overall survival time compared to patients without it. Accordingly, it may be desirable to refer to the expression level of the CD300c protein in a subject in order to increase the therapeutic response rate of the anti-CD300c antibody for the subject.
  • the information for the prevention or treatment of cancer is the therapeutic response of a therapeutic agent (eg, an anti-CD300c antibody or antigen-binding fragment thereof) related to the CD300c protein, selection of a therapeutic agent, selection of a subject to be treated, prognosis of a subject, And it may include information about any one or more of the survival period of the subject, but is not limited thereto.
  • the information for preventing or treating cancer may include cancer treatment responsiveness of the anti-CD300c antibody or antigen-binding fragment thereof, survival period of the subject, or both.
  • kits for doing so are provided.
  • the kit may include one or more other component compositions, solutions or devices suitable for the assay method.
  • the kit may be a kit for measuring the expression level of a protein marker, for example, an enzyme-linked immunosorbent assay (ELISA) kit.
  • the kit may include other reagents known in the art to be required for immunological detection of antibodies.
  • the kit may further include a pharmaceutical composition comprising an anti-CD300c antibody or an antigen-binding fragment thereof as an active ingredient.
  • Example 1.1 Construction of an anti-CD300c monoclonal antibody library
  • biopanning was performed using a lambda phage library, a kappa phage library, a VH3VL1 phage library, and an OPALTL phage library.
  • CD300c antigen at a concentration of 5 ⁇ g/mL was added to an immunotube, and reacted for 1 hour to adsorb the antigen to the surface of the test tube.
  • 3% of skim milk was added to suppress non-specific reactions, and then 10 12 PFU of the antibody phage library dispersed in 3% of skim milk was added to each immune test tube and bound to the antigen.
  • TBST tris buffered saline-Tween20
  • scFv single-chain variable fragment
  • the antibody was eluted using a 100 mM triethylamine solution.
  • the eluted phage was neutralized using 1.0 M Tris-HCl buffer solution (pH 7.8), then treated with E. coli ER2537 and infected for 1 hour at 37 ° C.
  • the infected E. coli was then placed on LB agar containing carbenicillin. It was applied to the medium and incubated at 37° C. for 16 hours.
  • E. coli colonies were suspended using 3 mL of SB (super broth)-carbenicillin culture medium, some were stored at -80 ° C until use by adding 15% glycerol, and the rest were SB-carbenicillin- It was re-inoculated in 2% glucose solution and incubated at 37°C. The obtained culture medium was centrifuged, and biopanning was repeated three times using the supernatant containing phage particles to secure and concentrate antigen-specific antibodies.
  • SB super broth
  • E. coli containing the antibody gene was applied to LB agar medium containing carbenicillin and incubated at 37° C. for 16 hours, and the formed E. coli colony was again SB-carbenicillin-2% After re-inoculation in the glucose solution and incubation at 37° C. until the absorbance (OD600 nm) is 0.5, IPTG was added and further incubated at 30° C. for 16 hours. Thereafter, periplasmic extraction was performed, and through the above results, a library pool of antibodies specifically binding to the CD300c antigen was primarily secured.
  • ELISA was performed using the library pool obtained in the same manner as in Example 1.1. More specifically, the CD300c antigen and the CD300a antigen were dispensed in coating buffer (0.1 M sodium carbonate, pH 9.0) on an ELISA plate at a concentration of 5 ⁇ g/mL per well, respectively, and then reacted at room temperature for 3 hours to detect the antigen. were attached to the plate.
  • coating buffer 0.1 M sodium carbonate, pH 9.0
  • PBST phosphate buffered saline-Tween20
  • BSA bovine serum albumin
  • the nucleotide sequence of the selected anti-CD300c monoclonal antibody was confirmed using the same method as in Example 1.2. More specifically, after extracting plasmid DNA from the selected antibody clones using a plasmid miniprep kit, DNA sequencing was performed to analyze complementarity-determining regions (CDRs) sequences. As a result, 25 anti-CD300c monoclonal antibodies having different amino acid sequences were obtained. The heavy and light chain variable regions of these 25 anti-CD300c monoclonal antibodies are shown in Tables 3 and 4 below.
  • CDR1, CDR2 and CDR3 are indicated in order by underlining (i.e., CDR1 is indicated first, followed by CDR2, followed by CDR3).
  • CDR regions included in each figure are indicated by SEQ ID NOs as shown in Table 5 below:
  • Example 1.4 Construction and purification of anti-CD300c monoclonal antibody
  • Example 1.3 Using the nucleotide sequence of the anti-CD300c monoclonal antibody confirmed in Example 1.3, an expression vector was prepared by separating the heavy chain and the light chain capable of expressing the antibody. In more detail, using the analyzed CDR sequences, genes were inserted into the pCIW3.3 vector to express heavy and light chains, respectively.
  • the prepared heavy and light chain expression vectors were mixed with PEI (polyethylenimine) at a mass ratio of 1:1, transfected into 293T cells to induce antibody expression, and on the 8th day, the culture medium was centrifuged to remove the cells and obtain the culture medium did The obtained culture medium was filtered and then resuspended using a mixture of 0.1 M NaH2PO4 and 0.1 M Na2HPO4 (pH 7.0). The resuspended solution was purified by affinity chromatography using protein A beads (GE healthcare), and finally eluted using an elution buffer (Thermofisher).
  • PEI polyethylenimine
  • cancer cell lines MKN45 human gastric cancer cell line
  • IM95 human gastric cancer cell line
  • HT-29 human colon cancer cell line
  • A549 human lung cancer cell line
  • HCT116 human lung cancer cell line
  • Colorectal cancer cell line MDA-MB-231
  • HepG2 human liver cancer cell line
  • CD300c antigen was expressed at the mRNA and protein levels in various cancer cells such as colorectal cancer, lung cancer, and breast cancer.
  • FIG. 6 as a result of analysis using flow cytometry (FACS), much more CD300c was expressed in the human lung cancer cell line (A549) and the human monocyte cell line (THP-1) compared to the normal cell line (HEK293T). Confirmed.
  • tissue microarray was performed as follows. Colon cancer patient tissues were formalin-fixed, and blocks were made with paraffin, and then cut with a microtissue arrayer to a diameter of 2.0 mm and a thickness of 3 to 5 um. Then, it was attached to the slide in a certain direction and dried. After staining the cancer tissue through H&E staining, CD300c was stained by treating with an anti-CD300c antibody (Invitrogen) at 1:500. As a result, as shown in FIG. 7a , it was confirmed that CD300c was expressed in the patient's colon cancer tissue.
  • an anti-CD300c antibody Invitrogen
  • CD16/32 antibody available from Invitrogen
  • staining solution for confirming cell viability available from Invitrogen
  • total macrophage markers F4/80 Abcam
  • CD11b available from : Abcam
  • CD11c obtained by Abcam
  • CD3 obtained by Abcam
  • CD4 obtained by Thermofisher
  • CD8 obtained by Thermofisher
  • CD300c antibody obtained by Sino Biological
  • tissue microarray was performed as follows. Normal tonsil tissue and colon cancer patient tissue were formalin-fixed, and blocks were made with paraffin. Then, after finding the location where the tissue microarray was to be performed among the normal tonsil tissue and the tissue of the colorectal cancer patient, it was cut into 2.0 mm in diameter and 3 to 5 ⁇ m in thickness using a microtissue arrayer. Then, it was attached to the slide in a certain direction and dried. After staining the cancer tissue through H&E staining, CD300c was stained by treating with an anti-CD300c antibody (Invitrogen) at 1:500.
  • an anti-CD300c antibody Invitrogen
  • FIGS. 8A and 8B it was confirmed that CD300c was expressed in both the normal tonsil tissue ( FIG. 8A ) and the patient's colorectal cancer tissue ( FIG. 8B ), which are immune tissues. Since many immune cells, such as T cells and monocytes, are distributed in the tonsil, the expression of CD300c in tonsil tissue means that CD300c is expressed in immune cells.
  • the expression of CD300c in tonsil tissue means that CD300c is expressed in immune cells.
  • Binding ELISA was performed to confirm the antigen-binding ability of the anti-CD300c monoclonal antibody prepared in Example 1. Specifically, the CD300c antigen (11832-H08H, Sino Biological) or the CD300a antigen (12449-H08H, Sino Biological) was added to the coating buffer solution (0.1 M sodium carbonate, pH 9.0) at a concentration of 8 ug/mL per well, respectively. ELISA plate After aliquoting, the antigen was bound to the plate by reacting at room temperature for 3 hours.
  • the effective concentration of drug that causes 50% of the maximum response was calculated by drawing an S-shaped curve using the sigmaplot program using the obtained MFI value. As a result, an EC50 of 2.7 nM for 293T cells and 2.6 nM for THP-1 cells was obtained.
  • the anti-CD300c monoclonal antibody prepared in Example 1 bound to CD300c overexpressed on the surface of THP-1 and 293T cells with strong avidity in the sigmoidal curve according to the results of FACS binding.
  • the anti-CD300c monoclonal antibody antigen-specifically binds to CD300c.
  • the CD300c antigen (250 ug/mL) was diluted to a concentration of 800 ng/mL in coating buffer (0.1 M sodium carbonate, pH 9.0), put into a 96-well microplate in 100 uL each, and incubated overnight at 4°C. The next day, it was washed 3 times with 200 uL of PBST. Thereafter, 200 uL of blocking buffer solution (5% skim milk) was added, and blocked for 1 hour at room temperature.
  • An anti-CD300c monoclonal antibody, CL7 was diluted in PBS to 200 ug/mL, and the concentration was confirmed by measuring with a Nanodrop (product name: NanoDrop One/One c , manufacturer: Thermo Fisher Scientific).
  • the anti-CD300c monoclonal antibody binds to CD300c in a concentration-dependent manner, indicating that the anti-CD300c monoclonal antibody has excellent binding force and specificity to the antigen, CD300c. .
  • CD300c was diluted in 10 mM acetate buffer (pH 5.5). After that, the flow rates were all the same at 10 ml/min, and each target RU was set at 300 RU. Activation was performed with a mixture of 0.2 M EDC and 0.05 M NHS and blocked with 1 M ethanolamine to immobilize CD300c to a final RU of 399.2 RU.
  • CL7 was diluted in PBSP to concentrations of 0, 0.195, 0.39, 0.78, 1.56, 3.125, and 6.25 ug/ml, respectively, the association time was 240 seconds, the dissociation time was 900 seconds, and the flow rate was 30 ul/min.
  • the Kinetics/Affinity test was conducted. Then, the surface was regenerated by flowing 50 mM NaOH at a rate of 30 ul/min for 30 seconds.
  • the KD value was analyzed to be 5.199E-10 M, and the binding affinity of the anti-CD300c monoclonal antibody was confirmed to be 0.52 nM, a subnanomol level. This means that the binding ability of the anti-CD300c monoclonal antibody to the antigen is high.
  • CD300c antigen CD300a antigen or B7 family protein antigen (PD-L1 [B7-H1] (Sino Biological), ICOS Ligand [B7-H2] ( Sino Biological), CD276[B7-H3](Sino Biological), B7-H4(Sino Biological), CD80[B7-1](Sino Biological), CD86[B7-2](Sino Biological), CD273[PD-L2] ] (Sino Biological)) was coated on the ELISA plate at a concentration of 8 ⁇ g/mL per well, and then incubated overnight at 2° C.
  • the anti-CD300c monoclonal antibody showed high binding specificity only to the CD300c antigen without binding to antigens other than CD300c.
  • IL-2 Interleukin-2
  • IL-2 is an immune factor that helps the growth, proliferation, and differentiation of T cells.
  • An increase in the production of IL-2 activates T cells by increasing stimuli leading to increased differentiation, proliferation, and growth of T cells.
  • anti-CD3 monoclonal antibody and anti-CD28 monoclonal antibody were added to a 96-well plate at a concentration of 2 ⁇ g/well, respectively, and fixed for 24 hours, followed by 1 ⁇ 10 5 cells/well of Jurkat T cells (human T lymphocytes). cell line) and 10 ⁇ g/well of anti-CD300c monoclonal antibody. Subsequently, the amount of IL-2 produced was measured using an ELISA kit (IL-2 Quantikine kit, R&D Systems) and compared with a control group not treated with anti-CD300c monoclonal antibody. The results are shown in FIG. 16 .
  • THP-1 a human monocyte cell line
  • TNF- ⁇ Tumor necrosis factor- ⁇
  • ELISA kit Human TNF- ⁇ Quantikine kit, R&D Systems
  • anti-CD300c monoclonal antibody (CL7) was treated at concentrations of 10, 5, 2.5, 1.25, 0.625, 0.313, 0.157, and 0.079 ⁇ g/mL, and the amount of TNF- ⁇ produced was confirmed. did The results are shown in FIG. 20 . As shown in FIG. 20 , it was confirmed that the amount of TNF- ⁇ produced increased as the concentration of the treated anti-CD300c monoclonal antibody increased.
  • THP-1 was treated with 10 ⁇ g/ml of anti-CD300c monoclonal antibody and cultured for 48 hours. Cell morphology was observed under a microscope. The results are shown in FIG. 21 .
  • TNF- ⁇ TNF- ⁇
  • IL-1 ⁇ Interleukin-1 ⁇
  • IL-8 Interleukin-8
  • TNF- ⁇ , IL-1 ⁇ and IL-8 which are markers of M1 macrophage differentiation.
  • ELISA kit Human TNF- ⁇ Quantikine kit, R&D Systems
  • THP-1 was dispensed in a 96-well plate at 1.5x104 cells/well, treated with 320 nM of PMA, and pretreated for 6 hours.
  • 20 ng/mL of IL-4 (Interleukin-4) and IL-13 (Interleukin-13), and 10 ⁇ g/mL of anti-CD300c monoclonal antibody were treated and allowed to react for 18 hours.
  • the production amounts of TNF- ⁇ , IL-1 ⁇ , and IL-8 were confirmed using an ELISA kit. The results are shown in Figures 23 to 25.
  • THP-1 was dispensed at 1.5x104 cells/well in a 96-well plate, and 10 ⁇ g/mL of anti-CD300c monoclonal antibody was added for 48 hours. After pretreatment, 100 ng/mL of PMA, 100 ng/mL of LPS, and 20 ng/mL of IL-4 and IL-13 were treated and allowed to react for 24 hours. The amount of TNF- ⁇ produced was confirmed using an ELISA kit. The results are shown in FIG. 26 .
  • anti-CD300c was compared to M0 macrophage control treated with PMA alone, M1 macrophage control treated with LPS alone, and M2 macrophage control treated with IL-4 and IL-13 alone. It was confirmed that the production of TNF- ⁇ was significantly increased in all of the experimental groups pretreated with the monoclonal antibody. Through the above results, it was confirmed that the anti-CD300c monoclonal antibody was excellent in the ability to differentiate M0 macrophages into M1 macrophages, the ability to differentiate THP-1 into M1 macrophages, and the ability to redifferentiate M2 macrophages into M1 macrophages.
  • cell proliferation assay was performed using A549 (a human lung cancer cell line). More specifically, in a 96-well plate, 2x10 4 cells were dispensed under 0% fetal bovine serum (FBS) conditions, and 6x10 3 cells were dispensed under 0.1% fetal bovine serum conditions. Then, they were treated with 10 ⁇ g/mL of anti-CD300c monoclonal antibody and cultured for 5 days. After treatment with CCK-8 (DOJINDO), absorbance was measured at OD450 nm to confirm the anti-CD300c monoclonal antibody's cancer cell growth inhibitory effect. The results are shown in FIGS. 27 and 28.
  • FBS fetal bovine serum
  • 2x104 A549 cells were dispensed in a 96-well plate under 0% fetal bovine serum (FBS) conditions, and 10 ⁇ g/mL It was treated with anti-CD300c monoclonal antibody and cultured for 5 days. Subsequently, CCK-8 (DOJINDO) was treated and reacted for 3 hours, and then, the cancer cell growth inhibitory effect of the anti-CD300c monoclonal antibody was confirmed by measuring the absorbance at OD450 nm. The results are shown in FIG. 29 .
  • mouse macrophages (Raw264.7) were dispensed in a 96-well plate at a concentration of 1x10 4 cells/well, and 10 ⁇ g /mL of anti-CD300c monoclonal antibody were co-treated and incubated. The amount of TNF- ⁇ produced was confirmed using an ELISA kit. The results are shown in FIG. 30 .
  • CT26 mouse colon cancer cell line
  • the anti-CD300c monoclonal antibody exhibits cancer cell proliferation inhibitory effects of 66% (CL7), 15% (CL10), and 38% (SL18), respectively, compared to the control group, thereby exhibiting cancer treatment effects in mice. It was confirmed that indicated From this, it can be seen that the anti-CD300c monoclonal antibody has cross-reactivity showing anticancer effects by acting in the same way in humans as well as mice.
  • the anti-CD300c monoclonal antibody significantly increased the production of TNF- ⁇ compared to the control group treated with Imf alone.
  • the anti-CD300c monoclonal antibody significantly increased the differentiation ability into M1 macrophages, compared to previously known immunocancer drugs.
  • the anti-PD-L1 immunocancer drug Imfinzi, the anti-PD-1 immunocancer drug Keytruda, and the isotype control (immunoglobulin G) antibody were each administered at 10 ⁇ g/day. It was treated at a concentration of mL, and the amount of TNF- ⁇ , IL-1 ⁇ , and IL-8 produced was confirmed with an ELISA kit. The results are shown in FIGS. 33 to 35.
  • the anti-CD300c monoclonal antibody significantly increased the production of TNF- ⁇ , IL-1 ⁇ , and IL-8 compared to Imfinzi, Keytruda, and IgG antibodies.
  • the anti-CD300c monoclonal antibody can significantly increase the promotion of differentiation into M1 macrophages compared to conventional anti-cancer immunotherapeutic agents.
  • THP-1 was dispensed at 1.5x104 cells/well in a 96-well plate, and 10 ⁇ g/mL of anti-CD300c monoclonal antibody, 10 ⁇ g/mL of Imfinzi and/or 200 nM of phorbol-12-myristate-13-acetate (PMA) were treated. After reacting for 48 hours, the amount of TNF- ⁇ produced was measured using an ELISA kit. The results are shown in FIG. 36 .
  • TNF- ⁇ was not produced in the control group treated with the immunocancer drug Imfinzi alone, but the production of TNF- ⁇ increased in the experimental group treated with the anti-CD300c monoclonal antibody alone. confirmed that In addition, even when THP-1 cells were treated with PMA to differentiate into M0 macrophages, significantly higher TNF- ⁇ production was confirmed in the experimental group treated with anti-CD300c monoclonal antibody compared to the experimental group treated with imfinzi. Through the above results, it was confirmed that the anti-CD300c monoclonal antibody promotes the differentiation of M0 macrophages into M1 macrophages compared to existing anti-cancer immune agents.
  • the cell growth inhibitory effect was confirmed using A549 (human lung cancer cell line) and MDA-MB-231 (human breast cancer cell line). More specifically, in a 96-well plate, 2x10 4 cells were dispensed in 0% fetal bovine serum (FBS) conditions, and 6x10 3 cells were dispensed in 0.1% fetal bovine serum conditions. Then, after treatment with 10 ⁇ g/mL of anti-CD300c monoclonal antibody and incubation for 5 days, it was observed under an optical microscope. The results are shown in FIGS. 38 and 39.
  • FBS fetal bovine serum
  • the anti-CD300c monoclonal antibody inhibited the proliferation of cancer cells more effectively than the immunocancer drug Imfinzi in the MDA-MB-231 cell line.
  • mice 2x10 5 colon cancer cell lines (CT26) were subcutaneously transplanted into 8-week-old BALB/c mice, followed by syngeneic transplantation. A mouse tumor model was constructed. Animal breeding and experiments were all conducted in SPF (specific pathogen free) facilities. Twelve days after transplantation of the colorectal cancer cell line, anti-CD300c monoclonal antibodies were administered to mice having a tumor size of 50 to 100 mm 3 , respectively, and an equal amount of phosphate buffered saline (PBS) was injected as a control.
  • PBS phosphate buffered saline
  • mice were injected at a dose of 25 mg/kg by intraperitoneal injection twice a week for a total of 4 times for 2 weeks.
  • the mice were sacrificed, and tumor tissues were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group.
  • After removing the tumor tissue it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh.
  • the single cell suspension was blocked with CD16/32 (available from Invitrogen) antibody, staining solution for confirming cell viability, and antibodies against F4/80, a total macrophage marker, and iNOS, an M1 macrophage marker (available from: Abcam) stained the cells. Data were then read on a CytoFLEX flow cytometer and analyzed with FlowJo software.
  • CD16/32 available from Invitrogen
  • F4/80 a total macrophage marker
  • iNOS an M1 macrophage marker
  • an allograft mouse tumor model was prepared and administered at the same concentration as in Experimental Example 6.1.
  • the mice were sacrificed, and tumor tissues were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group.
  • After removing the tumor tissue it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh.
  • an allograft mouse tumor model was prepared and administered at the same concentration as in Experimental Example 6.1.
  • the mice were sacrificed, and tumor tissues were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group.
  • After removing the tumor tissue it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh.
  • an allograft mouse tumor model was prepared and administered at the same concentration as in Experimental Example 6.1.
  • the mice were sacrificed, and spleens were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group.
  • the results were confirmed by measuring IFN-g through the ELISPOT assay.
  • a Mouse IFN-g ELISpot kit from R&D Systems (#EL485) was purchased and IFN-g was measured according to the protocol of the kit.
  • an allograft mouse tumor model was prepared and administered at the same concentration as in Experimental Example 6.1.
  • the mice were sacrificed, and tumor tissues were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group. After removing the tumor tissue, it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml).
  • CD8+ T cells increased compared to Treg T cells when the anti-CD300C monoclonal antibody was treated alone. This means that the number of CD8+ T cells increased by administration of the anti-CD300C monoclonal antibody further suppresses cancer growth.
  • an allograft mouse tumor model was prepared. Twelve days after transplantation of the colorectal cancer cell line, anti-CD300c monoclonal antibodies were administered to mice having a tumor size of 50 to 100 mm 3 , respectively, and an equal amount of phosphate buffered saline (PBS) was injected as a control. Mice were injected intraperitoneally at a dose of 25 mg/kg twice a week for a total of 4 times for 2 weeks.
  • PBS phosphate buffered saline
  • mice On the 25th day after injection, the mice were sacrificed, and tumor tissues were collected from each of 6 mice in the CL7 25 mg/kg administration group, which had the highest antitumor effect compared to the control group. After removing the tumor tissue, it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh.
  • CD16/32 obtainer: Invitrogen
  • cells were stained with staining solution for confirming cell viability and CD8+ T cell marker CD8+ antibody and CD4+ antibody, or Treg cell marker Cells were stained with Foxp3 antibody and CD4+ antibody, or with antibodies against total macrophage marker F4/80 and M1 macrophage marker iNOS (available from Abcam).
  • Data were then read on a CytoFLEX flow cytometer and analyzed with FlowJo software. The results are shown in FIG. 45 .
  • anti-CD300c monoclonal antibody (CL7) was found to significantly increase activated CD8+ T cells, inhibit regulatory T cells, and repolarize tumor-associated macrophages towards the M1 phenotype.
  • an anti-CD300c monoclonal antibody in vivo, 2x10 5 of colorectal cancer cell line (CT26) were subcutaneously transplanted into 8-week-old BALB/c mice to construct an allograft mouse tumor model. Animal breeding and experiments were all conducted in SPF facilities. On day 11 (D11) after transplantation of the colorectal cancer cell line, 1 mg/kg, 5 mg/kg, 10 mg/kg or 25 mg/kg of anti-CD300c monoclonal antibody were administered to mice with tumor sizes of 50 to 100 mm 3 , respectively. kg, and as a control group, an equal amount of phosphate buffered saline (PBS) was injected.
  • PBS phosphate buffered saline
  • mice were injected with each dose by intraperitoneal injection twice a week, a total of four times (D11, D14, D18, and D21) for two weeks. Tumor volume was measured for 25 days. The results are shown in FIG. 46 .
  • the anti-CD300c monoclonal antibody, CL7 was found to retard CT26 colorectal cancer growth in a dose-dependent manner.
  • Example 2 Changes in expression of immune cell-related markers and tumor microenvironment-related markers according to administration of anti-CD300c monoclonal antibody
  • Example 7 In order to confirm the expression changes of immune cells and tumor microenvironment-related markers when the anti-CD300c monoclonal antibody (CL7) prepared in Example 1 was administered to a solid cancer model, 2x10 5 colon cancer cell lines (CT26) were 8-week-old BALB /c mice were transplanted by subcutaneous injection to construct an allograft mouse tumor model. Animal breeding and experiments were all conducted in SPF facilities. Twelve days after transplantation of the colorectal cancer cell line, anti-CD300c monoclonal antibodies were administered to mice having a tumor size of 50 to 100 mm 3 , respectively, and an equal amount of phosphate buffered saline (PBS) was injected as a control.
  • PBS phosphate buffered saline
  • mice were injected at a dose of 25 mg/kg by intraperitoneal injection twice a week for a total of 4 times for 2 weeks.
  • mice were euthanized and tumor tissues were prepared.
  • TME tumor microenvironment
  • Th1 response markers Th2 response markers were detected through nanostring immunoprofiling. Confirmed.
  • the nanostring immunoprofiling results are shown in FIG. 47 . From this, it was confirmed that administration of the anti-CD300c monoclonal antibody extensively reprograms the tumor immune microenvironment.
  • Example 2.1 Based on the nanostring immunoprofiling results obtained in Example 2.1, when the anti-CD300c monoclonal antibody was administered to the allograft mouse tumor model, it was confirmed which immune checkpoint marker expression showed a significant difference compared to the control group.
  • Example 3 Combined administration of anti-CD300c monoclonal antibody (CL7) and immunocancer agent
  • the anti-CD300c monoclonal antibody (CL7) prepared in Example 1 was used with other immuno-anticancer agents, such as the anti-PD-L1 antibodies Imfinzi® and Opdivo®, the anti-PD-1 antibody The results were observed in combination with Keytruda, an anti-CD47 antibody ( ⁇ CD47), and an anti-CTLA-4 antibody.
  • the sources of each of the immune anti-cancer drugs are as follows: Imfinzi (AstraZeneca); Opdivo, anti-CTLA-4 antibody (Bristol Myers Squibb Company), Keytruda (Merck Sharp & Dohme), and anti-CD47 antibody (Abcam).
  • the anti-CD300c monoclonal antibody CL7 prepared in Example 1 was used in combination with immunocancer agents such as the anti-PD-L1 antibody Imfinzi, the anti-PD-1 antibody Keytruda, and the anti-CD47 antibody ( ⁇ CD47) in mononuclear cells.
  • immunocancer agents such as the anti-PD-L1 antibody Imfinzi, the anti-PD-1 antibody Keytruda, and the anti-CD47 antibody ( ⁇ CD47) in mononuclear cells.
  • the cell morphology was observed under a microscope.
  • the morphology of THP-1 cells changed from suspension cells to M1 macrophages when treated in combination with anti-CD300c monoclonal antibody. It was confirmed that the cells were changed into circular adherent cells. Through the above results, it was confirmed that the differentiation of mononuclear cells into M1 macrophages was further promoted by the combined treatment of the anti-CD300c monoclonal antibody and the immunocancer agent.
  • Anti-CD300c monoclonal antibody CL7, anti-PD-L1 antibody Imfinzi, anti-PD-1 antibody Opdivo, anti-PD-1 antibody Keytruda, anti-CD47 antibody, anti-CTLA-4 antibody
  • 1.5x10 4 cells/well of THP-1 were dispensed in a 96-well plate and immunized with an anti-CD300c monoclonal antibody.
  • Anticancer drugs were treated alone or in combination at 10 ⁇ g/mL each.
  • TNF- ⁇ Tumor necrosis factor- ⁇
  • IL-1b Tumor necrosis factor-1b
  • IL-8 differentiation markers of M1 macrophages
  • the amount of TNF- ⁇ a marker of M1 macrophages, was increased when treated in combination with Imfinzi, Opdivo, Keytruda, and ⁇ CD47 compared to when the anti-CD300c monoclonal antibody was treated alone. found to increase further. From this, it was confirmed that mononuclear cells were more differentiated into M1 macrophages when treated in combination with anti-PD-1 antibody and/or anti-CD47 antibody than when treated with anti-CD300c monoclonal antibody alone.
  • anti-CD300c monoclonal antibody CL7 When anti-CD300c monoclonal antibody CL7 is treated in combination with anti-cancer agents such as anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, and anti-CD47 antibody, mononuclear cells transform into M1 macrophages.
  • anti-cancer agents such as anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, and anti-CD47 antibody
  • MAPK mitogen-activated protein kinase
  • IkB mitogen-activated protein kinase
  • NF-kB which are representative signals of M1 macrophage differentiation
  • 53, 54, and 55 show the results of confirming signal transmission of MAPK, NF-Kb, and IkB, respectively.
  • phosphorylation was increased when treated in combination with immunocancer agents such as anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, and anti-CD47 antibody. It was confirmed that the amounts of MAPK, IkB, and NF-kB increased. From this, when treated in combination with immunocancer agents such as anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, and anti-CD47 antibody, rather than when treated with anti-CD300c monoclonal antibody alone, It was confirmed that signaling in cells differentiating into M1 macrophages was increased.
  • Cleaved caspase-9, caspase-3, caspase-2, and caspase-8 were identified as apoptotic signal markers, and cyclin D1, CDK2, p27kip1, CDK6, and cyclin D3 as cell cycle signal markers. , P21 Waf1, Cip1, etc. were identified.
  • the apoptosis signal increased when the anti-CD300c monoclonal antibody was treated in combination with anti-PD-1 Imfinzi than when the monoclonal antibody was treated alone, and the anti-CD300c monoclonal antibody was treated with anti-PD1,
  • immunocancer drugs such as anti-PD-L1, anti-CTLA-4, and anti-CD47
  • the amounts of cleaved-caspase9 and p21 increased, and cyclin D1 decreased.
  • A549 human lung cancer cell line
  • MDA-MB-231 human breast cancer cell line
  • 2x10 4 cells A549) or 3x10 4 cells (MDA-MB-231) were dispensed in a 96-well plate in the absence of fetal bovine serum (FBS), and in the condition of 0.1% fetal bovine serum.
  • 6x10 3 cells A549) or 1x10 4 cells (MDA-MB-231) were seeded.
  • an anti-CD300c monoclonal antibody in vivo, 2x10 5 of colorectal cancer cell line (CT26) were subcutaneously transplanted into 8-week-old BALB/c mice to construct an allograft mouse tumor model. Animal breeding and experiments were all conducted in SPF facilities. On day 12 (D12) after transplantation of the colorectal cancer cell line, anti-CD300c monoclonal antibody and anti-PD-1 antibody each purchased from BioXcell were administered alone or in combination to mice having a tumor size of 50 to 100 mm 3 , As a control group, an equal amount of phosphate buffered saline (PBS) was injected. A schematic experimental method is shown in FIG. 59 .
  • PBS phosphate buffered saline
  • mice were injected intraperitoneally with each antibody alone or in combination twice a week, a total of 4 times (D12, D15, D19 and D22) for 2 weeks (CL7: 10 mg/kg; anti-PD- 1 antibody: 10 mg/kg). Tumor volume was measured for 25 days. The results are shown in FIG. 60 .
  • mice on day 25 were euthanized in the same manner as in Experimental Example 9.1, and treated with 1% PFA. (para-formaldehyde) was intravascularly injected into the mouse to perfuse it, and cancer tissues were obtained.
  • the obtained cancer tissue was fixed using 1% PFA and dehydrated using 10%, 20%, and 30% sucrose solutions sequentially.
  • the dehydrated cancer tissue was frozen in an optimal cutting temperature compound (OCT compound), and then the cancer tissue was sliced into 50 ⁇ m thick sections using a cryotome.
  • OCT compound optimal cutting temperature compound
  • Tissues were incubated in a mixed solution of 20 mg/ml collagenase D and 2 mg/ml DNaseI at 37°C for 1 hour, filtered through a 70 um cell strainer, lysed red blood cells, and then the cells were made into single cells. Filtered again through a nylon mesh to filter. In order to suppress non-specific reactions in the single cell suspension, it was reacted with CD16/32 (obtainer: Invitrogen) antibody for 1 hour, cell viability was confirmed, and tumor infiltrating lymphocyte markers, CD8+ T cells and CD31+ cancer vascular cells were stained.
  • CD16/32 obtainer: Invitrogen
  • the combination of anti-CD300c monoclonal antibody with anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, or anti-CD47 antibody It was confirmed that CD8+ T cells were increased in the experimental group administered with anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, anti-CTLA-4 antibody, and When treated in combination with immunocancer drugs such as CD47 antibody, it was confirmed that the tumor-infiltrating lymphocytes were increased in the tumor microenvironment to exhibit anticancer effects.
  • cancer tissue sections prepared in the same manner as in Experimental Example 9.2 were stained with antibodies to iNOS, the M1 macrophage marker, and CD206, the M2 macrophage marker. and confirmed by FACS.
  • M1 macrophages were partially increased compared to the control group, but in the experimental group treated with anti-CD300c monoclonal antibody, M1 macrophages were significantly increased, It was confirmed that M2 macrophages were hardly observed. In addition, it was confirmed that M1 macrophages were further increased in the experimental group in which the anti-CD300c monoclonal antibody and the anti-PD-1 antibody were co-administered.
  • CD8+ T cells were partially increased compared to the control group, but in the experimental group treated with anti-CD300c monoclonal antibody, CD8+ T cells were significantly increased. did In addition, in the case of the experimental group administered with the anti-CD300c monoclonal antibody and the anti-PD-1 antibody in combination, it was confirmed that CD8+ T cells increased more than the anti-PD-1 alone treatment group. Through the above results, it was confirmed that the anti-CD300c monoclonal antibody more effectively increased the number of CD8+ T cells when used in combination with an existing anti-cancer immune agent.
  • the T cell activation markers Gzma, Icos, CD69, and Ifng were increased, and the NKT cell activation markers Cd11, CD38, and cxcr6 were also significantly reduced. confirmed to increase. From this, it was confirmed that T cells and NKT cells were more activated when the anti-CD300c was treated in combination with an anti-cancer agent than when treated alone.
  • T cells were extracted from the spleen tissue prepared in the same manner as in Experimental Example 9.2 in order to confirm the change in the pattern of Treg cells that cause an immune-suppressive response when administered in combination with an immuno-cancer agent of CD3+ T cells expressing FOXP3 Treg cells. The number of was confirmed by FACS staining.
  • anti-CD300c monoclonal antibody More specifically, anti-CD300c monoclonal antibody, anti-PD-1 antibody, anti-CD300c monoclonal antibody + anti-PD-1 antibody (combo), and anti-CD300c monoclonal antibody twice a week for a total of 4 times for 2 weeks.
  • Antibody + anti-PD-1 antibody + anti-CTLA-4 antibody (Triple) was injected into each mouse, and as a control, phosphate buffered saline (PBS) was injected in the same amount as the anti-CD300c monoclonal antibody. The size of the cancer was measured for 20 days.
  • Tumor tissues were collected from 6 mice per group. After removing the tumor tissue, it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh. Thereafter, the single cell suspension was blocked with CD16/32 (available from Invitrogen) antibody, and the cells were stained with a stain solution for confirming cell viability and CD8+ antibody and CD4+ antibody. Data were then read on a CytoFLEX flow cytometer and analyzed with FlowJo software.
  • group D represents the combined use of CL7 and anti-PD-1 antibody
  • group T represents the combined use of CL7, anti-PD-1 antibody and anti-CTLA-4 antibody.
  • mice tumor model was prepared as described above and each test substance was injected at the same concentration.
  • the experimental groups were (i) CL7 administration group, (ii) anti-PD-1 administration group, (iii) CL7 and anti-PD-1 administration group (D group), and (iv) CL7, anti-PD-1 antibody and anti-CTLA4 administration group.
  • antibody administration group (T group) was (i) CL7 administration group, (ii) anti-PD-1 administration group, (iii) CL7 and anti-PD-1 administration group (D group), and (iv) CL7, anti-PD-1 antibody and anti-CTLA4 administration group.
  • Tumor tissues were collected from 6 mice per group. After removing the tumor tissue, it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh. Then, the single cell suspension was blocked with CD16/32 (available from Invitrogen) antibody, and the cells were stained with staining solution for confirming cell viability, antibodies to Treg marker proteins CD25 and Foxp3, CD3+ antibody and CD8+ antibody. . Data were then read on a CytoFLEX flow cytometer and analyzed with FlowJo software.
  • group D represents the combined use of CL7 and anti-PD-1 antibody
  • group T represents the combined use of CL7, anti-PD-1 antibody and anti-CTLA-4 antibody.
  • Tumor tissues were collected from 6 mice per group. After removing the tumor tissue, it was incubated for 1 hour at 37°C in a mixed solution of collagenase D (20 mg/ml) and DNase I (2 mg/ml). Thereafter, it was filtered with a 70 ⁇ m cell strainer, red blood cells were lysed, and filtered again with a nylon mesh. Thereafter, the single cell suspension was blocked with CD16/32 (available from Invitrogen) antibody, and the cells were stained with a dye for confirming cell viability and antibodies against F4/80 and iNOS. Data were then read on a CytoFLEX flow cytometer and analyzed with FlowJo software.
  • group D represents the combined use of CL7 and anti-PD-1 antibody
  • group T represents the combined use of CL7, anti-PD-1 antibody and anti-CTLA-4 antibody.
  • phosphate buffered saline PBS
  • mice were injected intraperitoneally with each antibody alone or in combination (CL7: 25 mg/kg; anti-PD-1 antibody: 10 mg/kg; anti-CTLA-1 antibody). 4 antibody: 4 mg/kg), and tumor volume was measured.
  • a colorectal cancer cell line (CT26) 2x10 5 was subcutaneously transplanted into 8-week-old BALB/c mice by subcutaneous injection After producing an allograft mouse tumor model, the experiment was conducted as described in Experimental Example 11 to obtain a mouse in which complete remission occurred.
  • the colon cancer cell line (CT26) 2x10 5 was re-transplanted into the mouse thus obtained (Re-challenge), and observed for 30 days.
  • mice in which complete remission occurred showed increased effector memory upon combined administration of CL7 and anti-PD-1 antibody (Combi) or triple combined administration of anti-CTLA-4 antibody (Triple) It shows that even if additional cancer cells are formed because they have immune memory through T cells, their growth is suppressed.
  • Example 4 Combined administration of anti-CD300c monoclonal antibodies (CL10, SL18) and immunocancer drugs
  • Anti-CD300c monoclonal antibodies (CL10, SL18) prepared in Example 1 were used in combination with other immunotherapeutic agents, such as anti-PD-L1 antibody Imfinzi and anti-PD-1 antibody Keytruda, and the results were observed did
  • the sources of each of the immune anti-cancer drugs are as follows: Imfinzi (AstraZeneca) and Keytruda (Merck Sharp & Dohme).
  • the anti-CD300c monoclonal antibody CL10 or SL18 can promote the differentiation ability from macrophages to M1 macrophages, after dispensing 1x10 4 cells/well of THP-1 cells in a 96-well plate, 10 ⁇ g/mL of CL10 or SL18 were treated.
  • the anti-CD300c monoclonal antibody was treated with 10 ⁇ g/mL of Imfinzi and/or Keytruda.
  • TNF- ⁇ increased when THP-1 cells were treated in combination with Imfinzi or Keytruda than when CL10 or SL18 was treated alone.
  • the expression level of TNF- ⁇ was the highest when CL10 or SL18 was co-administered with both Imfinzi and Keytruda antibodies at once.
  • the cell growth inhibitory effect was compared using A549 (human lung cancer cell line) cells. Specifically, 2x10 4 cells were seeded in a 96-well plate in the absence of FBS, and 6x10 3 cells were seeded in the 0.1% FBS condition. Then, CL10 or SL18 was treated alone or in combination with Imfinzi and/or Keytruda at a concentration of 10 ⁇ g/mL, respectively, and cultured for 5 days.
  • the cancer cell proliferation inhibitory effect was more increased when A549 cells were treated in combination with Imfinzi or Keytruda than when CL10 or SL18 was treated alone in 0.1% FBS conditions, When CL10 or SL18 was administered in combination with both Imfinzi and Keytruda antibodies at once, it was confirmed that the effect of inhibiting cancer cell proliferation was the best.
  • Example 15 the remaining anti-CD300c monoclonal antibodies prepared in Example 1, including CL10 and SL18, exhibit efficacy through the same mechanism of action as CL7, and, like CL7, Efficacy was increased by co-administration with immuno-anticancer agents.
  • the results obtained through the experiment were analyzed for comparison between experimental groups using a one-way ANOVA followed by a Bonferroni post hoc test, and the difference between the groups was significant when the p value was 0.05 or less.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 항-CD300c 단클론 항체 및 이의 암 예방 또는 치료용 용도에 관한 것이다. 본 발명에 따른 항-CD300c 단클론 항체는 CD300c 항원에 높은 특이성을 가지고 결합할 뿐만 아니라, 항암 면역 작용을 촉진시킴으로 다양한 암의 성장, 발달, 전이 등에 효과적으로 사용될 수 있을 것으로 기대된다.

Description

항-CD300C 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커
본 발명은 항-CD300c 항체 또는 그의 항원 결합 단편, 및 이를 포함하는 암 예방 또는 치료용 바이오마커, 조성물, 방법 및 키트에 관한 것이다.
암은 현대인의 사망원인에서 가장 큰 비중을 차지하고 있는 질환 중 하나로서 여러가지 원인에 의하여 발생된 유전자의 돌연변이로 인하여 정상세포가 변화하여 발생된 질병으로서, 정상적인 세포의 분화, 증식, 성장 형태 등을 따르지 않는 종양 중 악성인 것을 지칭한다. 암이란 "제어되지 않은 세포성장"을 특징으로 하며, 이러한 비정상적인 세포 성장에 의해 종양(tumor)이라고 불리는 세포 덩어리가 형성되어 주위의 조직으로 침투되고, 심한 경우에는 신체의 다른 기관으로 전이되기도 한다. 암은 수술, 방사선 및 약물 요법 등으로 치료를 하더라도 많은 경우에 근본적인 치유가 되지 못하고 환자에게 고통을 주며 궁극적으로는 죽음에 이르게 하는 난치성 만성질환이다. 특히, 최근에는 노년 인구의 증가, 환경 악화 등으로 인하여 세계 암 발생률은 매년 5% 이상 증가되고 있는 추세이며, WHO 보고서에 따르면 향후 25년 내 암 발생 인구는 3천 만명으로 증가되고, 이중 2천 만명의 인구는 암으로 사망할 것으로 추정되고 있다.
암의 약물 치료, 즉, 항암제는 일반적으로 세포 독성을 가지고 있는 화합물로서 암 세포를 공격해 사멸시키는 방식으로 암을 치료하는데, 암 세포뿐만 아니라 정상세포에도 손상을 주기 때문에 높은 부작용을 나타낸다. 따라서 부작용을 감소시키기 위하여 표적 항암제들이 개발되었다. 그러나 이러한 표적 항암제들의 경우에는 부작용은 낮출 수 있었으나, 높은 확률로 내성이 생긴다는 한계점을 나타내었다. 따라서, 최근에는 체내의 면역체계를 이용하여 독성 및 내성으로 인한 문제점을 감소시키는 면역 항암제에 대한 관심이 급증하고 있는 추세이다. 이러한 면역 항암제의 일례로서 암 세포 표면의 PD-L1에 특이적으로 결합하여 T 세포의 PD-1과의 결합을 억제하여 T 세포를 활성화시키고, 암 세포를 공격하도록 만드는 면역관문 억제제가 개발된 바 있다. 그러나 이러한 면역관문 억제제의 경우에도 효과를 나타내는 암의 종류가 다양하지 않기 때문에, 다양한 암에서 동일하게 치료 효과를 나타내는 새로운 항염 면역 치료제의 개발이 절실히 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개 특허 10-2018-0099557
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.
본 발명은 암 예방 또는 치료를 위한 항-CD300c 항체를 제공하는 것을 일 목적으로 한다.
본 발명은 항-CD300c 항체를 이용한 항암 요법을 제공하는 것을 다른 목적으로 한다.
본 발명은 암 예방 또는 치료를 위한 항-CD300c 항체를 이용한 요법을 위한 약학 조성물을 제공하는 것을 또 다른 목적으로 한다.
본 발명은 항-CD300c 항체를 이용한 암 예방 또는 치료 방법을 제공하는 것을 또 다른 목적으로 한다.
본 발명은 암 예방 또는 치료를 위한 항-CD300c 항체를 이용한 요법을 위한 키트를 제공하는 것을 또 다른 목적으로 한다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않는다. 본 발명의 목적은 이하의 설명으로 보다 분명해질 것이며, 특허청구범위에 기재된 수단 및 그 조합으로 실현될 것이다.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.
본 발명의 일 태양에 따르면, CD300c에 특이적으로 결합하는 항체(예를 들어, 단클론 항체) 또는 그의 항원 결합 단편이 제공된다.
본 발명의 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편 및 그의 암 예방 또는 치료용 용도가 제공된다.
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편의 암 예방 또는 치료용 약제 제조를 위한 용도가 제공된다.
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편을 유효 성분으로 포함하는 항암 요법이 제공된다.
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편을 유효 성분으로 포함하는 암 예방 또는 치료를 위한 약학 조성물이 제공된다.
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편을 암의 예방 또는 치료가 필요한 대상체에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법이 제공된다.
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편을 유효량 포함하는 조성물, 및 상기 항체 또는 그의 항원 결합 단편의 사용을 지시하는 지시서를 포함하는, 암 예방 또는 치료용 키트가 제공된다.
본 발명에 따른 항-CD300c 단클론 항체는 다양한 암의 표면에서 발현되는 CD300c에 특이적으로 높은 결합력으로 결합함으로써, T 세포를 활성화시키는 동시에 M1 마크로파지로의 분화를 촉진시키기 때문에, 암 세포의 증식을 효과적으로 억제할 수 있고, 다양한 암의 면역 치료제로서 효과적으로 사용될 수 있다. 또한, 본 발명에 따른 항-CD300c 단클론 항체는 기존 면역 항암제와의 병용 투여를 통하여 그 치료 효과를 더욱 증가시킬 수 있을 뿐만 아니라, 종간 교차 반응성(crossreactivity)을 가지고 있으므로, 다양한 포유류에 폭넓게 적용할 수 있다. 또한, 세포사멸에 저항하는 능력을 보이는 저항성 암 세포에 본 발명의 항-CD300c 단클론 항체를 처리할 경우, 암 세포의 저항성을 현저하게 약화시켜 암 재발 방지에도 우수한 효능을 보일 것으로 기대된다. 또한, 일반적으로 암 세포는 전염증성 사이토카인인 IL-2의 생성을 저해함으로써 면역계를 회피하는데, 항-CD300c 단클론 항체는 이러한 암 세포에 의해 차단된 IL-2의 생산량을 회복시킴으로써 활성화된 면역계를 통하여 암 세포 사멸을 유도시키는 것으로 확인되어, 보다 근본적인 면역 항암제로 활용될 수 있을 것으로 기대된다.
도 1a 내지 도 1y는 본 발명에 따른 25종의 항-CD300c 단클론 항체 각각의 중쇄 가변 영역 및 경쇄 가변 영역 서열(핵산 및 아미노산 서열)을 나타낸다. 각각의 도면에서, CDR 부위(CDR1, CDR2 및 CDR3)는 순서대로 표시하였다.
도 2는 본 발명의 항-CD300c 단클론 항체 및/또는 CD300c siRNA가 항암 효과를 나타내는 기작을 간략하게 나타낸 개략도이다.
도 3은 본 발명의 항-CD300c 단클론 항체가 각각 단핵구, T 세포, 암 세포에 작용하는 기작을 간략하게 나타낸 개략도이다.
도 4는 실시예 1.4에 따른 항-CD300c 단클론 항체의 비환원 조건에서의 SDS-PAGE 결과를 나타낸다.
도 5는 실시예 1.4에 따른 항-CD300c 단클론 항체의 환원 조건에서의 SDS-PAGE 결과를 나타낸다.
도 6은 실험예 1.1에 따른 정상세포, 면역세포, 및 암세포주에서 CD300c의 발현을 비교한 결과를 나타낸다.
도 7a 및 도 7b는 실험예 1.2에 따른 암 조직(도 7a) 및 면역 세포(도 7b)에서 CD300c가 발현됨을 확인한 결과를 나타낸다.
도 8a 및 도 8b는 실험예 1.3에 따른 편도 조직(도 8a) 및 암 조직(도 8b)에서 CD300c가 발현됨을 확인한 결과를 나타낸다.
도 9는 실험예 2.1에 따른 항-CD300c 단클론 항체의 CD300c 항원에 대한 결합력을 확인한 결과를 나타낸다.
도 10은 실험예 2.2의 FACS 결합의 결과에 따른 S자형 곡선을 나타낸다.
도 11은 실험예 2.3에 따른 결합 ELISA의 결과를 나타낸다.
도 12는 실험예 2.4에 따른 표면 플라즈몬 공명의 결과를 나타낸다.
도 13은 실험예 2.5에 따른 결합 ELISA의 결과를 나타낸다.
도 14는 실험예 2.6에 따른 결합 ELISA의 결과를 나타낸다.
도 15는 실험예 2.7와 관련하여 CD300c 발현량에 따른 다양한 암 환자에서의 전체 생존 기간 비교 결과를 나타낸다.
도 16은 실험예 3.1에 따른 항-CD300c 단클론 항체의 T 세포 활성화를 통한 항암 효과를 확인한 결과를 나타낸다.
도 17 및 도 18은 실험예 3.2에 따른 항-CD300c 단클론 항체가 M1 마크로파지로의 분화에 미치는 영향을 확인한 결과를 나타낸다.
도 19 및 도 20은 실험예 3.3에 따른 M1 마크로파지로의 분화에 대한 항-CD300c 단클론 항체의 농도 의존적 효과를 확인한 결과를 나타낸다.
도 21은 실험예 3.4에 따른 항-CD300c 단클론 항체가 M1 마크로파지로의 분화에 미치는 영향을 확인한 결과를 나타낸다.
도 22는 실험예 3.5에 따른 항-CD300c 단클론 항체가 인간 단핵구 세포의 M1 마크로파지로의 분화를 촉진시키는지 재확인한 결과를 나타낸다.
도 23 내지 도 25는 실험예 3.6에 따른 항-CD300c 단클론 항체가 M2 마크로파지를 M1 마크로파지로 재분화시킬 수 있는지 확인한 결과를 나타낸다.
도 26은 실험예 3.7에 따른 항-CD300c 단클론 항체의 M1 마크로파지로의 분화능 및 재분화능을 확인한 결과를 나타낸다.
도 27 및 도 28은 실험예 4.1에 따른 CD300c를 표적으로 하는 단클론 항체가 암 세포의 성장에 미치는 영향을 확인한 결과를 나타낸다.
도 29는 실험예 4.2에 따른 항-CD300c 단클론 항체의 농도에 따른 암 세포 성장 억제 효과를 확인한 결과를 나타낸다.
도 30은 실험예 4.3에 따른 항-CD300c 단클론 항체가 마우스 마크로파지에서 M1 마크로파지로의 분화능을 촉진시킬 수 있는지 확인한 결과를 나타낸다.
도 31은 실험예 4.4에 따른 항-CD300c 단클론 항체가 항암 효과를 나타내는지 확인한 결과를 나타낸다.
도 32 내지 도 35는 실험예 5.1에 따른 항-CD300c 단클론 항체와 기존 면역 항암제의 M1 마크로파지 분화능을 비교한 결과를 나타낸다.
도 36은 실험예 5.2에 따른 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 M0 마크로파지의 M1 마크로파지로의 분화능을 비교한 결과를 나타낸다.
도 37은 실험예 5.3에 따른 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 M1 마크로파지로의 분화능을 비교한 결과를 나타낸다.
도 38 및 도 39는 실험예 5.4에 따른 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 암 세포 성장 억제 효과를 비교한 결과를 나타낸다.
도 40은 실험예 6.1에 따른 항-CD300c 단클론 항체가 종양 관련 마크로파지에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 41은 실험예 6.2에 따른 항-CD300c 단클론 항체가 CD8+ T 세포에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 42는 실험예 6.3에 따른 항-CD300c 단클론 항체가 종양 특이적인 방식으로 CD8+ T 세포 수를 증가시키는지 확인한 결과를 나타낸다.
도 43은 실험예 6.4에 따른 항-CD300c 단클론 항체가 CD8+ T 세포의 활성 증가에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 44는 실험예 6.5에 따른 항-CD300c 단클론 항체가 조절 T 세포 대비 세포독성 T 세포의 증가에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 45는 실험예 6.6에 따른 항-CD300c 단클론 항체가 세포독성 T 세포, 조절 T 세포 및 종양 관련 마크로파지에 대해 미치는 영향을 확인한 결과를 나타낸다.
도 46은 실험예 6.7에 따른 항-CD300c 단클론 항체의 항암 효과를 생체내 조건에서 확인한 결과를 나타낸다.
도 47은 실시예 2.1에 따라 고형암 모델에 CL7를 처리한 경우 얻어진 나노스트링 면역 프로파일링(Nanostring Immune profiling) 결과를 나타낸다.
도 48은 실시예 2.1에 따라 고형암 모델에 CL7를 처리한 경우 얻어진 다양한 면역 세포 및 종양 미세 환경 관련 마커의 발현 변화를 나타낸다. *표시는 CL7를 처리하기 전과 비교하여 발현 수준이 통계적으로 유의하게 변화된 마커를 의미한다.
도 49는 실시예 2.2에 따른 실시예 2.1에서 얻은 나노스트링 면역 프로파일링 결과에 기초하여 확인된 면역관문 마커의 발현 변화를 나타낸다. *표시는 CL7를 처리하기 전과 비교하여 발현 수준이 통계적으로 유의하게 변화된 마커를 의미한다.
도 50은 실험예 7.1에 따른 항-CD300c 단클론 항체와 면역 항암제의 단독 및 병용 처리에 의한 단핵구 세포의 M1 마크로파지로의 분화 결과(M1 마크로파지의 증가 여부)를 나타낸다.
도 51은 실험예 7.2에 따른 항-CD300c 단클론 항체의 처리에 의한 단핵구 세포의 M1 마크로파지로의 분화 결과(M1 마크로파지 마커의 증가 여부를 나타냄)를 나타낸다.
도 52는 실험예 7.2에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 처리에 의한 단핵구 세포의 M1 마크로파지로의 분화 결과(M1 마크로파지 마커의 증가 여부를 나타냄)를 나타낸다.
도 53 내지 도 55는 실험예 7.4에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 처리 시 M1 마크로파지 분화의 신호인 MAPK(도 53), NF-kB(도 54), 및 IkB(도 55)의 신호 전달을 확인한 결과를 나타낸다.
도 56은 실험예 8.1에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 처리 시 세포자멸 신호의 변화를 확인한 결과를 나타낸다.
도 57 및 도 58은 실험예 8.2에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 처리 시 암 세포 성장 억제 효과를 확인한 결과를 나타낸다.
도 59는 실험예 9.1에서 사용된 실험 방법을 개략적으로 나타낸다.
도 60은 실험예 9.1에 따른 항-PD-1 항체 및 항-CD300c 단클론 항체를 단독 또는 병용으로 대장암 세포주 이식 마우스에 투여한 경우 관찰되는 생체내 암 성장 억제 효과를 나타낸다.
도 61은 실험예 9.3에 따른 항-CD300c 단클론 항체가 마우스 모델에서 암 조직 내의 M1 마크로파지를 증가시키는지 확인한 결과를 나타낸다.
도 62는 실험예 9.4에 따른 항-CD300c 단클론 항체가 마우스 종양 모델에서 CD8+ T 세포 면역을 촉진하는지 확인한 결과를 나타낸다.
도 63은 실험예 10.1에서 사용된 실험 방법을 개략적으로 나타낸다.
도 64는 실험예 10.1에 따른 항-CD300c 단클론 항체가 CT26 대장암 마우스 모델 외에 추가로 다른 암종에서도 효과가 있는지 확인한 결과를 나타낸다.
도 65는 실험예 10.2에 따른 항-CD300c 단클론 항체와 면역항암제의 단독 또는 병용 투여(이중 및 삼중 병용 투여를 포함함)가 B16F10 흑색종 모델에서 CD8+ T 세포에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 66은 실험예 10.3에 따른 항-CD300c 단클론 항체와 면역항암제의 단독 또는 병용 투여(이중 및 삼중 병용 투여를 포함함)가 B16F10 흑색종 모델에서 조절 T 세포에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 67은 실험예 10.4에 따른 항-CD300c 단클론 항체와 면역항암제의 단독 또는 병용 투여(이중 및 삼중 병용 투여를 포함함)가 B16F10 흑색종 모델에서 마크로파지에 미치는 영향을 생체내 조건에서 확인한 결과를 나타낸다.
도 68a 및 도 68b는 실험예 11에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 투여에 의한 항암 효과를 생체내 조건에서 확인한 결과를 나타낸다. 도 68a는 종양 부피 감소율을 나타내고, 도 68b는 완전 관해율을 나타낸다.
도 69는 실험예 12에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 투여에 의한 장기 생존율 향상 효과를 확인한 결과를 나타낸다.
도 70은 실험예 13에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 투여에 의한 암 재발 방지 효과를 생체내 조건에서 확인한 결과를 나타낸다.
도 71은 실험예 14에 따른 항-CD300c 단클론 항체와 면역 항암제의 병용 투여에 의한 면역 기억 효과를 확인한 결과를 나타낸다.
도 72a 및 도 72b는 실험예 15에 따른 항-CD300c 단클론 항체와 면역항암제의 단독 또는 병용 투여(이중 및 삼중 병용 투여를 포함함)가 단핵구에서 M1 마크로파지로의 분화를 촉진시킬 수 있는지 확인한 결과를 나타낸다.
도 73a 및 도 73b는 실험예 16에 따른 항-CD300c 단클론 항체가 면역 항암제와의 병용 투여에 의해 암 세포 성장을 억제할 수 있는지 확인한 결과를 나타낸다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 구현예에 관하여 특정 도면을 참조하여 기술될 것이지만, 본 발명은 이에 한정되지 않고, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 구현예에서 다른 구현예로 변경되거나 구현예들이 조합되어 구현될 수 있다. 본 명세서에 사용된 기술 및 학술 용어들은, 달리 정의되지 않는 한, 본 발명이 속하는 분야에서 일반적으로 사용되는 것과 같은 의미를 갖는다. 본 명세서를 해석할 목적으로 하기 정의들이 적용될 것이고, 단수로 사용된 용어는 적절한 경우에는 복수형을 포함할 것이며 그 반대도 마찬가지이다.
정의
본 명세서에서 사용되는 용어 "약"은 당해 기술 분야에서 통상의 기술자에게 알려진 각각의 값에 대한 통상적인 오차 범위를 지칭한다.
용어 "항체"는 광의적으로 사용되며, IgG, IgM, IgA, IgD 및 IgE와 같은 임의의 아이소타입의 모노클로날 항체(전장(full length) 항체 포함), 폴리클로날 항체, 다중특이적 항체(예를 들어, 이중특이적 항체), 항체 융합체(예를 들어, 항체와 (폴리)펩티드의 융합체 또는 항체와 화합물의 융합체) 및 항체 단편(항원 결합 단편 포함)을 포함한다. 본 명세서에서, 접두사 "항-"은 항원과 관련된 경우, 해당 항체가 해당 항원과 반응성임을 의미한다. 특정 항원과 반응성인 항체는 파지 또는 유사한 벡터에서 재조합 항체 라이브러리의 선별과 같은 합성 및/또는 재조합 방법에 의해, 또는 항원 또는 항원-코딩 핵산을 사용한 동물의 면역화에 의해 생성될 수 있으나, 이에 제한되지 않는다. 대표적인 IgG 항체는 이황화 결합에 의해 결합되는 2개의 동일한 중쇄 및 2개의 동일한 경쇄로 구성된다. 각각의 중쇄 및 경쇄는 불변 영역 및 가변 영역을 포함한다. 중쇄 가변 영역(HVR) 및 경쇄 가변 영역(LVR)은 각각 "상보성 결정 영역"("CDR") 또는 "초가변 영역"으로 칭해지는 3개의 절편을 포함하며, 이는 주로 항원 에피토프와의 결합에 관여한다. 이들은 N-말단으로부터 순차적으로 숫자가 매겨져서 통상 CDR1, CDR2 및 CDR3로 지칭된다. CDR 외부의 가변 영역 중에서 보다 잘 보존된 영역은 "골격 영역"("FR")으로 지칭된다. 본 명세서에서 항체는 예를 들어 동물 항체, 키메라 항체, 인간화 항체 또는 인간 항체일 수 있다.
용어 "인간화"(리쉐이핑(reshaping) 또는 CDR 그래프팅(grafting)이라고도 지칭됨)는 이종 공급원(통상적으로 설치류) 유래의 단클론 항체의 면역원성을 저하시키고, 친화도 또는 이펙터 기능(ADCC, 보체 활성화, Clq 결합)을 개선시키기 위한 확립된 기법을 포함한다.
용어 "단클론 항체"는 "모노클로날 항체"와 상호교환적으로 사용되고, 실질적으로 균일한 항체 집단으로부터 얻어진 항체를 지칭하며, 즉, 집단을 이루는 개별 항체들은 소량으로 존재할 수 있는 가능한 천연 돌연변이 및/또는 번역 후 변형(예컨대 이성질화, 아미드화)을 제외하고는 동일하다. 단클론 항체는 고도로 특이적이며, 하나의 항원성 부위에 대해 유도된다. 단클론 항체는 실질적으로 균일한 집단으로부터 수득된 것으로서 항체의 특성을 나타내고 임의의 특정한 방법에 의해 항체의 생산을 요구하는 것으로서 해석되지 않는다. 예를 들어, 본 발명에 따라 사용될 단클론성 항체는 하이브리도마 방법, 재조합 DNA 방법, 파지-디스플레이 기술, 인간 이뮤노글로불린 로커스의 전부 또는 일부를 함유하는 트랜스제닉 동물을 이용하는 방법 등의 다양한 기술에 의해 제조될 수 있다.
용어 "항원 결합 단편"은 항원에 대한 특이적 결합능을 갖는 항체의 일부 또는 이를 포함하는 폴리펩타이드를 의미한다. 문맥상 "항체"가 특별히 "항원 결합 단편"을 제외하는 것으로 이해되는 경우를 제외하고는 "항체"와 "항원 결합 단편"은 상호 교환적으로 사용될 수 있고, "항체"는 "항원 결합 단편"을 포함하는 것으로 해석될 수 있다. 항원 결합 단편의 예에는 Fv, Fab, Fab', Fab'-SH, F(ab')2, 디아바디, 트리아바디, 테트라바디, 크로스-Fab 단편, 선형 항체, 단일사슬 항체 분자(예를 들어, scFv), 항체 단편과 단일 도메인 항체로 형성된 다중특이성 항체가 포함되지만 이에 한정되지는 않는다.
용어 "항암제"는 세포의 각종 대사경로에 작용하여 암 세포에 대하여 세포독성(cytotoxic) 또는 세포증식억제(cytostatic) 효과를 나타내는 기존의 암 치료에 사용되는 공지의 약제를 총칭하는 것으로, 화학 항암제, 표적 항암제, 및 면역 항암제를 포함한다.
용어 "면역 항암제"는 면역세포를 활성화시켜서 암 세포를 사멸시키는 약제를 지칭한다.
용어 "대상체"는 "환자"와 상호교환적으로 사용되고, 암의 예방 또는 치료를 필요로 하는 포유동물, 예를 들어, 영장류(예: 인간), 반려 동물(예: 개, 고양이 등), 가축 동물(예: 소, 돼지, 말, 양, 염소 등) 및 실험실 동물(예: 랫트, 마우스, 기니피그 등)일 수 있다. 본 발명의 일 구현예에서, 대상체는 인간이다.
용어 "치료"는 일반적으로 목적하는 약리학적 효과 및/또는 생리학적 효과를 수득하는 것을 의미한다. 이러한 효과는 질병 및/또는 이러한 질병으로 인한 유해 효과를 부분적으로 또는 완전히 치유하는 점에서 치료적 효과를 가진다. 바람직한 치료적 효과는 질환의 발생 또는 재발 방지, 증상의 호전, 질환의 임의의 직접 또는 간접적인 병리학적 결과의 축소, 전이의 방지, 질환 진행 속도의 감소, 질환 상태의 호전 또는 완화, 및 차도 또는 개선된 예후를 포함하지만 이에 제한되지 않는다. 바람직하게는 "치료"는 이미 나타난 질환 또는 장애의 의료적 개입을 의미할 수 있다.
용어 "예방"은 예방적 치료, 즉 질병을 치료하기 보다는 예방하기 위한 목적의 조치 또는 절차에 관한 것이다. "예방"은 질병 또는 이의 증상을 부분적으로 또는 완전히 예방한다는 관점에서 목적하는 예방적인 약리학적 효과 및/또는 생리학적 효과를 수득함을 의미한다.
용어 "투여"는 대상체에 예방적 또는 치료적 목적(예컨대, 암의 예방 또는 치료)을 달성하기 위한 물질(예컨대, 항-CD300c 항체 및 그의 항원 결합 단편 또는 다른 항암제)을 제공하는 것을 의미한다.
용어 "생물학적 시료"는 대상체로부터 얻어지는 다양한 샘플 유형을 포괄하며, 진단 또는 모니터링 분석법에 이용될 수 있다. 생물학적 시료는 혈액 및 기타 생물학적 기원의 액체 시료, 생체 검사 시료, 조직 배양물, 또는 이로부터 유래된 세포 및 이의 자손과 같은 고체 조직 시료를 포함하지만 이에 한정되지 않는다. 따라서, 생물학적 시료는 임상적 시료, 배양물 중의 세포, 세포 상층액, 세포 용해물, 혈청, 혈장, 생물학적 유체 및 조직 시료, 특히 종양 시료를 포괄한다. 용어 "생물학적 자료"는 상기 생물학적 시료를 이용하여 얻은 임의의 분석 자료를 의미한다.
용어 "발현 수준"은 해당 마커의 mRNA 및 단백질 중 하나 이상의 발현 수준을 측정함에 의해 결정될 수 있고, mRNA 또는 단백질의 발현 수준을 측정하는 방법은 당업계에 공지되어 있는 임의의 방법을 사용할 수 있다. 예컨대, mRNA의 발현 수준을 측정하는 제제는 해당 마커 유전자에 특이적으로 결합하는 프라이머 쌍 또는 프로브일 수 있고, 단백질의 발현 수준을 측정하는 제제는 해당 마커에 특이적으로 결합하는 항체, 기질, 리간드 또는 보조인자일 수 있다. mRNA 발현 수준을 측정하기 위한 분석 방법으로는 역전사효소 중합효소 반응, 경쟁적 역전사효소 중합효소 반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법, 노던 블랏팅, DNA 칩 등이 있으나 이로 제한되는 것은 아니다. 단백질 수준을 측정하기 위한 분석 방법으로는, 웨스턴 블랏, ELISA, 방사선면역분석, 방사 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 조직면역 염색, 면역침전 분석법, 보체 고정 분석법, FACS, 단백질 칩 등이 있으나 이로 제한되는 것은 아니다.
용어 "치료 반응성"이란 암에 걸렸거나 걸린 것으로 의심되는 개체가 치료 유효 성분(예컨대 CD300c 항체 또는 그의 항원 결합 단편)을 이용한 치료에 대해 유리하게 또는 불리하게 반응하는지 여부를 지칭하는 것으로, 항-CD300c 항체 또는 그의 항원 결합 단편의 투여 후 나타나는 종양 치료와 관련된 면역 체계의 변화에 의해 평가될 수 있다.
항-CD300c 항체
본 발명의 일 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편이 제공된다. 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편은 CD300c 단백질에 특이적으로 결합하는 항원 결합 분자이다. 바람직하게는, 상기 항-CD300c 항체 또는 그의 항원 결합 단편은 CD300c 단백질에 특이적으로 결합하는 단클론 항체 또는 그의 항원 결합 단편이다.
용어 "CD300c 단백질"은 "CD300c" 또는 "CD300c 항원"과 상호 교환적으로 사용되며, CD300c 유전자에 의해 코딩되는 단백질로서 B7 패밀리 단백질과 상당한 서열 동일성을 나타내고 항원 제시 세포의 막에 발현되는 것으로 알려져 있다. CD300c 단백질의 발현 또는 활성 억제는 T 세포의 활성화 및/또는 M1 마크로파지로의 분화 촉진을 유도할 수 있다.
또한, 용어 "항-CD300c 항체"는 CD300c 단백질에 결합하는 폴리펩타이드와 상호 교환적으로 사용될 수 있다. 용어 "폴리펩타이드"는 길이와 무관하게 펩타이드 결합을 통해 서로 연결된 아미노산들로 구성된 임의의 폴리머를 의미하는 것으로 의도된다. 즉, 본 명세서에서 폴리펩타이드는 또한 펩타이드 및 단백질을 포함한다.
일 구현예에서, 항-CD00c 항체 또는 그의 항원 결합 단편은 CD300c 단백질의 세포외 도메인(extracellular domain; ECD)에 특이적으로 결합할 수 있다. 상기 CD300c의 세포외 도메인은 인간 CD300c 단백질의 세포외 도메인일 수 있다. 또한, CD300c의 세포외 도메인은 서열번호 402로 표시되는 아미노산 서열을 포함할 수 있다.
일 실시예에서, CD300c 단백질의 발현 수준은 다양한 암 환자의 생존기간과 매우 높은 연관성을 나타냄을 확인하였다. 구체적으로, 암 환자의 평균 CD300c 발현 수준 대비, CD300c 발현 수준이 높은 암 환자는 CD300c 발현 수준이 낮은 암 환자에 비해 생존기간이 짧음을 확인하였다. 이는 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편을 이용한 CD300c의 발현 또는 활성의 억제가 암 치료 효과 또는 암 환자의 생존기간 증가 효과를 가져올 수 있음을 의미한다.
본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편은 다양한 암세포의 표면에서 발현되는 CD300c에 특이적으로 결합하여 항암 효과를 나타낼 수 있다. 항-CD300c 항체의 CD300c로의 결합은 T 세포를 활성화시키는 동시에 M1 마크로파지로의 분화를 촉진시켜 암 세포의 증식을 효과적으로 억제할 수 있으며, 이는 항-CD300c 항체가 다양한 암의 면역 치료제로서 효과적으로 사용될 수 있게 한다. 또한, 이러한 항-CD300c 항체는 기존의 항암제와의 병용 투여를 통해 그 치료 효과가 더욱 증가될 수 있을 뿐만 아니라, 종간 교차 반응성(예컨대 인간 항원과 마우스 항원)을 가지고 있으므로 다양한 포유류에 폭넓게 적용될 수 있다. 또한, 이러한 항-CD300c 항체를 세포사멸에 저항하는 능력을 보이는 저항성 암 세포에 처리한 경우, 암 세포의 저항성을 현저하게 약화시키므로 암 재발 방지에도 우수한 효능을 보일 것으로 기대된다. 또한, 일반적으로 암 세포는 전염증성 사이토카인인 IL-2의 생성을 저해함으로써 면역계를 회피하는데, 항-CD300c 항체는 이러한 암 세포에 의해 차단된 IL-2의 생산량을 회복시킴으로써 활성화된 면역계를 통하여 암 세포 사멸을 유도함이 확인되었다. 따라서, 보다 근본적인 면역 항암제로 활용될 수 있을 것으로 기대된다. CD300c 단백질 또는 항-CD300c 항체에 대한 내용은 또한 한국 특허공개공보 제10-2019-0136949호를 참조할 수 있고, 이의 내용은 모두 본 명세서에 포함된다.
일 구현예에서, 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은
(i) 서열번호 7, 서열번호 19, 서열번호 31, 서열번호 43, 서열번호 55, 서열번호 67, 서열번호 79, 서열번호 91, 서열번호 103, 서열번호 115, 서열번호 127, 서열번호 139, 서열번호 151, 서열번호 163, 서열번호 175, 서열번호 187, 서열번호 199, 서열번호 211, 서열번호 223, 서열번호 235, 서열번호 247, 서열번호 259, 서열번호 271, 서열번호 283 및 서열번호 295로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 8, 서열번호 20, 서열번호 32, 서열번호 44, 서열번호 56, 서열번호 68, 서열번호 80, 서열번호 92, 서열번호 104, 서열번호 116, 서열번호 128, 서열번호 140, 서열번호 152, 서열번호 164, 서열번호 176, 서열번호 188, 서열번호 200, 서열번호 212, 서열번호 224, 서열번호 236, 서열번호 248, 서열번호 260, 서열번호 272, 서열번호 284 및 서열번호 296으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 9, 서열번호 21, 서열번호 33, 서열번호 45, 서열번호 57, 서열번호 69, 서열번호 81, 서열번호 93, 서열번호 105, 서열번호 117, 서열번호 129, 서열번호 141, 서열번호 153, 서열번호 165, 서열번호 177, 서열번호 189, 서열번호 201, 서열번호 213, 서열번호 225, 서열번호 237, 서열번호 249, 서열번호 261, 서열번호 273, 서열번호 285 및 서열번호 297로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하는 중쇄 가변 영역; 및
(ii) 서열번호 10, 서열번호 22, 서열번호 34, 서열번호 46, 서열번호 58, 서열번호 70, 서열번호 82, 서열번호 94, 서열번호 106, 서열번호 118, 서열번호 130, 서열번호 142, 서열번호 154, 서열번호 166, 서열번호 178, 서열번호 190, 서열번호 202, 서열번호 214, 서열번호 226, 서열번호 238, 서열번호 250, 서열번호 262, 서열번호 274, 서열번호 286 및 서열번호 298로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 11, 서열번호 23, 서열번호 35, 서열번호 47, 서열번호 59, 서열번호 71, 서열번호 83, 서열번호 95, 서열번호 107, 서열번호 119, 서열번호 131, 서열번호 143, 서열번호 155, 서열번호 167, 서열번호 179, 서열번호 191, 서열번호 203, 서열번호 215, 서열번호 227, 서열번호 239, 서열번호 251, 서열번호 263, 서열번호 275, 서열번호 287 및 서열번호 299로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 12, 서열번호 24, 서열번호 36, 서열번호 48, 서열번호 60, 서열번호 72, 서열번호 84, 서열번호 96, 서열번호 108, 서열번호 120, 서열번호 132, 서열번호 144, 서열번호 156, 서열번호 168, 서열번호 180, 서열번호 192, 서열번호 204, 서열번호 216, 서열번호 228, 서열번호 240, 서열번호 252, 서열번호 264, 서열번호 276, 서열번호 288 및 서열번호 300으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하는 경쇄 가변 영역을 포함할 수 있다.
다른 구현예에서, 상기 중쇄 가변 영역은
(i) 서열번호 7, 서열번호 19, 서열번호 43, 서열번호 55, 서열번호 67, 서열번호 79, 서열번호 103, 서열번호 115, 서열번호 127, 서열번호 139, 서열번호 151, 서열번호 163, 서열번호 199 및 서열번호 211로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 8, 서열번호 20, 서열번호 44, 서열번호 56, 서열번호 68, 서열번호 80, 서열번호 104, 서열번호 116, 서열번호 128, 서열번호 140, 서열번호 152, 서열번호 164, 서열번호 200 및 서열번호 212로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 9, 서열번호 21, 서열번호 45, 서열번호 57, 서열번호 69, 서열번호 81, 서열번호 105, 서열번호 117, 서열번호 129, 서열번호 141, 서열번호 153, 서열번호 165, 서열번호 201 및 서열번호 213으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고,
상기 경쇄 가변 영역은
(ii) 서열번호 10, 서열번호 22, 서열번호 46, 서열번호 58, 서열번호 70, 서열번호 82, 서열번호 106, 서열번호 118, 서열번호 130, 서열번호 142, 서열번호 154, 서열번호 166, 서열번호 202 및 서열번호 214로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 11, 서열번호 23, 서열번호 47, 서열번호 59, 서열번호 71, 서열번호 83, 서열번호 107, 서열번호 119, 서열번호 131, 서열번호 143, 서열번호 155, 서열번호 167, 서열번호 203 및 서열번호 215로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 12, 서열번호 24, 서열번호 48, 서열번호 60, 서열번호 72, 서열번호 84, 서열번호 108, 서열번호 120, 서열번호 132, 서열번호 144, 서열번호 156, 서열번호 168, 서열번호 204 및 서열번호 216으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은
(i) 서열번호 43, 서열번호 79, 서열번호 115, 및 서열번호 211로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 44, 서열번호 80, 서열번호 116, 및 서열번호 212로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 45, 서열번호 81, 서열번호 117, 및 서열번호 213으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고,
상기 경쇄 가변 영역은
(ii) 서열번호 46, 서열번호 82, 서열번호 118, 및 서열번호 214로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1;
서열번호 47, 서열번호 83, 서열번호 119, 및 서열번호 215로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2; 및
서열번호 48, 서열번호 84, 서열번호 120, 및 서열번호 216으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 43으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 44로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 45로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고, 상기 경쇄 가변 영역은 서열번호 46로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 47로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 48로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 79로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 80으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 81로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고, 상기 경쇄 가변 영역은 서열번호 82로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 83으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 84로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 115로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 116으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 117로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고, 상기 경쇄 가변 영역은 서열번호 118로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 119로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 120으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 211로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 212로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 213으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함하고, 상기 경쇄 가변 영역은 서열번호 214로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1, 서열번호 215로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR2, 및 서열번호 216으로 표시되는 아미노산 서열을 포함하거나 이로 구성되는 CDR3을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 303, 307, 311, 315, 319, 323, 327, 331, 335, 339, 343, 347, 351, 355, 359, 363, 367, 371, 375, 379, 383, 387, 391, 395, 및 399로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 304, 308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, 및 400으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함할 수 있다.
또 다른 구현예에서, 상기 중쇄 가변 영역은 서열번호 315, 327, 339, 및 371로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 316, 328, 340, 및 372로 이루어진 군으로부터 선택되는 아미노산 서열을 포함할 수 있다. 바람직하게는, 상기 중쇄 가변 영역은 서열번호 315로 표시되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 316으로 표시되는 아미노산 서열을 포함하거나; 상기 중쇄 가변 영역은 서열번호 327로 표시되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 328로 표시되는 아미노산 서열을 포함하거나; 상기 중쇄 가변 영역은 서열번호 339로 표시되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 340으로 표시되는 아미노산 서열을 포함하거나; 상기 중쇄 가변 영역은 서열번호 371로 표시되는 아미노산 서열을 포함하고, 상기 경쇄 가변 영역은 서열번호 372로 표시되는 아미노산 서열을 포함할 수 있다.
또 다른 태양에서, 아래 식 (1) 내지 (3)으로 각각 표현되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1 내지 CDR3을 포함하는 중쇄 가변 영역, 및 아래 식 (4) 내지 (6)으로 각각 표현되는 아미노산 서열을 포함하거나 이로 구성되는 CDR1 내지 CDR3을 포함하는 경쇄 가변 영역을 포함하는 항-CD300c 단클론 항체 또는 그의 항원 결합 단편이 제공된다(각 아미노산 서열은 N→C 방향임):
FTFX1X2X3X4MX5WVR (1) (서열번호 403)
상기 식에서,
X1= G 또는 S
X2= S, R 또는 D
X3= N 또는 Y
X4= Y, A, G 또는 H
X5= S 또는 H
X1ISX2SGX3X4TYYAX5 (2) (서열번호 404)
상기 식에서,
X1= T 또는 A
X2= G 또는 S
X3= T 또는 G
X4= S 또는 Y
X5= D 또는 E
YCAX1X2X3X4X5X6X7X8X9W (3) (서열번호 405)
상기 식에서,
X1= R 또는 S
X2= G 또는 S
X3= M, S, Y 또는 I
X4= W, Q, G 또는 R
X5= G 또는 L
X6= M, I 또는 P
X7= D, F 또는 L
X8= V 또는 D
X9= I, Y 또는 존재하지 않음
CX1X2X3X4X5X6X7X8X9X10X11VX12W (4) (서열번호 406)
상기 식에서,
X1= T 또는 S
X2= G 또는 R
X3= K, N 또는 S
X4= H, N 또는 S
X5= R, I 또는 G
X6= H, G 또는 I
X7= T, I 또는 S
X8= R, A, K, 또는 존재하지 않음
X9= R, S, G, 또는 존재하지 않음
X10= N 또는 존재하지 않음
X11= Y 또는 존재하지 않음
X12= N, H 또는 Q
X1X2X3X4RPSGVX5 (5) (서열번호 407)
상기 식에서,
X1= L, S, R 또는 E
X2= D, K 또는 N
X3= S 또는 N
X4= E, N, Q 또는 K
X5= P 또는 R
YCX1X2X3X4X5X6X7X8X9X10VF (6) (서열번호 408)
상기 식에서,
X1= Q, A, 또는 S
X2= S 또는 A
X3= Y 또는 W
X4= D 또는 A
X5= S, D 또는 G
X6= S, N 또는 T
X7= S, L, N 또는 K
X8= V, S, N 또는 G
X9= G, L, V 또는 존재하지 않음
X10 = P 또는 존재하지 않음.
특정 구현예에서, 상기 항-CD300c 항체 또는 항원 결합 단편은 상기 CDR 서열 또는 하기 표 3과 표 4 및 표 5에 제시된 서열과 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 가장 바람직하게는 98% 이상의 서열 동일성을 갖는 서열을 포함할 수 있다.
특정 구현예에서, 본 발명의 항체의 아미노산 서열 변이체가 고려된다. 예를 들어, 항체의 결합 친화도 및/또는 다른 생물학적 특성을 개선하는 것이 바람직할 수 있다. 항체의 아미노산 서열 변이체는 분자를 인코딩하는 뉴클레오티드 서열 내로 적절한 변형을 도입함으로써 또는 펩티드 합성에 의해 제조될 수 있다. 그러한 변형은, 예를 들어, 항체의 아미노산 서열로부터의 잔기의 결실, 및/또는 그러한 아미노산 서열 내로의 잔기의 삽입 및/또는 그러한 아미노산 서열 내에서의 잔기의 치환을 포함한다. 최종 구성물에 도달하도록 결실, 삽입 및 치환을 포함하는 다양한 변경의 임의의 조합이 수행될 수 있지만, 최종 구성물은 원하는 특성, 예를 들어, 항원-결합 특성을 보유해야 한다. 치환 돌연변이유발을 위한 관심있는 부위는 중쇄 가변 영역(HVR) 및 골격 영역(FR)을 포함한다. 보존적 치환은 표 1에 "바람직한 치환"이라는 항목 아래에 제공되어 있으며, 이하에 아미노산 측쇄 부류 (1) 내지 (6)과 관련하여 추가로 기술되어 있다. 아미노산 치환은 관심있는 분자 및 원하는 활성, 예를 들어, 유지/개선된 항원 결합, 감소된 면역원성, 또는 개선된 ADCC 혹은 CDC에 대해 스크리닝된 생성물에 도입될 수 있다.
원래 잔기 예시적 치환 바람직한 치환
Ala(A) Val;Leu; Ile Val
Arg(R) Lys; Gln; Asn Lys
Asn(N) Gln; His; Asp; Lys; Arg Gln
Asp(D) Glu; Asn Glu
Cys(C) Ser; Ala Ser
Gln(Q) Asn; Glu Asn
Glu(E) Asp; Gln Asp
Gly(G) Ala Ala
His(H) Asn; Gln; Lys; Arg Arg
Ile(I) Leu; Val; Met; Ala; Phe; Norleucine Leu
Leu(L) Norleucine; Ile; Val; Met; Ala; Phe Ile
Lys(K) Arg; Gln; Asn Arg
Met(M) Leu; Phe; Ile Ile
Phe(F) Trp; Leu; Val; Ile; Ala; Tyr Tyr
Pro(P) Ala Ala
Ser(S) Thr Thr
Thr(T) Val; Ser Ser
Trp(W) Tyr; Phe Tyr
Tyr(Y) Trp; Phe; Thr; Ser Phe
Val(V) Ile; Leu; Met; Phe; Ala; 노르류신(Norleucine) Leu
아미노산들은 통상적인 측쇄 성질에 따라 다음과 같이 그룹화될 수 있다:
(1) 소수성: 노르류신, Met, Ala, Val, Leu, Ile;
(2) 중성 친수성: Cys, Ser, Thr, Asn, Gln;
(3) 산성: Asp, Glu;
(4) 염기성: His, Lys, Arg;
(5) 쇄 배향에 영향을 미치는 잔기: Gly, Pro;
(6) 방향족: Trp, Tyr, Phe.
비-보존적 치환은 이러한 부류 중 하나의 구성원을 다른 부류로 교환하는 것을 수반한다.
본 명세서에서 용어 "아미노산 서열 변이체"는 모 항체 결합 분자(예를 들어, 인간화 혹은 인간 항체)의 하나 이상의 초가변 영역 잔기에 아미노산 치환이 존재하는 실질적인 변이체를 포함한다. 일반적으로, 추가 연구를 위해 선택된 생성된 변이체는 모 항체 결합 분자에 비해 특정한 생물학적 특성의 변형, 예컨대 개선(예를 들어, 증가된 친화도, 감소된 면역원성)을 갖고/갖거나 모 항원 결합 분자의 특정한 생물학적 특성을 실질적으로 유지할 것이다. 예시적인 치환 변이체는 친화도 성숙 항체이며, 이는, 예를 들어, 당업계에 공지된 파지 디스플레이-기반 친화도 성숙 기법을 이용하여 편리하게 생성될 수 있다. 간략하게 말하면, 하나 이상의 HVR 잔기가 돌연변이되고, 변이체 항원 결합 분자가 파지 상에 디스플레이되어 특정 생물학적 활성(예를 들어, 결합 친화도)이 스크리닝된다. 특정 구현예에서, 치환, 삽입 또는 결실은 그러한 변경이 항원에 결합하는 항원 결합 분자의 능력을 실질적으로 감소시키지 않는 한 하나 이상의 HVR 내에서 일어날 수 있다. 예를 들어, 결합 친화도를 실질적으로 감소시키지 않는 보존적 변경(예를 들어, 본 명세서에 제공된 바와 같은 보존적 치환)이 HVR에서 이루어질 수 있다.
아미노산 서열 삽입은, 단일 또는 다수의 아미노산 잔기의 서열내 삽입뿐만 아니라, 길이가 하나의 잔기에서 백 개 이상의 잔기를 포함하는 폴리펩타이드에 이르는 범위인 아미노-말단 및/또는 카르복실-말단 융합을 포함할 수 있다. 말단 삽입의 예에는 N-말단 메티오닐 잔기를 갖는 항체를 포함한다. 분자의 다른 삽입 변이체는 항체의 혈청 반감기를 증가시키는 폴리펩타이드의 N-말단 또는 C-말단으로의 융합을 포함할 수 있다. 또한, 분자의 다른 삽입 변이체는 뇌 혈관 장벽(blood-brain barrier, BBB)의 통과를 용이하게 하기 위한 폴리펩타이드의 N-말단 또는 C-말단으로의 융합을 포함할 수 있다.
또한, CD300c 항원에 대해 개선된 친화도를 갖는 본 발명의 항체 또는 그의 항원 결합 단편의 변이체가 제공된다. 그러한 변이체는 CDR 돌연변이(문헌[Yang et al., J. Mol. Biol., 254, 392-403, 1995]), 사슬 셔플링(chain shuffling)(문헌[Marks et al., Bio/Technology, 10, 779-783, 1992]), E.coli의 돌연변이유발(mutator) 균주의 사용(문헌[Low et al., J. Mol. Biol., 250, 359-368, 1996]), DNA 셔플링(문헌[Patten et al., Curr. Opin. Biotechnol., 8, 724-733, 1997]), 파지 디스플레이(phage display)(문헌[Thompson et al., J. Mol. Biol., 256, 77-88, 1996]) 및 유성(sexual) PCR(문헌[Crameri et al., Nature, 391, 288-291, 1998])을 비롯한 다수의 친화도 성숙 프로토콜에 의해 얻어질 수 있다. 문헌[Verhoeyen et al., Science, 239, 1534-1536, 1988]에는 이러한 친화도 성숙 방법들이 논의되어 있다.
일 구현예에서, 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 종간 교차 반응성을 가질 수 있다. 구체적으로, 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 인간 및 마우스 CD300c 항원 둘 모두에 대한 교차 반응성일 수 있다. 이러한 교차 반응성은 실험예 4.1 내지 실험예 4.4에서 확인된다.
다른 구현예에서, 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 다른 약물과 결합된 항체-약물 결합체의 형태를 포함하거나 이러한 형태로 제공될 수 있다.
본 명세서에서 용어 "항체-약물 결합체"란, 항체와 약물의 생물학적 활성을 저하시키지 않으면서 항체와 약물을 화학적으로 연결한 형태를 지칭한다. 본 명세서에서, 상기 항체-약물 결합체는 항체의 중쇄 및/또는 경쇄의 N-말단의 아미노산 잔기에 약물이 결합된 형태, 구체적으로는 항체의 중쇄 및/또는 경쇄의 N-말단, α-아민기에 약물이 결합된 형태를 지칭한다.
상기 "약물"은 세포(예를 들어, 암세포)에 대해 특정 생물학적 활성을 갖는 임의의 물질을 의미할 수 있으며, 이는 DNA, RNA 또는 펩타이드를 포함하는 개념이다. 상기 약물은 α-아민기와 반응하여 가교할 수 있는 반응기를 포함하는 형태일 수 있으며, α-아민기와 반응하여 가교할 수 있는 반응기를 포함하는 링커가 연결되어 있는 형태를 또한 포함한다.
상기 α-아민기와 반응하여 가교할 수 있는 반응기는 항체의 중쇄 또는 경쇄의 N-말단의 α-아민기와 반응하여 가교할 수 있다면 그 종류가 특별히 제한되지 않으며, 당업계에 공지된 아민기와 반응하는 종류를 모두 포함한다. 그 예에는 아이소티오시아네이트(Isothiocyanate), 아이소시아네이트(Isocyanates), 아실 아자이드(Acyl azide), NHS 에스터(NHS ester), 설포닐 클로라이드(Sulfonyl chloride), 알데하이드(Aldehyde), 글리옥살(Glyoxal), 에폭사이드(Epoxide), 옥시레인(Oxirane), 칼보네이트(Carbonate), 아릴 할라이드(Aryl halide), 이미도에스터(Imidoester), 카보이미드(Carbodiimide), 안하이드라이드(Anhydride) 및 플루오로페닐 에스터(Fluorophenyl ester) 중 어느 하나가 포함될 수 있으나, 이에 제한되는 것은 아니다.
상기 약물은 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편이 표적으로 하는 질환을 치료할 수 있는 약물이라면 그 종류에 관계없이 포함되나, 바람직하게는 항암제일 수 있다.
핵산, 벡터, 숙주세포 및 제조방법
본 발명의 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 당업계에 알려진 임의의 항체 생성 기술에 의해 제조될 수 있다.
본 발명의 다른 태양에 따르면, 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 코딩하는 핵산 분자(예컨대, 폴리뉴클레오티드)가 제공된다. 이러한 핵산 분자는 상기 항-CD300c 단클론 항체의 중쇄 가변 영역 또는 중쇄 CDR 영역이 포함된 아미노산 서열 및/또는 경쇄 가변 영역 또는 경쇄 CDR 영역이 포함된 아미노산 서열을 암호화할 수 있다. 본 발명에 따른 항-CD300c 단클론 항체의 중쇄/경쇄 가변영역 및 CDR 영역을 암호화하는 핵산 분자의 서열은 표 3 내지 표 5 및 도 1를 참조할 수 있다.
상기 "핵산 분자"는 DNA(gDNA 및 cDNA) 및 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산 분자에서 기본 구성단위인 뉴클레오티드는 천연 뉴클레오티드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 발명의 중쇄 가변영역, 경쇄 가변영역, 및 CDR 영역을 코딩하는 핵산 분자의 서열은 변형될 수 있다. 상기 변형은 뉴클레오티드의 추가, 결실, 또는 비보존적 치환 또는 보존적 치환을 포함한다. 본 발명의 핵산 분자는 상기한 뉴클레오티드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오티드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오티드 서열과 임의의 다른 서열을 최대한 대응되도록 정렬(align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 정렬된 서열을 분석한 경우에, 80% 이상의 상동성, 일 특정예에서는 90% 이상의 상동성, 다른 특정예에서는 95% 이상의 상동성, 또 다른 특정예에서는 98% 이상의 상동성을 나타내는 뉴클레오티드 서열을 의미한다.
본 발명의 또 다른 태양에 따르면, 상기 핵산이 포함된 하나 또는 그 이상의 벡터(예컨대 발현 벡터)가 제공된다.
상기 "벡터"는 그에 연결된 다른 핵산을 운반할 수 있는 핵산 분자를 지칭한다. 벡터의 일 유형은 "플라스미드"로, 이는 추가의 DNA 세그먼트가 삽입될 수 있는 원형의 이중 가닥 DNA 루프를 지칭한다. 벡터의 다른 유형은 바이러스 벡터이며, 여기서 바이러스 유래된 DNA 또는 RNA 서열이 바이러스 내로의 패키징을 위해 벡터에 존재한다. 특정 벡터는 이것이 도입되는 숙주 세포에서 자율 복제될 수 있다(예를 들어, 세균 복제 원점을 갖는 세균 벡터 및 에피솜 포유동물 벡터). 다른 벡터(예를 들어, 비-에피솜 포유동물 벡터)가 숙주 세포 내로의 도입 시 숙주 세포의 게놈 내로 통합될 수 있으며, 그에 따라 숙주 게놈과 함께 복제된다. 더욱이, 특정 벡터는 이것이 작동적으로 연결된(operatively-linked) 유전자의 발현을 유도할 수 있다. 그러한 벡터는 본 명세서에서 "발현 벡터"로 지칭된다. 재조합 DNA 기법에서 유용한 통상적인 발현 벡터는 종종 플라스미드의 형태로 존재한다. 본 명세서에서, "플라스미드" 및 "벡터"는 플라스미드가 가장 통상적으로 사용되는 벡터의 형태이기 때문에 상호교환적으로 사용될 수 있다. 그러나, 본 발명은 동등한 기능을 하는 다른 형태의 발현 벡터, 예컨대 바이러스 벡터(예를 들어, 복제 결함 레트로바이러스, 아데노바이러스 및 아데노-관련 바이러스)를 포함하고자 한다.
본 발명의 또 다른 태양에 따르면, 본 발명의 단클론 항체를 암호화하는 하나 이상의 핵산 분자(예컨대, 폴리뉴클레오티드)를 포함하는 숙주 세포가 제공된다.
상기 숙주 세포는 본 발명의 재조합 벡터로 형질전환된 세포일 수 있다. 상기 재조합 벡터의 안정하고 연속적인 클로닝 및 발현을 가능하게 하는 당업계에 알려진 임의의 숙주 세포가 사용될 수 있다. 적합한 원핵 숙주 세포에는 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis) 및 바실러스 츄린겐시스(B. thuringensis)와 같은 바실러스 종 균주, 장내 세균 및 균주, 예컨대 살모넬라 티피무리움(Salmonella typhymurium), 세라티아 마르세센스(Serratia marcescens), 및 다양한 슈도모나스 종이 포함된다. 형질전환되는 적합한 진핵 숙주 세포에는 효모, 예컨대 사카로마이세스 세레비시아에, 곤충 세포, 식물 세포, 및 동물 세포, 예를 들어, Sp2/0, 중국 햄스터 난소(CHO) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, 및 MDCK 세포주가 포함된다. 또한, 상기 "숙주 세포"는 형질전환된 세포 또는 핵산 서열로 형질전환된 다음 선택된 관심 유전자를 발현할 수 있는 세포를 지칭하기 위하여 사용된다. 상기 용어는, 선택된 유전자가 존재하는 한, 자손이 본래 모체(parent)와 형태 또는 유전적 구성면에서 동일한지 여부와 관계없이 모 세포의 자손을 포함한다.
본 발명의 또 다른 태양에 따르면, 상기 숙주 세포를 배양하는 단계를 포함하는, 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 제조하는 방법이 제공된다.
상기 항체 또는 그의 항원 결합 단편의 제조를 위한 숙주 세포의 배양은 당업계에 알려진 적당한 배지와 배양 조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 숙주 세포에 따라 당업자에 의해 용이하게 조정되어 사용될 수 있다. 배양 과정은 세포 성장 유형에 따라 현탁 배양과 부착 배양으로 구분되고, 배양 유형에 따라 회분식, 유가식 및 연속식 배양으로 구분된다. 다양한 배양 과정이 예를 들어 문헌["Biochemical Engineering" by James M. Lee, Prentice-Hall International Editions, pp 138-176]에 개시되어 있다.
상기 항체를 회수하기 위하여 면역글로불린의 정제를 위해 당업계에 공지된 임의의 방법, 예를 들어 크로마토그래피(이온교환, 친화성(예: protein A), 크기배제 등), 원심 분리, 차등 용해도 또는 단백질 정제를 위한 다른 표준 기술이 사용될 수 있다.
면역 항암제와의 병용
본 발명자들은 항-CD300c 항체 또는 그의 항원 결합 단편이 하나 이상의 다른 면역 항암제와 병용되어 증강된 항암 효과를 나타낼 수 있음을 확인하였다. 따라서, 본 발명의 항-CD300c 항체 또는 그의 항원 결합 단편은 하나 이상의 다른 면역 항암제와 병용되어 암 예방 또는 치료에 사용될 수 있다.
면역 항암제는 인체의 면역세포를 활성화시켜서 암 세포를 사멸시키는 새로운 기전을 가지므로, 특정 유전자 변이가 없어도 대부분의 암에 폭넓게 사용될 수 있다는 장점을 갖는다. 또한, 면역 항암제는 환자 자신의 면역체계의 강화를 통해 암을 치료한다는 점에서 부작용이 적고 환자의 삶의 질을 높이고 생존기간도 대폭 연장되는 효과를 가져온다. 이러한 면역 항암제는 면역 관문 억제제를 포함하고, 공지의 방법에 의해 제조된 것이거나 시판되는 제품일 수 있다. 면역 항암제의 예에는 항-PD-1, 항-PD-L1, 항-CTLA-4, 항-CD47, 항-KIR, 항-LAG3, 항-CD137, 항-OX40, 항-CD276, 항-CD27, 항-GITR, 항-TIM3, 항-41BB, 항-CD226, 항-CD40, 항-CD70, 항-ICOS, 항-CD40L, 항-BTLA, 항-TCR 및 항-TIGIT 항체가 포함되지만, 이에 한정되지 않는다. 또한, 면역 항암제의 예에는 더발루맙(임핀지(Imfinzi)), 아테졸리주맙(테센트릭(Tecentriq)), 아벨루맙(바벤시오(Bavencio)), 펨브롤리주맙(키트루다(Keytruda)), 니볼루맙(옵디보(Opdivo)), αCD47, 세미플리맙(리브타요(Libtayo)), 마그롤리맙(Hu5F9-G4), 및 이필리무맙(여보이(Yervoy))이 포함되지만, 이에 한정되지 않는다.
일 구현예에서, 면역 항암제는 항-PD-1, 항-PD-L1, 항-CTLA-4, 항-CD47, 항-KIR, 항-LAG3, 항-CD137, 항-OX40, 항-CD276, 항-CD27, 항-GITR, 항-TIM3, 항-41BB, 항-CD226, 항-CD40, 항-CD70, 항-ICOS, 항-CD40L, 항-BTLA, 항-TCR 및 항-TIGIT 항체로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 일례로, 면역 항암제는 항-PD-1, 항-PD-L1, 항-CTLA-4, 및 항-CD47 항체로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
다른 구현예에서, 면역 항암제는 더발루맙(임핀지(Imfinzi)), 아테졸리주맙(테센트릭(Tecentriq)), 펨브롤리주맙(키트루다(Keytruda)), 니볼루맙(옵디보(Opdivo)), αCD47, 및 이필리무맙(여보이(Yervoy))으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
암의 예방 또는 치료 방법
본 발명의 또 다른 태양에 따르면, 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편을 이용하여 대상체에서 암을 예방 또는 치료하거나, 암의 적어도 하나의 증상 또는 징후의 중증도를 개선 또는 감소시키거나, 전이를 억제하거나, 암의 성장을 억제하는 방법이 제공된다. 본 명세서에서 "암을 예방 또는 치료"한다는 것은 암의 증식, 생존, 전이, 재발 또는 항암제 내성을 억제하는 것을 포함할 수 있다. 이러한 방법은 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편을 암의 예방 또는 치료가 필요한 대상체에게 투여하는 단계를 포함할 수 있다.
본 명세서에서 용어 "암"은 포유류에서 전형적으로 조절되지 않는 세포 성장을 특징으로 하는 생리적 상태를 지칭한다. 본 발명에서 예방 또는 치료의 대상이 되는 암에는 그 발생 부위에 따라 대장암, 소장암, 직장암, 결장암, 갑상선암, 내분비선암, 구강암, 혀암, 인두암, 후두암, 식도암, 자궁경부암, 자궁암, 나팔관암, 난소암, 뇌암, 두경부암, 폐암, 임파선암, 담낭암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암(또는 흑색종), 유방암, 위암, 골암, 혈액암 등이 포함될 수 있으나, 암 세포의 표면에 CD300c 단백질을 발현하는 한 모든 암이 포함될 수 있다. 일 구현예에서, 상기 암은 대장암, 직장암, 결장암, 갑상선암, 구강암, 인두암, 후두암, 자궁경부암, 뇌암, 폐암, 난소암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암, 혀암, 유방암, 자궁암, 위암, 골암 및 혈액암으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다. 다른 구현예에서 상기 암은 고형암일 수 있다.
일 구현예에서, 상기 방법은 상기 항-CD300c 항체 또는 그의 항원 결합 단편의 투여 전에, 대상체의 생물학적 시료 또는 자료에 기초하여 CD300c 단백질의 발현 수준을 결정하는 단계를 추가로 포함할 수 있다.
또한, 상기 방법은 상기 대상체의 생물학적 시료 또는 자료를 이용하여 결정된 CD300c 단백질의 발현 수준이 일정 수준 이상인 경우에 상기 대상체는 항-CD300c 항체 또는 그의 항원 결합 단편을 이용한 치료에 적합한 대상체라고 판단하는 단계를 포함할 수 있다. 구체적으로, 상기 방법은 상기 대상체의 생물학적 시료 또는 자료를 이용하여 결정된 CD300c 단백질의 발현 수준이 대조군(예컨대, 암에 걸리지 않은 정상인에서의 발현 수준 또는 암 환자에서의 평균 발현 수준)과 비교하여 통계적으로 유의미하게 높은 경우(예컨대 10% 이상 높은 경우)에 상기 대상체는 항-CD300c 항체 또는 그의 항원 결합 단편을 이용한 치료에 적합한 대상체라고 판단하는 단계를 포함할 수 있다. 그러나, 상기 제시된 CD300c 단백질의 발현 수준 차이는 단지 예시적인 것이며, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상일 수 있으며, 이에 한정되지 않는다. 바람직하게 대조군은 동종의 암 환자에서의 평균 발현 수준일 수 있다.
본 발명의 일 실시예에서, 미국 TCGA(The Cancer Genome Atlas) 데이터베이스에서 얻은 신장암(530명), 췌장암(177명) 및 간암(370명) 환자의 데이터를 이용하여 CD300c의 발현 수준에 따른 전체 생존기간(Overall survival)을 비교한 결과, 암종별 평균 CD300c 발현 수준 대비, 높은 CD300c 발현 수준을 나타내는 암 환자는 그렇지 않은 환자와 비교하여 짧은 전체 생존기간을 나타내었다. 따라서, 대상체에 대한 항-CD300c 항체의 치료 반응률을 높이기 위하여 대상체의 CD300c 단백질의 발현 수준을 참조하는 것이 바람직할 수 있다.
다른 구현예에서, 상기 방법은 하나 이상의 면역 항암제를 투여하는 단계를 추가로 포함할 수 있다. (i) 항-CD300c 항체 또는 그의 항원 결합 단편이 (ii) 하나 이상의 면역 항암제와 병용되는 경우, (i) 및 (ii)는 동시에 투여되거나 순차적으로 투여될 수 있다.
"순차적으로 투여"된다는 것은 하나의 성분이 투여되고, 투여 직후 또는 투여 후 일정 간격을 두고 다른 성분이 투여됨을 의미하며, 이때 성분들은 어떠한 순서로도 투여될 수 있다. 즉, 항-CD300c 항체 또는 그의 항원 결합 단편이 투여된 직후 또는 투여 후 일정 간격을 두고 하나 이상의 면역 항암제가 투여될 수 있거나, 그 반대도 마찬가지로 적용된다. 또한, 하나 이상의 면역 항암제 중 어느 하나가 먼저 투여되고, 이어서 항-CD300c 항체 또는 그의 항원 결합 단편이 투여되고, 이어서 하나 이상의 면역 항암제 중 다른 하나가 투여될 수 있다.
또 다른 구현예에서, 항-CD300c 항체 또는 그의 항원 결합 단편은 둘 이상의 면역 항암제와 함께 투여될 수 있다. 일례로, 항-CD300c 항체 또는 그의 항원 결합 단편이 두 개의 면역 항암제(예컨대, 항-PD-L1 항체 및 항-PD-1 항체, 또는 항-PD-1 항체 및 항-CTLA-4 항체)와 병용된 경우에 가장 높은 암 세포 증식 억제 효과 등을 나타내는 것으로 확인되었다.
본 발명에 따른 항체 또는 그의 항원 결합 단편 및 선택적으로 하나 이상의 추가 항암제 각각은 국소 또는 전신 치료가 요망되는지 여부 및 치료될 영역에 따라 여러 방식으로 투여될 수 있다. 이러한 성분들을 대상체에 투여하는 방법은 투여 목적, 발병 부위, 대상체의 상태 등에 따라 달라질 수 있다. 투여 경로는 경구, 비경구, 흡입, 국소 또는 국부 투여(예컨대 병변내 투여)일 수 있다. 예컨대 비경구 투여는 정맥내, 피하, 복강내, 폐내, 동맥내, 근육내, 직장, 질내, 관절내, 전립선내, 비내, 안구내, 방광내, 척추강내 투여 또는 심실내 투여(예를 들어 뇌실내 투여)를 포함할 수 있으나 이에 제한되지 않는다. 또한, 병용되는 경우, 항-CD300c 항체와 추가 면역 항암제는 동일한 경로로 투여될 수 있거나 서로 상이한 경로로 투여될 수 있다.
상기 방법에서, 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편 및 선택적으로 하나 이상의 추가 항암제 각각의 유효량은 개체(환자)의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 kg당 약 0.01 mg 내지 100 mg, 또는 5 mg 내지 약 50 mg이 1일 1회 내지 수회로 나누어 투여될 수 있다. 그러나, 투여 경로 및 기간, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로, 본 발명의 범위는 이에 한정되지 않는다.
본 발명에 따른 방법은 대상체로부터 미리 CD300c 단백질의 발현 수준을 확인하는 단계를 포함할 수 있다. 그 발현 수준에 따라 항-CD300c 항체 또는 그의 항원 결합 단편을 투여할지 여부를 결정할 수 있다.
다른 구현예에서, 본 발명에 따른 방법은 항-CD300c 항체 또는 그의 항원 결합 단편을 대상체에게 투여한 후 특정 마커의 발현 수준 변화를 측정함으로써 항-CD300c 항체 또는 그의 항원 결합 단편과 병용하기에 적합한 추가 (하나 이상의) 면역 항암제를 선별하는 단계를 포함할 수 있다.
구체적으로, 상기 방법은 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받은 대상체의 생물학적 시료 또는 자료를 이용하여 하기 마커로부터 선택된 하나 이상의 마커의 발현 수준을 결정하는 단계를 추가로 포함할 수 있다:
Bst2, Cd40, Cd70, Cd86, Ccl8, Xcl1, Ccr7, Cd80, Cd206, Msr1, Arg1, Vegfa, Pdgfrb, Col4a1, Hif1a, Vcam1, Icam1, Gzma, Gzmb, Icos, Cd69, Ifng, Tnf, Cd1d1, Cd1d2, Cd38, Cxcr6, Xcr1, Tbx21, Stat1, Stat4, Cxcr3, IL-12b, IL-4, IL-6, IL-13, PD-1, PD-L1, CTLA-4, Lag3, Tim3, Ox40, Gitr, Hvem, CD27, CD28, Cma1, Timd4, Bcl6, Cxcl5 및 Ccl21a.
상기 마커에 대한 설명은 하기 표 2를 참조한다.
순번 명칭 완전한 명칭 간략한 설명
1 Bst2 bone marrow stromal antigen 2 테더린(Tetherin) 또는 CD137로도 알려져 있으며, BST2 유전자에 의해 인코딩되는 지질 래프트(lipid raft) 관련 단백질임.
2 CD40 Cluster of differentiation 40 항원 제시 세포에서 발견되는 보조자극 단백질이며, 그의 활성화에 필요함. TH 세포 상의 CD154(CD40L)의 CD40에 대한 결합은 항원 제시 세포를 활성화하고 다양한 다운스트림 효과를 유도함.
3 CD70 Cluster of differentiation 70 인간에서 CD70 유전자에 의해 인코딩되는 단백질임. CD70은 CD27의 리간드임.
4 CD86 Cluster of differentiation 86 B7-2로 알려져 있으며, 수지상 세포, 랑게르한스 세포, 마크로파지, B 세포(기억 B 세포를 포함함), 및 기타 항원 제시 세포에서 항시적으로 발현되는 단백질임.
5 Ccl8 Chemokine (C-C motif) ligand 8 MCP2(monocyte chemoattractant protein 2)로 알려져 있으며, 인간에서 CCL8 유전자에 의해 인코딩되는 단백질임.
6 Xcl1 X-C Motif Chemokine Ligand 1 림포탁틴으로도 알려진 C 케모카인 패밀리에 속하는 작은 사이토카인임.
7 Ccr7 C-C chemokine receptor type 7 인간에서 CCR7 유전자에 의해 인코딩되는 단백질임. 이 수용체에 대해 다음과 같은 2개의 리간드가 확인되었음: 케모카인 (C-C 모티프) 리간드 19(CCL19/ELC) 및 (C-C 모티프) 리간드 21(CCL21).
8 CD80 Cluster of differentiation 80 세포외 면역글로불린 불변 유사 도메인 및 수용체 결합에 필요한 가변 유사 도메인을 갖는, 면역글로불린 수퍼패밀리에 속하는 B7 I형 막 단백질임. 이는 또 다른 B7 단백질(B7-2)인 CD86과 밀접한 관련이 있으며, 종종 탠덤(tandem) 상태로 작용하여 동일한 수용체에 결합함으로써 T 세포를 프라이밍함.
9 CD206 Cluster of differentiation 206 만노스 수용체로 알려져 있으며, 주로 마크로파지, 미성숙 수지상 세포 및 간 동모양(sinusoidal) 내피 세포의 표면에 존재하는 C-타입 렉틴이지만, 인간 피부 섬유아세포 및 각질세포와 같은 피부 세포의 표면에서도 발현됨.
10 Msr1 Macrophage scavenger receptor 1 인간에서 MSR1 유전자에 의해 인코딩되는 단백질임. MSR1은 또한 CD204(cluster of differentiation 204)로도 명명됨.
11 Arg1 Arginase 1 인간 ARG1 유전자는 단백질 아르기나제를 인코딩함.
12 Vegfa Vascular endothelial growth factor A 인간에서 VEGFA 유전자에 의해 인코딩되는 단백질임.
13 Pdgfrb Platelet-derived growth factor receptor beta 인간에서 PDGFRB 유전자에 의해 인코딩되는 단백질임.
14 Col4a1 Collagen, type IV, alpha 1 인간에서 13번 염색체 상의 COL4A1 유전자에 의해 인코딩되는 단백질임.
15 Hif1a Hypoxia-inducible factor 1-alpha HIF-1-알파로 알려져 있으며, HIF1A 유전자에 의해 인코딩되는 HIF-1(heterodimeric transcription factor hypoxia-inducible factor 1)의 서브유닛임.
16 Vcam1 Vascular cell adhesion protein 1 VCAM-1(vascular cell adhesion molecule 1) 또는 CD106(cluster of differentiation 106)으로 알려져 있으며, 인간에서 VCAM1 유전자에 의해 인코딩되는 단백질임.
17 Icam1 Intercellular Adhesion Molecule 1 CD54(Cluster of Differentiation 54)로 알려져있으며, 인간에서 ICAM1 유전자에 의해 인코딩되는 단백질임.
18 Gzma Granzyme A Gzma 유전자에 의해 인코딩되는 단백질인그랜자임 A는 세포독성 T 림프구 과립에 존재함.
19 Gzmb Granzyme B Gzmb 유전자에 의해 인코딩되는 단백질인그랜자임 B는 세포독성 T 림프구 및 자연 살해(NK) 세포에 의해 발현됨.
20 Icos Inducible T-cell COStimulator 인간에서 ICOS 유전자에 의해 인코딩되는 면역 관문 단백질임.
21 Cd69 Cluster of Differentiation 69 Cd69 유전자에 의해 인코딩되는 인간 트랜스멤브레인 C-타입 렉틴 단백질로서, 조혈 줄기 세포, T 세포 등에서 발현되는 초기 활성화 마커임.
22 Ifng Interferon gamma 타입 II 인터페론 부류의 유일한 구성원인 이량체화 가용성 사이토카인임.
23 Tnf Tumor Necrosis Factor Tnf 유전자에 의해 인코딩되며, 종양 괴사 인자(TNF) 수퍼패밀리에 속하는 다기능성 전염증 사이토카인으로서 주로 마크로파지에 의해 분비됨.
24 Cd1d1 CD1d1 antigen T 세포 수용체 결합 활성 및 내인성 지질 항원 결합 활성을 가능하게 함. 자연 살해 T(NKT) 세포 분화 및 미성숙 T 세포 증식의 조절에 관여함.
25 Cd1d2 CD1d2 antigen T 세포로의 지질 항원의 제시에 관여하는 MHC 클래스 I-유사 분자를 인코딩하며, 자연 살해 T 세포의 활성화에 관여함.
26 Cd38 Cluster of Differentiation 38 CD4+, CD8+, B 림프구 및 자연 살해 세포를 비롯한 많은 면역 세포(백혈구 세포)의 표면에서 발견되는 당단백질임.
27 Cxcr6 C-X-C chemokine receptor type 6 CD186로도 일컬어지며, 표적 세포로 진입하기 위해 CD4와 함께 HIV-1 및 SIV에 의해 사용되는 진입 보조수용체로 확인되었음.
28 Xcr1 X-C motif chemokine receptor 1 G 단백질-결합 수용체 수퍼패밀리에 속하는 케모카인 수용체임.
29 Tbx21 T-box transcription factor TBX21 T-bet (T-box expressed in T cells)로도 일컬어지며, 인간에서 TBX21 유전자에 의해 인코딩되는 단백질임.
30 Stat1 Signal transducer and activator of transcription 1 인간에서 STAT1 유전자에 의해 인코딩되는 전사 인자임. 이는 STAT 단백질 패밀리의 구성원임.
31 Stat4 Signal transducer and activator of transcription 4 STAT 단백질 패밀리에 속하는 전사 인자임.
32 Cxcr3 C-X-C Motif Chemokine Receptor 3 CXC 케모카인 수용체 패밀리의 Gαi 단백질 결합 수용체임.
33 IL-12b Subunit beta of interleukin 12 자연 살해 세포 자극 인자 2, 세포 독성 림프구 성숙 인자 p40 또는 인터루킨-12 서브유닛 p40으로 알려져 있으며, 인간에서 IL12B 유전자에 의해 인코딩되는 단백질임.
34 IL4 Interleukin 4 미경험(naive) 헬퍼 T 세포(Th0 세포)의 Th2 세포로의 분화를 유도하는 사이토카인임. IL-4에 의해 활성화되면, Th2 세포는 후속하여 양성 피드백 루프에서 추가 IL-4를 생성함.
35 IL6 Interleukin 6 전염증성 사이토카인 및 항염증성 마이오카인 둘 모두로 작용하는 인터루킨임. 인간에서, 이는 IL6 유전자에 의해 인코딩됨.
36 IL13 Interleukin 13 인간에서 IL13 유전자에 의해 인코딩되는 단백질임.
37 PD-1 Programmed cell death protein 1 CD279(분화 클러스터 279)로 알려져 있으며, T 세포 염증 활성을 억제하여 면역계를 하향 조절하고 자기-관용을 촉진함으로써 인체 세포에 대한 면역계의 반응을 조절하는 역할을 하는 단백질임. 이는 자가면역 질환을 방지하지만, 또한 면역계가 암 세포를 죽이지 못하게 할 수 있음.
38 PD-L1 Programmed death-ligand 1 CD274(cluster of differentiation 274) 또는 B7-H1(B7 homolog 1)로 알려져 있으며, 인간에서 CD274 유전자에 의해 인코딩되는 단백질임.
39 CTLA-4 cytotoxic T-lymphocyte-associated protein 4 CD152(분화 클러스터 152)로 알려져 있으며, 면역 관문으로 기능하고 면역 반응을 하향 조절하는 단백질 수용체임.
40 Lag3 Lymphocyte-activation gene 3 인간에서 LAG3 유전자에 의해 인코딩되는 단백질임.
41 Tim3 immunoglobulin and mucin-domain containing-3 HAVCR2(Hepatitis A virus cellular receptor 2)로도 알려져 있으며, 인간에서 HAVCR2 유전자에 의해 인코딩되는 단백질임.
42 Ox40 (CD134, TNFRSF4) CD28과는 달리, 휴지 상태의 미경험 T 세포에서 항시적으로 발현되지 않는 TNFR 수용체 수퍼패밀리의 구성원임.
43 Gitr glucocorticoid-induced tumor necrosis factor receptor 인간에서 TNFRSF18 유전자에 의해 인코딩되는 단백질임.
44 Hvem Herpesvirus entry mediator TNF 수용체 수퍼패밀리의 인간 세포 표면 수용체임.
45 CD27 Cluster of differentiation 27 종양 괴사 인자 수용체 수퍼 패밀리의 구성원임.
46 CD28 Cluster of differentiation 28 T 세포 활성화 및 생존에 필요한 보조자극 신호를 제공하는 T 세포에서 발현되는 단백질들 중 하나임.
47 Cma1 Chymase 1 인간에서 CMA1 유전자에 의해 인코딩되는 효소임.
48 Timd4 T-cell immunoglobulin and mucin domain containing 4 TIM-4(T-cell membrane protein 4)로 알려져 있으며, 인간에서 TIMD4 유전자에 의해 인코딩되는 단백질임.
49 Bcl6 B-cell lymphoma 6 protein 인간에서 BCL6 유전자에 의해 인코딩되는 단백질임. BCL2, BCL3, BCL5, BCL7A, BCL9 및 BCL10과 마찬가지로, 림프종에서 임상적 의의를 가짐.
50 Cxcl5 C-X-C Motif Chemokine Ligand 5 인간에서 CXCL5 유전자에 의해 인코딩되는 단백질임.
51 Ccl21a Chemokine (C-C motif) ligand 21 CC 케모카인 패밀리에 속하는 작은 사이토 카인임.
또 다른 구현예에서, 상기 방법은 확인된 마커의 발현 수준에 기초하여 추가 면역 항암제를 선별하는 단계를 추가로 포함할 수 있다. 이때, 상기 마커에는 PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27 및 CD28이 포함될 수 있지만, 이에 한정되지 않는다. 또 다른 구현예에서, 상기 마커는 PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27 및 CD28로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 바람직하게는, 상기 마커는 PD-1, PD-L1, CTLA-4, Lag3 및 Tim3로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다. 또한, 상기 마커는 Icos, Ox40, Gitr, Hvem, CD27 및 CD28로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
이러한 마커의 발현 수준 변화는 본 발명의 항-CD300c 항체 또는 그의 항원 결합 단편을 개체에 투여하였을 때 나타나는 종양 억제 효과에 영향을 미치는 종양/면역 관련 마커의 변화를 의미한다. 예컨대, 상기 마커의 발현 수준 변화는 면역 세포(예를 들어, 수지상 세포, 마크로파지, T 세포, NKT 세포)의 활성과 관계된 단백질 마커 또는 면역관문 단백질 마커, 종양 증식에 영향을 미치는 종양 미세환경(TME) 단백질 마커, Th1 반응 및 Th2 반응과 관련된 마커의 발현 양상을 변화를 포함할 수 있다. 마커의 구체적인 예에 대해서는 상기 설명을 참조한다. 이러한 발현 양상의 변화를 통해 환자가 약물에 반응할 확률을 예측하거나 항암 효과를 극대화할 수 있는 다른 면역관문 억제제를 포함한 항암제를 선택할 수 있다. 또한, 상기 마커를 활용하면 환자가 상기 항체로 치료 가능한지 여부를 판단할 수 있다. 또한, 약물 치료 효과를 모니터링할 수 있다. 또한, 약물 용량, 용법, 병용 요법 등을 포함한 치료 방법을 위한 정보를 제공할 수 있다.
본 발명의 실시예에 따르면, 본 발명의 항-CD300c 항체 또는 그의 항원 결합 단편의 투여 후 개체에서 관찰된 상기 마커의 발현 수준 변화에 의해 선별된 다른 면역관문 억제제(항-PD-L1 항체인 더발루맙(임핀지(Imfinzi)), 항-PD-1 항체인 니볼루맙(옵디보(Opdivo)), 항-PD-1 항체인 펨브롤리주맙(키트루다(Keytruda)), 항-CTLA-4 항체 및 항-CD47 항체(αCD47) 중 하나 이상)와 병용한 결과, 증강된 항종양 효과를 나타냄이 확인되었다.
또 다른 구현예에서, 상기 확인된 마커의 발현 수준에 기초하여 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성을 확인하는 단계를 추가로 포함할 수 있다. 상기 마커에는 vegfa, pdgfrb, Col4a1, Hif1a, Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, IL-6, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr, CD27 및 CD28이 포함될 수 있지만, 이에 한정되지 않는다. 바람직하게는, 상기 마커는 vegfa, pdgfrb, Col4a1, Hif1a, Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, IL-6, Gzma, Icos, Cd69, Cd1d1, Cd38 및 Cxcr6로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 또한, 상기 마커는 vegfa, pdgfrb, Col4a1 및 Hif1a로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 추가로, 상기 마커는 Bst2, CCL8 및 Xcl1로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다. 또 다른 구현예에서, 상기 마커는 CCR7, CD80 또는 이들의 조합을 포함할 수 있다. 또한, 상기 마커는 Tbx21, Stat1, Stat4, Ifng, Cxcr3 및 IL-6로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있다
또 다른 구현예에서, 상기 방법은 상기 마커들 중 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 감소된 경우, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정하는 단계를 추가로 포함할 수 있다. 예컨대, 상기 방법은 vegfa, pdgfrb, Col4a1, Hif1a 및 IL-6로 이루어진 군으로부터 선택된 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 감소된 경우에, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정할 수 있다. 이때, 발현 수준의 감소는 통계적으로 유의미한 감소를 의미하고, 발현 수준 감소율은 약 10% 이상, 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 100% 이상을 포함할 수 있지만, 이에 한정되지 않는다.
또한, 상기 방법은 상기 마커들 중 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 증가된 경우, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정하는 단계를 추가로 포함할 수 있다. 예컨대, 상기 방법은 Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr, Cd27 및 Cd28로 이루어진 군으로부터 선택된 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 증가된 경우에, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정할 수 있다. 이때, 발현 수준의 증가는 통계적으로 유의미한 증가를 의미하고, 발현 수준 증가율은 약 10% 이상, 약 20% 이상, 약 30% 이상, 약 40% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 100% 이상을 포함할 수 있지만, 이에 한정되지 않는다.
약학 조성물
본 발명의 또 다른 태양에 따르면, 항-CD300c 항체 또는 그의 항원 결합 단편을 유효 성분으로 포함하는 암 예방 또는 치료용 약학 조성물이 제공된다.
상기 항-CD300c 항체 또는 그의 항원 결합 단편은 조성물에 예방적 또는 치료적 유효량으로 포함될 수 있다. 상기 약학 조성물은 암의 증식, 생존, 전이, 재발 또는 항암제 내성을 억제하기 위해 대상체에 투여될 수 있다.
일 구현예에서, 상기 약학 조성물은 하나 이상의 면역 항암제를 추가로 포함할 수 있다. 구체적으로, 상기 항-CD300c 항체 또는 그의 항원 결합 단편 및 선택적으로 상기 추가 면역 항암제는 동일한 조성물에 포함되거나 각각 별개의 조성물에 포함될 수 있다. 별개 조성물에 포함되는 경우, 상기 항-CD300c 항체 또는 그의 항원 결합 단편 및 상기 추가 면역 항암제는 각각 제제화될 수 있고, 각각 동시 또는 순차적으로 투여될 수 있다.
본 발명의 약학 조성물을 제조하기 위해, 상기 항체 또는 그의 항원 결합 단편 및 선택적으로 추가 면역 항암제는 제약상 허용되는 담체 및/또는 부형제와 혼합될 수 있다. 약학 조성물은 동결건조 제제 또는 수성 용액의 형태로 제조될 수 있다. 예를 들어, 문헌 [Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack Publishing Company, Easton, PA (1984)]을 참조한다.
허용되는 담체 및/또는 부형제(안정화제 포함)는 사용되는 용량 및 농도에서 대상체에게 무독성이고, 버퍼(예를 들어 포스페이트, 시트레이트 또는 다른 유기산); 항산화제(예를 들어 아스코르브산 또는 메티오닌); 방부제(예를 들어 옥타데실디메틸벤질 암모늄 클로라이드; 헥사메토늄 클로라이드; 벤잘코늄 클로라이드, 벤제토늄 클로라이드; 페놀, 부틸 또는 벤질알콜; 알킬 파라벤, 예를 들어 메틸 또는 프로필 파라벤; 카테콜; 레소르시놀; 시클로헤사놀; 3-펜타놀; 및 m-크레졸); 저분자량 (약 10 이하의 잔기) 폴리펩타이드; 단백질(예를 들어 혈청 알부민, 젤라틴, 또는 면역글로불린); 친수성 중합체(예를 들어 폴리비닐피롤리돈); 아미노산(예를 들어 글리신, 글루타민, 아스파라긴, 히스티딘, 아르기닌, 또는 리신); 단당류, 이당류, 및 다른 탄수화물, 예를 들어 글루코스, 만노스, 또는 덱스트린; 킬레이팅제(예를 들어 EDTA); 당(예를 들어 수크로스, 만니톨, 트레할로스 또는 소르비톨); 염 형성 반대 이온(예를 들어 나트륨); 금속 착체(예를 들어 Zn-단백질 착체); 및(또는) 비이온계 계면활성제(예를 들어 TWEEN(등록상표), PLURONICS(등록상표) 또는 폴리에틸렌 글리콜(PEG))을 포함할 수 있고, 이에 제한되지 않는다.
본 발명의 약학 조성물은 그 투여 경로에 따라 당업계에 공지된 적합한 형태로 제제화될 수 있다.
본 명세서에서 용어 "예방적 또는 치료적 유효량" 또는 "유효량"은 대상체의 암을 예방 또는 치료하는 데 유효한 조성물의 유효 성분의 양으로서, 의학적 처치에 적용 가능한 합리적인 수혜/위험 비율로 암을 예방 또는 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미한다. 상기 유효량의 수준은 환자의 건강상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 이때, 상기한 요소들을 모두 고려하여 최소한의 부작용 또는 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 통상의 기술자에 의해 용이하게 결정될 수 있다.
구체적으로, 본 발명의 약학 조성물에서 유효 성분 각각의 유효량은 개체(환자)의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 체중 kg당 약 0.01 mg 내지 100 mg, 또는 5 mg 내지 약 50 mg이 1일 1회 내지 수회로 나누어 투여될 수 있다. 그러나, 투여 경로 및 기간, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로, 본 발명의 범위는 이에 한정되지 않는다.
암 예방 또는 치료용 키트
본 발명의 또 다른 태양에 따르면, 본 발명에 따른 항-CD300c 항체 또는 그의 항원 결합 단편을 포함하는 조성물, 및 상기 항체 또는 그의 항원 결합 단편의 사용을 지시하는 지시서를 포함하는, 암 예방 또는 치료용 키트가 제공된다. 이때, 상기 조성물은 상기 항-CD300c 항체 또는 그의 항원 결합 단편의 예방적 또는 치료적 유효량을 함유할 수 있다.
일 구현예에서, 상기 지시서는 상기 항체 또는 그의 항원 결합 단편 및 하나 이상의 추가 항암제의 조합 사용을 지시하는 지시서를 포함할 수 있다.
일 구현예에서, 상기 지시서는 유효 성분(들)의 복약 또는 투여 지침을 포함하는 지시서를 포함할 수 있다. 예컨대, 상기 지시서는 항체 또는 그의 항원 결합 단편의 투여 전에 대상체로부터 수득된 생물학적 시료 또는 자료를 이용하여 CD300c 단백질의 발현 수준의 측정을 지시하는 것을 포함할 수 있다. 선택적으로, 유효 성분(들)을 투여하는 데 필요한 기기 또는 장치가 키트에 포함될 수 있다.
투여용량
본 발명에 따른 항-CD300c 항체 또는 이의 항원 결합 단편, 및 선택적으로 추가 면역 항암제 각각의 유효량 또는 효과적인 무독성 양은 통상적인 실험에 의해 결정될 수 있다. 예를 들어, 항체 또는 면역항암제의 치료 활성량은 질환 단계, 질환의 중증도, 대상체의 연령, 성별, 의학적 합병증, 및 체중, 그리고 대상체에서 요망되는 반응을 유발하는 성분의 능력과 같은 요인 및 함께 사용되는 항암제의 투여량에 따라 변할 수 있다. 항-CD300c 항체 또는 이의 항원 결합 단편 또는 추가 면역항암제 각각의 투여량 및 투여요법은 최적 치료 반응을 제공하기 위해 조정될 수 있다. 예를 들어, 몇몇 분할 용량이 매일, 매주, 2주마다, 3주마다, 4주마다 등으로 투여될 수 있고/거나, 용량이 치료 상황의 긴박함에 따라 비례적으로 감소되거나 증가될 수 있다.
암의 예방 또는 치료를 위한 정보의 제공 방법 및 키트
본 발명의 또 다른 태양에 따르면, 암의 예방 또는 치료가 필요한 대상체로부터 수득된 생물학적 시료 또는 자료를 이용하여 CD300c 단백질의 발현 수준을 결정하는 단계를 포함하는 암의 예방 또는 치료를 위한 정보를 제공하는 방법이 제공된다. 상기 방법은 항-CD300c 항체 또는 그의 항원 결합 단편의 투여를 위한 사전 검진에도 활용될 수 있다.
일 구현예에서, 상기 CD300c 단백질(마커)의 발현 수준을 결정하는 단계는 상기 CD300c 단백질에 특이적으로 결합하는 분자, 예컨대 항체, 기질, 리간드 또는 보조인자, 또는 상기 CD300c의 mRNA에 특이적으로 결합하는 분자, 예컨대 프라이머 쌍 또는 프로브를 이용하는 것을 포함할 수 있다. 이들 시약을 이용하여 발현 수준을 결정하는 방법은 전술한 바를 포함하여 당업계에 잘 알려져 있다.
일 구현예에서, 상기 방법은 상기 대상체의 생물학적 시료 또는 자료를 이용하여 결정된 CD300c 단백질의 발현 수준이 일정 수준 이상인 경우에 상기 대상체는 항-CD300c 항체 또는 그의 항원 결합 단편을 이용한 치료에 적합한 대상체라고 판단하는 단계를 포함할 수 있다. 구체적으로, 상기 방법은 상기 대상체의 생물학적 시료 또는 자료를 이용하여 결정된 CD300c 단백질의 발현 수준이 대조군(예컨대, 암에 걸리지 않은 정상인에서의 발현 수준 또는 암 환자에서의 평균 발현 수준)과 비교하여 통계적으로 유의미하게 높은 경우(예컨대 10% 이상 높은 경우)에 상기 대상체는 항-CD300c 항체 또는 그의 항원 결합 단편을 이용한 치료에 적합한 대상체라고 판단하는 단계를 포함할 수 있다. 그러나, 상기 제시된 CD300c 단백질의 발현 수준 차이는 단지 예시적인 것이며, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상일 수 있으며, 이에 한정되지 않는다. 바람직하게 대조군은 동종의 암 환자에서의 평균 발현 수준일 수 있다.
본 발명의 일 실시예에서, 미국 TCGA(The Cancer Genome Atlas) 데이터베이스에서 얻은 신장암(530명), 췌장암(177명) 및 간암(370명) 환자의 데이터를 이용하여 CD300c의 발현 수준에 따른 전체 생존기간(Overall survival)을 비교한 결과, 암종별 평균 CD300c 발현 수준 대비, 높은 CD300c 발현 수준을 나타내는 암 환자는 그렇지 않은 환자와 비교하여 짧은 전체 생존기간을 나타내었다. 따라서, 대상체에 대한 항-CD300c 항체의 치료 반응률을 높이기 위하여 대상체의 CD300c 단백질의 발현 수준을 참조하는 것이 바람직할 수 있다.
다른 구현예에서, 상기 암의 예방 또는 치료를 위한 정보는 CD300c 단백질과 관련된 치료제(예컨대, 항-CD300c 항체 또는 그의 항원 결합 단편)의 치료 반응성, 치료제의 선택, 치료 대상체의 선택, 대상체의 예후, 및 대상체의 생존기간 중 어느 하나 이상에 관한 정보를 포함할 수 있지만, 이에 한정되지 않는다. 바람직하게는 상기 암의 예방 또는 치료를 위한 정보는 항-CD300c 항체 또는 그의 항원 결합 단편의 암 치료 반응성, 대상체의 생존기간, 또는 둘 모두를 포함할 수 있다.
본 발명의 또 다른 태양에 따르면, 암의 예방 또는 치료가 필요한 대상체로부터 수득된 생물학적 시료 또는 자료를 이용하여 CD300c 단백질의 발현 수준을 측정하기 위한 물질을 포함하는 암의 예방 또는 치료를 위한 정보를 제공하기 위한 키트가 제공된다. 상기 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치를 포함할 수 있다. 상기 키트는 단백질 마커의 발현 수준을 측정하기 위한 키트일 수 있고, 예컨대 ELISA(Enzyme-linked immunosorbent assay) 키트일 수 있다. 상기 키트는 항체의 면역학적 검출을 위하여 필요한 것으로 당업계에 알려진 다른 시약을 포함할 수 있다. 상기 키트는 항-CD300c 항체 또는 그의 항원 결합 단편을 유효성분으로 포함하는 약학 조성물을 추가로 포함할 수 있다.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예
I. 항-CD300c 단클론 항체의 제조
실시예 1. 항-CD300c 단클론 항체의 제조
실시예 1.1. 항-CD300c 단클론 항체 라이브러리 제작
항-CD300c 단클론 항체를 선별하기 위하여, 람다 파지 라이브러리, 카파 파지 라이브러리, VH3VL1 파지 라이브러리, 및 OPALTL 파지 라이브러리를 이용하여 바이오패닝(biopanning)을 실시하였다. 구체적으로, 면역 시험관(immunotube)에 5 μg/mL 농도의 CD300c 항원을 첨가하고, 1시간 동안 반응시켜 시험관 표면에 항원을 흡착시켰다. 그 후, 3%의 탈지유(skim milk)를 첨가하여 비특이적 반응을 억제시킨 후, 다시 3%의 탈지유에 분산되어 있는 1012 PFU의 항체 파지 라이브러리를 각각의 면역 시험관에 첨가하여 항원과 결합시켰다. 이어서, TBST(tris buffered saline-Tween20) 용액을 이용하여 3회 세척하여, 비특이적으로 결합되어 있는 파지를 제거한 후, CD300c 항원 특이적으로 결합되어 있는 단쇄가변분절(single-chain variable fragment; scFv) 파지 항체를 100 mM의 트리에틸아민 용액을 이용하여 용출시켰다. 용출된 파지는 1.0 M의 Tris-HCl 완충용액(pH 7.8)을 이용하여 중화시킨 후에, 대장균 ER2537에 처리하여 37℃에서 1시간 동안 감염시키고, 감염시킨 대장균은 카르베니실린이 포함되어 있는 LB 한천 배지에 도포하여 37℃에서 16시간 동안 배양하였다. 이어서, 형성된 대장균 콜로니를 3 mL의 SB(super broth)-카르베니실린 배양액을 이용하여 현탁시키고, 일부는 15% 글리세롤을 첨가하여 -80℃에서 사용 전까지 보관하였으며, 나머지는 SB-카르베니실린-2% 포도당 용액에 재접종하여 37℃에서 배양하였다. 획득된 배양액을 원심분리하여 파지 입자가 포함되어 있는 상층액을 이용하여 다시 바이오패닝을 3회 반복함으로써 항원 특이적인 항체를 확보 및 농축하였다.
바이오패닝을 3회 반복한 후에 항체 유전자를 포함하고 있는 대장균을 카르베니실린을 포함하는 LB 한천 배지에 도포하여 37℃에서 16시간 동안 배양하고, 형성된 대장균 콜로니를 다시 SB-카르베니실린-2% 포도당 용액에 재접종하여 37℃에서 흡광도(OD600nm)가 0.5가 될 때까지 배양한 후에, IPTG를 첨가하고 30℃에서 16시간 동안 추가 배양하였다. 그 후, 원형질막 추출(periplasmic extraction)을 실시하였으며, 상기 결과를 통하여 CD300c 항원에 특이적으로 결합하는 항체의 라이브러리 풀(library pool)을 일차적으로 확보하였다.
실시예 1.2. 항-CD300c 단클론 항체 선별
CD300c 항원에 높은 결합력을 가지고 특이적으로 결합하는 항-CD300c 단클론 항체를 선별하기 위하여, 실시예 1.1과 동일한 방법으로 확보된 라이브러리 풀을 이용하여 ELISA를 실시하였다. 보다 자세하게는, 코팅 완충용액(coating buffer; 0.1 M의 탄산나트륨, pH 9.0)에 CD300c 항원과 CD300a 항원을 각각 웰당 5 μg/mL의 농도가 되도록 ELISA 플레이트에 분주한 후 실온에서 3시간 동안 반응시켜 항원을 플레이트에 결합시켰다. 그 후, PBST(phosphate buffered saline-Tween20)를 이용하여 3회 세척하여 결합되지 않은 항원을 깨끗이 제거해준 후에, 각각의 웰에 2% BSA(bovine serum albumin)가 첨가되어 있는 PBST를 350 μL 첨가하고 실온에서 1시간 동안 반응시키고, PBST를 이용하여 다시 세척하였다. 이어서, 실시예 1.1과 동일한 방법으로 확보된 scFv를 포함하고 있는 원형질막 추출물을 25 μg씩 첨가하고, 1시간 동안 실온에서 반응시켜 항원과 결합시켰다. 1시간 후에 PBST를 이용하여 3회 세척하여 결합되지 않은 scFv를 제거해준 후에, 4 μg/mL의 검출용 항체를 첨가하고 다시 실온에서 1시간 동안 반응시켰다. 그 후, PBST를 이용하여 결합되지 않은 검출용 항체를 제거해준 후에 HRP가 결합되어 있는 항-토끼 IgG를 첨가하여 실온에서 1시간 동안 반응시키고, 다시 PBST를 이용하여 결합되지 않은 항체를 제거하였다. 이어서, 3,3',5,5'-테트라메틸벤지딘(3,3',5,5'-tetramethylbenzidine, TMB) 용액을 첨가하고 10분 동안 반응시켜 발색시킨 후에, 2 N의 황산 용액을 첨가하여 발색 반응을 종료시키고, 450 nm에서 흡광도를 측정하여, CD300c 항원에 특이적으로 결합하는 항체를 확인하였다.
1.3. 항-CD300c 단클론 항체 서열 확인
실시예 1.2와 동일한 방법을 이용하여 선별된 항-CD300c 단클론 항체의 염기 서열을 확인하였다. 보다 자세하게는, 선별된 항체 클론들을 플라스미드 미니프렙 키트(plasmid miniprep kit)를 이용하여 플라스미드 DNA를 추출한 후에, DNA 시퀀싱을 실시하여 CDR(complementarity-determining regions) 서열을 분석하였다. 그 결과, 서로 다른 아미노산 서열을 가지고 있는 25종의 항-CD300c 단클론 항체를 확보하였다. 이러한 25종의 항-CD300c 단클론 항체의 중쇄 및 경쇄 가변 영역을 하기 표 3 및 표 4에 나타내었다.
항체 명칭 기원(파지 라이브러리) 중쇄 가변 영역(핵산) 경쇄 가변 영역(핵산) 중쇄 가변 영역(아미노산) 경쇄 가변 영역(아미노산)
CK1 카파 도 1aa(서열번호 301) 도 1ab
(서열번호 302)
도 1ac
(서열번호 303)
도 1ad
(서열번호 304)
CK2 카파 도 1ba(서열번호 305) 도 1bb
(서열번호 306)
도 1bc
(서열번호 307)
도 1bd
(서열번호 308)
CK3 카파 도 1ca(서열번호 309) 도 1cb
(서열번호 310)
도 1cc
(서열번호 311)
도 1cd
(서열번호 312)
CL4 람다 도 1da(서열번호 313) 도 1db
(서열번호 314)
도 1dc
(서열번호 315)
도 1dd
(서열번호 316)
CL5 람다 도 1ea(서열번호 317) 도 1eb
(서열번호 318)
도 1ec
(서열번호 319)
도 1ed
(서열번호 320)
CL6 VH3VL1 도 1fa(서열번호 321) 도 1fb
(서열번호 322)
도 1fc
(서열번호 323)
도 1fd
(서열번호 324)
CL7 VH3VL1 도 1ga(서열번호 325) 도 1gb
(서열번호 326)
도 1gc
(서열번호 327)
도 1gd
(서열번호 328)
CL8 VH3VL1 도 1ha(서열번호 329) 도 1hb
(서열번호 330)
도 1hc
(서열번호 331)
도 1hd
(서열번호 332)
CL9 VH3VL1 도 1ia(서열번호 333) 도 1ib
(서열번호 334)
도 1ic
(서열번호 335)
도 1id
(서열번호 336)
CL10 VH3VL1 도 1ja(서열번호 337) 도 1jb
(서열번호 338)
도 1jc
(서열번호 339)
도 1jd
(서열번호 340)
SK11 카파 도 1ka(서열번호 341) 도 1kb
(서열번호 342)
도 1kc
(서열번호 343)
도 1kd
(서열번호 344)
SK12 카파 도 1la(서열번호 345) 도 1lb
(서열번호 346)
도 1lc
(서열번호 347)
도 1ld
(서열번호 348)
SK13 카파 도 1ma(서열번호 349) 도 1mb
(서열번호 350)
도 1mc
(서열번호 351)
도 1md
(서열번호 352)
SK14 카파 도 1na(서열번호 353) 도 1nb
(서열번호 354)
도 1nc
(서열번호 355)
도 1nd
(서열번호 356)
SK15 카파 도 1oa(서열번호 357) 도 1ob
(서열번호 358)
도 1oc
(서열번호 359)
도 1od
(서열번호 360)
SK16 카파 도 1pa(서열번호 361) 도 1pb
(서열번호 362)
도 1pc
(서열번호 363)
도 1pd
(서열번호 364)
SK17 카파 도 1qa(서열번호 365) 도 1qb
(서열번호 366)
도 1qc
(서열번호 367)
도 1qd
(서열번호 368)
항체 명칭 기원(파지 라이브러리) 중쇄 가변 영역(핵산) 경쇄 가변 영역(핵산) 중쇄 가변 영역(아미노산) 경쇄 가변 영역(아미노산)
SL18 람다 도 1ra(서열번호 369) 도 1rb
(서열번호 370)
도 1rc
(서열번호 371)
도 1rd
(서열번호 372)
CB301_H3L1_A10 VH3VL1 도 1sa(서열번호 373) 도 1sb
(서열번호 374)
도 1sc
(서열번호 375)
도 1sd
(서열번호 376)
CB301_H3L1_A12 VH3VL1 도 1ta(서열번호 377) 도 1tb
(서열번호 378)
도 1tc
(서열번호 379)
도 1td
(서열번호 380)
CB301_H3L1_E6 VH3VL1 도 1ua(서열번호 381) 도 1ub
(서열번호 382)
도 1uc
(서열번호 383)
도 1ud
(서열번호 384)
CB301_H3L1_F4 VH3VL1 도 1va(서열번호 385) 도 1vb
(서열번호 386)
도 1vc
(서열번호 387)
도 1vd
(서열번호 388)
CB301_H3L1_G11 VH3VL1 도 1wa(서열번호 389) 도 1wb
(서열번호 390)
도 1wc
(서열번호 391)
도 1wd
(서열번호 392)
CB301_OPALTL_B5 OPALTL 도 1xa(서열번호 393) 도 1xb
(서열번호 394)
도 1xc
(서열번호 395)
도 1xd
(서열번호 396)
CB301_OPALTL_E6 OPALTL 도 1ya(서열번호 397) 도 1yb
(서열번호 398)
도 1yc
(서열번호 399)
도 1yd
(서열번호 400)
상기 표 3 및 표 4에 언급된 각각의 도면에서, CDR 부위(CDR1, CDR2 및 CDR3)는 밑줄을 그어 순서대로 표시하였다(즉, CDR1이 먼저 표시되고, 이어서 CDR2가 표시되고, 이어서 CDR3이 표시됨). 또한, 각각의 도면에 포함된 CDR 부위를 하기 표 5에 나타낸 바와 같이 서열번호로 표시하였다:
관련
도면
항체 중쇄/경쇄 아미노산/핵산 CDR1 CDR2 CDR3
도 1aa CK1 중쇄 핵산 서열번호 1 서열번호 2 서열번호 3
도 1ab 경쇄 핵산 서열번호 4 서열번호 5 서열번호 6
도 1ac 중쇄 아미노산 서열번호 7 서열번호 8 서열번호 9
도 1ad 경쇄 아미노산 서열번호 10 서열번호 11 서열번호 12
도 1ba CK2 중쇄 핵산 서열번호 13 서열번호 14 서열번호 15
도 1bb 경쇄 핵산 서열번호 16 서열번호 17 서열번호 18
도 1bc 중쇄 아미노산 서열번호 19 서열번호 20 서열번호 21
도 1bd 경쇄 아미노산 서열번호 22 서열번호 23 서열번호 24
도 1ca CK3 중쇄 핵산 서열번호 25 서열번호 26 서열번호 27
도 1cb 경쇄 핵산 서열번호 28 서열번호 29 서열번호 30
도 1cc 중쇄 아미노산 서열번호 31 서열번호 32 서열번호 33
도 1cd 경쇄 아미노산 서열번호 34 서열번호 35 서열번호 36
도 1da CL4 중쇄 핵산 서열번호 37 서열번호 38 서열번호 39
도 1db 경쇄 핵산 서열번호 40 서열번호 41 서열번호 42
도 1dc 중쇄 아미노산 서열번호 43 서열번호 44 서열번호 45
도 1dd 경쇄 아미노산 서열번호 46 서열번호 47 서열번호 48
도 1ea CL5 중쇄 핵산 서열번호 49 서열번호 50 서열번호 51
도 1eb 경쇄 핵산 서열번호 52 서열번호 53 서열번호 54
도 1ec 중쇄 아미노산 서열번호 55 서열번호 56 서열번호 57
도 1ed 경쇄 아미노산 서열번호 58 서열번호 59 서열번호 60
도 1fa CL6 중쇄 핵산 서열번호 61 서열번호 62 서열번호 63
도 1fb 경쇄 핵산 서열번호 64 서열번호 65 서열번호 66
도 1fc 중쇄 아미노산 서열번호 67 서열번호 68 서열번호 69
도 1fd 경쇄 아미노산 서열번호 70 서열번호 71 서열번호 72
도 1ga CL7 중쇄 핵산 서열번호 73 서열번호 74 서열번호 75
도 1gb 경쇄 핵산 서열번호 76 서열번호 77 서열번호 78
도 1gc 중쇄 아미노산 서열번호 79 서열번호 80 서열번호 81
도 1gd 경쇄 아미노산 서열번호 82 서열번호 83 서열번호 84
도 1ha CL8 중쇄 핵산 서열번호 85 서열번호 86 서열번호 87
도 1hb 경쇄 핵산 서열번호 88 서열번호 89 서열번호 90
도 1hc 중쇄 아미노산 서열번호 91 서열번호 92 서열번호 93
도 1hd 경쇄 아미노산 서열번호 94 서열번호 95 서열번호 96
도 1ia CL9 중쇄 핵산 서열번호 97 서열번호 98 서열번호 99
도 1ib 경쇄 핵산 서열번호 100 서열번호 101 서열번호 102
도 1ic 중쇄 아미노산 서열번호 103 서열번호 104 서열번호 105
도 1id 경쇄 아미노산 서열번호 106 서열번호 107 서열번호 108
도 1ja CL10 중쇄 핵산 서열번호 109 서열번호 110 서열번호 111
도 1jb 경쇄 핵산 서열번호 112 서열번호 113 서열번호 114
도 1jc 중쇄 아미노산 서열번호 115 서열번호 116 서열번호 117
도 1jd 경쇄 아미노산 서열번호 118 서열번호 119 서열번호 120
도 1ka SK11 중쇄 핵산 서열번호 121 서열번호 122 서열번호 123
도 1kb 경쇄 핵산 서열번호 124 서열번호 125 서열번호 126
도 1kc 중쇄 아미노산 서열번호 127 서열번호 128 서열번호 129
도 1kd 경쇄 아미노산 서열번호 130 서열번호 131 서열번호 132
도 1la SK12 중쇄 핵산 서열번호 133 서열번호 134 서열번호 135
도 1lb 경쇄 핵산 서열번호 136 서열번호 137 서열번호 138
도 1lc 중쇄 아미노산 서열번호 139 서열번호 140 서열번호 141
도 1ld 경쇄 아미노산 서열번호 142 서열번호 143 서열번호 144
도 1ma SK13 중쇄 핵산 서열번호 145 서열번호 146 서열번호 147
도 1mb 경쇄 핵산 서열번호 148 서열번호 149 서열번호 150
도 1mc 중쇄 아미노산 서열번호 151 서열번호 152 서열번호 153
도 1md 경쇄 아미노산 서열번호 154 서열번호 155 서열번호 156
도 1na SK14 중쇄 핵산 서열번호 157 서열번호 158 서열번호 159
도 1nb 경쇄 핵산 서열번호 160 서열번호 161 서열번호 162
도 1nc 중쇄 아미노산 서열번호 163 서열번호 164 서열번호 165
도 1nd 경쇄 아미노산 서열번호 166 서열번호 167 서열번호 168
도 1oa SK15 중쇄 핵산 서열번호 169 서열번호 170 서열번호 171
도 1ob 경쇄 핵산 서열번호 172 서열번호 173 서열번호 174
도 1oc 중쇄 아미노산 서열번호 175 서열번호 176 서열번호 177
도 1od 경쇄 아미노산 서열번호 178 서열번호 179 서열번호 180
도 1pa SK16 중쇄 핵산 서열번호 181 서열번호 182 서열번호 183
도 1pb 경쇄 핵산 서열번호 184 서열번호 185 서열번호 186
도 1pc 중쇄 아미노산 서열번호 187 서열번호 188 서열번호 189
도 1pd 경쇄 아미노산 서열번호 190 서열번호 191 서열번호 192
도 1qa SK17 중쇄 핵산 서열번호 193 서열번호 194 서열번호 195
도 1qb 경쇄 핵산 서열번호 196 서열번호 197 서열번호 198
도 1qc 중쇄 아미노산 서열번호 199 서열번호 200 서열번호 201
도 1qd 경쇄 아미노산 서열번호 202 서열번호 203 서열번호 204
도 1ra SL18 중쇄 핵산 서열번호 205 서열번호 206 서열번호 207
도 1rb 경쇄 핵산 서열번호 208 서열번호 209 서열번호 210
도 1rc 중쇄 아미노산 서열번호 211 서열번호 212 서열번호 213
도 1rd 경쇄 아미노산 서열번호 214 서열번호 215 서열번호 216
도 1sa CB301_H3L1_A10 중쇄 핵산 서열번호 217 서열번호 218 서열번호 219
도 1sb 경쇄 핵산 서열번호 220 서열번호 221 서열번호 222
도 1sc 중쇄 아미노산 서열번호 223 서열번호 224 서열번호 225
도 1sd 경쇄 아미노산 서열번호 226 서열번호 227 서열번호 228
도 1ta CB301_H3L1_A12 중쇄 핵산 서열번호 229 서열번호 230 서열번호 231
도 1tb 경쇄 핵산 서열번호 232 서열번호 233 서열번호 234
도 1tc 중쇄 아미노산 서열번호 235 서열번호 236 서열번호 237
도 1td 경쇄 아미노산 서열번호 238 서열번호 239 서열번호 240
도 1ua CB301_H3L1_E6 중쇄 핵산 서열번호 241 서열번호 242 서열번호 243
도 1ub 경쇄 핵산 서열번호 244 서열번호 245 서열번호 246
도 1uc 중쇄 아미노산 서열번호 247 서열번호 248 서열번호 249
도 1ud 경쇄 아미노산 서열번호 250 서열번호 251 서열번호 252
도 1va CB301_H3L1_F4 중쇄 핵산 서열번호 253 서열번호 254 서열번호 255
도 1vb 경쇄 핵산 서열번호 256 서열번호 257 서열번호 258
도 1vc 중쇄 아미노산 서열번호 259 서열번호 260 서열번호 261
도 1vd 경쇄 아미노산 서열번호 262 서열번호 263 서열번호 264
도 1wa CB301_H3L1_G11 중쇄 핵산 서열번호 265 서열번호 266 서열번호 267
도 1wb 경쇄 핵산 서열번호 268 서열번호 269 서열번호 270
도 1wc 중쇄 아미노산 서열번호 271 서열번호 272 서열번호 273
도 1wd 경쇄 아미노산 서열번호 274 서열번호 275 서열번호 276
도 1xa CB301_OPALTL_B5 중쇄 핵산 서열번호 277 서열번호 278 서열번호 279
도 1xb 경쇄 핵산 서열번호 280 서열번호 281 서열번호 282
도 1xc 중쇄 아미노산 서열번호 283 서열번호 284 서열번호 285
도 1xd 경쇄 아미노산 서열번호 286 서열번호 287 서열번호 288
도 1ya CB301_OPALTL_E6 중쇄 핵산 서열번호 289 서열번호 290 서열번호 291
도 1yb 경쇄 핵산 서열번호 292 서열번호 293 서열번호 294
도 1yc 중쇄 아미노산 서열번호 295 서열번호 296 서열번호 297
도 1yd 경쇄 아미노산 서열번호 298 서열번호 299 서열번호 300
상기와 같이, CD300c 항원에 높은 결합력을 가지고 특이적으로 결합하는 암의 예방 또는 치료에 사용할 수 있는 25종의 항-CD300c 단클론 항체가 확인되었다.
실시예 1.4. 항-CD300c 단클론 항체의 제작 및 정제
실시예 1.3을 통해 확인한 항-CD300c 단클론 항체의 염기서열을 이용하여 항체를 발현할 수 있는 중쇄와 경쇄를 분리한 발현용 벡터를 제작하였다. 보다 자세하게는, 분석한 CDR 서열을 이용하여 pCIW3.3 벡터에 각각 중쇄와 경쇄를 발현할 수 있도록 유전자를 삽입하여 제작하였다. 제작한 중쇄와 경쇄 발현용 벡터를 PEI(polyethylenimine)와 1:1의 질량비로 섞어 293T 세포에 트랜스펙션하여 항체의 발현을 유도한 후 8일차에 배양액을 원심분리 하여 세포를 제거하고 배양액을 획득하였다. 획득한 배양액은 여과 과정을 거친 후 0.1 M NaH2PO4 및 0.1 M Na2HPO4(pH 7.0)이 혼합되어 있는 용액을 이용하여 재현탁시켰다. 재현탁시킨 용액은 단백질 A 비드(GE healthcare)를 이용한 친화성 크로마토그래피에 의해 정제하고, 최종적으로 용리 완충액(Thermofisher)를 이용하여 용출시켰다.
제작된 항체를 확인하기 위하여, 정제된 항체 5 μg에 각각 환원성 샘플 완충액과 비환원성 샘플 완충액에 첨가하고, pre-made SDS PAGE(Invitrogen)을 이용하여 전기영동을 실시하였고, 이후 쿠마시 블루를 이용하여 단백질을 염색하였다. 비환원 조건의 결과를 도 4에, 환원 조건의 결과를 도 5에 나타내었다.
도 4 및 도 5에 나타낸 바와 같이, 순도 높은 항-CD300c 단클론 항체가 제작 및 정제되었음이 확인되었다.
II. 암 세포에서의 CD300c의 발현 및 항-CD300c 단클론 항체의 CD300c 항원 결합
실험예 1. 암 세포 및 면역세포에서 CD300c의 발현
실험예 1.1. 암 세포주에서 CD300c의 발현 확인
CD300c가 다양한 암 세포에서 발현되고 있는지를 평가하기 위하여, 암 세포주 MKN45(인간 위암 세포주), IM95(인간 위암 세포주), HT-29(인간 대장암 세포주), A549(인간 폐암 세포주), HCT116(인간 대장암 세포주), MDA-MB-231(인간 유방암 세포주), HepG2(인간 간암 세포주) 등의 다양한 세포주를 배양하여 mRNA 및 단백질 수준에서 CD300c의 발현을 평가하였다. 또한, 면역 세포인 THP-1(인간 단핵구 세포주)에 대해서도 평가를 수행하였다. 이때, HEK293T(일반 세포주)를 대조군으로 사용하였다.
한편, 단백질의 발현은 웨스턴 블랏과 형광표지된 세포를 유세포분석(FACS)을 이용하여 확인하였다. 구체적으로, 배양한 각 세포주를 4% 포름알데히드로 고정시킨 후에, 5% 노말(normal) 우혈청 알부민을 이용하여 차단하였다. 이어서, 0.5 μg의 eFluor660 표지된 항-CD300c 항체(Invitrogen)를 이용하여 염색하였다. 그 후, 형광표지된 세포를 유세포분석기(FACS)를 이용하여 확인하였다.
그 결과, 대장암, 폐암, 유방암 등 다양한 암 세포에서 CD300c 항원이 mRNA 및 단백질 수준에서 발현됨을 확인하였다. 또한, 도 6에 도시된 바와 같이, 유세포분석기(FACS)를 이용한 분석 결과, 일반 세포주(HEK293T)와 비교하여 인간 폐암 세포주(A549) 및 인간 단핵구 세포주(THP-1)에서 훨씬 많은 CD300c가 발현됨을 확인하였다.
실험예 1.2. 암 조직 및 면역 세포에서의 CD300c의 발현 확인 (I)
환자의 암 조직에서 CD300c의 발현을 확인하기 위하여, 조직 마이크로어레이를 다음과 같이 시행하였다. 대장암 환자의 조직을 포르말린 고정하고, 파라핀으로 블록을 제작한 후, 미세조직배열기로 지름 2.0 mm, 두께 3 내지 5 um 두께로 박절하였다. 이어서, 슬라이드에 일정 방향으로 부착시켜 건조시켰다. H&E 염색을 통해 암 조직을 염색한 후, 항-CD300c 항체(Invitrogen)를 1:500으로 처리하여 CD300c를 염색하였다. 그 결과, 도 7a에 도시된 바와 같이, 환자의 대장암 조직에서 CD300c가 발현되고 있음을 확인하였다.
CD300c가 대장암 환자의 조직뿐만 아니라 암 조직 내의 면역세포에서도 발현되는지 여부를 확인하기 위하여, 2Х105개의 CT26 세포를 8주령 BALB/c 마우스에 피하 주사(subcutaneous injection)로 이식하였다. 종양 이식 후 25일차(D25)에 희생시켜 항-CD300c 항체를 투여하지 않은 대조군 마우스 6마리에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너(strainer)로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32 항체(입수처: Invitrogen) 차단하고, 세포 생존도 확인용 염색액(입수처: Invitrogen), 및 총 마크로파지 마커인 F4/80(Abcam), CD11b(입수처: Abcam), CD11c(입수처: Abcam), CD3(입수처: Abcam), CD4(입수처: Thermofisher), CD8(입수처: Thermofisher)에 대한 항체와 CD300c 항체(입수처: Sino Biological)로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 7b에 도시된 바와 같이, 마우스의 종양 조직 내에 CD300c를 발현하는 면역 세포가 존재함을 확인하였다. 이는 CD11b와 CD11c 마커를 동시에 발현하고 있는 면역 세포이며, 그 예로는 수지상 세포, 마크로파지 등이 있다. 이러한 결과로부터, 암 조직과 면역 세포 모두에서 CD300c가 발현됨을 확인하였다.
실험예 1.3. 암 조직 및 면역 세포에서의 CD300c의 발현 확인 (II)
인간의 면역 조직과 암 세포에서 CD300c가 발현되는지 여부를 확인하기 위하여, 다음과 같이 조직 마이크로어레이를 시행하였다. 정상 편도 조직과 대장암 환자의 조직을 포르말린 고정하고, 파라핀으로 블록을 제작하였다. 그 후, 정상 편도 조직과 대장암 환자의 조직 중 조직 마이크로어레이를 시행할 위치를 찾은 후, 미세조직배열기로 지름 2.0 mm, 두께 3 내지 5 um 두께로 박절하였다. 이어서, 슬라이드에 일정 방향으로 부착시켜 건조시켰다. H&E 염색을 통해 암 조직을 염색한 후, 항-CD300c 항체(Invitrogen)를 1:500으로 처리하여 CD300c를 염색하였다.
그 결과, 도 8a 및 도 8b에 도시된 바와 같이, 면역 조직인 정상 편도 조직(도 8a)과 환자의 대장암 조직(도 8b) 모두에서 CD300c가 발현되고 있음을 확인하였다. 편도에는 T 세포, 단핵구 등 다수의 면역 세포가 분포하고 있으므로 편도 조직에서 CD300c가 발현된다는 것은 면역 세포에서 CD300c가 발현된다는 것을 의미한다. 본 실험예는 실험예 1.2에서와 마찬가지로 대장암 환자 조직에서 CD300c가 발현됨을 확인한 것이지만, 4명의 대장암 환자 조직 모두에서 CD300c의 발현을 관찰한 것으로 다수의 대장암 조직에서 CD300c가 발현됨을 확인하였다는 의미를 가진다.
실험예 2. 항-CD300c 단클론 항체의 CD300c 항원 인식 및 그에 대한 결합 확인
실험예 2.1. 항-CD300c 단클론 항체의 항원 결합능(binding affinity) 확인
실시예 1에서 제작된 항-CD300c 단클론 항체의 항원 결합능을 확인하기 위하여 결합 ELISA를 실시하였다. 구체적으로, 코팅 완충 용액(0.1M의 탄산나트륨, pH 9.0)에 CD300c 항원(11832-H08H, Sino Biological) 또는 CD300a 항원(12449-H08H, Sino Biological)을 각각 웰당 8 ug/mL의 농도가 되도록 ELISA 플레이트에 분주한 후 실온에서 3시간 동안 반응시켜 항원을 플레이트에 결합시켰다. 이어서, PBST를 이용하여 3회 세척하여 결합되지 않은 항원을 깨끗이 제거해 준 후에, 각각의 웰에 5% BSA(bovine serum albumin)가 첨가되어 있는 PBST를 300 μL 첨가하고 실온에서 1시간 동안 반응시키고, PBST를 이용하여 다시 세척하였다. 그 후, 항-CD300c 단클론 항체를 4배 희석하여 넣고 1시간 동안 실온에서 반응시켜 항원과 결합시켰다. 1시간 후에 PBST를 이용하여 3회 세척하여 결합되지 않은 항-CD300c 단클론 항체를 제거해준 후에, 4 μg/mL의 검출용 항체(HRP conjugated anti-Fc IgG)를 첨가하고 다시 실온에서 1시간 동안 반응시켰다. 그 후, PBST를 이용하여 결합되지 않은 검출용 항체를 제거해준 후에 TMB 용액을 첨가하고 10분 동안 반응시켜 발색 시킨 후에, 2 N의 황산 용액을 첨가하여 발색 반응을 종료시키고, 450 nm에서 흡광도를 측정하여, CD300c 항원에 특이적으로 결합하는 항체를 확인하였다. 그 결과는 표 6 및 도 9에 나타내었다.
Figure PCTKR2022006939-appb-img-000001
표 6에 나타난 바와 같이, 항-CD300c 단클론 항체의 EC50(The effective concentration of drug that causes 50% of the maximum response)을 측정한 결과, 4개 클론(CK3, CL8, SK15, SK16)을 제외하고 나머지 14개 클론 모두 0.2 μg/mL 이하로서 결합 친화력(Binding affinity)이 높은 것을 확인하였다. 또한, 도 9에 도시된 바와 같이, 결합 ELISA의 결과에 따른 S자형 곡선(sigmoid curve)에서도 본 발명의 항-CD300c 단클론 항체가 강한 결합력으로 CD300c 항원에 결합하는 것을 확인할 수 있었다.
실험예 2.2. 항-CD300c 단클론 항체의 세포 항원 인식 확인
항-CD300c 단클론 항체(CL7)가 세포 항원을 인식하는 것을 확인하기 위하여, FACS 결합을 실시하였다.
293T 세포(ATCC)와 THP-1 세포(ATCC)에서 CD300c를 과발현시킨 후 이 세포를 각 미세 원심분리 튜브당 2x105개의 세포로 분주하였다. 그 후, 10 ug/ml부터 3배로 연속 희석한 항-CD300c 단클론 항체를 30분간 CO2 인큐베이터에서 반응시키고, FACS 완충액으로 2회 세척하였다. 그 후, 1:100으로 FACS 완충액에 희석한 FITC-접합 항 인간 IgG(H+L)을 30분간 CO2 인큐베이터에서 반응시키고, FACS 완충액으로 2회 세척하였다. 이어서, Beckman coulter 사의 CytoFLEX 기기로 FITC 신호를 측정한 후, CytExpert 프로그램을 사용하여 MFI 값을 구하였다. 이렇게 얻은 MFI 값을 사용하여 sigmaplot 프로그램에 의해 S자형 곡선을 그려 EC50(The effective concentration of drug that causes 50% of the maximum response)을 계산하였다. 그 결과, 293T 세포의 경우 2.7 nM, THP-1 세포의 경우 2.6 nM의 EC50을 얻었다.
도 10에 도시된 바와 같이, FACS 결합의 결과에 따른 S자형 곡선에서 실시예 1에서 제조한 항-CD300c 단클론 항체는 강한 결합력으로 THP-1 및 293T 세포 표면에서 과발현된 CD300c에 결합하였다. 따라서, 항-CD300c 단클론 항체는 CD300c에 항원 특이적으로 결합한다는 것이 확인되었다.
실험예 2.3. CD300c 항원에 대한 항-CD300c 단클론 항체의 결합력 확인 (I): 결합 ELISA
CD300c 항원(250 ug/mL)을 코팅 완충용액(0.1 M 탄산나트륨, pH 9.0)에 800 ng/mL의 농도로 희석하여 96-웰 마이크로플레이트에 100 uL씩 넣고, 4℃에서 밤새 인큐베이션시켰다. 다음날, PBST 200 uL로 3회 세척하였다. 그 후, 차단 완충용액(5% 스킴 밀크)을 200 uL씩 넣고, 실온에서 1시간 동안 차단하였다. 항-CD300c 단클론 항체인 CL7을 PBS에 200 ug/mL로 희석하여 나노드롭(Nanodrop; 제품명: NanoDrop One/Onec, 제조사: Thermo Fisher Scientific)으로 측정하여 농도를 확인하였다. 그 후, CL7을 PBS로 10 ug/mL로부터 4진 희석하여 각각 100 uL씩 첨가한 후 실온에서 1시간 동안 반응시켰다. 반응 후, PBST 200 uL로 3회 세척하였다. 2차 항체(접합 항-Fc IgG)를 차단 완충용액에 1:10,000으로 희석하여 100 uL를 첨가한 후, 실온에서 1시간 동안 반응시켰다. 그 후, PBST 200 uL를 첨가하여 3회 세척하였다. 이어서, TMB와 과산화수소를 1:1로 섞고 각 웰에 100 uL씩 넣은 후 실온에서 7분 내지 9분 동안 반응시켰다. 그 후, 1 N 황산 50 ul를 첨가하여 발색을 멈춘 후, 마이크로플레이트 리더(제품명: Varioskan LUX)를 이용하여 450 nm에서 측정하여 결합 친화도 결과를 얻었다.
그 결과, 도 11에 도시된 바와 같이, 항-CD300c 단클론 항체가 농도 의존적인 방식으로 CD300c에 결합하는 것을 확인하였고, 이는 항-CD300c 단클론 항체가 항원인 CD300c에 대해 우수한 결합력과 특이성을 가짐을 나타낸다.
실험예 2.4. CD300c 항원에 대한 항-CD300c 단클론 항체의 결합력 확인 (II): 표면 플라즈몬 공명(SPR)
항원인 CD300c와 항-CD300c 단클론항체인 CL7 간의 결합 친화도를 확인하기 위하여 표면 플라즈몬 공명 실험을 진행하였다.
CD300c를 CM5 칩에 고정하기 위하여 5 ug/ml의 CD300c를 10 mM 아세테이트 완충용액(pH 5.5)에 희석하였다. 그 후, 유량을 모두 동일하게 10 ml/분으로 하고, 각각 목표 RU를 300 RU로 설정하였다. 0.2 M EDC와 0.05 M NHS의 혼합물로 활성화를 진행하고 1 M 에탄올아민로 차단하여, CD300c의 최종 RU가 399.2 RU가 되도록 고정화하였다. 그 후, CL7을 PBSP에 각각 0, 0.195, 0.39, 0.78, 1.56, 3.125, 6.25 ug/ml 농도로 희석하고, 결합 시간을 240초로 하고, 해리 시간을 900초로 하고, 유량을 30 ul/분으로 설정하여 카이네틱스/친화도(Kinetics/Affinity) 시험을 진행하였다. 그 후, 50 mM NaOH를 30 ul/분의 속도로 30초 동안 흘려보내 표면을 재생시켰다.
그 결과, 도 12에 도시된 바와 같이, KD 값은 5.199E-10 M로 분석되었고, 항-CD300c 단클론 항체의 결합 친화도는 나노몰 이하(subnanomol) 수준인 0.52 nM로 확인되었다. 이는 항원에 대한 항-CD300c 단클론 항체의 결합력이 높음을 의미한다.
실험예 2.5. CD300c 항원에 대한 항-CD300c 단클론 항체의 결합 특이성 확인 (I)
항-CD300c 단클론 항체인 CL7이 다른 B7 패밀리 단백질에는 결합하지 않고, CD300c에만 특이적으로 결합하는 것을 확인하기 위해 결합 ELISA를 실시하였다. 보다 자세하게는, 코팅 완충용액(0.1 M 탄산나트륨, pH 9.0)에 CD300c 항원, CD300a 항원 또는 B7 패밀리 단백질 항원 7종(PD-L1[B7-H1](Sino Biological), ICOS Ligand[B7-H2](Sino Biological), CD276[B7-H3](Sino Biological), B7-H4(Sino Biological), CD80[B7-1](Sino Biological), CD86[B7-2](Sino Biological), CD273[PD-L2](Sino Biological))을 각각 웰당 8 μg/mL의 농도가 되도록 ELISA 플레이트에 코팅한 후, 2℃내지 8℃에서 밤새 인큐베이션하여 항원을 플레이트에 결합시켰다. PBST를 이용하여 3회 세척하여 결합되지 않은 항원을 깨끗이 제거한 후, 각각의 웰에 차단 완충용액(PBST 중의 5% 탈지유) 300 ml를 첨가하였다. 이어서, 실온에서 1시간 동안 차단한 후, PBST를 이용하여 다시 세척하였다. 그 후, CL7을 PBS에 4진 희석하고, 1시간 동안 실온에서 반응시켜 항원과 결합시켰다. 1시간 후, PBST를 이용하여 3회 세척하였다. 이어서, 차단 완충용액에 4 μg/mL로 희석한 2차 항체(HRP-접합 항-Fc IgG)를 첨가하고, 다시 실온에서 1시간 동안 반응시켰다. 그 후, PBST를 이용하여 결합되지 않은 검출용 항체를 제거한 후, TMB 용액을 첨가하고 10분 동안 반응시켜 발색시켰다. 이어서, 2 N 황산 용액을 첨가하여 발색 반응을 종료시키고, 450 nm에서 흡광도를 측정하여, CD300c 항원에 특이적으로 결합하는 항체를 확인하였다.
그 결과, 도 13에 도시된 바와 같이, 항-CD300c 단클론 항체는 다른 유사 단백질에는 결합하지 않고, CD300c만을 특이적으로 인식하는 것을 확인하였다.
실험예 2.6. CD300c 항원에 대한 항-CD300c 단클론 항체의 결합 특이성 확인 (II)
항-CD300c 단클론 항체인 CL7의 CD300c 항원에 대한 특이성을 확인하기 위하여, CL7이 기존에 CD300c 항원과 길항 작용을 하는 것으로 알려져 있을 뿐만 아니라 그와 단백질 서열이 유사한 CD300a 항원에 대해 교차 반응성을 나타내는지 여부를 추가로 확인하였다. 보다 자세하게는, CD300a 항원(입수처: Sino Biological)을 0.039, 0.63, 및 10 μg/mL의 농도로 처리한 후, 실험예 2.1과 동일한 방법으로 결합 ELISA를 실시하였다.
그 결과, 도 14에 도시된 바와 같이, 항-CD300c 단클론 항체는 CD300c 이외의 항원에는 결합하지 않아 CD300c 항원에만 높은 결합 특이성을 나타내는 것을 확인할 수 있었다.
실험예 2.7. CD300c 발현량에 따른 다양한 암 환자의 전체 생존 기간 비교
미국 TCGA(The Cancer Genome Atlas) 데이터베이스에서 얻은 신장암(530명), 췌장암(177명) 및 간암(370명) 환자의 데이터를 이용하여 CD300c의 발현 수준에 따른 전체 생존기간(Overall survival)을 비교하였다. 먼저, 각 암환자를 CD300c 발현량의 높고 낮음에 따라 분류하였다. 이러한 높고 낮음은 암종별 CD300c 발현량의 평균과 비교하여 구분한 것이다. 신장암 환자의 경우, 394명은 낮은 CD300c의 발현 수준을 나타냈고, 136명은 높은 CD300c의 발현 수준을 나타냈다. 췌장암 환자의 경우, 57명은 낮은 CD300c의 발현 수준을 나타냈고, 120명은 높은 CD300c의 발현 수준을 나타냈다. 한편, 간암 환자의 경우, 192명은 낮은 CD300c의 발현 수준을 나타냈고, 178명은 높은 CD300c의 발현 수준을 나타냈다. 각 암환자의 CD300c 발현량에 따른 전체 생존기간을 Kaplan-Meier 방법으로 분석하였다. 이어서, log-순위 검정으로 CD300c 발현 수준이 높은 환자군과 낮은 환자군의 생존기간을 비교하였다.
그 결과, 도 15에 도시된 바와 같이, CD300c 발현 수준이 낮은 환자에 비해 CD300c 발현 수준이 높은 환자가 생존기간이 짧은 것을 확인하였고, 이는 P 값을 고려해 볼 때 유의미한 결과임을 나타낸다. 이러한 결과는 CD300c의 발현이 암환자의 생존기간과 매우 연관성이 있음을 의미할 뿐만 아니라, CD300c의 발현 또는 활성을 억제하였을 때 암 치료 효과 또는 생존기간 증가 효과를 기대할 수 있음을 의미한다.
III. 항-CD300c 단클론 항체의 항암 효과
실험예 3. 항-CD300c 단클론 항체의 투여에 따른 항암 효과 확인
실험예 3.1. T 세포 활성화 효과 확인
실시예 1에서 제조된 항-CD300c 단클론 항체가 T 세포 활성화를 통해 항암 효과를 나타낼 수 있는지 확인하기 위하여, 인간 T 세포에서 항-CD300c 단클론 항체의 처리에 따른 IL-2(Interleukin-2)의 생산량을 확인하였다. IL-2는 T 세포의 성장, 증식 및 분화를 도와주는 면역 인자로서, IL-2의 생성량이 증가하는 것은 T 세포의 분화, 증식, 및 성장이 증가하도록 유도하는 자극이 증가됨으로써 T 세포를 활성화시킨다는 것을 의미한다. 구체적으로, 각각 2 μg/웰의 농도가 되도록 항-CD3 단클론 항체와 항-CD28 단클론 항체를 96-웰 플레이트에 첨가하고 24시간 동안 고정시킨 후에, 1x105 세포/웰의 Jurkat T 세포(인간 T 림프구 세포주)와 10 μg/웰의 항-CD300c 단클론 항체를 함께 처리하였다. 이어서, IL-2의 생성량을 ELISA 키트(IL-2 Quantikine kit, R&D Systems)를 이용하여 측정한 후에, 항-CD300c 단클론 항체를 처리하지 않은 대조군과 비교하였다. 그 결과를 도 16에 나타내었다.
도 16에 도시된 바와 같이, 항-CD3 단클론 항체와 항-CD28 단클론 항체를 처리하여 활성화시킨 Jurkat T 세포에 항-CD300c 단클론 항체를 처리한 경우에 IL-2의 생성량이 증가된 것을 확인하였으며, 상기 결과를 통하여, 항-CD300c 단클론 항체가 T 세포를 활성화시킬 수 있다는 것과, 이를 통하여, 항암 면역 작용을 유발하여 암 조직의 성장을 억제할 수 있다는 것을 확인할 수 있었다.
실험예 3.2. M1 마크로파지로의 분화 촉진 확인 (I): 마크로파지 분화 마커(TNF-α) 생성량 측정
실시예 1에서 선별된 항-CD300c 단클론 항체가 단핵구 세포의 M1 마크로파지로의 분화를 촉진시킬 수 있는지 확인하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰로 THP-1(인간 단핵구 세포주)을 분주하고, 10 μg/mL의 항-CD300c 단클론 항체 및/또는 100 ng/mL의 LPS를 처리하였다. 48시간 동안 반응시킨 후에, M1 마크로파지의 분화 마커인 TNF-α(Tumor necrosis factor-α)의 생성량을 ELISA 키트(Human TNF-α Quantikine kit, R&D Systems)를 이용하여 측정하였다. 그 결과를 도 17 및 도 18에 나타내었다.
도 17에 도시된 바와 같이, LPS를 단독으로 처리한 대조군(Con)과 비교하여 CL4, CL7, CL10, 및 SL18 항-CD300c 단클론 항체가 약 2배 이상 TNF-α의 생성량이 증가된 것을 확인하였다.
또한, 도 18에 도시된 바와 같이, LPS를 단독으로 처리한 대조군(Con)과 비교하여 LPS의 처리 없이 항-CD300c 단클론 항체를 단독으로 처리한 실험군들에서 모두 대조군과 비교하여 TNF-α의 생성량이 증가된 것을 확인하였다.
실험예 3.3. M1 마크로파지로의 분화능의 항체 농도 의존적 증가 확인
항-CD300c 단클론 항체가 M1 마크로파지로의 분화를 유도하는 것이 농도에 따라 증가된다는 것을 확인하기 위하여, 실험예 3.2와 동일한 방법으로 TNF-α의 생성량을 확인하였다. 항-CD300c 단클론 항체를 10, 1, 및 0.1 μg/mL의 농도로 처리하였다. 그 결과를 도 19에 나타내었다. 도 19에 도시된 바와 같이, 항-CD300c 단클론 항체(CL7, CL10 또는 SL18)의 처리 농도가 증가할수록 TNF-α의 생성량 또한 증가되는 것을 확인하였다.
보다 세부적인 농도를 확인하기 위하여, 항-CD300c 단클론 항체(CL7)를 10, 5, 2.5, 1.25, 0.625, 0.313, 0.157, 및 0.079 μg/mL의 농도로 처리하고, TNF-α의 생성량을 확인하였다. 그 결과를 도 20에 나타내었다. 도 20에 도시된 바와 같이, TNF-α의 생성량은 처리된 항-CD300c 단클론 항체의 농도가 증가함에 따라 증가되는 것을 확인하였다.
실험예 3.4. M1 마크로파지로의 분화능 촉진 확인 (II): 세포 형태 관찰
항-CD300c 단클론 항체를 단핵구 세포에 처리하였을 때 M1 마크로파지로의 분화 양상을 세포 형태로 확인하기 위하여, THP-1에 10 μg/ml의 항-CD300c 단클론 항체를 처리하고, 48시간 동안 배양한 후에 세포의 형태를 현미경 하에서 관찰하였다. 그 결과를 도 21에 나타내었다.
도 21에 도시된 바와 같이, 항-CD300c 단클론 항체를 처리한 실험군(CL7)의 경우에 THP-1 세포의 형태가 부유 세포(suspension cell)에서 M1 마크로파지의 형태인 원형의 부착 세포로 변하는 것을 확인하였다. 상기 결과를 통하여, 항-CD300c 단클론 항체의 처리에 의하여 단핵구 세포의 M1 마크로파지로의 분화가 촉진되는 것을 확인하였다.
실험예 3.5. M1 마크로파지로의 분화능 촉진 재확인
CL7 항-CD300c 단클론 항체가 인간 단핵구 세포의 M1 마크로파지로의 분화를 촉진시키는지 재확인하기 위하여, TNF-α, IL-1β(Interleukin-1β), 및 IL-8(Interleukin-8)의 분비량을 ELISA 키트를 이용하여 측정하였다. 보다 자세하게는 96-웰 플레이트에 1.5x104 세포/웰로 THP-1을 분주하고, 10 μg/mL의 항-CD300c 단클론 항체를 처리하였다. 48시간 동안 반응시킨 후에, M1 마크로파지의 분화 마커인 TNF-α, IL-1β및 IL-8의 생성량을 ELISA 키트(Human TNF-α Quantikine kit, R&D Systems)를 이용하여 측정하였다. 그 결과를 도 22에 나타내었다.
도 22에 도시된 바와 같이, 항-CD300c 단클론 항체를 처리하지 않은 대조군(Con)과 비교하여 항-CD300c 단클론 항체를 처리한 실험군(CL7)에서 세 종류의 M1 마크로파지 분화 마커가 모두 증가된 것을 확인하였다.
실험예 3.6. M2 마크로파지의 M1 마크로파지로의 재분화능 확인
항-CD300c 단클론 항체가 M2 마크로파지를 M1 마크로파지로 재분화시킬 수 있는지 확인하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰로 THP-1을 분주하고, 320 nM의 PMA를 처리하고 6시간 동안 전처리한 후에, 20 ng/mL의 IL-4(Interleukin-4) 및 IL-13(Interleukin-13), 그리고 10 μg/mL의 항-CD300c 단클론 항체를 처리하고 18시간 동안 반응시켰다. TNF-α, IL-1β및 IL-8의 생성량을 ELISA 키트로 확인하였다. 그 결과를 도 23 내지 25에 나타내었다.
도 23 내지 도 25에 도시된 바와 같이, PMA를 전처리하지 않은 경우에는 IL-4 및 IL-13과 항-CD300c 단클론 항체를 함께 처리한 실험군에서 TNF-α, IL-1β 및 IL-8의 생성량이 증가되었으며, PMA를 전처리한 경우에도 동일하게 IL-4 및 IL-13과 항-CD300c 단클론 항체를 함께 처리한 실험군에서 TNF-α, IL-1β 및 IL-8의 생성량이 증가된 것을 확인하였다. 상기 결과를 통하여, 항-CD300c 단클론 항체가 M2 마크로파지를 다시 M1 마크로파지로 효과적으로 재분화시킬 수 있다는 것을 확인할 수 있었다.
실험예 3.7. M1 마크로파지로의 분화능 및 재분화능 확인
항-CD300c 단클론 항체의 M1 마크로파지로의 분화능 및 재분화능을 확인하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰로 THP-1을 분주하고, 10 μg/mL의 항-CD300c 단클론 항체를 48시간 동안 전처리하고, 100 ng/mL의 PMA, 100 ng/mL의 LPS, 그리고 20 ng/mL의 IL-4 및 IL-13을 처리하고 24시간 동안 반응시켰다. TNF-α의 생성량을 ELISA 키트로 확인하였다. 그 결과를 도 26에 나타내었다.
도 26에 도시된 바와 같이, PMA를 단독으로 처리한 M0 마크로파지 대조군, LPS를 단독으로 처리한 M1 마크로파지 대조군, 그리고 IL-4 및 IL-13을 단독으로 처리한 M2 마크로파지 대조군과 비교하여 항-CD300c 단클론 항체를 전처리한 실험군에서 모두 TNF-α의 생성량이 유의성있게 증가된 것을 확인하였다. 상기 결과를 통하여, 항-CD300c 단클론 항체는 M0 마크로파지의 M1 마크로파지로의 분화능, THP-1의 M1 마크로파지로의 분화능 및 M2 마크로파지의 M1 마크로파지로의 재분화능이 우수하다는 것을 확인할 수 있었다.
실험예 4. 항암 효과 관찰에 의한 항-CD300c 단클론 항체의 종간 교차 반응성 확인
실험예 4.1. 인간 암 세포 성장 억제 효과의 확인
CD300c를 표적으로 하는 단클론 항체가 암 세포의 성장에 미치는 영향을 확인하기 위하여 A549(인간 폐암 세포주)를 이용하여 세포 증식 분석을 실시하였다. 보다 자세하게는, 96-웰 플레이트에 0% 우태아혈청(fetal bovine serum; FBS) 조건에서는 2x104 세포를 분주하였고, 0.1% 우태아혈청 조건에서는 6x103 세포를 분주하였다. 이어서, 10 μg/mL의 항-CD300c 단클론 항체를 처리하고 5일 동안 배양하였다. CCK-8(DOJINDO)을 처리하고 OD450nm에서 흡광도를 측정하여 항-CD300c 단클론 항체의 암 세포 성장 억제 효과를 확인하였다. 그 결과를 도 27 및 도 28에 나타내었다.
도 27에 도시된 바와 같이, 0% FBS 조건에서 SK11 및 SK17을 제외하고는, 모두 암 세포의 증식을 억제하는 효과를 나타내는 것을 확인하였다.
도 28에 도시된 바와 같이, 0.1% FBS 조건에서는 실험에 사용한 모든 항-CD300c 단클론 항체가 암 세포의 증식을 억제하는 효과를 나타내는 것을 확인하였다.
실험예 4.2. 항-CD300c 단클론 항체의 농도별 암 세포 성장 억제 효과 확인
항-CD300c 단클론 항체의 농도에 따른 암 세포 성장 억제 효과를 확인하기 위하여, 96-웰 플레이트에 0% 우태아혈청(fetal bovine serum; FBS) 조건에서는 2x104 A549 세포를 분주하고, 10 μg/mL의 항-CD300c 단클론 항체를 처리하여 5일 동안 배양하였다. 이어서, CCK-8(DOJINDO)을 처리하고 3시간 동안 반응시킨 후에, OD450nm에서 흡광도를 측정하여 항-CD300c 단클론 항체의 암 세포 성장 억제 효과를 확인하였다. 그 결과를 도 29에 나타내었다.
도 29에 도시된 바와 같이, 항-CD300c 단클론 항체의 농도가 증가함에 따라 암 세포의 성장이 억제되는 것을 확인하였다.
실험예 4.3. 마우스에서 M1 마크로파지로의 분화능의 증가 확인
항-CD300c 단클론 항체가 마우스 마크로파지에서 M1 마크로파지로의 분화능을 촉진시킬 수 있는지 확인하기 위하여, 96-웰 플레이트에 마우스 마크로파지(Raw264.7)를 1x104 세포/웰의 농도로 분주한 후에, 10 μg/mL의 항-CD300c 단클론 항체를 함께 처리하고 배양하였다. TNF-α의 생성량을 ELISA 키트로 확인하였다. 그 결과를 도 30에 나타내었다.
도 30에 도시된 바와 같이, 항-CD300c 단클론 항체를 처리한 실험군들에서는 TNF-α의 생성량이 증가된 것을 확인하였으며, 상기 결과를 통하여, 항-CD300c 단클론 항체가 인간뿐만 아니라 마우스에서도 동일하게 작용하여 M1 마크로파지로의 분화를 촉진하는 교차 반응성을 가짐을 알 수 있다.
실험예 4.4. 마우스 암 세포 성장 억제 효과의 확인
항-CD300c 단클론 항체인 CL7, CL10 및 SL18이 항암 효과를 나타내는지 확인하기 위하여, CT26(마우스 대장암 세포주)을 96-웰 플레이트에 1x104 세포/웰의 농도로 분주하고, 10 ug/mL의 단클론 항체를 처리하여 5일 동안 배양한 후, CCK-8 검출을 통해 세포 증식 분석을 실시하였다.
도 31에 도시된 바와 같이, 항-CD300c 단클론 항체는 각각 대조군 대비 66%(CL7), 15%(CL10), 및 38%(SL18)의 암 세포 증식 억제 효과를 발휘하므로 마우스에서 암 치료 효과를 나타내는 것을 확인하였다. 이로써, 항-CD300c 단클론 항체는 인간뿐만 아니라 마우스에서도 동일하게 작용하여 항암 효과를 나타내는 교차 반응성을 가짐을 알 수 있다.
실험예 5. 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 시험관내 항암 효과 비교
아래 실험예에서 사용된 면역 항암제 각각의 입수처는 다음과 같다: 임핀지(AstraZeneca) 및 키트루다(Merck Sharp & Dohme).
실험예 5.1. 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 M1 마크로파지로의 분화능 비교: 3가지 분화 마커(TNF-α, IL-1β 및 IL-8) 생성량 측정
항-CD300c 단클론 항체와 기존 면역 항암제의 M1 마크로파지 분화능을 비교하기 위하여, 실험예 3.2와 동일한 방법으로 TNF-α의 생성량을 ELISA 키트로 확인하였다. 기존 면역 항암제로는 임핀지(Imfinzi)를 10 μg/mL의 농도로 처리하였다. 그 결과를 도 32에 나타내었다.
도 32에 도시된 바와 같이, 임핀지(Imf)를 단독으로 처리한 비교군보다 항-CD300c 단클론 항체가 TNF-α의 생성량을 현저히 증가시키는 것을 확인하였다. 상기 결과를 통하여, 기존에 알려져 있는 면역 항암제보다 항-CD300c 단클론 항체가 M1 마크로파지로의 분화능을 현저히 증가시키는 것을 확인할 수 있었다.
다른 면역 항암제와의 비교를 위하여, 항-PD-L1 면역 항암제인 임핀지, 항-PD-1 면역 항암제인 키트루다(Keytruda), 그리고 아이소타입 대조군(이뮤노글로불린 G) 항체를 각각 10 μg/mL의 농도로 처리하고, TNF-α, IL-1β 및 IL-8의 생성량을 ELISA 키트로 확인하였다. 그 결과를 도 33 내지 도 35에 나타내었다.
도 33 내지 도 35에 도시된 바와 같이, 임핀지, 키트루다, IgG 항체와 비교하여 항-CD300c 단클론 항체가 TNF-α, IL-1β 및 IL-8의 생성량을 현저히 증가시키는 것을 확인하였으며, 상기 결과를 통하여, 항-CD300c 단클론 항체가 기존 면역 항암제와 비교하여 M1 마크로파지로의 분화 촉진을 현저히 증가시킬 수 있다는 것을 확인할 수 있었다.
실험예 5.2. 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 M0 마크로파지의 M1 마크로파지로의 분화능 비교
항-CD300c 단클론 항체와 면역 항암제의 M0 마크로파지에서 M1 마크로파지로의 분화능을 비교하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰로 THP-1을 분주하고, 10 μg/mL의 항-CD300c 단클론 항체, 10 μg/mL의 임핀지, 및/또는 200 nM의 PMA(phorbol-12-myristate-13-acetate)를 처리하였다. 48시간 동안 반응시킨 후에, TNF-α의 생성량을 ELISA 키트를 이용하여 측정하였다. 그 결과를 도 36에 나타내었다.
도 36에 도시된 바와 같이, 면역 항암제인 임핀지를 단독으로 처리한 비교군의 경우에는 TNF-α가 생성되지 않았지만, 항-CD300c 단클론 항체를 단독으로 처리한 실험군에서는 TNF-α의 생성량이 증가된 것을 확인하였다. 또한, THP-1 세포에 PMA를 처리하여 M0 마크로파지로 분화시켰을 때에도, 임핀지를 처리한 실험군과 비교하여, 항-CD300c 단클론 항체를 처리한 실험군에서 현저히 높은 TNF-α 생성량을 확인하였다. 상기 결과를 통하여, 항-CD300c 단클론 항체가 기존 면역 항암제와 비교하여 M0 마크로파지의 M1 마크로파지로의 분화를 촉진시키는 것을 확인할 수 있었다.
실험예 5.3. 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 M1 마크로파지로의 분화능 비교
항-CD300c 단클론 항체와 기존 면역 항암제의 M1 마크로파지로의 분화능을 비교하기 위하여, 실험예 3.2와 동일한 방법으로 TNF-α의 생성량을 확인하였다. 그 결과를 도 37에 나타내었다.
도 37에 도시된 바와 같이, LPS를 처리하여 단핵구 세포를 M1 마크로파지로 분화시켰을 때, 임핀지와 LPS를 함께 처리한 실험군에서는 TNF-α의 생성량이 유의성있는 차이를 나타내지 않았으나, 항-CD300c 단클론 항체와 LPS를 함께 처리한 실험군에서는 항-CD300c 단클론 항체를 단독으로 처리한 실험군과 비교하여 TNF-α의 생성량이 유의성있게 증가된 것을 확인하였다.
실험예 5.4. 항-CD300c 단클론 항체와 기존 면역 항암제 사이의 암 세포 성장 억제 효과 비교
항-CD300c 단클론 항체와 기존 면역 항암제와의 암 세포 성장 억제 효과를 비교하기 위하여, A549(인간 폐암 세포주)와 MDA-MB-231 (인간 유방암 세포주)를 이용하여 세포 성장 억제 효과를 확인하였다. 보다 자세하게는, 96-웰 플레이트에 0% 우태아혈청(fetal bovine serum; FBS) 조건에서는 2x104 세포를 분주하였고, 0.1% 우태아혈청 조건에서는 6x103 세포를 분주하였다. 이어서, 10 μg/mL의 항-CD300c 단클론 항체를 처리하고 5일 동안 배양한 후에, 광학 현미경으로 관찰하였다. 그 결과를 도 38 및 도 39에 나타내었다.
도 38에 도시된 바와 같이, A549 세포주에서는 면역 항암제인 임핀지보다 항-CD300c 단클론 항체가 암 세포의 증식을 더욱 효과적으로 억제하는 것을 확인하였다.
도 39에 도시된 바와 같이, MDA-MB-231 세포주에서는 면역 항암제인 임핀지보다 항-CD300c 단클론 항체가 암 세포의 증식을 더욱 효과적으로 억제하는 것을 확인하였다.
실험예 6. 항-CD300c 단클론 항체의 생체내 항암 효과 확인
실험예 6.1. 종양 관련 마크로파지(TAM)의 증가 확인
항-CD300c 단클론 항체인 CL7이 종양 관련 마크로파지에 미치는 영향을 생체내 조건에서 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식(syngeneic) 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF(specific pathogen free) 시설에서 진행하였다. 대장암 세포주를 이식하고 12일 후에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체를 각각 투여하고, 대조군(control)으로는 인산염완충용액(phosphate buffered saline; PBS)을 동량 주사하였다. 1주일에 2회씩 2주간 총 4회에 걸쳐 마우스에 복강내 주사(Intraperitoneal injection)로 25 mg/kg의 용량으로 주사하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액, 및 총 마크로파지 마커인 F4/80 및 M1 마크로파지 마커인 iNOS에 대한 항체(입수처: Abcam)로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 40에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독으로 처리하였을 때, 마우스 암 조직에서 M1 형태의 종양 관련 마크로파지의 발현량이 증가함을 확인하였다. 이는 항-CD300c 단클론 항체의 투여를 통해 암 조직 내의 종양 관련 마크로파지가 증가하여 암의 성장을 억제함을 의미한다.
실험예 6.2. 세포독성 T 세포의 증가 확인
항-CD300c 단클론 항체인 CL7이 CD8+ T 세포에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 6.1에서와 같이 동종이식 마우스 종양 모델을 제작하여 같은 농도로 투여하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액 및 CD8+ 항체(입수처: Abcam) 및 CD4+ 항체(입수처: Abcam)로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 41에 도시된 바와 같이, 항-CD300C 단클론 항체를 단독으로 처리하였을 때 종양 내 CD8+ T 세포의 수가 증가하는 것을 확인하였다. 이는 항-CD300c 단클론 항체의 투여가 종양내 세포독성 T 세포를 증가시켜 암 치료 효과를 나타냄을 의미한다.
실험예 6.3. 세포독성 T 세포의 종양 특이적 증가 확인
항-CD300c 단클론 항체인 CL7이 종양 특이적인 방식으로 CD8+ T 세포 수를 증가시키는지 확인하기 위하여, 실험예 6.1에서와 같이 동종이식 마우스 종양 모델을 제작하여 같은 농도로 투여하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액 및 AH1 테트라머 항체(입수처: Abcam)로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 42에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독으로 투여하였을 때 CD8+ T 세포에서 CT26 종양 마커 인자인 AH1-테트라머의 발현이 증가함에 따라 CD8+ T 세포는 종양(CT26) 특이적인 방식으로 그 수가 증가하였음을 확인하였다. 이는 항-CD300c 단클론 항체의 투여가 CT26 암 세포를 표적으로 하여 이를 억제하기 위해 CD8+ T 세포를 증가시켰음을 의미한다.
실험예 6.4. 세포독성 T 세포의 활성 증가 확인
항-CD300c 단클론 항체인 CL7이 CD8+ T 세포에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 6.1에서와 같이 동종이식 마우스 종양 모델을 제작하여 같은 농도로 투여하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 비장을 채취하였다. 이어서, ELISPOT 분석법을 통해 IFN-g를 측정하여 결과를 확인하였다. 구체적으로, R&D Systems(#EL485)의 Mouse IFN-g ELISpot 키트를 구매하여 키트의 프로토콜에 따라 IFN-g를 측정하였다.
그 결과, 도 43에 도시된 바와 같이, 항-CD300C 단클론 항체를 단독으로 처리하였을 때 IFN-g의 발현이 증가함을 확인하였다. 이는 항-CD300C 단클론 항체의 단독 투여가 CD8+ T 세포 수 증가를 가져옴(도 41 참조)에 더해 CD8+ T 세포의 활성 증가를 또한 가져옴으로써, 다방면에서 암 성장을 억제하여 암 치료 효과를 나타냄을 의미한다.
실험예 6.5. 조절 T 세포 대비 세포독성 T 세포의 증가 확인
항-CD300c 단클론 항체인 CL7이 조절 T 세포 대비 세포독성 T 세포의 증가에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 6.1에서와 같이 동종이식 마우스 종양 모델을 제작하여 같은 농도로 투여하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액, Treg 마커 단백질인 CD25(입수처: Sino Biological)와 Foxp3(입수처: Abcam)에 대한 항체(입수처: Sino Biological), CD3+ 항체 및 CD8+ 항체로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 44에 도시된 바와 같이, 항-CD300C 단클론 항체를 단독으로 처리하였을 때 CD8+ T 세포가 Treg T 세포 대비 증가하는 것을 확인하였다. 이는 항-CD300C 단클론 항체의 투여로 그 수가 증가한 CD8+ T 세포가 암 성장을 더욱 억제함을 의미한다.
실험예 6.6. 세포독성 T 세포, 조절 T 세포 및 종양 관련 마크로파지에 대한 영향 확인
항-CD300c 단클론 항체인 CL7이 세포독성 T 세포, 조절 T 세포 및 종양 관련 마크로파지에 대해 미치는 영향을 확인하기 위하여, 다음과 같은 실험을 수행하였다. 실험예 6.1에서와 같이 동종이식 마우스 종양 모델을 제작하였다. 대장암 세포주를 이식하고 12일 후에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체를 각각 투여하고, 대조군으로는 인산염완충용액(PBS)을 동량 주사하였다. 1주일에 2회씩 2주간 총 4회에 걸쳐 마우스에 복강내 주사로 25 mg/kg의 용량으로 주사하였다. 주사 후 25일째에 마우스를 희생시켜 대조군과 비교하여 항종양 효과가 가장 높았던 CL7 25 mg/kg 투여군의 각각 6마리 마우스에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액, 및 CD8+ T cell 마커인 CD8+ 항체 및 CD4+ 항체로 세포를 염색하거나, Treg cell 마커인 Foxp3 항체 및 CD4+ 항체로 세포를 염색하거나, 총 마크로파지 마커인 F4/80 및 M1 마크로파지 마커인 iNOS에 대한 항체(입수처: Abcam)로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다. 그 결과를 도 45에 나타내었다.
도 45에 도시된 바와 같이, 항-CD300c 단클론 항체(CL7)는 활성화된 CD8+ T 세포를 유의하게 증가시키고, 조절 T 세포를 억제하고, 종양 관련 마크로파지를 M1 표현형쪽으로 재분극시키는 것으로 확인되었다.
실험예 6.7. 생체내 암 성장 억제 효과 확인
항-CD300c 단클론 항체인 CL7의 항암 효과를 생체내 조건에서 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF 시설에서 진행하였다. 대장암 세포주를 이식한 후 11일차(D11)에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체를 각각 1 mg/kg, 5 mg/kg, 10 mg/kg 또는 25 mg/kg으로 투여하고, 대조군으로는 인산염완충용액(PBS)을 동량 주사하였다. 구체적으로, 마우스에 복강내 주사로 각각의 용량을 1주일 2회, 2주간 총 4회(D11, D14, D18 및 D21) 주사하였다. 25일간 종양 부피를 측정하였다. 그 결과를 도 46에 나타내었다.
도 46에 도시된 바와 같이, 항-CD300c 단클론 항체인 CL7은 CT26 대장암 성장을 용량 의존적인 방식으로 지연시키는 것으로 확인되었다
IV. 항-CD300c 단클론 항체의 투여에 따른 바이오마커의 발현 변화
실시예 2. 항-CD300c 단클론 항체의 투여에 따른 면역 세포 관련 마커 및 종양 미세 환경 관련 마커의 발현 변화
실시예 2.1. 나노스트링 면역 프로파일링
실시예 1에서 제조한 항-CD300c 단클론 항체(CL7)를 고형암 모델에 투여하였을 때 면역 세포 및 종양 미세 환경 관련 마커의 발현 변화를 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF 시설에서 진행하였다. 대장암 세포주를 이식하고 12일 후에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체를 각각 투여하고, 대조군으로는 인산염완충용액(phosphate buffered saline; PBS)을 동량 주사하였다. 1주일에 2회씩 2주간 총 4회에 걸쳐 마우스에 복강내 주사(Intraperitoneal injection)로 25 mg/kg의 용량으로 주사하였다. 주사 후 25일째에 마우스를 안락사시켜 종양 조직을 준비하였다. 이로부터 RNA를 추출하여 정제한 후, 나노스트링 면역 프로파일링을 통해 수지상 세포(dendritic cell) 마커, 마크로파지(macrophage) 마커, 종양 미세 환경(TME) 마커, Th1 반응 마커, 또는 Th2 반응 마커의 변화를 확인하였다.
상기 나노스트링 면역 프로파일링 결과를 도 47에 나타내었다. 이로부터 항-CD300c 단클론 항체의 투여는 종양 면역 미세 환경을 광범위하게 리프로그래밍(reprogramming)함을 확인하였다.
또한, 항-CD300c 단클론 항체의 투여에 따른 수지상 세포 마커, 마크로파지 마커, 종양 미세 환경 마커, Th1 반응 마커, 또는 Th2 반응 마커의 변화를 대조군과 대비하여 관찰한 결과를 도 48에 나타내었다. 도 48에 도시된 바와 같이, 항-CD300c 단클론 항체의 투여 시, 수지상 세포 마커인 Bst2, CCL8, Xcl1의 발현이 유의하게 증가했고; M1 마크로파지 마커인 CCR7, CD80의 발현이 유의하게 증가했고; 종양 미세 환경에서 암의 생장을 돕는 vegfa, pdgfrb, Col4a1, Hif1a의 발현이 감소했고; Th1 반응을 확인할 수 있는 마커인 Tbx21, Stat1, Stat4, Ifn-g, Cxcr3의 발현이 증가한 것으로 확인되었다.
실시예 2.2. 면역 관문 마커의 발현 변화
실시예 2.1에서 얻은 나노스트링 면역 프로파일링 결과에 기초하여, 항-CD300c 단클론 항체를 동종이식 마우스 종양 모델에 투여하였을 때에 어떤 면역 관문 마커의 발현이 대조군에 비해 유의한 차이를 보이는지 확인하였다.
그 결과를 도 49에 나타내었다. 항-CD300c 단클론 항체가 투여된 경우, 억제성 면역관문(inhibitory IC)인 PD-1, CTLA-4, Lag3의 발현이 증가했고, 작용성 면역관문(agonistic IC)인 ICOS, OX40, Gitr, Cd27 및 Cd28의 발현도 증가한 것으로 확인하였다.
이러한 결과는, 더 향상된 항암 효능을 얻기 위해 항-CD300c 단클론 항체와 추가의 면역 항암제를 병용 투여하는 경우, 어떤 면역관문의 면역 항암제를 선택해야 하는지에 대한 유용한 정보를 제공할 수 있다는 점에서 상당한 의의를 갖는다.
V. 항-CD300c 단클론 항체와 면역 항암제의 병용
실시예 3. 항-CD300c 단클론 항체(CL7)와 면역 항암제의 병용 투여
실시예 1에서 제조된 항-CD300c 단클론 항체(CL7)를 다른 면역항암제, 예를 들어 항-PD-L1 항체인 임핀지(Imfinzi®)와 옵디보(Opdivo®), 항-PD-1 항체인 키트루다, 항-CD47 항체(αCD47), 항-CTLA-4 항체와 병용하여 그 결과를 관찰하였다.
상기 면역 항암제 각각의 입수처는 다음과 같다: 임핀지(AstraZeneca); 옵디보, 항-CTLA-4 항체(Bristol Myers Squibb Company), 키트루다(Merck Sharp & Dohme), 및 항-CD47 항체(Abcam).
실험예 7. 병용에 의한 마크로파지 활성의 (상승적) 증가 확인
실험예 7.1. M1 마크로파지의 증가 확인
실시예 1에서 제조한 항-CD300c 단클론 항체인 CL7을 항-PD-L1 항체인 임핀지, 항-PD-1 항체인 키트루다, 항-CD47 항체(αCD47) 등의 면역 항암제와 병용으로 단핵구 세포에 처리하였을 때 M1 마크로파지로의 분화 양상을 세포 형태로 확인하기 위하여, THP-1(인간 단핵구 세포주)에 각각 10 μg/ml의 항-CD300c 단클론 항체와 면역 항암제를 단독 또는 병용으로 처리하고, 48시간 동안 배양한 후에 세포의 형태를 현미경 하에서 관찰하였다.
그 결과, 도 50에 도시된 바와 같이, 면역 항암제를 단독 처리한 경우와 비교하여 항-CD300c 단클론 항체와 함께 병용으로 처리한 경우에 THP-1 세포의 형태가 부유 세포(suspension cell)에서 M1 마크로파지의 형태인 원형의 부착 세포로 변하는 것을 확인하였다. 상기 결과를 통하여, 항-CD300c 단클론 항체와 면역 항암제의 병용 처리에 의하여 단핵구 세포의 M1 마크로파지로의 분화가 더 촉진되는 것이 확인되었다.
실험예 7.2. M1 마크로파지 마커의 증가 확인
항-CD300c 단클론 항체인 CL7을 항-PD-L1 항체인 임핀지, 항-PD-1 항체인 옵디보, 항-PD-1 항체인 키트루다, 항-CD47 항체, 항-CTLA-4 항체의 면역 항암제와 병용으로 처리하였을 때 단핵구 세포의 M1 마크로파지로의 분화 유도가 증가하는지를 확인하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰의 THP-1을 분주하고, 항-CD300c 단클론 항체와 면역 항암제를 각각 10 μg/mL로 단독 또는 병용으로 처리하였다. 48시간 동안 반응시킨 후에, M1 마크로파지의 분화 마커인 TNF-α(Tumor necrosis factor-α), IL-1b, IL-8의 생성량을 ELISA 키트(Human TNF-α Quantikine kit, R&D Systems)를 이용하여 측정하였다.
그 결과, 도 51에 도시된 바와 같이, 항-CD300c 단클론 항체가 단독으로 처리된 경우 3가지 분화 마커 모두의 생성량이 증가하였으며, 특히 IL-8의 생성량이 현저히 증가한 것으로 확인되었다. 또한, 도 52에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독으로 처리했을 때에 비해, 임핀지, 옵디보, 키트루다, αCD47과 병용으로 처리하였을 때에 M1 마크로파지의 마커인 TNF-α의 생성량이 더 증가하는 것으로 확인되었다. 이로부터, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체 및/또는 항-CD47 항체와 병용으로 처리하였을 때에 단핵구 세포가 M1 마크로파지로 더 많이 분화되는 것으로 확인되었다.
실험예 7.3. M2 마크로파지 마커의 감소 확인
항-CD300c 단클론 항체를 임핀지, 옵디보, 키트루다, 항-CTLA-4 또는 αCD47 등의 면역 항암제와 병용으로 투여하였을 때 단핵구 세포의 M2 마크로파지로의 분화 유도가 감소하는지를 확인하기 위하여, 96-웰 플레이트에 1.5x104 세포/웰의 THP-1을 분주하고, 320 nM의 PMA를 6시간 동안 전처리한 후에, 20 ng/mL의 IL-4(Interleukin-4) 및 IL-13(Interleukin-13)와 함께 각각 10 μg/mL의 항-CD300c 단클론 항체와 면역 항암제를 단독 또는 병용으로 처리하고 48시간 동안 반응시켰다. 그 후, M2 마크로파지의 분화 마커인 IL-10, IL-12의 생성량을 ELISA 키트(R&D Systems)를 이용하여 측정하였다.
그 결과, 항-CD300c 단클론 항체를 단독으로 처리했을 때보다, 임핀지, 옵디보, 키트루다, αCD47과 병용으로 처리하였을 때에 IL-10, IL-12의 생성량이 30% 이상 더 감소하는 것으로 확인되었다.
실험예 7.4. M1 마크로파지 분화능의 증가 확인
항-CD300c 단클론 항체인 CL7을 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 단핵구 세포의 M1 마크로파지로의 분화능이 증가한다는 것을 확인하기 위하여, M1 마크로파지 분화의 대표적인 신호인 MAPK(mitogen-activated protein kinase), IkB 및 NF-kB의 신호 전달을 확인하였다. 구체적으로, 6-웰 플레이트에 8.8x105 세포/웰의 THP-1을 분주하고, 10 μg/mL의 항-CD300c 단클론 항체, 10 μg/mL의 임핀지, 및/또는 10 μg/mL의 키트루다를 처리하였다. 대조군으로는 인산염완충용액(PBS)을 동량 처리하였다. 48시간 동안 배양한 후에, MAPK 신호의 경우 인산화된 SAPK/JNK, 인산화된 ERK, 인산화된 p38를, NF-kB 신호의 경우 인산화된 NF-kB를, IkB 신호의 경우 인산화된 IkB를 웨스턴 블롯팅을 통해 확인하였다. 그 결과를 도 53 내지 도 55에 나타내었다.
도 53, 도 54 및 도 55는 각각 MAPK, NF-Kb 및 IkB의 신호 전달을 확인한 결과를 도시한다. 항-CD300c를 단독으로 처리하였을 때와 비교하여, 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 인산화된 MAPK, IkB, NF-kB의 양이 증가하는 것으로 확인되었다. 이로부터, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 M1 마크로파지로 분화하는 세포 신호전달이 증가하는 것을 확인하였다.
실험예 8. 병용에 의한 암 세포 성장 억제 효과의 (상승적) 증가 확인( In vitro )
실험예 8.1. 세포자멸 신호 확인
항-CD300c 단클론 항체인 CL7을 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 세포자멸 신호가 증가하는지를 확인하였다. 구체적으로, 6-웰 플레이트에 8x105 세포/웰의 A549를 분주하고, 10 μg/mL의 항-CD300c 단클론 항체, 10 μg/mL의 임핀지, 키트루다, 옵디보, 항-CD47 항체를 단독 또는 병용으로 처리하였다. 48시간 동안 배양한 후에, 세포자멸 신호 또는 세포 주기 신호를 웨스턴 블롯팅을 통해 확인하였다. 확인한 세포자멸 신호의 마커로는 절단된(cleaved) caspase-9, caspase-3, caspase-2, caspase-8을 확인하였고, 세포 주기 신호의 마커로는 사이클린 D1, CDK2, p27kip1, CDK6, 사이클린 D3, P21 Waf1, Cip1 등을 확인하였다.
도 56에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1인 임핀지와 병용 처리하였을 때 세포자멸신호가 증가하였고, 항-CD300c 단클론 항체를 항-PD1, 항-PD-L1, 항-CTLA-4, 항-CD47 등의 면역 항암제와 함께 병용으로 처리하였을 때에 cleaved-caspase9, p21의 양이 증가하고, 사이클린 D1은 감소하였다. 이로부터, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 암 세포의 세포자멸이 더 잘 유도되는 것으로 확인되었다.
실험예 8.2. 암 세포주의 성장 억제 효과 확인
항-CD300c 단클론 항체인 CL7과 면역 항암제의 병용 투여에 의한 암 세포 성장 억제 효과를 확인하기 위하여, A549(인간 폐암 세포주)와 MDA-MB-231(인간 유방암 세포주)를 이용하여 암 세포 성장 억제 효과를 비교하였다. 구체적으로, 96-웰 플레이트에 우태아혈청(fetal bovine serum; FBS)이 없는 조건에서는 2x104 세포(A549) 또는 3x104 세포(MDA-MB-231)를 분주하였고, 0.1% 우태아혈청 조건에서는 6x103 세포(A549) 또는 1x104 세포(MDA-MB-231)를 분주하였다. 이어서, 10 μg/mL의 항-CD300c 단클론 항체와 임핀지를 단독으로 처리하거나 병용으로 처리하여 5일 동안 배양하였다. 대조군으로는 인산염완충용액(PBS)을 동량 처리하였다. 이어서, CCK-8(DOJINDO)을 처리하고, OD 450 nm에서 흡광도를 측정하였다. 그 결과를 도 57(A549)과 도 58(MDA-MB-231)에 나타내었다.
A549 세포주에 처리한 경우, 도 57에 도시된 바와 같이, FBS가 없는 조건에서는 항-CD300c 단클론 항체를 단독으로 처리하였을 때 대조군과 비교하여 세포 성장 억제 효과는 17% 높았고, 임핀지와 병용으로 처리하였을 때에는 34% 높은 것으로 확인되었다.
MDA-MB-231 세포주에 처리한 경우, 도 58에 도시된 바와 같이, 0.1% FBS 조건에서는 대조군과 비교하여 항-CD300c 단클론 항체의 단독 처리시 19% 높은 암 세포 성장 억제 효과가 관찰되었고, 항-CD300c 단클론 항체와 항-CD47 항체를 병용으로 처리하였을 때에는 45% 높은 억제 효과가 관찰되었으며, 항-CD300c 단클론 항체와 항-CD47 항체, 임핀지를 함께 처리하였을 때에는 51% 높은 억제 효과가 관찰되었다. 0.1% FBS 조건에서는 항-CD300c 단클론 항체의 처리시 19% 높은 암 세포 성장 억제 효과를 보았고, 항-CD47 항체와 병용으로 처리하였을 때에는 22% 높은 억제 효과가 관찰되었고, 항-CD300c 단클론 항체와 항-CD47 항체, 임핀지를 모두 병용으로 처리하였을 때에는 32% 높은 억제 효과가 관찰되었다.
위 결과로부터, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 암 세포의 성장이 더욱 억제된 것으로 확인되었다.
실험예 9. 병용에 의한 생체내 항암 효과의 (상승적) 증가 확인 (대장암 마우스 모델)
실험예 9.1. 생체내 암 성장 억제 효과 확인
항-CD300c 단클론 항체인 CL7의 항암 효과를 생체내 조건에서 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF 시설에서 진행하였다. 대장암 세포주를 이식한 후 12일차(D12)에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체와 각각 BioXcell에서 구매한 항-PD-1 항체를 단독 또는 병용하여 투여하고, 대조군으로는 인산염완충용액(PBS)을 동량 주사하였다. 개략적인 실험 방법을 도 59에 나타내었다. 구체적으로, 마우스에 복강내 주사로 각각의 항체를 단독 또는 병용하여 1주일 2회, 2주간 총 4회(D12, D15, D19 및 D22) 주사하였다(CL7: 10 mg/kg; 항-PD-1 항체: 10 mg/kg). 25일간 종양 부피를 측정하였다. 그 결과를 도 60에 나타내었다.
도 60으로부터 알 수 있는 바와 같이, 항-CD300c 단클론 항체를 단독 투여한 실험군에서도 대조군과 비교하여 암의 성장이 억제되지만, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체 등의 면역 항암제와 병용으로 처리하였을 때에 암의 성장이 더욱 효과적으로 억제된 것으로 확인되었다.
실험예 9.2. 생체내 종양 미세 환경에서의 종양 침윤 림프구 증가 확인
항-CD300c 단클론 항체가 종양 미세 환경(TME)에서 종양침윤 림프구(tumor infiltrating lymphocyte; TIL)에 미치는 영향을 확인하기 위하여, 실험예 9.1과 동일한 방법으로 실험한 25일차 마우스를 안락사시키고, 1% PFA(para-formaldehyde)를 마우스에 혈관내 주입하여 관류시킨 후, 암 조직을 획득하였다. 획득된 암 조직을 1% PFA를 이용하여 고정시키고, 순차적으로 10%, 20%, 30% 수크로즈 용액을 이용하여 탈수하였다. 탈수된 암 조직을 OCT 컴파운드(Optimal cutting temperature compound)에서 냉동시킨 후 냉동조직절편기(Cryotome)를 이용하여 암 조직을 50 μm 두께의 절편으로 만들었다. 20 mg/ml의 콜라게나제 D와 2 mg/ml의 DNaseI 혼합 용액에서 37℃에서 1시간 동안 조직을 인큐베이션시킨 다음, 70 um 세포 스트레이너로 여과하고, 적혈구를 용해시킨 다음 세포를 단일 세포로 만들어주기 위해 나일론 메쉬로 다시 여과하였다. 단일 세포 부유액에서 비특이적 반응을 억제하기 위해 CD16/32(입수처: Invitrogen) 항체로 1시간 반응시키고, 세포 생존도를 확인하고 종양침윤 림프구 표지자인 CD8+ T 세포와 CD31+ 암 혈관 세포를 염색하였다.
그 결과, 항-CD300c 단클론 항체를 단독 투여한 실험군과 비교하여, 항-CD300c 단클론 항체를 항-PD-1 항체 또는 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체와 병용 투여한 실험군에서 CD8+ T 세포가 증가된 것으로 확인되었으며, 이를 통하여, 항-CD300c를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 종양 미세 환경에서 종양침윤 림프구를 증가시켜 항암 효과를 나타냄을 확인할 수 있었다.
실험예 9.3. 생체내에서의 M1 마크로파지 증가 효과 확인
항-CD300c 단클론 항체가 마우스 모델에서 암 조직 내의 M1 마크로파지를 증가시키는지 확인하기 위하여, 실험예 9.2와 동일한 방법으로 준비한 암 조직 절편을 M1 마크로파지 마커인 iNOS와 M2 마크로파지 마커인 CD206에 대한 항체로 염색하여 FACS로 확인하였다.
그 결과, 도 61에 도시된 바와 같이, 항-PD-1 항체를 처리한 실험군에서는 M1 마크로파지가 대조군과 비교하여 일부 증가되었으나, 항-CD300c 단클론 항체를 처리한 실험군에서는 M1 마크로파지가 현저히 증가되며, M2 마크로파지는 거의 관찰되지 않는 것을 확인하였다. 또한, 항-CD300c 단클론 항체와 항-PD-1 항체를 병용 투여한 실험군에서 더욱 M1 마크로파지가 증가한 것으로 확인되었다. 상기 결과로부터, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 힝체, 항-PD-L1 항체, 항-CTLA-4 항체, 항-CD47 항체 등의 면역 항암제와 병용으로 처리하였을 때에 M1 마크로파지로의 분화를 효과적으로 촉진시킬 수 있음을 확인하였다.
실험예 9.4. 생체내에서의 CD8+ T 세포 면역 촉진 효과 확인
항-CD300c 단클론 항체인 CL7이 마우스 종양 모델에서 CD8+ T 세포 면역을 촉진하는지 확인하기 위하여, 실험예 9.1과 동일한 방법으로 실험한 25일차 마우스를 안락사시킨 후, 1% PFA를 마우스에 혈관내 주입하여 관류시킨 후, 암 조직을 획득하였다. 획득된 암 조직을 1% PFA를 이용하여 고정시키고, 순차적으로 10%, 20%, 30% 수크로즈 용액으로 탈수하였다. 탈수된 암 조직을 OCT 컴파운드에서 냉동시킨 후 냉동조직절편기를 이용하여 암 조직을 50 μm 두께의 절편으로 만들었다. 이어서, CD8+ 및 iNOS로 염색하였다.
도 62에 도시된 바와 같이, 항-PD-1 항체를 처리한 실험군에서는 CD8+ T 세포가 대조군과 비교하여 일부 증가되었으나, 항-CD300c 단클론 항체를 처리한 실험군에서는 CD8+ T 세포가 현저히 증가되는 것을 확인하였다. 또한, 항-CD300c 단클론 항체와 항-PD-1 항체를 병용 투여한 실험군의 경우, CD8+ T 세포가 항-PD-1 단독 처리군보다 더 증가된 것을 확인하였다. 상기 결과들을 통하여, 항-CD300c 단클론 항체가 기존 면역 항암제와 병용된 경우 CD8+ T 세포의 수를 더욱 효과적으로 증가시킨다는 것을 확인할 수 있었다.
실험예 9.5. 생체내 면역 세포 활성의 증가 효과 확인
항-CD300c 단클론 항체를 면역 항암제와 병용투여하였을 때 면역 세포들의 활성이 증가하는지 확인하기 위해 실험예 9.1과 동일한 방법으로 항-CD300c 단클론 항체와 항-PD-1, 항-CTLA-4, 항-KIR, 항-LAG3, 항-CD137, 항-OX40, 항-CD276, 항-CD27, 항-GITR, 항-TIM3, 항-41BB, 항-CD226, 항-CD40, 항-CD70, 항-ICOS, 항-CD40L, 항-BTLA, 항-TCR, 항-TIGIT, 항-CD47 항체를 병용 투여한 마우스의 비장을 수득하였다. 수득된 비장을 실험예 9.2에 설명된 바와 같이 T 세포의 활성도 및 NKT 세포의 활성도를 알아볼 수 있는 다양한 마커들로 FACS 염색하고, MFI를 통해 확인하였다.
그 결과, 항-CD300c 단클론 항체를 위의 면역 항암제와 병용 투여하였을 때 T 세포의 활성화 마커인 Gzma, Icos, CD69, Ifng가 증가하였고, 또한 NKT 세포의 활성화 마커인 Cd11, CD38, cxcr6가 유의미하게 증가하는 것을 확인하였다. 이로부터, 항-CD300c를 단독으로 처리하였을 때보다 면역 항암제와 병용으로 처리하였을 때에 T 세포 및 NKT 세포가 더욱 활성화된 것으로 확인되었다.
실험예 9.6. 생체내 Treg 억제 효과 확인
고형암 모델에서 항-CD300c 단클론 항체와 항-PD-1, 항-PD-L1, 항-CTLA-4, 항-KIR, 항-LAG3, 항-CD137, 항-OX40, 항-CD276, 항-CD27, 항-GITR, 항-TIM3, 항-41BB, 항-CD226, 항-CD40, 항-CD70, 항-ICOS, 항-CD40L, 항-BTLA, 항-TCR, 항-TIGIT, 항-CD47 항체 등의 면역 항암제를 병용으로 투여하였을 때 면역을 억제하는 반응을 일으키는 Treg 세포의 양상 변화를 확인하기 위하여 실험예 9.2와 동일한 방법으로 준비한 비장 조직으로부터 T 세포를 추출하여 CD3+ T 세포 중 FOXP3를 발현하는 Treg의 수를 FACS 염색을 통해 확인해보았다.
CD3+ 세포에서 Treg의 비율을 보았을 때, 각 면역 항암제를 단독으로 투여했을 때보다 항-CD300c 단클론 항체와 병용으로 투여했을 때 Treg의 비율이 현저히 감소한 것으로 확인되었고, 이로부터 암 세포를 공격하는 T 세포의 활성화가 유도됨을 알 수 있었다.
실험예 10. 병용에 의한 생체내 항암 효과의 (상승적) 증가 확인(흑색종 마우스 모델)
실험예 10.1. 생체내 암 성장 억제 효과 확인
항-CD300c 단클론 항체인 CL7이 CT26 대장암 마우스 모델 외에 추가로 다른 암종에서도 효과가 있는지 확인하기 위하여, 흑색종 마우스 모델로 추가 실험을 진행하였다. 8주령 수컷 C57BL/6 마우스에 B16F10 흑색종 세포 7x105개를 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF 시설에서 진행하였다. 흑색종 세포주를 이식한 후 8일차에, 종양 크기가 50 내지 100 mm3인 마우스에 CL7 25 mg/kg, α-PD-1 10 mg/kg, α-CTLA4 4 mg/kg을 복강내 주사하였다. 개략적인 실험 방법을 도 63에 나타내었다. 보다 자세하게는, 1주일에 2회씩 2주간 총 4회에 걸쳐 항-CD300c 단클론 항체, 항-PD-1 항체, 항-CD300c 단클론 항체 + 항-PD-1 항체(Combo), 및 항-CD300c 단클론 항체 + 항-PD-1 항체 + 항-CTLA-4 항체(Triple)를 각각 마우스에 주사하고, 대조군으로는 인산염완충용액(PBS)을 항-CD300c 단클론 항체와 동량으로 주사하였다. 20일간 암의 크기를 측정하였다.
그 결과, 도 64에 도시된 바와 같이, 항-CD300c 단클론 항체의 단독 투여에 의해서도 암 성장이 억제되지만, 항-CD300c 단클론 항체를 항-PD-1 항체 및 항-CTLA-4 항체와 병용 투여한 군에서 암 성장이 더욱 효과적으로 억제됨을 확인하였다.
실험예 10.2. 세포독성 T 세포의 증가 확인
항-CD300c 단클론 항체인 CL7과 항-PD-1 항체 및/또는 항-CTLA-4 항체의 병용이 B16F10 흑색종 모델에서 CD8+ T 세포에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 10.1에서와 같이 마우스 종양 모델을 제작하여 동일한 농도로 각 시험 물질들을 주사하였다.
군당 각각 마우스 6 마리에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen)항체로 차단하고, 세포 생존도 확인용 염색액 및 CD8+ 항체 및 CD4+ 항체로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 65에 도시된 바와 같이, CT26 암종 모델에서와 마찬가지로(실험예 6.2) 항-CD300c 단클론 항체와 면역 항암제의 병용 투여(D군 및 T군)에 의해 B16F10 흑색종 모델에서도 CD8+ T 세포의 수가 증가하는 것을 확인하였다. 여기서, D군은 CL7과 항-PD-1 항체의 병용을 나타내고, T군은 CL7, 항-PD-1 항체 및 항-CTLA-4 항체의 병용을 나타낸다.
실험예 10.3. 조절 T 세포 대비 세포독성 T 세포의 증가 확인
항-CD300c 단클론 항체인 CL7과 항-PD-1 항체 및/또는 항-CTLA-4 항체의 병용이 B16F10 흑색종 모델에서 조절 T 세포에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 10.1에서와 같이 마우스 종양 모델을 제작하여 동일한 농도로 각 시험 물질들을 주사하였다. 실험군은 (i) CL7 투여군, (ii) 항-PD-1 투여군, (iii) CL7 및 항-PD-1 투여군(D군), 및 (iv) CL7, 항-PD-1 항체 및 항-CTLA4 항체 투여군(T군)이다.
군당 각각 마우스 6 마리에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen)항체로 차단하고, 세포 생존도 확인용 염색액, Treg 마커 단백질인 CD25와 Foxp3에 대한 항체, CD3+ 항체 및 CD8+ 항체로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 66에 도시된 바와 같이, CT26 암종 모델에서와 마찬가지로(실험예 6.5) 항-CD300c 단클론 항체와 면역 항암제의 병용 투여(D군 및 T군)에 의해 B16F10 흑색종 모델에서도 CD8+ T 세포가 조절 T 세포 대비 증가함을 확인하였다. 여기서, D군은 CL7과 항-PD-1 항체의 병용을 나타내고, T군은 CL7, 항-PD-1 항체 및 항-CTLA-4 항체의 병용을 나타낸다.
실험예 10.4. 종양 관련 마크로파지(TAM)의 증가 확인
항-CD300c 단클론 항체인 CL7과 항-PD-1 항체 및/또는 항-CTLA-4 항체의 병용이 B16F10 흑색종 모델에서 마크로파지에 미치는 영향을 생체내 조건에서 확인하기 위하여, 실험예 10.1에서와 같이 마우스 종양 모델을 제작하여 동일한 농도로 각 시험 물질들을 주사하였다.
군당 각각 마우스 6 마리에서 종양 조직을 채취하였다. 종양 조직을 떼어낸 후, 콜라게나제 D(20 mg/ml)와 DNase I(2 mg/ml)의 혼합 용액 중에서 37℃에서 1시간 동안 인큐베이션시켰다. 그 후, 70 μm 세포 스트레이너로 여과하고, 적혈구를 용해시킨 후, 나일론 메쉬로 다시 여과하였다. 그 후, 단일 세포 부유액을 CD16/32(입수처: Invitrogen) 항체로 차단하고, 세포 생존도 확인용 염색액 및 F4/80와 iNOS에 대한 항체로 세포를 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 67에 도시된 바와 같이, CT26 암종 모델에서와 마찬가지로(실험예 6.1) 항-CD300c 단클론 항체와 면역 항암제의 병용 투여(D군 및 T군)에 의해 B16F10 흑색종 모델에서도 M1 형태의 종양 관련 마크로파지의 발현량이 증가함을 확인하였다. 여기서, D군은 CL7과 항-PD-1 항체의 병용을 나타내고, T군은 CL7, 항-PD-1 항체 및 항-CTLA-4 항체의 병용을 나타낸다.
종합하면, 도 65, 도 66 및 도 67에 제시된 결과는 다음과 같은 의미를 가진다. 항-CD300c 단클론 항체인 CL7은 B16F10 흑색종 마우스 모델에서도 CT26 대장암 마우스 모델(도 40, 도 41 및 도 42)에서와 동일한 기작으로 암을 치료하므로, CL7과 면역 항암제의 병용 투여가 여러 암종에서 동일한 효과를 발휘할 것임을 예측할 수 있다.
실험예 11. 병용 투여에 의한 대장암 마우스 모델에서의 완전 관해 현상 확인
항-CD300c 단클론 항체인 CL7과 항-PD-1 항체 및/또는 항-CTLA-4 항체의 병용 투여에 의한 항암 효과를 생체내 조건에서 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작하였다. 동물의 사육 및 실험은 모두 SPF 시설에서 진행하였다. 대장암 세포주를 이식한 후 11일차(D11)에, 종양 크기가 50 내지 100 mm3인 마우스에 항-CD300c 단클론 항체와 각 BioXcell에서 구매한 항-PD-1 항체 및 항-CTLA-4 항체를 단독 또는 병용하여 투여하고, 대조군으로는 인산염완충용액(PBS)을 CL7과 동량으로 주사하였다. 구체적으로, D11, D14 및 D18에 마우스에 복강내 주사로 각각의 항체를 단독으로 또는 병용하여 주사하고(CL7: 25 mg/kg; 항-PD-1 항체: 10 mg/kg; 항-CTLA-4 항체: 4 mg/kg), 종양 부피를 측정하였다.
그 결과, 도 68a에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독 투여한 실험군에서도 대조군과 비교하여 암의 성장이 억제되었지만, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-CTLA-4 항체 등의 면역 항암제와 병용으로 처리하였을 때에 암의 성장이 더욱 효과적으로 억제됨을 확인하였다. 특히, CL7 + αPD-1 + αCTLA-4의 삼중 병용 투여의 경우 종양 크기가 90%까지 감소하였다.
또한, 도 68b에 도시된 바와 같이, 항-CD300c 단클론 항체를 항-PD-1 항체와 병용 투여하였을 때 50%의 완전 관해(complete remission, CR)가 달성되었고, 항-CTLA-4 항체까지 삼중으로 병용 투여하였을 때 70%의 완전 관해(CR)가 달성되었으며, 이는 병용 투여가 우수한 항암 효과를 가져옴을 확인해준다.
실험예 12. 병용 투여에 의한 장기 생존율 향상 효과 확인
실험예 11에서 실험된 마우스들의 장기 생존율을 확인하였다. 그 결과, 도 69에 도시된 바와 같이, 항-CD300c 단클론 항체를 단독으로 처리하였을 때보다 항-PD-1 항체, 항-CTLA-4 항체 등의 면역 항암제와 병용으로 처리하였을 때에 장기 생존율이 또한 향상됨을 확인하였다.
실험예 13. 병용 투여에 의한 암 재발 방지 효과 확인
항-CD300c 단클론 항체인 CL7과 면역 항암제의 병용 투여에 의한 암 재발 방지 효과를 생체내 조건에서 확인하기 위하여, 대장암 세포주(CT26) 2x105개를 8주령 BALB/c 마우스에 피하 주사로 이식하여 동종이식 마우스 종양 모델을 제작한 후, 실험예 11에 설명된 바와 같이 실험을 진행하여 완전 관해가 일어난 마우스를 얻었다. 이렇게 얻은 마우스에 대장암 세포주(CT26) 2x105개를 다시 이식하고(Re-challenge), 30일 동안 관찰하였다.
그 결과, 도 70에 도시된 바와 같이, 항-CD300c 단클론 항체와 면역 항암제의 병용 투여에 의해 완전 관해가 일어난 군에서는 암의 재발이나 전이가 일어나지 않는 것을 확인하였다. 이는 항-CD300c 단클론 항체와 항-PD-1 항체의 병용 투여(CL7 + αPD-1; Combi) 또는 이에 항-CTLA-4 항체까지 더해진 삼중 병용 투여(CL7 + αPD-1 + αCTLA-4; Triple)를 통해 완전 관해가 일어난 개체는 지속적인 면역 기억을 통해 전신 방어 면역 반응을 나타냄으로써 암의 재발이나 전이를 억제할 것으로 예측하게 하였다.
실험예 14. 병용 투여에 의한 면역 기억 효과 확인
실험예 13에서 완전 관해가 일어난 마우스에서 효과기 기억 T 세포를 분석하기 위하여, 마우스를 희생시켜 비장을 채취하였다. 이어서, 비장세포를 얻고, 이를 T 세포 활성과 관련된 마커인 CD44와 CD62L에 대한 항체(입수처: Invitrogen)로 염색하였다. 그 후, CytoFLEX 유세포 분석기로 데이터를 읽고, FlowJo 소프트웨어로 분석하였다.
그 결과, 도 71에 도시된 바와 같이, 항-CD300c 단클론 항체와 면역 항암제의 병용 처리 시 효과기 기억 T 세포가 유의하게 증가함을 확인하였다. 이는 실험예 13에서 예측한 바와 같이 완전 관해가 일어난 마우스는 CL7과 항-PD-1 항체의 병용 투여(Combi) 또는 이에 항-CTLA-4 항체까지 더해진 삼중 병용 투여(Triple) 시 증가된 효과기 기억 T 세포를 통해 면역 기억을 갖게 되어 추가적으로 암 세포가 생기더라도 그 성장을 억제함을 나타낸다.
실시예 4. 항-CD300c 단클론 항체(CL10, SL18)와 면역 항암제의 병용 투여
실시예 1에서 제조된 항-CD300c 단클론 항체(CL10, SL18)를 다른 면역항암제, 예를 들어 항-PD-L1 항체인 임핀지, 항-PD-1 항체인 키트루다와 병용하여 그 결과를 관찰하였다.
상기 면역 항암제 각각의 입수처는 다음과 같다: 임핀지(AstraZeneca) 및 키트루다(Merck Sharp & Dohme).
실험예 15. M1 마크로파지 분화능의 증가 확인
항-CD300c 단클론 항체인 CL10 또는 SL18이 마크로파지에서 M1 마크로파지로의 분화능을 촉진시킬 수 있는지 확인하기 위하여, 96-웰 플레이트에 1x104 세포/웰의 THP-1 세포를 분주한 후에, 10 μg/mL의 CL10 또는 SL18을 처리하였다. 또한, CL10 또는 SL18과 면역 항암제의 병용 처리에 따른 효과를 확인하기 위하여, 상기 항-CD300c 단클론 항체를 10 μg/mL의 임핀지 및/또는 키트루다와 함께 처리하였다. 그 후 CO2 인큐베이터에서 48시간 동안 인큐베이션시킨 후에, M1 마크로파지의 분화 마커인 TNF-α의 생성량을 ELISA 키트(Human TNF-α Quantikine kit, R&D Systems)로 확인하였다. 그 결과를 도 72a(CL10 병용) 및 도 72b(SL18 병용)에 나타내었다.
도 72a 및 도 72b에 도시된 바와 같이, THP-1 세포에 CL10 또는 SL18을 단독으로 처리했을 때보다 임핀지 또는 키트루다와 병용으로 처리하였을 때 TNF-α의 발현량이 증가한 것으로 확인되었다. 특히, CL10 또는 SL18을 임핀지 및 키트루다 두 항체와 한꺼번에 병용 투여하였을 때 TNF-α의 발현량이 가장 높은 것으로 확인되었다.
실험예 16. 암 세포 성장 억제 효과 확인
항-CD300c 단클론 항체인 CL10 또는 SL18과 면역 항암제의 병용 투여에 의한 암 세포 성장 억제 효과를 확인하기 위하여, A549(인간 폐암 세포주) 세포를 이용하여 세포 성장 억제 효과를 비교하였다. 구체적으로, 96-웰 플레이트에 FBS가 없는 조건에서는 2x104 세포를 분주하였고, 0.1% FBS 조건에서는 6x103 세포를 분주하였다. 이어서, CL10 또는 SL18을 단독으로 또는 임핀지 및/또는 키트루다 와 병용으로 각각 10 μg/mL의 농도로 처리하여 5일 동안 배양하였다. 이어서 CCK-8(DOJINDO)을 웰당 30 ul씩 처리하고, CO2 인큐베이터에서 4시간 동안 인큐베이션하면서 1시간 마다 O.D 450 nm에서 흡광도를 측정하였다. 그 결과를 도 73a(CL10 병용) 및 도 73b(SL18 병용)에 나타내었다.
도 73a 및 도 73b에 도시된 바와 같이, 0.1% FBS 조건에서 A549 세포에 CL10 또는 SL18을 단독으로 처리하였을 때보다 임핀지 또는 키트루다와 병용으로 처리하였을 때 암 세포 증식 억제 효과가 더 증가했고, CL10 또는 SL18을 임핀지 및 키트루다 두 항체와 한꺼번에 병용 투여하였을 때 암 세포 증식 억제 효과가 가장 우수한 것으로 확인되었다.
상기 실험예 15와 본 실험예를 통해 알 수 있는 바와 같이, CL10 및 SL18을 비롯한 실시예 1에서 제조된 나머지 항-CD300c 단클론 항체들도 CL7과 동일한 작용 기전을 통해 효능을 나타내며, CL7과 마찬가지로 그 효능이 면역항암제와의 병용 투여에 의해 증가하였다.
통계 처리
실험을 통해 얻어진 결과는 일원 분산분석에 이은 Bonferroni 사후 검정을 이용하여 실험 그룹간 비교 분석을 수행하였으며, p값이 0.05 이하일 때 그룹 간의 차이가 유의미하였다.

Claims (42)

  1. (i) 서열번호 7, 서열번호 19, 서열번호 31, 서열번호 43, 서열번호 55, 서열번호 67, 서열번호 79, 서열번호 91, 서열번호 103, 서열번호 115, 서열번호 127, 서열번호 139, 서열번호 151, 서열번호 163, 서열번호 175, 서열번호 187, 서열번호 199, 서열번호 211, 서열번호 223, 서열번호 235, 서열번호 247, 서열번호 259, 서열번호 271, 서열번호 283 및 서열번호 295로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 8, 서열번호 20, 서열번호 32, 서열번호 44, 서열번호 56, 서열번호 68, 서열번호 80, 서열번호 92, 서열번호 104, 서열번호 116, 서열번호 128, 서열번호 140, 서열번호 152, 서열번호 164, 서열번호 176, 서열번호 188, 서열번호 200, 서열번호 212, 서열번호 224, 서열번호 236, 서열번호 248, 서열번호 260, 서열번호 272, 서열번호 284 및 서열번호 296으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 9, 서열번호 21, 서열번호 33, 서열번호 45, 서열번호 57, 서열번호 69, 서열번호 81, 서열번호 93, 서열번호 105, 서열번호 117, 서열번호 129, 서열번호 141, 서열번호 153, 서열번호 165, 서열번호 177, 서열번호 189, 서열번호 201, 서열번호 213, 서열번호 225, 서열번호 237, 서열번호 249, 서열번호 261, 서열번호 273, 서열번호 285 및 서열번호 297로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하는 중쇄 가변 영역; 및
    (ii) 서열번호 10, 서열번호 22, 서열번호 34, 서열번호 46, 서열번호 58, 서열번호 70, 서열번호 82, 서열번호 94, 서열번호 106, 서열번호 118, 서열번호 130, 서열번호 142, 서열번호 154, 서열번호 166, 서열번호 178, 서열번호 190, 서열번호 202, 서열번호 214, 서열번호 226, 서열번호 238, 서열번호 250, 서열번호 262, 서열번호 274, 서열번호 286 및 서열번호 298로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 11, 서열번호 23, 서열번호 35, 서열번호 47, 서열번호 59, 서열번호 71, 서열번호 83, 서열번호 95, 서열번호 107, 서열번호 119, 서열번호 131, 서열번호 143, 서열번호 155, 서열번호 167, 서열번호 179, 서열번호 191, 서열번호 203, 서열번호 215, 서열번호 227, 서열번호 239, 서열번호 251, 서열번호 263, 서열번호 275, 서열번호 287 및 서열번호 299로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 12, 서열번호 24, 서열번호 36, 서열번호 48, 서열번호 60, 서열번호 72, 서열번호 84, 서열번호 96, 서열번호 108, 서열번호 120, 서열번호 132, 서열번호 144, 서열번호 156, 서열번호 168, 서열번호 180, 서열번호 192, 서열번호 204, 서열번호 216, 서열번호 228, 서열번호 240, 서열번호 252, 서열번호 264, 서열번호 276, 서열번호 288 및 서열번호 300으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하는 경쇄 가변 영역을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  2. 제1항에 있어서,
    상기 중쇄 가변 영역은,
    (i) 서열번호 7, 서열번호 19, 서열번호 43, 서열번호 55, 서열번호 67, 서열번호 79, 서열번호 103, 서열번호 115, 서열번호 127, 서열번호 139, 서열번호 151, 서열번호 163, 서열번호 199 및 서열번호 211로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 8, 서열번호 20, 서열번호 44, 서열번호 56, 서열번호 68, 서열번호 80, 서열번호 104, 서열번호 116, 서열번호 128, 서열번호 140, 서열번호 152, 서열번호 164, 서열번호 200 및 서열번호 212로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 9, 서열번호 21, 서열번호 45, 서열번호 57, 서열번호 69, 서열번호 81, 서열번호 105, 서열번호 117, 서열번호 129, 서열번호 141, 서열번호 153, 서열번호 165, 서열번호 201 및 서열번호 213으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은,
    (ii) 서열번호 10, 서열번호 22, 서열번호 46, 서열번호 58, 서열번호 70, 서열번호 82, 서열번호 106, 서열번호 118, 서열번호 130, 서열번호 142, 서열번호 154, 서열번호 166, 서열번호 202 및 서열번호 214로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 11, 서열번호 23, 서열번호 47, 서열번호 59, 서열번호 71, 서열번호 83, 서열번호 107, 서열번호 119, 서열번호 131, 서열번호 143, 서열번호 155, 서열번호 167, 서열번호 203 및 서열번호 215로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 12, 서열번호 24, 서열번호 48, 서열번호 60, 서열번호 72, 서열번호 84, 서열번호 108, 서열번호 120, 서열번호 132, 서열번호 144, 서열번호 156, 서열번호 168, 서열번호 204 및 서열번호 216으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  3. 제1항에 있어서,
    상기 중쇄 가변 영역은
    (i) 서열번호 43, 서열번호 79, 서열번호 115, 및 서열번호 211로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 44, 서열번호 80, 서열번호 116, 및 서열번호 212로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 45, 서열번호 81, 서열번호 117, 및 서열번호 213으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은
    (ii) 서열번호 46, 서열번호 82, 서열번호 118, 및 서열번호 214로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR1;
    서열번호 47, 서열번호 83, 서열번호 119, 및 서열번호 215로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR2; 및
    서열번호 48, 서열번호 84, 서열번호 120, 및 서열번호 216으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  4. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 43으로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 44로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 45로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은 서열번호 46로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 47로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 48로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  5. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 79로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 80으로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 81로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은 서열번호 82로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 83으로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 84로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  6. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 115로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 116으로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 117로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은 서열번호 118로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 119로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 120으로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  7. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 211로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 212로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 213으로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하고,
    상기 경쇄 가변 영역은 서열번호 214로 표시되는 아미노산 서열을 포함하는 CDR1, 서열번호 215로 표시되는 아미노산 서열을 포함하는 CDR2, 및 서열번호 216으로 표시되는 아미노산 서열을 포함하는 CDR3을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  8. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 303, 307, 311, 315, 319, 323, 327, 331, 335, 339, 343, 347, 351, 355, 359, 363, 367, 371, 375, 379, 383, 387, 391, 395, 및 399로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하고,
    상기 경쇄 가변 영역은 서열번호 304, 308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, 및 400으로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  9. 제1항에 있어서,
    상기 중쇄 가변 영역은 서열번호 315, 327, 339, 및 371로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하고,
    상기 경쇄 가변 영역은 서열번호 316, 328, 340, 및 372로 이루어진 군으로부터 선택되는 아미노산 서열을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  10. 제1항에 있어서,
    상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 종간 교차 반응성을 갖는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  11. 제10항에 있어서,
    상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편은 인간 및 마우스 CD300c 항원 둘 모두에 대한 교차 반응성인
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편.
  12. 아래 식 (1) 내지 (3)으로 각각 표현되는 아미노산 서열을 포함하는 CDR1 내지 CDR3을 포함하는 중쇄 가변 영역, 및
    아래 식 (4) 내지 (6)으로 각각 표현되는 아미노산 서열을 포함하는 CDR1 내지 CDR3을 포함하는 경쇄 가변 영역을 포함하는
    항-CD300c 단클론 항체 또는 그의 항원 결합 단편:
    FTFX1X2X3X4MX5WVR (1)
    상기 식에서,
    X1= G 또는 S
    X2= S, R 또는 D
    X3= N 또는 Y
    X4= Y, A, G 또는 H
    X5= S 또는 H
    X1ISX2SGX3X4TYYAX5 (2)
    상기 식에서,
    X1= T 또는 A
    X2= G 또는 S
    X3= T 또는 G
    X4= S 또는 Y
    X5= D 또는 E
    YCAX1X2X3X4X5X6X7X8X9W (3)
    상기 식에서,
    X1= R 또는 S
    X2= G 또는 S
    X3= M, S, Y 또는 I
    X4= W, Q, G 또는 R
    X5= G 또는 L
    X6= M, I 또는 P
    X7= D, F 또는 L
    X8= V 또는 D
    X9= I, Y 또는 존재하지 않음
    CX1X2X3X4X5X6X7X8X9X10X11VX12W (4)
    상기 식에서,
    X1= T 또는 S
    X2= G 또는 R
    X3= K, N 또는 S
    X4= H, N 또는 S
    X5= R, I 또는 G
    X6= H, G 또는 I
    X7= T, I 또는 S
    X8= R, A, K, 또는 존재하지 않음
    X9= R, S, G, 또는 존재하지 않음
    X10= N 또는 존재하지 않음
    X11= Y 또는 존재하지 않음
    X12= N, H 또는 Q
    X1X2X3X4RPSGVX5 (5)
    상기 식에서,
    X1= L, S, R 또는 E
    X2= D, K 또는 N
    X3= S 또는 N
    X4= E, N, Q 또는 K
    X5= P 또는 R
    YCX1X2X3X4X5X6X7X8X9X10VF (6)
    상기 식에서,
    X1= Q, A, 또는 S
    X2= S 또는 A
    X3= Y 또는 W
    X4= D 또는 A
    X5= S, D 또는 G
    X6= S, N 또는 T
    X7= S, L, N 또는 K
    X8= V, S, N 또는 G
    X9= G, L, V 또는 존재하지 않음
    X10 = P 또는 존재하지 않음.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 유효성분으로 포함하는
    암 예방 또는 치료용 약학 조성물.
  14. 제13항에 있어서,
    상기 암은 대장암, 직장암, 결장암, 갑상선암, 구강암, 인두암, 후두암, 자궁경부암, 뇌암, 폐암, 난소암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암, 혀암, 유방암, 자궁암, 위암, 골암 및 혈액암으로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는
    약학 조성물.
  15. 제13항에 있어서,
    상기 암은 고형암인
    약학 조성물.
  16. 제13항에 있어서,
    상기 암은 대장암, 폐암, 흑색종, 및 유방암으로 이루어진 군으로부터 선택된 하나 이상을 포함하는
    약학 조성물.
  17. 제13항에 있어서,
    상기 약학 조성물은 암의 증식, 생존, 전이, 재발 또는 항암제 내성을 억제하는 것인
    약학 조성물.
  18. 제13항에 있어서,
    상기 약학 조성물은 하나 이상의 면역 항암제를 추가로 포함하는
    약학 조성물.
  19. 제18항에 있어서,
    상기 면역 항암제는 항-PD-1, 항-PD-L1, 항-CTLA-4, 항-KIR, 항-LAG3, 항-CD137, 항-OX40, 항-CD276, 항-CD27, 항-GITR, 항-TIM3, 항-41BB, 항-CD226, 항-CD40, 항-CD70, 항-ICOS, 항-CD40L, 항-BTLA, 항-TCR, 및 항-TIGIT로 이루어진 군으로부터 선택된 어느 하나 이상을 포함하는
    약학 조성물.
  20. 제18항에 있어서,
    상기 면역 항암제는 항-PD-1, 항-PD-L1, 항-CTLA-4 및 항-CD47 항체로 이루어진 군으로부터 선택되는 하나 이상을 포함하는
    약학 조성물.
  21. 제18항에 있어서,
    상기 면역 항암제는 더발루맙, 펨브롤리주맙, 니볼루맙, αCD47, 및 이필리무맙으로 이루어진 군으로부터 선택되는 하나 이상을 포함하는
    약학 조성물.
  22. 제18항에 있어서,
    상기 항-CD300c 항체 또는 그의 항원 결합 단편과 상기 면역 항암제는 각각 제제화되어 동시 또는 순차적으로 별개로 투여되는 형태인
    약학 조성물.
  23. 제1항 내지 제12항 중 어느 한 항에 따른 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 암의 예방 또는 치료가 필요한 대상체에 투여하는 단계를 포함하는
    암의 예방 또는 치료 방법.
  24. 제23항에 있어서,
    하나 이상의 면역 항암제를 투여하는 단계를 추가로 포함하는
    방법.
  25. 제23항에 있어서,
    상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편의 투여 전에, 대상체의 생물학적 시료 또는 자료에 기초하여 CD300c 단백질의 발현 수준을 확인하는 단계를 추가로 포함하는
    방법.
  26. 제25항에 있어서,
    상기 확인된 마커의 발현 수준에 기초하여 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성을 확인하는 단계를 추가로 포함하는
    방법.
  27. 제23항에 있어서,
    상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 투여받은 대상체의 생물학적 시료 또는 자료를 이용하여 하기 마커로부터 선택된 하나 이상의 마커의 발현 수준을 확인하는 단계를 추가로 포함하는
    방법:
    Bst2, Cd40, Cd70, Cd86, Ccl8, Xcl1, Ccr7, Cd80, Cd206, Msr1, Arg1, Vegfa, Pdgfrb, Col4a1, Hif1a, Vcam1, Icam1, Gzma, Gzmb, Icos, Cd69, Ifng, Tnf, Cd1d1, Cd1d2, Cd38, Cxcr6, Xcr1, Tbx21, Stat1, Stat4, Cxcr3, IL-12b, IL-4, IL-6, IL-13, PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27, CD28, Cma1, Timd4, Bcl6, Cxcl5 및 Ccl21a.
  28. 제27항에 있어서,
    상기 확인된 마커의 발현 수준에 기초하여 상기 항-CD300c 단클론 항체 또는 그의 항원 결합 단편과 병용될 다른 하나 이상의 면역 항암제를 선별하는 단계를 추가로 포함하는
    방법.
  29. 제28항에 있어서,
    상기 마커는 PD-1, PD-L1, CTLA-4, Lag3, Tim3, Icos, Ox40, Gitr, Hvem, CD27 및 CD28로 이루어진 군에서 선택된 하나 이상을 포함하는
    방법.
  30. 제27항에 있어서,
    상기 마커는 vegfa, pdgfrb, Col4a1, Hif1a, Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, IL-6, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr, CD27 및 CD28로 이루어진 군으로부터 선택된 하나 이상을 포함하는
    방법.
  31. 제30항에 있어서,
    상기 마커 중 vegfa, pdgfrb, Col4a1, Hif1a 및 IL-6로 이루어진 군으로부터 선택된 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 통계적으로 유의미하게 감소된 경우에, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정하는 단계를 추가로 포함하는
    방법.
  32. 제30항에 있어서,
    상기 마커 중 Bst2, CCL8, Xcl1, CCR7, CD80, Tbx21, Stat1, Stat4, Ifng, Cxcr3, Gzma, Icos, Cd69, Cd1d1, Cd38, Cxcr6, Ox40, Gitr, CD27 및 CD28로 이루어진 군으로부터 선택된 하나 이상의 마커의 발현 수준이 항-CD300c 항체 또는 그의 항원 결합 단편을 투여받지 않은 대상체와 비교하여 통계적으로 유의미하게 증가된 경우에, 항-CD300c 항체 또는 그의 항원 결합 단편의 치료 반응성이 양호 또는 우수한 것으로 결정하는 단계를 추가로 포함하는
    방법.
  33. 제1항 내지 제12항 중 어느 한 항에 따른 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 포함하는 조성물, 및
    상기 항체 또는 그의 항원 결합 단편의 사용을 지시하는 지시서를 포함하는
    암 예방 또는 치료용 키트.
  34. 제33항에 있어서,
    상기 지시서는 상기 항체 또는 그의 항원 결합 단편 및 하나 이상의 추가 항암제의 조합 사용을 지시하는 것을 포함하는
    키트.
  35. 제33항에 있어서,
    상기 지시서는 상기 항체 또는 그의 항원 결합 단편의 투여 전에 대상체로부터 수득된 생물학적 시료 또는 자료를 이용하여 CD300c 단백질의 발현 수준의 측정을 지시하는 것을 포함하는
    키트.
  36. 암의 예방 또는 치료가 필요한 대상체로부터 수득된 생물학적 시료 또는 자료에 기초하여 CD300c 단백질의 발현 수준을 측정하는 단계를 포함하는 암의 예방 또는 치료를 위한 정보를 제공하는 방법.
  37. 제36항에 있어서,
    상기 암의 예방 또는 치료를 위한 정보는 CD300c 단백질과 관련된 치료제(예컨대, 항-CD300c 또는 그의 항원 결합 단편)의 치료 반응성, 치료제의 선택, 치료 대상체의 선택, 대상체의 예후, 및 대상체의 생존기간 중 어느 하나 이상에 관한 정보를 포함하는
    방법.
  38. 암의 예방 또는 치료가 필요한 대상체로부터 수득된 생물학적 시료 또는 자료를 이용하여 CD300c 단백질의 발현 수준을 측정하기 위한 물질을 포함하는 암의 예방 또는 치료를 위한 정보를 제공하기 위한 키트.
  39. 제1항 내지 제12항 중 어느 한 항에 따른 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 암호화하는 단리된 핵산 분자.
  40. 제39항에 따른 핵산 분자를 포함하는 발현 벡터.
  41. 제39항에 따른 핵산 분자를 포함하는 숙주 세포.
  42. 제41항의 숙주 세포를 배양하는 단계를 포함하는, 항-CD300c 단클론 항체 또는 그의 항원 결합 단편을 제조하는 방법.
PCT/KR2022/006939 2019-11-18 2022-05-13 항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커 WO2022240261A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2022272594A AU2022272594A1 (en) 2021-05-13 2022-05-13 Anti-CD300c monoclonal antibody and biomarker thereof for preventing or treating cancer
CN202280049724.8A CN117751141A (zh) 2021-05-13 2022-05-13 用于预防或治疗癌症的抗cd300c单克隆抗体及其生物标志物
CA3218834A CA3218834A1 (en) 2021-05-13 2022-05-13 Anti-cd300c monoclonal antibody and biomarker thereof for preventing or treating cancer
EP22807908.3A EP4339211A1 (en) 2021-05-13 2022-05-13 Anti-cd300c monoclonal antibody, and biomarker thereof for preventing or treating cancer
JP2023571116A JP2024517985A (ja) 2021-05-13 2022-05-13 抗-CD300cモノクローナル抗体及びその癌の予防または治療用バイオマーカー
US17/746,569 US20220275103A1 (en) 2019-11-18 2022-05-17 Anti-cd300c monoclonal antibody and biomarker thereof for preventing or treating cancer

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20210062313 2021-05-13
KR10-2021-0062312 2021-05-13
KR20210062312 2021-05-13
KR20210062311 2021-05-13
KR10-2021-0062311 2021-05-13
KR10-2021-0062313 2021-05-13
KR20210114297 2021-08-27
KR10-2021-0114297 2021-08-27
KR10-2022-0042680 2022-04-06
KR20220042680 2022-04-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016264 Continuation WO2021101244A1 (ko) 2019-11-18 2020-11-18 항-cd300c 단클론 항체를 포함하는 암 예방 또는 치료용 조성물

Publications (1)

Publication Number Publication Date
WO2022240261A1 true WO2022240261A1 (ko) 2022-11-17

Family

ID=84028766

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2022/006938 WO2022240260A1 (ko) 2021-05-13 2022-05-13 항-cd300c 항체를 이용한 병용 요법
PCT/KR2022/006939 WO2022240261A1 (ko) 2019-11-18 2022-05-13 항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006938 WO2022240260A1 (ko) 2021-05-13 2022-05-13 항-cd300c 항체를 이용한 병용 요법

Country Status (6)

Country Link
EP (1) EP4339210A1 (ko)
JP (1) JP2024517986A (ko)
KR (2) KR20220155554A (ko)
AU (1) AU2022272266A1 (ko)
CA (1) CA3218832A1 (ko)
WO (2) WO2022240260A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160194631A1 (en) * 2009-09-30 2016-07-07 Harvard Medical School Methods for Modulation of Autophagy Through the Modulation of Autophagy-Inhibiting Gene Products
WO2017069958A2 (en) * 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
KR20180099557A (ko) 2017-02-28 2018-09-05 한양대학교 산학협력단 종양 특이적 살상 아데노바이러스 및 면역 관문 억제제를 포함하는 항암용 조성물
KR20190016025A (ko) * 2016-05-09 2019-02-15 인스티튜트 내셔널 드 라 싼테 에 드 라 리셰르셰 메디칼르 (인 썸) 고형 암을 갖는 환자의 분류 방법
KR20190136949A (ko) 2018-05-31 2019-12-10 주식회사 센트릭스바이오 CD300c의 발현 억제제 또는 활성 억제제를 포함하는 암 예방 또는 치료용 약학적 조성물
WO2020014097A1 (en) * 2018-07-10 2020-01-16 University of Conneticut Reagents and methods for treating cancer and autoimmune disease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160194631A1 (en) * 2009-09-30 2016-07-07 Harvard Medical School Methods for Modulation of Autophagy Through the Modulation of Autophagy-Inhibiting Gene Products
WO2017069958A2 (en) * 2015-10-09 2017-04-27 The Brigham And Women's Hospital, Inc. Modulation of novel immune checkpoint targets
KR20190016025A (ko) * 2016-05-09 2019-02-15 인스티튜트 내셔널 드 라 싼테 에 드 라 리셰르셰 메디칼르 (인 썸) 고형 암을 갖는 환자의 분류 방법
KR20180099557A (ko) 2017-02-28 2018-09-05 한양대학교 산학협력단 종양 특이적 살상 아데노바이러스 및 면역 관문 억제제를 포함하는 항암용 조성물
KR20190136949A (ko) 2018-05-31 2019-12-10 주식회사 센트릭스바이오 CD300c의 발현 억제제 또는 활성 억제제를 포함하는 암 예방 또는 치료용 약학적 조성물
WO2020014097A1 (en) * 2018-07-10 2020-01-16 University of Conneticut Reagents and methods for treating cancer and autoimmune disease

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences and US Pharmacopeia: National Formulary", 1984, MACK PUBLISHING COMPANY
CHENG CUI, MIN SU, YUJUN LIN, LAIJUN LAI: "A CD300c-Fc fusion protein inhibits T cell immunity", FRONTIERS IN IMMUNOLOGY, vol. 9, 15 November 2018 (2018-11-15), pages 1 - 14, XP055660033, DOI: 10.3389/fimmu.2018.02657 *
CRAMERI ET AL., NATURE, vol. 391, 1998, pages 288 - 291
JAMES M. LEE, BIOCHEMICAL ENGINEERING, pages 138 - 176
MARKS ET AL., BIO/TECHNOLOGY, vol. 10, 1992, pages 779 - 783
PATTEN ET AL., CURR. OPIN. BIOTECHNOL., vol. 8, 1997, pages 724 - 733
THOMPSON ET AL., J. MOL. BIOL., vol. 256, 1996, pages 359 - 368
VAUGHAN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536
YANG ET AL., J. MOL. BIOL., vol. 254, 1995, pages 392 - 403

Also Published As

Publication number Publication date
CA3218832A1 (en) 2022-11-17
JP2024517986A (ja) 2024-04-23
AU2022272266A1 (en) 2023-11-30
KR20220155554A (ko) 2022-11-23
AU2022272266A9 (en) 2023-12-14
WO2022240260A1 (ko) 2022-11-17
EP4339210A1 (en) 2024-03-20
KR20220154639A (ko) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2019225787A1 (ko) 항-b7-h3 항체 및 그 용도
WO2015058573A1 (zh) 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及其编码序列与用途
WO2015133817A1 (ko) B 세포 림프종 세포를 특이적으로 인지하는 단일클론항체 및 이의 용도
WO2016137108A1 (en) Novel antibody binding to tfpi and composition comprising the same
WO2017023138A1 (ko) 키메라 항원 수용체 및 키메라 항원 수용체가 발현된 t 세포
WO2021235696A1 (ko) Cd22에 특이적인 항체 및 이의 용도
WO2020080908A1 (ko) 항-l1cam 항체 또는 그의 항원결합 단편, 및 이를 포함하는 키메라 항원 수용체
WO2022039490A1 (en) Anti-b7-h4/anti-4-1bb bispecific antibodies and use thereof
WO2020005003A1 (ko) Lag-3에 특이적으로 결합하는 단클론항체 및 이의 용도
WO2018026248A1 (ko) 프로그램화된 세포 사멸 단백질(pd-1)에 대한 신규 항체 및 이의 용도
WO2021107689A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 면역관문 억제제를 포함하는 암 치료용 약학 조성물
WO2023277361A1 (ko) 메소텔린 특이적 항체 및 이의 용도
WO2019132533A1 (ko) 항-pd-l1 항체 및 이의 용도
WO2019078699A2 (ko) 항-vista 항체 및 이의 용도
WO2022177394A1 (ko) Pd-l1 및 cd47에 대한 이중특이적 단일 도메인 항체 및 이의 용도
WO2022025638A1 (ko) 면역시냅스를 안정화시키는 키메라 항원 수용체(car) t 세포
WO2021210939A1 (ko) 항-her2 어피바디 및 이를 스위치 분자로 이용하는 스위처블 키메라 항원 수용체
WO2022240261A1 (ko) 항-cd300c 단클론 항체 및 이의 암 예방 또는 치료용 바이오마커
WO2022124866A1 (ko) 항-pd-1 항체 및 이의 용도
WO2022145739A1 (en) Humanized antibody specific for cd22 and chimeric antigen receptor using the same
WO2022124864A1 (ko) 항-tigit 항체 및 이의 용도
WO2022216144A1 (en) Fusion proteins comprising chimeric antigen receptors and il-15
WO2022149837A1 (ko) 항-fgfr3 항체 및 이의 용도
WO2018026249A1 (ko) 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
WO2021235697A1 (ko) Cd22에 특이적인 항체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3218834

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023571116

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022272594

Country of ref document: AU

Ref document number: AU2022272594

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022272594

Country of ref document: AU

Date of ref document: 20220513

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022807908

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807908

Country of ref document: EP

Effective date: 20231213

WWE Wipo information: entry into national phase

Ref document number: 202280049724.8

Country of ref document: CN