WO2022240049A1 - Blasting management system for analysis of vibration and fragmentation caused by blasting - Google Patents

Blasting management system for analysis of vibration and fragmentation caused by blasting Download PDF

Info

Publication number
WO2022240049A1
WO2022240049A1 PCT/KR2022/006301 KR2022006301W WO2022240049A1 WO 2022240049 A1 WO2022240049 A1 WO 2022240049A1 KR 2022006301 W KR2022006301 W KR 2022006301W WO 2022240049 A1 WO2022240049 A1 WO 2022240049A1
Authority
WO
WIPO (PCT)
Prior art keywords
blasting
data
vibration
estimation
management system
Prior art date
Application number
PCT/KR2022/006301
Other languages
French (fr)
Korean (ko)
Inventor
이동희
국용석
Original Assignee
주식회사 한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화 filed Critical 주식회사 한화
Priority to AU2022272224A priority Critical patent/AU2022272224A1/en
Publication of WO2022240049A1 publication Critical patent/WO2022240049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/20Ensemble learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D99/00Subject matter not provided for in other groups in this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation

Definitions

  • An embodiment of the present invention is a blasting management system (BLASTING MANAGEMENT SYSTEM FOR ANALYSIS OF VIBRATION AND FRAGMENTATION CAUSED BY BLASTING) for analyzing vibration and fracture caused by blasting, in particular, open pit mining, or open pit D & B Service (Open Pit Drilling & Blasting Service) automatically collects and stores drilling and blasting design, work, and blasting results, and guides drilling and blasting design reflecting the characteristics of blasting sites (e.g., vibration and blasting) using machine learning. It relates to a blasting management system capable of providing a crushing degree estimation formula).
  • a blasting system for exploding and collapsing using explosives is used in construction fields such as blasting of rocks, blasting of abandoned buildings, and blasting in open air.
  • a region or object to be blasted is divided into a plurality of sections, and a plurality of blast holes into which explosives are inserted are drilled for each section. After charging explosives into each of the drilled blast holes, it is connected to the blasting device. By detonating the detonator located in the blast holes, the explosive is detonated and the blasting object is detonated and collapsed.
  • Devine (1966) proposed Equation (1) based on the experimental observation results of the quarry.
  • V is the maximum vibration speed (in / s)
  • D is the distance (ft)
  • W represents the amount of action per delay (lbs).
  • K and n are location constants determined by the ground conditions of each quarry.
  • K was estimated to be 0.675 to 4.04, with an average of 1.85, and n to be 1.083 to 2.346, with an average of 1.536.
  • Equation (1) to which the average constant is applied is converted to cm/s as Equation (2) below.
  • V is the maximum vibration speed (cm/s)
  • D is the distance (m)
  • W is the amount of energy per delay (kg).
  • V is the maximum vibration speed (cm/s)
  • D is the distance (m)
  • W is the amount of energy per delay (kg).
  • the existing blasting vibration estimation equation is organized as an empirical relational expression according to the influencing variables (D, W), and the estimation coefficients (K, n) at this time are very dependent on the nature of the site. Therefore, applying the existing formula to individual sites as it is has a problem in that its utilization is low and incorrect vibration values are predicted, which often causes vibration standards to be exceeded or inefficient blasting results. ]
  • A is the Blastability Index (Equation (5)), is the correction coefficient for the parallax, K is the charge amount (PF), Q is the charge amount (kg), RWS is the relative power coefficient of the explosive, and C(A) is the correction coefficient for the Rock Factor (0.5 to 2.0) indicates
  • RMD is the Rock Mass Description
  • JF is the sum of the Joint Plane Angle and Vertical Joint Spacing
  • RDI is the Rock Density Influence
  • HF represents a hardness factor
  • the crushing degree estimation formula is a value that varies depending on site conditions rather than complex elements and individual coefficients are not fixed values, it is difficult to find an estimation formula tailored to the site without multiple test blasts accompanied by precise measurements. there was.
  • An object of the present invention is to automatically collect and store the design, operation, and blasting results of drilling and blasting, and use machine learning to guide drilling and blasting design reflecting the characteristics of the blasting site (eg, vibration and crushing degree estimation formula) It is to provide a blasting management system that can provide.
  • Another object of the present invention is a blasting management system that can database information on blasting operations such as drilling and charging, and information on vibration, noise and crushing corresponding to blasting results, and provide optimal blasting conditions suitable for the site. is to provide
  • Another object of the present invention is to provide a blasting management system capable of providing an optimal estimation equation considering the characteristics of a site by applying different weights according to characteristics of rocks to be blasted.
  • Another object of the present invention is to provide a blasting management system capable of providing an optimal estimation formula by adding a variable when an additional variable is required.
  • a blasting management system for analyzing blasting vibration and crushing degree, using machine learning, learning based on vibration data and crushing data according to blasting conditions to generate a result estimation formula data learning unit; a blasting design unit for generating a blasting design including at least one of drilling information, charge information, and initial time information; a result prediction unit for generating estimation data by inputting the blasting design into the result estimation equation; a data collection unit for collecting result data according to blasting performed according to the blasting design; and an analyzer configured to analyze a difference by comparing the resulting data and the estimation data.
  • the result estimation formula includes a vibration estimation formula and a crushability estimation formula
  • the estimation data includes vibration estimation data and crushability estimation data
  • the resultant data includes vibration result data and a crushability result. Characterized in that it contains data.
  • the data learning unit a database for storing the vibration data and the crushing degree data; a first learning unit for learning a first correlation between a first blasting condition and the vibration data; a second learning unit for learning a second correlation between a second blasting condition and the crushing degree data; and an estimation equation generator for setting coefficients of the vibration estimation equation and the crushability estimation equation based on the first correlation and the second correlation.
  • the database stores the first blasting condition, the second blasting condition, the vibration result data and the crushing result data of the result data, the first learning unit and the second learning unit, Learning is performed based on the vibration result data and the crush degree result data, and the estimation formula generation unit resets the coefficients of the vibration estimation formula and the crush degree estimation formula.
  • the first blasting condition includes at least one of a maximum charge per charge, a distance to a vibration measuring device, a vibration value, an average blast transmission speed, and a rock coefficient
  • the second blasting condition includes a charge amount and a charge amount. and a rock coefficient.
  • the estimation formula generating unit adds variables affecting vibration and crushability to the vibration estimation formula and the crushability estimation formula using a multiple linear regression model, and sets coefficients for the added variables. It is characterized by doing.
  • the first learning unit sets the maximum charge per charge, the distance to the vibration meter, the vibration value, the average blast transmission speed, and the rock coefficient as variables for the vibration estimation equation, and the estimation equation generation unit, respectively It is characterized in that the vibration estimation equation is generated by deriving coefficients for variables of .
  • the second learning unit sets the charge amount, the charge amount, and the rock coefficient as variables for the crushing degree estimation equation, and the estimation equation generation unit derives coefficients for each variable, thereby estimating the crushing degree It is characterized by generating an expression.
  • the blasting design unit is characterized in that the blasting design is performed for a new blasting site based on the analysis result of the analysis unit.
  • the blasting management system for analyzing vibration and crushing according to blasting of the present invention automatically collects and stores drilling and blasting design, operation, and blasting results, and uses machine learning to design drilling and blasting that reflects the characteristics of the blasting site. There is an effect of providing a guide (eg, vibration and crushability estimation formula).
  • the blasting management system for analyzing vibration and crushing according to blasting of the present invention databases information on blasting operations such as drilling and charging and information on vibration, noise and crushing corresponding to blasting results, and It has the effect of providing the optimal blasting conditions.
  • the blasting management system for analyzing vibration and crushability according to blasting according to the present invention has the effect of providing an optimal estimation formula considering the characteristics of the site by applying different weights according to the characteristics of the rock to be blasted. .
  • the blasting management system for analyzing vibration and crushing according to blasting according to the present invention has an effect of providing an optimal estimation equation by adding additional variables when additional variables are required.
  • FIG. 1 is a diagram showing a blasting management system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a blasting management system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a data learning unit according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the operation of a data learning unit according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. Singular expressions may include plural expressions unless the context clearly dictates otherwise.
  • the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and in the following description, when a part is connected to another part, it is directly connected. In addition, it may also include a case where the other element is electrically connected with another element interposed therebetween.
  • the same reference numerals and symbols refer to the same components in the drawings, even if they are displayed on different drawings.
  • FIG. 1 is a diagram showing a blasting management system 10 according to an embodiment of the present invention.
  • the blasting management system 10 of the present invention is designed for a field where D & B Service (Open Pit Drilling & Blasting Service) is regularly performed in open-air mines, quarries, etc., 1) drilling and blasting design , work, and result information are automatically collected and stored, and 2) drilling and blasting design guides suitable for the user's purpose can be provided.
  • D & B Service Open Pit Drilling & Blasting Service
  • drilling and blasting design , work, and result information are automatically collected and stored
  • drilling and blasting design guides suitable for the user's purpose can be provided.
  • the blasting management system 10 proposes a method for deriving an estimation formula based on regression model machine learning.
  • the blasting management system 10 may include a data learning unit 100, a blasting design unit 200, a result prediction unit 300, a data collection unit 400, and an analysis unit 500.
  • the data learning unit 100 may generate a result estimation equation by learning based on vibration data and crushing degree data according to blasting conditions using machine learning. Since vibration and noise have substantially the same or similar origins and estimation methods, they are described based on vibration data in this specification. However, the present invention is not limited thereto, and the data learning unit 100 may perform learning using noise data.
  • the result estimation equation may include a vibration estimation equation for estimating vibration due to blasting and a crushing degree estimation equation for estimating the degree of crushing.
  • the blasting design unit 200 may generate a blasting design including at least one of drilling information, charge information, and initial time information. In addition, the blasting design unit 200 may proceed with blasting design for a new blasting site based on the analysis result of the analysis unit 500 .
  • the result prediction unit 300 may generate estimated data by inputting the blasting design into the result estimation equation.
  • the estimated data may include vibration estimation data calculated according to the vibration estimation equation and crushability estimation data calculated according to the crushability estimation equation.
  • the data collection unit 400 may collect result data according to blasting conducted according to the blasting design.
  • the result data may include vibration result data and crushing result data.
  • the data collection unit 400 may also collect result data for newly performed blasting.
  • the data collection unit 400 may obtain result data from an external sensing device installed at a safe distance from a blasting site.
  • the present invention is not limited thereto, and according to embodiments, the data collection unit 400 may directly generate result data.
  • the analysis unit 500 may analyze the difference by comparing result data and estimated data. For example, the analysis unit 500 compares the resultant data and the estimated data to calculate the difference, and the prediction and actual error of the blasting result according to a certain blasting condition is calculated in the vibration and crushing estimation equation considering the sensitivity of each blasting condition. can be analyzed to see if it has occurred.
  • the data learning unit 100 may modify the previously obtained blasting estimation equation using the newly obtained blasting results (vibration, degree of crushing). Through this, the blasting management system 10 according to the embodiment of the present invention derives the optimal blasting estimation formula suitable for the bedrock or geological characteristics of the site as the conditions and result data for the additionally performed blasting are added thereafter. can do.
  • FIG. 2 is a diagram showing a blasting management system 10 according to an embodiment of the present invention.
  • the blasting management system 10 may communicate with the sensing device SD for detecting the blasting area BA. Depending on the embodiment, the blasting management system 10 may perform communication with the detection device SD through a wireless or wired network.
  • the blasting management system 10 may include a wireless communication network module such as a mobile communication network, a Wi-Fi communication network, a long range communication network, and a Bluetooth communication network.
  • a wireless communication network module such as a mobile communication network, a Wi-Fi communication network, a long range communication network, and a Bluetooth communication network.
  • the present invention is not limited thereto, and within the scope of achieving the object of the present invention, the blasting management system 10 may include various communication modules.
  • the sensing device SD detects the result of blasting on the first sector ST1.
  • the sensing device (SD) transmits result data indicating the detected blasting result to the blasting management system 10, and the blasting management system 10 can proceed with blasting design and update the learning model based on the resultant data. have.
  • the blasting management system 10 may finely adjust blasting conditions so that the result is below the target degree of crushing and below the target vibration value. At this time, the blasting management system 10 may predict the result of blasting using an estimation formula before actual blasting is performed.
  • FIG. 3 is a diagram showing the data learning unit 100 according to an embodiment of the present invention.
  • the data learning unit 100 may include a database 110, a first learning unit 120, a second learning unit 130, and an estimation equation generating unit 140. .
  • the database 110 may store vibration data and crushability data.
  • the database 110 may store the first blasting condition and the second blasting condition.
  • the first learning unit 120 may learn a first correlation between a first blasting condition and vibration data.
  • the first blasting condition may include at least one of the amount of blast per minute, the distance to the vibration measuring device, the vibration measurement value, the average blasting transmission speed, and the rock coefficient.
  • the first learning unit 120 through learning about the first correlation, sets the maximum charge per charge, the distance to the vibration meter, the vibration value, the average blast propagation speed, and the rock coefficient as variables for the vibration estimation equation. can be set
  • the second learning unit 130 may learn a second correlation between the second blasting condition and the crushing degree data.
  • the second blasting condition may include at least one of a charge amount, a charge amount, and a rock coefficient.
  • the second learning unit 130 may set the charge amount, the charge amount, and the rock coefficient as variables for the crushing degree estimation equation through learning of the second correlation.
  • the estimation equation generation unit 140 may set coefficients of the vibration estimation equation and the fracture degree estimation equation based on the first correlation and the second correlation. That is, the estimation equation generation unit 140 may generate the vibration estimation equation and the fracture degree estimation equation by deriving coefficients for each variable.
  • the estimation formula generating unit 140 adds additional variables affecting vibration and crushability to the vibration estimation formula and the crushability estimation formula using a multilinear regression model, and sets coefficients for the additional variables. can Details related to this are described below.
  • Regression analysis is a statistical analysis method that assumes a mathematical model to investigate the functional relationship between variables and estimates this model from the data of measured variables. Among several regression lines, an expression that minimizes the residual is selected. It may mean a method of doing, for example, a method of least squares.
  • the regression line does not actually mean a linear expression, which is a linear expression, but means that variables and coefficients are formed by a linear combination, and may be a two-dimensional or more curved expression in the form of polynomial regression.
  • the multilinear regression model aims to create a regression model for predicting a dependent variable (y) with several independent variables (x).
  • variable selection method it is possible to first create a regression equation with several independent variables and leave only significant variables through the variable selection method. It is possible to improve the predictive performance of the blasting management system 10 according to an embodiment of the present invention by selecting a significant variable from the predictive model through variable selection and removing an error or unnecessary variable.
  • a forward selection method a backward elimination method, a stepwise selection method, or the like may be used as a variable selection method.
  • the blasting management system 10 may select the best model represented by the AIC by calculating and comparing AIC (Akaike's Information Criterion) values at the time of variable selection.
  • AIC Kaike's Information Criterion
  • the data learning unit 100 may update a learning model based on result data according to blasting results.
  • the database 110 may store vibration result data and crushing result data of result data.
  • the first learning unit 120 and the second learning unit 130 may perform learning based on the vibration result data and the crushing result data.
  • the estimation formula generation unit 140 may reset the coefficients of the vibration estimation formula and the crushing degree estimation formula.
  • FIG. 4 is a diagram illustrating the operation of the data learning unit 100 according to an embodiment of the present invention.
  • the database 110 may store data related to blasting conditions and blasting results.
  • the database 110 may be implemented as a cloud storage device.
  • blasting condition data data such as blasting design and blasting work results, that is, blasting condition data, may be automatically stored in the database 110.
  • blasting condition data may refer to comprehensive data including drilling/charging/blasting (initial time) design data and result data of drilling/charging operations.
  • present invention is not limited thereto, and blasting condition data may be interpreted in various ways within the scope of achieving the object of the present invention.
  • blasting result data may also be automatically stored in the database 110 .
  • blasting result data may refer to comprehensive data including blasting vibration, noise, and degree of crushing.
  • present invention is not limited thereto, and blasting result data may be interpreted in various ways within the scope of achieving the object of the present invention.
  • the degree of blasting and crushing may be stored as an analysis result through a degree of crushing analysis program, and vibration data or noise data may be stored as data sensed from a sensing device installed in the field.
  • the database 110 may be configured to store all of the blasting conditions and blasting result data for one blasting.
  • the first learning unit 120 and the second learning unit 130 automatically determine data characteristics using a Recurrent Neural Network (RNN) that generates a machine learning-based classification model to derive a vibration estimation equation and a crushing degree estimation equation. can be analyzed.
  • RNN Recurrent Neural Network
  • the first learning unit 120 and the second learning unit 130 analyze data characteristics using RNN and perform signal classification and pattern recognition to determine the relationship between blasting conditions and results. Correlation analysis can be performed, parameters of the estimation formula can be selected among the blasting conditions, and coefficients can be calculated.
  • RNN Recurrent Neural Network
  • the data learning unit 100 of the present invention may perform learning and analysis in various ways.
  • the data learning unit 100 may derive a vibration estimation equation and a crushing degree estimation equation.
  • the set of drilling/charge/blasting (first time) design data and result data of drilling/charge corresponding to the blasting conditions may be factors that have a complex effect on the occurrence of vibration, noise and crushing corresponding to the result of blasting. .
  • the data learning unit 100 of the blasting management system 10 of the present invention may derive a vibration estimation equation and a crushing degree estimation equation in which field characteristics are reflected based on the vibration data and the crushing degree data.
  • the data learning unit 100 analyzes the blasting condition data and the blasting result data built through 10 or more blasts, and the variables and coefficients for the variables of the vibration estimation equation and the crushing degree estimation equation in which the field characteristics are reflected can be set.
  • the estimation formula follows a multiple linear regression model through machine learning (machine learning), and the blasting management system 10 of the present invention can perform statistical analysis through a data analysis tool provided through a web service.
  • the first learning unit 120 of the data learning unit 100 may set variables in order to calculate a vibration estimation equation.
  • the first learning unit 120 sets the maximum amount of delay per shot (W), the distance to the vibration meter (D), and the vibration value (V) as variables, and additionally, blasting conditions that may affect vibration generation. Phosphorus average blast delivery speed (Relief Value), rock factor (Rock Factor), etc. can be set as variables of the estimation equation.
  • the estimation equation generation unit 140 of the data learning unit 100 may find coefficients suitable for deriving the blast vibration estimation equation through a multilinear regression model. Through this, the data learning unit 100 of the present invention can add variables that have not been considered in the conventional estimation method, and can improve estimation accuracy by calculating a more suitable vibration estimation equation.
  • the second learning unit 130 may set variables in order to calculate the crushing degree estimation formula.
  • the second learning unit 130 may set the charge amount, the charge amount, the rock coefficient, and the like as variables, and additionally set blasting conditions that may affect the occurrence of crushing as variables of the estimation equation.
  • the estimation formula generating unit 140 of the data learning unit 100 may find coefficients suitable for deriving the blast crushing estimation formula through a multilinear regression model. Through this, the data learning unit 100 of the present invention can add variables that have not been considered in the conventional estimation method, and can improve estimation accuracy by calculating a more suitable vibration estimation equation.
  • the first learning unit 120 and the second learning unit 130 may find additional condition variables and analyze correlation and sensitivity through statistical analysis of vibration and crushing corresponding to blasting results.
  • blasting conditions may include geological information, explosive type information, and the like.
  • Geological information includes rock type, rock specific gravity, uniaxial compressive strength, Young's modulus (or elastic modulus), Poisson's ratio, rock factor, dip angle/direction, and It may include at least one of tensile strength.
  • the rock factor is a factor consisting of at least one of Rock Mass, Vertical Joint Spacing, Joint Plan Angle, Rock Density Influence, and Hardness Factor. it means.
  • Explosive information includes the type of detonator (e.g., bulk, cartridge, detonator, booster, etc.), explosive energy, relative weight strength (RWS), specific gravity, and relative volume. It may include at least one of relative bulk strength (RBS) width, accuracy, length and size of each line.
  • detonator e.g., bulk, cartridge, detonator, booster, etc.
  • RWS relative weight strength
  • specific gravity specific gravity
  • the blasting management system for analyzing vibration and crushing according to blasting of the present invention automatically collects and stores the design, operation, and blasting results of drilling and blasting, and uses machine learning to determine the characteristics of the blasting site. There is an effect that can provide a guide (eg, vibration and crushing degree estimation formula) of the reflected drilling and blasting design.
  • the blasting management system for analyzing vibration and crushing according to blasting of the present invention databases information on blasting operations such as drilling and charging and information on vibration, noise and crushing corresponding to blasting results, and It has the effect of providing the optimal blasting conditions.
  • the blasting management system for analyzing vibration and crushability according to blasting according to the present invention has the effect of providing an optimal estimation formula considering the characteristics of the site by applying different weights according to the characteristics of the rock to be blasted. .
  • the blasting management system for analyzing vibration and crushing according to blasting according to the present invention has an effect of providing an optimal estimation equation by adding additional variables when additional variables are required.
  • Embodiments of the subject matter described herein relate to one or more computer program products, that is, one or more computer program instructions encoded on a tangible program medium for execution by or controlling the operation of a data processing device. It can be implemented as a module.
  • a tangible program medium may be a propagated signal or a computer readable medium.
  • a propagated signal is an artificially generated signal, eg a machine generated electrical, optical or electromagnetic signal, generated to encode information for transmission by a computer to an appropriate receiver device.
  • the computer readable medium may be a machine readable storage device, a machine readable storage substrate, a memory device, a combination of materials that affect a machine readable propagating signal, or a combination of one or more of these.
  • a computer program (also known as a program, software, software application, script, or code) may be written in any form of programming language, including compiled or interpreted language or a priori or procedural language, and may be a stand-alone program or module; It may be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment.
  • a computer program does not necessarily correspond to a file on a file device.
  • a program may be contained within a single file provided to the requested program, or within multiple interacting files (e.g., one or more of which stores a module, subprogram, or piece of code), or within a file holding other programs or data. may be stored within a part (eg, one or more scripts stored within a markup language document).
  • a computer program may be deployed to be executed on a single computer or multiple computers located at one site or distributed across multiple sites and interconnected by a communication network.
  • processors suitable for the execution of computer programs include, for example, both general and special purpose microprocessors and any one or more processors of any type of digital computer.
  • a processor will receive instructions and data from either read-only memory or random access memory or both.
  • the core elements of a computer are one or more memory devices for storing instructions and data and a processor for executing instructions. Also, a computer is generally operable to receive data from or transfer data to one or more mass storage devices for storing data, such as magnetic, magneto-optical disks or optical disks, or to perform both such operations. combined with or will include them. However, a computer need not have such a device.

Abstract

A blasting management system for the analysis of vibration and fragmentation caused by blasting according to an embodiment of the present invention is characterized by comprising: a data learning unit for generating a result estimation formula by using machine learning to learn on the basis of vibration data and fragmentation data according to blasting conditions; a blasting design unit for generating a blasting design including at least one of perforation information, charging information, or initiation information; a result prediction unit for generating estimated data by inputting the blasting design into the result estimation formula; a data collection unit for collecting result data of blasting carried out according to the blasting design; and an analysis unit for comparing the result data and the estimated data and analyzing differences therebetween.

Description

발파에 의한 진동 및 파쇄도 분석을 위한 발파 관리 시스템Blasting management system for vibration and crushing analysis by blasting
본 발명의 실시예는 발파에 의한 진동 및 파쇄도 분석을 위한 발파 관리 시스템(BLASTING MANAGEMENT SYSTEM FOR ANALYSIS OF VIBRATION AND FRAGMENTATION CAUSED BY BLASTING), 특히 노천 광산, 또는 석산 등 노천 D&B Service(Open Pit Drilling & Blasting Service)가 정기적으로 이루어지는 현장에 대해, 천공 및 발파의 설계, 작업, 발파 결과를 자동으로 수집하고 저장하여, 머신 러닝을 이용하여 발파 현장의 특징이 반영된 천공 및 발파 설계의 가이드(예컨대, 진동 및 파쇄도 추정식)를 제공할 수 있는 발파 관리 시스템에 관한 것이다.An embodiment of the present invention is a blasting management system (BLASTING MANAGEMENT SYSTEM FOR ANALYSIS OF VIBRATION AND FRAGMENTATION CAUSED BY BLASTING) for analyzing vibration and fracture caused by blasting, in particular, open pit mining, or open pit D & B Service (Open Pit Drilling & Blasting Service) automatically collects and stores drilling and blasting design, work, and blasting results, and guides drilling and blasting design reflecting the characteristics of blasting sites (e.g., vibration and blasting) using machine learning. It relates to a blasting management system capable of providing a crushing degree estimation formula).
일반적으로, 암반의 폭파, 폐건물 폭파, 노천 폭파 등의 공사 분야에서, 폭발물을 이용하여 폭발 및 붕괴시키는 발파 시스템이 이용되고 있다. BACKGROUND OF THE INVENTION [0002] BACKGROUND OF THE INVENTION [0002] BACKGROUND OF THE INVENTION [0002] In general, a blasting system for exploding and collapsing using explosives is used in construction fields such as blasting of rocks, blasting of abandoned buildings, and blasting in open air.
구체적으로, 발파하고자 하는 지역 또는 대상물을 복수의 구간으로 구분하고, 구간 별로 폭발물이 삽입되는 복수의 발파공들을 천공한다. 천공된 발파공들 각각에 폭발물을 장입한 후, 발파 장치와 연결한다. 발파공들에 위치한 뇌관을 기폭 시킴으로써, 폭발물은 폭발되며 발파 대상물은 폭파 및 붕괴된다.Specifically, a region or object to be blasted is divided into a plurality of sections, and a plurality of blast holes into which explosives are inserted are drilled for each section. After charging explosives into each of the drilled blast holes, it is connected to the blasting device. By detonating the detonator located in the blast holes, the explosive is detonated and the blasting object is detonated and collapsed.
종래의 발파 관리 시스템은, 천공 작업이나 장약 작업 결과에 따라 발파 결과를 예측하는 경우, 기술 분야에 널리 알려져 있는 추정식을 이용하여 발파에 따른 진동이나 파쇄도 등을 추정할 수 있었다. 그런나, 이러한 기존의 추정식들은 고정된 계수를 포함하고 있어 현장의 특정을 반영하지 못했고, 이로 인하여 추정 결과가 정확하지 않고 발파의 비효율을 야기하는 문제가 있었다. In a conventional blasting management system, when a blasting result is predicted according to a result of a drilling operation or charging operation, vibration or crushing due to blasting can be estimated using an estimation formula widely known in the art. However, since these existing estimation formulas contain fixed coefficients, they do not reflect the specifics of the site, and thus there is a problem in that the estimation results are not accurate and cause inefficiency of blasting.
또한, 발파 설계시에는 초기 설계를 그대로 유지하거나 현장 사용자의 경험과 직관만 의존하여 수정이 가능했으므로, 데이터에 기반한 정확한 수정이 불가능했으므로 효율적인 발파 수행이 어려웠다. 특히, 발파의 경우 한번 수행되면 재현이 어렵고 데이터를 저장하지 않으면 쉽게 사라지기 때문에 사용자 경험에 의존해야 하는 문제가 있었다. In addition, in the case of blasting design, since the initial design could be maintained as it is or modified only by relying on the experience and intuition of field users, it was difficult to perform blasting efficiently because accurate modification based on data was impossible. In particular, in the case of blasting, once it is performed, it is difficult to reproduce and easily disappears unless data is saved, so there is a problem of relying on user experience.
[발파 진동 추정식][Blast vibration estimation formula]
Devine(1966)은 채석장의 실험관측 결과를 토대로 식 (1)을 제안하였다. Devine (1966) proposed Equation (1) based on the experimental observation results of the quarry.
Figure PCTKR2022006301-appb-img-000001
Figure PCTKR2022006301-appb-img-000001
여기서, V는 최대진동속도(in/s)고, D는 거리(ft)고, W는 지발당장약량(lbs)을 나타낸다. 그리고, K 및 n는 각 채석장의 지반 조건에 의해 결정되는 입지상수이다. Here, V is the maximum vibration speed (in / s), D is the distance (ft), and W represents the amount of action per delay (lbs). And, K and n are location constants determined by the ground conditions of each quarry.
Devine의 관측에 의하면, K는 0.675~4.04로서 평균 1.85이며, n는 1.083~2.346으로 평균 1.536인 것으로 추정되었다. According to Devine's observation, K was estimated to be 0.675 to 4.04, with an average of 1.85, and n to be 1.083 to 2.346, with an average of 1.536.
평균 상수가 적용된 식 (1)을 cm/s로 환산하면 다음 식 (2)과 같다.Equation (1) to which the average constant is applied is converted to cm/s as Equation (2) below.
Figure PCTKR2022006301-appb-img-000002
Figure PCTKR2022006301-appb-img-000002
여기서, V는 최대진동속도(cm/s)고, D는 거리(m)고, W는 지발당장약량(kg)을 나타낸다.Here, V is the maximum vibration speed (cm/s), D is the distance (m), and W is the amount of energy per delay (kg).
du Pont사는 발파 핸드북에서 다음의 식 (3)을 제시하였다. (SI 단위로 환산)du Pont presented the following equation (3) in the blasting handbook. (converted to SI units)
Figure PCTKR2022006301-appb-img-000003
Figure PCTKR2022006301-appb-img-000003
여기서, V는 최대진동속도(cm/s)고, D는 거리(m)고, W는 지발당장약량(kg)을 나타낸다.Here, V is the maximum vibration speed (cm/s), D is the distance (m), and W is the amount of energy per delay (kg).
Dowding(1985)은 미국 내에 있는 40개의 광관, 채석장, 건설발파의 자료를 이용하여 환산거리에 따른 발파진동의 분산 정도를 보였다. 표 1.은 95% 신뢰구간의 자승근 환산거리 식으로 구한 산업별 진동 추정식이다. Dowding (1985) showed the degree of dispersion of blasting vibration according to the conversion distance using data from 40 boreholes, quarries, and construction blasting in the United States. Table 1. is the vibration estimation formula for each industry obtained by the square root conversion distance formula of the 95% confidence interval.
산업별 발파진동 추정식 (95% 신뢰수준)Blasting vibration estimation formula for each industry (95% confidence level)
산업industry 추정식 (cm/s)Estimation formula (cm/s)
전체all
Figure PCTKR2022006301-appb-img-000004
Figure PCTKR2022006301-appb-img-000004
지표채탄surface mining
Figure PCTKR2022006301-appb-img-000005
Figure PCTKR2022006301-appb-img-000005
채석quarrying
Figure PCTKR2022006301-appb-img-000006
Figure PCTKR2022006301-appb-img-000006
건설erection
Figure PCTKR2022006301-appb-img-000007
Figure PCTKR2022006301-appb-img-000007
위의 이론적 배경과 같이 기존의 발파진동 추정식은 영향을 미치는 변수들(D, W)에 따른 경험적 관계식으로 정리되어 있고, 이 때의 추정식 계수들(K, n)은 현장의 성격에 따라 매우 유동적이다.따라서, 기존에 밝혀진 식을 그대로 개별 현장에 적용시키는 것은, 그 활용도가 떨어지고 잘못된 진동값을 예측하여 종종 진동기준 초과나 비효율적 발파결과를 유발하는 문제가 발생하였다.[발파 파쇄도 추정식]As shown in the theoretical background above, the existing blasting vibration estimation equation is organized as an empirical relational expression according to the influencing variables (D, W), and the estimation coefficients (K, n) at this time are very dependent on the nature of the site. Therefore, applying the existing formula to individual sites as it is has a problem in that its utilization is low and incorrect vibration values are predicted, which often causes vibration standards to be exceeded or inefficient blasting results. ]
발파 파쇄도 추정식은 Kuznetsov(1973)에 의해 제시된 이후로 꾸준히 실험식이 개선되어 Cunningham(2005)가 제시한 식 (4)까지 발전하였다. 지금까지 가장 대중적으로 사용되는 파쇄도 추정식은 다음과 같다. The empirical formula has been steadily improved since it was presented by Kuznetsov (1973), and developed to Equation (4) presented by Cunningham (2005). The most popular crush estimation formula so far is as follows.
Figure PCTKR2022006301-appb-img-000008
Figure PCTKR2022006301-appb-img-000008
여기서, A는 Blastability Index (식(5))이고,
Figure PCTKR2022006301-appb-img-000009
는 시차에 대한 보정계수이고, K는 비장약량(P.F)이고, Q는 장약량(kg)이고, RWS는 폭약의 상대위력계수이고, C(A)는 Rock Factor 에 대한 보정계수(0.5~2.0)를 나타낸다.
Here, A is the Blastability Index (Equation (5)),
Figure PCTKR2022006301-appb-img-000009
is the correction coefficient for the parallax, K is the charge amount (PF), Q is the charge amount (kg), RWS is the relative power coefficient of the explosive, and C(A) is the correction coefficient for the Rock Factor (0.5 to 2.0) indicates
A = 0.06* (RMD+ JF + RDI + HF) (5)A = 0.06* (RMD+JF+RDI+HF) (5)
여기서, RMD는 암석 질량 설명(Rock Mass Description)이고, JF는 조인트 평면 각도(Joint Plane Angle) 및 수직 조인트 간격(Vertical Joint Spacing)의 합이고, RDI 는 암석 밀도 영향(Rock Density Influence)이고, HF는 경도 인자(Hardness Factor)을 나타낸다.where RMD is the Rock Mass Description, JF is the sum of the Joint Plane Angle and Vertical Joint Spacing, RDI  is the Rock Density Influence, and HF represents a hardness factor.
위와 같이, 파쇄도 추정식은 요소가 복잡하고 개별 계수가 고정된 값이 아닌, 현장의 조건에 따라 달라지는 값이므로, 정밀한 측정을 동반한 다수의 시험 발파 없이 현장에 맞춘 추정식을 알아내기 어려운 문제가 있었다. As described above, since the crushing degree estimation formula is a value that varies depending on site conditions rather than complex elements and individual coefficients are not fixed values, it is difficult to find an estimation formula tailored to the site without multiple test blasts accompanied by precise measurements. there was.
본 발명의 목적은 천공 및 발파의 설계, 작업, 발파 결과를 자동으로 수집하고 저장하여, 머신 러닝을 이용하여 발파 현장의 특징이 반영된 천공 및 발파 설계의 가이드(예컨대, 진동 및 파쇄도 추정식)를 제공할 수 있는 발파 관리 시스템을 제공하는 데 있다.An object of the present invention is to automatically collect and store the design, operation, and blasting results of drilling and blasting, and use machine learning to guide drilling and blasting design reflecting the characteristics of the blasting site (eg, vibration and crushing degree estimation formula) It is to provide a blasting management system that can provide.
본 발명의 다른 목적은 천공, 장약 등 발파 작업에 대한 정보 및 발파 결과에 해당하는 진동, 소음 및 파쇄도에 대한 정보를 데이터베이스화하고, 현장에 맞는 최적의 발파 조건을 제공할 수 있는 발파 관리 시스템을 제공하는 데 있다.Another object of the present invention is a blasting management system that can database information on blasting operations such as drilling and charging, and information on vibration, noise and crushing corresponding to blasting results, and provide optimal blasting conditions suitable for the site. is to provide
본 발명의 또 다른 목적은 발파 대상의 암석 특성에 따라 서로 다른 가중치를 적용함으로써, 현장의 특성을 고려한 최적의 추정식을 제공할 수 있는 발파 관리 시스템을 제공하는 데 있다.Another object of the present invention is to provide a blasting management system capable of providing an optimal estimation equation considering the characteristics of a site by applying different weights according to characteristics of rocks to be blasted.
본 발명의 또 다른 목적은 추가 변수가 필요한 경우, 변수를 추가함으로써 최적의 추정식을 제공할 수 있는 발파 관리 시스템을 제공하는 데 있다.Another object of the present invention is to provide a blasting management system capable of providing an optimal estimation formula by adding a variable when an additional variable is required.
본 발명의 실시예에 따른, 발파에 의한 진동 및 파쇄도 분석을 위한 발파 관리 시스템, 머신 러닝을 이용하여, 발파 조건에 따른 진동 데이터 및 파쇄도 데이터를 기초로 학습하여 결과 추정식을 생성하기 위한 데이터 학습부; 천공 정보, 장약 정보 및 초시 정보 중 적어도 하나를 포함하는 발파 설계를 생성하기 위한 발파 설계부; 상기 결과 추정식에 상기 발파 설계를 입력하여 추정 데이터를 생성하기 위한 결과 예측부; 상기 발파 설계에 따라 진행된 발파에 따른 결과 데이터를 수집하기 위한 데이터 수집부; 및 상기 결과 데이터 및 상기 추정 데이터를 비교하여 차이를 분석하기 위한 분석부를 포함하는 것을 특징으로 한다. According to an embodiment of the present invention, a blasting management system for analyzing blasting vibration and crushing degree, using machine learning, learning based on vibration data and crushing data according to blasting conditions to generate a result estimation formula data learning unit; a blasting design unit for generating a blasting design including at least one of drilling information, charge information, and initial time information; a result prediction unit for generating estimation data by inputting the blasting design into the result estimation equation; a data collection unit for collecting result data according to blasting performed according to the blasting design; and an analyzer configured to analyze a difference by comparing the resulting data and the estimation data.
본 발명에서, 상기 결과 추정식은, 진동 추정식 및 파쇄도 추정식을 포함하고, 상기 추정 데이터는, 진동 추정 데이터 및 파쇄도 추정 데이터를 포함하고, 상기 결과 데이터는, 진동 결과 데이터 및 파쇄도 결과 데이터를 포함하는 것을 특징으로 한다. In the present invention, the result estimation formula includes a vibration estimation formula and a crushability estimation formula, the estimation data includes vibration estimation data and crushability estimation data, and the resultant data includes vibration result data and a crushability result. Characterized in that it contains data.
본 발명에서, 상기 데이터 학습부는, 상기 진동 데이터 및 상기 파쇄도 데이터를 저장하기 위한 데이터베이스; 제1 발파 조건과 상기 진동 데이터 사이의 제1 상관 관계를 학습하기 위한 제1 학습부; 제2 발파 조건과 상기 파쇄도 데이터 사이의 제2 상관 관계를 학습하기 위한 제2 학습부; 및 상기 제1 상관 관계 및 상기 제2 상관 관계를 기초로, 상기 진동 추정식 및 상기 파쇄도 추정식의 계수를 설정하기 위한 추정식 생성부를 포함하는 것을 특징으로 한다. In the present invention, the data learning unit, a database for storing the vibration data and the crushing degree data; a first learning unit for learning a first correlation between a first blasting condition and the vibration data; a second learning unit for learning a second correlation between a second blasting condition and the crushing degree data; and an estimation equation generator for setting coefficients of the vibration estimation equation and the crushability estimation equation based on the first correlation and the second correlation.
본 발명에서, 상기 데이터베이스는, 상기 제1 발파 조건, 상기 제2 발파 조건, 상기 결과 데이터의 상기 진동 결과 데이터 및 파쇄도 결과 데이터를 저장하고, 상기 제1 학습부 및 상기 제2 학습부는, 상기 진동 결과 데이터 및 상기 파쇄도 결과 데이터를 기초로 학습을 진행하고, 상기 추정식 생성부는, 상기 진동 추정식 및 상기 파쇄도 추정식의 계수를 재설정하는 것을 특징으로 한다. In the present invention, the database stores the first blasting condition, the second blasting condition, the vibration result data and the crushing result data of the result data, the first learning unit and the second learning unit, Learning is performed based on the vibration result data and the crush degree result data, and the estimation formula generation unit resets the coefficients of the vibration estimation formula and the crush degree estimation formula.
본 발명에서, 상기 제1 발파 조건은, 최대 지발당장약량, 진동 측정기까지의 거리, 진동값, 평균 발파 전달 속도 및 암석 계수 중 적어도 하나를 포함하고, 상기 제2 발파 조건은, 장약량, 비장약량 및 암석 계수 중 적어도 하나를 포함하는 것을 특징으로 한다. In the present invention, the first blasting condition includes at least one of a maximum charge per charge, a distance to a vibration measuring device, a vibration value, an average blast transmission speed, and a rock coefficient, and the second blasting condition includes a charge amount and a charge amount. and a rock coefficient.
본 발명에서, 상기 추정식 생성부는, 다중선형 회귀모형을 이용하여 상기 진동 추정식 및 상기 파쇄도 추정식에 진동 및 파쇄도에 영향을 미치는 변수를 추가하고, 추가된 상기 변수에 대한 계수를 설정하는 것을 특징으로 한다. In the present invention, the estimation formula generating unit adds variables affecting vibration and crushability to the vibration estimation formula and the crushability estimation formula using a multiple linear regression model, and sets coefficients for the added variables. It is characterized by doing.
본 발명에서, 상기 제1 학습부는, 상기 진동 추정식에 대하여 최대 지발당장약량, 진동 계측기까지의 거리, 진동값, 평균 발파 전달 속도 및 암석 계수를 변수로 설정하고, 상기 추정식 생성부는, 각각의 변수에 대한 계수들을 도출함으로써, 상기 진동 추정식을 생성하는 것을 특징으로 한다. In the present invention, the first learning unit sets the maximum charge per charge, the distance to the vibration meter, the vibration value, the average blast transmission speed, and the rock coefficient as variables for the vibration estimation equation, and the estimation equation generation unit, respectively It is characterized in that the vibration estimation equation is generated by deriving coefficients for variables of .
본 발명에서, 상기 제2 학습부는, 상기 파쇄도 추정식에 대하여 장약량, 비장약량 및 암석 계수를 변수로 설정하고, 상기 추정식 생성부는, 각각의 변수에 대한 계수들을 도출함으로써, 상기 파쇄도 추정식을 생성하는 것을 특징으로 한다. In the present invention, the second learning unit sets the charge amount, the charge amount, and the rock coefficient as variables for the crushing degree estimation equation, and the estimation equation generation unit derives coefficients for each variable, thereby estimating the crushing degree It is characterized by generating an expression.
본 발명에서, 상기 발파 설계부는, 상기 분석부의 분석 결과를 기초로 새로운 발파 현장에 대하여 발파 설계를 진행하는 것을 특징으로 한다.In the present invention, the blasting design unit is characterized in that the blasting design is performed for a new blasting site based on the analysis result of the analysis unit.
본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 천공 및 발파의 설계, 작업, 발파 결과를 자동으로 수집하고 저장하여, 머신 러닝을 이용하여 발파 현장의 특징이 반영된 천공 및 발파 설계의 가이드(예컨대, 진동 및 파쇄도 추정식)를 제공할 수 있는 효과가 있다. The blasting management system for analyzing vibration and crushing according to blasting of the present invention automatically collects and stores drilling and blasting design, operation, and blasting results, and uses machine learning to design drilling and blasting that reflects the characteristics of the blasting site. There is an effect of providing a guide (eg, vibration and crushability estimation formula).
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 천공, 장약 등 발파 작업에 대한 정보 및 발파 결과에 해당하는 진동, 소음 및 파쇄도에 대한 정보를 데이터베이스화하고, 현장에 맞는 최적의 발파 조건을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushing according to blasting of the present invention databases information on blasting operations such as drilling and charging and information on vibration, noise and crushing corresponding to blasting results, and It has the effect of providing the optimal blasting conditions.
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 발파 대상의 암석 특성에 따라 서로 다른 가중치를 적용함으로써, 현장의 특성을 고려한 최적의 추정식을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushability according to blasting according to the present invention has the effect of providing an optimal estimation formula considering the characteristics of the site by applying different weights according to the characteristics of the rock to be blasted. .
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 추가 변수가 필요한 경우, 변수를 추가함으로써 최적의 추정식을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushing according to blasting according to the present invention has an effect of providing an optimal estimation equation by adding additional variables when additional variables are required.
도 1은 본 발명의 실시예에 따른 발파 관리 시스템을 나타내는 도면이다. 1 is a diagram showing a blasting management system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 발파 관리 시스템을 나타내는 도면이다.2 is a diagram showing a blasting management system according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 데이터 학습부를 나타내는 도면이다.3 is a diagram showing a data learning unit according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 데이터 학습부의 동작을 나타내는 도면이다.4 is a diagram illustrating the operation of a data learning unit according to an embodiment of the present invention.
본 발명을 더욱 상세히 설명한다.The present invention is described in more detail.
이하 첨부한 도면을 참고하여 본 발명의 실시예 및 그 밖에 당업자가 본 발명의 내용을 쉽게 이해하기 위하여 필요한 사항에 대하여 상세히 기재한다. 다만, 본 발명은 청구범위에 기재된 범위 안에서 여러 가지 상이한 형태로 구현될 수 있으므로 하기에 설명하는 실시예는 표현 여부에 불구하고 예시적인 것에 불과하다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention and other matters necessary for those skilled in the art to easily understand the contents of the present invention will be described in detail. However, since the present invention can be implemented in many different forms within the scope described in the claims, the embodiments described below are merely illustrative regardless of whether they are expressed or not.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율, 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. "및/또는"은 연관된 구성들이 정의할 수 있는 하나 이상의 조합을 모두 포함할 수 있다.Like reference numerals designate like components. Also, in the drawings, the thickness, ratio, and dimensions of components are exaggerated for effective description of technical content. “And/or” may include any combination of one or more that the associated elements may define.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. Singular expressions may include plural expressions unless the context clearly dictates otherwise.
또한, "아래에", "하측에", "위에", "상측에" 등의 용어는 도면에 도시된 구성들의 연관관계를 설명하기 위해 사용된다. 상기 용어들은 상대적인 개념으로, 도면에 표시된 방향을 기준으로 설명된다.In addition, terms such as "below", "lower side", "above", and "upper side" are used to describe the relationship between components shown in the drawings. The above terms are relative concepts and will be described based on the directions shown in the drawings.
"포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Terms such as "include" or "have" are intended to indicate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but that one or more other features, numbers, or steps are present. However, it should be understood that it does not preclude the possibility of existence or addition of operations, components, parts, or combinations thereof.
즉, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 이하의 설명에서 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라 그 중간에 다른 소자를 사이에 두고 전기적으로 연결되어 있는 경우도 포함할 수 있다. 또한, 도면에서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호 및 부호로 나타내고 있음에 유의해야 한다. That is, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and in the following description, when a part is connected to another part, it is directly connected. In addition, it may also include a case where the other element is electrically connected with another element interposed therebetween. In addition, it should be noted that the same reference numerals and symbols refer to the same components in the drawings, even if they are displayed on different drawings.
도 1은 본 발명의 실시예에 따른 발파 관리 시스템(10)을 나타내는 도면이다. 1 is a diagram showing a blasting management system 10 according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 발파 관리 시스템(10)은 노천 광산, 석산 등의 노천에서의 D&B Service(Open Pit Drilling & Blasting Service)가 정기적으로 이루어지는 현장에 대해, 1) 천공 및 발파의 설계, 작업, 결과 정보를 자동으로 수집하고 저장하고, 2) 사용자 목적에 맞는 천공 및 발파 설계의 가이드를 제공할 수 있다. 특히, 발파 관리 시스템(10)은 회귀모형 기계학습 기반의 추정식 도출 방법을 제안한다.Referring to FIG. 1, the blasting management system 10 of the present invention is designed for a field where D & B Service (Open Pit Drilling & Blasting Service) is regularly performed in open-air mines, quarries, etc., 1) drilling and blasting design , work, and result information are automatically collected and stored, and 2) drilling and blasting design guides suitable for the user's purpose can be provided. In particular, the blasting management system 10 proposes a method for deriving an estimation formula based on regression model machine learning.
이를 위하여, 발파 관리 시스템(10)은 데이터 학습부(100), 발파 설계부(200), 결과 예측부(300), 데이터 수집부(400) 및 분석부(500)를 포함할 수 있다.To this end, the blasting management system 10 may include a data learning unit 100, a blasting design unit 200, a result prediction unit 300, a data collection unit 400, and an analysis unit 500.
데이터 학습부(100)는 머신 러닝을 이용하여, 발파 조건에 따른 진동 데이터 및 파쇄도 데이터를 기초로 학습하여 결과 추정식을 생성할 수 있다. 진동과 소음은 그 발생원과 추정 방식이 실질적으로 동일하거나 유사하므로, 본 명세서에서는 진동 데이터를 기준으로 설명된다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 데이터 학습부(100)는 소음 데이터를 이용하여 학습을 수행할 수 있다. 이때, 결과 추정식은 발파에 따른 진동을 추정하기 위한 진동 추정식 및 파쇄도를 추정하기 위한 파쇄도 추정식을 포함할 수 있다. The data learning unit 100 may generate a result estimation equation by learning based on vibration data and crushing degree data according to blasting conditions using machine learning. Since vibration and noise have substantially the same or similar origins and estimation methods, they are described based on vibration data in this specification. However, the present invention is not limited thereto, and the data learning unit 100 may perform learning using noise data. In this case, the result estimation equation may include a vibration estimation equation for estimating vibration due to blasting and a crushing degree estimation equation for estimating the degree of crushing.
발파 설계부(200)는 천공 정보, 장약 정보 및 초시 정보 중 적어도 하나를 포함하는 발파 설계를 생성할 수 있다. 또한, 발파 설계부(200)는, 분석부(500)의 분석 결과를 기초로 새로운 발파 현장에 대하여 발파 설계를 진행할 수 있다. The blasting design unit 200 may generate a blasting design including at least one of drilling information, charge information, and initial time information. In addition, the blasting design unit 200 may proceed with blasting design for a new blasting site based on the analysis result of the analysis unit 500 .
결과 예측부(300)는 결과 추정식에 발파 설계를 입력하여 추정 데이터를 생성할 수 있다. 이때, 추정 데이터는 진동 추정식에 따라 산출된 진동 추정 데이터 및 파쇄도 추정식에 따라 산출된 파쇄도 추정 데이터를 포함할 수 있다. The result prediction unit 300 may generate estimated data by inputting the blasting design into the result estimation equation. In this case, the estimated data may include vibration estimation data calculated according to the vibration estimation equation and crushability estimation data calculated according to the crushability estimation equation.
데이터 수집부(400)는 발파 설계에 따라 진행된 발파에 따른 결과 데이터를 수집할 수 있다. 이때, 결과 데이터는 진동 결과 데이터 및 파쇄도 결과 데이터를 포함할 수 있다. The data collection unit 400 may collect result data according to blasting conducted according to the blasting design. In this case, the result data may include vibration result data and crushing result data.
예컨대, 데이터 수집부(400)는 새롭게 실시된 발파에 대해서도 결과 데이터를 수집할 수 있다. 예컨대, 데이터 수집부(400)는 발파 현장에 안전 거리로 설치된 외부의 감지 장치로부터 결과 데이터를 획득할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 실시예에 따라, 데이터 수집부(400)가 직접 결과 데이터를 생성할 수 있다. For example, the data collection unit 400 may also collect result data for newly performed blasting. For example, the data collection unit 400 may obtain result data from an external sensing device installed at a safe distance from a blasting site. However, the present invention is not limited thereto, and according to embodiments, the data collection unit 400 may directly generate result data.
분석부(500)는 결과 데이터 및 추정 데이터를 비교하여 차이를 분석할 수 있다. 예컨대, 분석부(500)는 결과 데이터 및 추정 데이터를 비교하여 차이를 산출하고, 각 발파 조건의 민감도가 고려된 진동과 파쇄도 추정식에 어떤 발파 조건에 의해 발파 결과의 예측과 실제의 오차가 발생하였는지 분석할 수 있다. The analysis unit 500 may analyze the difference by comparing result data and estimated data. For example, the analysis unit 500 compares the resultant data and the estimated data to calculate the difference, and the prediction and actual error of the blasting result according to a certain blasting condition is calculated in the vibration and crushing estimation equation considering the sensitivity of each blasting condition. can be analyzed to see if it has occurred.
데이터 학습부(100)는 새롭게 확보된 발파 결과(진동, 파쇄도)를 이용하여 이전에 구한 발파 추정식을 수정할 수 있다. 이를 통해, 본 발명의 실시예에 따른 발파 관리 시스템(10)은 이후 추가로 수행된 발파에 대한 조건과 결과 데이터가 추가될 수 록, 현장의 암반이나 지질 특성에 맞는 최적의 발파 추정식을 도출할 수 있다.The data learning unit 100 may modify the previously obtained blasting estimation equation using the newly obtained blasting results (vibration, degree of crushing). Through this, the blasting management system 10 according to the embodiment of the present invention derives the optimal blasting estimation formula suitable for the bedrock or geological characteristics of the site as the conditions and result data for the additionally performed blasting are added thereafter. can do.
도 2는 본 발명의 실시예에 따른 발파 관리 시스템(10)을 나타내는 도면이다.2 is a diagram showing a blasting management system 10 according to an embodiment of the present invention.
도 2를 참조하면, 발파 관리 시스템(10)은 발파 영역(BA)을 감지하기 위한 감지 장치(SD)와 통신을 수행할 수 있다. 실시예에 따라, 발파 관리 시스템(10)은 무선 또는 유선 네트워크를 통해 감지 장치(SD)와 통신을 수행할 수 있다.Referring to FIG. 2 , the blasting management system 10 may communicate with the sensing device SD for detecting the blasting area BA. Depending on the embodiment, the blasting management system 10 may perform communication with the detection device SD through a wireless or wired network.
예컨대, 발파 관리 시스템(10)은 이동 통신 네트워크, 와이파이 통신 네트워크, 롱레인지 통신 네트워크, 블루투스 통신 네트워크 등의 무선 통신 네트워크 모듈을 포함할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 본 발명의 목적을 달성하는 범위에서 발파 관리 시스템(10)은 다양한 통신 모듈을 포함할 수 있다.For example, the blasting management system 10 may include a wireless communication network module such as a mobile communication network, a Wi-Fi communication network, a long range communication network, and a Bluetooth communication network. However, the present invention is not limited thereto, and within the scope of achieving the object of the present invention, the blasting management system 10 may include various communication modules.
제1 섹터(ST1)에 대해 발파가 진행되면, 감지 장치(SD)는 제1 섹터(ST1)의 발파 결과를 감지한다. When blasting is performed on the first sector ST1, the sensing device SD detects the result of blasting on the first sector ST1.
감지 장치(SD)는 감지된 발파 결과를 나타내는 결과 데이터를 발파 관리 시스템(10)으로 전달하며, 발파 관리 시스템(10)은 결과 데이터를 기초로, 발파 설계를 진행하고, 학습 모델을 업데이트할 수 있다. The sensing device (SD) transmits result data indicating the detected blasting result to the blasting management system 10, and the blasting management system 10 can proceed with blasting design and update the learning model based on the resultant data. have.
즉, 제1 섹터(ST1)에 대한 발파를 통해 제2 섹터(ST2)에 적합한 진동 추정식 및 파쇄도 추정식이 도출된 경우, 이를 바탕으로 발파 관리 시스템(10)은 제2 섹터(ST2)의 발파 설계를 실시할 수 있다. That is, when the vibration estimation equation and the crushing degree estimation equation suitable for the second sector ST2 are derived through the blasting of the first sector ST1, the blasting management system 10 based on this is derived. Blasting design can be implemented.
발파 관리 시스템(10)은 목표하는 파쇄도 이하로, 목표하는 진동값 이하로 결과가 나오도록 발파의 조건을 미세하게 조절할 수 있다. 이 때 발파 관리 시스템(10)은 실제 발파가 수행되기 전에 추정식을 이용하여 발파의 결과 수치를 예측할 수 있다.The blasting management system 10 may finely adjust blasting conditions so that the result is below the target degree of crushing and below the target vibration value. At this time, the blasting management system 10 may predict the result of blasting using an estimation formula before actual blasting is performed.
도 3은 본 발명의 실시예에 따른 데이터 학습부(100)를 나타내는 도면이다.3 is a diagram showing the data learning unit 100 according to an embodiment of the present invention.
*도 1 내지 도 3을 참조하면, 데이터 학습부(100)는 데이터베이스(110), 제1 학습부(120), 제2 학습부(130) 및 추정식 생성부(140)를 포함할 수 있다.* Referring to FIGS. 1 to 3 , the data learning unit 100 may include a database 110, a first learning unit 120, a second learning unit 130, and an estimation equation generating unit 140. .
데이터베이스(110)는 진동 데이터 및 파쇄도 데이터를 저장할 수 있다. 또한, 데이터 베이스(110)는 제1 발파 조건 및 제2 발파 조건을 저장할 수 있다.The database 110 may store vibration data and crushability data. In addition, the database 110 may store the first blasting condition and the second blasting condition.
제1 학습부(120)는 제1 발파 조건과 진동 데이터 사이의 제1 상관 관계를 학습할 수 있다. 이때, 제1 발파 조건은 지발당장약량, 진동 측정기까지의 거리, 진동 측정값, 평균 발파 전달 속도 및 암석 계수 중 적어도 하나를 포함할 수 있다. The first learning unit 120 may learn a first correlation between a first blasting condition and vibration data. In this case, the first blasting condition may include at least one of the amount of blast per minute, the distance to the vibration measuring device, the vibration measurement value, the average blasting transmission speed, and the rock coefficient.
예컨대, 제1 학습부(120)는, 제1 상관 관계에 대한 학습을 통해, 진동 추정식에 대하여 최대 지발당장약량, 진동 계측기까지의 거리, 진동값, 평균 발파 전달 속도 및 암석 계수를 변수로 설정할 수 있다.For example, the first learning unit 120, through learning about the first correlation, sets the maximum charge per charge, the distance to the vibration meter, the vibration value, the average blast propagation speed, and the rock coefficient as variables for the vibration estimation equation. can be set
제2 학습부(130)는 제2 발파 조건과 파쇄도 데이터 사이의 제2 상관 관계를 학습할 수 있다. 이때, 제2 발파 조건은, 장약량, 비장약량 및 암석 계수 중 적어도 하나를 포함할 수 있다. The second learning unit 130 may learn a second correlation between the second blasting condition and the crushing degree data. In this case, the second blasting condition may include at least one of a charge amount, a charge amount, and a rock coefficient.
예컨대, 제2 학습부(130)는 제2 상관 관계에 대한 학습을 통해, 파쇄도 추정식에 대하여 장약량, 비장약량 및 암석 계수를 변수로 설정할 수 있다.For example, the second learning unit 130 may set the charge amount, the charge amount, and the rock coefficient as variables for the crushing degree estimation equation through learning of the second correlation.
추정식 생성부(140)는 제1 상관 관계 및 제2 상관 관계를 기초로, 진동 추정식 및 파쇄도 추정식의 계수를 설정할 수 있다. 즉, 추정식 생성부(140)는 각각의 변수에 대한 계수들을 도출함으로써, 진동 추정식 및 파쇄도 추정식을 생성할 수 있다. 또한, 추정식 생성부(140)는, 다중선형 회귀모형을 이용하여 상기 진동 추정식 및 상기 파쇄도 추정식에 진동 및 파쇄도에 영향을 미치는 추가 변수를 추가하고, 추가 변수에 대한 계수를 설정할 수 있다. 이와 관련된 상세한 내용은 이하에서 설명된다. The estimation equation generation unit 140 may set coefficients of the vibration estimation equation and the fracture degree estimation equation based on the first correlation and the second correlation. That is, the estimation equation generation unit 140 may generate the vibration estimation equation and the fracture degree estimation equation by deriving coefficients for each variable. In addition, the estimation formula generating unit 140 adds additional variables affecting vibration and crushability to the vibration estimation formula and the crushability estimation formula using a multilinear regression model, and sets coefficients for the additional variables. can Details related to this are described below.
[다중 선형 회귀모형][Multiple Linear Regression Model]
회귀분석은 변수간의 함수적 관련성을 구명하기 위하여 수학적 모형을 가정하고 이 모형을 측정된 변수의 데이터로부터 추정하는 통계적 분석방법으로서, 여러 개의 회귀 직선들 중에서 잔차(residual)를 가장 작게 해주는 식을 선택하는 방법, 예컨대, 최소제곱법(method of least squres)을 의미할 수 있다. Regression analysis is a statistical analysis method that assumes a mathematical model to investigate the functional relationship between variables and estimates this model from the data of measured variables. Among several regression lines, an expression that minimizes the residual is selected. It may mean a method of doing, for example, a method of least squares.
이 때 회귀 직선이란, 실제로 직선식인 일차식을 의미하는 것이 아닌, 변수와 계수가 일차결합으로 이루어졌다는 의미로, 다항 회귀의 형태로 2차원 이상의 곡선식일 수도 있다.At this time, the regression line does not actually mean a linear expression, which is a linear expression, but means that variables and coefficients are formed by a linear combination, and may be a two-dimensional or more curved expression in the form of polynomial regression.
다중선형 회귀모형은 여러 개의 독립변수(x)들을 가지고 종속변수(y)를 예측하기 위한 회귀 모형을 만드는 것을 목적으로 한다. The multilinear regression model aims to create a regression model for predicting a dependent variable (y) with several independent variables (x).
이 때, 여러 개의 독립변수로 우선 회귀식을 만들고 변수 선택법을 통해 유의한 변수만을 남길 수 있다. 변수 선택을 통하여 예측 모델에서 유의미한 변수를 선택하고 오차를 야기하거나 불필요한 변수를 제거함으로써, 본 발명의 실시예에 따른 발파 관리 시스템(10)의 예측 성능을 향상시킬 수 있다.At this time, it is possible to first create a regression equation with several independent variables and leave only significant variables through the variable selection method. It is possible to improve the predictive performance of the blasting management system 10 according to an embodiment of the present invention by selecting a significant variable from the predictive model through variable selection and removing an error or unnecessary variable.
실시예에 따라, 변수 선택법으로는 전진 선택법, 후진 소거법, 단계별 선택법 등이 이용될 수 있다. Depending on the embodiment, a forward selection method, a backward elimination method, a stepwise selection method, or the like may be used as a variable selection method.
발파 관리 시스템(10)은 변수 선택시 AIC(Akaike's Information Criterion) 값을 산출하고 비교하여, AIC가 나타내는 최고의 모형을 선택할 수 있다.The blasting management system 10 may select the best model represented by the AIC by calculating and comparing AIC (Akaike's Information Criterion) values at the time of variable selection.
한편, 데이터 학습부(100)는 발파 결과에 따른 결과 데이터를 바탕으로 학습 모델을 업데이트할 수 있다. Meanwhile, the data learning unit 100 may update a learning model based on result data according to blasting results.
구체적으로, 데이터베이스(110)는 결과 데이터의 진동 결과 데이터 및 파쇄도 결과 데이터를 저장할 수 있다. Specifically, the database 110 may store vibration result data and crushing result data of result data.
제1 학습부(120) 및 제2 학습부(130)는 진동 결과 데이터 및 파쇄도 결과 데이터를 기초로 학습을 진행할 수 있다.The first learning unit 120 and the second learning unit 130 may perform learning based on the vibration result data and the crushing result data.
그리고, 추정식 생성부(140)는 진동 추정식 및 파쇄도 추정식의 계수를 재설정할 수 있다.And, the estimation formula generation unit 140 may reset the coefficients of the vibration estimation formula and the crushing degree estimation formula.
도 4는 본 발명의 실시예에 따른 데이터 학습부(100)의 동작을 나타내는 도면이다.4 is a diagram illustrating the operation of the data learning unit 100 according to an embodiment of the present invention.
도 1 내지 도 4를 참조하면, 데이터베이스(110)는 발파 조건 및 발파 결과와 연관된 데이터를 저장할 수 있다. 실시예에 따라, 데이터베이스(110)는 클라우드(Cloud) 저장 장치로 구현될 수 있다.Referring to FIGS. 1 to 4 , the database 110 may store data related to blasting conditions and blasting results. According to embodiments, the database 110 may be implemented as a cloud storage device.
이때, 발파 설계, 발파 작업 결과 등의 데이터, 즉 발파 조건 데이터는 데이터베이스(110)에 자동으로 저장될 수 있다.At this time, data such as blasting design and blasting work results, that is, blasting condition data, may be automatically stored in the database 110.
본 명세서에서, 발파 조건 데이터는, 천공/장약/발파(초시) 설계 데이터 및 천공/장약 작업의 결과 데이터를 포함하는 종합적인 데이터를 의미할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 발파 조건 데이터는 본 발명의 목적을 달성하는 범위에서 다양한 방식으로 해석될 수 있다.In this specification, the blasting condition data may refer to comprehensive data including drilling/charging/blasting (initial time) design data and result data of drilling/charging operations. However, the present invention is not limited thereto, and blasting condition data may be interpreted in various ways within the scope of achieving the object of the present invention.
또한, 발파 결과 데이터 또한 데이터베이스(110)에 자동으로 저장될 수 있다. In addition, blasting result data may also be automatically stored in the database 110 .
본 명세서에서, 발파 결과 데이터는, 발파 진동, 소음 및 파쇄도를 포함하는 종합적인 데이터를 의미할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 발파 결과 데이터는 본 발명의 목적을 달성하는 범위에서 다양한 방식으로 해석될 수 있다.In this specification, the blasting result data may refer to comprehensive data including blasting vibration, noise, and degree of crushing. However, the present invention is not limited thereto, and blasting result data may be interpreted in various ways within the scope of achieving the object of the present invention.
구체적으로, 발파 파쇄도는 파쇄도 분석 프로그램을 통해 분석된 결과로서 저장되고, 진동 데이터 또는 소음 데이터는 현장에 설치된 감지 장치로부터 감지된 데이터가 저장될 수 있다. Specifically, the degree of blasting and crushing may be stored as an analysis result through a degree of crushing analysis program, and vibration data or noise data may be stored as data sensed from a sensing device installed in the field.
따라서, 데이터베이스(110)는 하나의 발파에 대하여 그 발파 조건과 발파 결과 데이터가 모두 저장되도록 구성될 수 있다. Accordingly, the database 110 may be configured to store all of the blasting conditions and blasting result data for one blasting.
제1 학습부(120) 및 제2 학습부(130)는 진동 추정식 및 파쇄도 추정식을 도출하기 위해 머신 러닝 기반 분류 모델을 생성하는 RNN(Recurrent Neural Network)을 이용하여 데이터 특성을 자동적으로 분석할 수 있다. 예컨대, 제1 학습부(120) 및 제2 학습부(130)는 RNN을 이용하여 데이터 특성을 분석하고 시그널 분류(signal classification) 및 패턴 인식(pattern recognition)을 수행하여, 발파 조건과 결과와의 상관관계 분석을 수행하고, 발파 조건 중에서 추정식의 변수를 선정하고, 계수를 산출할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 실시예에 따라, 본 발명의 데이터 학습부(100)는 다양한 방식으로 학습 및 분석을 진행할 수 잇다.The first learning unit 120 and the second learning unit 130 automatically determine data characteristics using a Recurrent Neural Network (RNN) that generates a machine learning-based classification model to derive a vibration estimation equation and a crushing degree estimation equation. can be analyzed. For example, the first learning unit 120 and the second learning unit 130 analyze data characteristics using RNN and perform signal classification and pattern recognition to determine the relationship between blasting conditions and results. Correlation analysis can be performed, parameters of the estimation formula can be selected among the blasting conditions, and coefficients can be calculated. However, the present invention is not limited thereto, and according to embodiments, the data learning unit 100 of the present invention may perform learning and analysis in various ways.
데이터 학습부(100)는 진동 추정식 및 파쇄도 추정식을 도출할 수 있다.The data learning unit 100 may derive a vibration estimation equation and a crushing degree estimation equation.
*발파 조건에 해당하는 천공/장약/발파(초시) 설계 데이터 및 천공/장약의 결과 데이터의 집합은, 발파의 결과에 해당하는 진동, 소음 및 파쇄도 발생에 복합적으로 영향을 끼치는 요소들일 수 있다. *The set of drilling/charge/blasting (first time) design data and result data of drilling/charge corresponding to the blasting conditions may be factors that have a complex effect on the occurrence of vibration, noise and crushing corresponding to the result of blasting. .
따라서, 입력 데이터에 해당하는 발파 조건 데이터의 변화에 따라, 발파 결과인 진동, 소음 및 파쇄도의 변화를 분석할 수 있다. Therefore, it is possible to analyze changes in vibration, noise, and degree of crushing, which are results of blasting, according to changes in blasting condition data corresponding to the input data.
여러 연구에서 발파석의 파쇄도와 발파 진동/소음을 추정하는 식을 제시하고 있으나, 발파 대상이 개별성이 강한 암석이라는 특성상, 각 현장의 암반이나 지질 상태에 따라 추정식의 상수들은 넓은 범위를 두고 변화될 수 있다. Several studies have suggested formulas for estimating the degree of crushing and blasting vibration/noise of blasting stones, but given the nature of the blasting target being a rock with strong individuality, the constants of the estimation formula can vary over a wide range depending on the bedrock or geological condition of each site. can
본 발명의 발파 관리 시스템(10)의 데이터 학습부(100)는 진동 데이터 및 파쇄도 데이터를 기초로, 현장 특성이 반영된 진동 추정식 및 파쇄도 추정식을 도출할 수 있다. The data learning unit 100 of the blasting management system 10 of the present invention may derive a vibration estimation equation and a crushing degree estimation equation in which field characteristics are reflected based on the vibration data and the crushing degree data.
실시예에 따라, 데이터 학습부(100)는 10회 이상의 발파를 통해 구축된 발파 조건 데이터 및 발파 결과 데이터를 분석함으로써, 현장 특성이 반영된 진동 추정식 및 파쇄도 추정식의 변수 및 변수에 대한 계수를 설정할 수 있다. According to the embodiment, the data learning unit 100 analyzes the blasting condition data and the blasting result data built through 10 or more blasts, and the variables and coefficients for the variables of the vibration estimation equation and the crushing degree estimation equation in which the field characteristics are reflected can be set.
이때, 추정식은 기계 학습(머신 러닝)을 통한 다중선형 회귀모형에 따르며, 본 발명의 발파 관리 시스템(10)은 웹서비스를 통해 제공되는 데이터 분석 툴을 통해 통계 분석을 수행할 수 있다.At this time, the estimation formula follows a multiple linear regression model through machine learning (machine learning), and the blasting management system 10 of the present invention can perform statistical analysis through a data analysis tool provided through a web service.
먼저, 데이터 학습부(100)의 제1 학습부(120)는 진동 추정식을 산출하기 위하여, 변수를 설정할 수 있다. 예컨대, 제1 학습부(120)는 최대 지발당장약량(W), 진동 계측기까지의 거리(D) 및 진동값(V)을 변수로 설정하고, 추가적으로, 진동 발생에 영향을 끼칠 수 있는 발파 조건인 평균 발파 전달 속도(Relief Value), 암석 계수(Rock Factor) 등을 추정식의 변수로 설정할 수 있다. 그리고, 데이터 학습부(100)의 추정식 생성부(140)는 다중선형 회귀모형을 통해 발파 진동 추정식 도출에 적합한 계수를 찾아낼 수 있다. 이를 통해, 본 발명의 데이터 학습부(100)는 종래의 추정 방식에서 고려하지 못한 변수를 추가할 수 있고, 더욱 적합한 진동 추정식을 산출하여 추정 정확도를 개선시킬 수 있다.First, the first learning unit 120 of the data learning unit 100 may set variables in order to calculate a vibration estimation equation. For example, the first learning unit 120 sets the maximum amount of delay per shot (W), the distance to the vibration meter (D), and the vibration value (V) as variables, and additionally, blasting conditions that may affect vibration generation. Phosphorus average blast delivery speed (Relief Value), rock factor (Rock Factor), etc. can be set as variables of the estimation equation. In addition, the estimation equation generation unit 140 of the data learning unit 100 may find coefficients suitable for deriving the blast vibration estimation equation through a multilinear regression model. Through this, the data learning unit 100 of the present invention can add variables that have not been considered in the conventional estimation method, and can improve estimation accuracy by calculating a more suitable vibration estimation equation.
제2 학습부(130)는 파쇄도 추정식을 산출하기 위하여, 변수를 설정할 수 있다. 예컨대, 제2 학습부(130)는 장약량, 비장약량, 암석 계수 등을 변수로 설정하고, 추가적으로, 파쇄도 발생에 영향을 끼칠 수 있는 발파 조건을 추정식의 변수로 설정할 수 있다. 그리고, 데이터 학습부(100)의 추정식 생성부(140)는 다중선형 회귀모형을 통해 발파 파쇄도 추정식 도출에 적합한 계수를 찾아낼 수 있다. 이를 통해, 본 발명의 데이터 학습부(100)는 종래의 추정 방식에서 고려하지 못한 변수를 추가할 수 있고, 더욱 적합한 진동 추정식을 산출하여 추정 정확도를 개선시킬 수 있다.The second learning unit 130 may set variables in order to calculate the crushing degree estimation formula. For example, the second learning unit 130 may set the charge amount, the charge amount, the rock coefficient, and the like as variables, and additionally set blasting conditions that may affect the occurrence of crushing as variables of the estimation equation. In addition, the estimation formula generating unit 140 of the data learning unit 100 may find coefficients suitable for deriving the blast crushing estimation formula through a multilinear regression model. Through this, the data learning unit 100 of the present invention can add variables that have not been considered in the conventional estimation method, and can improve estimation accuracy by calculating a more suitable vibration estimation equation.
이때, 제1 학습부(120) 및 제2 학습부(130)는 발파 결과에 해당하는 진동 및 파쇄도의 통계 분석을 통해, 추가적인 조건 변수를 찾고, 상관성과 민감도를 분석할 수 있다. At this time, the first learning unit 120 and the second learning unit 130 may find additional condition variables and analyze correlation and sensitivity through statistical analysis of vibration and crushing corresponding to blasting results.
예컨대, 발파 조건은, 지질 정보, 화약류 정보 등을 포함할 수 있다. 지질 정보는 암석의 종류, 암석의 비중, 일축 압축 강도, 영의 계수(또는 탄성 계수), 푸아송 비(Poisson's ratio), 암석 계수(Rock Factor), 딥 각도/방향(Dip Angle/Direction) 및 인장 강도(Tensile Strength) 중 적어도 하나를 포함할 수 있다. 암석 계수는 암석의 질량(Rock Mass), 수직 조인트 간격(Vertical Joint Spacing), 조인트 평면 각도(Joint Plan Angle), 암석 밀도 영향(Rock Density Influence) 및 경도 계수(Hardness Factor) 중 적어도 하나로 구성된 계수를 의미한다. For example, blasting conditions may include geological information, explosive type information, and the like. Geological information includes rock type, rock specific gravity, uniaxial compressive strength, Young's modulus (or elastic modulus), Poisson's ratio, rock factor, dip angle/direction, and It may include at least one of tensile strength. The rock factor is a factor consisting of at least one of Rock Mass, Vertical Joint Spacing, Joint Plan Angle, Rock Density Influence, and Hardness Factor. it means.
화약류 정보는 기폭 장치의 종류(예컨대, 벌크(Bulk), 카트리지(Cartridge), 뇌관(Detonator), 부스터(Booster) 등), 폭발 에너지, 상대적인 중량 강도(Relative Weight Strength; RWS), 비중, 상대적인 부피 강도(relative bulk strength; RBS) 폭속, 정확도(Accuracy), 각선의 길이 및 크기 중 적어도 하나를 포함할 수 있다. Explosive information includes the type of detonator (e.g., bulk, cartridge, detonator, booster, etc.), explosive energy, relative weight strength (RWS), specific gravity, and relative volume. It may include at least one of relative bulk strength (RBS) width, accuracy, length and size of each line.
상술한 방식을 통하여, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 천공 및 발파의 설계, 작업, 발파 결과를 자동으로 수집하고 저장하여, 머신 러닝을 이용하여 발파 현장의 특징이 반영된 천공 및 발파 설계의 가이드(예컨대, 진동 및 파쇄도 추정식)를 제공할 수 있는 효과가 있다. Through the above-described method, the blasting management system for analyzing vibration and crushing according to blasting of the present invention automatically collects and stores the design, operation, and blasting results of drilling and blasting, and uses machine learning to determine the characteristics of the blasting site. There is an effect that can provide a guide (eg, vibration and crushing degree estimation formula) of the reflected drilling and blasting design.
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 천공, 장약 등 발파 작업에 대한 정보 및 발파 결과에 해당하는 진동, 소음 및 파쇄도에 대한 정보를 데이터베이스화하고, 현장에 맞는 최적의 발파 조건을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushing according to blasting of the present invention databases information on blasting operations such as drilling and charging and information on vibration, noise and crushing corresponding to blasting results, and It has the effect of providing the optimal blasting conditions.
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 발파 대상의 암석 특성에 따라 서로 다른 가중치를 적용함으로써, 현장의 특성을 고려한 최적의 추정식을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushability according to blasting according to the present invention has the effect of providing an optimal estimation formula considering the characteristics of the site by applying different weights according to the characteristics of the rock to be blasted. .
또한, 본 발명의 발파에 따른 진동 및 파쇄도 분석을 위한 발파 관리 시스템은 추가 변수가 필요한 경우, 변수를 추가함으로써 최적의 추정식을 제공할 수 있는 효과가 있다.In addition, the blasting management system for analyzing vibration and crushing according to blasting according to the present invention has an effect of providing an optimal estimation equation by adding additional variables when additional variables are required.
이상 본 명세서에서 설명한 기능적 동작과 본 주제에 관한 실시형태들은 본 명세서에서 개시한 구조들 및 그들의 구조적인 등가물을 포함하여 디지털 전자 회로나 컴퓨터 소프트웨어, 펌웨어 또는 하드웨어에서 또는 이들 중 하나 이상이 조합에서 구현 가능하다. The functional operations described in this specification and the embodiments related to the present subject matter are implemented in digital electronic circuits, computer software, firmware, or hardware, or in a combination of one or more of them, including the structures disclosed in this specification and their structural equivalents. It is possible.
본 명세서에서 기술하는 주제의 실시형태는 하나 이상이 컴퓨터 프로그램 제품, 다시 말해 데이터 처리 장치에 의한 실행을 위하여 또는 그 동작을 제어하기 위하여 유형의 프로그램 매체 상에 인코딩되는 컴퓨터 프로그램 명령에 관한 하나 이상이 모듈로서 구현될 수 있다. 유형의 프로그램 매체는 전파형 신호이거나 컴퓨터로 판독 가능한 매체일 수 있다. 전파형 신호는 컴퓨터에 의한 실행을 위하여 적절한 수신기 장치로 전송하기 위한 정보를 인코딩하기 위하여 생성되는 예컨대 기계가 생성한 전기적, 광학적 또는 전자기 신호와 같은 인공적으로 생성된 신호이다. 컴퓨터로 판독 가능한 매체는 기계로 판독 가능한 저장장치, 기계로 판독 가능한 저장 기판, 메모리 장치, 기계로 판독 가능한 전파형 신호에 영향을 미치는 물질의 조합 또는 이들 중 하나 이상이 조합일 수 있다.Embodiments of the subject matter described herein relate to one or more computer program products, that is, one or more computer program instructions encoded on a tangible program medium for execution by or controlling the operation of a data processing device. It can be implemented as a module. A tangible program medium may be a propagated signal or a computer readable medium. A propagated signal is an artificially generated signal, eg a machine generated electrical, optical or electromagnetic signal, generated to encode information for transmission by a computer to an appropriate receiver device. The computer readable medium may be a machine readable storage device, a machine readable storage substrate, a memory device, a combination of materials that affect a machine readable propagating signal, or a combination of one or more of these.
컴퓨터 프로그램(프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트 또는 코드로도 알려져 있음)은 컴파일되거나 해석된 언어나 선험적 또는 절차적 언어를 포함하는 프로그래밍 언어의 어떠한 형태로도 작성될 수 있으며, 독립형 프로그램이나 모듈, 컴포넌트, 서브루틴 또는 컴퓨터 환경에서 사용하기에 적합한 다른 유닛을 포함하여 어떠한 형태로도 전개될 수 있다. A computer program (also known as a program, software, software application, script, or code) may be written in any form of programming language, including compiled or interpreted language or a priori or procedural language, and may be a stand-alone program or module; It may be deployed in any form, including components, subroutines, or other units suitable for use in a computer environment.
컴퓨터 프로그램은 파일 장치의 파일에 반드시 대응하는 것은 아니다. 프로그램은 요청된 프로그램에 제공되는 단일 파일 내에, 또는 다중의 상호 작용하는 파일(예컨대, 하나 이상이 모듈, 하위 프로그램 또는 코드의 일부를 저장하는 파일) 내에, 또는 다른 프로그램이나 데이터를 보유하는 파일의 일부(예컨대, 마크업 언어 문서 내에 저장되는 하나 이상이 스크립트) 내에 저장될 수 있다. A computer program does not necessarily correspond to a file on a file device. A program may be contained within a single file provided to the requested program, or within multiple interacting files (e.g., one or more of which stores a module, subprogram, or piece of code), or within a file holding other programs or data. may be stored within a part (eg, one or more scripts stored within a markup language document).
컴퓨터 프로그램은 하나의 사이트에 위치하거나 복수의 사이트에 걸쳐서 분산되어 통신 네트워크에 의해 상호 접속된 다중 컴퓨터나 하나의 컴퓨터 상에서 실행되도록 전개될 수 있다.A computer program may be deployed to be executed on a single computer or multiple computers located at one site or distributed across multiple sites and interconnected by a communication network.
부가적으로, 본 특허문헌에서 기술하는 논리 흐름과 구조적인 블록도는 개시된 구조적인 수단의 지원을 받는 대응하는 기능과 단계의 지원을 받는 대응하는 행위 및/또는 특정한 방법을 기술하는 것으로, 대응하는 소프트웨어 구조와 알고리즘과 그 등가물을 구축하는 데에도 사용 가능하다. Additionally, the logic flow and structural block diagrams described in this patent document describe corresponding actions and/or specific methods supported by corresponding functions and steps supported by the disclosed structural means. It can also be used to build software structures and algorithms and their equivalents.
본 명세서에서 기술하는 프로세스와 논리 흐름은 입력 데이터 상에서 동작하고 출력을 생성함으로써 기능을 수행하기 위하여 하나 이상이 컴퓨터 프로그램을 실행하는 하나 이상이 프로그래머블 프로세서에 의하여 수행 가능하다.The processes and logic flows described herein can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
컴퓨터 프로그램의 실행에 적합한 프로세서는, 예컨대 범용 및 특수 목적의 마이크로프로세서 양자 및 어떤 형태의 디지털 컴퓨터의 어떠한 하나 이상이 프로세서라도 포함한다. 일반적으로, 프로세서는 읽기 전용 메모리나 랜덤 액세스 메모리 또는 양자로부터 명령어와 데이터를 수신할 것이다. Processors suitable for the execution of computer programs include, for example, both general and special purpose microprocessors and any one or more processors of any type of digital computer. Generally, a processor will receive instructions and data from either read-only memory or random access memory or both.
컴퓨터의 핵심적인 요소는 명령어와 데이터를 저장하기 위한 하나 이상이 메모리 장치 및 명령을 수행하기 위한 프로세서이다. 또한, 컴퓨터는 일반적으로 예컨대 자기, 자기 광학 디스크나 광학 디스크와 같은 데이터를 저장하기 위한 하나 이상이 대량 저장 장치로부터 데이터를 수신하거나 그것으로 데이터를 전송하거나 또는 그러한 동작 둘 다를 수행하기 위하여 동작가능 하도록 결합되거나 이를 포함할 것이다. 그러나, 컴퓨터는 그러한 장치를 가질 필요가 없다.The core elements of a computer are one or more memory devices for storing instructions and data and a processor for executing instructions. Also, a computer is generally operable to receive data from or transfer data to one or more mass storage devices for storing data, such as magnetic, magneto-optical disks or optical disks, or to perform both such operations. combined with or will include them. However, a computer need not have such a device.
본 기술한 설명은 본 발명의 최상의 모드를 제시하고 있으며, 본 발명을 설명하기 위하여, 그리고 당업자가 본 발명을 제작 및 이용할 수 있도록 하기 위한 예를 제공하고 있다. 이렇게 작성된 명세서는 그 제시된 구체적인 용어에 본 발명을 제한하는 것이 아니다. The present description presents the best mode of the invention and provides examples to illustrate the invention and to enable those skilled in the art to make and use the invention. The specification thus prepared does not limit the invention to the specific terms presented.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art or those having ordinary knowledge in the art do not deviate from the spirit and technical scope of the present invention described in the claims to be described later. It will be understood that the present invention can be variously modified and changed within the scope not specified.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Therefore, the technical scope of the present invention is not limited to the contents described in the detailed description of the specification, but should be defined by the claims.

Claims (9)

  1. 머신 러닝을 이용하여, 발파 조건에 따른 진동 데이터 및 파쇄도 데이터를 기초로 학습하여 결과 추정식을 생성하기 위한 데이터 학습부;Using machine learning, a data learning unit for generating a result estimation equation by learning based on vibration data and crushing degree data according to blasting conditions;
    천공 정보, 장약 정보 및 초시 정보 중 적어도 하나를 포함하는 발파 설계를 생성하기 위한 발파 설계부; a blasting design unit for generating a blasting design including at least one of drilling information, charge information, and initial time information;
    상기 결과 추정식에 상기 발파 설계를 입력하여 추정 데이터를 생성하기 위한 결과 예측부;a result prediction unit for generating estimation data by inputting the blasting design into the result estimation equation;
    상기 발파 설계에 따라 진행된 발파에 따른 결과 데이터를 수집하기 위한 데이터 수집부; 및a data collection unit for collecting result data according to blasting performed according to the blasting design; and
    상기 결과 데이터 및 상기 추정 데이터를 비교하여 차이를 분석하기 위한 분석부를 포함하는 것을 특징으로 하는, Characterized in that it comprises an analysis unit for analyzing the difference by comparing the result data and the estimated data,
    발파 관리 시스템.Blasting management system.
  2. 제1항에 있어서, According to claim 1,
    상기 결과 추정식은, 진동 추정식 및 파쇄도 추정식을 포함하고, The result estimation equation includes a vibration estimation equation and a crushing degree estimation equation,
    상기 추정 데이터는, 진동 추정 데이터 및 파쇄도 추정 데이터를 포함하고, The estimation data includes vibration estimation data and crushability estimation data,
    상기 결과 데이터는, 진동 결과 데이터 및 파쇄도 결과 데이터를 포함하는 것을 특징으로 하는, Characterized in that the result data includes vibration result data and crushing result data,
    발파 관리 시스템.Blasting management system.
  3. 제2항에 있어서, According to claim 2,
    상기 데이터 학습부는, The data learning unit,
    상기 진동 데이터 및 상기 파쇄도 데이터를 저장하기 위한 데이터베이스;a database for storing the vibration data and the crushability data;
    제1 발파 조건과 상기 진동 데이터 사이의 제1 상관 관계를 학습하기 위한 제1 학습부;a first learning unit for learning a first correlation between a first blasting condition and the vibration data;
    제2 발파 조건과 상기 파쇄도 데이터 사이의 제2 상관 관계를 학습하기 위한 제2 학습부; 및a second learning unit for learning a second correlation between a second blasting condition and the crushing degree data; and
    상기 제1 상관 관계 및 상기 제2 상관 관계를 기초로, 상기 진동 추정식 및 상기 파쇄도 추정식의 계수를 설정하기 위한 추정식 생성부를 포함하는 것을 특징으로 하는, Characterized in that, based on the first correlation and the second correlation, an estimation equation generator for setting coefficients of the vibration estimation equation and the crushability estimation equation,
    발파 관리 시스템.Blasting management system.
  4. 제3항에 있어서, According to claim 3,
    상기 데이터베이스는, 상기 제1 발파 조건, 상기 제2 발파 조건, 상기 결과 데이터의 상기 진동 결과 데이터 및 파쇄도 결과 데이터를 저장하고, The database stores the first blasting condition, the second blasting condition, the vibration result data and the crushing result data of the result data,
    상기 제1 학습부 및 상기 제2 학습부는, 상기 진동 결과 데이터 및 상기 파쇄도 결과 데이터를 기초로 학습을 진행하고, The first learning unit and the second learning unit proceed with learning based on the vibration result data and the crushing result data,
    상기 추정식 생성부는, 상기 진동 추정식 및 상기 파쇄도 추정식의 계수를 재설정하는 것을 특징으로 하는, Characterized in that the estimation equation generation unit resets the coefficients of the vibration estimation equation and the crushability estimation equation,
    발파 관리 시스템.Blasting management system.
  5. 제4항에 있어서, According to claim 4,
    상기 제1 발파 조건은, 최대 지발당장약량, 진동 측정기까지의 거리, 진동값, 평균 발파 전달 속도 및 암석 계수 중 적어도 하나를 포함하고, The first blasting condition includes at least one of a maximum delay per charge, a distance to a vibration measuring device, a vibration value, an average blasting transmission speed, and a rock coefficient;
    상기 제2 발파 조건은, 장약량, 비장약량 및 암석 계수 중 적어도 하나를 포함하는 것을 특징으로 하는, Characterized in that the second blasting condition includes at least one of a charge amount, a specific charge amount, and a rock coefficient,
    발파 관리 시스템.Blasting management system.
  6. 제5항에 있어서, According to claim 5,
    상기 추정식 생성부는, 다중선형 회귀모형을 이용하여 상기 진동 추정식 및 상기 파쇄도 추정식에 진동 및 파쇄도에 영향을 미치는 변수를 추가하고, 추가된 상기 변수에 대한 계수를 설정하는 것을 특징으로 하는, The estimation formula generation unit adds variables affecting vibration and crushability to the vibration estimation formula and the crushability estimation formula using a multilinear regression model, and sets coefficients for the added variables. doing,
    발파 관리 시스템.Blasting management system.
  7. 제6항에 있어서,According to claim 6,
    상기 제1 학습부는, 상기 진동 추정식에 대하여 최대 지발당장약량, 진동 계측기까지의 거리, 진동값, 평균 발파 전달 속도 및 암석 계수를 변수로 설정하고,The first learning unit sets the maximum delay per charge, the distance to the vibration meter, the vibration value, the average blast transmission speed, and the rock coefficient as variables for the vibration estimation equation,
    상기 추정식 생성부는, 각각의 변수에 대한 계수들을 도출함으로써, 상기 진동 추정식을 생성하는 것을 특징으로 하는, Characterized in that the estimation equation generation unit generates the vibration estimation equation by deriving coefficients for each variable,
    발파 관리 시스템.Blasting management system.
  8. 제6항에 있어서,According to claim 6,
    상기 제2 학습부는, 상기 파쇄도 추정식에 대하여 장약량, 비장약량 및 암석 계수를 변수로 설정하고,The second learning unit sets the charge amount, the specific charge amount, and the rock coefficient as variables for the crushing degree estimation equation,
    상기 추정식 생성부는, 각각의 변수에 대한 계수들을 도출함으로써, 상기 파쇄도 추정식을 생성하는 것을 특징으로 하는, Characterized in that the estimation equation generation unit generates the crushability estimation equation by deriving coefficients for each variable,
    발파 관리 시스템.Blasting management system.
  9. 제1항에 있어서,According to claim 1,
    상기 발파 설계부는, 상기 분석부의 분석 결과를 기초로 새로운 발파 현장에 대하여 발파 설계를 진행하는 것을 특징으로 하는, Characterized in that the blasting design unit proceeds with blasting design for a new blasting site based on the analysis result of the analysis unit.
    발파 관리 시스템.Blasting management system.
PCT/KR2022/006301 2021-05-11 2022-05-03 Blasting management system for analysis of vibration and fragmentation caused by blasting WO2022240049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022272224A AU2022272224A1 (en) 2021-05-11 2022-05-03 Blasting management system for analysis of vibration and fragmentation caused by blasting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0060790 2021-05-11
KR1020210060790A KR20220153338A (en) 2021-05-11 2021-05-11 Blasting management system for analysis of vibration and fragmentation caused by blasting

Publications (1)

Publication Number Publication Date
WO2022240049A1 true WO2022240049A1 (en) 2022-11-17

Family

ID=84029286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006301 WO2022240049A1 (en) 2021-05-11 2022-05-03 Blasting management system for analysis of vibration and fragmentation caused by blasting

Country Status (4)

Country Link
KR (1) KR20220153338A (en)
AU (1) AU2022272224A1 (en)
CL (1) CL2023000397A1 (en)
WO (1) WO2022240049A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643506B1 (en) 2022-12-13 2024-03-04 이원섭 System and Method for Real-time Blast Noise Vibration Management
KR102573290B1 (en) * 2023-01-10 2023-09-01 (주)유앤피플 An apparatus and method for generating a prediction model using noise, vibration, subsidence, and flooding sensing data generated in a tunnel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200003919A1 (en) * 2018-06-28 2020-01-02 Accenture Global Solutions Limited Blast reconciliation for mines
CN111259601A (en) * 2020-01-16 2020-06-09 南华大学 Blasting blockiness prediction method, device and medium based on random GA-BP neural network group
CN111259517A (en) * 2020-01-08 2020-06-09 京工博创(北京)科技有限公司 Tunnel blasting design method, device and equipment
CN107506831B (en) * 2017-08-03 2021-03-19 中国矿业大学(北京) Blasting parameter determination method and system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956294B1 (en) 2017-08-22 2019-03-11 (주)지오룩스 Stand-alone automatic emergency alarm system and method for mine safety management based on machine learning
EP3644267A1 (en) 2018-10-26 2020-04-29 Tata Consultancy Services Limited Method and system for online monitoring and optimization of mining and mineral processing operations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107506831B (en) * 2017-08-03 2021-03-19 中国矿业大学(北京) Blasting parameter determination method and system
US20200003919A1 (en) * 2018-06-28 2020-01-02 Accenture Global Solutions Limited Blast reconciliation for mines
CN111259517A (en) * 2020-01-08 2020-06-09 京工博创(北京)科技有限公司 Tunnel blasting design method, device and equipment
CN111259601A (en) * 2020-01-16 2020-06-09 南华大学 Blasting blockiness prediction method, device and medium based on random GA-BP neural network group

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURLIDHAR BHATAWDEKAR RAMESH, ARMAGHANI DANIAL JAHED, MOHAMAD EDY TONNIZAM: "Intelligence Prediction of Some Selected Environmental Issues of Blasting: A Review", THE OPEN CONSTRUCTION AND BUILDING TECHNOLOGY JOURNAL, vol. 14, no. 1, 25 September 2020 (2020-09-25), pages 298 - 308, XP093003350, ISSN: 1874-8368, DOI: 10.2174/1874836802014010298 *

Also Published As

Publication number Publication date
KR20220153338A (en) 2022-11-18
AU2022272224A1 (en) 2023-02-23
CL2023000397A1 (en) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2022240049A1 (en) Blasting management system for analysis of vibration and fragmentation caused by blasting
CN107289828B (en) A kind of Blasting in open-pit effect evaluation method
US20080217057A1 (en) Method for taking seismic measurements
Hu et al. Damage-vibration couple control of rock mass blasting for high rock slopes
CN113390458B (en) Method for judging damage degree of surrounding rock in blasting area
Jang et al. An empirical approach of overbreak resistance factor for tunnel blasting
Avellan et al. Measuring, monitoring and prediction of vibration effects in rock masses in near-structure blasting
JP6420054B2 (en) Elastic wave velocity measurement method
SA519410094B1 (en) Systems and methods to use triangulation through one sensor beamforming in downhole leak detection
Yang et al. Full field strain analysis of blasting under high stress condition based on digital image correlation method
Chiappetta Blast monitoring instrumentation and analysis techniques, with an emphasis on field applications
Morozov et al. Geodynamic monitoring and its maintenance using modeling by numerical and similar materials methods
McKenzie Methods of improving blasting operations
WO2022240048A1 (en) Blast design system for reflecting blast site situation, and operation method therefor
Morozov Creation of rock mass monitoring deformations systems on rock burst hazardous mineral deposits
JP3308478B2 (en) Exploration method in front of tunnel face
Onederra et al. An alternative approach to determine the Holmberg-Persson constants for modelling near field peak particle velocity attenuation
Li et al. Study on influence of key blasthole parameters on tunnel overbreak
CN107060747B (en) Early warning method and system for crack development zone during drilling
WO2023120760A1 (en) Blast design device, blasting system, and method for operating same
US11920472B2 (en) Reasonable millisecond time control method for excavation blasting of tunnel
Wu et al. Distinctive and fuzzy failure probability analysis of an anisotropic rock mass to explosion load
Heal et al. Assessing the in-situ performance of ground support systems subjected to dynamic loading
Daniel et al. Development of a spreadsheet for modeling SPT stress wave data
Sakurai et al. Monitoring the stability of slopes by GPS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022272224

Country of ref document: AU

Date of ref document: 20220503

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE