WO2022239831A1 - Imaging element, focus detection device, and imaging device - Google Patents

Imaging element, focus detection device, and imaging device Download PDF

Info

Publication number
WO2022239831A1
WO2022239831A1 PCT/JP2022/020057 JP2022020057W WO2022239831A1 WO 2022239831 A1 WO2022239831 A1 WO 2022239831A1 JP 2022020057 W JP2022020057 W JP 2022020057W WO 2022239831 A1 WO2022239831 A1 WO 2022239831A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
focus detection
imaging device
pixel
photoelectric conversion
Prior art date
Application number
PCT/JP2022/020057
Other languages
French (fr)
Japanese (ja)
Inventor
史人 中山
周太郎 加藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2023521242A priority Critical patent/JPWO2022239831A1/ja
Publication of WO2022239831A1 publication Critical patent/WO2022239831A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to an imaging device, a focus detection device, and an imaging device.
  • This application claims priority based on Japanese Patent Application No. 2021-082167 filed on May 14, 2021, the content of which is incorporated herein.
  • Patent Document 1 An imaging device in which a plurality of microlenses are formed for each unit pixel is known (for example, Patent Document 1). 2. Description of the Related Art Conventionally, there has been a demand for an imaging device that performs focus detection with high accuracy.
  • An imaging device has a first photoelectric conversion unit that photoelectrically converts light that has passed through a first microlens to generate an electric charge, and first pixels that output signals used for image generation. and a second photoelectric conversion unit that photoelectrically converts light passing through a second microlens having a refractive power different from that of the first microlens to generate an electric charge, and a second pixel that generates a signal used for focus detection. And prepare.
  • An imaging device has a first photoelectric conversion section that photoelectrically converts light that has passed through a plurality of first microlenses to generate electric charges, and a first photoelectric conversion section that outputs a signal used for image generation. and a second pixel that has a second photoelectric conversion unit that photoelectrically converts light that has passed through the second microlens to generate an electric charge and that outputs a signal used for focus detection.
  • FIG. 1 is a cross-sectional view for explaining the main configuration of an imaging device according to an embodiment;
  • FIG. It is a figure explaining typically the structure of the image pick-up element in embodiment.
  • 4A and 4B are diagrams schematically illustrating configurations of imaging pixels and focus detection pixels in the first embodiment;
  • FIG. 4 is a diagram schematically explaining another example of the configuration of imaging pixels and focus detection pixels in the first embodiment;
  • FIG. 4 is a diagram schematically explaining another example of the configuration of imaging pixels and focus detection pixels in the first embodiment;
  • FIG. 10 is a diagram schematically illustrating the configuration of imaging pixels and focus detection pixels in the second embodiment;
  • FIG. 10 is a circuit diagram of focus detection pixels included in the image pickup device according to the second embodiment; 9 is a timing chart for explaining signal readout of focus detection pixels in the second embodiment; 9 is a timing chart illustrating another example of signal readout of focus detection pixels in the second embodiment; FIG. 11 is a diagram schematically illustrating another example of the configuration of imaging pixels and focus detection pixels in the second embodiment; FIG. 10 is a circuit diagram of another example of focus detection pixels included in the image pickup device according to the second embodiment; FIG. 10 is a timing chart for explaining signal readout of another example of the focus detection pixel in the second embodiment; FIG. FIG. 11 is a timing chart illustrating another example of signal readout of another example of the focus detection pixel in the second embodiment; FIG. FIG. 10 is a diagram schematically illustrating another example of the configuration of focus detection pixels in the second embodiment;
  • FIG. 1 is a cross-sectional view for explaining the configuration of a digital camera 100, which is an imaging device according to the first embodiment.
  • a digital camera 100 which is an imaging device according to the first embodiment.
  • an orthogonal coordinate system consisting of x-axis, y-axis and z-axis is set as illustrated.
  • the z-axis is set along the horizontal direction of the drawing
  • the y-axis is set along the vertical direction of the drawing
  • the x-axis is set along the direction orthogonal to the y-axis and the z-axis.
  • the digital camera 100 is composed of a camera body 200 and a photographing lens body 300, and the photographing lens body 300 is mounted via a mount (not shown).
  • a photographing lens body 300 having various photographing optical systems can be attached to the camera body 200 via a mount section.
  • the photographic lens body 300 includes the photographic optical system 1 .
  • the imaging optical system 1 is an optical system for forming an image of a subject on the imaging surface of the imaging element 8, and is composed of a plurality of lenses including a focusing lens.
  • a focus adjustment lens that constitutes the imaging optical system 1 is driven to an in-focus position along the direction of the optical axis L (z direction) by a drive unit (not shown) according to the lens drive amount.
  • the lens drive amount is calculated by a drive section (not shown) using a defocus amount input from the camera body 200 side via an electrical contact provided on a mount section (not shown).
  • a control unit 5 and a focus detection device 6 having an imaging device 8 and a focus detection calculation unit 14 are provided inside the camera body 200 .
  • An operation unit 11 is provided in the camera body 200 .
  • the imaging device 8 is, for example, a back-illuminated CMOS or other image sensor, and has imaging pixels and focus detection pixels that are arranged two-dimensionally (rows and columns) on the xy plane.
  • the imaging pixels receive the light flux that has passed through the entire exit pupil area of the imaging optical system 1 and output image signals.
  • the focus detection pixels receive light beams that have passed through a part of the exit pupil areas, such as left, right, top, and bottom, of the imaging optical system 1, and output focus detection signals.
  • the imaging pixels of the imaging device 8 are provided with color filters of R (red), G (green), and B (blue), respectively. Since the imaging pixels capture the subject image through the color filters, the imaging signal has color information of the RGB color system. Note that the focus detection pixels may not be provided with color filters, and all the focus detection pixels may be provided with the same (for example, G) color filter. Details of the imaging device 8 will be described later.
  • the operation unit 11 includes various switches provided corresponding to various operation members operated by the user, and outputs operation signals to the control unit 5 according to the operation of the operation members.
  • Operation members include, for example, a release button, a menu button for displaying a menu screen on a rear monitor (not shown) provided on the rear surface of the camera body 200, and a cross key operated when selecting and operating various settings. , a determination button for determining settings selected by the cross key, an operation mode switching button for switching the operation of the digital camera 100 between shooting mode and playback mode, and an exposure mode switching button for setting the exposure mode. .
  • the control unit 5 is an arithmetic circuit that has a CPU, ROM, RAM, etc., and controls each component of the digital camera 100 and executes various data processing based on a control program.
  • the control program is stored in a non-volatile memory (not shown) within the control unit 5 .
  • the control unit 5 controls the driving of the imaging element 8 to cause the imaging element 8 to perform charge accumulation, readout of imaging signals, and the like.
  • the control unit 5 uses the imaging signal output from the imaging pixels of the imaging element 8 as an image signal, performs various image processing on the image signal to generate image data, and then adds additional information and the like to generate an image. Generate files.
  • the generated image file is recorded in a recording medium (not shown) such as a memory card.
  • the control unit 5 generates display image data for display on a rear monitor (not shown) based on the generated image data and the image data recorded on the recording medium.
  • the focus detection calculation unit 14 uses the focus detection signals output from the focus detection pixels of the image sensor 8 to calculate the defocus amount by a known phase difference detection method.
  • FIG. 2 is a diagram schematically showing an imaging surface 800 of the imaging element 8 of the first embodiment.
  • an orthogonal coordinate system consisting of the x-axis, y-axis, and z-axis is set in the same manner as in the example shown in FIG.
  • a plurality of imaging pixels 810 and a plurality of focus detection pixels 820 for acquiring focus detection signals used for calculating the defocus amount are arranged on the imaging plane 800 .
  • the focus detection pixels 820 are shaded.
  • the focus detection pixels 820 are arranged for each predetermined pixel row (y direction).
  • the focus detection pixels 820 are arranged every one imaging pixel 810 .
  • the arrangement of the imaging pixels 810 and the focus detection pixels 820 shown in FIG. 2 is an example, and the arrangement is not limited to this example.
  • FIG. 3A and 3B schematically show an example of the structure of the image pickup pixel 810 and the image pickup pixel 810
  • FIG. 3A schematically shows the planar structure of the adjacent image pickup pixel 810 and focus detection pixel 820
  • FIG. 3B is a diagram schematically showing the cross-sectional structure of the imaging pixel 810 and the focus detection pixel 820, showing the cross section taken along the line aa of FIG. 3A.
  • an orthogonal coordinate system consisting of the x-axis, the y-axis, and the z-axis is set in the same manner as in the example shown in FIG.
  • a case where the pixel pitch (size) of the imaging pixels 810 and the focus detection pixels 820 is about 10 ⁇ m is taken as an example.
  • the imaging pixel 810 includes a first microlens 811 and a first photoelectric conversion lens that photoelectrically converts light passing through the first microlens 811 to generate electric charges. 812 and outputs a signal (imaging signal) used for image generation.
  • the imaging pixel 810 has a first boundary shielding portion 813 between the first microlens 811 and the first photoelectric conversion portion 812 .
  • the first boundary light shielding portion 813 is provided on a plane parallel to the xy plane at the boundary between adjacent focus detection pixels 820 .
  • the focus detection pixel 820 has a second microlens 821 and a second photoelectric conversion unit 822 that photoelectrically converts light that has passed through the second microlens 821 to generate an electric charge. signal).
  • the second microlens 821 has a refractive power different from that of the first microlens 811 .
  • the focal position of the first microlens 811 is located on the far side (z direction - side in FIG. 3B) from the focal position of the second microlens 821 .
  • the focal position of the first microlens 811 is the position FP1
  • the focal position of the second microlens 821 is the position FP2.
  • the area of the second microlens 821 on the xy plane intersecting the optical axis direction (z direction) of the second microlens 821 is smaller than the area of the first microlens 811 on the xy plane.
  • a plurality of second microlenses 821 are arranged in a region (hereinafter referred to as a unit region) having the same area as the first microlenses 811 on the xy plane.
  • FIG. 3 shows a case where four second microlenses 821a, 821b, 821c, and 821d (collectively referred to as 821) are arranged in the unit area.
  • second microlenses 821 are arranged along the x-direction and the y-direction. That is, the second microlenses 821a and 821b are arranged along the x-direction, and the second microlenses 821c and 821d are arranged along the x-direction. Also, the second microlenses 821a and 821c are arranged along the y direction, and the second microlenses 821b and 821d are arranged along the y direction.
  • a first light shielding part for shielding light incident on the + side in the x direction from the center of the second microlens 821a on a plane parallel to the xy plane. 823a is provided between each of the second microlenses 821b, 821c, and 821d and the second photoelectric conversion unit 822.
  • First light blocking portions 823b, 823c, and 823d are provided to block light incident on the + side in the x direction.
  • the first light shielding portion 823 is arranged such that its z-direction position substantially coincides with the z-direction position of the focal position FP2 of the second microlens 821 described above. Also, in the vicinity of the boundary with the imaging pixel 810, a second boundary light shielding section 824 is provided between the second microlens 821 and the second photoelectric conversion section 822 in parallel with the xy plane.
  • the focus detection pixels 820 show, as an example, the case where the focus detection pixel 820 has the first light shielding portion 823 that shields the + side of the second microlens 821 in the x direction.
  • the focus detection pixels 820 also include those having a light shielding portion 825 that shields the - side of the second microlenses 821 in the x direction, as shown in FIG. 3(c).
  • FIG. 4(a) is a diagram schematically showing a cross section of the image sensor 810 and the focus detection pixel 820, taken along the line aa in FIG. 3(a) described above.
  • the focus detection pixel 820 has a second light shielding section 826 on the first light shielding section 823a and on the boundary with the second microlens 821b.
  • the second light shielding portion 826 is formed along the z direction so as to extend to the + side in the z direction.
  • FIGS. 4B and 4C are diagrams schematically showing cross sections of the focus detection pixel 820, taken along line aa in FIG. 3A described above.
  • the focus detection pixel 820 has a third light shielding portion 827 in the second boundary light shielding portion 824 and the first light shielding portion 823b.
  • the third light shielding portion 827 is formed along the z-direction so as to extend to the - side in the z-direction.
  • the third light shielding section 827 is similarly provided in the first light shielding section 823d, which is not shown in FIG. 4B.
  • the focus detection pixel 820 has a fourth light shielding portion 828 in the second boundary light shielding portion 824 and the second light shielding portion 826 .
  • the fourth light shielding portion 828 is formed along the z direction so as to extend to the + side in the z direction. In this case, the fourth light shielding portion 828 is similarly provided in the first light shielding portion 823d, which is not shown in FIG. 4(c).
  • FIG. 3 and 4 show an example in which four second microlenses 821 are arranged in a unit area in the focus detection pixel 820, but the number of the second microlenses 821 is more than four. or less.
  • FIG. 5 schematically shows a case where two second microlenses 821 are arranged within a unit area.
  • FIG. 5(a) is a plan view schematically showing the imaging pixels 810 and the focus detection pixels 820 as in FIG. 3(a). 5A, the focus detection pixel 820 has only the second microlenses 821b and 821c of the second microlenses 821 shown in FIG. 3A.
  • the focus detection pixel 820 has the second microlenses 821 arranged along the diagonal direction of the rectangular area of the second photoelectric conversion section 822 .
  • the focus detection pixel 820 may have only the second microlenses 821a and 821d shown in FIG. It may have only lenses 821b and 821d.
  • FIG. 5(b) schematically shows the case where the focus detection pixel 820 has the second microlenses 821e and 821f.
  • the second microlenses 821e and 821f are arranged along the y-direction.
  • the second microlens 821e in FIG. 5B is arranged at a position corresponding to the positions where the second microlenses 821a and 821b are arranged in FIG. It is arranged at a position corresponding to the position where the second microlenses 821c and 821d are arranged in 3(a).
  • a first light shielding part 823e is provided parallel to the xy plane for shielding a region on the + side in the x direction from the center of the second microlens 821e.
  • a first light shielding part 823f is provided parallel to the xy plane for shielding a region on the + side in the x direction from the center of the second microlens 821f.
  • the focus detection calculation unit 14 calculates the defocus amount using a known phase difference detection method.
  • the focus detection calculation unit 14 combines the first signal train ⁇ an ⁇ in which the focus detection signals from the second photoelectric conversion units 822 of the focus detection pixels 820 shown in FIG.
  • the amount of relative deviation from the second signal train ⁇ bn ⁇ in which the focus detection signals from the photoelectric conversion unit 822 of the focus detection pixels 820 are sequentially arranged is detected, and the focus adjustment state of the photographing optical system 1, that is, the defocus amount is determined. To detect.
  • the imaging element 8 has a first photoelectric conversion unit 812 that photoelectrically converts light that has passed through the first microlens 811 to generate an electric charge.
  • a focus detection pixel 820 that has a second photoelectric conversion unit 822 that photoelectrically converts light passing through a second microlens 821 that has a refractive power different from that of the one microlens 811 to generate electric charges, and that generates a signal used for focus detection. And prepare.
  • it is possible to suppress an increase in the thickness of the second focus detection pixel 820 in the optical axis direction (z direction), thereby suppressing the light passing through the second microlens 821 from entering the adjacent imaging pixel 810. can.
  • the focus detection pixel 820 can improve focus detection accuracy without increasing the distance in the z direction between the second microlens 821 and the second photoelectric conversion unit 822 .
  • the focal position FP1 of the first microlens 811 is positioned on the - side in the z direction with respect to the focal position FP2 of the second microlens 821 . Accordingly, light can be collected on the second photoelectric conversion unit 822 without increasing the thickness of the focus detection pixel 820 in the z direction. In addition, it is possible to suppress the light that has passed through the second microlens 821 from entering the first photoelectric conversion unit 812 of the imaging device 810 .
  • the area of the second microlens 821 on the plane (xy plane) intersecting the optical axis of the second microlens 821 is the area of the first microlens 811 on the plane intersecting the optical axis of the first microlens 811. smaller than area. Thereby, an increase in the thickness of the second focus detection pixel 820 in the optical axis direction (z direction) can be suppressed.
  • the focus detection pixel 820 has a second light shielding portion 826 extending toward the second microlens 821 along the optical axis direction (z direction) of the second microlens 821 between adjacent focus detection pixels 820 . have. As a result, it is possible to prevent the light that should be incident on the area below the microlens 821a in the second photoelectric conversion unit 822 from entering the area below the microlens 821, thereby suppressing a decrease in focus detection accuracy.
  • the focus detection pixel 820 has a third light shielding portion 827 or a fourth light shielding portion 828 formed along the optical axis direction (z direction) of the second microlens 821 between the adjacent imaging pixels 810. have. This makes it possible to prevent the light that has passed through the second microlens 821 of the focus detection pixel 820 from entering the first photoelectric conversion unit 812 of the imaging pixel 810 .
  • FIG. 6A and 6B are diagrams schematically showing the schematic configuration of the image sensor 8 according to the second embodiment, FIG. ) shows a cross section of the imaging pixel 810 and the focus detection pixel 920 along the line aa in FIG. 6(a).
  • the configuration of the imaging pixel 810 is the same as in the case of the first embodiment.
  • FIG. 6 illustrates a case where four focus detection pixels 920 (920a, 920b, 920c, 920d) are provided in the unit area. Note that the number of focus detection pixels 920 in the unit area is not limited to this, and may exceed four or may be fewer.
  • Each focus detection pixel 920 includes a second microlens 921, two second photoelectric conversion units 922a and 922b (referred to collectively by reference numeral 922), a first light shielding unit 923, and a second boundary light shielding unit. 924. Focus detection pixels 920a and 920b are arranged along the x-direction, and focus detection pixels 920c and 920d are arranged along the x-direction.
  • the second microlens 921 has a refractive power different from that of the first microlens 811 , and the focal position of the second microlens 821 is higher than the focal position of the first microlens 811 .
  • the area of the second microlens 921 is smaller than the area of the unit area of the first microlens 811 in the xy plane intersecting the optical axis of the second microlens 921 .
  • a plurality of second microlenses 921 are arranged in the unit area.
  • the first light shielding portion 923 is arranged near the boundary between the adjacent focus detection pixels 920 on a plane parallel to the xy plane between the second microlens 921 and the second photoelectric conversion portion 922 .
  • the second boundary light shielding portion 924 is arranged near the boundary between the adjacent imaging pixels 810 on a plane parallel to the xy plane between the second microlens 921 and the second photoelectric conversion portion 922 .
  • FIG. 7 shows a circuit diagram of the focus detection pixel 920 within the unit area.
  • a common reset transistor RST is provided for the four focus detection pixels 920 in the unit area, and the reset transistor RST is turned on and off by the reset wiring 900 .
  • Transfer transistors TX1L, TX1R, TX2L, TX2R, TX3L, 3X3R, TX4L, and TX4R are provided for each second photoelectric conversion unit 922 .
  • Transfer transistors TX1L and TX1R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920a are turned on and off by transfer wirings 911 and 912, respectively.
  • the transfer transistors TX2L and TX2R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920b are turned on and off by transfer wirings 913 and 914, respectively.
  • Transfer transistors TX3L and TX3R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920c are turned on and off by transfer wirings 915 and 916, respectively.
  • the transfer transistors TX4L and TX4R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920d are turned on and off by transfer wirings 917 and 918, respectively.
  • a common selection transistor SEL is provided for the four focus detection pixels 920 in the unit area, and is turned on and off by a selection wiring 919 .
  • the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled for the four focus detection pixels 920 included in the unit area. can do. Also, by turning on/off the selection transistor SEL of the unit area, the photoelectric conversion signal of each focus detection pixel 920 can be output via the common output wiring 901 .
  • the photoelectric conversion signals (addition signal) from the second photoelectric conversion units 922a on the x-direction - side of the four focus detection pixels 920 in the unit area are collectively read out.
  • photoelectric conversion signals (addition signals) from the second photoelectric conversion units 922b on the + side in the x direction are collectively read out.
  • FIG. 8 A timing chart for this case is shown in FIG. In FIG. 8, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD8 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when FD1 to FD8 are set to the reset potential is read out to the output wiring 901 .
  • the signals TX1L, TX2L, TX3L, and TX4L go high, turning on the transfer transistors TX1L, TX2L, TX3L, and TX4L, and charges are transferred from the four second photoelectric conversion units 922a. Further, at time t2, since the signal SEL is at high level, the addition signal obtained by adding the charges from the four second photoelectric conversion units 922a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1. be.
  • the signals TX1R, TX2R, TX3R, and TX4R go high to turn on the transfer transistors TX1R, TX2R, TX3R, and TX4R, and charges are transferred from the four photoelectric conversion units 922b. Further, at time t3, since the signal SEL is at high level, the addition signal obtained by adding the charges from the four second photoelectric conversion units 922a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1. be. Thereafter, in the same manner as in the period from time t1 to time t3, readout of noise signals and readout of addition signals from the focus detection pixels 920 of other pixel rows are performed.
  • the addition signals from the second photoelectric conversion units 922a on the negative side in the x direction and the second photoelectric conversion units 922b on the positive side in the x direction are combined.
  • the photoelectric conversion signals may be sequentially and individually read out from the second photoelectric conversion units 922a and 922b.
  • FIG. 9 A timing chart for this case is shown in FIG. In FIG. 9, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD8 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL1. That is, a signal (noise signal) when the FDs 1 to 8 are set to the reset potential is read out to the output wiring 901 .
  • the signal TX1L goes high, turning on the transfer transistor TX1L and transferring the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a.
  • the signal SEL since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the transfer transistor TX1R is turned on by the high level of TX1R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920a.
  • the signal SEL since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signal TX2L becomes high level, so that the transfer transistor TX2L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920b.
  • the signal SEL since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the transfer transistor TX2R is turned on by the high level of TX2R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920b. Also, at time t6, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1.
  • the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signal TX3L becomes high level, so that the transfer transistor TX3L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920c.
  • the signal SEL since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • TX3R goes high to turn on the transfer transistor TX3R, and charge is transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920c. Also, at time t9, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signal TX4L becomes high level, so that the transfer transistor TX4L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920d.
  • the signal SEL is high level, so the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the transfer transistor TX4R is turned on by the high level of TX4R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920d. Also, at time t12, since the signal SEL is at high level, the charge from the second photoelectric conversion section 922b of the focus detection pixel 920d is output to the output wiring 901 via the amplification section AMP and the selection transistor SEL. Thereafter, similarly to the period from time t1 to time t12, readout of noise signals and readout of photoelectric conversion signals (focus detection signals) from the focus detection pixels 920 of other pixel rows are performed.
  • FIG. 10 schematically shows the configuration of another example of the focus detection pixel 920.
  • FIG. 10(a) shows a plane of the imaging pixel 810 and the focus detection pixel 920
  • FIG. 10(b) shows a cross section of the imaging pixel 810 and the focus detection pixel 920 along the line aa in FIG. 10(a). show.
  • the configuration of the imaging pixel 810 is the same as in the case of the first embodiment.
  • FIG. 10 illustrates a case where four focus detection pixels 920 (920a, 920b, 920c, 920d) are provided in the unit area. Also in this case, the number of focus detection pixels 920 in the unit area is not limited to this, and may exceed four or may be less.
  • Each focus detection pixel 920 has a second microlens 921 , a second photoelectric conversion section 922 , a first light shielding section 923 , and a second boundary light shielding section 924 . That is, in the example shown in FIG. 10, each focus detection pixel 920 has one second photoelectric conversion unit 922, unlike the example shown in FIG.
  • Focus detection pixels 920a and 920b are arranged along the x-direction, and focus detection pixels 920c and 920d are arranged along the x-direction.
  • the first light shielding portion 923 of the focus detection pixel 920a and the focus detection pixel 920c shields the half region of the second photoelectric conversion portion 922 on the + side in the x direction from light, and the first light shielding portion 923 of the focus detection pixel 920b and the focus detection pixel 920d is blocked.
  • the light shielding portion 923 shields the half region of the second photoelectric conversion portion 922 on the ⁇ side in the x direction.
  • Other points are the same as the focus detection pixel 920 shown in FIG.
  • FIG. 11 shows a circuit diagram of the focus detection pixel 920 within the unit area.
  • a common reset transistor RST is provided for the four focus detection pixels 920 in the unit area, and the reset transistor RST is turned on and off by the reset wiring 900 .
  • Transfer transistors TX1L, TX2R, TX3L, and TX4R are provided for each second photoelectric conversion unit 922 .
  • the transfer transistor TX1L provided in the second photoelectric conversion unit 922 of the focus detection pixel 920a is turned on and off by the transfer wiring 911.
  • the transfer transistor TX2R provided in the second photoelectric conversion unit 922 of the focus detection pixel 920b is turned on and off by the transfer wiring 912.
  • the transfer transistor TX3L provided in the second photoelectric conversion unit 922 of the focus detection pixel 920c is turned on and off by the transfer wiring 913.
  • the transfer transistor TX4R provided in the second photoelectric conversion unit 922 of the focus detection pixel 920d is turned on and off by the transfer wiring 914.
  • FIG. A common selection transistor SEL is provided for the four focus detection pixels 920 in the unit area, and is turned on and off by a selection wiring 919 .
  • the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled for the four focus detection pixels 920 included in the unit area. can do. Also, by turning on/off the selection transistor SEL of the unit area, the photoelectric conversion signal of each focus detection pixel 920 can be output via the common output wiring 901 .
  • the focus detection pixel 920 having the above circuit configuration, photoelectric conversion from the second photoelectric conversion units 922a and 922c of the focus detection pixels 920a and 920c on the ⁇ side in the x direction among the four focus detection pixels 920 in the unit area.
  • the signals (addition signals) are read out collectively, and then the photoelectric conversion signals (addition signals) from the second photoelectric conversion units 922b and 921d of the focus detection pixel 920b on the + side in the x direction are collectively read out.
  • FIG. 12 A timing chart for this case is shown in FIG. In FIG. 12, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD4 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when the FDs 1 to 4 are set to the reset potential is read out to the output wiring 901 .
  • the signals TX1L and TX3L become high level, so that the transfer transistors TX1L and TX3L are turned on, and charges are transferred from the second photoelectric conversion units 922a and 921c. Further, at time t2, since the signal SEL is at high level, the addition signal obtained by adding the charges from the second photoelectric conversion units 922a and 922c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. .
  • the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signals TX2R and TX4R become high level, so that the transfer transistors TX2R and TX4R are turned on, and charges are transferred from the second photoelectric conversion units 922b and 921d.
  • the signal SEL since the signal SEL is at a high level, the addition signal obtained by adding the charges from the second photoelectric conversion units 922b and 921d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. .
  • readout of noise signals and readout of addition signals from the focus detection pixels 920 of other pixel rows are performed.
  • the addition signal is read from the two focus detection pixels 920a and 920c on the negative side in the x direction, and the two focus detection pixels 920b and 920b on the positive side in the x direction are read out.
  • the photoelectric conversion signals may be individually read out sequentially from the four focus detection pixels 920 of the unit area.
  • FIG. 13 A timing chart in this case is shown in FIG. In FIG. 13, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD4 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when FD1 to FD4 are set to the reset potential is read out to the output wiring 901 .
  • the signal TX1L goes high, turning on the transfer transistor TX1L and transferring the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a. Also, at time t2, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signal TX2R becomes high level, so that the transfer transistor TX2R is turned on, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920b.
  • the signal SEL is high level, so the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • the signal TX3L becomes high level, so that the transfer transistor TX3L is turned on, and charges are transferred from the second photoelectric conversion unit 922c of the focus detection pixel 920c.
  • the signal SEL is high level, so the charge from the second photoelectric conversion unit 922c of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL.
  • TX4R goes high to turn on the transfer transistor TX4R, and charge is transferred from the second photoelectric conversion unit 922d of the focus detection pixel 920d.
  • the signal SEL since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922d of the focus detection pixel 920d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
  • readout of noise signals and readout of photoelectric conversion signals (focus detection signals) from the focus detection pixels 920 of other pixel rows are performed.
  • the imaging device 8 of the second embodiment described above can obtain the same effects as those obtained by the imaging device 8 of the first embodiment.
  • the second light shielding portion 922 included in the focus detection pixel 920 is not limited to that shown in FIG.
  • the second light shielding portion 922 has a side that is not parallel to the y direction perpendicular to the x direction in which the imaging pixel 810 and the focus detection pixel 920 are aligned in the xy plane that intersects the optical axis of the second microlens 921. shape.
  • FIG. 14 schematically shows a planar configuration of the imaging pixels 810 and the focus detection pixels 920 in this case.
  • the example shown in FIG. 14 is different from the focus detection pixel 920 of the image sensor 8 of FIG. 10 in the shape of the first light shielding portion 923 in the xy plane, but the other configuration is the same as the focus detection pixel 920 of FIG. be.
  • a first light shielding portion 923a of the focus detection pixel 920a has two sides 950 and 951 parallel to the x-axis in the xy plane, a side 952 parallel to the y-axis, and a side 953 not parallel to the y-axis.
  • the side 950 is provided on the + side in the y direction and is a straight line extending from the end on the + side in the x direction to the - side in the x direction.
  • the side 951 is provided on the - side in the y direction and is a straight line extending from the end on the + side in the x direction to the - side in the x direction. Side 951 is longer than side 950 .
  • the side 952 is a straight line connecting the endpoints of the sides 950 and 951 on the positive side in the x direction
  • the side 953 is a straight line connecting the endpoints of the sides 950 and 951 on the negative side in the x direction.
  • the first light shielding portion 923b shields the - side in the x direction.
  • the shape of the first light shielding portion 923b on the xy plane is such that the side parallel to the x-axis on the + side of the y direction is longer than the side parallel to the x-axis on the - side of the y direction, and the side not parallel to the y-axis connect the endpoints of the two sides parallel to the x-axis of the x-direction + side.
  • the first light shielding portion 923c of the focus detection pixel 920c has a shape line-symmetrical to the first light shielding portion 923a with respect to the cc line along the x-axis between the focus detection pixels 920a and 920c.
  • the first light shielding portion 923d of the focus detection pixel 920d has a shape line-symmetrical to the first light shielding portion 923b with respect to the cc line along the x-axis.
  • the image pickup element 8 includes a focus detection pixel having a light-shielding portion shaped to shield the region on the + side of the y direction or the region on the - side of the y direction. Since there is no need to dispose the image pickup pixels 810 at the same position, it is not necessary to reduce the number of the image pickup pixels 810, and deterioration in image quality of the photographed image can be suppressed.
  • the imaging pixel 810 may also have a plurality of first microlenses. That is, the imaging pixel 810 may have a first photoelectric conversion unit 812 that photoelectrically converts light that has passed through the plurality of first microlenses to generate electric charges, and may output a signal used for image generation. Also in this case, the first microlens of the imaging pixel 810 and the second microlenses 821 and 921 of the focus detection pixels 820 and 920 have different refractive powers. As a result, it is possible to obtain the same effect as in the case of having the configurations of the first and second embodiments.
  • Focus detection device 8 Imaging device 14 Focus detection calculation unit 100 Digital camera 810 Imaging pixel 811 First microlens 812 First photoelectric conversion unit 820, 920 Focus detection pixels 821, 921 Second micro Lenses 822, 922...Second photoelectric converters 823, 923...First light shielding part 826...Second light shielding part 827...Third light shielding part 828...Fourth light shielding part

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

This imaging element comprises: a first pixel that outputs a signal used for image generation has a first photoelectric conversion unit that generates charge by photoelectrically converting light that has passed through a first micro-lens; and a second pixel that generates a signal used for focus detection and has a second photoelectric conversion unit that generates charge by photoelectrically converting light that has passed through a second micro-lens having a different refractive power than the first micro-lens.

Description

撮像素子、焦点検出装置および撮像装置Imaging device, focus detection device and imaging device
 本発明は、撮像素子、焦点検出装置および撮像装置に関する。
 本願は、2021年5月14日に出願された日本国特願2021-082167号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an imaging device, a focus detection device, and an imaging device.
This application claims priority based on Japanese Patent Application No. 2021-082167 filed on May 14, 2021, the content of which is incorporated herein.
 単位画素ごとに複数のマイクロレンズが形成された撮像素子が知られている(例えば、特許文献1)。従来から、焦点検出を高精度に行う撮像素子が求められている。 An imaging device in which a plurality of microlenses are formed for each unit pixel is known (for example, Patent Document 1). 2. Description of the Related Art Conventionally, there has been a demand for an imaging device that performs focus detection with high accuracy.
特開2015-167219号公報JP 2015-167219 A
 本発明に係る第1の態様による撮像素子は、第1マイクロレンズを通過した光を光電変換して電荷を生成する第1光電変換部を有し、画像生成に用いる信号を出力する第1画素と、前記第1マイクロレンズとは屈折力が異なる第2マイクロレンズを通過した光を光電変換して電荷を生成する第2光電変換部を有し、焦点検出に用いる信号を生成する第2画素と、を備える。
 本発明に係る第2の態様による撮像素子は、複数の第1マイクロレンズを通過した光を光電変換して電荷を生成する第1光電変換部を有し、画像生成に用いる信号を出力する第1画素と、第2マイクロレンズを通過した光を光電変換して電荷を生成する第2光電変換部を有し、焦点検出に用いる信号を出力する第2画素と、を備える。
An imaging device according to a first aspect of the present invention has a first photoelectric conversion unit that photoelectrically converts light that has passed through a first microlens to generate an electric charge, and first pixels that output signals used for image generation. and a second photoelectric conversion unit that photoelectrically converts light passing through a second microlens having a refractive power different from that of the first microlens to generate an electric charge, and a second pixel that generates a signal used for focus detection. And prepare.
An imaging device according to a second aspect of the present invention has a first photoelectric conversion section that photoelectrically converts light that has passed through a plurality of first microlenses to generate electric charges, and a first photoelectric conversion section that outputs a signal used for image generation. and a second pixel that has a second photoelectric conversion unit that photoelectrically converts light that has passed through the second microlens to generate an electric charge and that outputs a signal used for focus detection.
実施の形態における撮像装置の要部構成を説明する横断面図である。1 is a cross-sectional view for explaining the main configuration of an imaging device according to an embodiment; FIG. 実施の形態における撮像素子の構成を模式的に説明する図である。It is a figure explaining typically the structure of the image pick-up element in embodiment. 第1の実施の形態における撮像画素と焦点検出画素との構成を模式的に説明する図である。4A and 4B are diagrams schematically illustrating configurations of imaging pixels and focus detection pixels in the first embodiment; FIG. 第1の実施の形態における撮像画素と焦点検出画素との構成の別の例を模式的に説明する図である。FIG. 4 is a diagram schematically explaining another example of the configuration of imaging pixels and focus detection pixels in the first embodiment; 第1の実施の形態における撮像画素と焦点検出画素との構成の他の例を模式的に説明する図である。FIG. 4 is a diagram schematically explaining another example of the configuration of imaging pixels and focus detection pixels in the first embodiment; 第2の実施の形態における撮像画素と焦点検出画素との構成を模式的に説明する図である。FIG. 10 is a diagram schematically illustrating the configuration of imaging pixels and focus detection pixels in the second embodiment; 第2の実施の形態における撮像素子が有する焦点検出画素の回路図である。FIG. 10 is a circuit diagram of focus detection pixels included in the image pickup device according to the second embodiment; 第2の実施の形態における焦点検出画素の信号読み出しを説明するタイミングチャートである。9 is a timing chart for explaining signal readout of focus detection pixels in the second embodiment; 第2の実施の形態における焦点検出画素の信号読み出しの別の例を説明するタイミングチャートである。9 is a timing chart illustrating another example of signal readout of focus detection pixels in the second embodiment; 第2の実施の形態における撮像画素と焦点検出画素との構成の別の例を模式的に説明する図である。FIG. 11 is a diagram schematically illustrating another example of the configuration of imaging pixels and focus detection pixels in the second embodiment; 第2の実施の形態における撮像素子が有する焦点検出画素の別の例の回路図である。FIG. 10 is a circuit diagram of another example of focus detection pixels included in the image pickup device according to the second embodiment; 第2の実施の形態における焦点検出画素の別の例の信号読み出しを説明するタイミングチャートである。FIG. 10 is a timing chart for explaining signal readout of another example of the focus detection pixel in the second embodiment; FIG. 第2の実施の形態における焦点検出画素の別の例の信号読み出しの他の例を説明するタイミングチャートである。FIG. 11 is a timing chart illustrating another example of signal readout of another example of the focus detection pixel in the second embodiment; FIG. 第2の実施の形態における焦点検出画素の構成の他の例を模式的に説明する図である。FIG. 10 is a diagram schematically illustrating another example of the configuration of focus detection pixels in the second embodiment;
<第1の実施の形態>
 図面を参照しながら、第1の実施の形態による撮像素子と、この撮像素子を備える撮像装置とについて説明する。
 図1は第1実施の形態による撮像装置であるデジタルカメラ100の構成を説明する横断面図である。なお、説明の都合上、x軸、y軸、z軸からなる直交座標系を図示の通りに設定する。図1において、z軸を図面の水平方向、y軸を図面の上下方向、x軸をy軸およびz軸に直交する方向に沿って設定している。
<First Embodiment>
An imaging device according to a first embodiment and an imaging apparatus including this imaging device will be described with reference to the drawings.
FIG. 1 is a cross-sectional view for explaining the configuration of a digital camera 100, which is an imaging device according to the first embodiment. For convenience of explanation, an orthogonal coordinate system consisting of x-axis, y-axis and z-axis is set as illustrated. In FIG. 1, the z-axis is set along the horizontal direction of the drawing, the y-axis is set along the vertical direction of the drawing, and the x-axis is set along the direction orthogonal to the y-axis and the z-axis.
 デジタルカメラ100は、カメラ本体200と撮影レンズ本体300とにより構成され、撮影レンズ本体300はマウント部(不図示)を介して装着される。カメラ本体200には、マウント部を介して種々の撮影光学系を有する撮影レンズ本体300が装着可能である。 The digital camera 100 is composed of a camera body 200 and a photographing lens body 300, and the photographing lens body 300 is mounted via a mount (not shown). A photographing lens body 300 having various photographing optical systems can be attached to the camera body 200 via a mount section.
 撮影レンズ本体300は、撮影光学系1を備えている。撮影光学系1は、被写体像を撮像素子8の撮像面上に結像させるための光学系であり、焦点調節レンズを含む複数のレンズによって構成されている。撮影光学系1を構成する焦点調節レンズは、駆動部(不図示)により、レンズ駆動量に応じて光軸Lの方向(z方向)に沿って合焦位置へ駆動する。レンズ駆動量は、マウント部(不図示)に設けられた電気接点を介してカメラ本体200側から入力したデフォーカス量を用いて駆動部(不図示)により算出される。 The photographic lens body 300 includes the photographic optical system 1 . The imaging optical system 1 is an optical system for forming an image of a subject on the imaging surface of the imaging element 8, and is composed of a plurality of lenses including a focusing lens. A focus adjustment lens that constitutes the imaging optical system 1 is driven to an in-focus position along the direction of the optical axis L (z direction) by a drive unit (not shown) according to the lens drive amount. The lens drive amount is calculated by a drive section (not shown) using a defocus amount input from the camera body 200 side via an electrical contact provided on a mount section (not shown).
 カメラ本体200内部には、制御部5と、撮像素子8および焦点検出演算部14を有する焦点検出装置6とが設けられている。カメラ本体200には操作部11が設けられている。撮像素子8は、例えば裏面照射型のCMOS等のイメージセンサであり、xy平面上において二次元状(行と列)に配置された撮像画素と焦点検出画素とを有する。撮像画素は、撮影光学系1の射出瞳領域の全体を通過した光束を受光して、画像信号を出力する。焦点検出画素は、撮影光学系1の左右または上下等の一部の射出瞳領域を通過した光束を受光して、焦点検出信号を出力する。撮像素子8の撮像画素には、それぞれR(赤)、G(緑)、B(青)のカラーフィルタが設けられている。撮像画素がカラーフィルタを通して被写体像を撮像するため、撮像信号はRGB表色系の色情報を有する。なお、焦点検出画素にはカラーフィルタが設けられていなくても良いし、全ての焦点検出画素に同一(たとえばG)のカラーフィルタが設けられても良い。なお、撮像素子8については、詳細を後述する。 A control unit 5 and a focus detection device 6 having an imaging device 8 and a focus detection calculation unit 14 are provided inside the camera body 200 . An operation unit 11 is provided in the camera body 200 . The imaging device 8 is, for example, a back-illuminated CMOS or other image sensor, and has imaging pixels and focus detection pixels that are arranged two-dimensionally (rows and columns) on the xy plane. The imaging pixels receive the light flux that has passed through the entire exit pupil area of the imaging optical system 1 and output image signals. The focus detection pixels receive light beams that have passed through a part of the exit pupil areas, such as left, right, top, and bottom, of the imaging optical system 1, and output focus detection signals. The imaging pixels of the imaging device 8 are provided with color filters of R (red), G (green), and B (blue), respectively. Since the imaging pixels capture the subject image through the color filters, the imaging signal has color information of the RGB color system. Note that the focus detection pixels may not be provided with color filters, and all the focus detection pixels may be provided with the same (for example, G) color filter. Details of the imaging device 8 will be described later.
 操作部11はユーザによって操作される種々の操作部材に対応して設けられた種々のスイッチを含み、操作部材の操作に応じた操作信号を制御部5へ出力する。操作部材は、たとえばレリーズボタンや、カメラ本体200の背面に設けられた背面モニタ(不図示)にメニュー画面を表示させるためのメニューボタンや、各種の設定等を選択操作する時に操作される十字キー、十字キーにより選択された設定等を決定するための決定ボタン、撮影モードと再生モードとの間でデジタルカメラ100の動作を切替える動作モード切替ボタン、露出モードを設定する露出モード切替ボタン等を含む。 The operation unit 11 includes various switches provided corresponding to various operation members operated by the user, and outputs operation signals to the control unit 5 according to the operation of the operation members. Operation members include, for example, a release button, a menu button for displaying a menu screen on a rear monitor (not shown) provided on the rear surface of the camera body 200, and a cross key operated when selecting and operating various settings. , a determination button for determining settings selected by the cross key, an operation mode switching button for switching the operation of the digital camera 100 between shooting mode and playback mode, and an exposure mode switching button for setting the exposure mode. .
 制御部5は、CPU、ROM、RAMなどを有し、制御プログラムに基づいて、デジタルカメラ100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。制御プログラムは、制御部5内の不図示の不揮発性メモリに格納されている。制御部5は、撮像素子8の駆動を制御して、撮像素子8に電荷蓄積および撮像信号の読み出し等を行わせる。制御部5は、撮像素子8の撮像画素から出力された撮像信号を画像信号として用い、画像信号に対して種々の画像処理を施して画像データを生成した後、付加情報等を付与して画像ファイルを生成する。生成された画像ファイルはメモリカード等の記録媒体(不図示)に記録される。制御部5は、生成した画像データや記録媒体に記録されている画像データに基づいて、背面モニタ(不図示)に表示するための表示画像データを生成する。焦点検出演算部14は、撮像素子8の焦点検出画素から出力された焦点検出信号を用いて、公知の位相差検出方式によりデフォーカス量を算出する。 The control unit 5 is an arithmetic circuit that has a CPU, ROM, RAM, etc., and controls each component of the digital camera 100 and executes various data processing based on a control program. The control program is stored in a non-volatile memory (not shown) within the control unit 5 . The control unit 5 controls the driving of the imaging element 8 to cause the imaging element 8 to perform charge accumulation, readout of imaging signals, and the like. The control unit 5 uses the imaging signal output from the imaging pixels of the imaging element 8 as an image signal, performs various image processing on the image signal to generate image data, and then adds additional information and the like to generate an image. Generate files. The generated image file is recorded in a recording medium (not shown) such as a memory card. The control unit 5 generates display image data for display on a rear monitor (not shown) based on the generated image data and the image data recorded on the recording medium. The focus detection calculation unit 14 uses the focus detection signals output from the focus detection pixels of the image sensor 8 to calculate the defocus amount by a known phase difference detection method.
 次に、第1の実施の形態における撮像素子8について詳細に説明する。
 図2は、第1の実施の形態の撮像素子8の撮像面800を模式的に示す図である。なお、図2においても、x軸、y軸、z軸からなる直交座標系を、図1に示す例と同様にして設定する。撮像面800には、複数の撮像画素810と、デフォーカス量の演算に用いる焦点検出信号を取得するための複数の焦点検出画素820とが配置されている。図2においては、焦点検出画素820に斜線を付して示す。焦点検出画素820は、所定の画素行(y方向)ごとに、配置される。焦点検出画素820が配置される画素行においては、例えば、1つの撮像画素810おきに焦点検出画素820が配置される。なお、図2に示す撮像画素810および焦点検出画素820の配置は一例であり、この配置例に限定されない。
Next, the imaging element 8 in the first embodiment will be described in detail.
FIG. 2 is a diagram schematically showing an imaging surface 800 of the imaging element 8 of the first embodiment. Also in FIG. 2, an orthogonal coordinate system consisting of the x-axis, y-axis, and z-axis is set in the same manner as in the example shown in FIG. A plurality of imaging pixels 810 and a plurality of focus detection pixels 820 for acquiring focus detection signals used for calculating the defocus amount are arranged on the imaging plane 800 . In FIG. 2, the focus detection pixels 820 are shaded. The focus detection pixels 820 are arranged for each predetermined pixel row (y direction). In pixel rows in which the focus detection pixels 820 are arranged, for example, the focus detection pixels 820 are arranged every one imaging pixel 810 . Note that the arrangement of the imaging pixels 810 and the focus detection pixels 820 shown in FIG. 2 is an example, and the arrangement is not limited to this example.
 図3は、撮像画素810と撮像画素810との構造の一例を模式的に示す図であり、図3(a)は隣接する撮像画素810と焦点検出画素820との平面構造を模式的に示す図であり、図3(b)は、撮像画素810と焦点検出画素820との断面構造を模式的に示す図であり、図3(a)のa-a線における断面を示す。なお、図3においても、x軸、y軸、z軸からなる直交座標系を、図1に示す例と同様にして設定する。本実施の形態においては、撮像画素810および焦点検出画素820の画素ピッチ(大きさ)が10μm程度のように、サイズが大きい場合を例に挙げる。 3A and 3B schematically show an example of the structure of the image pickup pixel 810 and the image pickup pixel 810, and FIG. 3A schematically shows the planar structure of the adjacent image pickup pixel 810 and focus detection pixel 820. FIG. FIG. 3B is a diagram schematically showing the cross-sectional structure of the imaging pixel 810 and the focus detection pixel 820, showing the cross section taken along the line aa of FIG. 3A. Also in FIG. 3, an orthogonal coordinate system consisting of the x-axis, the y-axis, and the z-axis is set in the same manner as in the example shown in FIG. In this embodiment, a case where the pixel pitch (size) of the imaging pixels 810 and the focus detection pixels 820 is about 10 μm is taken as an example.
 図3(a)、図3(b)に示すように、撮像画素810は、第1マイクロレンズ811と、第1マイクロレンズ811を通過した光を光電変換して電荷を生成する第1光電変換部812とを有し、画像生成に用いる信号(撮像信号)を出力する。撮像画素810は、第1マイクロレンズ811と第1光電変換部812との間に第1境界遮光部813を有する。第1境界遮光部813は、隣接する焦点検出画素820との境界においてxy平面に平行な面上に設けられる。 As shown in FIGS. 3A and 3B, the imaging pixel 810 includes a first microlens 811 and a first photoelectric conversion lens that photoelectrically converts light passing through the first microlens 811 to generate electric charges. 812 and outputs a signal (imaging signal) used for image generation. The imaging pixel 810 has a first boundary shielding portion 813 between the first microlens 811 and the first photoelectric conversion portion 812 . The first boundary light shielding portion 813 is provided on a plane parallel to the xy plane at the boundary between adjacent focus detection pixels 820 .
 焦点検出画素820は、第2マイクロレンズ821と、第2マイクロレンズ821を通過した光を光電変換して電荷を生成する第2光電変換部822とを有し、焦点検出に用いる信号(焦点検出信号)を生成する。第2マイクロレンズ821は、第1マイクロレンズ811とは屈折力が異なる。本実施の形態においては、第1マイクロレンズ811の焦点位置は、第2マイクロレンズ821の焦点位置よりも離れた側(図3(b)のz方向-側)に位置する。図3(b)に示す例では、第1マイクロレンズ811の焦点位置は位置FP1であり、第2マイクロレンズ821の焦点位置は位置FP2である。 The focus detection pixel 820 has a second microlens 821 and a second photoelectric conversion unit 822 that photoelectrically converts light that has passed through the second microlens 821 to generate an electric charge. signal). The second microlens 821 has a refractive power different from that of the first microlens 811 . In the present embodiment, the focal position of the first microlens 811 is located on the far side (z direction - side in FIG. 3B) from the focal position of the second microlens 821 . In the example shown in FIG. 3B, the focal position of the first microlens 811 is the position FP1, and the focal position of the second microlens 821 is the position FP2.
 焦点検出画素820においては、第2マイクロレンズ821の光軸方向(z方向)と交差するxy平面において、第2マイクロレンズ821の面積は第1マイクロレンズ811のxy平面上での面積よりも小さい。換言すると、焦点検出画素820においては、第1マイクロレンズ811がxy平面上で有する面積と同面積の領域(以後、単位領域と呼ぶ)の中に、複数の第2マイクロレンズ821が配置される。図3の例では、単位領域内に4個の第2マイクロレンズ821a、821b、821c、821d(総称する場合は符号821を用いる)が配置された場合を示している。4個の第2マイクロレンズ821は、x方向とy方向とに沿って配置される。すなわち、第2マイクロレンズ821aと821bとはx方向に沿って配置され、第2マイクロレンズ821cと821dとはx方向に沿って配置される。また、第2マイクロレンズ821aと821cとはy方向に沿って配置され、第2マイクロレンズ821bと821dとはy方向に沿って配置される。 In the focus detection pixel 820, the area of the second microlens 821 on the xy plane intersecting the optical axis direction (z direction) of the second microlens 821 is smaller than the area of the first microlens 811 on the xy plane. . In other words, in the focus detection pixel 820, a plurality of second microlenses 821 are arranged in a region (hereinafter referred to as a unit region) having the same area as the first microlenses 811 on the xy plane. . The example of FIG. 3 shows a case where four second microlenses 821a, 821b, 821c, and 821d (collectively referred to as 821) are arranged in the unit area. Four second microlenses 821 are arranged along the x-direction and the y-direction. That is, the second microlenses 821a and 821b are arranged along the x-direction, and the second microlenses 821c and 821d are arranged along the x-direction. Also, the second microlenses 821a and 821c are arranged along the y direction, and the second microlenses 821b and 821d are arranged along the y direction.
 第2マイクロレンズ821aと第2光電変換部822との間には、xy平面に平行な面上に、第2マイクロレンズ821aの中心からx方向+側に入射する光を遮光する第1遮光部823aが設けられる。同様に、各第2マイクロレンズ821b、821c、821dのぞれぞれと、第2光電変換部822との間にも、xy平面に平行に各第2マイクロレンズ821b、821c、821dの各中心からx方向+側に入射する光を遮光する第1遮光部823b、823c、823d(以下、総称する場合には符号823とする)が設けられる。第1遮光部823は、そのz方向の位置が上述した第2マイクロレンズ821の焦点位置FP2のz方向の位置とほぼ一致するように配置される。
 また、撮像画素810との境界近傍において、第2マイクロレンズ821と第2光電変換部822との間に、xy平面に平行に第2境界遮光部824が設けられる。
Between the second microlens 821a and the second photoelectric conversion part 822, a first light shielding part for shielding light incident on the + side in the x direction from the center of the second microlens 821a on a plane parallel to the xy plane. 823a is provided. Similarly, between each of the second microlenses 821b, 821c, and 821d and the second photoelectric conversion unit 822, each center of each of the second microlenses 821b, 821c, and 821d parallel to the xy plane. First light blocking portions 823b, 823c, and 823d (hereinafter collectively referred to as reference numeral 823) are provided to block light incident on the + side in the x direction. The first light shielding portion 823 is arranged such that its z-direction position substantially coincides with the z-direction position of the focal position FP2 of the second microlens 821 described above.
Also, in the vicinity of the boundary with the imaging pixel 810, a second boundary light shielding section 824 is provided between the second microlens 821 and the second photoelectric conversion section 822 in parallel with the xy plane.
 図3(a)、(b)においては、焦点検出画素820が第2マイクロレンズ821のx方向+側を遮光する第1遮光部823を有する場合を例として示している。しかし、焦点検出画素820は、図3(c)に示すように第2マイクロレンズ821のx方向-側を遮光する遮光部825を有するものも含む。 3(a) and 3(b) show, as an example, the case where the focus detection pixel 820 has the first light shielding portion 823 that shields the + side of the second microlens 821 in the x direction. However, the focus detection pixels 820 also include those having a light shielding portion 825 that shields the - side of the second microlenses 821 in the x direction, as shown in FIG. 3(c).
 焦点検出画素820の構成は図3に示す例に限定されず、隣接する焦点検出画素820との間に、第2マイクロレンズ821の光軸方向(z方向)に沿って第2マイクロレンズ821側に伸びる遮光部を有することができる。
 この場合の例を図4に示す。図4(a)は、撮像素子810および焦点検出画素820の断面を模式的に示す図であり、上述した図3(a)におけるa-a線における断面である。この場合、焦点検出画素820は、第1遮光部823a上であって、第2マイクロレンズ821bとの境界に第2遮光部826を有する。第2遮光部826は、z方向に沿って、z方向+側に伸びるように形成される。これにより、第2マイクロレンズ821aを通過した光が、第2光電変換部822のうち第2マイクロレンズ821bの下部領域に入射することを防ぐことができる。
 なお、図4(a)には示されていないが、焦点検出画素820の第1遮光部823c上にも、同様の第2遮光部826が設けられる。
The configuration of the focus detection pixel 820 is not limited to the example shown in FIG. can have a light blocking portion extending to the
An example of this case is shown in FIG. FIG. 4(a) is a diagram schematically showing a cross section of the image sensor 810 and the focus detection pixel 820, taken along the line aa in FIG. 3(a) described above. In this case, the focus detection pixel 820 has a second light shielding section 826 on the first light shielding section 823a and on the boundary with the second microlens 821b. The second light shielding portion 826 is formed along the z direction so as to extend to the + side in the z direction. Accordingly, it is possible to prevent the light passing through the second microlens 821a from entering the region of the second photoelectric converter 822 under the second microlens 821b.
Although not shown in FIG. 4A, a similar second light shielding section 826 is provided above the first light shielding section 823c of the focus detection pixel 820 as well.
 上述した図4(a)に示す構成を有する焦点検出画素820が、隣接する撮像画素810との間に、第2マイクロレンズ821の光軸方向(z方向)に沿って形成される遮光部を有してもよい。この場合の例を図4(b)、(c)に示す。図4(b)、(c)は、焦点検出画素820の断面を模式的に示す図であり、上述した図3(a)におけるa-a線にける断面である。
 図4(b)においては、焦点検出画素820は、第2境界遮光部824および第1遮光部823bに第3遮光部827を有する。第3遮光部827は、z方向に沿って、z方向-側に伸びるように形成される。なお、この場合、図4(b)には示されていない、第1遮光部823dにおいても、同様に第3遮光部827が設けられる。
 図4(c)においては、焦点検出画素820は、第2境界遮光部824および第2遮光部826に第4遮光部828を有する。第4遮光部828は、z方向に沿って、z方向+側に伸びるように形成される。なお、この場合、図4(c)には示されていない、第1遮光部823dにおいても、同様に第4遮光部828が設けられる。
 上記の図4(b)、(c)に示す構成を有することにより、焦点検出画素820の第2マイクロレンズ821aまたは821bを通過した光が、隣接する撮像画素810に入射することを防ぐことができる。焦点検出画素820は、上述した構成を有することにより、第2マイクロレンズ821と第2光電変換部822との間のz方向の距離を増加させることなく焦点検出精度を高めることができる。
Between the focus detection pixel 820 having the configuration shown in FIG. may have. Examples of this case are shown in FIGS. 4B and 4C are diagrams schematically showing cross sections of the focus detection pixel 820, taken along line aa in FIG. 3A described above.
In FIG. 4B, the focus detection pixel 820 has a third light shielding portion 827 in the second boundary light shielding portion 824 and the first light shielding portion 823b. The third light shielding portion 827 is formed along the z-direction so as to extend to the - side in the z-direction. In this case, the third light shielding section 827 is similarly provided in the first light shielding section 823d, which is not shown in FIG. 4B.
In FIG. 4C , the focus detection pixel 820 has a fourth light shielding portion 828 in the second boundary light shielding portion 824 and the second light shielding portion 826 . The fourth light shielding portion 828 is formed along the z direction so as to extend to the + side in the z direction. In this case, the fourth light shielding portion 828 is similarly provided in the first light shielding portion 823d, which is not shown in FIG. 4(c).
By having the configurations shown in FIGS. 4B and 4C, the light passing through the second microlens 821a or 821b of the focus detection pixel 820 can be prevented from entering the adjacent imaging pixel 810. can. The focus detection pixel 820 having the configuration described above can improve focus detection accuracy without increasing the distance in the z direction between the second microlens 821 and the second photoelectric conversion unit 822 .
 図3および図4においては、焦点検出画素820においては、単位領域の中に4個の第2マイクロレンズ821が配置される例を示したが、第2マイクロレンズ821の個数は4個より多くてよいし、少なくてもよい。
 図5は、単位領域内に第2マイクロレンズ821が2個配置される場合を模式的に示す。図5(a)は、図3(a)と同様に撮像画素810と焦点検出画素820とを模式的に示す平面図である。図5(a)においては、焦点検出画素820は、図3(a)に示す第2マイクロレンズ821のうち第2マイクロレンズ821bおよび821cのみを有する。すなわち、焦点検出画素820は、第2光電変換部822の矩形領域の対角方向に沿って配置された第2マイクロレンズ821を有する。なお、焦点検出画素820は、図3(a)に示す第2マイクロレンズ821aおよび821dのみを有してもよいし、第2マイクロレンズ821aおよび821cのみを有してもよいし、第2マイクロレンズ821bおよび821dのみを有してもよい。
3 and 4 show an example in which four second microlenses 821 are arranged in a unit area in the focus detection pixel 820, but the number of the second microlenses 821 is more than four. or less.
FIG. 5 schematically shows a case where two second microlenses 821 are arranged within a unit area. FIG. 5(a) is a plan view schematically showing the imaging pixels 810 and the focus detection pixels 820 as in FIG. 3(a). 5A, the focus detection pixel 820 has only the second microlenses 821b and 821c of the second microlenses 821 shown in FIG. 3A. That is, the focus detection pixel 820 has the second microlenses 821 arranged along the diagonal direction of the rectangular area of the second photoelectric conversion section 822 . Note that the focus detection pixel 820 may have only the second microlenses 821a and 821d shown in FIG. It may have only lenses 821b and 821d.
 また、図5(b)の平面図は、焦点検出画素820が第2マイクロレンズ821eと821fとを有する場合を模式的に示す。第2マイクロレンズ821eと821fは、y方向に沿って配置される。この場合、図5(b)の第2マイクロレンズ821eは、図3(a)における第2マイクロレンズ821aおよび821bが配置される位置と対応する位置に配置され、第2マイクロレンズ821fは、図3(a)における第2マイクロレンズ821cおよび821dが配置される位置と対応する位置に配置される。第2マイクロレンズ821eと第2光電変換部822との間には、xy平面に平行に第2マイクロレンズ821eの中心からx方向+側の領域を遮光する第1遮光部823eが設けられる。第2マイクロレンズ821fと第2光電変換部822との間には、xy平面に平行に第2マイクロレンズ821fの中心からx方向+側の領域を遮光する第1遮光部823fが設けられる。 The plan view of FIG. 5(b) schematically shows the case where the focus detection pixel 820 has the second microlenses 821e and 821f. The second microlenses 821e and 821f are arranged along the y-direction. In this case, the second microlens 821e in FIG. 5B is arranged at a position corresponding to the positions where the second microlenses 821a and 821b are arranged in FIG. It is arranged at a position corresponding to the position where the second microlenses 821c and 821d are arranged in 3(a). Between the second microlens 821e and the second photoelectric conversion part 822, a first light shielding part 823e is provided parallel to the xy plane for shielding a region on the + side in the x direction from the center of the second microlens 821e. Between the second microlens 821f and the second photoelectric conversion part 822, a first light shielding part 823f is provided parallel to the xy plane for shielding a region on the + side in the x direction from the center of the second microlens 821f.
 上述した構成を有する一対の焦点検出画素820(図3(a)の焦点検出画素820と図3(c)の焦点検出画素820)から出力された焦点検出信号を用いて、焦点検出演算部14は、公知の位相差検出方式を用いてデフォーカス量を算出する。焦点検出演算部14は、図3(a)に示す焦点検出画素820の第2光電変換部822からの焦点検出信号を順次並べた第1信号列{an}と、図3(c)に示す焦点検出画素820の光電変換部822からの焦点検出信号を順次並べた第2信号列{bn}との相対的なズレ量を検出し、撮影光学系1の焦点調節状態、すなわちデフォーカス量を検出する。 Using focus detection signals output from a pair of focus detection pixels 820 (the focus detection pixel 820 in FIG. 3A and the focus detection pixel 820 in FIG. 3C) having the above configuration, the focus detection calculation unit 14 calculates the defocus amount using a known phase difference detection method. The focus detection calculation unit 14 combines the first signal train {an} in which the focus detection signals from the second photoelectric conversion units 822 of the focus detection pixels 820 shown in FIG. The amount of relative deviation from the second signal train {bn} in which the focus detection signals from the photoelectric conversion unit 822 of the focus detection pixels 820 are sequentially arranged is detected, and the focus adjustment state of the photographing optical system 1, that is, the defocus amount is determined. To detect.
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)撮像素子8は、第1マイクロレンズ811を通過した光を光電変換して電荷を生成する第1光電変換部812を有し、画像生成に用いる信号を出力する撮像画素810と、第1マイクロレンズ811とは屈折力が異なる第2マイクロレンズ821を通過した光を光電変換して電荷を生成する第2光電変換部822を有し、焦点検出に用いる信号を生成する焦点検出画素820と、を備える。これにより、第2焦点検出画素820の光軸方向(z方向)の厚さの増加を抑制することができ、第2マイクロレンズ821を通過した光が隣接する撮像画素810へ入射することを抑制できる。焦点検出画素820は、第2マイクロレンズ821と第2光電変換部822との間のz方向の距離を増加させることなく焦点検出精度を高めることができる。
According to the first embodiment described above, the following effects are obtained.
(1) The imaging element 8 has a first photoelectric conversion unit 812 that photoelectrically converts light that has passed through the first microlens 811 to generate an electric charge. A focus detection pixel 820 that has a second photoelectric conversion unit 822 that photoelectrically converts light passing through a second microlens 821 that has a refractive power different from that of the one microlens 811 to generate electric charges, and that generates a signal used for focus detection. And prepare. As a result, it is possible to suppress an increase in the thickness of the second focus detection pixel 820 in the optical axis direction (z direction), thereby suppressing the light passing through the second microlens 821 from entering the adjacent imaging pixel 810. can. The focus detection pixel 820 can improve focus detection accuracy without increasing the distance in the z direction between the second microlens 821 and the second photoelectric conversion unit 822 .
(2)第1マイクロレンズ811の焦点位置FP1は、第2マイクロレンズ821の焦点位置FP2よりも、z方向-側に位置する。これにより、焦点検出画素820のz方向の厚みを増加させることなく第2光電変換部822に集光させることができる。また、第2マイクロレンズ821を通過した光が撮像素子810の第1光電変換部812に入射することを抑制できる。 (2) The focal position FP1 of the first microlens 811 is positioned on the - side in the z direction with respect to the focal position FP2 of the second microlens 821 . Accordingly, light can be collected on the second photoelectric conversion unit 822 without increasing the thickness of the focus detection pixel 820 in the z direction. In addition, it is possible to suppress the light that has passed through the second microlens 821 from entering the first photoelectric conversion unit 812 of the imaging device 810 .
(3)第2マイクロレンズ821の光軸と交差する面(xy平面)において第2マイクロレンズ821が有する面積は、第1マイクロレンズ811の光軸と交差する面において第1マイクロレンズ811が有する面積よりも小さい。これにより、第2焦点検出画素820の光軸方向(z方向)の厚さの増加を抑制することができる。 (3) The area of the second microlens 821 on the plane (xy plane) intersecting the optical axis of the second microlens 821 is the area of the first microlens 811 on the plane intersecting the optical axis of the first microlens 811. smaller than area. Thereby, an increase in the thickness of the second focus detection pixel 820 in the optical axis direction (z direction) can be suppressed.
(4)第1マイクロレンズ811の光軸と交差する面(xy平面)において第1マイクロレンズ811が有する面積と同一の面積を有する領域(単位領域)の中に、複数の第2マイクロレンズ821が配置される。これにより、第2焦点検出画素820の光軸方向(z方向)の厚さの増加を抑制することができる。 (4) a plurality of second microlenses 821 in a region (unit region) having the same area as the first microlenses 811 on a plane (xy plane) intersecting the optical axis of the first microlenses 811; is placed. Thereby, an increase in the thickness of the second focus detection pixel 820 in the optical axis direction (z direction) can be suppressed.
(5)焦点検出画素820は、隣接する焦点検出画素820との間に、第2マイクロレンズ821の光軸方向(z方向)に沿って第2マイクロレンズ821側に伸びる第2遮光部826を有する。これにより、例えば第2光電変換部822のうちマイクロレンズ821aの下部の領域に入射するべき光が、マイクロレンズ821の下部の領域に入ることを抑制できるので、焦点検出精度の低下を抑制できる。 (5) The focus detection pixel 820 has a second light shielding portion 826 extending toward the second microlens 821 along the optical axis direction (z direction) of the second microlens 821 between adjacent focus detection pixels 820 . have. As a result, it is possible to prevent the light that should be incident on the area below the microlens 821a in the second photoelectric conversion unit 822 from entering the area below the microlens 821, thereby suppressing a decrease in focus detection accuracy.
(6)焦点検出画素820は、隣接する撮像画素810との間に、第2マイクロレンズ821の光軸方向(z方向)に沿って形成される第3遮光部827または第4遮光部828を有する。これにより、焦点検出画素820の第2マイクロレンズ821を通過した光が撮像画素810の第1光電変換部812に入射することを抑制できる。 (6) The focus detection pixel 820 has a third light shielding portion 827 or a fourth light shielding portion 828 formed along the optical axis direction (z direction) of the second microlens 821 between the adjacent imaging pixels 810. have. This makes it possible to prevent the light that has passed through the second microlens 821 of the focus detection pixel 820 from entering the first photoelectric conversion unit 812 of the imaging pixel 810 .
<第2の実施の形態>
 図面を参照して、第2の実施の形態の撮像素子と、この撮像素子を有する撮像装置について説明を行う。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付し、相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、焦点検出画素は、撮像画素の第1マイクロレンズがxy平面上にて有する面積と同面積の領域に複数の第2光電変換部を有する点で第1の実施の形態と異なる。
<Second Embodiment>
An imaging device according to a second embodiment and an imaging apparatus having this imaging device will be described with reference to the drawings. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and differences are mainly described. Points that are not particularly described are the same as those in the first embodiment. This embodiment differs from the first embodiment in that the focus detection pixel has a plurality of second photoelectric conversion units in a region having the same area as the first microlens of the imaging pixel on the xy plane. different.
 図6は、第2の実施の形態における撮像素子8の概略構成を模式的に示す図であり、図6(a)は撮像画素810と焦点検出画素920との平面を示し、図6(b)は図6(a)のa-a線での撮像画素810と焦点検出画素920との断面を示す。撮像画素810の構成は、第1の実施の形態の場合と同様である。 6A and 6B are diagrams schematically showing the schematic configuration of the image sensor 8 according to the second embodiment, FIG. ) shows a cross section of the imaging pixel 810 and the focus detection pixel 920 along the line aa in FIG. 6(a). The configuration of the imaging pixel 810 is the same as in the case of the first embodiment.
 図6は、単位領域に4個の焦点検出画素920(920a、920b、920c、920d)が設けられる場合を例示する。なお、単位領域内の焦点検出画素920の個数はこれに限られず、4個を超えてもよいし、少なくてもよい。それぞれの焦点検出画素920は、第2マイクロレンズ921と、2つの第2光電変換部922a、922b(総称する場合は符号922を付与する)と、第1遮光部923と、第2境界遮光部924とを有する。焦点検出画素920aと920bとはx方向に沿って配置され、焦点検出画素920cと920dとはx方向に沿って配置される。 FIG. 6 illustrates a case where four focus detection pixels 920 (920a, 920b, 920c, 920d) are provided in the unit area. Note that the number of focus detection pixels 920 in the unit area is not limited to this, and may exceed four or may be fewer. Each focus detection pixel 920 includes a second microlens 921, two second photoelectric conversion units 922a and 922b (referred to collectively by reference numeral 922), a first light shielding unit 923, and a second boundary light shielding unit. 924. Focus detection pixels 920a and 920b are arranged along the x-direction, and focus detection pixels 920c and 920d are arranged along the x-direction.
 第2マイクロレンズ921は、第1の実施の形態の場合と同様に、第1マイクロレンズ811とは屈折力が異なり、第2マイクロレンズ821の焦点位置は第1マイクロレンズ811の焦点位置よりもz方向+側に位置する。第2の実施の形態においても、第2マイクロレンズ921の光軸と交差するxy平面において、第2マイクロレンズ921の面積は第1マイクロレンズ811の単位領域の面積よりも小さい。換言すると、単位領域の中に、複数の第2マイクロレンズ921が配置される。 As in the first embodiment, the second microlens 921 has a refractive power different from that of the first microlens 811 , and the focal position of the second microlens 821 is higher than the focal position of the first microlens 811 . Located on the + side in the z direction. Also in the second embodiment, the area of the second microlens 921 is smaller than the area of the unit area of the first microlens 811 in the xy plane intersecting the optical axis of the second microlens 921 . In other words, a plurality of second microlenses 921 are arranged in the unit area.
 各焦点検出画素920が有する2つの第2光電変換部922a、922bは、x方向に沿って配置される。
 第1遮光部923は、第2マイクロレンズ921と第2光電変換部922との間のxy平面に平行な面上において、隣接する焦点検出画素920との境界近傍に配置される。第2境界遮光部924は、第2マイクロレンズ921と第2光電変換部922との間のxy平面に平行な面上において、隣接する撮像画素810との境界近傍に配置される。
Two second photoelectric conversion units 922a and 922b included in each focus detection pixel 920 are arranged along the x direction.
The first light shielding portion 923 is arranged near the boundary between the adjacent focus detection pixels 920 on a plane parallel to the xy plane between the second microlens 921 and the second photoelectric conversion portion 922 . The second boundary light shielding portion 924 is arranged near the boundary between the adjacent imaging pixels 810 on a plane parallel to the xy plane between the second microlens 921 and the second photoelectric conversion portion 922 .
 図7に、単位領域内の焦点検出画素920の回路図を示す。単位領域の4個の焦点検出画素920に対して共通のリセットトランジスタRSTが設けられ、リセット配線900によりリセットトランジスタRSTがオンオフされる。転送トランジスタTX1L、TX1R、TX2L、TX2R、TX3L、3X3R、TX4L、TX4R(総称する場合はTXと呼ぶ)は第2光電変換部922毎に設けられる。焦点検出画素920aの第2光電変換部922a、922bに設けられた転送トランジスタTX1LとTX1Rとは転送配線911、912とによりオンオフされる。焦点検出画素920bの第2光電変換部922a、922bに設けられた転送トランジスタTX2LとTX2Rとは転送配線913、914とによりオンオフされる。焦点検出画素920cの第2光電変換部922a、922bに設けられた転送トランジスタTX3LとTX3Rとは転送配線915、916とによりオンオフされる。焦点検出画素920dの第2光電変換部922a、922bに設けられた転送トランジスタTX4LとTX4Rとは転送配線917、918とによりオンオフされる。単位領域の4個の焦点検出画素920に対して共通の選択トランジスタSELが設けられ、選択配線919によりオンオフされる。 FIG. 7 shows a circuit diagram of the focus detection pixel 920 within the unit area. A common reset transistor RST is provided for the four focus detection pixels 920 in the unit area, and the reset transistor RST is turned on and off by the reset wiring 900 . Transfer transistors TX1L, TX1R, TX2L, TX2R, TX3L, 3X3R, TX4L, and TX4R (collectively referred to as TX) are provided for each second photoelectric conversion unit 922 . Transfer transistors TX1L and TX1R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920a are turned on and off by transfer wirings 911 and 912, respectively. The transfer transistors TX2L and TX2R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920b are turned on and off by transfer wirings 913 and 914, respectively. Transfer transistors TX3L and TX3R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920c are turned on and off by transfer wirings 915 and 916, respectively. The transfer transistors TX4L and TX4R provided in the second photoelectric conversion units 922a and 922b of the focus detection pixel 920d are turned on and off by transfer wirings 917 and 918, respectively. A common selection transistor SEL is provided for the four focus detection pixels 920 in the unit area, and is turned on and off by a selection wiring 919 .
 単位領域のリセットトランジスタRSTおよび転送トランジスタTXをオンオフすることにより、単位領域に含まれる4個の焦点検出画素920に対して、電荷の蓄積開始時間、蓄積終了時間および転送タイミングを含む電荷蓄積を制御することができる。また、単位領域の選択トランジスタSELをオンオフすることにより、各焦点検出画素920の光電変換信号を共通の出力配線901を介して出力することができる。 By turning on and off the reset transistor RST and the transfer transistor TX in the unit area, the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled for the four focus detection pixels 920 included in the unit area. can do. Also, by turning on/off the selection transistor SEL of the unit area, the photoelectric conversion signal of each focus detection pixel 920 can be output via the common output wiring 901 .
 上記の回路構成を有する焦点検出画素920においては、単位領域の4個の焦点検出画素920のx方向-側の第2光電変換部922aからの光電変換信号(加算信号)をまとめて読み出す。その後x方向+側の第2光電変換部922bからの光電変換信号(加算信号)をまとめて読み出す。 In the focus detection pixel 920 having the above circuit configuration, the photoelectric conversion signals (addition signal) from the second photoelectric conversion units 922a on the x-direction - side of the four focus detection pixels 920 in the unit area are collectively read out. After that, photoelectric conversion signals (addition signals) from the second photoelectric conversion units 922b on the + side in the x direction are collectively read out.
 図8にこの場合のタイミングチャートを示す。図8において、時刻t1にて信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、FD1~FD8の電位がそれぞれリセット電位になる。さらに、時刻t1において、信号SELがハイレベルになることで、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。すなわち、FD1~FD8をリセット電位にセットしたときの信号(ノイズ信号)が出力配線901に読み出される。 A timing chart for this case is shown in FIG. In FIG. 8, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD8 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when FD1 to FD8 are set to the reset potential is read out to the output wiring 901 .
 時刻t2では、信号TX1L、TX2L、TX3L、TX4Lがハイレベルになることで、転送トランジスタTX1L、TX2L、TX3L、TX4Lがオンになり、4個の第2光電変換部922aから電荷が転送される。また、時刻t2では、信号SELがハイレベルであるため、4個の第2光電変換部922aからの電荷が加算された加算信号が増幅部AMPおよび選択トランジスタSEL1を介して出力配線901に出力される。 At time t2, the signals TX1L, TX2L, TX3L, and TX4L go high, turning on the transfer transistors TX1L, TX2L, TX3L, and TX4L, and charges are transferred from the four second photoelectric conversion units 922a. Further, at time t2, since the signal SEL is at high level, the addition signal obtained by adding the charges from the four second photoelectric conversion units 922a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1. be.
 時刻t3では、信号TX1R、TX2R、TX3R、TX4Rがハイレベルになることで、転送トランジスタTX1R、TX2R、TX3R、TX4Rがオンになり、4個の光電変換部922bから電荷が転送される。また、時刻t3では、信号SELがハイレベルであるため、4個の第2光電変換部922aからの電荷が加算された加算信号が増幅部AMPおよび選択トランジスタSEL1を介して出力配線901に出力される。
 以後、時刻t1から時刻t3までの期間と同様にして、他の画素行の焦点検出画素920からのノイズ信号の読み出しと、加算信号の読み出しとが行われる。
At time t3, the signals TX1R, TX2R, TX3R, and TX4R go high to turn on the transfer transistors TX1R, TX2R, TX3R, and TX4R, and charges are transferred from the four photoelectric conversion units 922b. Further, at time t3, since the signal SEL is at high level, the addition signal obtained by adding the charges from the four second photoelectric conversion units 922a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1. be.
Thereafter, in the same manner as in the period from time t1 to time t3, readout of noise signals and readout of addition signals from the focus detection pixels 920 of other pixel rows are performed.
 上述の説明では、単位領域の4個の焦点検出画素920のそれぞれについてx方向-側の第2光電変換部922aと、x方向+側の第2光電変換部922bとからそれぞれ加算信号をまとめて読み出す場合を例に挙げたが、この例に限定されない。例えば、単位領域の4個の焦点検出画素920のそれぞれについて第2光電変換部922aと922bとから順次、個別に光電変換信号を読み出してもよい。 In the above description, for each of the four focus detection pixels 920 in the unit area, the addition signals from the second photoelectric conversion units 922a on the negative side in the x direction and the second photoelectric conversion units 922b on the positive side in the x direction are combined. Although the case of reading is mentioned as an example, it is not limited to this example. For example, for each of the four focus detection pixels 920 in the unit area, the photoelectric conversion signals may be sequentially and individually read out from the second photoelectric conversion units 922a and 922b.
 図9にこの場合のタイミングチャートを示す。図9において、時刻t1にて信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、FD1~FD8の電位がそれぞれリセット電位になる。さらに、時刻t1において、信号SELがハイレベルになることで、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSEL1により出力配線901に出力される。すなわち、FD1~8をリセット電位にセットしたときの信号(ノイズ信号)が出力配線901に読み出される。 A timing chart for this case is shown in FIG. In FIG. 9, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD8 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL1. That is, a signal (noise signal) when the FDs 1 to 8 are set to the reset potential is read out to the output wiring 901 .
 時刻t2では、信号TX1Lがハイレベルになることで、転送トランジスタTX1Lがオンになり、焦点検出画素920aの第2光電変換部922aから電荷が転送される。また、時刻t2では、信号SELがハイレベルであるため、焦点検出画素920aの第2光電変換部922aからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。時刻t3では、TX1Rがハイレベルになることで、転送トランジスタTX1Rがオンになり、焦点検出画素920aの第2光電変換部922bから電荷が転送される。また、時刻t3では、信号SELがハイレベルであるため、焦点検出画素920aの第2光電変換部922bからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t2, the signal TX1L goes high, turning on the transfer transistor TX1L and transferring the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a. Also, at time t2, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. At time t3, the transfer transistor TX1R is turned on by the high level of TX1R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920a. Also, at time t3, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
 時刻t4では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t5では、信号TX2Lがハイレベルになることで、転送トランジスタTX2Lがオンになり、焦点検出画素920bの第2光電変換部922aから電荷が転送される。また、時刻t5では、信号SELがハイレベルであるため、焦点検出画素920bの第2光電変換部922aからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。時刻t6では、TX2Rがハイレベルになることで、転送トランジスタTX2Rがオンになり、焦点検出画素920bの第2光電変換部922bから電荷が転送される。また、時刻t6では、信号SELがハイレベルであるため、焦点検出画素920bの第2光電変換部922bからの電荷が増幅部AMPおよび選択トランジスタSEL1を介して出力配線901に出力される。 At time t4, the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t5, the signal TX2L becomes high level, so that the transfer transistor TX2L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920b. Also, at time t5, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. At time t6, the transfer transistor TX2R is turned on by the high level of TX2R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920b. Also, at time t6, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL1.
 時刻t7では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t8では、信号TX3Lがハイレベルになることで、転送トランジスタTX3Lがオンになり、焦点検出画素920cの第2光電変換部922aから電荷が転送される。また、時刻t8では、信号SELがハイレベルであるため、焦点検出画素920cの第2光電変換部922aからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。時刻t9では、TX3Rがハイレベルになることで、転送トランジスタTX3Rがオンになり、焦点検出画素920cの第2光電変換部922bから電荷が転送される。また、時刻t9では、信号SELがハイレベルであるため、焦点検出画素920cの第2光電変換部922bからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t7, the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t8, the signal TX3L becomes high level, so that the transfer transistor TX3L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920c. Also, at time t8, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. At time t9, TX3R goes high to turn on the transfer transistor TX3R, and charge is transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920c. Also, at time t9, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
 時刻t10では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t11では、信号TX4Lがハイレベルになることで、転送トランジスタTX4Lがオンになり、焦点検出画素920dの第2光電変換部922aから電荷が転送される。また、時刻t11では、信号SELがハイレベルであるため、焦点検出画素920dの第2光電変換部922aからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。時刻t12では、TX4Rがハイレベルになることで、転送トランジスタTX4Rがオンになり、焦点検出画素920dの第2光電変換部922bから電荷が転送される。また、時刻t12では、信号SELがハイレベルであるため、焦点検出画素920dの第2光電変換部922bからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。
 以後、時刻t1から時刻t12までの期間と同様にして、他の画素行の焦点検出画素920からのノイズ信号の読み出しと、光電変換信号(焦点検出信号)の読み出しとが行われる。
At time t10, the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t11, the signal TX4L becomes high level, so that the transfer transistor TX4L is turned on, and charges are transferred from the second photoelectric conversion unit 922a of the focus detection pixel 920d. Also, at time t11, the signal SEL is high level, so the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. At time t12, the transfer transistor TX4R is turned on by the high level of TX4R, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920d. Also, at time t12, since the signal SEL is at high level, the charge from the second photoelectric conversion section 922b of the focus detection pixel 920d is output to the output wiring 901 via the amplification section AMP and the selection transistor SEL.
Thereafter, similarly to the period from time t1 to time t12, readout of noise signals and readout of photoelectric conversion signals (focus detection signals) from the focus detection pixels 920 of other pixel rows are performed.
 上述した説明では、単位領域に設けられた4個の焦点検出画素920のそれぞれが、2個の第2光電変換部922aおよび922bを有する場合を例に挙げたが、焦点検出画素920の構成はこの例に限定されない。
 図10に焦点検出画素920の他の例の構成を模式的に示す。図10(a)は撮像画素810と焦点検出画素920との平面を示し、図10(b)は、図10(a)のa-a線における撮像画素810と焦点検出画素920との断面を示す。撮像画素810の構成は、第1の実施の形態の場合と同様である。
In the above description, the case where each of the four focus detection pixels 920 provided in the unit area has two second photoelectric conversion units 922a and 922b was taken as an example, but the configuration of the focus detection pixel 920 is It is not limited to this example.
FIG. 10 schematically shows the configuration of another example of the focus detection pixel 920. As shown in FIG. 10(a) shows a plane of the imaging pixel 810 and the focus detection pixel 920, and FIG. 10(b) shows a cross section of the imaging pixel 810 and the focus detection pixel 920 along the line aa in FIG. 10(a). show. The configuration of the imaging pixel 810 is the same as in the case of the first embodiment.
 図10は、単位領域に4個の焦点検出画素920(920a、920b、920c、920d)が設けられる場合を例示する。なお、この場合も、単位領域内の焦点検出画素920の個数はこれに限られず、4個を超えてもよいし、少なくてもよい。それぞれの焦点検出画素920は、第2マイクロレンズ921と、第2光電変換部922と、第1遮光部923と、第2境界遮光部924とを有する。すなわち、図10に示す例では、図6に示す例と異なり、各焦点検出画素920は1個の第2光電変換部922を有する。焦点検出画素920aと920bとはx方向に沿って配置され、焦点検出画素920cと920dとはx方向に沿って配置される。焦点検出画素920aおよび焦点検出画素920cが有する第1遮光部923は、第2光電変換部922のx方向+側の半分の領域を遮光し、焦点検出画素920bおよび焦点検出画素920dが有する第1遮光部923は、第2光電変換部922のx方向-側の半分の領域を遮光する。他の点は、図6に示す焦点検出画素920と同様である。 FIG. 10 illustrates a case where four focus detection pixels 920 (920a, 920b, 920c, 920d) are provided in the unit area. Also in this case, the number of focus detection pixels 920 in the unit area is not limited to this, and may exceed four or may be less. Each focus detection pixel 920 has a second microlens 921 , a second photoelectric conversion section 922 , a first light shielding section 923 , and a second boundary light shielding section 924 . That is, in the example shown in FIG. 10, each focus detection pixel 920 has one second photoelectric conversion unit 922, unlike the example shown in FIG. Focus detection pixels 920a and 920b are arranged along the x-direction, and focus detection pixels 920c and 920d are arranged along the x-direction. The first light shielding portion 923 of the focus detection pixel 920a and the focus detection pixel 920c shields the half region of the second photoelectric conversion portion 922 on the + side in the x direction from light, and the first light shielding portion 923 of the focus detection pixel 920b and the focus detection pixel 920d is blocked. The light shielding portion 923 shields the half region of the second photoelectric conversion portion 922 on the − side in the x direction. Other points are the same as the focus detection pixel 920 shown in FIG.
 図11に、単位領域内の焦点検出画素920の回路図を示す。単位領域の4個の焦点検出画素920に対して共通のリセットトランジスタRSTが設けられ、リセット配線900によりリセットトランジスタRSTがオンオフされる。転送トランジスタTX1L、TX2R、TX3L、TX4Rは第2光電変換部922毎に設けられる。焦点検出画素920aの第2光電変換部922に設けられた転送トランジスタTX1Lは転送配線911によりオンオフされる。焦点検出画素920bの第2光電変換部922に設けられた転送トランジスタTX2Rとは転送配線912によりオンオフされる。焦点検出画素920cの第2光電変換部922に設けられた転送トランジスタTX3Lは転送配線913によりオンオフされる。焦点検出画素920dの第2光電変換部922に設けられた転送トランジスタTX4Rとは転送配線914によりオンオフされる。単位領域の4個の焦点検出画素920に対して共通の選択トランジスタSELが設けられ、選択配線919によりオンオフされる。 FIG. 11 shows a circuit diagram of the focus detection pixel 920 within the unit area. A common reset transistor RST is provided for the four focus detection pixels 920 in the unit area, and the reset transistor RST is turned on and off by the reset wiring 900 . Transfer transistors TX1L, TX2R, TX3L, and TX4R are provided for each second photoelectric conversion unit 922 . The transfer transistor TX1L provided in the second photoelectric conversion unit 922 of the focus detection pixel 920a is turned on and off by the transfer wiring 911. FIG. The transfer transistor TX2R provided in the second photoelectric conversion unit 922 of the focus detection pixel 920b is turned on and off by the transfer wiring 912. FIG. The transfer transistor TX3L provided in the second photoelectric conversion unit 922 of the focus detection pixel 920c is turned on and off by the transfer wiring 913. FIG. The transfer transistor TX4R provided in the second photoelectric conversion unit 922 of the focus detection pixel 920d is turned on and off by the transfer wiring 914. FIG. A common selection transistor SEL is provided for the four focus detection pixels 920 in the unit area, and is turned on and off by a selection wiring 919 .
 単位領域のリセットトランジスタRSTおよび転送トランジスタTXをオンオフすることにより、単位領域に含まれる4個の焦点検出画素920に対して、電荷の蓄積開始時間、蓄積終了時間および転送タイミングを含む電荷蓄積を制御することができる。また、単位領域の選択トランジスタSELをオンオフすることにより、各焦点検出画素920の光電変換信号を共通の出力配線901を介して出力することができる。 By turning on and off the reset transistor RST and the transfer transistor TX in the unit area, the charge accumulation including the charge accumulation start time, the accumulation end time, and the transfer timing is controlled for the four focus detection pixels 920 included in the unit area. can do. Also, by turning on/off the selection transistor SEL of the unit area, the photoelectric conversion signal of each focus detection pixel 920 can be output via the common output wiring 901 .
 上記の回路構成を有する焦点検出画素920においては、単位領域の4個の焦点検出画素920のうちx方向-側の焦点検出画素920aおよび920cの第2光電変換部922aおよび922cとからの光電変換信号(加算信号)をまとめて読み出し、その後x方向+側の焦点検出画素920bの920dの第2光電変換部922bおよび921dからの光電変換信号(加算信号)をまとめて読み出す。 In the focus detection pixel 920 having the above circuit configuration, photoelectric conversion from the second photoelectric conversion units 922a and 922c of the focus detection pixels 920a and 920c on the − side in the x direction among the four focus detection pixels 920 in the unit area. The signals (addition signals) are read out collectively, and then the photoelectric conversion signals (addition signals) from the second photoelectric conversion units 922b and 921d of the focus detection pixel 920b on the + side in the x direction are collectively read out.
 図12にこの場合のタイミングチャートを示す。図12において、時刻t1にて信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、FD1~FD4の電位がそれぞれリセット電位になる。さらに、時刻t1において、信号SELがハイレベルになることで、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。すなわち、FD1~4をリセット電位にセットしたときの信号(ノイズ信号)が出力配線901に読み出される。 A timing chart for this case is shown in FIG. In FIG. 12, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD4 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when the FDs 1 to 4 are set to the reset potential is read out to the output wiring 901 .
 時刻t2では、信号TX1L、TX3Lがハイレベルになることで、転送トランジスタTX1L、TX3Lがオンになり、第2光電変換部922aおよび921cから電荷が転送される。また、時刻t2では、信号SELがハイレベルであるため、第2光電変換部922aおよび922cからの電荷が加算された加算信号が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t2, the signals TX1L and TX3L become high level, so that the transfer transistors TX1L and TX3L are turned on, and charges are transferred from the second photoelectric conversion units 922a and 921c. Further, at time t2, since the signal SEL is at high level, the addition signal obtained by adding the charges from the second photoelectric conversion units 922a and 922c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. .
 時刻t3では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t4では、信号TX2R、TX4Rがハイレベルになることで、転送トランジスタTX2R、TX4Rがオンになり、第2光電変換部922bおよび921dから電荷が転送される。また、時刻t4では、信号SELがハイレベルであるため、第2光電変換部922bおよび921dからの電荷が加算された加算信号が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。
 以後、時刻t1から時刻t4までの期間と同様にして、他の画素行の焦点検出画素920からのノイズ信号の読み出しと、加算信号の読み出しとが行われる。
At time t3, the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t4, the signals TX2R and TX4R become high level, so that the transfer transistors TX2R and TX4R are turned on, and charges are transferred from the second photoelectric conversion units 922b and 921d. Further, at time t4, since the signal SEL is at a high level, the addition signal obtained by adding the charges from the second photoelectric conversion units 922b and 921d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL. .
Thereafter, in the same manner as in the period from time t1 to time t4, readout of noise signals and readout of addition signals from the focus detection pixels 920 of other pixel rows are performed.
 上述の説明では、単位領域の4個の焦点検出画素920のうちx方向-側の2個の焦点検出画素920aおよび920cから加算信号を読み出し、x方向+側の2個の焦点検出画素920bおよび920dから加算信号を読み出す場合を例に挙げたが、この例に限定されない。例えば、単位領域の4個の焦点検出画素920から順次、個別に光電変換信号を読み出してもよい。 In the above description, of the four focus detection pixels 920 in the unit area, the addition signal is read from the two focus detection pixels 920a and 920c on the negative side in the x direction, and the two focus detection pixels 920b and 920b on the positive side in the x direction are read out. Although the case where the addition signal is read out from 920d is mentioned as an example, it is not limited to this example. For example, the photoelectric conversion signals may be individually read out sequentially from the four focus detection pixels 920 of the unit area.
 図13にこの場合のタイミングチャートを示す。図13において、時刻t1にて信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、FD1~FD4の電位がそれぞれリセット電位になる。さらに、時刻t1において、信号SELがハイレベルになることで、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。すなわち、FD1~FD4をリセット電位にセットしたときの信号(ノイズ信号)が出力配線901に読み出される。 A timing chart in this case is shown in FIG. In FIG. 13, when the signal RST becomes high level at time t1, the reset transistor RST is turned on, and the potentials of FD1 to FD4 become reset potentials. Furthermore, at time t1, the signal SEL becomes high level, so that a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. That is, a signal (noise signal) when FD1 to FD4 are set to the reset potential is read out to the output wiring 901 .
 時刻t2では、信号TX1Lがハイレベルになることで、転送トランジスタTX1Lがオンになり、焦点検出画素920aの第2光電変換部922aから電荷が転送される。また、時刻t2では、信号SELがハイレベルであるため、焦点検出画素920aの第2光電変換部922aからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t2, the signal TX1L goes high, turning on the transfer transistor TX1L and transferring the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a. Also, at time t2, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922a of the focus detection pixel 920a is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
 時刻t3では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t4では、信号TX2Rがハイレベルになることで、転送トランジスタTX2Rがオンになり、焦点検出画素920bの第2光電変換部922bから電荷が転送される。また、時刻t4では、信号SELがハイレベルであるため、焦点検出画素920bの第2光電変換部922bからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t3, the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t4, the signal TX2R becomes high level, so that the transfer transistor TX2R is turned on, and charges are transferred from the second photoelectric conversion unit 922b of the focus detection pixel 920b. Also, at time t4, the signal SEL is high level, so the charge from the second photoelectric conversion unit 922b of the focus detection pixel 920b is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
 時刻t5では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t6では、信号TX3Lがハイレベルになることで、転送トランジスタTX3Lがオンになり、焦点検出画素920cの第2光電変換部922cから電荷が転送される。また、時刻t6では、信号SELがハイレベルであるため、焦点検出画素920cの第2光電変換部922cからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。 At time t5, the reset transistor RST is turned on by the signal RST becoming high level, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t6, the signal TX3L becomes high level, so that the transfer transistor TX3L is turned on, and charges are transferred from the second photoelectric conversion unit 922c of the focus detection pixel 920c. Also, at time t6, the signal SEL is high level, so the charge from the second photoelectric conversion unit 922c of the focus detection pixel 920c is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
 時刻t7では、信号RSTがハイレベルになることでリセットトランジスタRSTがオンになり、リセット電位に基づく信号が増幅部AMPおよび選択トランジスタSELにより出力配線901に出力される。時刻t8では、TX4Rがハイレベルになることで、転送トランジスタTX4Rがオンになり、焦点検出画素920dの第2光電変換部922dから電荷が転送される。また、時刻t8では、信号SELがハイレベルであるため、焦点検出画素920dの第2光電変換部922dからの電荷が増幅部AMPおよび選択トランジスタSELを介して出力配線901に出力される。
 以後、時刻t1から時刻t8までの期間と同様にして、他の画素行の焦点検出画素920からのノイズ信号の読み出しと、光電変換信号(焦点検出信号)の読み出しとが行われる。
At time t7, the signal RST becomes high level to turn on the reset transistor RST, and a signal based on the reset potential is output to the output wiring 901 by the amplifier AMP and the selection transistor SEL. At time t8, TX4R goes high to turn on the transfer transistor TX4R, and charge is transferred from the second photoelectric conversion unit 922d of the focus detection pixel 920d. Also, at time t8, since the signal SEL is at high level, the charge from the second photoelectric conversion unit 922d of the focus detection pixel 920d is output to the output wiring 901 via the amplification unit AMP and the selection transistor SEL.
Thereafter, similarly to the period from time t1 to time t8, readout of noise signals and readout of photoelectric conversion signals (focus detection signals) from the focus detection pixels 920 of other pixel rows are performed.
 以上で説明した第2の実施の形態の撮像素子8は、第1の実施の形態の撮像素子8により得られる作用効果と同様の作用効果を得ることができる。 The imaging device 8 of the second embodiment described above can obtain the same effects as those obtained by the imaging device 8 of the first embodiment.
 焦点検出画素920が有する第2遮光部922は、図10に示すものに限定されない。例えば、第2遮光部922は、第2マイクロレンズ921の光軸と交差するxy平面において、撮像画素810と焦点検出画素920とが並列するx方向に直交するy方向と非平行の辺を有する形状とすることができる。 The second light shielding portion 922 included in the focus detection pixel 920 is not limited to that shown in FIG. For example, the second light shielding portion 922 has a side that is not parallel to the y direction perpendicular to the x direction in which the imaging pixel 810 and the focus detection pixel 920 are aligned in the xy plane that intersects the optical axis of the second microlens 921. shape.
 図14は、この場合の撮像画素810と焦点検出画素920との平面構成を模式的に示す。図14に示す例は、図10の撮像素子8の焦点検出画素920とは、第1遮光部923のxy平面における形状が異なるが、他の構成については図10の焦点検出画素920と同様である。 FIG. 14 schematically shows a planar configuration of the imaging pixels 810 and the focus detection pixels 920 in this case. The example shown in FIG. 14 is different from the focus detection pixel 920 of the image sensor 8 of FIG. 10 in the shape of the first light shielding portion 923 in the xy plane, but the other configuration is the same as the focus detection pixel 920 of FIG. be.
 焦点検出画素920aが有する第1遮光部923aは、xy平面においてx軸に平行な2つの辺950および951と、y軸に平行な辺952と、y軸と非平行な辺953とを有する。辺950はy方向+側に設けられ、x方向+側の端部からx方向-側に伸びる直線である。辺951はy方向-側に設けられ、x方向+側の端部からx方向-側に伸びる直線である。辺951は辺950よりも長い。辺952は、辺950と951のx方向+側の端点を結び、辺953は、辺950と951のx方向-側の端点を結ぶ直線である。 A first light shielding portion 923a of the focus detection pixel 920a has two sides 950 and 951 parallel to the x-axis in the xy plane, a side 952 parallel to the y-axis, and a side 953 not parallel to the y-axis. The side 950 is provided on the + side in the y direction and is a straight line extending from the end on the + side in the x direction to the - side in the x direction. The side 951 is provided on the - side in the y direction and is a straight line extending from the end on the + side in the x direction to the - side in the x direction. Side 951 is longer than side 950 . The side 952 is a straight line connecting the endpoints of the sides 950 and 951 on the positive side in the x direction, and the side 953 is a straight line connecting the endpoints of the sides 950 and 951 on the negative side in the x direction.
 焦点検出画素920bにおいては、第1遮光部923bは、x方向-側を遮光する。第1遮光部923bのxy平面での形状は、y方向+側のx軸に平行な辺がy方向-側のx軸に平行な辺よりも長く、y軸に非平行な辺は、上記のx軸に平行な2つの辺のx方向+側の端点を結ぶ。焦点検出画素920cが有する第1遮光部923cは、焦点検出画素920aと920cの間のx軸に沿ったc-c線に対して第1遮光部923aと線対称となる形状を有する。焦点検出画素920dが有する第1遮光部923dは、x軸に沿ったc-c線に対して第1遮光部923bと線対称となる形状を有する。 In the focus detection pixel 920b, the first light shielding portion 923b shields the - side in the x direction. The shape of the first light shielding portion 923b on the xy plane is such that the side parallel to the x-axis on the + side of the y direction is longer than the side parallel to the x-axis on the - side of the y direction, and the side not parallel to the y-axis connect the endpoints of the two sides parallel to the x-axis of the x-direction + side. The first light shielding portion 923c of the focus detection pixel 920c has a shape line-symmetrical to the first light shielding portion 923a with respect to the cc line along the x-axis between the focus detection pixels 920a and 920c. The first light shielding portion 923d of the focus detection pixel 920d has a shape line-symmetrical to the first light shielding portion 923b with respect to the cc line along the x-axis.
 各焦点検出画素920が有する第1遮光部923がxy平面上において上記の形状を有することにより、x軸方向に沿った被写体に対する焦点状態の検出を可能にすることができる。また、x軸方向に沿った被写体に対する焦点状態の検出を可能とするために、y方向+側の領域またはy方向-側の領域を遮光する形状の遮光部を有する焦点検出画素を撮像素子8に配置する必要がなくなるので、撮像画素810の個数を減らす必要がなくなり、撮影画像の画質低下を抑制できる。 By having the first light shielding portion 923 of each focus detection pixel 920 have the above shape on the xy plane, it is possible to detect the focus state of the subject along the x-axis direction. In addition, in order to enable detection of the focus state of an object along the x-axis direction, the image pickup element 8 includes a focus detection pixel having a light-shielding portion shaped to shield the region on the + side of the y direction or the region on the - side of the y direction. Since there is no need to dispose the image pickup pixels 810 at the same position, it is not necessary to reduce the number of the image pickup pixels 810, and deterioration in image quality of the photographed image can be suppressed.
 なお、上述した第1および第2の実施の形態とその各種変形例においては、撮像画素810は1つの第1マイクロレンズ811を有する場合を例に挙げて説明をした。しかし、撮像画素810も、焦点検出画素820、920と同様に複数の第1マイクロレンズを有する構成としてもよい。すなわち、撮像画素810は、複数の第1マイクロレンズを通過した光を光電変換して電荷を生成する第1光電変換部812を有し、画像生成に用いる信号を出力してよい。この場合も、撮像画素810の第1マイクロレンズと焦点検出画素820、920の第2マイクロレンズ821、921とは屈折力が異なる。これにより、第1および第2の実施の形態の構成を有する場合と同様の作用効果を得ることができる。 It should be noted that in the above-described first and second embodiments and various modifications thereof, the case where the imaging pixel 810 has one first microlens 811 has been described as an example. However, like the focus detection pixels 820 and 920, the imaging pixel 810 may also have a plurality of first microlenses. That is, the imaging pixel 810 may have a first photoelectric conversion unit 812 that photoelectrically converts light that has passed through the plurality of first microlenses to generate electric charges, and may output a signal used for image generation. Also in this case, the first microlens of the imaging pixel 810 and the second microlenses 821 and 921 of the focus detection pixels 820 and 920 have different refractive powers. As a result, it is possible to obtain the same effect as in the case of having the configurations of the first and second embodiments.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
6…焦点検出装置
8…撮像素子
14…焦点検出演算部
100…デジタルカメラ
810…撮像画素
811…第1マイクロレンズ
812…第1光電変換部
820、920…焦点検出画素
821、921…第2マイクロレンズ
822、922…第2光電変換部
823、923…第1遮光部
826…第2遮光部
827…第3遮光部
828…第4遮光部
6 Focus detection device 8 Imaging device 14 Focus detection calculation unit 100 Digital camera 810 Imaging pixel 811 First microlens 812 First photoelectric conversion unit 820, 920 Focus detection pixels 821, 921 Second micro Lenses 822, 922...Second photoelectric converters 823, 923...First light shielding part 826...Second light shielding part 827...Third light shielding part 828...Fourth light shielding part

Claims (18)

  1.  第1マイクロレンズを通過した光を光電変換して電荷を生成する第1光電変換部を有し、画像生成に用いる信号を出力する第1画素と、
     前記第1マイクロレンズとは屈折力が異なる第2マイクロレンズを通過した光を光電変換して電荷を生成する第2光電変換部を有し、焦点検出に用いる信号を生成する第2画素と、を備える、撮像素子。
    a first pixel that has a first photoelectric conversion unit that photoelectrically converts light that has passed through the first microlens to generate an electric charge and that outputs a signal used for image generation;
    a second pixel having a second photoelectric conversion unit that photoelectrically converts light passing through a second microlens having a refractive power different from that of the first microlens to generate an electric charge, and that generates a signal used for focus detection; An image sensor.
  2.  複数の第1マイクロレンズを通過した光を光電変換して電荷を生成する第1光電変換部を有し、画像生成に用いる信号を出力する第1画素と、
     第2マイクロレンズを通過した光を光電変換して電荷を生成する第2光電変換部を有し、焦点検出に用いる信号を出力する第2画素と、を備える撮像素子。
    a first pixel that has a first photoelectric conversion unit that photoelectrically converts light that has passed through the plurality of first microlenses to generate an electric charge and that outputs a signal used for image generation;
    and a second pixel that has a second photoelectric conversion unit that photoelectrically converts light that has passed through the second microlens to generate an electric charge, and that outputs a signal used for focus detection.
  3.  請求項2に記載の撮像素子において、
     前記第1マイクロレンズと前記第2マイクロレンズとは屈折力が異なる、撮像素子。
    In the imaging device according to claim 2,
    The imaging device, wherein the first microlens and the second microlens have different refractive powers.
  4.  請求項1から3までのいずれか一項に記載の撮像素子において、
     前記第1マイクロレンズの焦点位置は、前記第2マイクロレンズの焦点位置よりも、マイクロレンズよりも離れた側に位置する、撮像素子。
    In the imaging device according to any one of claims 1 to 3,
    The imaging device, wherein the focal position of the first microlens is positioned further away from the microlens than the focal position of the second microlens.
  5.  請求項1から4までのいずれか一項に記載の撮像素子において、
     前記第2マイクロレンズの光軸と交差する面において前記第2マイクロレンズが有する面積は、前記第1マイクロレンズの光軸と交差する面において前記第1マイクロレンズが有する面積よりも小さい、撮像素子。
    In the imaging device according to any one of claims 1 to 4,
    An imaging device, wherein the area of the second microlens on a plane intersecting the optical axis of the second microlens is smaller than the area of the first microlens on the plane intersecting the optical axis of the first microlens. .
  6.  請求項5に記載の撮像素子において、
     前記第1マイクロレンズの光軸と交差する面において前記第1マイクロレンズが有する面積と同一の面積を有する領域の中に、複数の前記第2マイクロレンズが配置される、撮像素子。
    In the imaging device according to claim 5,
    An imaging device, wherein the plurality of second microlenses are arranged in a region having the same area as that of the first microlenses on a plane intersecting the optical axis of the first microlenses.
  7.  請求項1から6までのいずれか一項に記載の撮像素子において、
     前記第1マイクロレンズの光軸と交差する面において前記第1光電変換部が有する面積と同一の面積を有する領域の中に、複数の前記第2光電変換部が配置される、撮像素子。
    In the imaging device according to any one of claims 1 to 6,
    An imaging device, wherein a plurality of the second photoelectric conversion units are arranged in a region having the same area as that of the first photoelectric conversion units on a plane intersecting the optical axis of the first microlens.
  8.  請求項1から7までのいずれか一項に記載の撮像素子において、
     前記第1画素と前記第2画素とは、前記第1マイクロレンズの光軸と交差する面における第1方向に沿って配置される、撮像素子。
    In the imaging device according to any one of claims 1 to 7,
    The imaging element, wherein the first pixel and the second pixel are arranged along a first direction on a plane intersecting the optical axis of the first microlens.
  9.  請求項8に記載の撮像素子において、
     複数の前記第2画素は、前記第1方向と、前記第1方向と交差する第2方向とに沿って配置される、撮像素子。
    In the imaging device according to claim 8,
    The imaging device, wherein the plurality of second pixels are arranged along the first direction and a second direction crossing the first direction.
  10.  請求項8に記載の撮像素子において、
     複数の前記第2画素は、前記第1方向と交差する第2方向に沿って配置される、撮像素子。
    In the imaging device according to claim 8,
    The imaging device, wherein the plurality of second pixels are arranged along a second direction that intersects with the first direction.
  11.  請求項1から10までのいずれか一項に記載の撮像素子において、
     前記第2画素は、前記第2マイクロレンズと前記第2光電変換部との間に、前記第2マイクロレンズを通過した光の一部を遮光する第1遮光部を有する、撮像素子。
    In the imaging device according to any one of claims 1 to 10,
    The image pickup device, wherein the second pixel includes a first light shielding section that shields part of light that has passed through the second microlens, between the second microlens and the second photoelectric conversion section.
  12.  請求項11に記載の撮像素子において、
     前記第2画素は、隣接する第2画素との間に、前記第2マイクロレンズの光軸方向に沿って前記第2マイクロレンズ側に伸びる第2遮光部を有する、撮像素子。
    In the imaging device according to claim 11,
    The second pixel has, between adjacent second pixels, a second light shielding portion extending toward the second microlens along the optical axis direction of the second microlens.
  13.  請求項11または12に記載の撮像素子において、
     前記第2画素は、隣接する前記第1画素との間に、前記第2マイクロレンズの光軸方向に沿って形成される第2遮光部を有する、撮像素子。
    In the imaging device according to claim 11 or 12,
    The imaging device, wherein the second pixel has a second light shielding portion formed along the optical axis direction of the second microlens between the adjacent first pixels.
  14.  請求項11から13までのいずれか一項に記載の撮像素子において、
     前記第1遮光部は、前記第2マイクロレンズの光軸と交差する平面において、前記第1画素と前記第2画素とが並列する第1方向に直交する第2方向と非平行の辺を有する、撮像素子。
    In the imaging device according to any one of claims 11 to 13,
    The first light shielding part has a side that is not parallel to a second direction orthogonal to the first direction in which the first pixel and the second pixel are aligned on a plane that intersects the optical axis of the second microlens. , image sensor.
  15.  請求項1から14までのいずれか一項に記載の撮像素子において、
     前記第2画素は、前記第2マイクロレンズの光軸と交差する面において1つの前記第2マイクロレンズが有する領域の中に、前記第1画素と前記第2画素とが並列する方向に沿って複数の前記第2光電変換部を有する、撮像素子。
    In the imaging device according to any one of claims 1 to 14,
    The second pixels are arranged in a direction in which the first pixels and the second pixels are aligned in a region of one of the second microlenses on a plane intersecting the optical axis of the second microlenses. An imaging device having a plurality of the second photoelectric conversion units.
  16.  請求項1から14までのいずれか一項に記載の撮像素子において、
     前記第2画素は、前記第2マイクロレンズの光軸と交差する面において1つの前記第2マイクロレンズが有する領域の中に1つの前記第2光電変換部を有する、撮像素子。
    In the imaging device according to any one of claims 1 to 14,
    The image pickup device, wherein the second pixel includes one second photoelectric conversion unit in a region of one second microlens on a plane intersecting the optical axis of the second microlens.
  17.  請求項1から14までのいずれか一項に記載の撮像素子と、
     前記撮像素子が有する前記第2画素からの信号に基づいて、前記撮像素子に入射する光の焦点状態を検出する検出部と、を備える焦点検出装置。
    an imaging device according to any one of claims 1 to 14;
    A focus detection device comprising: a detection unit that detects a focus state of light incident on the image sensor based on a signal from the second pixel of the image sensor.
  18.  撮影光学系と、
     請求項17に記載の焦点検出装置と、を備える、撮像装置。
    an imaging optical system;
    An imaging device comprising: the focus detection device according to claim 17 .
PCT/JP2022/020057 2021-05-14 2022-05-12 Imaging element, focus detection device, and imaging device WO2022239831A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521242A JPWO2022239831A1 (en) 2021-05-14 2022-05-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021082167 2021-05-14
JP2021-082167 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022239831A1 true WO2022239831A1 (en) 2022-11-17

Family

ID=84029668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020057 WO2022239831A1 (en) 2021-05-14 2022-05-12 Imaging element, focus detection device, and imaging device

Country Status (2)

Country Link
JP (1) JPWO2022239831A1 (en)
WO (1) WO2022239831A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109965A (en) * 2007-10-11 2009-05-21 Nikon Corp Solid-state image sensor and image-pick up device
JP2015015296A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Solid-state imaging device and electronic equipment
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
JP2015167219A (en) * 2014-02-13 2015-09-24 ソニー株式会社 Image pickup device, manufacturing apparatus and electronic apparatus
JP2015204397A (en) * 2014-04-15 2015-11-16 ソニー株式会社 Focus detector, electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109965A (en) * 2007-10-11 2009-05-21 Nikon Corp Solid-state image sensor and image-pick up device
JP2015015296A (en) * 2013-07-03 2015-01-22 ソニー株式会社 Solid-state imaging device and electronic equipment
JP2015026675A (en) * 2013-07-25 2015-02-05 ソニー株式会社 Solid state image sensor, manufacturing method thereof and electronic apparatus
JP2015167219A (en) * 2014-02-13 2015-09-24 ソニー株式会社 Image pickup device, manufacturing apparatus and electronic apparatus
JP2015204397A (en) * 2014-04-15 2015-11-16 ソニー株式会社 Focus detector, electronic apparatus

Also Published As

Publication number Publication date
JPWO2022239831A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US10545312B2 (en) Focus detection apparatus, control method thereof, and storage medium storing program
JP4797606B2 (en) Imaging device
JP5157436B2 (en) Solid-state imaging device and imaging apparatus
JP5895355B2 (en) Imaging device
US20140111681A1 (en) Image sensor and image capturing apparatus
JP6066593B2 (en) Imaging system and driving method of imaging system
US10321044B2 (en) Image pickup apparatus and image pickup system with point image intensity distribution calculation
US11297271B2 (en) Image sensor and image capture apparatus
JP2008071920A (en) Imaging element and apparatus
JP7264192B2 (en) Imaging element and imaging device
JP2022132320A (en) Image pick-up device and imaging apparatus
US9332205B2 (en) Image pickup element, image pickup apparatus, and image processing method
JP6368999B2 (en) Imaging device and imaging apparatus
JP2017032646A (en) Image-capturing device and method for controlling the same
JP5750918B2 (en) Solid-state imaging device and imaging apparatus using the same
WO2022239831A1 (en) Imaging element, focus detection device, and imaging device
JP2022189971A (en) Image pick-up device
US20220139987A1 (en) Solid-state image sensor
KR20170015158A (en) Control apparatus, image pickup apparatus, and control method
JP7170100B2 (en) Imaging element and imaging device
JP2020057017A (en) Image-capturing device and method for controlling the same
JP7419975B2 (en) Imaging element and imaging device
JP7476874B2 (en) Image pickup element and image pickup device
JP2016038467A (en) Image pick-up element, focus detection device and imaging device
JP2022158486A (en) Imaging element, focus detection device, and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807530

Country of ref document: EP

Kind code of ref document: A1