WO2022239747A1 - Glass fiber, and method for producing same - Google Patents

Glass fiber, and method for producing same Download PDF

Info

Publication number
WO2022239747A1
WO2022239747A1 PCT/JP2022/019716 JP2022019716W WO2022239747A1 WO 2022239747 A1 WO2022239747 A1 WO 2022239747A1 JP 2022019716 W JP2022019716 W JP 2022019716W WO 2022239747 A1 WO2022239747 A1 WO 2022239747A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass
glass fiber
loss tangent
dielectric loss
Prior art date
Application number
PCT/JP2022/019716
Other languages
French (fr)
Japanese (ja)
Inventor
美樹 木村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2023521018A priority Critical patent/JPWO2022239747A1/ja
Publication of WO2022239747A1 publication Critical patent/WO2022239747A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Definitions

  • the present invention relates to a glass fiber that is suitable as a reinforcing material for resin members that require low dielectric constant and low dielectric loss tangent characteristics, such as components for high-speed communication equipment and automotive radar, and a manufacturing method thereof.
  • circuit parts for electronic devices which are becoming more dense and have higher processing speeds, are designed to minimize signal propagation delay due to dielectric loss (movement loss, conduction loss, deformation loss and vibration loss) and to reduce heat generation in the substrate due to heat loss. To prevent this, low dielectric constant and low dielectric loss tangent properties are required.
  • Examples of these circuit boards for electronic devices include printed wiring boards and low-temperature firing boards.
  • a printed wiring board is a sheet - shaped composite material made by mixing glass fiber as a reinforcing material with a resin. A green sheet of composite powder mixed with is fired.
  • Patent Document 1 discloses a glass called D-glass characterized by a dielectric constant and a dielectric loss tangent lower than those of E-glass.
  • D-glass has a dielectric constant ⁇ of 4.2 at room temperature and a frequency of 2.45 GHz, and a dielectric loss tangent tan ⁇ of 15 ⁇ 10 ⁇ 4 , for example.
  • D glass has the problem of high spinning temperature and low productivity. Moreover, when a composite material in which D glass and resin are mixed is exposed to a high-temperature and high-humidity environment, there is a problem that the strength of the composite material tends to decrease.
  • the object of the present invention is to provide a glass fiber that achieves both a low spinning temperature, a low dielectric constant and a low dielectric loss tangent, and a method for producing the same.
  • the glass fiber of the present invention contains, in mass %, SiO 2 22.5-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 0-60%, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%. By doing so, a glass fiber having a low dielectric constant and a low dielectric loss tangent and a low spinning temperature can be obtained. Also, the strength of the composite material can be improved.
  • Li2O + Na2O + K2O+MgO+CaO+BaO+SrO is the total amount of Li2O, Na2O , K2O , MgO, CaO, BaO and SrO.
  • the average value ⁇ of the difference in electronegativity between oxygen and elements other than oxygen, which are constituent components of the glass is preferably 1.4 to 1.8.
  • ⁇ X is defined by the following formula.
  • ⁇ X ⁇ (number of moles of oxide element Z other than oxygen) ⁇ (difference in electronegativity between oxygen and oxide element Z other than oxygen) ⁇ /(number of moles of oxide element Z other than oxygen) total)
  • the difference in electronegativity between oxygen and the oxide element Z other than oxygen can be calculated using the value of Pauling's electronegativity.
  • Table 1 shows the representative value of Pauling's electronegativity of each element and the difference in electronegativity ⁇ between oxygen and each element.
  • the glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 2.45 GHz and a dielectric loss tangent of 45 ⁇ 10 ⁇ 4 or less. Thereby, transmission loss can be reduced.
  • the glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 28 GHz and a dielectric loss tangent of 45 ⁇ 10 ⁇ 4 or less.
  • the glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 40 GHz and a dielectric loss tangent of 50 ⁇ 10 ⁇ 4 or less.
  • the glass fiber of the present invention preferably has a spinning temperature of 1450° C. or lower.
  • the "spinning temperature” means the temperature at which the viscosity of the glass becomes 10 3.0 dPa ⁇ s.
  • the glass fiber of the present invention preferably has a Young's modulus of 40 GPa or more. Thereby, the strength of the composite material produced by kneading with the resin can be improved.
  • the molar ratio B 2 O 3 /P 2 O 5 of the content of B 2 O 3 to P 2 O 5 is preferably 0-50.
  • the molar ratio B 2 O 3 /Al 2 O 3 of the content of B 2 O 3 to Al 2 O 3 is 0-20.
  • the glass composition is 22.5 to 45% by mass of SiO 2 , 0.1 to 30% by mass of Al 2 O 3 , 0 to 45% by mass of B 2 O 3 , and P 2 O. 50-60%, Fe 2 O 3 0.001-3 % and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%, comprising: It is characterized by molding into fibrous form.
  • the glass of the present invention has, as a glass composition, SiO 2 22.5 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, and P 2 O 5 0 to 60% by mass. %, Fe 2 O 3 0.001-3%, and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%.
  • the glass fiber of the present invention contains, in mass %, SiO 24-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 5-60%, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O 0-3%.
  • a glass fiber having a low dielectric constant and a low dielectric loss tangent and a low spinning temperature can be obtained.
  • the strength of the composite material can be improved.
  • “Li2O + Na2O + K2O” is the total amount of Li2O, Na2O and K2O .
  • the present invention it is possible to provide a glass fiber that achieves both a low spinning temperature, a low dielectric constant and a low dielectric loss tangent, and a method for producing the same.
  • 4 is a graph showing the relationship between the molar ratio B 2 O 3 /P 2 O 5 and the dielectric loss tangent tan ⁇ at 25° C. and 2.45 GHz.
  • 4 is a graph showing the relationship between the molar ratio B 2 O 3 /Al 2 O 3 and the dielectric loss tangent tan ⁇ at 25° C. and 2.45 GHz.
  • the glass fiber of the first aspect of the present invention contains, in mass %, SiO 2 22.5-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 0 ⁇ 60%, Fe 2 O 3 0.001-3% and Li 2 O + Na 2 O + K 2 O + MgO + CaO + BaO + SrO 0-9%.
  • the glass fiber of the second aspect of the present invention contains, in mass %, SiO 2 24-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 5-60 %, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O 0-3%.
  • SiO 2 is a component that forms the skeleton of the network structure in the glass structure, and is also a component that lowers the dielectric constant and dielectric loss tangent. If the content of SiO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of SiO 2 is too high, the spinning temperature will increase and the productivity will decrease.
  • the preferable lower limit range of SiO2 in the glass fiber and glass of the first aspect of the present invention is 22.5% or more, 23% or more, 24% or more, 25% or more, 27% or more, 28% or more , 29% or more, particularly 30% or more, and the preferred upper limit range is 45% or less, less than 45%, 43% or less, 42% or less, 41% or less, particularly 40% or less.
  • the preferred lower range of SiO2 is 24% or more, 25% or more, 27% or more, 28% or more, 29% or more, especially 30% or more,
  • a preferred upper limit range is 45% or less, less than 45%, 43% or less, 42% or less, 41% or less, particularly 40% or less.
  • Al 2 O 3 is a component that forms the skeleton of the glass and suppresses the phase separation of the glass to stabilize it. If the content of Al 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the Al 2 O 3 content is too high, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of Al 2 O 3 is 0.1% or more, 0.5% or more, 3% or more, 5% or more, 6% or more, 8% or more, 9% or more, particularly 10% or more.
  • the preferred upper limit range is 30% or less, 29% or less, 28% or less, 27% or less, 26% or less, 25% or less, 24% or less, 23% or less, 20% or less, 17% or less, 16% or less , 15% or less, 13% or less, in particular 12% or less.
  • B 2 O 3 like SiO 2 , is a component that forms a skeleton of glass, and is a component that significantly lowers the dielectric constant and dielectric loss tangent. If the content of B 2 O 3 is too large, the glass tends to undergo phase separation, which may reduce productivity. Therefore, the preferable lower limit range of B 2 O 3 is 0% or more, 0.1% or more, 0.5% or more, 1% or more, 2% or more, 3% or more, 5% or more, 6% or more, 7% or more. % or more, particularly 8% or more. 20% or less, 15% or less, 13% or less, particularly 11% or less.
  • P 2 O 5 is a component that forms a skeleton of glass like SiO 2 and B 2 O 3 and is a component that lowers the dielectric constant and dielectric loss tangent. If the content of P 2 O 5 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of P 2 O 5 is too large, the glass tends to undergo phase separation, which may reduce productivity. Also, raw material costs may increase.
  • the preferable lower limit range of P 2 O 5 in the glass fiber and glass of the first aspect of the present invention is 0% or more, 2% or more, 3% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% or more, particularly 20% or more
  • the preferred upper limit range is 60% or less, 59% or less, 55% or less, 50% or less, 47% or less, 40% 30% or less, 25% or less, particularly 20% or less.
  • the preferable lower range of P 2 O 5 is 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% Above, especially 20% or more, the preferred upper limit range is 60% or less, 59% or less, 55% or less, 50% or less, 47% or less, 40% or less, 30% or less, 25% or less, especially 20% or less is.
  • a preferable lower limit range of the molar ratio B2O3 / P2O5 of the content of B2O3 to P2O5 is 0 or more , 0.01 or more , 0.05 or more, 0.08 or more, especially 0.1 or more, and the preferred upper limit range is 50 or less, 40 or less, 30 or less, 20 or less, 10 or less, 7 or less, 5.5 or less, 4 or less, 3 or less, 2 or less, particularly 1 or less. If the B 2 O 3 /P 2 O 5 ratio is too low, the polarity of the unpaired electron pair in P 2 O 5 will increase the polarization, and the dielectric loss tangent and dielectric loss will tend to increase. On the other hand, if the value of B 2 O 3 /P 2 O 5 is too high, there is a possibility that the weather resistance will be remarkably lowered.
  • a preferable lower limit range of the molar ratio B2O3 / Al2O3 of the content of B2O3 to Al2O3 is 0 or more , 0.01 or more , 0.05 or more, 0.1 or more, 0 0.15 or more, especially 0.2 or more.
  • the preferred upper limit range is 20 or less, 10 or less, 9 or less, 8.5 or less, 7 or less, 6 or less, 5 or less, 3 or less, particularly 2 or less. If the B 2 O 3 /Al 2 O 3 is too low, the dielectric loss tangent and dielectric loss may increase. On the other hand, if the B 2 O 3 /Al 2 O 3 ratio is too high, the weather resistance and Young's modulus may decrease.
  • Fe 2 O 3 is a component having a refining action. If the amount of Fe 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the amount of Fe 2 O 3 is too large, the coloration of the glass becomes strong. Therefore, the preferable lower limit range of Fe 2 O 3 is 0.001% or more, 0.002% or more, 0.003% or more, 0.005% or more, 0.008% or more, 0.01% or more, 0.01% or more. 02% or more, particularly 0.08% or more, and the preferred upper limit range is 3% or less, 2% or less, and particularly 1% or less.
  • Li 2 O, Na 2 O and K 2 O are components that lower the viscosity of the glass and lower the spinning temperature, but if Li 2 O+Na 2 O+K 2 O is too much, the dielectric constant and dielectric loss tangent tend to increase.
  • the preferable upper limit range of Li 2 O+Na 2 O+K 2 O is 3% or less, 2.5% or less, 2% or less, 1.5% or less, 1.3% or less, particularly 1% or less.
  • a preferable lower limit range is 0% or more, 0.001% or more, particularly 0.01% or more.
  • Li 2 O, Na 2 O and K 2 O are 3% or less, 2.5% or less and 2% or less, and particularly 1.5% or less.
  • preferable lower limit ranges are 0% or more, 0.001% or more, and 0.01% or more, respectively.
  • MgO like alkali metal oxides, is a component that lowers the viscosity of glass and lowers the spinning temperature.
  • the preferable lower limit range of MgO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, particularly 0.3% or more
  • the preferable upper limit range is 7% or less, 6 % or less, 5.6% or less, 5% or less, 4% or less, 3% or less, particularly 2.5% or less.
  • CaO like MgO, is a component that lowers the viscosity of glass and lowers the spinning temperature.
  • the preferable lower limit range of CaO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more.
  • a preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
  • BaO like MgO and CaO, is a component that lowers the viscosity of the glass and lowers the spinning temperature. However, if the BaO content is too high, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of BaO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more. A preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
  • SrO like MgO and CaO, is a component that lowers the viscosity of glass and lowers the spinning temperature.
  • the preferable lower limit range of SrO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more.
  • a preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
  • a preferable upper limit range of Li 2 O + Na 2 O + K 2 O + MgO + CaO + BaO + SrO which is the total amount of alkali metal oxides and alkaline earth metal oxides, is 9% or less, 7% or less, 5% or less, particularly 3% or less.
  • the preferable lower limit range is 0% or more, 0.001% or more, and 0.01% or more. If Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO is too large, the dielectric constant and dielectric loss tangent tend to increase. On the other hand, if it is too small, the spinning temperature tends to rise, and the productivity tends to decrease.
  • the glass fiber of the present invention may contain the following components in the glass composition.
  • TiO2 is a component that lowers the viscosity of the glass and lowers the spinning temperature. TiO 2 is more likely than alkali metal oxides and alkaline earth metal oxides to simultaneously lower the spinning temperature and lower the dielectric constant. If the content of TiO 2 is too small, it is difficult to obtain the above effects. However, if the content of TiO 2 is too high, devitrification tends to occur, which may reduce productivity. Therefore, the preferred lower range of TiO2 is 0% or higher, 0.001% or higher, 0.005% or higher, 0.01% or higher, especially 0.05% or higher, and the preferred upper limit range is 5% or lower, 4% or less, 3% or less, 2% or less, 1.5% or less, 1% or less, particularly 0.5% or less.
  • ZrO 2 is a component mixed in by elution of the refractory material in the manufacturing kiln. If the content of ZrO 2 is too high, devitrification tends to occur, and productivity may decrease. Therefore, the content of ZrO 2 is preferably 1% or less, 0.8% or less, particularly 0.6% or less.
  • SnO2 is a component that acts as a refining agent. However, if the SnO2 content is too high , the glass tends to be colored and the transparency tends to decrease. Therefore, the preferred lower range of SnO2 is 0% or higher, 0.001% or higher, 0.005% or higher, especially 0.01% or higher, and the preferred upper range is 3% or lower, 2% or lower, 1% below, particularly below 0.5%.
  • SnO 2 , SO 3 , chlorine, fluorine, Sb 2 O 3 , As 2 O 3 , CeO 2 and the like can be used as clarifiers other than SnO 2 .
  • the total content should be 0.5% or less, 0.3% or less, 0.2% or less, particularly 0.1% or less. preferable.
  • dielectric loss When currents of various frequencies are passed through glass, which is a dielectric, dielectric loss occurs for each frequency.
  • dielectric loss refers to movement loss, conduction loss, deformation loss and vibration loss. In the low frequency range, the contributions of transport loss and conduction loss become large.
  • the migration loss is the loss due to the migration of the dipole paired by the alkali ion and the oxygen ion in the glass.
  • Conduction loss is loss due to direct current conduction such as ionic conduction of alkali in glass.
  • Deformation loss is loss caused by deformation of the network structure of SiO 2 due to an AC electric field.
  • Vibrational loss is loss caused by resonance of thermal vibration of ions with an external electric field.
  • Next-generation communications use the millimeter wave band to transmit large amounts of information. Therefore, communication delay due to deformation loss and vibration loss is a problem. In order to reduce these losses, it is effective to suppress the deformation of the network structure or to reduce the polarization in order to suppress the thermal vibration of the ions.
  • an alkali metal component or an alkaline earth metal component is present in the oxide glass, the Si--O--Si bond is broken and non-bridging oxygen is formed.
  • ⁇ X is the electronegativity difference between oxide elements other than oxygen and oxygen, which are constituents of the glass.
  • ⁇ X is the electronegativity difference between oxide elements other than oxygen and oxygen, which are constituents of the glass.
  • the preferable lower limit range of ⁇ is 1.4 or more, 1.5 or more, particularly 1.55 or more, and the preferable upper limit range is 1.8 or less, 1.79 or less, 1.78 or less, 1.55 or more, and 1.55 or more. 75 or less, 1.7 or less, 1.69 or less, especially 1.67 or less.
  • the spinning temperature of the glass fiber of the present invention is preferably 1450° C. or lower, 1420° C. or lower, particularly 1380° C. or lower.
  • the liquidus temperature is preferably 1200° C. or lower, 1190° C. or lower, 1170° C. or lower, 1160° C. or lower, 1150° C. or lower, 1100° C. or lower, 1010° C. or lower, particularly 1000° C. or lower.
  • the difference between the liquidus temperature and the spinning temperature is preferably 50°C or higher, 60°C or higher, 70°C or higher, 90°C or higher, 100°C or higher, 110°C or higher, 125°C or higher, particularly 180°C or higher.
  • the dielectric constant of the glass fiber of the present invention at 25° C. and 2.45 GHz is preferably 6 or less, 5.5 or less, 5 or less, particularly 4.7 or less
  • the dielectric loss tangent is preferably 45 ⁇ 10 ⁇ 4 or less, 40 ⁇ 10 ⁇ 4 or less, 35 ⁇ 10 ⁇ 4 or less, 30 ⁇ 10 ⁇ 4 or less, 25 ⁇ 10 ⁇ 4 or less, 20 ⁇ 10 ⁇ 4 or less, 18 ⁇ 10 ⁇ 4 or less, especially 10 ⁇ 10 ⁇ 4 or less.
  • the dielectric loss tangent is preferably 45 ⁇ 10 ⁇ 4 or less, 44 ⁇ 10 ⁇ 4 43 ⁇ 10 ⁇ 4 or less, 42 ⁇ 10 ⁇ 4 or less, particularly 41 ⁇ 10 ⁇ 4 or less.
  • the dielectric constant at 25° C. and 40 GHz is preferably 6 or less, 5.5 or less, 5 or less, particularly 4.7 or less, and the dielectric loss tangent is preferably 50 ⁇ 10 ⁇ 4 or less, 48 ⁇ 10 ⁇ 4 45 ⁇ 10 ⁇ 4 or less, 44 ⁇ 10 ⁇ 4 or less, 43 ⁇ 10 ⁇ 4 or less, 42 ⁇ 10 ⁇ 4 or less, particularly 41 ⁇ 10 ⁇ 4 or less.
  • the glass fiber is suitable for use in applications requiring low dielectric properties, for example, as a resin reinforcing material for printed wiring boards, communication equipment parts, and the like.
  • Density is a property that affects the weight of composites compounded with resins. As the density of glass fibers increases, the weight of the composite material increases, making it difficult to reduce weight. Therefore, the density is preferably 2.55 g/cm 3 or less, 2.54 g/cm 3 or less, especially 2.53 g/cm 3 or less. Although the lower limit is not particularly limited, it is practically 2.00 g/cm 3 or more.
  • Young's modulus is a property that affects the strength of composite materials kneaded with resin. If the Young's modulus is too low, it will be difficult to obtain sufficient strength in the composite material. On the other hand, if the Young's modulus is too high, the composite material loses flexibility and becomes difficult to process. Therefore, the preferred lower limit range of Young's modulus is 40 GPa or higher, 45 GPa or higher, particularly 50 GPa or higher, and the preferred upper limit range is 90 GPa or lower, particularly 85 GPa or lower.
  • the method for producing the glass fiber of the present invention will be described below.
  • the direct melt method (DM method) and the indirect molding method (MM method: marble melt method) are described as examples, but the method for producing the glass fiber of the present invention is not limited to the following. Other methods can also be adopted.
  • a raw material batch is prepared so that it has the above composition.
  • Cullet may be used as part or all of the raw material for glass. The reason why the content of each component is set as above is as described above, and the explanation is omitted here.
  • the mixed raw material batch is put into a glass melting furnace, vitrified, melted, and homogenized.
  • a melting temperature of about 1500 to 1600° C. is suitable.
  • the obtained molten glass is continuously pulled out from the bushing and formed into fibers to obtain glass fibers (DM method).
  • the obtained molten glass is once molded into a marble shape, and then the remelted molten glass is continuously pulled out from the bushing and molded into fibers to obtain glass fibers (MM method).
  • the surface of the glass fiber may be coated with a coating that imparts desired physicochemical performance.
  • a coating that imparts desired physicochemical performance Specifically, polyurethane resin, epoxy resin, acid copolymer, modified polypropylene resin, polyester resin, antistatic agent, surfactant, antioxidant, coupling agent or lubricant may be coated.
  • Examples of coupling agents that can be used for surface treatment of glass fibers include ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -methacrylic roxypropyltrimethoxysilane, ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ - There are aminopropyltrimethoxysilane/hydrochloride, ⁇ -chloropropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, vinyltriethoxysilane, and the like, and these may be appropriately selected depending on the type of resin to be
  • the glass fiber of the present invention is suitable for use as chopped strands for resin reinforcement, and also includes glass cloth, glass filler, glass chopped strands, glass paper, nonwoven fabrics, continuous strand mats, knitted fabrics, glass rovings, milled fibers, and the like. , may be processed into any glass fiber product.
  • the glass fiber of the present invention can be used by mixing with fibers other than those of the present invention as long as the object of the present invention is not impaired.
  • the fibers include glass fibers such as E-glass fibers and S-glass fibers, and fibers other than glass fibers such as carbon fibers and metal fibers.
  • FIG. 1 is a graph showing the relationship between the molar ratio B 2 O 3 /P 2 O 5 of Examples 1 to 17 and the dielectric loss tangent tan ⁇ at 25° C. and 2.45 GHz.
  • FIG. 2 is a graph showing the relationship between the molar ratio B 2 O 3 /Al 2 O 3 of Examples 1 to 15 and the dielectric loss tangent tan ⁇ at 25° C. and 2.45 GHz.
  • the raw material mixed batch thus obtained was charged into a 300 cc platinum-rhodium crucible, and then heated in an indirect heating electric furnace at about 1650° C. for 20 hours in an air atmosphere to form a molten glass.
  • a heat-resistant stirring rod was used to stir the molten glass 1 hour after the entire batch was put into the crucible and 1 hour before it was poured out.
  • the molten glass thus homogenized was poured into a carbon plate, roll-formed to a thickness of 5 mm, and allowed to cool to room temperature.
  • strain point Ps, annealing point Ta and softening point Ts were measured by the fiber elongation method.
  • the glass sample obtained by the above method was pulverized, passed through a sieve with an opening of 500 ⁇ m, and the mass of the powder deposited on the 300 ⁇ m sieve, which was equivalent to 10 times the density, was collected.
  • a platinum boat of about 120 mm ⁇ 20 mm ⁇ 10 mm was filled with the collected glass powder, and placed in an electric furnace having a linear temperature gradient for 24 hours. After that, the glass was taken out from the platinum boat, cooled to room temperature, and then crystal precipitation sites were specified by microscopic observation. The temperature corresponding to the crystal deposition location was calculated from the temperature gradient graph of the electric furnace, and this temperature was defined as the liquidus temperature.
  • the dielectric constant ⁇ and dielectric loss tangent tan ⁇ at a frequency of 2.45 GHz were measured using a glass sample piece processed to dimensions of 3 mm ⁇ 80 mm ⁇ 1 mm from the glass sample obtained by the above method. The measurement was performed at a room temperature of 25° C. using a ZVL-3 network analyzer manufactured by Rohde Schwartz and a cavity resonator manufactured by AET.
  • the dielectric constant ⁇ and dielectric loss tangent tan ⁇ at frequencies of 28 GHz and 40 GHz were measured using a glass sample piece of 30 mm ⁇ 40 mm ⁇ 0.15 mm processed from the glass sample obtained by the above method. Both sides were polished to a mirror finish. Measurement was performed at room temperature of 25° C. by the split cylinder method using resonators for 28 GHz and 40 GHz and a vector analyzer.
  • the Young's modulus was measured using a sample piece of 40 mm ⁇ 20 mm ⁇ 2 mm processed from the glass sample obtained by the above method. Both surfaces of this glass sample piece having a thickness of 2 mm were polished with a polishing liquid prepared by dissolving No. 1200 alumina powder in water. This glass sample piece was precision annealed to remove strain before measurement. The samples were deposited with gold (>1500 ⁇ ) and the width, length, thickness and weight of the samples were measured. The measurement was performed using a free resonance elastic modulus measuring device JE-RT3 manufactured by Technoplus Japan Co., Ltd.
  • the example glasses of the present invention have a ⁇ X of 1.67 or less, and the dielectric constant at 25° C. and 2.45 GHz compared to Comparative Example 1, which has a large ⁇ X of 1.94. And the dielectric loss tangent was low, and it had excellent low dielectric properties. Further, the example glasses of the present invention had excellent dielectric properties in the high frequency range of 28 GHz and 40 GHz, but the dielectric constant and dielectric loss tangent in the high frequency range of Comparative Example 1 were too high to be measured. Further, the spinning temperature of all the example glasses of the present invention was as low as 1436° C. or lower.
  • the glass fiber of the present invention is used as a fiber-reinforced resin molded product, in addition to housings and members of mobile electronic devices such as smartphones, tablets, laptop computers, mobile music players, and mobile game machines, as well as in-vehicle millimeter wave radars and vehicle exteriors. It can be suitably used as a communication member used in the millimeter wave band, such as a member, a vehicle interior member, a vehicle engine peripheral member, an electronic device housing, and an electronic component.
  • the composition of the glass fiber of the present invention may be applied to the composition of glass substrates, glass tubes, glass containers, and the like.

Abstract

Provided are: a glass fiber with which both a low spinning temperature, and a low dielectric constant and dielectric loss tangent are achieved; and a method for producing same. A glass fiber according to the present invention is characterized by containing 22.5-45 mass% of SiO2, 0.1-30 mass% of Al2O3, 0-45 mass% of B2O3, 0-60 mass% of P2O5, 0.001-3 mass% of Fe2O3, and 0-9 mass% of Li2O+Na2O+K2O+MgO+CaO+BaO+SrO.

Description

ガラス繊維及びその製造方法Glass fiber and its manufacturing method
 本発明は高速通信機器用部品や車載用レーダー等、低誘電率及び低誘電正接特性が求められる樹脂部材の補強材として好適なガラス繊維と、その製造方法に関するものである。 The present invention relates to a glass fiber that is suitable as a reinforcing material for resin members that require low dielectric constant and low dielectric loss tangent characteristics, such as components for high-speed communication equipment and automotive radar, and a manufacturing method thereof.
 情報産業を支えるさまざまな電子機器の発達に伴い、携帯電話や携帯情報端末等に関わる技術が目覚ましく進捗している。高密度化、高速処理化が進む電子機器用回路部品には、誘電損失(移動損失、伝導損失、変形損失及び振動損失)による信号伝播遅延を最小限に抑え、また熱損失による基板の発熱を防ぐために、低誘電率及び低誘電正接特性が要求される。これら電子機器用回路基板の例としてプリント配線基板や低温焼成基板が挙げられる。プリント配線基板は樹脂に強化材としてガラス繊維を混合させシート形状にした複合材料であり、低温焼成基板はSiOやBを多量に含有する粉末ガラスにシリカ等のフィラー(充填物)を混合させた複合粉末のグリーンシートを焼成したものである。 Along with the development of various electronic devices that support the information industry, technologies related to mobile phones, personal digital assistants, etc. are making remarkable progress. Circuit parts for electronic devices, which are becoming more dense and have higher processing speeds, are designed to minimize signal propagation delay due to dielectric loss (movement loss, conduction loss, deformation loss and vibration loss) and to reduce heat generation in the substrate due to heat loss. To prevent this, low dielectric constant and low dielectric loss tangent properties are required. Examples of these circuit boards for electronic devices include printed wiring boards and low-temperature firing boards. A printed wiring board is a sheet - shaped composite material made by mixing glass fiber as a reinforcing material with a resin. A green sheet of composite powder mixed with is fired.
 また、上記以外に、電子機器の小型化、通信の高速化に伴い、近年では回路基板周辺の樹脂、通信機器用部品及び電子機器筐体に用いられる樹脂部材の低誘電特性に対する要求が高まり、その強化材として用いられるガラス繊維についても低誘電率化及び低誘電正接化が求められている。更に、自動車産業においても、自動運転システムの発展に伴い、車載用レーダーやカメラに使用される部材として、高強度で軽量な低誘電率、低誘電正接ガラス繊維強化樹脂の需要が高まるとみられている。 In addition to the above, along with the miniaturization of electronic devices and the speeding up of communication, in recent years, there has been an increasing demand for low dielectric properties of resin materials used for resin around circuit boards, components for communication devices, and housings of electronic devices. The glass fiber used as the reinforcing material is also required to have a low dielectric constant and a low dielectric loss tangent. Furthermore, in the automotive industry, the demand for high-strength, lightweight, low-dielectric constant, low-dielectric loss tangent glass fiber reinforced resins is expected to increase as components used in automotive radars and cameras as autonomous driving systems develop. there is
日本国特開昭63-2831号公報Japanese Patent Laid-Open No. 63-2831
 プリント配線基板及び樹脂強化用のガラス繊維としては、Eガラス(例えば室温における周波数2.45MHzでの誘電率εが6.9、誘電正接tanδが46×10-4である)が一般に知られているが、Eガラスは上記低誘電率化及び低誘電正接化の要求を満たさないという問題があった。そこで、Eガラスよりも低い誘電率と誘電正接を特徴にしたDガラスと呼称されるガラスが特許文献1に開示されている。Dガラスは、例えば室温における周波数2.45GHzでの誘電率εが4.2、誘電正接tanδが15×10-4である。 As glass fibers for printed wiring boards and resin reinforcement, E glass (for example, dielectric constant ε at room temperature of 2.45 MHz frequency is 6.9 and dielectric loss tangent tan δ is 46×10 −4 ) is generally known. However, there is a problem that E-glass does not meet the requirements for a low dielectric constant and a low dielectric loss tangent. Therefore, Patent Document 1 discloses a glass called D-glass characterized by a dielectric constant and a dielectric loss tangent lower than those of E-glass. D-glass has a dielectric constant ε of 4.2 at room temperature and a frequency of 2.45 GHz, and a dielectric loss tangent tan δ of 15×10 −4 , for example.
 しかしながら、Dガラスは、紡糸温度が高く生産性が低いという問題があった。また、Dガラスと樹脂が混合された複合材料が高温・高湿の環境下に晒されると、複合材料の強度が低下しやすくなるという問題があった。 However, D glass has the problem of high spinning temperature and low productivity. Moreover, when a composite material in which D glass and resin are mixed is exposed to a high-temperature and high-humidity environment, there is a problem that the strength of the composite material tends to decrease.
 本発明は、上記の状況に鑑み、低い紡糸温度と低い誘電率及び誘電正接を両立したガラス繊維とその製造方法を提供することを目的とする。 In view of the above situation, the object of the present invention is to provide a glass fiber that achieves both a low spinning temperature, a low dielectric constant and a low dielectric loss tangent, and a method for producing the same.
 本発明のガラス繊維は、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有することを特徴とする。このようにすることで、誘電率及び誘電正接が低く、更に、紡糸温度が低いガラス繊維を得ることができる。また、複合材料の強度を向上することができる。ここで、「LiO+NaO+KO+MgO+CaO+BaO+SrO」は、LiO、NaO、KO、MgO、CaO、BaO及びSrOの合量である。 The glass fiber of the present invention contains, in mass %, SiO 2 22.5-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 0-60%, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%. By doing so, a glass fiber having a low dielectric constant and a low dielectric loss tangent and a low spinning temperature can be obtained. Also, the strength of the composite material can be improved. Here, "Li2O + Na2O + K2O+MgO+CaO+BaO+SrO" is the total amount of Li2O, Na2O , K2O , MgO, CaO, BaO and SrO.
 本発明のガラス繊維は、ガラスの構成成分の酸素と酸素以外の元素との電気陰性度の差分の平均値△Χが1.4~1.8であることが好ましい。本発明において、△Xは以下の式で定義される。 In the glass fiber of the present invention, the average value ΔΧ of the difference in electronegativity between oxygen and elements other than oxygen, which are constituent components of the glass, is preferably 1.4 to 1.8. In the present invention, ΔX is defined by the following formula.
 △X=Σ{(酸素以外の酸化物元素Zのモル数)×(酸素と酸素以外の酸化物元素Zとの電気陰性度の差)}/(酸素以外の酸化物元素Zのモル数の合計) ΔX=Σ{(number of moles of oxide element Z other than oxygen)×(difference in electronegativity between oxygen and oxide element Z other than oxygen)}/(number of moles of oxide element Z other than oxygen) total)
 なお、酸素と酸素以外の酸化物元素Zとの電気陰性度の差はPaulingの電気陰性度の値を用いて計算することができる。各元素のPaulingの電気陰性度の代表値及び、酸素と各元素との電気陰性度の差、△Χを表1に示す。 The difference in electronegativity between oxygen and the oxide element Z other than oxygen can be calculated using the value of Pauling's electronegativity. Table 1 shows the representative value of Pauling's electronegativity of each element and the difference in electronegativity ΔΧ between oxygen and each element.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のガラス繊維は、25℃、2.45GHzにおける誘電率が6以下であり、誘電正接が45×10-4以下であることが好ましい。これにより、伝送損失を低減することができる。 The glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 2.45 GHz and a dielectric loss tangent of 45×10 −4 or less. Thereby, transmission loss can be reduced.
 本発明のガラス繊維は、25℃、28GHzにおける誘電率が6以下であり、誘電正接が45×10-4以下であることが好ましい。 The glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 28 GHz and a dielectric loss tangent of 45×10 −4 or less.
 本発明のガラス繊維は、25℃、40GHzにおける誘電率が6以下であり、誘電正接が50×10-4以下であることが好ましい。 The glass fiber of the present invention preferably has a dielectric constant of 6 or less at 25° C. and 40 GHz and a dielectric loss tangent of 50×10 −4 or less.
 本発明のガラス繊維は、紡糸温度が1450℃以下であることが好ましい。本発明において「紡糸温度」とは、ガラスの粘度が103.0dPa・sとなる温度を意味する。 The glass fiber of the present invention preferably has a spinning temperature of 1450° C. or lower. In the present invention, the "spinning temperature" means the temperature at which the viscosity of the glass becomes 10 3.0 dPa·s.
 本発明のガラス繊維は、ヤング率が40GPa以上であることが好ましい。これにより、樹脂と混錬して製造される複合材料の強度を向上させることができる。 The glass fiber of the present invention preferably has a Young's modulus of 40 GPa or more. Thereby, the strength of the composite material produced by kneading with the resin can be improved.
 本発明のガラス繊維は、Pに対するBの含有量のモル比 B/Pが0~50であることが好ましい。 In the glass fiber of the present invention, the molar ratio B 2 O 3 /P 2 O 5 of the content of B 2 O 3 to P 2 O 5 is preferably 0-50.
 本発明のガラス繊維は、Alに対するBの含有量のモル比 B/Alが0~20であることが好ましい。 In the glass fiber of the present invention, it is preferable that the molar ratio B 2 O 3 /Al 2 O 3 of the content of B 2 O 3 to Al 2 O 3 is 0-20.
 本発明のガラス繊維の製造方法は、ガラス組成として、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有するガラス繊維の製造方法であって、溶融ガラスをブッシングから連続的に引き出して繊維状に成形することを特徴とする。 In the method for producing the glass fiber of the present invention, the glass composition is 22.5 to 45% by mass of SiO 2 , 0.1 to 30% by mass of Al 2 O 3 , 0 to 45% by mass of B 2 O 3 , and P 2 O. 50-60%, Fe 2 O 3 0.001-3 % and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%, comprising: It is characterized by molding into fibrous form.
 本発明のガラスは、ガラス組成として、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有することを特徴とする。 The glass of the present invention has, as a glass composition, SiO 2 22.5 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, and P 2 O 5 0 to 60% by mass. %, Fe 2 O 3 0.001-3%, and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%.
 本発明のガラス繊維は、質量%で、SiO 24~45%、Al 0.1~30%、B 0~45%、P 5~60%、Fe 0.001~3%及びLiO+NaO+KO 0~3%を含有することを特徴とする。このようにすることで、誘電率及び誘電正接が低く、更に、紡糸温度が低いガラス繊維を得ることができる。また、複合材料の強度を向上することができる。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量である。 The glass fiber of the present invention contains, in mass %, SiO 24-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 5-60%, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O 0-3%. By doing so, a glass fiber having a low dielectric constant and a low dielectric loss tangent and a low spinning temperature can be obtained. Also, the strength of the composite material can be improved. Here, "Li2O + Na2O + K2O" is the total amount of Li2O, Na2O and K2O .
 本発明によれば、低い紡糸温度と低い誘電率及び誘電正接を両立したガラス繊維とその製造方法を提供することができる。 According to the present invention, it is possible to provide a glass fiber that achieves both a low spinning temperature, a low dielectric constant and a low dielectric loss tangent, and a method for producing the same.
モル比B/Pと25℃、2.45GHzにおける誘電正接tanδの関係を示すグラフである。4 is a graph showing the relationship between the molar ratio B 2 O 3 /P 2 O 5 and the dielectric loss tangent tan δ at 25° C. and 2.45 GHz. モル比B/Alと25℃、2.45GHzにおける誘電正接tanδの関係を示すグラフである。4 is a graph showing the relationship between the molar ratio B 2 O 3 /Al 2 O 3 and the dielectric loss tangent tan δ at 25° C. and 2.45 GHz.
 本発明の第一の態様のガラス繊維は、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有する。本発明の第二の態様のガラス繊維は、質量%で、SiO 24~45%、Al 0.1~30%、B 0~45%、P 5~60%、Fe 0.001~3%及びLiO+NaO+KO 0~3%を含有する。ガラス組成を上記の通り限定した理由を以下に詳述する。なお、本発明において、特段の断りがない限り、%表示は質量%を指す。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載の数値を最小値及び最大値としてそれぞれ含む範囲を意味する。
The glass fiber of the first aspect of the present invention contains, in mass %, SiO 2 22.5-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 0 ~60%, Fe 2 O 3 0.001-3% and Li 2 O + Na 2 O + K 2 O + MgO + CaO + BaO + SrO 0-9%. The glass fiber of the second aspect of the present invention contains, in mass %, SiO 2 24-45%, Al 2 O 3 0.1-30%, B 2 O 3 0-45%, P 2 O 5 5-60 %, Fe 2 O 3 0.001-3% and Li 2 O+Na 2 O+K 2 O 0-3%. The reasons for limiting the glass composition as described above will be described in detail below. In addition, in the present invention, unless otherwise specified, "%" refers to % by mass.
In this specification, the numerical range indicated using "to" means a range including the numerical values before and after "to" as the minimum and maximum values, respectively.
 SiOはガラス構造において、その網目状構造の骨格を形成する成分であり、また誘電率及び誘電正接を低下させる成分である。SiOの含有量が少なすぎると、前記効果が得られ難い。一方、SiOの含有量が多すぎると紡糸温度が高くなり生産性が低下する。そのため、本発明の第一の態様のガラス繊維及びガラスにおける、SiOの好適な下限範囲は、22.5%以上、23%以上、24%以上、25%以上、27%以上、28%以上、29%以上、特に30%以上であり、好適な上限範囲は45%以下、45%未満、43%以下、42%以下、41%以下、特に40%以下である。本発明の第二の態様のガラス繊維及びガラスにおける、SiOの好適な下限範囲は、24%以上、25%以上、27%以上、28%以上、29%以上、特に30%以上であり、好適な上限範囲は45%以下、45%未満、43%以下、42%以下、41%以下、特に40%以下である。 SiO 2 is a component that forms the skeleton of the network structure in the glass structure, and is also a component that lowers the dielectric constant and dielectric loss tangent. If the content of SiO 2 is too small, it is difficult to obtain the above effects. On the other hand, if the content of SiO 2 is too high, the spinning temperature will increase and the productivity will decrease. Therefore, the preferable lower limit range of SiO2 in the glass fiber and glass of the first aspect of the present invention is 22.5% or more, 23% or more, 24% or more, 25% or more, 27% or more, 28% or more , 29% or more, particularly 30% or more, and the preferred upper limit range is 45% or less, less than 45%, 43% or less, 42% or less, 41% or less, particularly 40% or less. In the glass fiber and glass of the second aspect of the present invention, the preferred lower range of SiO2 is 24% or more, 25% or more, 27% or more, 28% or more, 29% or more, especially 30% or more, A preferred upper limit range is 45% or less, less than 45%, 43% or less, 42% or less, 41% or less, particularly 40% or less.
 Alはガラスの骨格を形成するとともに、ガラスの分相を抑制し安定化させる成分である。Alの含有量が少なすぎると、前記効果が得られ難い。一方、Alの含有量が多すぎると誘電率及び誘電正接が高くなり易い。そのため、Alの好適な下限範囲は、0.1%以上、0.5%以上、3%以上、5%以上、6%以上、8%以上、9%以上、特に10%以上であり、好適な上限範囲は30%以下、29%以下、28%以下、27%以下、26%以下、25%以下、24%以下、23%以下、20%以下、17%以下、16%以下、15%以下、13%以下、特に12%以下である。 Al 2 O 3 is a component that forms the skeleton of the glass and suppresses the phase separation of the glass to stabilize it. If the content of Al 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the Al 2 O 3 content is too high, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of Al 2 O 3 is 0.1% or more, 0.5% or more, 3% or more, 5% or more, 6% or more, 8% or more, 9% or more, particularly 10% or more. Yes, the preferred upper limit range is 30% or less, 29% or less, 28% or less, 27% or less, 26% or less, 25% or less, 24% or less, 23% or less, 20% or less, 17% or less, 16% or less , 15% or less, 13% or less, in particular 12% or less.
 BはSiOと同様にガラスの骨格を形成する成分であり、また誘電率及び誘電正接を顕著に低下させる成分である。Bの含有量が多すぎるとガラスが分相し易くなり、生産性が低下する虞がある。そのため、Bの好適な下限範囲は、0%以上、0.1%以上、0.5%以上、1%以上、2%以上、3%以上、5%以上、6%以上、7%以上、特に8%以上であり、好適な上限範囲は、45%以下、40%以下、38%以下、35%以下、30%以下、29%以下、28%以下、27%以下、25%以下、20%以下、15%以下、13%以下、特に11%以下である。 B 2 O 3 , like SiO 2 , is a component that forms a skeleton of glass, and is a component that significantly lowers the dielectric constant and dielectric loss tangent. If the content of B 2 O 3 is too large, the glass tends to undergo phase separation, which may reduce productivity. Therefore, the preferable lower limit range of B 2 O 3 is 0% or more, 0.1% or more, 0.5% or more, 1% or more, 2% or more, 3% or more, 5% or more, 6% or more, 7% or more. % or more, particularly 8% or more. 20% or less, 15% or less, 13% or less, particularly 11% or less.
 PはSiO及びBと同様にガラスの骨格を形成する成分であり、また誘電率及び誘電正接を低下させる成分である。Pの含有量が少なすぎると、前記効果が得られ難い。一方、Pの含有量が多すぎるとガラスが分相し易くなり、生産性を低下させる虞がある。また、原料コストが高くなる可能性がある。そのため、本発明の第一の態様のガラス繊維及びガラスにおける、Pの好適な下限範囲は0%以上、2%以上、3%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、15%以上、特に20%以上であり、好適な上限範囲は60%以下、59%以下、55%以下、50%以下、47%以下、40%以下、30%以下、25%以下、特に20%以下である。本発明の第二の態様のガラス繊維及びガラスにおける、Pの好適な下限範囲は5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、15%以上、特に20%以上であり、好適な上限範囲は60%以下、59%以下、55%以下、50%以下、47%以下、40%以下、30%以下、25%以下、特に20%以下である。 P 2 O 5 is a component that forms a skeleton of glass like SiO 2 and B 2 O 3 and is a component that lowers the dielectric constant and dielectric loss tangent. If the content of P 2 O 5 is too small, it will be difficult to obtain the above effects. On the other hand, if the content of P 2 O 5 is too large, the glass tends to undergo phase separation, which may reduce productivity. Also, raw material costs may increase. Therefore, the preferable lower limit range of P 2 O 5 in the glass fiber and glass of the first aspect of the present invention is 0% or more, 2% or more, 3% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% or more, particularly 20% or more, the preferred upper limit range is 60% or less, 59% or less, 55% or less, 50% or less, 47% or less, 40% 30% or less, 25% or less, particularly 20% or less. In the glass fiber and glass of the second aspect of the present invention, the preferable lower range of P 2 O 5 is 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% or more, 15% Above, especially 20% or more, the preferred upper limit range is 60% or less, 59% or less, 55% or less, 50% or less, 47% or less, 40% or less, 30% or less, 25% or less, especially 20% or less is.
 Pに対するBの含有量のモル比B/Pの好適な下限範囲は、0以上、0.01以上、0.05以上、0.08以上、特に0.1以上であり、好適な上限範囲は50以下、40以下、30以下、20以下、10以下、7以下、5.5以下、4以下、3以下、2以下、特に1以下である。B/Pが低すぎると、P中の不対電子対の極性により分極が強くなるため、誘電正接及び誘電損失が高くなり易い。一方、B/Pの値が高くなりすぎると耐候性が著しく低下する虞がある。 A preferable lower limit range of the molar ratio B2O3 / P2O5 of the content of B2O3 to P2O5 is 0 or more , 0.01 or more , 0.05 or more, 0.08 or more, especially 0.1 or more, and the preferred upper limit range is 50 or less, 40 or less, 30 or less, 20 or less, 10 or less, 7 or less, 5.5 or less, 4 or less, 3 or less, 2 or less, particularly 1 or less. If the B 2 O 3 /P 2 O 5 ratio is too low, the polarity of the unpaired electron pair in P 2 O 5 will increase the polarization, and the dielectric loss tangent and dielectric loss will tend to increase. On the other hand, if the value of B 2 O 3 /P 2 O 5 is too high, there is a possibility that the weather resistance will be remarkably lowered.
 Alに対するBの含有量のモル比B/Alの好適な下限範囲は、0以上、0.01以上、0.05以上、0.1以上、0.15以上、特に0.2以上である。一方、好適な上限範囲は、20以下、10以下、9以下、8.5以下、7以下、6以下、5以下、3以下、特に2以下である。B/Alが低すぎると誘電正接及び誘電損失が高くなる虞がある。一方、B/Alが高くなりすぎると、耐候性及びヤング率が低下する虞がある。 A preferable lower limit range of the molar ratio B2O3 / Al2O3 of the content of B2O3 to Al2O3 is 0 or more , 0.01 or more , 0.05 or more, 0.1 or more, 0 0.15 or more, especially 0.2 or more. On the other hand, the preferred upper limit range is 20 or less, 10 or less, 9 or less, 8.5 or less, 7 or less, 6 or less, 5 or less, 3 or less, particularly 2 or less. If the B 2 O 3 /Al 2 O 3 is too low, the dielectric loss tangent and dielectric loss may increase. On the other hand, if the B 2 O 3 /Al 2 O 3 ratio is too high, the weather resistance and Young's modulus may decrease.
 Feは清澄作用を有する成分である。Feが少なすぎると、前記効果は得られ難い。一方、Feが多すぎるとガラスの着色が強くなる。したがって、Feの好適な下限範囲は0.001%以上、0.002%以上、0.003%以上、0.005%以上、0.008%以上、0.01%以上、0.02%以上、特に0.08%以上であり、好適な上限範囲は3%以下、2%以下、特に1%以下である。 Fe 2 O 3 is a component having a refining action. If the amount of Fe 2 O 3 is too small, it is difficult to obtain the above effects. On the other hand, if the amount of Fe 2 O 3 is too large, the coloration of the glass becomes strong. Therefore, the preferable lower limit range of Fe 2 O 3 is 0.001% or more, 0.002% or more, 0.003% or more, 0.005% or more, 0.008% or more, 0.01% or more, 0.01% or more. 02% or more, particularly 0.08% or more, and the preferred upper limit range is 3% or less, 2% or less, and particularly 1% or less.
 LiO、NaO及びKOはガラスの粘度を低下させ、紡糸温度を低下させる成分であるが、LiO+NaO+KOが多すぎると誘電率及び誘電正接が高くなり易い。また、ガラス繊維と樹脂が混合された複合材料が高温・高湿の環境下に晒されると、LiO、NaO及び/又はKOがガラスから溶出し複合材料の強度が低下し易くなる。そのため、LiO+NaO+KOの好適な上限範囲は3%以下、2.5%以下、2%以下、1.5%以下、1.3%以下、特に1%以下である。また、好適な下限範囲は0%以上、0.001%以上、特に0.01%以上である。 Li 2 O, Na 2 O and K 2 O are components that lower the viscosity of the glass and lower the spinning temperature, but if Li 2 O+Na 2 O+K 2 O is too much, the dielectric constant and dielectric loss tangent tend to increase. In addition, when a composite material in which glass fibers and resin are mixed is exposed to a high-temperature and high-humidity environment, Li 2 O, Na 2 O and/or K 2 O are eluted from the glass and the strength of the composite material is lowered. becomes easier. Therefore, the preferable upper limit range of Li 2 O+Na 2 O+K 2 O is 3% or less, 2.5% or less, 2% or less, 1.5% or less, 1.3% or less, particularly 1% or less. A preferable lower limit range is 0% or more, 0.001% or more, particularly 0.01% or more.
 なお、LiO、NaO、KOの好適な上限範囲は、それぞれ3%以下、2.5%以下、2%以下、特に1.5%以下である。また好適な下限範囲は、それぞれ0%以上、0.001%以上、0.01%以上である。 The preferred upper limits of Li 2 O, Na 2 O and K 2 O are 3% or less, 2.5% or less and 2% or less, and particularly 1.5% or less. Moreover, preferable lower limit ranges are 0% or more, 0.001% or more, and 0.01% or more, respectively.
 MgOはアルカリ金属酸化物と同様に、ガラスの粘度を低下させ、紡糸温度を低下させる成分である。しかし、MgOの含有量が多すぎると、誘電率及び誘電正接が高くなり易い。また、ガラスの分相が促進され、白濁し易くなる。そのため、MgOの好適な下限範囲は0%以上、0.01%以上、0.05%以上、0.1%以上、特に0.3%以上であり、好適な上限範囲は7%以下、6%以下、5.6%以下、5%以下、4%以下、3%以下、特に2.5%以下である。 MgO, like alkali metal oxides, is a component that lowers the viscosity of glass and lowers the spinning temperature. However, if the MgO content is too high, the dielectric constant and dielectric loss tangent tend to increase. In addition, the phase separation of the glass is promoted, and the glass tends to become cloudy. Therefore, the preferable lower limit range of MgO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, particularly 0.3% or more, and the preferable upper limit range is 7% or less, 6 % or less, 5.6% or less, 5% or less, 4% or less, 3% or less, particularly 2.5% or less.
 CaOはMgOと同様に、ガラスの粘度を低下させ、紡糸温度を低下させる成分である。しかし、CaOの含有量が多すぎると、誘電率及び誘電正接が高くなり易い。そのため、CaOの好適な下限範囲は0%以上、0.01%以上、0.05%以上、0.1%以上、0.3%以上、0.4%以上、特に0.5%以上であり、好適な上限範囲は9%以下、8.8%以下、7%以下、特に6%以下である。 CaO, like MgO, is a component that lowers the viscosity of glass and lowers the spinning temperature. However, if the CaO content is too high, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of CaO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more. A preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
 BaOはMgO及びCaOと同様に、ガラスの粘度を低下させ、紡糸温度を低下させる成分である。しかし、BaOの含有量が多すぎると、誘電率及び誘電正接が高くなり易い。そのため、BaOの好適な下限範囲は0%以上、0.01%以上、0.05%以上、0.1%以上、0.3%以上、0.4%以上、特に0.5%以上であり、好適な上限範囲は9%以下、8.8%以下、7%以下、特に6%以下である。 BaO, like MgO and CaO, is a component that lowers the viscosity of the glass and lowers the spinning temperature. However, if the BaO content is too high, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of BaO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more. A preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
 SrOはMgO及びCaOと同様に、ガラスの粘度を低下させ、紡糸温度を低下させる成分である。一方、酸素との電気陰性度の差が大きいため、SrOの含有量が多すぎると、誘電率及び誘電正接が高くなり易い。そのため、SrOの好適な下限範囲は0%以上、0.01%以上、0.05%以上、0.1%以上、0.3%以上、0.4%以上、特に0.5%以上であり、好適な上限範囲は9%以下、8.8%以下、7%以下、特に6%以下である。 SrO, like MgO and CaO, is a component that lowers the viscosity of glass and lowers the spinning temperature. On the other hand, since the difference in electronegativity with oxygen is large, if the content of SrO is too large, the dielectric constant and dielectric loss tangent tend to increase. Therefore, the preferable lower limit range of SrO is 0% or more, 0.01% or more, 0.05% or more, 0.1% or more, 0.3% or more, 0.4% or more, particularly 0.5% or more. A preferable upper limit range is 9% or less, 8.8% or less, 7% or less, particularly 6% or less.
 アルカリ金属酸化物及びアルカリ土類金属酸化物の合量であるLiO+NaO+KO+MgO+CaO+BaO+SrOの好適な上限範囲は9%以下、7%以下、5%以下、特に3%以下である。また、好適な下限範囲は、0%以上、0.001%以上、0.01%以上である。LiO+NaO+KO+MgO+CaO+BaO+SrOが大きすぎると誘電率及び誘電正接が高くなり易い。一方、少なすぎると紡糸温度が高くなり易く、生産性が低下し易い。 A preferable upper limit range of Li 2 O + Na 2 O + K 2 O + MgO + CaO + BaO + SrO, which is the total amount of alkali metal oxides and alkaline earth metal oxides, is 9% or less, 7% or less, 5% or less, particularly 3% or less. Moreover, the preferable lower limit range is 0% or more, 0.001% or more, and 0.01% or more. If Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO is too large, the dielectric constant and dielectric loss tangent tend to increase. On the other hand, if it is too small, the spinning temperature tends to rise, and the productivity tends to decrease.
 本発明のガラス繊維は、上記成分以外にも、ガラス組成中に下記の成分を含有してもよい。 In addition to the above components, the glass fiber of the present invention may contain the following components in the glass composition.
 TiOはガラスの粘度を低下させ、紡糸温度を低下させる成分である。TiOはアルカリ金属酸化物やアルカリ土類金属酸化物よりも、紡糸温度の低下と誘電率の低下を両立し易い。TiOの含有量が少なすぎると、前記効果が得られ難い。しかし、TiOの含有量が多すぎると、失透し易くなり、生産性が低下する虞がある。そのため、TiOの好適な下限範囲は0%以上、0.001%以上、0.005%以上、0.01%以上、特に0.05%以上であり、好適な上限範囲は5%以下、4%以下、3%以下、2%以下、1.5%以下、1%以下、特に0.5%以下である。 TiO2 is a component that lowers the viscosity of the glass and lowers the spinning temperature. TiO 2 is more likely than alkali metal oxides and alkaline earth metal oxides to simultaneously lower the spinning temperature and lower the dielectric constant. If the content of TiO 2 is too small, it is difficult to obtain the above effects. However, if the content of TiO 2 is too high, devitrification tends to occur, which may reduce productivity. Therefore, the preferred lower range of TiO2 is 0% or higher, 0.001% or higher, 0.005% or higher, 0.01% or higher, especially 0.05% or higher, and the preferred upper limit range is 5% or lower, 4% or less, 3% or less, 2% or less, 1.5% or less, 1% or less, particularly 0.5% or less.
 ZrOは製造窯の耐火物の溶出などにより混入する成分である。ZrOの含有量が多すぎると、失透し易くなり、生産性が低下する虞がある。そのため、ZrOの含有量は1%以下、0.8%以下、特に0.6%以下が好ましい。 ZrO 2 is a component mixed in by elution of the refractory material in the manufacturing kiln. If the content of ZrO 2 is too high, devitrification tends to occur, and productivity may decrease. Therefore, the content of ZrO 2 is preferably 1% or less, 0.8% or less, particularly 0.6% or less.
 SnOは清澄剤として作用する成分である。しかし、SnO含有量が多すぎると、ガラスが着色し透過性が低下する傾向がある。そのため、SnOの好適な下限範囲は0%以上、0.001%以上、0.005%以上、特に0.01%以上であり、好適な上限範囲は3%以下、2%以下、1%以下、特に0.5%以下である。 SnO2 is a component that acts as a refining agent. However, if the SnO2 content is too high , the glass tends to be colored and the transparency tends to decrease. Therefore, the preferred lower range of SnO2 is 0% or higher, 0.001% or higher, 0.005% or higher, especially 0.01% or higher, and the preferred upper range is 3% or lower, 2% or lower, 1% below, particularly below 0.5%.
 また、SnO以外の清澄剤としてはSOや塩素、フッ素、Sb、As、CeOなどが使用できる。しかし、環境負荷や設備の腐食などが懸念されるため、含有量としては合量で0.5%以下、0.3%以下、0.2%以下、特に0.1%以下であることが好ましい。 Besides SnO 2 , SO 3 , chlorine, fluorine, Sb 2 O 3 , As 2 O 3 , CeO 2 and the like can be used as clarifiers other than SnO 2 . However, due to concerns about environmental impact and corrosion of equipment, the total content should be 0.5% or less, 0.3% or less, 0.2% or less, particularly 0.1% or less. preferable.
 次に、本発明のガラス繊維における誘電損失と電気陰性度の関係性について述べる。 Next, the relationship between dielectric loss and electronegativity in the glass fiber of the present invention will be described.
 誘電体であるガラスに様々な周波数の電流を流すと、各周波数に対して誘電損失が発生する。ここで、誘電損失とは、移動損失、伝導損失、変形損失及び振動損失のことを指す。低周波域では、移動損失や伝導損失の寄与が大きくなる。移動損失とはガラス中のアルカリイオンと酸素イオンがペアとなった双極子の移動による損失のことである。また、伝導損失とは、ガラス中のアルカリのイオン伝導のような直流伝導による損失のことである。 When currents of various frequencies are passed through glass, which is a dielectric, dielectric loss occurs for each frequency. Here, dielectric loss refers to movement loss, conduction loss, deformation loss and vibration loss. In the low frequency range, the contributions of transport loss and conduction loss become large. The migration loss is the loss due to the migration of the dipole paired by the alkali ion and the oxygen ion in the glass. Conduction loss is loss due to direct current conduction such as ionic conduction of alkali in glass.
 さらに高周波であるミリ波帯では、変形損失と振動損失の寄与が顕著になる。変形損失とはSiOの網目構造が交流の電界により変形することで生じる損失のことである。また、振動損失とは、イオンの熱振動が外部電場と共鳴することで生じる損失のことである。次世代通信では、大容量の情報を送信するため、ミリ波帯が使用されている。そのため、変形損失や振動損失による通信の遅延などが問題となる。これらの損失を低減するためには、網目構造の変形の抑制、又はイオンの熱振動を抑制するために分極を小さくすることが有効である。酸化物ガラス中にアルカリ金属成分やアルカリ土類金属成分が存在すると、Si-O-Siの結合が切断され、非架橋酸素が形成される。さらに、非架橋酸素とアルカリ金属イオン又はアルカリ土類イオン間は電気的な差が大きくなる。前記のような網目構造の切断及び酸素イオンとアルカリ金属イオン又はアルカリ土類金属イオン間の電気的な差(すなわち分極)の影響を小さくするために、酸素とそれ以外の元素との電気的な差を低減する必要がある。 Furthermore, in the high-frequency millimeter wave band, the contribution of deformation loss and vibration loss becomes significant. Deformation loss is loss caused by deformation of the network structure of SiO 2 due to an AC electric field. Vibrational loss is loss caused by resonance of thermal vibration of ions with an external electric field. Next-generation communications use the millimeter wave band to transmit large amounts of information. Therefore, communication delay due to deformation loss and vibration loss is a problem. In order to reduce these losses, it is effective to suppress the deformation of the network structure or to reduce the polarization in order to suppress the thermal vibration of the ions. When an alkali metal component or an alkaline earth metal component is present in the oxide glass, the Si--O--Si bond is broken and non-bridging oxygen is formed. Furthermore, there is a large electrical difference between non-bridging oxygen and alkali metal ions or alkaline earth ions. In order to reduce the effects of the above-mentioned network structure breakage and the electrical difference (that is, polarization) between oxygen ions and alkali metal ions or alkaline earth metal ions, the electrical Need to reduce the difference.
 △Xはガラスの構成成分の酸素以外の酸化物元素及び酸素との電気陰性度の差分である。本発明では△Xを所定の範囲に規制することにより、誘電損失を抑えた、誘電率及び誘電正接が低いガラス繊維が得られることを見出した。△Χの値が高すぎるとイオン性の結合が多くなり、電場に対して電気的な偏りが生じ易くなるため、誘電率及び誘電正接が上昇し易くなる。一方、△Χの値が低すぎると共有結合性が強くなるため、ガラスの粘度が高くなり生産性が低下する虞がある。そのため、△Χの好適な下限範囲は1.4以上、1.5以上、特に1.55以上であり、好適な上限範囲は1.8以下、1.79以下、1.78以下、1.75以下、1.7以下、1.69以下、特に1.67以下である。  ΔX is the electronegativity difference between oxide elements other than oxygen and oxygen, which are constituents of the glass. In the present invention, it has been found that by limiting ΔX to a predetermined range, a glass fiber having a low dielectric constant and a low dielectric loss tangent with suppressed dielectric loss can be obtained. If the value of ΔΧ is too high, the number of ionic bonds increases, and electric bias tends to occur with respect to the electric field, which tends to increase the dielectric constant and dielectric loss tangent. On the other hand, if the value of ΔΧ is too low, the covalent bond becomes strong, which may increase the viscosity of the glass and reduce the productivity. Therefore, the preferable lower limit range of ΔΧ is 1.4 or more, 1.5 or more, particularly 1.55 or more, and the preferable upper limit range is 1.8 or less, 1.79 or less, 1.78 or less, 1.55 or more, and 1.55 or more. 75 or less, 1.7 or less, 1.69 or less, especially 1.67 or less.
 さらに、本発明のガラス繊維の特性について以下に詳述する。 Further, the properties of the glass fiber of the present invention are detailed below.
 ガラス繊維の紡糸温度が高いと、ブッシングへのダメージが大きくなり、ブッシング寿命が短くなる。また、ブッシング交換頻度やエネルギーコストが増大し、生産コストが高くなる。そのため、本発明のガラス繊維の紡糸温度は好ましくは1450℃以下、1420℃以下、特に1380℃以下である。  If the glass fiber spinning temperature is high, the damage to the bushing will increase and the life of the bushing will be shortened. In addition, the frequency of bushing replacement and energy costs increase, resulting in high production costs. Therefore, the spinning temperature of the glass fiber of the present invention is preferably 1450° C. or lower, 1420° C. or lower, particularly 1380° C. or lower.
 液相温度が高いと、安定した生産が困難になる。そのため、液相温度は、好ましくは1200℃以下、1190℃以下、1170℃以下、1160℃以下、1150℃以下、1100℃以下、1010℃以下、特に1000℃以下である。 A high liquidus temperature makes stable production difficult. Therefore, the liquidus temperature is preferably 1200° C. or lower, 1190° C. or lower, 1170° C. or lower, 1160° C. or lower, 1150° C. or lower, 1100° C. or lower, 1010° C. or lower, particularly 1000° C. or lower.
 また、液相温度と紡糸温度の差が大きいほど、紡糸時に結晶が流出し難くなり、糸の切断が少なくなるため、生産性が向上する。そのため、液相温度と紡糸温度との差は、好ましくは50℃以上、60℃以上、70℃以上、90℃以上、100℃以上、110℃以上、125℃以上、特に180℃以上である。 In addition, the larger the difference between the liquidus temperature and the spinning temperature, the more difficult it is for the crystals to flow out during spinning, and the fewer the yarn breaks, the higher the productivity. Therefore, the difference between the liquidus temperature and the spinning temperature is preferably 50°C or higher, 60°C or higher, 70°C or higher, 90°C or higher, 100°C or higher, 110°C or higher, 125°C or higher, particularly 180°C or higher.
 誘電率及び誘電正接が低いと、誘電損失が小さくなる。そのため、本発明のガラス繊維の25℃、2.45GHzにおける誘電率は、好ましくは6以下、5.5以下、5以下、特に4.7以下であり、誘電正接は、好ましくは45×10-4以下、40×10-4以下、35×10-4以下、30×10-4以下、25×10-4以下、20×10-4以下、18×10-4以下、特に10×10-4以下である。また、25℃、28GHzにおける誘電率は、好ましくは6以下、5.5以下、5以下、特に4.7以下であり、誘電正接は、好ましくは45×10-4以下、44×10-4以下、43×10-4以下、42×10-4以下、特に41×10-4以下である。さらに、25℃、40GHzにおける誘電率は、好ましくは6以下、5.5以下、5以下、特に4.7以下であり、誘電正接は、好ましくは50×10-4以下、48×10-4以下、45×10-4以下、44×10-4以下、43×10-4以下、42×10-4以下、特に41×10-4以下である。誘電損失が小さくなると、低誘電特性が求められる用途、例えばプリント配線基板や通信機器部品等の樹脂補強材に使用するガラス繊維として好適である。 Low dielectric constant and loss tangent result in low dielectric loss. Therefore, the dielectric constant of the glass fiber of the present invention at 25° C. and 2.45 GHz is preferably 6 or less, 5.5 or less, 5 or less, particularly 4.7 or less, and the dielectric loss tangent is preferably 45×10 − 4 or less, 40×10 −4 or less, 35×10 −4 or less, 30×10 −4 or less, 25×10 −4 or less, 20×10 −4 or less, 18×10 −4 or less, especially 10×10 − 4 or less. Further, the dielectric constant at 25° C. and 28 GHz is preferably 6 or less, 5.5 or less, 5 or less, particularly 4.7 or less, and the dielectric loss tangent is preferably 45×10 −4 or less, 44×10 −4 43×10 −4 or less, 42×10 −4 or less, particularly 41×10 −4 or less. Further, the dielectric constant at 25° C. and 40 GHz is preferably 6 or less, 5.5 or less, 5 or less, particularly 4.7 or less, and the dielectric loss tangent is preferably 50×10 −4 or less, 48×10 −4 45×10 −4 or less, 44×10 −4 or less, 43×10 −4 or less, 42×10 −4 or less, particularly 41×10 −4 or less. When the dielectric loss is small, the glass fiber is suitable for use in applications requiring low dielectric properties, for example, as a resin reinforcing material for printed wiring boards, communication equipment parts, and the like.
 密度は樹脂と混錬した複合材料の重量に影響する特性である。ガラス繊維の密度が高くなると複合材料が重くなり、軽量化が困難になる。そのため、密度は、好ましくは2.55g/cm以下、2.54g/cm以下、特に2.53g/cm以下である。特に下限値は制限されないが、現実的には2.00g/cm以上である。 Density is a property that affects the weight of composites compounded with resins. As the density of glass fibers increases, the weight of the composite material increases, making it difficult to reduce weight. Therefore, the density is preferably 2.55 g/cm 3 or less, 2.54 g/cm 3 or less, especially 2.53 g/cm 3 or less. Although the lower limit is not particularly limited, it is practically 2.00 g/cm 3 or more.
 ヤング率は樹脂と混錬した複合材料の強度に影響する特性である。ヤング率が低すぎると複合材料で十分な強度が得られにくい。一方、ヤング率が高すぎると複合材料の柔軟性が失われ加工し難くなる。そのため、ヤング率の好適な下限範囲は40GPa以上、45GPa以上、特に50GPa以上、好適な上限範囲は90GPa以下、特に85GPa以下である。  Young's modulus is a property that affects the strength of composite materials kneaded with resin. If the Young's modulus is too low, it will be difficult to obtain sufficient strength in the composite material. On the other hand, if the Young's modulus is too high, the composite material loses flexibility and becomes difficult to process. Therefore, the preferred lower limit range of Young's modulus is 40 GPa or higher, 45 GPa or higher, particularly 50 GPa or higher, and the preferred upper limit range is 90 GPa or lower, particularly 85 GPa or lower.
 以下、本発明のガラス繊維の製造方法を説明する。なお、下記の説明ではダイレクトメルト法(DM法)及び間接成形法(MM法:マーブルメルト法)を例に記載するが、本発明のガラス繊維の製造方法は下記に制限されるものではなく、他の方法を採用することもできる。 The method for producing the glass fiber of the present invention will be described below. In the following explanation, the direct melt method (DM method) and the indirect molding method (MM method: marble melt method) are described as examples, but the method for producing the glass fiber of the present invention is not limited to the following. Other methods can also be adopted.
 まず、上記組成となるように原料バッチを調合する。なお、ガラス原料の一部又は全部にカレットを使用してもよい。各成分の含有量を上記の通りとした理由は既述の通りであり、ここでは説明を省略する。 First, a raw material batch is prepared so that it has the above composition. Cullet may be used as part or all of the raw material for glass. The reason why the content of each component is set as above is as described above, and the explanation is omitted here.
 次いで、調合した原料バッチをガラス溶融炉に投入し、ガラス化し、溶融、均質化する。溶融温度は1500~1600℃程度が好適である。 Next, the mixed raw material batch is put into a glass melting furnace, vitrified, melted, and homogenized. A melting temperature of about 1500 to 1600° C. is suitable.
 続いて得られた溶融ガラスをブッシングから連続的に引き出して繊維状に成形して、ガラス繊維を得る(DM法)。又は得られた溶融ガラスを、一旦マーブル状に成形した後、これを再溶融した溶融ガラスをブッシングから連続的に引き出して繊維状に成形して、ガラス繊維を得る(MM法)。 Subsequently, the obtained molten glass is continuously pulled out from the bushing and formed into fibers to obtain glass fibers (DM method). Alternatively, the obtained molten glass is once molded into a marble shape, and then the remelted molten glass is continuously pulled out from the bushing and molded into fibers to obtain glass fibers (MM method).
 必要に応じて、ガラス繊維の表面に、所望の物理化学的な性能を付与する被覆剤を塗布してもよい。具体的にはポリウレタン樹脂、エポキシ樹脂、酸共重合物、変性ポリプロピレン樹脂、ポリエステル樹脂、帯電防止剤、界面活性剤、酸化防止剤、カップリング剤又は潤滑剤を被覆してもよい。 If necessary, the surface of the glass fiber may be coated with a coating that imparts desired physicochemical performance. Specifically, polyurethane resin, epoxy resin, acid copolymer, modified polypropylene resin, polyester resin, antistatic agent, surfactant, antioxidant, coupling agent or lubricant may be coated.
 なお、ガラス繊維の表面処理に使用できるカップリング剤の例として、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン・塩酸塩、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン及びビニルトリエトキシシラン等があり、複合化する樹脂の種類によりこれらを適宜選択してもよい。 Examples of coupling agents that can be used for surface treatment of glass fibers include γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-methacrylic roxypropyltrimethoxysilane, γ-(2-aminoethyl)aminopropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-γ- There are aminopropyltrimethoxysilane/hydrochloride, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, vinyltriethoxysilane, and the like, and these may be appropriately selected depending on the type of resin to be combined.
 本発明のガラス繊維は、樹脂強化用チョップドストランドとして使用するのに好適であるほか、ガラスクロス、ガラスフィラー、ガラスチョップドストランド、ガラスペーパー、不織布、コンティニアスストランドマット、編物、ガラスロービング、ミルドファイバ等、いかなるガラス繊維製品に加工してもよい。 The glass fiber of the present invention is suitable for use as chopped strands for resin reinforcement, and also includes glass cloth, glass filler, glass chopped strands, glass paper, nonwoven fabrics, continuous strand mats, knitted fabrics, glass rovings, milled fibers, and the like. , may be processed into any glass fiber product.
 本発明のガラス繊維は、本発明の目的を阻害しない範囲であれば、本発明以外の繊維と混合して使用することができる。前記の繊維としては、Eガラス繊維及びSガラス繊維等のガラス繊維、並びに炭素繊維及び金属繊維等のガラス繊維以外の繊維が挙げられる。 The glass fiber of the present invention can be used by mixing with fibers other than those of the present invention as long as the object of the present invention is not impaired. The fibers include glass fibers such as E-glass fibers and S-glass fibers, and fibers other than glass fibers such as carbon fibers and metal fibers.
 以下、本発明を実施例に基づいて説明する。 The present invention will be described below based on examples.
 表2~4に本発明の実施例1~17及び比較例1を示す。図1は、実施例1~17のモル比B/Pと25℃、2.45GHzにおける誘電正接tanδの関係を示すグラフである。図2は、実施例1~15のモル比B/Alと25℃、2.45GHzにおける誘電正接tanδの関係を示すグラフである。 Examples 1 to 17 of the present invention and Comparative Example 1 are shown in Tables 2 to 4. FIG. 1 is a graph showing the relationship between the molar ratio B 2 O 3 /P 2 O 5 of Examples 1 to 17 and the dielectric loss tangent tan δ at 25° C. and 2.45 GHz. FIG. 2 is a graph showing the relationship between the molar ratio B 2 O 3 /Al 2 O 3 of Examples 1 to 15 and the dielectric loss tangent tan δ at 25° C. and 2.45 GHz.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表2~4の各試料は、次のようにして調製した。 Each sample in Tables 2-4 was prepared as follows.
 まず、天然原料や化成原料等の複数の各種ガラス原料を合計500gになるように所定量秤量し、溶融後に得られるガラス組成が、表2~4で示すガラス組成となるように調製した。次に、得られた原料混合バッチを300ccの白金ロジウム製の坩堝内に投入した後、間接加熱電気炉内にて大気雰囲気中約1650℃で20時間加熱して溶融ガラスとした。なお、溶融ガラスを均質な状態にするために、耐熱性攪拌棒を使用してバッチを全て坩堝内に投入した1時間後と、流し出す1時間前に溶融ガラスの攪拌を行った。こうして均質な状態とした溶融ガラスをカーボン板状に流し出し、肉厚が5mmになるようロール成形を行い室温まで放冷した。 First, a predetermined amount of various glass raw materials such as natural raw materials and chemical raw materials were weighed to a total of 500 g, and the glass composition obtained after melting was prepared as shown in Tables 2 to 4. Next, the raw material mixed batch thus obtained was charged into a 300 cc platinum-rhodium crucible, and then heated in an indirect heating electric furnace at about 1650° C. for 20 hours in an air atmosphere to form a molten glass. In order to homogenize the molten glass, a heat-resistant stirring rod was used to stir the molten glass 1 hour after the entire batch was put into the crucible and 1 hour before it was poured out. The molten glass thus homogenized was poured into a carbon plate, roll-formed to a thickness of 5 mm, and allowed to cool to room temperature.
 得られた各試料について以下の特性を測定した。 The following characteristics were measured for each sample obtained.
 歪点Ps、徐冷点Ta及び軟化点Tsはファイバーエロンゲーション法で測定した。 The strain point Ps, annealing point Ta and softening point Ts were measured by the fiber elongation method.
 高温粘度104.0dPa・sにおける温度、高温粘度103.0dPa・sにおける温度、高温粘度102.5dPa・sにおける温度及び高温粘度102.0dPa・sにおける温度の測定は、上記の方法で得たガラス試料の一部を予め適正なサイズとなるように破砕し、それを白金製坩堝に投入して再加熱し、融液状態にまで加熱した後に白金球引き上げ法により測定した。なお、紡糸温度は103.0dPa・sの粘度に相当する温度である。 Measurement of the temperature at a high temperature viscosity of 10 4.0 dPa s, the temperature at a high temperature viscosity of 10 3.0 dPa s, the temperature at a high temperature viscosity of 10 2.5 dPa s and the temperature at a high temperature viscosity of 10 2.0 dPa s , A part of the glass sample obtained by the above method is pre-crushed to an appropriate size, put into a platinum crucible and reheated, heated to a molten state, and then subjected to a platinum ball pulling method. It was measured. The spinning temperature is a temperature corresponding to a viscosity of 10 3.0 dPa·s.
 液相温度TLの測定は、上記の方法で得たガラス試料を粉砕し、目開き500μmの篩を通過し、300μmの篩上に堆積した粉末を密度の10倍に相当する質量採取した。採取したガラス粉末を約120mm×20mm×10mmの白金ボートに充填し、線形の温度勾配を有する電気炉に24時間投入した。その後、白金ボートからガラスを取り出し、室温まで冷却した後、顕微鏡観察にて結晶析出箇所を特定した。結晶析出箇所に対応する温度を電気炉の温度勾配グラフから算出し、この温度を液相温度とした。 For the measurement of the liquidus temperature TL, the glass sample obtained by the above method was pulverized, passed through a sieve with an opening of 500 μm, and the mass of the powder deposited on the 300 μm sieve, which was equivalent to 10 times the density, was collected. A platinum boat of about 120 mm×20 mm×10 mm was filled with the collected glass powder, and placed in an electric furnace having a linear temperature gradient for 24 hours. After that, the glass was taken out from the platinum boat, cooled to room temperature, and then crystal precipitation sites were specified by microscopic observation. The temperature corresponding to the crystal deposition location was calculated from the temperature gradient graph of the electric furnace, and this temperature was defined as the liquidus temperature.
 周波数2.45GHzにおける誘電率ε及び誘電正接tanδは、上記の方法で得たガラス試料から3mm×80mm×1mmの寸法に加工したガラス試料片を用いて測定した。測定は、Rohde schwartz社製:ZVL-3のネットワークアナライザー及びAET社製の空洞共振器を用いて室温25℃で計測した。周波数28GHz、及び40GHzにおける誘電率ε及び誘電正接tanδは、上記の方法で得たガラス試料から30mm×40mm×0.15mmの寸法に加工したガラス試料片を用いて測定した。両面はポリッシュ研磨で鏡面仕上げにした。測定は、28GHz用及び40GHz用の共振器とベクトルアナライザーを用いて、スプリットシリンダー法により、室温25℃で計測した。 The dielectric constant ε and dielectric loss tangent tan δ at a frequency of 2.45 GHz were measured using a glass sample piece processed to dimensions of 3 mm × 80 mm × 1 mm from the glass sample obtained by the above method. The measurement was performed at a room temperature of 25° C. using a ZVL-3 network analyzer manufactured by Rohde Schwartz and a cavity resonator manufactured by AET. The dielectric constant ε and dielectric loss tangent tan δ at frequencies of 28 GHz and 40 GHz were measured using a glass sample piece of 30 mm×40 mm×0.15 mm processed from the glass sample obtained by the above method. Both sides were polished to a mirror finish. Measurement was performed at room temperature of 25° C. by the split cylinder method using resonators for 28 GHz and 40 GHz and a vector analyzer.
 密度ρは、上記の方法で得たガラス試料を約10g切り出し、アルキメデス法によって測定した。 About 10 g of the glass sample obtained by the above method was cut out and the density ρ was measured by the Archimedes method.
 ヤング率の測定は上記の方法で得たガラス試料から40mm×20mm×2mmに加工した試料片を用いて行った。なお、このガラス試料片の厚さ2mmの両表面は、1200番のアルミナ粉を水で溶いた研磨液で研磨した。このガラス試料片は、測定前に精密アニールを行い、歪を除去した。サンプルに金を蒸着させ(1500Å以上)、サンプルの幅、長さ、厚み、重量を測定した。測定は自由共振式弾性率測定装置 日本テクノプラス(株)製 JE-RT3を用いて行った。 The Young's modulus was measured using a sample piece of 40 mm × 20 mm × 2 mm processed from the glass sample obtained by the above method. Both surfaces of this glass sample piece having a thickness of 2 mm were polished with a polishing liquid prepared by dissolving No. 1200 alumina powder in water. This glass sample piece was precision annealed to remove strain before measurement. The samples were deposited with gold (>1500 Å) and the width, length, thickness and weight of the samples were measured. The measurement was performed using a free resonance elastic modulus measuring device JE-RT3 manufactured by Technoplus Japan Co., Ltd.
 表2~4から分かるように、本発明の実施例ガラスは△Xが1.67以下であり、△Xが1.94と大きい比較例1と比べて25℃、2.45GHzでの誘電率及び誘電正接が低く、優れた低誘電特性を有していた。さらに本発明の実施例ガラスは28GHz及び40GHzの高周波域での誘電特性も優れていたが、比較例1は高周波域での誘電率及び誘電正接が高すぎて測定できなかった。また、本発明の実施例ガラスはいずれも紡糸温度が1436℃以下と低くなっていた。 As can be seen from Tables 2 to 4, the example glasses of the present invention have a ΔX of 1.67 or less, and the dielectric constant at 25° C. and 2.45 GHz compared to Comparative Example 1, which has a large ΔX of 1.94. And the dielectric loss tangent was low, and it had excellent low dielectric properties. Further, the example glasses of the present invention had excellent dielectric properties in the high frequency range of 28 GHz and 40 GHz, but the dielectric constant and dielectric loss tangent in the high frequency range of Comparative Example 1 were too high to be measured. Further, the spinning temperature of all the example glasses of the present invention was as low as 1436° C. or lower.
 図1より、本発明の実施例ガラスでは、B/Pの値が大きいほど誘電正接tanδが小さくなる傾向があった。 As can be seen from FIG. 1, in the example glasses of the present invention, the larger the value of B 2 O 3 /P 2 O 5 is, the smaller the dielectric loss tangent tan δ tends to be.
 図2より、本発明の実施例ガラスでは、B/Alの値が大きいほど誘電正接tanδが小さくなる傾向があった。 As can be seen from FIG. 2, in the example glasses of the present invention, the larger the value of B 2 O 3 /Al 2 O 3 is, the smaller the dielectric loss tangent tan δ tends to be.
 本発明のガラス繊維は、繊維強化樹脂成型品として、スマートフォン、タブレット、ノートパソコン、携帯音楽プレイヤー並びに携帯ゲーム機等の携帯電子機器の筐体及び部材の他に、車載用ミリ波レーダーや車両外装部材、車両内装部材、車両エンジン周り部材、電子機器筐体、電子部品などミリ波帯で使用される通信用部材として好適に使用することができる。なお、本発明のガラス繊維の組成は、ガラス基板、ガラス管、ガラス容器等の組成に転用しても構わない。 The glass fiber of the present invention is used as a fiber-reinforced resin molded product, in addition to housings and members of mobile electronic devices such as smartphones, tablets, laptop computers, mobile music players, and mobile game machines, as well as in-vehicle millimeter wave radars and vehicle exteriors. It can be suitably used as a communication member used in the millimeter wave band, such as a member, a vehicle interior member, a vehicle engine peripheral member, an electronic device housing, and an electronic component. The composition of the glass fiber of the present invention may be applied to the composition of glass substrates, glass tubes, glass containers, and the like.

Claims (12)

  1.  ガラス組成として、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有することを特徴とするガラス繊維。 The glass composition is SiO 2 22.5 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, P 2 O 5 0 to 60%, and Fe 2 O 3 in mass %. 0.001-3% and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%.
  2.  ガラスの構成成分の酸素とそれ以外の酸化物元素との電気陰性度の差分の平均値△Χが1.4~1.8であることを特徴とする請求項1に記載のガラス繊維。 The glass fiber according to claim 1, wherein the average value ΔΧ of the difference in electronegativity between oxygen, which is a constituent of the glass, and other oxide elements is 1.4 to 1.8.
  3.  25℃、2.45GHzにおける誘電率が6以下であり、誘電正接が45×10-4以下であることを特徴とする請求項1又は2に記載のガラス繊維。 3. The glass fiber according to claim 1, wherein the dielectric constant at 25° C. and 2.45 GHz is 6 or less, and the dielectric loss tangent is 45×10 −4 or less.
  4.  25℃、28GHzにおける誘電率が6以下であり、誘電正接が45×10-4以下である請求項1~3の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 3, which has a dielectric constant of 6 or less at 25°C and 28 GHz and a dielectric loss tangent of 45×10 -4 or less.
  5.  25℃、40GHzにおける誘電率が6以下であり、誘電正接が50×10-4以下である請求項1~4の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 4, which has a dielectric constant of 6 or less at 25°C and 40 GHz and a dielectric loss tangent of 50 × 10 -4 or less.
  6.  紡糸温度が1450℃以下であることを特徴とする請求項1~5の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 5, characterized in that the spinning temperature is 1450°C or less.
  7.  ヤング率が40GPa以上であることを特徴とする請求項1~6の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 6, which has a Young's modulus of 40 GPa or more.
  8.  Pに対するBの含有量のモル比B/Pが0~50であることを特徴とする請求項1~7の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 7, wherein the molar ratio B 2 O 3 /P 2 O 5 of the content of B 2 O 3 to P 2 O 5 is 0-50.
  9.  Alに対するBの含有量のモル比B/Alが0~20であることを特徴とする請求項1~8の何れかに記載のガラス繊維。 The glass fiber according to any one of claims 1 to 8, wherein the molar ratio B 2 O 3 /Al 2 O 3 of the content of B 2 O 3 to Al 2 O 3 is 0-20.
  10.  ガラス組成として、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有するガラス繊維の製造方法であって、溶融ガラスをブッシングから連続的に引き出して繊維状に成形することを特徴とするガラス繊維の製造方法。 The glass composition is SiO 2 22.5 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, P 2 O 5 0 to 60%, and Fe 2 O 3 in mass %. A method for producing glass fibers containing 0.001-3% Li 2 O + Na 2 O + K 2 O + MgO + CaO + BaO + SrO 0-9%, characterized in that molten glass is continuously pulled out from a bushing and formed into fibers. A method for producing glass fibers.
  11.  ガラス組成として、質量%で、SiO 22.5~45%、Al 0.1~30%、B 0~45%、P 0~60%、Fe 0.001~3%及びLiO+NaO+KO+MgO+CaO+BaO+SrO 0~9%を含有することを特徴とするガラス。 The glass composition is SiO 2 22.5 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, P 2 O 5 0 to 60%, and Fe 2 O 3 in mass %. 0.001-3% and Li 2 O+Na 2 O+K 2 O+MgO+CaO+BaO+SrO 0-9%.
  12.  ガラス組成として、質量%で、SiO 24~45%、Al 0.1~30%、B 0~45%、P 5~60%、Fe 0.001~3%及びLiO+NaO+KO 0~3%を含有することを特徴とするガラス繊維。
     
    The glass composition is SiO 2 24 to 45%, Al 2 O 3 0.1 to 30%, B 2 O 3 0 to 45%, P 2 O 5 5 to 60%, Fe 2 O 3 0.0%, in mass %. 001-3% and Li 2 O+Na 2 O+K 2 O 0-3%.
PCT/JP2022/019716 2021-05-13 2022-05-09 Glass fiber, and method for producing same WO2022239747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023521018A JPWO2022239747A1 (en) 2021-05-13 2022-05-09

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-081593 2021-05-13
JP2021081593 2021-05-13
JP2021-207991 2021-12-22
JP2021207991 2021-12-22

Publications (1)

Publication Number Publication Date
WO2022239747A1 true WO2022239747A1 (en) 2022-11-17

Family

ID=84029603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019716 WO2022239747A1 (en) 2021-05-13 2022-05-09 Glass fiber, and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2022239747A1 (en)
TW (1) TW202311192A (en)
WO (1) WO2022239747A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296342A (en) * 1985-05-31 1987-05-02 Hoya Corp Production of phosphate-type heat-absorbing hard glass
JPH04228455A (en) * 1990-06-01 1992-08-18 Isover Saint Gobain Mineral fiber decomposable by physiological medium and heat-insulating, noise-shielding article containing same
JP2017508705A (en) * 2014-02-19 2017-03-30 コーニング インコーポレイテッド Antibacterial glass composition, glass containing the same, and polymer article
WO2020256143A1 (en) * 2019-06-21 2020-12-24 日本板硝子株式会社 Glass filler and production method thereof, and resin composition containing glass filler
WO2020256142A1 (en) * 2019-06-21 2020-12-24 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and glass fiber production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296342A (en) * 1985-05-31 1987-05-02 Hoya Corp Production of phosphate-type heat-absorbing hard glass
JPH04228455A (en) * 1990-06-01 1992-08-18 Isover Saint Gobain Mineral fiber decomposable by physiological medium and heat-insulating, noise-shielding article containing same
JP2017508705A (en) * 2014-02-19 2017-03-30 コーニング インコーポレイテッド Antibacterial glass composition, glass containing the same, and polymer article
WO2020256143A1 (en) * 2019-06-21 2020-12-24 日本板硝子株式会社 Glass filler and production method thereof, and resin composition containing glass filler
WO2020256142A1 (en) * 2019-06-21 2020-12-24 日本板硝子株式会社 Glass composition, glass fiber, glass cloth, and glass fiber production method

Also Published As

Publication number Publication date
JPWO2022239747A1 (en) 2022-11-17
TW202311192A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7410450B2 (en) Glass fiber and its manufacturing method
TWI406831B (en) Low dielectric glass and fiber glass for electronic applications
US11479498B2 (en) Glass composition and glass fiber having the same
CN102718406B (en) The glass fiber with low dielectric constant that a kind of wire-drawing temperature is low
CN110028249A (en) A kind of dielectric glass fibre component and its manufacturing method
JP2022522986A (en) Low dielectric loss glass for electronic devices
JP2019112246A (en) Glass fiber and method for producing the same
WO2022239747A1 (en) Glass fiber, and method for producing same
CN107298531A (en) Glass fiber with low dielectric constant and preparation method thereof
TW202118743A (en) Low-dielectric glass composition, low-dielectric glass and low-dielectric glass fiber being low in dielectric constant and dielectric tangent loss
JP2023051778A (en) Glass composition, glass, glass fiber and product containing the glass fiber
JPH092839A (en) Glass fiber having low dielectric loss tangent
JP7348602B1 (en) glass fiber
WO2023176689A1 (en) Glass fibers
WO2023176688A1 (en) Glass fibers
CN104761149A (en) Low-wire-drawing-temperature low-dielectric-constant glass fiber
JP2023138225A (en) Glass fibers
CN117700113A (en) Glass fiber composition for high-frequency high-speed substrate and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023521018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE