WO2022239678A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2022239678A1
WO2022239678A1 PCT/JP2022/019358 JP2022019358W WO2022239678A1 WO 2022239678 A1 WO2022239678 A1 WO 2022239678A1 JP 2022019358 W JP2022019358 W JP 2022019358W WO 2022239678 A1 WO2022239678 A1 WO 2022239678A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
annular oil
orbiting scroll
scroll
pressure
Prior art date
Application number
PCT/JP2022/019358
Other languages
French (fr)
Japanese (ja)
Inventor
将弘 麻生
義幸 二上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280034366.3A priority Critical patent/CN117295895A/en
Publication of WO2022239678A1 publication Critical patent/WO2022239678A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present disclosure particularly relates to scroll compressors used in refrigerating devices such as cooling and heating air conditioners and refrigerators, or heat pump water heaters.
  • Patent Literature 1 discloses a scroll compressor.
  • this type of scroll compressor generates a force (hereinafter referred to as “push-back force”) that tends to pull the fixed scroll and the orbiting scroll apart from each other when compressing the refrigerant.
  • push-back force a force
  • refrigerant or oil leaks from the compression chamber, which deteriorates the volumetric efficiency and compression efficiency, thereby lowering the efficiency of the compressor. Therefore, a back pressure chamber is formed on the back surface of the fixed scroll or the orbiting scroll.
  • the back pressure chamber holds a back pressure for generating a force (hereinafter referred to as "pressing force”) that presses the fixed scroll or the orbiting scroll against the mating scroll.
  • the pressure in the back pressure chamber is set to an arbitrary pressure intermediate between the suction pressure and the discharge pressure.
  • This pressing force prevents the fixed scroll and the orbiting scroll from being separated from each other, thereby reducing a decrease in compressor efficiency due to leakage of refrigerant or oil.
  • an annular oil supply groove communicating with the back pressure chamber is formed in the sliding surface of the fixed scroll end plate in contact with the orbiting scroll end plate, and one end of the annular oil supply groove is open.
  • a plurality of oil grooves having a shape or a linear shape are arranged at substantially equal pitches.
  • the present disclosure provides a scroll compressor that achieves both suppression of compressor efficiency deterioration due to leakage of refrigerant and oil and reduction of sliding loss.
  • a scroll compressor includes a closed container and a compression mechanism section disposed in the closed container and compressing a refrigerant, the compression mechanism section including a fixed scroll and an orbiting scroll, and the fixed scroll has a fixed scroll end plate and a spiral fixed scroll wrap rising from the fixed scroll end plate, and the orbiting scroll has an orbiting scroll end plate and a spiral orbiting scroll wrap rising from the orbiting scroll end plate.
  • a plurality of compression chambers are formed between the fixed scroll wrap and the orbiting scroll wrap by meshing the fixed scroll wrap and the orbiting scroll wrap, and the compression chambers are positioned outside the orbiting scroll wrap; an inner compression chamber positioned inside the orbiting scroll wrap; a suction portion positioned on the outermost periphery of the compression chamber for guiding suction pressure refrigerant into the compression chamber; a discharge portion located on the innermost circumference and discharging discharge pressure refrigerant from the inside of the compression chamber to the inside of the closed container, wherein the outer compression chamber closes the refrigerant more than the inner compression chamber;
  • An annular oil groove is formed in the sliding surface of the fixed scroll end plate in contact with the orbiting scroll end plate, and the pressure in the annular oil groove is any pressure between the suction pressure and the discharge pressure.
  • the sealing portion surrounded by the inner peripheral edge of the annular oil supply groove, the outer compression chamber, and the outer peripheral edge of the suction portion is provided, and when the outer compression chamber completes the confinement of the refrigerant is a crank angle of 0°, the shortest distance from the point where the fixed scroll wrap and the orbiting scroll wrap are in contact at the outermost periphery to the inner peripheral edge of the annular oil supply groove when the crank angle ⁇ is greater than 0° (Compression chamber seal length) is L ⁇ , and at the crank angle of 0°, the shortest distance from the point where the fixed scroll wrap and the orbiting scroll wrap are in contact at the outermost circumference to the inner peripheral edge of the annular oil supply groove; Assuming that the shortest distance (suction portion seal length) from the outer peripheral edge of the suction portion to the inner peripheral edge of the annular oil supply groove is Ls, the Ls is larger than the minimum L ⁇ . .
  • the scroll compressor according to the present disclosure can reduce leakage of refrigerant and oil by ensuring a seal length at the suction portion where the pressure difference from the annular oil groove is large. For this reason, it is possible to achieve both suppression of reduction in compressor efficiency due to deterioration in volumetric efficiency and reduction in sliding loss.
  • a scroll compressor had a fixed scroll end plate and an orbiting scroll end plate in order to reduce sliding loss between the fixed scroll end plate and the orbiting scroll end plate.
  • An annular oil groove communicating with the back pressure chamber is formed in the sliding surface of the orbiting scroll end plate, and a plurality of arc-shaped or linear oil grooves with one end open are arranged in the annular oil groove at substantially equal pitches. was set up. As a result, the sliding surface between the fixed scroll end plate and the orbiting scroll end plate is well lubricated, and the sliding area can be reduced.
  • the present disclosure provides a scroll compressor that achieves both suppression of compressor efficiency deterioration due to leakage of refrigerant and oil and reduction of sliding loss.
  • Embodiment 1 (Embodiment 1) Embodiment 1 will be described below with reference to FIGS. 1 to 5. FIG. 1
  • FIG. 1 is a longitudinal sectional view of the scroll compressor 100
  • FIG. 2 is an enlarged longitudinal sectional view of the essential parts of the scroll compressor
  • FIG. 4 is an explanatory diagram of the suction portion seal length Ls
  • FIG. 5 is an explanatory diagram of the compression chamber seal length L ⁇ .
  • the scroll compressor 100 includes a closed container 110, a compression mechanism section 120 arranged in the closed container 110, and a motor section 130 that drives the compression mechanism section 120.
  • Oil 140 is stored in the bottom of the .
  • a suction pipe 112 and a discharge pipe 114 are attached to the sealed container 110 .
  • suction pipe 112 is attached to the side surface of closed container 110 .
  • the discharge pipe 114 is attached to the upper surface of the sealed container 110 .
  • the compression mechanism section 120 includes a main bearing member 122 , a fixed scroll 124 and an orbiting scroll 126 .
  • the main bearing member 122 is fixed in the sealed container 110 by welding or shrink fitting.
  • the fixed scroll 124 includes a fixed scroll end plate 124a and a spiral fixed scroll wrap 124b rising from the fixed scroll end plate 124a, and is bolted onto the main bearing member 122.
  • the orbiting scroll 126 includes an orbiting scroll end plate 126 a and a spiral orbiting scroll wrap 126 b rising from the orbiting scroll end plate 126 a , and is arranged above the main bearing member 122 so as to face the fixed scroll 124 .
  • a plurality of compression chambers 128 are formed by meshing the fixed scroll wrap 124b and the orbiting scroll wrap 126b.
  • a muffler 121 is provided on the back surface of the fixed scroll 124 , and a discharge pressure chamber 127 is formed between the muffler 121 and the back surface of the fixed scroll 124 .
  • Inside the orbiting scroll 126 there are provided a connection path 126c and a supply path 126d for guiding the oil 140 from the bottom of the sealed container 110 to the compression chamber 128.
  • a sealing member 116 is provided on the back surface of the orbiting scroll end plate 126a.
  • a high-pressure region 118 that retains the discharge pressure is formed inside the seal member 116
  • a back pressure chamber 129 that retains the back pressure that presses the orbiting scroll 126 against the fixed scroll 124 is formed outside the seal member 116 . formed.
  • a rotation restraining mechanism 123 such as an Oldham's ring is provided between the main bearing member 122 and the orbiting scroll 126 to prevent the orbiting scroll 126 from rotating and to guide the orbiting scroll.
  • the motor unit 130 includes a stator 132 fixed to the sealed container 110 by welding or shrink fitting, and a rotor 134 containing permanent magnets arranged on the inner peripheral side of the stator 132 .
  • a crankshaft 136 is fixed to the rotor 134 .
  • Crankshaft 136 is supported by main bearing member 122 and sub-bearing member 138 provided near the bottom of sealed container 110 .
  • the crankshaft 136 includes a main shaft portion 136a and an eccentric shaft portion 136b formed eccentrically with respect to the main shaft portion 136a.
  • the eccentric shaft portion 136b is fitted in a turning bearing 126f provided on a boss portion 126e on the back surface of the turning scroll 126.
  • the crankshaft 136 has an oil supply hole 136c extending therethrough in the axial direction.
  • the oil pump 142 is arranged at a position where the suction port surely enters the oil 140 .
  • compression chamber 128 is formed by fixed scroll wrap 124b and orbiting scroll wrap 126b.
  • the compression chamber 128 includes an outer compression chamber 128a located outside the orbiting scroll wrap 126b and an inner compression chamber 128b located inside the orbiting scroll wrap 126b.
  • the outermost periphery of the compression chamber 128 has a suction portion 128 c that guides the suction pressure refrigerant into the compression chamber 128 .
  • the innermost circumference of the compression chamber 128 has a discharge portion 128 d that discharges the discharge pressure refrigerant from the inside of the compression chamber 128 to the inside of the sealed container 110 .
  • the outer compression chamber 128a has a larger volume than the inner compression chamber 128b when the refrigerant is completely confined.
  • An annular oil supply groove 124 c is provided in the outer peripheral portion of the fixed scroll 124 to communicate with the back pressure chamber 129 to supply the coolant and the oil 140 .
  • a seal portion 125 is formed in a range of the fixed scroll 124 surrounded by the inner peripheral edge 124d of the annular oil supply groove 124c and the outer peripheral edge 128e of the compression chamber 128 so as to be in sliding contact with the orbiting scroll end plate 126a.
  • An inner peripheral edge 124d of the annular oil supply groove 124c is formed as a circle.
  • the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c has a crank angle of 0° when the outer compression chamber 128a has completely confined the refrigerant, as shown in FIG.
  • the crank angle is 0°
  • Ls be the shortest distance (suction portion seal length) to the inner peripheral edge 124d of the groove 124c. Further, as shown in FIG. 5, the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c is located at a crank angle ⁇ of ⁇ >0° because the fixed scroll wrap 124b and the orbiting scroll wrap 126b are in contact at the outermost periphery.
  • L ⁇ be the shortest distance (compression chamber seal length) to the inner peripheral edge 124d of the annular oil supply groove 124c. In this case, it is eccentric from the fixed scroll center 124e toward the intake portion 128c so that Ls is larger than the minimum L ⁇ (L ⁇ min).
  • the pressure of the oil 140 supplied to the compression mechanism portion 120 is substantially the same as the pressure of the refrigerant discharged from the scroll compressor 100 and also serves as a back pressure source for the orbiting scroll 126 .
  • a part of the oil 140 is guided to the back pressure chamber 129 by the pressure difference when the connection path 126c faces the outside of the seal member 116 (back pressure chamber 129).
  • connection path 126 c faces the inner side of the seal member 116 (high pressure area 118 )
  • no pressure difference occurs and the oil 140 does not flow into the back pressure chamber 129 .
  • the oil 140 led to the back pressure chamber 129 lubricates the sliding surfaces of the fixed scroll end plate 124a and the orbiting scroll end plate 126a through the annular oil supply groove 124c.
  • the remaining oil 140 flows into the fitting portion between the eccentric shaft portion 136b and the orbiting bearing 126f and the fitting portion between the main shaft portion 136a and the main bearing member 122, lubricates each portion, and then flows to the bottom portion of the closed container 110. return.
  • the eccentric shaft portion 136b rotates eccentrically with respect to the main shaft portion 136a, causing the orbiting scroll 126 to orbit.
  • the orbiting scroll 126 is eccentrically driven by the eccentric shaft portion 136 b and orbitally moved by the rotation restraint mechanism 123 , thereby changing the volume of the compression chamber 128 .
  • Refrigerant sucked from the suction pipe 112 is guided to the compression chamber 128 via the suction portion 128c.
  • the refrigerant sucked into the compression chamber 128 moves from the outer circumference toward the center while reducing its volume, and is pressurized.
  • the annular oil supply groove 124c is enlarged.
  • leakage of the refrigerant or oil 140 is likely to occur at the suction portion 128c, which is located on the outermost periphery of the compression chamber 128 and has a large pressure difference with the inside of the annular oil groove 124c. May result in reduced efficiency.
  • the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c is eccentric from the fixed scroll center 124e toward the intake portion 128c so that L ⁇ min ⁇ Ls. Therefore, L ⁇ min exists in a region opposite to the eccentric direction where the difference between the pressure in annular oil groove 124c and the pressure in compression chamber 128 is small. That is, the seal length is large in the suction portion 128c where the difference between the pressure in the annular oil groove 124c and the pressure in the compression chamber 128 is small, and the seal length is becomes smaller.
  • the leakage amount of refrigerant or oil 140 is proportional to the pressure difference and inversely proportional to the seal length. As a result, leakage of the refrigerant and oil 140 from the suction portion 128 c can be reduced without increasing the amount of leakage of the refrigerant and oil 140 from the compression chamber 128 .
  • the refrigerant that reaches the discharge pressure is discharged from the innermost discharge portion 128 d of the compression chamber 128 into the discharge pressure chamber 127 .
  • the refrigerant discharged into the discharge pressure chamber 127 fills the inside of the sealed container 110 and is discharged out of the sealed container 110 through the discharge pipe 114 .
  • center 124f of inner peripheral edge 124d of annular oil supply groove 124c is eccentric from fixed scroll center 124e toward suction portion 128c.
  • the seal length is increased at the suction portion 128c, which is located on the outermost periphery of the compression chamber 128 and has a large pressure difference with the annular oil groove 124c, and the pressure difference between the annular oil groove 124c and the compression chamber 128 is small.
  • the seal length can be reduced in areas.
  • annular oil supply groove 124c is enlarged in order to reduce the sliding area between the fixed scroll end plate 124a and the orbiting scroll end plate 126a, leakage of refrigerant and oil 140 can be reliably reduced. As a result, it is possible to achieve both suppression of deterioration in compressor efficiency due to deterioration in volumetric efficiency and compression efficiency, and reduction in sliding loss.
  • FIG. 6 is an arrow cut through the fixed scroll 224 and orbiting scroll 126 along line AA in FIG. It is a cross-sectional view.
  • a scroll compressor 200 according to the second embodiment differs from the scroll compressor 100 according to the first embodiment only in a fixed scroll 224, and other configurations and functions are different. And the effects are the same as those of the first embodiment, so the description thereof is omitted.
  • the fixed scroll wrap 124b, the inner compression chamber 128b, the suction portion 128c, and the outer peripheral edge 128f of the suction portion described in the first embodiment are replaced by the fixed scroll wrap 224b, the inner compression chamber 228b, and the suction portion in the second embodiment.
  • An annular oil supply groove 224 c is provided in the outer peripheral portion of the fixed scroll 224 to communicate with the back pressure chamber 129 to supply the coolant and the oil 140 .
  • a seal portion 225 is formed in a range surrounded by an inner peripheral edge 224d of the annular oil supply groove 224c of the fixed scroll 224 and an outer peripheral edge 228e of the compression chamber 228 so as to be in sliding contact with the orbiting scroll end plate 226a.
  • An inner peripheral edge 224d of the annular oil supply groove 224c is composed of a plurality of arcs having different curvatures, and L ⁇ min ⁇ Ls.
  • inner peripheral edge 224d of annular oil supply groove 224c is composed of a plurality of arcs having different curvatures. Therefore, over the entire compression chamber 228, in a range where the pressure difference between the annular oil groove 224c and the compression chamber 228 is large, the seal length is increased so that the pressure difference between the annular oil groove 224c and the compression chamber 228 is increased. In a small range, the seal length can be reduced.
  • the scroll compressor 200 reliably suppresses leakage of the refrigerant and the oil 140, and further increases the sliding area between the fixed scroll end plate 224a and the orbiting scroll end plate 126a as compared with the scroll compressor 100 according to the first embodiment. can be reduced. Therefore, scroll compressor 200 can further reduce sliding loss than scroll compressor 100 according to the first embodiment.
  • the scroll compressor according to the present disclosure can achieve both suppression of reduction in compressor efficiency and reduction in sliding loss, and can useful for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

In a scroll compressor according to the present disclosure, when a crank angle of 0° is set to the time when refrigerant confinement is completed, the shortest distance Ls is greater than the minimum shortest distance Lα, Lα being, for the crank angle α > 0°, the shortest distance (compression chamber seal length) from a point where a fixed scroll wrap 124b and an orbiting scroll wrap 126b are in contact with each other on the outermost circumference to an inner circumferential edge 124d of an annular lubrication groove 124c, the shortest distance Ls being, for a crank angle of 0°, the shortest distance from the point where the fixed scroll wrap 124b and an orbiting scroll wrap 126b are in contact with each other on the outermost circumference to the inner circumferential edge 124d of the annular lubrication groove 124c and the shortest distance (intake part seal length) from an outer circumferential edge 128f of an intake part 128c to the inner circumferential edge 124d of the annular lubrication groove 124c. This arrangement provides a scroll compressor capable of both suppressing lowered compressor efficiency due to refrigerant and oil leakage and also reducing sliding loss.

Description

スクロール圧縮機scroll compressor
 本開示は、特に、冷暖房空気調和機および冷蔵庫等の冷凍装置、または、ヒートポンプ式の給湯装置等に用いられるスクロール圧縮機に関するものである。 The present disclosure particularly relates to scroll compressors used in refrigerating devices such as cooling and heating air conditioners and refrigerators, or heat pump water heaters.
 特許文献1は、スクロール圧縮機を開示する。一般にこの種のスクロール圧縮機は、冷媒を圧縮する際に、固定スクロールと旋回スクロールとを互いに引き離そうとする力(以下、「押し返し力」とする)が発生する。両スクロールが引き離された場合、圧縮室内から冷媒やオイルが漏れることで、体積効率や圧縮効率の悪化等により、圧縮機効率が低下する。そのため、固定スクロール、もしくは、旋回スクロールの背面には、背圧室が形成されている。背圧室は、固定スクロール、もしくは、旋回スクロールを相手側スクロールへ押し付ける力(以下、「押し付け力」とする)を発生させるための背圧を保持する。背圧室内の圧力は、吸入圧と吐出圧の中間の任意の圧力に設定されている。この押し付け力によって、固定スクロールと旋回スクロールが引き離されることを抑制し、冷媒やオイルの漏れによる圧縮機効率低下を低減する。しかしながら、押し付け力が過大となると、固定スクロール鏡板と旋回スクロール鏡板との摺動による損失が増大し、圧縮機効率が低下する。
 そこで、特許文献1に開示されているスクロール圧縮機は、固定スクロール鏡板の旋回スクロール鏡板と接する摺動面に背圧室と連通する環状給油溝を形成し、環状給油溝に一端が開口した円弧形状もしくは直線形状等からなる複数の油溝を略等ピッチで配設する。そうすることで、固定スクロール鏡板と旋回スクロール鏡板との摺動損失を低減している。
Patent Literature 1 discloses a scroll compressor. In general, this type of scroll compressor generates a force (hereinafter referred to as "push-back force") that tends to pull the fixed scroll and the orbiting scroll apart from each other when compressing the refrigerant. When both scrolls are pulled apart, refrigerant or oil leaks from the compression chamber, which deteriorates the volumetric efficiency and compression efficiency, thereby lowering the efficiency of the compressor. Therefore, a back pressure chamber is formed on the back surface of the fixed scroll or the orbiting scroll. The back pressure chamber holds a back pressure for generating a force (hereinafter referred to as "pressing force") that presses the fixed scroll or the orbiting scroll against the mating scroll. The pressure in the back pressure chamber is set to an arbitrary pressure intermediate between the suction pressure and the discharge pressure. This pressing force prevents the fixed scroll and the orbiting scroll from being separated from each other, thereby reducing a decrease in compressor efficiency due to leakage of refrigerant or oil. However, if the pressing force becomes excessive, loss due to sliding between the fixed scroll end plate and the orbiting scroll end plate increases, and the efficiency of the compressor decreases.
Therefore, in the scroll compressor disclosed in Patent Document 1, an annular oil supply groove communicating with the back pressure chamber is formed in the sliding surface of the fixed scroll end plate in contact with the orbiting scroll end plate, and one end of the annular oil supply groove is open. A plurality of oil grooves having a shape or a linear shape are arranged at substantially equal pitches. By doing so, the sliding loss between the fixed scroll end plate and the orbiting scroll end plate is reduced.
特開平7-208356号公報JP-A-7-208356
 本開示は、冷媒やオイルの漏れによる圧縮機効率低下の抑制と摺動損失低減の両立を実現したスクロール圧縮機を提供する。 The present disclosure provides a scroll compressor that achieves both suppression of compressor efficiency deterioration due to leakage of refrigerant and oil and reduction of sliding loss.
 本開示におけるスクロール圧縮機は、密閉容器と、前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部とを備え、前記圧縮機構部は、固定スクロールと、旋回スクロールとを備え、前記固定スクロールは、固定スクロール鏡板と、前記固定スクロール鏡板から立ち上がる渦巻状の固定スクロールラップとを有し、前記旋回スクロールは、旋回スクロール鏡板と、前記旋回スクロール鏡板から立ち上がる渦巻状の旋回スクロールラップとを有し、前記固定スクロールラップと前記旋回スクロールラップとを噛み合わせることで、前記固定スクロールラップと前記旋回スクロールラップの間に複数の圧縮室が形成され、前記圧縮室は、前記旋回スクロールラップの外側に位置する外側圧縮室と、前記旋回スクロールラップの内側に位置する内側圧縮室と、前記圧縮室の最外周に位置し、前記圧縮室の内部へと吸入圧冷媒を導く吸入部と、前記圧縮室の最内周に位置し、前記圧縮室の前記内部から前記密閉容器の内部へと吐出圧冷媒を吐出する吐出部とを有し、前記外側圧縮室は、前記内側圧縮室よりも前記冷媒の閉じ込み完了時の容積が大きく、前記固定スクロール鏡板の前記旋回スクロール鏡板と接する摺動面に環状給油溝が形成され、前記環状給油溝内の圧力は、吸入圧と吐出圧の間の任意の圧力となるスクロール圧縮機において、前記環状給油溝の内周縁と前記外側圧縮室と前記吸入部の外周縁とで囲まれたシール部を備え、前記外側圧縮室が前記冷媒の閉じ込みを完了した時点をクランク角0°としたとき、前記クランク角αがα>0°において、前記固定スクロールラップと前記旋回スクロールラップが最外周で接している点から前記環状給油溝の前記内周縁までの最短距離(圧縮室シール長)をLαとし、前記クランク角0°において、前記固定スクロールラップと前記旋回スクロールラップが最外周で接している点から前記環状給油溝の前記内周縁までの前記最短距離および、前記吸入部の前記外周縁から前記環状給油溝の前記内周縁までの最短距離(吸入部シール長)をLsとすると、最小の前記Lαよりも前記Lsの方が大きくなるように構成している。 A scroll compressor according to the present disclosure includes a closed container and a compression mechanism section disposed in the closed container and compressing a refrigerant, the compression mechanism section including a fixed scroll and an orbiting scroll, and the fixed scroll has a fixed scroll end plate and a spiral fixed scroll wrap rising from the fixed scroll end plate, and the orbiting scroll has an orbiting scroll end plate and a spiral orbiting scroll wrap rising from the orbiting scroll end plate. a plurality of compression chambers are formed between the fixed scroll wrap and the orbiting scroll wrap by meshing the fixed scroll wrap and the orbiting scroll wrap, and the compression chambers are positioned outside the orbiting scroll wrap; an inner compression chamber positioned inside the orbiting scroll wrap; a suction portion positioned on the outermost periphery of the compression chamber for guiding suction pressure refrigerant into the compression chamber; a discharge portion located on the innermost circumference and discharging discharge pressure refrigerant from the inside of the compression chamber to the inside of the closed container, wherein the outer compression chamber closes the refrigerant more than the inner compression chamber; An annular oil groove is formed in the sliding surface of the fixed scroll end plate in contact with the orbiting scroll end plate, and the pressure in the annular oil groove is any pressure between the suction pressure and the discharge pressure. In the scroll compressor, the sealing portion surrounded by the inner peripheral edge of the annular oil supply groove, the outer compression chamber, and the outer peripheral edge of the suction portion is provided, and when the outer compression chamber completes the confinement of the refrigerant is a crank angle of 0°, the shortest distance from the point where the fixed scroll wrap and the orbiting scroll wrap are in contact at the outermost periphery to the inner peripheral edge of the annular oil supply groove when the crank angle α is greater than 0° (Compression chamber seal length) is Lα, and at the crank angle of 0°, the shortest distance from the point where the fixed scroll wrap and the orbiting scroll wrap are in contact at the outermost circumference to the inner peripheral edge of the annular oil supply groove; Assuming that the shortest distance (suction portion seal length) from the outer peripheral edge of the suction portion to the inner peripheral edge of the annular oil supply groove is Ls, the Ls is larger than the minimum Lα. .
 本開示におけるスクロール圧縮機は、環状給油溝内の圧力との差が大きい吸入部におけるシール長を確保することで、冷媒やオイルの漏れを低減できる。このため、体積効率の悪化による圧縮機効率低下の抑制と摺動損失低減を両立することができる。 The scroll compressor according to the present disclosure can reduce leakage of refrigerant and oil by ensuring a seal length at the suction portion where the pressure difference from the annular oil groove is large. For this reason, it is possible to achieve both suppression of reduction in compressor efficiency due to deterioration in volumetric efficiency and reduction in sliding loss.
実施の形態1におけるスクロール圧縮機の縦断面図Longitudinal sectional view of the scroll compressor in Embodiment 1 同スクロール圧縮機の要部拡大縦断面図Enlarged vertical cross-sectional view of the main part of the scroll compressor 実施の形態1における固定スクロールと旋回スクロールを図1のA-A線で切断した矢視断面図A cross-sectional view of the fixed scroll and orbiting scroll in Embodiment 1 taken along line AA in FIG. 吸入部シール長Lsの説明図Explanatory drawing of suction part seal length Ls 圧縮室シール長Lαの説明図Explanatory drawing of compression chamber seal length Lα 実施の形態2における固定スクロールと旋回スクロールを図1のA-A線で切断した矢視断面図A cross-sectional view of the fixed scroll and orbiting scroll in Embodiment 2 taken along the line AA in FIG.
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、スクロール圧縮機は、特許文献1に記載されているように、固定スクロール鏡板と旋回スクロール鏡板との摺動損失を低減するため、固定スクロール鏡板の旋回スクロール鏡板との摺動面に背圧室と連通する環状給油溝を形成し、この環状給油溝に一端が開口した円弧形状もしくは直線形状等からなる複数の油溝を略等ピッチで配設していた。これにより、固定スクロール鏡板と旋回スクロール鏡板との摺動面の潤滑が良好になるとともに、摺動面積を縮小することができていた。
しかしながら、固定スクロール鏡板と旋回スクロール鏡板との摺動面において、背圧室から吸入部、もしくは、背圧室から圧縮室への冷媒やオイルの漏れは、特に考慮されていなかった。そのため、圧縮室の最外周に位置し、環状給油溝内の圧力との差が大きい吸入部において、特に、圧縮室内からの冷媒やオイルの漏れが生じ、圧縮機効率が低下する可能性があった。
 発明者らはこのような課題を見出し、本開示の主題を構成するに至った。
(Knowledge, etc. on which this disclosure is based)
At the time when the inventors came up with the present disclosure, as described in Patent Document 1, a scroll compressor had a fixed scroll end plate and an orbiting scroll end plate in order to reduce sliding loss between the fixed scroll end plate and the orbiting scroll end plate. An annular oil groove communicating with the back pressure chamber is formed in the sliding surface of the orbiting scroll end plate, and a plurality of arc-shaped or linear oil grooves with one end open are arranged in the annular oil groove at substantially equal pitches. was set up. As a result, the sliding surface between the fixed scroll end plate and the orbiting scroll end plate is well lubricated, and the sliding area can be reduced.
However, no particular consideration has been given to leakage of refrigerant or oil from the back pressure chamber to the suction portion or from the back pressure chamber to the compression chamber on the sliding surface between the fixed scroll end plate and the orbiting scroll end plate. As a result, refrigerant and oil leak from the compression chamber, particularly at the suction section, which is located at the outermost periphery of the compression chamber and has a large pressure difference from the pressure inside the annular oil groove, and this may reduce the efficiency of the compressor. rice field.
The inventors found such problems and came to constitute the subject of the present disclosure.
 そこで、本開示は、冷媒やオイルの漏れによる圧縮機効率低下の抑制と摺動損失低減の両立を実現したスクロール圧縮機を提供する。 Therefore, the present disclosure provides a scroll compressor that achieves both suppression of compressor efficiency deterioration due to leakage of refrigerant and oil and reduction of sliding loss.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted.
It should be noted that the accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure and are not intended to limit the claimed subject matter thereby.
 (実施の形態1)
 以下図1から図5を用いて、実施の形態1を説明する。
(Embodiment 1)
Embodiment 1 will be described below with reference to FIGS. 1 to 5. FIG.
 [1-1.構成]
 図1は、スクロール圧縮機100の縦断面図であり、図2は、同スクロール圧縮機の要部拡大縦断面図、図3は、固定スクロール124と旋回スクロール126を図1のA-A線で切断した矢視断面図、図4は、吸入部シール長Lsの説明図、図5は、圧縮室シール長Lαの説明図である。
[1-1. Constitution]
1 is a longitudinal sectional view of the scroll compressor 100, FIG. 2 is an enlarged longitudinal sectional view of the essential parts of the scroll compressor, and FIG. 4 is an explanatory diagram of the suction portion seal length Ls, and FIG. 5 is an explanatory diagram of the compression chamber seal length Lα.
 図1に示すように、スクロール圧縮機100は、密閉容器110と、密閉容器110内に配置されている圧縮機構部120と、圧縮機構部120を駆動するモータ部130とを備え、密閉容器110の底部にはオイル140が貯留されている。
 密閉容器110には、吸入管112と吐出管114が取り付けられている。本実施の形態では、吸入管112は密閉容器110の側面に取り付けられる。吐出管114は、密閉容器110の上面に取り付けられている。
As shown in FIG. 1, the scroll compressor 100 includes a closed container 110, a compression mechanism section 120 arranged in the closed container 110, and a motor section 130 that drives the compression mechanism section 120. Oil 140 is stored in the bottom of the .
A suction pipe 112 and a discharge pipe 114 are attached to the sealed container 110 . In this embodiment, suction pipe 112 is attached to the side surface of closed container 110 . The discharge pipe 114 is attached to the upper surface of the sealed container 110 .
 図2に示すように、圧縮機構部120は、主軸受部材122と、固定スクロール124と、旋回スクロール126を備えている。
 主軸受部材122は、密閉容器110内に、溶接や焼き嵌めによって固定する。固定スクロール124は、固定スクロール鏡板124aと、固定スクロール鏡板124aから立ち上がる渦巻状の固定スクロールラップ124bとを備え、主軸受部材122上にボルト止めされている。旋回スクロール126は、旋回スクロール鏡板126aと、旋回スクロール鏡板126aから立ち上がる渦巻状の旋回スクロールラップ126bとを備え、固定スクロール124に対向するように、主軸受部材122の上部に配置されている。固定スクロールラップ124bと旋回スクロールラップ126bとを噛み合わせることで複数の圧縮室128が形成されている。固定スクロール124の背面には、マフラ121が設けられており、マフラ121と固定スクロール124の背面との間に吐出圧室127が形成されている。旋回スクロール126の内部には、密閉容器110の底部からオイル140を圧縮室128に導く接続路126cと供給路126dとを備えている。旋回スクロール鏡板126aの背面には、シール部材116が備えられている。これにより、シール部材116の内側には、吐出圧を保持する高圧領域118が形成され、シール部材116の外側には、旋回スクロール126を固定スクロール124に押し付ける背圧を保持する背圧室129が形成されている。主軸受部材122と旋回スクロール126との間には、旋回スクロール126の自転を防止し、円軌道運動するように案内するオルダムリングのような自転拘束機構123が設けられている。
As shown in FIG. 2 , the compression mechanism section 120 includes a main bearing member 122 , a fixed scroll 124 and an orbiting scroll 126 .
The main bearing member 122 is fixed in the sealed container 110 by welding or shrink fitting. The fixed scroll 124 includes a fixed scroll end plate 124a and a spiral fixed scroll wrap 124b rising from the fixed scroll end plate 124a, and is bolted onto the main bearing member 122. As shown in FIG. The orbiting scroll 126 includes an orbiting scroll end plate 126 a and a spiral orbiting scroll wrap 126 b rising from the orbiting scroll end plate 126 a , and is arranged above the main bearing member 122 so as to face the fixed scroll 124 . A plurality of compression chambers 128 are formed by meshing the fixed scroll wrap 124b and the orbiting scroll wrap 126b. A muffler 121 is provided on the back surface of the fixed scroll 124 , and a discharge pressure chamber 127 is formed between the muffler 121 and the back surface of the fixed scroll 124 . Inside the orbiting scroll 126, there are provided a connection path 126c and a supply path 126d for guiding the oil 140 from the bottom of the sealed container 110 to the compression chamber 128. As shown in FIG. A sealing member 116 is provided on the back surface of the orbiting scroll end plate 126a. As a result, a high-pressure region 118 that retains the discharge pressure is formed inside the seal member 116 , and a back pressure chamber 129 that retains the back pressure that presses the orbiting scroll 126 against the fixed scroll 124 is formed outside the seal member 116 . formed. Between the main bearing member 122 and the orbiting scroll 126, a rotation restraining mechanism 123 such as an Oldham's ring is provided to prevent the orbiting scroll 126 from rotating and to guide the orbiting scroll.
 図1に示すように、モータ部130は、密閉容器110に、溶接や焼き嵌めによって固定した固定子132と、固定子132の内周側に配置された永久磁石を内蔵した回転子134とを備えている。回転子134には、クランクシャフト136が固定されている。
 クランクシャフト136は、主軸受部材122と、密閉容器110の底部付近に設けられた副軸受部材138とで軸支されている。クランクシャフト136は、主軸部136aと、主軸部136aに対し偏心して形成された偏心軸部136bとを備えている。偏心軸部136bは、旋回スクロール126の背面のボス部126eに設けられた旋回軸受126fに嵌合されている。クランクシャフト136は、内部に給油穴136cが軸方向に貫通して設けられており、主軸部136aは、副軸受部材138にボルト止め固定されたオイルポンプ142に嵌合されている。
 オイルポンプ142は、吸い込み口が確実にオイル140内に入る位置に配置されている。
As shown in FIG. 1, the motor unit 130 includes a stator 132 fixed to the sealed container 110 by welding or shrink fitting, and a rotor 134 containing permanent magnets arranged on the inner peripheral side of the stator 132 . I have it. A crankshaft 136 is fixed to the rotor 134 .
Crankshaft 136 is supported by main bearing member 122 and sub-bearing member 138 provided near the bottom of sealed container 110 . The crankshaft 136 includes a main shaft portion 136a and an eccentric shaft portion 136b formed eccentrically with respect to the main shaft portion 136a. The eccentric shaft portion 136b is fitted in a turning bearing 126f provided on a boss portion 126e on the back surface of the turning scroll 126. As shown in FIG. The crankshaft 136 has an oil supply hole 136c extending therethrough in the axial direction.
The oil pump 142 is arranged at a position where the suction port surely enters the oil 140 .
 図3に示すように、圧縮室128は、固定スクロールラップ124bと旋回スクロールラップ126bにより形成される。圧縮室128は、旋回スクロールラップ126bの外側に位置する外側圧縮室128aと、旋回スクロールラップ126bの内側に位置する内側圧縮室128bとを含んでいる。圧縮室128の最外周には、圧縮室128の内部へと吸入圧冷媒を導く吸入部128cを有している。圧縮室128の最内周には、圧縮室128の内部から密閉容器110の内部へと吐出圧冷媒を吐出する吐出部128dを有している。
 外側圧縮室128aは内側圧縮室128bよりも冷媒の閉じ込み完了時の容積が大きい。
 固定スクロール124の外周部には、背圧室129と連通することで、冷媒とオイル140が供給される環状給油溝124cが設けられている。
 固定スクロール124の、環状給油溝124cの内周縁124dと圧縮室128の外周縁128eで囲まれた範囲には、旋回スクロール鏡板126aと摺接するシール部125が形成されている。
As shown in FIG. 3, compression chamber 128 is formed by fixed scroll wrap 124b and orbiting scroll wrap 126b. The compression chamber 128 includes an outer compression chamber 128a located outside the orbiting scroll wrap 126b and an inner compression chamber 128b located inside the orbiting scroll wrap 126b. The outermost periphery of the compression chamber 128 has a suction portion 128 c that guides the suction pressure refrigerant into the compression chamber 128 . The innermost circumference of the compression chamber 128 has a discharge portion 128 d that discharges the discharge pressure refrigerant from the inside of the compression chamber 128 to the inside of the sealed container 110 .
The outer compression chamber 128a has a larger volume than the inner compression chamber 128b when the refrigerant is completely confined.
An annular oil supply groove 124 c is provided in the outer peripheral portion of the fixed scroll 124 to communicate with the back pressure chamber 129 to supply the coolant and the oil 140 .
A seal portion 125 is formed in a range of the fixed scroll 124 surrounded by the inner peripheral edge 124d of the annular oil supply groove 124c and the outer peripheral edge 128e of the compression chamber 128 so as to be in sliding contact with the orbiting scroll end plate 126a.
 環状給油溝124cの内周縁124dは円で構成されている。例えば、環状給油溝124cの内周縁124dの中心124fは、図4に示すように、外側圧縮室128aが冷媒の閉じ込みを完了した時、クランク角を0°とした。クランク角が0°において、固定スクロールラップ124bと旋回スクロールラップ126bが最外周で接している点から環状給油溝124cの内周縁124dまでの最短距離、および、吸入部128cの外周縁128fから環状給油溝124cの内周縁124dまでの最短距離(吸入部シール長)をLsとする。また、環状給油溝124cの内周縁124dの中心124fは、図5に示すように、クランク角αがα>0°において、固定スクロールラップ124bと旋回スクロールラップ126bが最外周で接している点から環状給油溝124cの内周縁124dまでの最短距離(圧縮室シール長)をLαとする。この場合、最小のLα(Lαmin)よりもLsの方が大きくなるように、固定スクロール中心124eから吸入部128c側に偏心している。 An inner peripheral edge 124d of the annular oil supply groove 124c is formed as a circle. For example, the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c has a crank angle of 0° when the outer compression chamber 128a has completely confined the refrigerant, as shown in FIG. When the crank angle is 0°, the shortest distance from the contact point of the fixed scroll wrap 124b and the orbiting scroll wrap 126b at the outermost periphery to the inner peripheral edge 124d of the annular oil supply groove 124c, and the annular oil supply from the outer peripheral edge 128f of the suction portion 128c. Let Ls be the shortest distance (suction portion seal length) to the inner peripheral edge 124d of the groove 124c. Further, as shown in FIG. 5, the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c is located at a crank angle α of α>0° because the fixed scroll wrap 124b and the orbiting scroll wrap 126b are in contact at the outermost periphery. Let Lα be the shortest distance (compression chamber seal length) to the inner peripheral edge 124d of the annular oil supply groove 124c. In this case, it is eccentric from the fixed scroll center 124e toward the intake portion 128c so that Ls is larger than the minimum Lα (Lαmin).
 [1-2.動作]
 以上のように構成されたスクロール圧縮機100について、以下その動作、作用を説明する。
 モータ部130に通電されると、固定子132に発生する磁界により回転子134はクランクシャフト136とともに回転する。
 クランクシャフト136の回転に伴い、オイルポンプ142が駆動し、密閉容器110の底部に貯留されているオイル140が圧力条件や運転速度に関係なく、確実に吸い上げられる。これによって、オイル切れの心配が解消される。オイルポンプ142によって吸い上げられたオイル140は、給油穴136cを通じて、圧縮機構部120に供給される。なお、オイルポンプ142でオイル140を吸い上げる前後に、オイルフィルタ等でオイル140から異物を除去すると、圧縮機構部120に異物が混入することを防ぐことができ、信頼性の向上を図ることができる。
 圧縮機構部120に供給されるオイル140の圧力は、スクロール圧縮機100から吐出される冷媒の圧力とほぼ同等であり、旋回スクロール126に対する背圧源ともなる。オイル140の一部は、接続路126cがシール部材116の外側(背圧室129)に臨んでいるとき、圧力差により背圧室129に導かれる。逆に、接続路126cがシール部材116の内側(高圧領域118)に臨んでいるときは、圧力差が発生せず、背圧室129にはオイル140が流れない。背圧室129に導かれたオイル140は、環状給油溝124cを通じて固定スクロール鏡板124aと旋回スクロール鏡板126aとの摺動面を潤滑する。残りのオイル140は、偏心軸部136bと旋回軸受126fとの嵌合部、主軸部136aと主軸受部材122との嵌合部に流れ込み、それぞれの部分を潤滑した後、密閉容器110の底部へ戻る。
[1-2. motion]
The operation and effects of the scroll compressor 100 configured as described above will be described below.
When the motor section 130 is energized, the magnetic field generated in the stator 132 causes the rotor 134 to rotate together with the crankshaft 136 .
As the crankshaft 136 rotates, the oil pump 142 is driven, and the oil 140 stored in the bottom of the sealed container 110 is reliably sucked up regardless of pressure conditions and operating speed. This eliminates the worry of running out of oil. Oil 140 sucked up by oil pump 142 is supplied to compression mechanism portion 120 through oil supply hole 136c. By removing foreign matter from the oil 140 with an oil filter or the like before and after the oil pump 142 sucks up the oil 140, it is possible to prevent foreign matter from entering the compression mechanism portion 120, thereby improving reliability. .
The pressure of the oil 140 supplied to the compression mechanism portion 120 is substantially the same as the pressure of the refrigerant discharged from the scroll compressor 100 and also serves as a back pressure source for the orbiting scroll 126 . A part of the oil 140 is guided to the back pressure chamber 129 by the pressure difference when the connection path 126c faces the outside of the seal member 116 (back pressure chamber 129). Conversely, when the connection path 126 c faces the inner side of the seal member 116 (high pressure area 118 ), no pressure difference occurs and the oil 140 does not flow into the back pressure chamber 129 . The oil 140 led to the back pressure chamber 129 lubricates the sliding surfaces of the fixed scroll end plate 124a and the orbiting scroll end plate 126a through the annular oil supply groove 124c. The remaining oil 140 flows into the fitting portion between the eccentric shaft portion 136b and the orbiting bearing 126f and the fitting portion between the main shaft portion 136a and the main bearing member 122, lubricates each portion, and then flows to the bottom portion of the closed container 110. return.
 また、クランクシャフト136の回転に伴い、偏心軸部136bは主軸部136aに対して偏心回転し、旋回スクロール126を旋回させる。
 旋回スクロール126は、偏心軸部136bにより偏心駆動し、自転拘束機構123によって円軌道運動することで、圧縮室128の容積を変化させる。
As the crankshaft 136 rotates, the eccentric shaft portion 136b rotates eccentrically with respect to the main shaft portion 136a, causing the orbiting scroll 126 to orbit.
The orbiting scroll 126 is eccentrically driven by the eccentric shaft portion 136 b and orbitally moved by the rotation restraint mechanism 123 , thereby changing the volume of the compression chamber 128 .
 吸入管112から吸入される冷媒は、吸入部128cを経由して、圧縮室128に導かれる。圧縮室128に吸入された冷媒は、外周側から中央に向かって容積を減じながら移動し、昇圧される。この時、固定スクロール鏡板124aと旋回スクロール鏡板126aとの摺動面積を縮小するために、環状給油溝124cを拡大させる。そうすると、圧縮室128の最外周に位置し、環状給油溝124c内との圧力差が大きい吸入部128cにおいて、冷媒やオイル140の漏れが生じやすくなり、体積効率や圧縮効率の悪化等による圧縮機効率の低下を招くことがある。 Refrigerant sucked from the suction pipe 112 is guided to the compression chamber 128 via the suction portion 128c. The refrigerant sucked into the compression chamber 128 moves from the outer circumference toward the center while reducing its volume, and is pressurized. At this time, in order to reduce the sliding area between the fixed scroll end plate 124a and the orbiting scroll end plate 126a, the annular oil supply groove 124c is enlarged. As a result, leakage of the refrigerant or oil 140 is likely to occur at the suction portion 128c, which is located on the outermost periphery of the compression chamber 128 and has a large pressure difference with the inside of the annular oil groove 124c. May result in reduced efficiency.
 本実施の形態においては、Lαmin<Lsとなるように、環状給油溝124cの内周縁124dの中心124fは、固定スクロール中心124eから吸入部128c側に偏心している。そのため、Lαminは、偏心方向と逆側の、環状給油溝124c内の圧力と圧縮室128内の圧力との差が小さい領域に存在する。つまり、環状給油溝124c内の圧力との差が大きい吸入部128cにおいては、シール長が大きく、環状給油溝124c内の圧力と圧縮室128内の圧力との差が小さい領域においては、シール長が小さくなる。冷媒やオイル140の漏れ量は圧力差に比例し、シール長に反比例する。これにより、圧縮室128における冷媒やオイル140の漏れ量を増加させることなく、吸入部128cでの冷媒やオイル140の漏れを低減することができる。 In the present embodiment, the center 124f of the inner peripheral edge 124d of the annular oil supply groove 124c is eccentric from the fixed scroll center 124e toward the intake portion 128c so that Lαmin<Ls. Therefore, Lαmin exists in a region opposite to the eccentric direction where the difference between the pressure in annular oil groove 124c and the pressure in compression chamber 128 is small. That is, the seal length is large in the suction portion 128c where the difference between the pressure in the annular oil groove 124c and the pressure in the compression chamber 128 is small, and the seal length is becomes smaller. The leakage amount of refrigerant or oil 140 is proportional to the pressure difference and inversely proportional to the seal length. As a result, leakage of the refrigerant and oil 140 from the suction portion 128 c can be reduced without increasing the amount of leakage of the refrigerant and oil 140 from the compression chamber 128 .
 そして、吐出圧に達した冷媒は、圧縮室128の最内周の吐出部128dから吐出圧室127に吐出される。吐出圧室127に吐出された冷媒は、密閉容器110の内部に充満し、吐出管114から密閉容器110外に吐出される。 Then, the refrigerant that reaches the discharge pressure is discharged from the innermost discharge portion 128 d of the compression chamber 128 into the discharge pressure chamber 127 . The refrigerant discharged into the discharge pressure chamber 127 fills the inside of the sealed container 110 and is discharged out of the sealed container 110 through the discharge pipe 114 .
 [1-3.効果等]
 以上のように、本実施の形態において、スクロール圧縮機100は、環状給油溝124cの内周縁124dの中心124fを、固定スクロール中心124eから吸入部128c側に偏心させている。これにより、圧縮室128の最外周に位置し、環状給油溝124c内との圧力差が大きい吸入部128cにおいてシール長を大きくし、環状給油溝124c内と圧縮室128内との圧力差が小さい領域においてシール長を小さくすることができる。更に、固定スクロール鏡板124aと旋回スクロール鏡板126aとの摺動面積を縮小するために、環状給油溝124cを拡大させても、確実に冷媒やオイル140の漏れを低減することができる。この結果、体積効率や圧縮効率の悪化等による圧縮機効率低下の抑制と摺動損失低減を両立することができる。
[1-3. effects, etc.]
As described above, in the present embodiment, in scroll compressor 100, center 124f of inner peripheral edge 124d of annular oil supply groove 124c is eccentric from fixed scroll center 124e toward suction portion 128c. As a result, the seal length is increased at the suction portion 128c, which is located on the outermost periphery of the compression chamber 128 and has a large pressure difference with the annular oil groove 124c, and the pressure difference between the annular oil groove 124c and the compression chamber 128 is small. The seal length can be reduced in areas. Further, even if the annular oil supply groove 124c is enlarged in order to reduce the sliding area between the fixed scroll end plate 124a and the orbiting scroll end plate 126a, leakage of refrigerant and oil 140 can be reliably reduced. As a result, it is possible to achieve both suppression of deterioration in compressor efficiency due to deterioration in volumetric efficiency and compression efficiency, and reduction in sliding loss.
 (実施の形態2)
 以下図6を用いて、実施の形態2を説明する。
(Embodiment 2)
Embodiment 2 will be described below with reference to FIG.
 [2-1.構成]
 図6は、圧縮室228の最外周の外側圧縮室228a内の圧力が環状給油溝224c内の圧力と等しくなるときの固定スクロール224と旋回スクロール126を図1のA-A線で切断した矢視断面図である。
 実施の形態2のスクロール圧縮機200は、図6に示すように、実施の形態1に係るスクロール圧縮機100と比較すると、固定スクロール224のみが実施の形態1と異なり、これ以外の構成、作用および効果は実施の形態1と同様であるため、その説明を省略する。なお、実施の形態1で説明した固定スクロールラップ124b、内側圧縮室128b、吸入部128c、吸入部の外周縁128fについては、実施の形態2では、固定スクロールラップ224b、内側圧縮室228b、吸入部228c、吸入部の外周縁228fとして図示している。
 固定スクロール224の外周部には、背圧室129と連通することで、冷媒とオイル140が供給される環状給油溝224cが設けられている。
 固定スクロール224の環状給油溝224cの内周縁224dと、圧縮室228の外周縁228eで囲まれた範囲には、旋回スクロール鏡板226aと摺接するシール部225が形成されている。
 環状給油溝224cの内周縁224dは異なる曲率を持つ複数の円弧から構成されており、Lαmin<Lsとなっている。また、環状給油溝224c内の圧力が圧縮室228内の圧力より高い範囲では、クランク角αが進む(大きくなる)につれ、Lαが漸減する。また、環状給油溝224c内の圧力が圧縮室228内の圧力より低い範囲では、クランク角αが進む(大きくなる)につれ、Lαが漸増している。
[2-1. Constitution]
FIG. 6 is an arrow cut through the fixed scroll 224 and orbiting scroll 126 along line AA in FIG. It is a cross-sectional view.
As shown in FIG. 6, a scroll compressor 200 according to the second embodiment differs from the scroll compressor 100 according to the first embodiment only in a fixed scroll 224, and other configurations and functions are different. And the effects are the same as those of the first embodiment, so the description thereof is omitted. Note that the fixed scroll wrap 124b, the inner compression chamber 128b, the suction portion 128c, and the outer peripheral edge 128f of the suction portion described in the first embodiment are replaced by the fixed scroll wrap 224b, the inner compression chamber 228b, and the suction portion in the second embodiment. 228c, shown as outer peripheral edge 228f of the inlet.
An annular oil supply groove 224 c is provided in the outer peripheral portion of the fixed scroll 224 to communicate with the back pressure chamber 129 to supply the coolant and the oil 140 .
A seal portion 225 is formed in a range surrounded by an inner peripheral edge 224d of the annular oil supply groove 224c of the fixed scroll 224 and an outer peripheral edge 228e of the compression chamber 228 so as to be in sliding contact with the orbiting scroll end plate 226a.
An inner peripheral edge 224d of the annular oil supply groove 224c is composed of a plurality of arcs having different curvatures, and Lαmin<Ls. Further, in a range in which the pressure in the annular oil groove 224c is higher than the pressure in the compression chamber 228, Lα gradually decreases as the crank angle α advances (increases). Further, in a range in which the pressure in the annular oil supply groove 224c is lower than the pressure in the compression chamber 228, Lα gradually increases as the crank angle α advances (increases).
 [2-2.効果等]
 以上のように、本実施の形態において、スクロール圧縮機200は、環状給油溝224c内の圧力が圧縮室228内の圧力より高い範囲では、クランク角αが進む(大きくなる)につれ、Lαが漸減する。また、環状給油溝224c内の圧力が圧縮室228内の圧力より低い範囲では、クランク角αが進む(大きくなる)につれ、Lαが漸増している。このようなスクロール圧縮機200は、実施の形態1に係るスクロール圧縮機100と同様に、確実に冷媒やオイル140の漏れを抑制しつつ、固定スクロール鏡板224aと旋回スクロール鏡板126aとの摺動面積を縮小することができる。このため、体積効率や圧縮効率の悪化等による圧縮機効率低下の抑制と摺動損失低減を両立することができる。
 さらに、スクロール圧縮機200は、環状給油溝224cの内周縁224dが異なる曲率を持つ複数の円弧から構成されている。よって、圧縮室228全域に亘って、環状給油溝224c内と圧縮室228内との圧力差が大きい範囲では、シール長を大きくし、環状給油溝224c内と圧縮室228内との圧力差が小さい範囲ではシール長を小さくすることができる。したがって、スクロール圧縮機200は、確実に冷媒やオイル140の漏れを抑制しつつ、実施の形態1に係るスクロール圧縮機100よりもさらに、固定スクロール鏡板224aと旋回スクロール鏡板126aとの摺動面積を縮小することができる。そのため、スクロール圧縮機200は、実施の形態1に係るスクロール圧縮機100よりもさらに、摺動損失を低減できる。
[2-2. effects, etc.]
As described above, in the scroll compressor 200, in the range where the pressure in the annular oil groove 224c is higher than the pressure in the compression chamber 228, Lα gradually decreases as the crank angle α progresses (increases). do. Further, in a range in which the pressure in the annular oil supply groove 224c is lower than the pressure in the compression chamber 228, Lα gradually increases as the crank angle α advances (increases). Like the scroll compressor 100 according to the first embodiment, the scroll compressor 200 as described above reliably suppresses the leakage of the refrigerant and the oil 140 while reducing the sliding area between the fixed scroll end plate 224a and the orbiting scroll end plate 126a. can be reduced. For this reason, it is possible to achieve both suppression of reduction in compressor efficiency due to deterioration in volumetric efficiency and compression efficiency, and reduction in sliding loss.
Further, in scroll compressor 200, inner peripheral edge 224d of annular oil supply groove 224c is composed of a plurality of arcs having different curvatures. Therefore, over the entire compression chamber 228, in a range where the pressure difference between the annular oil groove 224c and the compression chamber 228 is large, the seal length is increased so that the pressure difference between the annular oil groove 224c and the compression chamber 228 is increased. In a small range, the seal length can be reduced. Therefore, the scroll compressor 200 reliably suppresses leakage of the refrigerant and the oil 140, and further increases the sliding area between the fixed scroll end plate 224a and the orbiting scroll end plate 126a as compared with the scroll compressor 100 according to the first embodiment. can be reduced. Therefore, scroll compressor 200 can further reduce sliding loss than scroll compressor 100 according to the first embodiment.
 本開示に係るスクロール圧縮機は、圧縮機効率低下の抑制と摺動損失低減を両立することができ、空気調和装置、ヒートポンプ式の給湯機、温水暖房装置や、冷凍機などの冷凍サイクル装置等に有用である。 The scroll compressor according to the present disclosure can achieve both suppression of reduction in compressor efficiency and reduction in sliding loss, and can useful for
 100、200 スクロール圧縮機
 110 密閉容器
 112 吸入管
 114 吐出管
 116 シール部材
 118 高圧領域
 120 圧縮機構部
 121 マフラ
 122 主軸受部材
 123 自転拘束機構
 124、224 固定スクロール
 124a、224a 固定スクロール鏡板
 124b、224b 固定スクロールラップ
 124c、224c 環状給油溝
 124d、224d 環状給油溝の内周縁
 124e 固定スクロール中心
 124f 環状給油溝の内周縁の中心
 125、225 シール部
 126 旋回スクロール
 126a、226a 旋回スクロール鏡板
 126b 旋回スクロールラップ
 126c 接続路
 126d 供給路
 126e ボス部
 126f 旋回軸受
 127 吐出圧室
 128、228 圧縮室
 128a、228a 外側圧縮室
 128b、228b 内側圧縮室
 128c、228c 吸入部
 128d 吐出部
 128e、228e 圧縮室の外周縁
 128f、228f 吸入部の外周縁
 129 背圧室
 130 モータ部
 132 固定子
 134 回転子
 136 クランクシャフト
 136a 主軸部
 136b 偏心軸部
 136c 給油穴
 138 副軸受部材
 140 オイル
 142 オイルポンプ
Reference Signs List 100, 200 scroll compressor 110 sealed container 112 suction pipe 114 discharge pipe 116 seal member 118 high pressure region 120 compression mechanism portion 121 muffler 122 main bearing member 123 rotation restraint mechanism 124, 224 fixed scroll 124a, 224a fixed scroll end plate 124b, 224b fixed Scroll wrap 124c, 224c Annular oil groove 124d, 224d Inner peripheral edge of annular oil groove 124e Fixed scroll center 124f Center of inner peripheral edge of annular oil groove 125, 225 Seal portion 126 Orbiting scroll 126a, 226a Orbiting scroll end plate 126b Orbiting scroll wrap 126c Connection Path 126d Supply path 126e Boss portion 126f Orbital bearing 127 Discharge pressure chambers 128, 228 Compression chambers 128a, 228a Outer compression chambers 128b, 228b Inner compression chambers 128c, 228c Suction portion 128d Discharge portions 128e, 228e Peripheral edges of compression chambers 128f, 228f Outer peripheral edge of intake portion 129 Back pressure chamber 130 Motor portion 132 Stator 134 Rotor 136 Crankshaft 136a Main shaft portion 136b Eccentric shaft portion 136c Oil supply hole 138 Sub-bearing member 140 Oil 142 Oil pump

Claims (5)

  1.  密閉容器と、前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部とを備え、
     前記圧縮機構部は、固定スクロールと、旋回スクロールとを備え、
     前記固定スクロールは、固定スクロール鏡板と、前記固定スクロール鏡板から立ち上がる渦巻状の固定スクロールラップとを有し、
     前記旋回スクロールは、旋回スクロール鏡板と、前記旋回スクロール鏡板から立ち上がる渦巻状の旋回スクロールラップとを有し、
     前記固定スクロールラップと前記旋回スクロールラップとを噛み合わせることで、前記固定スクロールラップと前記旋回スクロールラップの間に複数の圧縮室が形成され、
     前記圧縮室は、前記旋回スクロールラップの外側に位置する外側圧縮室と、前記旋回スクロールラップの内側に位置する内側圧縮室と、前記圧縮室の最外周に位置し、前記圧縮室の内部へと吸入圧冷媒を導く吸入部と、前記圧縮室の最内周に位置し、前記圧縮室の前記内部から前記密閉容器の内部へと吐出圧冷媒を吐出する吐出部とを有し、前記外側圧縮室は、前記内側圧縮室よりも前記冷媒の閉じ込み完了時の容積が大きく、
     前記固定スクロール鏡板の前記旋回スクロール鏡板と接する摺動面に環状給油溝が形成され、前記環状給油溝内の圧力は、吸入圧と吐出圧の間の任意の圧力となるスクロール圧縮機において、
     前記環状給油溝の内周縁と前記外側圧縮室と前記吸入部の外周縁とで囲まれたシール部を備え、
     前記外側圧縮室が前記冷媒の閉じ込みを完了した時点をクランク角0°としたとき、前記クランク角αがα>0°において、前記固定スクロールラップと前記旋回スクロールラップが前記最外周で接している点から前記環状給油溝の前記内周縁までの最短距離(圧縮室シール長)をLαとし、前記クランク角0°において、前記固定スクロールラップと前記旋回スクロールラップが前記最外周で接している前記点から前記環状給油溝の前記内周縁までの前記最短距離および、前記吸入部の前記外周縁から前記環状給油溝の前記内周縁までの最短距離(吸入部シール長)をLsとすると、最小の前記Lαよりも前記Lsの方が大きくなることを特徴とするスクロール圧縮機。
    A closed container, and a compression mechanism arranged in the closed container for compressing a refrigerant,
    The compression mechanism includes a fixed scroll and an orbiting scroll,
    The fixed scroll has a fixed scroll end plate and a spiral fixed scroll wrap rising from the fixed scroll end plate,
    The orbiting scroll has an orbiting scroll end plate and a spiral orbiting scroll wrap rising from the orbiting scroll end plate,
    A plurality of compression chambers are formed between the fixed scroll wrap and the orbiting scroll wrap by meshing the fixed scroll wrap and the orbiting scroll wrap,
    The compression chambers include an outer compression chamber positioned outside the orbiting scroll wrap, an inner compression chamber positioned inside the orbiting scroll wrap, and an inner compression chamber positioned on the outermost periphery of the compression chamber and extending into the compression chamber. a suction section for guiding suction pressure refrigerant; and a discharge section positioned at the innermost periphery of the compression chamber for discharging discharge pressure refrigerant from the inside of the compression chamber to the inside of the closed container. The chamber has a volume larger than that of the inner compression chamber when the refrigerant is completely confined, and
    A scroll compressor in which an annular oil groove is formed in a sliding surface of the fixed scroll end plate in contact with the orbiting scroll end plate, and the pressure in the annular oil groove is an arbitrary pressure between suction pressure and discharge pressure,
    a seal portion surrounded by the inner peripheral edge of the annular oil supply groove, the outer compression chamber, and the outer peripheral edge of the suction portion;
    When the crank angle α is 0° when the outer compression chamber completes confinement of the refrigerant, the fixed scroll wrap and the orbiting scroll wrap are in contact with each other at the outermost periphery when the crank angle α is >0°. Lα is the shortest distance (compression chamber seal length) from the point where the oil supply groove is located to the inner peripheral edge of the annular oil supply groove. Ls is the shortest distance from the point to the inner peripheral edge of the annular oil supply groove and the shortest distance (suction portion seal length) from the outer peripheral edge of the suction portion to the inner peripheral edge of the annular oil supply groove. A scroll compressor, wherein the Ls is larger than the Lα.
  2.  前記環状給油溝の前記内周縁が、円で構成されており、前記環状給油溝の前記内周縁の中心が、前記固定スクロールの鏡板中心から偏心していることを特徴とする、
     請求項1に記載のスクロール圧縮機。
    The inner peripheral edge of the annular oil groove is formed in a circle, and the center of the inner peripheral edge of the annular oil groove is eccentric from the center of the end plate of the fixed scroll,
    The scroll compressor according to claim 1.
  3.  前記環状給油溝の前記内周縁が、異なる曲率を持つ複数の円弧から構成されることを特徴とする、
     請求項1に記載のスクロール圧縮機。
    The inner peripheral edge of the annular oil supply groove is composed of a plurality of arcs with different curvatures,
    The scroll compressor according to claim 1.
  4.  前記環状給油溝内の前記圧力が前記圧縮室内の圧力より高い範囲において、
     前記クランク角αが進む(大きくなる)につれ、前記Lαが漸減することを特徴とした、
     請求項1または請求項3に記載のスクロール圧縮機。
    In a range in which the pressure in the annular oil supply groove is higher than the pressure in the compression chamber,
    characterized in that the Lα gradually decreases as the crank angle α progresses (increases),
    The scroll compressor according to claim 1 or 3.
  5.  前記環状給油溝内の前記圧力が前記圧縮室内の圧力より低い範囲において、
     クランク角αが進む(大きくなる)につれ、前記Lαが漸増することを特徴とした、
     請求項1または請求項3または請求項4に記載のスクロール圧縮機。
    In a range in which the pressure in the annular oil groove is lower than the pressure in the compression chamber,
    characterized in that the Lα gradually increases as the crank angle α progresses (increases),
    The scroll compressor according to claim 1, claim 3, or claim 4.
PCT/JP2022/019358 2021-05-11 2022-04-28 Scroll compressor WO2022239678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280034366.3A CN117295895A (en) 2021-05-11 2022-04-28 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021080237A JP2022174443A (en) 2021-05-11 2021-05-11 scroll compressor
JP2021-080237 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022239678A1 true WO2022239678A1 (en) 2022-11-17

Family

ID=84028283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019358 WO2022239678A1 (en) 2021-05-11 2022-04-28 Scroll compressor

Country Status (3)

Country Link
JP (1) JP2022174443A (en)
CN (1) CN117295895A (en)
WO (1) WO2022239678A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746002A (en) * 1980-09-03 1982-03-16 Hitachi Ltd Scroll type fluid machine
JP2006125363A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Scroll compressor
CN101338754A (en) * 2008-08-05 2009-01-07 大连三洋压缩机有限公司 Cyclone compressor possessing lubricating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746002A (en) * 1980-09-03 1982-03-16 Hitachi Ltd Scroll type fluid machine
JP2006125363A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Scroll compressor
CN101338754A (en) * 2008-08-05 2009-01-07 大连三洋压缩机有限公司 Cyclone compressor possessing lubricating system

Also Published As

Publication number Publication date
CN117295895A (en) 2023-12-26
JP2022174443A (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9316225B2 (en) Scroll compressor with thrust sliding surface oiling groove
US5772415A (en) Scroll machine with reverse rotation sound attenuation
US11248608B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
US20150030487A1 (en) Compressor
KR100834018B1 (en) Scroll compressor
KR100677521B1 (en) Oil separation apparatus for scroll compressor
WO2022239678A1 (en) Scroll compressor
CN114026328B (en) Scroll compressor and air conditioner using the same
CN215256803U (en) Rotary compressor
CN113700648B (en) Rotary compressor
KR101099094B1 (en) Scroll compressor
KR100620999B1 (en) Apparatus for reducing oil discharge of high pressure scroll compressor
KR102608742B1 (en) Rotary compressor
KR102673753B1 (en) Scroll compressor
JP2016148297A (en) Compressor
KR100286714B1 (en) The Rotary Compressor with the System of Suction through Bearing
KR102674755B1 (en) Scroll compressor
KR102232270B1 (en) Motor operated compressor
KR100565258B1 (en) Apparatus for reducing oil discharge of high pressure scroll compressor
JP3564903B2 (en) Scroll compressor
JP2011137523A (en) Rotary shaft and compressor
WO2021198732A1 (en) Scroll compressor
KR100332791B1 (en) Counter revolution interruption device for scroll compressor
KR20240113020A (en) Scroll compressor
JP4935511B2 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280034366.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807380

Country of ref document: EP

Kind code of ref document: A1