WO2022239654A1 - Combustion device, boiler, combustion method - Google Patents

Combustion device, boiler, combustion method Download PDF

Info

Publication number
WO2022239654A1
WO2022239654A1 PCT/JP2022/019015 JP2022019015W WO2022239654A1 WO 2022239654 A1 WO2022239654 A1 WO 2022239654A1 JP 2022019015 W JP2022019015 W JP 2022019015W WO 2022239654 A1 WO2022239654 A1 WO 2022239654A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
combustion
fuel
free fuel
free
Prior art date
Application number
PCT/JP2022/019015
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 中村
祥章 石井
隆司 大垣
雄生 山本
竜徳 柴田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2023520968A priority Critical patent/JPWO2022239654A1/ja
Publication of WO2022239654A1 publication Critical patent/WO2022239654A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/04Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed

Definitions

  • the present invention relates to combustion equipment and boilers that burn fuel.
  • Patent Literature 1 discloses a CFB boiler.
  • BFB boilers and CFB boilers can achieve high combustion efficiency by using a high-temperature fluid material that flows in the combustion chamber as a medium. It is suitable for burning fuels of unstable quality such as tires, etc., and flame-retardant fuels. However, since these fuels are mainly composed of carbon, they generate greenhouse gases such as carbon dioxide when burned, which may further exacerbate global warming. With the recent decarbonization movement, the demand for biomass fuel, which can be said to be carbon-neutral in the long term, is increasing, and it is becoming difficult to procure biomass fuel of stable quality at low cost and in a stable manner.
  • the present invention has been made in view of this situation, and its purpose is to provide a combustion apparatus and a boiler that can reduce the generation of greenhouse gases.
  • a combustion apparatus is a combustion apparatus in which fuel is supplied to a combustion chamber in which a fluid material flows and is burned, wherein a carbon-free fuel that does not contain carbon is supplied to the combustion chamber. a carbon-free fuel supply that supplies the
  • This boiler has a combustion section that supplies fuel to the combustion chamber where the fluid material flows and burns, a carbon-free fuel supply section that supplies carbon-free carbon-free fuel into the combustion chamber, and a combustion section. and a steam generator for generating steam from water by heat.
  • the generation of greenhouse gases can be reduced by supplying carbon-free fuel.
  • CFB boiler circulating fluidized bed boiler
  • 4 schematically shows a configuration example of a start-up burner as a hybrid fuel supply unit
  • the combustion device of the present invention is any device that supplies and burns fuel into a combustion chamber in which a fluid material flows.
  • the combustion apparatus when the combustion apparatus is configured as a boiler, the combustion apparatus can be configured as a BFB boiler or a CFB boiler that burns fuel via a fluidized bed or a fluidized bed formed of a fluid material such as silica sand flowing in the combustion chamber.
  • a fluid material such as silica sand flowing in the combustion chamber.
  • Fig. 1 shows the overall configuration of a CFB boiler (circulating fluidized bed boiler) as a combustion device.
  • the CFB boiler includes a combustion section 1 that supplies and burns fuel in a furnace 11 in which a fluid material such as silica sand flows, a steam generation section 2 that generates steam from water by the heat generated in the combustion section 1, and a furnace 11
  • Fluid material circulation unit 3 that collects the fluid material that has flowed out and returns it to furnace 11 , air that is supplied to combustion unit 1 , water that is supplied to steam generation unit 2 , and steam that is generated by steam generation unit 2 .
  • a dust collector 5 separates and collects soot and dust in the exhaust gas from the heat transfer unit 4; It is equipped with a chimney 6 that discharges the exhaust gas into the atmosphere.
  • the combustion section 1 has a furnace 11 as a combustion chamber.
  • the furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom in order to increase the density of the solid fuel and the fluidized material to enable efficient combustion.
  • the bottom portion of the furnace 11 may not be tapered, and the furnace 11 may be formed in a cylindrical shape with a substantially constant cross-sectional shape from the top to the bottom.
  • a region indicated by A at the bottom of the furnace 11 indicates a fluidized bed (also called fluidized bed or sand layer) formed by a high-density fluidized material.
  • a powdered or particulate fluidized material such as silica sand is fluidized by air as a fluidized fluid supplied from the bottom of the furnace 11 .
  • the fuel introduced into the fluidized bed A is efficiently combusted by repeatedly contacting the high-temperature fluidizing material and air so as to be stirred therein.
  • the fluidized material rises in the furnace 11 due to the ascending air current generated by combustion, the fluidized material also exists in the free board B, which is the space above the fluidized bed A.
  • the density of the fluidized material in the freeboard B is lower than the density of the fluidized material in the fluidized bed A, and decreases toward the upper side of the furnace 11 .
  • the fuel that has not been completely burned in the fluidized bed A is burned while coming into contact with the floating fluidized material.
  • Silica sand was exemplified as the fluidizing material, but any material may be used as long as it functions as a medium for transferring heat to the fuel while maintaining a solid state without burning even in the high-temperature furnace 11 and flowing. Sand, stones such as limestone, and ash may also be used.
  • a perforated plate (also called a dispersion plate) 121 is provided as a fluid permeable part made of a porous material that allows fluid including air to pass through.
  • the air box 122 which is a space directly below the perforated plate 121, supplies pressurized air supplied from the first blower 71 as a blower via the first flow control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section (air supply section).
  • the pressurized air supplied to the bottom of the furnace 11 by the wind box 122 fluidizes the fluid material to form the fluidized bed A and is used to burn the fuel in the fluidized bed A or the freeboard B.
  • the second blower 72 as a blower is operated through the second flow control valve 72A. to supply pressurized air into the freeboard B.
  • the perforated plate 121 is used as an example to explain the fluid permeable portion. It may be formed from a number of plates with slits for supplying flowing fluid into the furnace 11 .
  • an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided.
  • the external circulation mechanism 13 includes an extraction tube 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluidized material in the fluidized bed A, and controls the opening and closing of the extraction tube 131 to control the flow rate of the fluidized material, that is, the extraction tube.
  • An on-off valve 132 capable of adjusting the amount of the fluidized material withdrawn by the extraction pipe 131, a fluidized material conveyor 133 such as a bucket conveyor that conveys upward the fluidized material extracted by the extraction pipe 131, and corresponding to the upper part of the fluidized bed
  • a fluid material silo 134 is provided on the outer periphery of the furnace 11 and receives the fluid material conveyed by the fluid material conveyer 133 , and a fluid material re-injection unit 135 reintroduces the fluid material stored in the fluid material silo 134 into the furnace 11 .
  • the extraction pipe 131, the on-off valve 132, the fluid material conveyor 133, the fluid material silo 134, and the fluid material re-injection unit 135 constitute a fluid material circulation path that connects the bottom surface and the side surface of the furnace 11 outside the furnace 11. . That is, the fluid material extracted from the bottom surface of the furnace 11 by the extraction pipe 131 passes through the on-off valve 132, the fluid material conveyor 133, and the fluid material silo 134, and is discharged from the side surface of the furnace 11 by the fluid material re-injection unit 135. It is put into the fluidized bed A again.
  • the furnace wall which is the side wall of the furnace 11, has a fluidized material supply unit 14 for supplying a fluidized material for forming the fluidized bed A into the furnace 11 when the CFB boiler is started, and a fluidized material supply unit 14 for mainly burning in the fluidized bed A.
  • a solid fuel supply unit 15 is provided for supplying the solid fuel of .
  • the fluid material supply unit 14 includes a funnel-shaped fluid material hopper 141 that stores the fluid material, and a fluid material feeder 142 that supplies the fluid material discharged from the bottom of the fluid material hopper 141 into the furnace 11 . A desired amount of the fluid material is fed into the furnace 11 by controlling the rotational speed of the fluid material feeder 142 .
  • the solid fuel supply unit 15 includes a funnel-shaped solid fuel hopper 151 that stores solid fuel, and a solid fuel feeder 152 that supplies the solid fuel discharged from the bottom of the solid fuel hopper 151 into the furnace 11 .
  • a desired amount of solid fuel is fed into the furnace 11 by controlling the rotational speed of the solid fuel feeder 152 .
  • the solid fuel supplied into the furnace 11 by the solid fuel supply unit 15 is not particularly limited, but examples include various types of coal such as anthracite, bituminous coal, lignite, biomass, sludge, and waste materials.
  • high combustion efficiency can be achieved by using the high-temperature fluid material that flows within the furnace 11 as a medium, so that even low-quality fuel and flame-retardant fuel can be efficiently burned.
  • the solid fuel mentioned above is a carbon-containing fuel that contains carbon
  • the solid fuel supply unit 15 constitutes a carbon-containing fuel supply unit that supplies the carbon-containing fuel into the furnace 11 .
  • the solid fuel supply unit 15 that supplies such carbon-free fuel into the furnace 11 is replaced by the carbon-free fuel supply unit configure.
  • a carbon-free fuel supply unit 16 that supplies non-solid or fluid (liquid or gaseous) carbon-free fuel into the furnace 11 is provided in each part of the combustion unit 1 .
  • Four installation examples of the carbon-free fuel supply unit 16 are shown below, but the location and installation mode of the carbon-free fuel supply unit 16 are not limited to these.
  • the number of carbon-free fuel supply units 16 is not limited to four, and the effect of this embodiment, such as greenhouse gas suppression, which will be described later, can be obtained if there is at least one. Five or more carbon-free fuel supply units 16 may be provided.
  • ammonia is used as an example of a non-solid carbon-free fuel in the following description, other fuels such as hydrogen may be used.
  • the carbon-free fuel supply unit 16A supplies the wind box 122 with ammonia as the carbon-free fuel.
  • Ammonia supplied to the wind box 122 is mixed with pressurized air supplied from the first blower 71 into the wind box 122, passes through the perforated plate 121, and is supplied into the fluidized bed A from below. .
  • the carbon-free fuel supply unit 16A includes a storage unit 161A that stores ammonia in a gaseous or liquid non-solid state, and an ammonia stored in the storage unit 161A in a gaseous or liquid non-solid state into the wind box 122. It has an injection device 162A that injects.
  • the carbon-free fuel supply unit 16B according to the second installation mode supplies ammonia as a carbon-free fuel into the fluidized bed A from the side of the fluidized bed A (fluidized material at the bottom of the furnace 11) on the perforated plate 121. supply. Ammonia directly supplied into the fluidized bed A is mixed with the fluid material, solid fuel, and pressurized air in the fluidized bed A and efficiently combusted.
  • the carbon-free fuel supply unit 16B includes a storage unit 161B that stores ammonia in a gaseous or liquid non-solid state, and ammonia stored in the storage unit 161B in a gaseous or liquid non-solid state into the fluidized bed A. It has an injector 162B for injecting.
  • ammonia can be efficiently injected into the fluidized bed A by providing the tip of the injection device 162B so as to be inserted into the fluidized bed A from the side.
  • the injection device 162B may be configured as a burner that mixes ammonia with air and burns it.
  • the tip of the injection device 162B serves as the crater of the burner and ejects a flame by combustion of ammonia into the fluidized bed A.
  • Such a burner as the carbon-free fuel supply unit 16B can be configured, for example, as a lance burner or a burner lance, and a carbon-free fuel such as ammonia is supplied to the side of the fluidized material (that is, the fluidized bed A) at the bottom of the furnace 11. Burn.
  • the position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B may be anywhere as long as it faces the fluidized bed A.
  • the typical height of the fluidized bed A is about 1.5 m. is preferably 0.5 m.
  • a typical height of the fluidized bed A of 1.5 m corresponds to 5.0% of 30 m
  • the height of the injection port of the injection device 162B is preferably 1.0. %-4.0%, more preferably 1.5%-2.5% (0.5m above corresponds to 1.7% of 30m).
  • the position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B constituted by a burner or the like at a height of less than 1.5 m from the bottom of the furnace 11, suboxidation due to combustion of ammonia
  • N 2 O also called dinitrogen oxide or dinitrogen monoxide
  • the position of the injection port of the carbon-free fuel supply unit 16B may be further lowered, for example, the height of less than 1.0 m from the bottom of the furnace 11. , and more preferably less than 0.5 m from the bottom of the furnace 11 .
  • the position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B constituted by a burner or the like is set at a distance of 1.5 m or more from the bottom surface of the furnace 11 (and preferably below the upper surface of the fluidized bed A). It was confirmed that the installation at a height can reduce the generation and emission of nitrogen oxides (NOx) due to combustion of ammonia. It is believed that nitrogen oxides generated at the bottom of the furnace 11 react with ammonia supplied from a burner or the like and are reduced to nitrogen.
  • NOx nitrogen oxides
  • pressurized air is supplied above the fluidized bed A in FIG. 1, in practice, pressurized air may be supplied from the side of the fluidized bed A
  • Carbon-free fuel below It is preferable to install the injection port of the supply part 16B.
  • the injection port of the carbon-free fuel supply unit 16B may be provided below the supply port of the pressurized air.
  • the injection port of the carbon-free fuel supply unit 16B is, for example, 2.0 m or more from the bottom of the furnace 11. Well, it may be 3.0 m or more from the bottom of the furnace 11 .
  • burners in the carbon - free fuel supply 16B less than 1.5m (or less than 1.0m, less than 0.5m) and 1.5m or more (or , 2.0 m or more, 3.0 m or more) is preferably installed side by side with the burner of the carbon-free fuel supply section 16B.
  • the carbon-free fuel supply unit 16C according to the third installation mode is configured integrally with a starting burner to be described later, and the carbon-free fuel is supplied downward from above the fluidized bed A toward the surface (upper surface) of the fluidized bed A.
  • supply ammonia as Ammonia supplied from the carbon-free fuel supply unit 16C is mixed with the fluid material, solid fuel, and pressurized air flowing on the surface of the fluidized bed A and efficiently combusted.
  • the carbon-free fuel supply unit 16A that supplies ammonia from below the fluidized bed A
  • the carbon-free fuel supply unit 16B that supplies ammonia from the side of the fluidized bed A
  • the ammonia from above the fluidized bed A By combining at least two of the carbon-free fuel supply parts 16C, ammonia can be injected from different directions into the fluid material, the solid fuel, and the pressurized air flowing in each part of the fluidized bed A to efficiently mix them. Ammonia, which is known to be flammable, can be efficiently burned in each part of the fluidized bed A.
  • the carbon-free fuel supply unit 16C includes a storage unit 161C that stores ammonia in a gaseous or liquid non-solid state, and the ammonia stored in the storage unit 161C in a gaseous or liquid non-solid state and injects it into the furnace 11. and an injector 162C.
  • the injection device 162C also functions as a starting burner, which will be described later, and is inclined downward so that the surface of the fluidized bed A can be directly heated by the flame jetted from its tip.
  • a CFB boiler is generally provided with a start-up burner for starting, and in this embodiment, the existing start-up burner is used as a carbon-free fuel supply unit 16C for supplying ammonia. can also be used.
  • the position of the injection port as the tip of the injector 162C of the carbon-free fuel supply 16C is determined by the position of the existing start-up burner. For example, if the furnace 11 has a height of about 30 m, the typical height of the start-up burners is about 2.0 m and is above the fluidized bed A, which is about 1.5 m high.
  • the carbon-free fuel supply unit 16C may be provided separately from the starting burner, in which case the height of the injection port of the injection device 162C can be freely set. For example, 6.0% or more of the height of the furnace 11 (1.8 It is preferable to provide the injection port of the injection device 162C at a height of 162C or more. If the downward inclination angle of the injection device 162C is increased, ammonia can be injected onto the surface of the fluidized bed A even if the installation height is large.
  • the carbon-free fuel supply unit 16D supplies ammonia as a carbon-free fuel into the freeboard B in the upper part of the furnace 11.
  • Ammonia supplied into the freeboard B burns unburned substances derived from solid fuels that have not been completely burned in the fluidized bed A, thereby preventing the generation of harmful substances such as dioxins and carbon monoxide due to incomplete combustion. Suppress.
  • Ammonia also functions as a reducing agent, reducing nitrogen oxides (NOx), which are air pollutants that may be generated by combustion in the furnace 11, to harmless nitrogen and water.
  • NOx reducing nitrogen oxides
  • the carbon-free fuel supply unit 16D includes a storage unit 161D that stores ammonia in a gaseous or liquid non-solid state, and the ammonia stored in the storage unit 161D in a gaseous or liquid non-solid state in the freeboard B. It has an injection device 162D for injection.
  • the injection device 162D may be configured as a burner that mixes and burns ammonia with air, and in this case, the tip of the injection device 162D serves as the crater of the burner and ejects flames from combustion of ammonia into the freeboard B. .
  • the position of the injection port as the tip of the injection device 162D of the carbon-free fuel supply unit 16D may be anywhere as long as it faces the freeboard B.
  • the freeboard B is formed above the fluidized bed A of about 1.5 m.
  • the powdered or particulate fluidized material and solid fuel are burning while vigorously moving. It is preferable to keep the injection port of the device 162D sufficiently away from the surface of the fluidized bed A.
  • the height of the injection port of the injection device 162D is preferably within a range of 50% (15m) to 70% (21m) of the height of the furnace 11 (30m).
  • the carbon-free fuel supply units 16A to 16D at a plurality of different positions in the vertical direction, which is the height direction of the furnace 11, the combustion sites of ammonia, which is known as flame retardancy, are dispersed and the overall High combustion efficiency can be achieved. Further, by adopting a configuration in which ammonia is gradually burned in each part of the furnace 11 in this way, it is possible to increase the supply amount of ammonia as a whole while maintaining high combustion efficiency.
  • many conventional carbon-containing fuels, such as carbon-based coal can be replaced by non-carbon-containing fuels such as ammonia and hydrogen. Since carbon-free fuels do not generate carbon-containing greenhouse gases such as carbon dioxide when burned, they can reduce adverse effects on the global environment as global warming progresses.
  • the starting burner 16C is provided with a carbon-containing fuel storage section 163C that stores heavy oil as a carbon-containing fuel in parallel with a carbon-free fuel storage section 161C that stores ammonia as a carbon-free fuel.
  • a carbon-free fuel control valve 164C is provided between the carbon-free fuel reservoir 161C and the injector 162C to control the amount of ammonia supplied from the carbon-free fuel reservoir 161C to the injector 162C.
  • a carbon-containing fuel control valve 165C is provided between the reservoir 163C and the injector 162C to control the amount of heavy oil supplied from the carbon-containing fuel reservoir 163C to the injector 162C.
  • the mode switching unit 166C controls the carbon-free fuel control valve 164C and the carbon-containing fuel control valve 165C, and complementarily switches between open and closed states.
  • injector 162C supplies ammonia from carbon-free fuel reservoir 161C into furnace 11 .
  • injector 162C supplies heavy oil into furnace 11 from carbon-containing fuel reservoir 163C.
  • heavy oil mixed with air is combusted in an injection device 162C configured as a burner, and the tip of the injection device 162C serves as the crater of the burner and ejects flames from the combustion of the heavy oil into the furnace 11.
  • the mode switching unit 166C switches to the second mode when the CFB boiler is started, and switches to the first mode after the CFB boiler is started.
  • a fluid material such as silica sand for forming the fluidized bed A is supplied from the fluid material supply unit 14 into the furnace 11 .
  • a solid fuel such as coal may also be supplied into the furnace 11 from the solid fuel supply unit 15, or ammonia may be supplied from the carbon-free fuel supply units 16A, 16B, and 16D other than the carbon-free fuel supply unit 16C.
  • a carbon-free fuel such as hydrogen or hydrogen may also be supplied into the furnace 11 .
  • the injection device 162C which operates in the second mode when the CFB boiler is started, heats the fluid material supplied from the fluid material supply unit 14 with flames generated by combustion of heavy oil.
  • the injection device 162C since the injection device 162C is provided inclined downward, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. Since the starting burner 16C heats the sand-like fluidized bed A from above in this manner, it is also called a burner on sand.
  • the mode switching unit 166C switches to the first mode.
  • the injector 162C operating in the first mode injects carbon-free fuel such as ammonia or hydrogen to the surface of the fluidized bed A from its tip.
  • the startup burner 16C functions as a carbon-containing fuel supply section that supplies heavy oil as carbon-containing fuel in the second mode at startup, and ammonia and carbon-free fuel as carbon-free fuel in the first mode after startup. It is a hybrid fuel supply unit that functions as a carbon-free fuel supply unit that supplies hydrogen or the like.
  • a conventional start-up burner is stopped after the temperature is raised by heavy oil or the like at start-up, but according to the present embodiment, the start-up burner can be effectively used as a carbon-free fuel supply section even after start-up.
  • FIG. 2 schematically shows a configuration example of the starting burner 16C as a hybrid fuel supply section.
  • Injector 162C of start-up burner 16C receives carbon-free fuel receiving portion 167C as carbon-free fuel from carbon-free fuel reservoir 161C and heavy oil as carbon-containing fuel from carbon-containing fuel reservoir 163C.
  • a contained fuel receiving portion 168C is provided.
  • the combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be described.
  • the steam generating unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, a water pipe 23 that guides the water in the drum 21 into the high-temperature furnace 11 to heat it, A steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler.
  • the water supply pipe 22 meanders in the heat transfer section 4 through which the high-temperature exhaust gas of the combustion section 1 passes to form an economizer that preheats the water supply
  • the steam pipe 24 is a heat transfer section through which the high-temperature exhaust gas of the combustion section 1 passes.
  • a superheater that superheats steam is configured by meandering inside 4 .
  • the pressurized air supplied into the furnace 11 by the first blower 71 and the second blower 72 is also preheated by the high-temperature exhaust gas inside the heat transfer section 4 .
  • the fluidizing material circulation unit 3 includes a cyclone 31 that separates and collects the fluidizing material from the exhaust discharged from the upper part of the furnace 11 and a seal pot 32 that returns the fluidizing material collected by the cyclone 31 into the furnace 11. .
  • the cyclone 31 is a cyclone-type powder separator having a generally cylindrical upper portion and a generally conical lower portion, and generates an air flow spirally descending along the inner wall.
  • the fluid material contained in the exhaust gas from the furnace 11 is collected by coming into contact with the inner wall of the cyclone 31 and falling down while spirally descending along the airflow.
  • the exhaust gas contains not only the fluid material but also the ammonia supplied from the carbon-free fuel supply units 16A to 16D.
  • the cyclone 31 promotes contact between the carbon-free fuel ammonia as an unburned matter remaining in the exhaust gas and the fluidizing material, in other words, the cyclone 31 functions as an ammonia mixer or a carbon-free fuel agitator. , complete combustion of ammonia as unburned content can be expected.
  • the carbon-free fuel supply units 16A to 16D are preferably installed upstream of the cyclone 31 in the exhaust flow.
  • a seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent backflow of unburned gas from the furnace 11 to the cyclone 31.
  • the fluid material filled in the seal pot 32 is pushed out by the weight of the fluid material newly collected by the cyclone 31 and is gradually returned into the furnace 11 .
  • a CFB boiler has been described as an example of a boiler in the embodiments, the present invention can also be applied to a BFB boiler (a bubbling fluidized bed boiler).
  • the configuration of the BFB boiler is the same as that of the CFB boiler except that it does not include the fluid material circulation unit 3 that collects the fluid material that has flowed out of the furnace 11 and returns it to the inside of the furnace 11 .
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the present invention relates to combustion equipment and boilers that burn fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

A circulating fluidized bed boiler (a CFB boiler) that supplies fuel into a furnace 11 in which a fluid material is flowing to combust the fuel comprises carbon-free fuel supply units 16A–16D that supply ammonia or hydrogen into the furnace 11 as a carbon-free fuel that does not contain carbon. Carbon-free fuel supply unit 16A supplies the carbon-free fuel to a wind box 122, carbon-free fuel supply unit 16B supplies the carbon-free fuel to a fluidized bed A, carbon-free fuel supply unit 16C supplies the carbon-free fuel to the surface of the fluidized bed A, and carbon-free fuel supply unit D supplies the carbon-free fuel to a free board B.

Description

燃焼装置、ボイラ、燃焼方法Combustion device, boiler, combustion method
 本発明は燃料を燃焼させる燃焼装置およびボイラに関する。 The present invention relates to combustion equipment and boilers that burn fuel.
 燃料の燃焼によって発生した熱で水から蒸気を発生させるボイラとして、燃焼室内で流動する珪砂等の流動材によって形成される流動層または流動床を媒介として燃料を燃焼させる気泡型流動床(BFB:Bubbling Fluidized Bed)ボイラや循環流動層(CFB:Circulating Fluidized Bed)ボイラが知られている。特許文献1にはCFBボイラが開示されている。 As a boiler that generates steam from water with the heat generated by combustion of fuel, a fluidized bed formed by a fluidized material such as silica sand flowing in the combustion chamber or a bubbling fluidized bed (BFB: Bubbling Fluidized Bed) boilers and Circulating Fluidized Bed (CFB) boilers are known. Patent Literature 1 discloses a CFB boiler.
特開2012-255612号公報JP 2012-255612 A
 BFBボイラやCFBボイラは、燃焼室内で流動する高温の流動材を媒介とすることで高い燃焼効率を実現できるため、バイオマス(バイオ燃料)、スラッジ(汚泥)、廃材(廃紙、廃プラスチック、廃タイヤ等)等の不安定な品質の燃料や難燃性の燃料の燃焼に好適である。しかし、これらの燃料はいずれも炭素を主成分とするため、燃焼時に二酸化炭素等の温室効果ガスを発生させてしまい、地球温暖化を更に悪化させる恐れがある。近年の脱炭素の動きの中で、長期的に見てカーボンニュートラルと言えるバイオマス燃料の需要は高まっており、品質の安定したバイオマス燃料を安価に、安定的に調達することが難しくなっている。これまで石炭や廃棄物燃料等の難燃性の炭素含有燃料の燃焼を主目的としたBFBボイラおよびCFBボイラにおいて、バイオマス燃料の活用に加えて、二酸化炭素等の温室効果ガスを排出しない燃焼方式への対応が課題となっている。 BFB boilers and CFB boilers can achieve high combustion efficiency by using a high-temperature fluid material that flows in the combustion chamber as a medium. It is suitable for burning fuels of unstable quality such as tires, etc., and flame-retardant fuels. However, since these fuels are mainly composed of carbon, they generate greenhouse gases such as carbon dioxide when burned, which may further exacerbate global warming. With the recent decarbonization movement, the demand for biomass fuel, which can be said to be carbon-neutral in the long term, is increasing, and it is becoming difficult to procure biomass fuel of stable quality at low cost and in a stable manner. Until now, in BFB boilers and CFB boilers mainly intended for burning flame-retardant carbon-containing fuels such as coal and waste fuels, in addition to utilizing biomass fuels, combustion methods that do not emit greenhouse gases such as carbon dioxide The challenge is to respond to
 本発明はこうした状況に鑑みてなされたものであり、その目的は、温室効果ガスの発生を低減できる燃焼装置およびボイラを提供することにある。 The present invention has been made in view of this situation, and its purpose is to provide a combustion apparatus and a boiler that can reduce the generation of greenhouse gases.
 上記課題を解決するために、本発明のある態様の燃焼装置は、流動材が流動する燃焼室内に燃料を供給して燃焼させる燃焼装置であって、炭素を含有しない炭素非含有燃料を燃焼室内に供給する炭素非含有燃料供給部を備える。 In order to solve the above-described problems, a combustion apparatus according to one aspect of the present invention is a combustion apparatus in which fuel is supplied to a combustion chamber in which a fluid material flows and is burned, wherein a carbon-free fuel that does not contain carbon is supplied to the combustion chamber. a carbon-free fuel supply that supplies the
 本発明の別の態様は、ボイラである。このボイラは、流動材が流動する燃焼室内に燃料を供給して燃焼させる燃焼部と、炭素を含有しない炭素非含有燃料を燃焼室内に供給する炭素非含有燃料供給部と、燃焼部で発生した熱によって水から蒸気を発生させる蒸気発生部とを備える。 Another aspect of the present invention is a boiler. This boiler has a combustion section that supplies fuel to the combustion chamber where the fluid material flows and burns, a carbon-free fuel supply section that supplies carbon-free carbon-free fuel into the combustion chamber, and a combustion section. and a steam generator for generating steam from water by heat.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.
 本発明によれば、炭素非含有燃料を供給することで温室効果ガスの発生を低減できる。 According to the present invention, the generation of greenhouse gases can be reduced by supplying carbon-free fuel.
CFBボイラ(循環流動層ボイラ)の全体的な構成を示す。The overall configuration of a CFB boiler (circulating fluidized bed boiler) is shown. ハイブリッド燃料供給部としての起動バーナの構成例を模式的に示す。4 schematically shows a configuration example of a start-up burner as a hybrid fuel supply unit;
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description and drawings, the same or equivalent components, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted as appropriate. The scales and shapes of the illustrated parts are set for convenience in order to facilitate explanation, and should not be construed as limiting unless otherwise specified. The embodiments are illustrative and do not limit the scope of the invention in any way. Not all features or combinations thereof described in the embodiments are essential to the invention.
 本発明の燃焼装置は、流動材が流動する燃焼室内に燃料を供給して燃焼させる任意の装置である。例えば燃焼装置をボイラとして構成する場合、燃焼室内で流動する珪砂等の流動材によって形成される流動層または流動床を媒介として燃料を燃焼させるBFBボイラやCFBボイラとして燃焼装置を構成できる。本実施形態では燃焼装置をCFBボイラとして構成した例を主に説明する。 The combustion device of the present invention is any device that supplies and burns fuel into a combustion chamber in which a fluid material flows. For example, when the combustion apparatus is configured as a boiler, the combustion apparatus can be configured as a BFB boiler or a CFB boiler that burns fuel via a fluidized bed or a fluidized bed formed of a fluid material such as silica sand flowing in the combustion chamber. In this embodiment, an example in which the combustion device is configured as a CFB boiler will be mainly described.
 図1は、燃焼装置としてのCFBボイラ(循環流動層ボイラ)の全体的な構成を示す。CFBボイラは、珪砂等の流動材が流動する火炉11内に燃料を供給して燃焼させる燃焼部1と、燃焼部1で発生した熱によって水から蒸気を発生させる蒸気発生部2と、火炉11外に出た流動材を捕集して火炉11内に戻す流動材循環部3と、燃焼部1に供給される空気、蒸気発生部2に供給される水、蒸気発生部2で発生する蒸気を燃焼部1の高温の排気によって加熱する伝熱部4と、伝熱部4からの排気中の煤や粉塵を分離して捕集する集塵装置5と、集塵装置5によって清浄化された排気を大気に放出する煙突6を備える。 Fig. 1 shows the overall configuration of a CFB boiler (circulating fluidized bed boiler) as a combustion device. The CFB boiler includes a combustion section 1 that supplies and burns fuel in a furnace 11 in which a fluid material such as silica sand flows, a steam generation section 2 that generates steam from water by the heat generated in the combustion section 1, and a furnace 11 Fluid material circulation unit 3 that collects the fluid material that has flowed out and returns it to furnace 11 , air that is supplied to combustion unit 1 , water that is supplied to steam generation unit 2 , and steam that is generated by steam generation unit 2 . is heated by the high-temperature exhaust gas from the combustion unit 1; a dust collector 5 separates and collects soot and dust in the exhaust gas from the heat transfer unit 4; It is equipped with a chimney 6 that discharges the exhaust gas into the atmosphere.
 燃焼部1は燃焼室としての火炉11を備える。火炉11は鉛直方向に長尺の筒状であり、固形燃料や流動材の密度を高めて効率的な燃焼を可能とするため底部が先細り形状となっている。なお、火炉11の底部は先細り形状でなくてもよく、頂部から底部まで略一定の断面形状の筒状に火炉11を形成してもよい。火炉11の底部のAで示される領域は、高密度の流動材によって形成される流動層(流動床や砂層とも呼ばれる)を示す。流動層Aでは、珪砂等の粉末状または粒子状の流動材が、火炉11の底部から供給される流動流体としての空気によって流動している。流動層Aに投入された燃料は、その中で撹拌されるように高温の流動材および空気と繰り返し接触することで効率的に燃焼される。 The combustion section 1 has a furnace 11 as a combustion chamber. The furnace 11 has a vertically elongated cylindrical shape, and has a tapered bottom in order to increase the density of the solid fuel and the fluidized material to enable efficient combustion. The bottom portion of the furnace 11 may not be tapered, and the furnace 11 may be formed in a cylindrical shape with a substantially constant cross-sectional shape from the top to the bottom. A region indicated by A at the bottom of the furnace 11 indicates a fluidized bed (also called fluidized bed or sand layer) formed by a high-density fluidized material. In the fluidized bed A, a powdered or particulate fluidized material such as silica sand is fluidized by air as a fluidized fluid supplied from the bottom of the furnace 11 . The fuel introduced into the fluidized bed A is efficiently combusted by repeatedly contacting the high-temperature fluidizing material and air so as to be stirred therein.
 なお、燃焼に伴って生じる上昇気流によって流動材は火炉11内を上昇するため、流動層Aより上方の空間であるフリーボードBにも流動材は存在する。フリーボードBにおける流動材の密度は、流動層Aにおける流動材の密度よりも小さく、火炉11の上方に行くほど小さくなる。フリーボードBでは、流動層Aで完全燃焼されなかった燃料が浮遊する流動材と接触しながら燃焼される。なお、流動材としては珪砂を例示したが、高温の火炉11内でも燃焼されずに固体状態を維持して流動しながら燃料に熱を伝える媒介として機能するものであればよく、例えば、その他の砂、石灰石等の石、灰でもよい。 In addition, since the fluidized material rises in the furnace 11 due to the ascending air current generated by combustion, the fluidized material also exists in the free board B, which is the space above the fluidized bed A. The density of the fluidized material in the freeboard B is lower than the density of the fluidized material in the fluidized bed A, and decreases toward the upper side of the furnace 11 . In the freeboard B, the fuel that has not been completely burned in the fluidized bed A is burned while coming into contact with the floating fluidized material. Silica sand was exemplified as the fluidizing material, but any material may be used as long as it functions as a medium for transferring heat to the fuel while maintaining a solid state without burning even in the high-temperature furnace 11 and flowing. Sand, stones such as limestone, and ash may also be used.
 火炉11の底部には、空気を含む流体を透過させる多孔質材料で構成された流体透過部としての多孔板(分散板とも呼ばれる)121が設けられる。多孔板121の直下の空間である風箱122は、送風機としての第1ブロワ71から第1流量制御バルブ71Aを介して供給される加圧空気を、多孔板121を介して火炉11内に供給する流動流体供給部(空気供給部)を構成する。風箱122によって火炉11の底部に供給された加圧空気は、流動材を流動させて流動層Aを形成すると共に、流動層AまたはフリーボードBにおける燃料の燃焼に使われる。なお、フリーボードBにおける燃料の燃焼を促進し、不完全燃焼によるダイオキシンや一酸化炭素等の有害物質の発生を抑制するために、送風機としての第2ブロワ72が第2流量制御バルブ72Aを介して加圧空気をフリーボードB内に供給する。なお、本実施形態では多孔板121を例に挙げて流体透過部を説明したが、流体透過部は流動層Aにおいて流動材を流動させることができれば本実施形態に限定されるものではなく、例えば火炉11内に流動流体を供給するスリットが形成された多数の板から形成されてもよい。 At the bottom of the furnace 11, a perforated plate (also called a dispersion plate) 121 is provided as a fluid permeable part made of a porous material that allows fluid including air to pass through. The air box 122, which is a space directly below the perforated plate 121, supplies pressurized air supplied from the first blower 71 as a blower via the first flow control valve 71A into the furnace 11 via the perforated plate 121. It constitutes a flowing fluid supply section (air supply section). The pressurized air supplied to the bottom of the furnace 11 by the wind box 122 fluidizes the fluid material to form the fluidized bed A and is used to burn the fuel in the fluidized bed A or the freeboard B. In addition, in order to promote the combustion of fuel in the freeboard B and suppress the generation of harmful substances such as dioxins and carbon monoxide due to incomplete combustion, the second blower 72 as a blower is operated through the second flow control valve 72A. to supply pressurized air into the freeboard B. In this embodiment, the perforated plate 121 is used as an example to explain the fluid permeable portion. It may be formed from a number of plates with slits for supplying flowing fluid into the furnace 11 .
 流動層Aにおける流動材を循環させるために、火炉11外の循環経路を有する外部循環機構13が設けられる。外部循環機構13は、火炉11の底部に連通して流動層Aにおける流動材の一部を抜き出し可能な抜出管131と、抜出管131を開閉制御して流動材の流量すなわち抜出管131による流動材の抜き出し量を調節可能な開閉弁132と、抜出管131で抜き出された流動材を上方に搬送するバケットコンベア等の流動材コンベア133と、流動層Aの上部に対応する火炉11の外周に設けられ流動材コンベア133によって搬送された流動材を受け入れる流動材サイロ134と、流動材サイロ134に貯蔵された流動材を火炉11内に再投入する流動材再投入部135を備える。 In order to circulate the fluidized material in the fluidized bed A, an external circulation mechanism 13 having a circulation path outside the furnace 11 is provided. The external circulation mechanism 13 includes an extraction tube 131 that communicates with the bottom of the furnace 11 and can extract a part of the fluidized material in the fluidized bed A, and controls the opening and closing of the extraction tube 131 to control the flow rate of the fluidized material, that is, the extraction tube. An on-off valve 132 capable of adjusting the amount of the fluidized material withdrawn by the extraction pipe 131, a fluidized material conveyor 133 such as a bucket conveyor that conveys upward the fluidized material extracted by the extraction pipe 131, and corresponding to the upper part of the fluidized bed A A fluid material silo 134 is provided on the outer periphery of the furnace 11 and receives the fluid material conveyed by the fluid material conveyer 133 , and a fluid material re-injection unit 135 reintroduces the fluid material stored in the fluid material silo 134 into the furnace 11 . Prepare.
 抜出管131、開閉弁132、流動材コンベア133、流動材サイロ134、流動材再投入部135は、火炉11の底面と側面の間を火炉11外で連結する流動材の循環経路を構成する。すなわち、火炉11の底面から抜出管131によって抜き出された流動材は、開閉弁132、流動材コンベア133、流動材サイロ134を経由して、流動材再投入部135によって火炉11の側面から流動層A内に再投入される。 The extraction pipe 131, the on-off valve 132, the fluid material conveyor 133, the fluid material silo 134, and the fluid material re-injection unit 135 constitute a fluid material circulation path that connects the bottom surface and the side surface of the furnace 11 outside the furnace 11. . That is, the fluid material extracted from the bottom surface of the furnace 11 by the extraction pipe 131 passes through the on-off valve 132, the fluid material conveyor 133, and the fluid material silo 134, and is discharged from the side surface of the furnace 11 by the fluid material re-injection unit 135. It is put into the fluidized bed A again.
 火炉11の側壁である炉壁には、流動層Aを形成するための流動材をCFBボイラの起動時に火炉11内に供給する流動材供給部14と、主に流動層A内で燃焼させるための固形燃料を火炉11内に供給する固形燃料供給部15が設けられる。流動材供給部14は、流動材を貯留する漏斗状の流動材ホッパ141と、流動材ホッパ141の底部から排出される流動材を火炉11内に供給する流動材フィーダ142を備える。流動材フィーダ142の回転数を制御することで、所望の量の流動材が火炉11内に投入される。固形燃料供給部15は、固形燃料を貯留する漏斗状の固形燃料ホッパ151と、固形燃料ホッパ151の底部から排出される固形燃料を火炉11内に供給する固形燃料フィーダ152を備える。固形燃料フィーダ152の回転数を制御することで、所望の量の固形燃料が火炉11内に投入される。 The furnace wall, which is the side wall of the furnace 11, has a fluidized material supply unit 14 for supplying a fluidized material for forming the fluidized bed A into the furnace 11 when the CFB boiler is started, and a fluidized material supply unit 14 for mainly burning in the fluidized bed A. A solid fuel supply unit 15 is provided for supplying the solid fuel of . The fluid material supply unit 14 includes a funnel-shaped fluid material hopper 141 that stores the fluid material, and a fluid material feeder 142 that supplies the fluid material discharged from the bottom of the fluid material hopper 141 into the furnace 11 . A desired amount of the fluid material is fed into the furnace 11 by controlling the rotational speed of the fluid material feeder 142 . The solid fuel supply unit 15 includes a funnel-shaped solid fuel hopper 151 that stores solid fuel, and a solid fuel feeder 152 that supplies the solid fuel discharged from the bottom of the solid fuel hopper 151 into the furnace 11 . A desired amount of solid fuel is fed into the furnace 11 by controlling the rotational speed of the solid fuel feeder 152 .
 固形燃料供給部15が火炉11内に供給する固形燃料は特に限定されるものではないが、例えば、無煙炭、瀝青炭、褐炭等の各種の石炭、バイオマス、スラッジ、廃材が挙げられる。CFBボイラでは、火炉11内で流動する高温の流動材を媒介とすることで高い燃焼効率を実現できるため、品質の低い燃料や難燃性の燃料も効率的に燃焼できる。なお、上で挙げた固形燃料は炭素を含有する炭素含有燃料であり、固形燃料供給部15は炭素含有燃料を火炉11内に供給する炭素含有燃料供給部を構成する。また、現時点では具体例に乏しいが、炭素を含有しない固形燃料が利用可能になった場合、このような炭素非含有燃料を火炉11内に供給する固形燃料供給部15は炭素非含有燃料供給部を構成する。 The solid fuel supplied into the furnace 11 by the solid fuel supply unit 15 is not particularly limited, but examples include various types of coal such as anthracite, bituminous coal, lignite, biomass, sludge, and waste materials. In the CFB boiler, high combustion efficiency can be achieved by using the high-temperature fluid material that flows within the furnace 11 as a medium, so that even low-quality fuel and flame-retardant fuel can be efficiently burned. The solid fuel mentioned above is a carbon-containing fuel that contains carbon, and the solid fuel supply unit 15 constitutes a carbon-containing fuel supply unit that supplies the carbon-containing fuel into the furnace 11 . In addition, although there are few concrete examples at present, when carbon-free solid fuel becomes available, the solid fuel supply unit 15 that supplies such carbon-free fuel into the furnace 11 is replaced by the carbon-free fuel supply unit configure.
 固形燃料供給部15に加えてまたは代えて、非固形または流体(液体または気体)の炭素非含有燃料を火炉11内に供給する炭素非含有燃料供給部16が燃焼部1の各部に設けられる。以下では炭素非含有燃料供給部16の四通りの設置例を示すが、炭素非含有燃料供給部16の設置箇所や設置態様はこれらに限定されない。炭素非含有燃料供給部16の数も四つに限られず、少なくとも一つあれば後述する温室効果ガス抑制等の本実施形態の効果を奏する。炭素非含有燃料供給部16を五箇所以上に設けてもよい。また、以下の説明では非固形の炭素非含有燃料の例としてアンモニアを用いるが水素等の他の燃料を用いてもよい。 In addition to or instead of the solid fuel supply unit 15 , a carbon-free fuel supply unit 16 that supplies non-solid or fluid (liquid or gaseous) carbon-free fuel into the furnace 11 is provided in each part of the combustion unit 1 . Four installation examples of the carbon-free fuel supply unit 16 are shown below, but the location and installation mode of the carbon-free fuel supply unit 16 are not limited to these. The number of carbon-free fuel supply units 16 is not limited to four, and the effect of this embodiment, such as greenhouse gas suppression, which will be described later, can be obtained if there is at least one. Five or more carbon-free fuel supply units 16 may be provided. Further, although ammonia is used as an example of a non-solid carbon-free fuel in the following description, other fuels such as hydrogen may be used.
 第1の設置態様に係る炭素非含有燃料供給部16Aは、風箱122に炭素非含有燃料としてのアンモニアを供給する。風箱122に供給されたアンモニアは、第1ブロワ71から風箱122内に供給される加圧空気と混合された状態で、多孔板121を透過して下方から流動層A内に供給される。流動層Aにおける流動材および固形燃料を撹拌する加圧空気と共に非固形燃料としてのアンモニアを供給することで、流動材、固形燃料、加圧空気、アンモニアが混ざり合うため、難燃性として知られるアンモニアを効率的に燃焼できる。炭素非含有燃料供給部16Aは、アンモニアを気体または液体の非固形の状態で貯留する貯留部161Aと、貯留部161Aに貯留されたアンモニアを気体または液体の非固形の状態で風箱122内に噴射する噴射装置162Aを備える。 The carbon-free fuel supply unit 16A according to the first installation mode supplies the wind box 122 with ammonia as the carbon-free fuel. Ammonia supplied to the wind box 122 is mixed with pressurized air supplied from the first blower 71 into the wind box 122, passes through the perforated plate 121, and is supplied into the fluidized bed A from below. . By supplying ammonia as a non-solid fuel together with pressurized air to agitate the fluidized material and solid fuel in the fluidized bed A, the fluidized material, solid fuel, pressurized air, and ammonia are mixed, so it is known as flame retardant. Ammonia can be efficiently burned. The carbon-free fuel supply unit 16A includes a storage unit 161A that stores ammonia in a gaseous or liquid non-solid state, and an ammonia stored in the storage unit 161A in a gaseous or liquid non-solid state into the wind box 122. It has an injection device 162A that injects.
 第2の設置態様に係る炭素非含有燃料供給部16Bは、多孔板121上の流動層A(火炉11の底部の流動材)の側方から流動層A内に炭素非含有燃料としてのアンモニアを供給する。流動層A内に直接的に供給されたアンモニアは、流動層A内の流動材、固形燃料、加圧空気と混ざり合って効率的に燃焼される。炭素非含有燃料供給部16Bは、アンモニアを気体または液体の非固形の状態で貯留する貯留部161Bと、貯留部161Bに貯留されたアンモニアを気体または液体の非固形の状態で流動層A内に噴射する噴射装置162Bを備える。ここで、噴射装置162Bの先端部が流動層A内に側方から挿入されるように設けることで、流動層A内に効率的にアンモニアを噴射できる。なお、噴射装置162Bは、アンモニアを空気と混合して燃焼させるバーナとして構成してもよく、この場合の噴射装置162Bの先端はバーナの火口としてアンモニアの燃焼による炎を流動層A内に噴出する。このような炭素非含有燃料供給部16Bとしてのバーナは、例えばランスバーナやバーナランスとして構成でき、火炉11の底部の流動材(すなわち流動層A)の側方においてアンモニア等の炭素非含有燃料を燃焼させる。 The carbon-free fuel supply unit 16B according to the second installation mode supplies ammonia as a carbon-free fuel into the fluidized bed A from the side of the fluidized bed A (fluidized material at the bottom of the furnace 11) on the perforated plate 121. supply. Ammonia directly supplied into the fluidized bed A is mixed with the fluid material, solid fuel, and pressurized air in the fluidized bed A and efficiently combusted. The carbon-free fuel supply unit 16B includes a storage unit 161B that stores ammonia in a gaseous or liquid non-solid state, and ammonia stored in the storage unit 161B in a gaseous or liquid non-solid state into the fluidized bed A. It has an injector 162B for injecting. Here, ammonia can be efficiently injected into the fluidized bed A by providing the tip of the injection device 162B so as to be inserted into the fluidized bed A from the side. The injection device 162B may be configured as a burner that mixes ammonia with air and burns it. In this case, the tip of the injection device 162B serves as the crater of the burner and ejects a flame by combustion of ammonia into the fluidized bed A. . Such a burner as the carbon-free fuel supply unit 16B can be configured, for example, as a lance burner or a burner lance, and a carbon-free fuel such as ammonia is supplied to the side of the fluidized material (that is, the fluidized bed A) at the bottom of the furnace 11. Burn.
 炭素非含有燃料供給部16Bの噴射装置162Bの先端としての噴射口の位置は流動層Aに面していればどこでもよい。例えば、火炉11の高さが約30mの場合の流動層Aの典型的な高さは約1.5mであるため、噴射装置162Bの噴射口の高さは火炉11の底面から約1.5m未満にするのが好ましく、具体的には0.5m等にする。また、火炉11の高さに対する百分率で表すと流動層Aの典型的な高さ1.5mは30mの5.0%に相当し、これに対して噴射装置162Bの噴射口の高さは、好ましくは1.0%-4.0%の範囲内とし、より好ましくは1.5%-2.5%の範囲内とする(上記の0.5mは30mの1.7%に相当する)。 The position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B may be anywhere as long as it faces the fluidized bed A. For example, when the height of the furnace 11 is about 30 m, the typical height of the fluidized bed A is about 1.5 m. is preferably 0.5 m. Also, when expressed as a percentage of the height of the furnace 11, a typical height of the fluidized bed A of 1.5 m corresponds to 5.0% of 30 m, whereas the height of the injection port of the injection device 162B is preferably 1.0. %-4.0%, more preferably 1.5%-2.5% (0.5m above corresponds to 1.7% of 30m).
 また、バーナ等によって構成される炭素非含有燃料供給部16Bの噴射装置162Bの先端としての噴射口の位置を火炉11の底面から1.5m未満の高さに設けることで、アンモニアの燃焼による亜酸化窒素(N2O:酸化二窒素や一酸化二窒素とも呼ばれる)の発生および排出を低減できる効果が確認された。炭素非含有燃料供給部16Bの噴射口の位置付近で発生した亜酸化窒素が、その上部の主燃焼領域を通過する間に還元されて窒素へ変換されるためと考えられる。このような亜酸化窒素の還元による削減効果を高めるためには、炭素非含有燃料供給部16Bの噴射口の位置を更に低くすればよく、例えば、火炉11の底面から1.0m未満の高さとするのが好ましく、火炉11の底面から0.5m未満の高さとするのが更に好ましい。 In addition, by providing the position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B constituted by a burner or the like at a height of less than 1.5 m from the bottom of the furnace 11, suboxidation due to combustion of ammonia The effect of reducing the generation and emission of nitrogen (N 2 O: also called dinitrogen oxide or dinitrogen monoxide) was confirmed. It is believed that the nitrous oxide generated near the position of the injection port of the carbon-free fuel supply portion 16B is reduced and converted into nitrogen while passing through the main combustion region above it. In order to enhance the reduction effect of nitrous oxide reduction, the position of the injection port of the carbon-free fuel supply unit 16B may be further lowered, for example, the height of less than 1.0 m from the bottom of the furnace 11. , and more preferably less than 0.5 m from the bottom of the furnace 11 .
 同様に、バーナ等によって構成される炭素非含有燃料供給部16Bの噴射装置162Bの先端としての噴射口の位置を火炉11の底面から1.5m以上(かつ、好ましくは流動層Aの上面以下)の高さに設けることで、アンモニアの燃焼による窒素酸化物(NOx)の発生および排出を低減できる効果が確認された。火炉11の底部で発生した窒素酸化物が、バーナ等によって供給されたアンモニアと反応して窒素に還元されるためと考えられる。供給されたアンモニアの完全燃焼を維持しながら窒素酸化物の還元効果を得るため、典型的に火炉11の底面から3.0m~4.0m程度の高さに設けられる第2ブロワ72からの加圧空気の供給口(図1では流動層Aの上方に加圧空気が供給されているが、実際には流動層Aの側方から加圧空気が供給されてもよい)より下方に炭素非含有燃料供給部16Bの噴射口を設置するのが好ましい。このようなアンモニアの完全燃焼と窒素酸化物の低減効果を同時に得るためには、炭素非含有燃料供給部16Bの噴射口を加圧空気の供給口より下方に設ければよく、例えば、上記の典型的な加圧空気供給口(3.0m~4.0m程度の高さ)に対して、炭素非含有燃料供給部16Bの噴射口は、例えば、火炉11の底面から2.0m以上の高さとしてもよく、火炉11の底面から3.0m以上の高さとしてもよい。 Similarly, the position of the injection port as the tip of the injection device 162B of the carbon-free fuel supply unit 16B constituted by a burner or the like is set at a distance of 1.5 m or more from the bottom surface of the furnace 11 (and preferably below the upper surface of the fluidized bed A). It was confirmed that the installation at a height can reduce the generation and emission of nitrogen oxides (NOx) due to combustion of ammonia. It is believed that nitrogen oxides generated at the bottom of the furnace 11 react with ammonia supplied from a burner or the like and are reduced to nitrogen. Pressurized air from a second blower 72 typically installed at a height of about 3.0 m to 4.0 m from the bottom of the furnace 11 in order to obtain the effect of reducing nitrogen oxides while maintaining complete combustion of the supplied ammonia. (Although pressurized air is supplied above the fluidized bed A in FIG. 1, in practice, pressurized air may be supplied from the side of the fluidized bed A) Carbon-free fuel below It is preferable to install the injection port of the supply part 16B. In order to obtain the effect of completely burning ammonia and reducing nitrogen oxides at the same time, the injection port of the carbon-free fuel supply unit 16B may be provided below the supply port of the pressurized air. For a typical pressurized air supply port (about 3.0 m to 4.0 m high), the injection port of the carbon-free fuel supply unit 16B is, for example, 2.0 m or more from the bottom of the furnace 11. Well, it may be 3.0 m or more from the bottom of the furnace 11 .
 N2OおよびNOxの排出を効果的に低減する上では、1.5m未満(または、1.0m未満、0.5m未満)の高さの炭素非含有燃料供給部16Bのバーナと、1.5m以上(または、2.0m以上、3.0m以上)の高さの炭素非含有燃料供給部16Bのバーナを併設するのが好ましい。このような各バーナにおけるアンモニア等の炭素非含有燃料の供給量や燃焼量を個別に調整することで、火炉11におけるN2OおよびNOxの排出量を最小化または最適化できる。 For effective reduction of N2O and NOx emissions, burners in the carbon - free fuel supply 16B less than 1.5m (or less than 1.0m, less than 0.5m) and 1.5m or more (or , 2.0 m or more, 3.0 m or more) is preferably installed side by side with the burner of the carbon-free fuel supply section 16B. By individually adjusting the supply amount and combustion amount of carbon-free fuel such as ammonia in each burner, the emissions of N 2 O and NOx in the furnace 11 can be minimized or optimized.
 第3の設置態様に係る炭素非含有燃料供給部16Cは、後述する起動バーナと一体的に構成され、流動層Aの上方から流動層Aの表面(上面)に向けて下方に炭素非含有燃料としてのアンモニアを供給する。炭素非含有燃料供給部16Cから供給されたアンモニアは、流動層Aの表面で流動する流動材、固形燃料、加圧空気と混ざり合って効率的に燃焼される。ここで、流動層Aの下方からアンモニアを供給する炭素非含有燃料供給部16A、流動層Aの側方からアンモニアを供給する炭素非含有燃料供給部16B、流動層Aの上方からアンモニアを供給する炭素非含有燃料供給部16Cの少なくとも二つの組合せによって、流動層Aの各部で流動する流動材、固形燃料、加圧空気に対して異なる方向からアンモニアを噴射して効率的に混合できるため、難燃性として知られるアンモニアを流動層Aの各部で効率的に燃焼できる。 The carbon-free fuel supply unit 16C according to the third installation mode is configured integrally with a starting burner to be described later, and the carbon-free fuel is supplied downward from above the fluidized bed A toward the surface (upper surface) of the fluidized bed A. supply ammonia as Ammonia supplied from the carbon-free fuel supply unit 16C is mixed with the fluid material, solid fuel, and pressurized air flowing on the surface of the fluidized bed A and efficiently combusted. Here, the carbon-free fuel supply unit 16A that supplies ammonia from below the fluidized bed A, the carbon-free fuel supply unit 16B that supplies ammonia from the side of the fluidized bed A, and the ammonia from above the fluidized bed A By combining at least two of the carbon-free fuel supply parts 16C, ammonia can be injected from different directions into the fluid material, the solid fuel, and the pressurized air flowing in each part of the fluidized bed A to efficiently mix them. Ammonia, which is known to be flammable, can be efficiently burned in each part of the fluidized bed A.
 炭素非含有燃料供給部16Cは、アンモニアを気体または液体の非固形の状態で貯留する貯留部161Cと、貯留部161Cに貯留されたアンモニアを気体または液体の非固形の状態で火炉11内に噴射する噴射装置162Cを備える。ここで、噴射装置162Cは後述する起動バーナとしても機能し、その先端から噴出する炎で流動層Aの表面を直接加熱できるように下方に傾斜して設けられる。具体的な構成は後述するが、CFBボイラには起動のための起動バーナが設けられることが一般的であり、本実施形態では既存の起動バーナをアンモニア供給用の炭素非含有燃料供給部16Cとしても活用できる。 The carbon-free fuel supply unit 16C includes a storage unit 161C that stores ammonia in a gaseous or liquid non-solid state, and the ammonia stored in the storage unit 161C in a gaseous or liquid non-solid state and injects it into the furnace 11. and an injector 162C. Here, the injection device 162C also functions as a starting burner, which will be described later, and is inclined downward so that the surface of the fluidized bed A can be directly heated by the flame jetted from its tip. Although the specific configuration will be described later, a CFB boiler is generally provided with a start-up burner for starting, and in this embodiment, the existing start-up burner is used as a carbon-free fuel supply unit 16C for supplying ammonia. can also be used.
 炭素非含有燃料供給部16Cの噴射装置162Cの先端としての噴射口の位置は既存の起動バーナの位置によって決まる。例えば、火炉11の高さが約30mの場合の起動バーナの典型的な高さは約2.0mであり、高さ約1.5mの流動層Aより上方に位置する。なお、炭素非含有燃料供給部16Cは起動バーナと別体として設けてもよく、その場合の噴射装置162Cの噴射口の高さは自由に設定できる。例えば、火炉11の高さ(30m)の5.0%(1.5m)の高さの流動層Aの表面に対してアンモニアを効果的に噴射できるように、火炉11の高さの6.0%以上(1.8m以上)の高さに噴射装置162Cの噴射口を設けるのが好ましい。なお、噴射装置162Cの下方への傾斜角度を大きくすれば設置高さが大きくても流動層Aの表面に対してアンモニアを噴射できる。 The position of the injection port as the tip of the injector 162C of the carbon-free fuel supply 16C is determined by the position of the existing start-up burner. For example, if the furnace 11 has a height of about 30 m, the typical height of the start-up burners is about 2.0 m and is above the fluidized bed A, which is about 1.5 m high. The carbon-free fuel supply unit 16C may be provided separately from the starting burner, in which case the height of the injection port of the injection device 162C can be freely set. For example, 6.0% or more of the height of the furnace 11 (1.8 It is preferable to provide the injection port of the injection device 162C at a height of 162C or more. If the downward inclination angle of the injection device 162C is increased, ammonia can be injected onto the surface of the fluidized bed A even if the installation height is large.
 第4の設置態様に係る炭素非含有燃料供給部16Dは、火炉11の上部のフリーボードB内に炭素非含有燃料としてのアンモニアを供給する。フリーボードB内に供給されたアンモニアは、流動層Aで完全燃焼されなかった固形燃料等に由来する未燃物を燃焼させて、不完全燃焼によるダイオキシンや一酸化炭素等の有害物質の発生を抑制する。特にフリーボードBでダイオキシンを発生させないためには温度を約800℃以上に維持することが重要であり、炭素非含有燃料供給部16Dからのアンモニアを燃焼させることで主な燃焼が起こる流動層Aから離れたフリーボードBでも約800℃以上の高温を維持できる。 The carbon-free fuel supply unit 16D according to the fourth installation mode supplies ammonia as a carbon-free fuel into the freeboard B in the upper part of the furnace 11. Ammonia supplied into the freeboard B burns unburned substances derived from solid fuels that have not been completely burned in the fluidized bed A, thereby preventing the generation of harmful substances such as dioxins and carbon monoxide due to incomplete combustion. Suppress. In particular, in order not to generate dioxins in the freeboard B, it is important to keep the temperature above about 800°C. A high temperature of about 800° C. or more can be maintained even at the free board B which is away from.
 また、アンモニアは還元剤としても機能し、火炉11内の燃焼で発生しうる大気汚染物質としての窒素酸化物(NOx)を無害な窒素と水に還元する。火炉11の下部で燃焼後の排気が火炉11外に出る前のフリーボードBに炭素非含有燃料供給部16Dからアンモニアを供給することによって排気中の窒素酸化物を効果的に除去できる。 Ammonia also functions as a reducing agent, reducing nitrogen oxides (NOx), which are air pollutants that may be generated by combustion in the furnace 11, to harmless nitrogen and water. By supplying ammonia from the carbon-free fuel supply part 16D to the freeboard B before the exhaust gas exits the furnace 11 after combustion in the lower part of the furnace 11, nitrogen oxides in the exhaust gas can be effectively removed.
 炭素非含有燃料供給部16Dは、アンモニアを気体または液体の非固形の状態で貯留する貯留部161Dと、貯留部161Dに貯留されたアンモニアを気体または液体の非固形の状態でフリーボードB内に噴射する噴射装置162Dを備える。なお、噴射装置162Dは、アンモニアを空気と混合して燃焼させるバーナとして構成してもよく、この場合の噴射装置162Dの先端はバーナの火口としてアンモニアの燃焼による炎をフリーボードB内に噴出する。 The carbon-free fuel supply unit 16D includes a storage unit 161D that stores ammonia in a gaseous or liquid non-solid state, and the ammonia stored in the storage unit 161D in a gaseous or liquid non-solid state in the freeboard B. It has an injection device 162D for injection. The injection device 162D may be configured as a burner that mixes and burns ammonia with air, and in this case, the tip of the injection device 162D serves as the crater of the burner and ejects flames from combustion of ammonia into the freeboard B. .
 炭素非含有燃料供給部16Dの噴射装置162Dの先端としての噴射口の位置はフリーボードBに面していればどこでもよい。例えば、火炉11の高さが約30mの場合は約1.5mの流動層Aより上方はフリーボードBを構成する。しかし、流動層Aの表面に近い部分では粉末状または粒子状の流動材や固形燃料が激しく運動しながら燃焼しているため、ダイオキシンや窒素酸化物の除去という上記の効果を奏するためには噴射装置162Dの噴射口を流動層Aの表面から十分に離すのが好ましい。一方、噴射装置162Dの噴射口の位置が高すぎると、アンモニアによってダイオキシンや窒素酸化物が十分に除去される前の排気が火炉11外に出てしまうため好ましくない。これらの点を考慮して、噴射装置162Dの噴射口の高さは、例えば火炉11の高さ(30m)の50%(15m)から70%(21m)の範囲内とするのが好ましい。 The position of the injection port as the tip of the injection device 162D of the carbon-free fuel supply unit 16D may be anywhere as long as it faces the freeboard B. For example, when the height of the furnace 11 is about 30 m, the freeboard B is formed above the fluidized bed A of about 1.5 m. However, in the portion near the surface of the fluidized bed A, the powdered or particulate fluidized material and solid fuel are burning while vigorously moving. It is preferable to keep the injection port of the device 162D sufficiently away from the surface of the fluidized bed A. On the other hand, if the position of the injection port of the injection device 162D is too high, the exhaust gas will come out of the furnace 11 before dioxins and nitrogen oxides are sufficiently removed by ammonia, which is not preferable. Considering these points, the height of the injection port of the injection device 162D is preferably within a range of 50% (15m) to 70% (21m) of the height of the furnace 11 (30m).
 以上のように火炉11の高さ方向である鉛直方向の異なる複数の位置に炭素非含有燃料供給部16A~16Dを設けることによって、難燃性として知られるアンモニアの燃焼場所を分散させて全体として高い燃焼効率を実現できる。また、このように火炉11の各部で少しずつアンモニアを燃焼させる構成とすることによって、高い燃焼効率を維持しながら全体としてアンモニアの供給量を増やすことができる。換言すれば、炭素を主成分とする石炭等の従来の炭素含有燃料の多くを、アンモニアや水素等の炭素非含有燃料によって置換できる。炭素非含有燃料は燃焼時に二酸化炭素等の炭素を含む温室効果ガスを発生させないため、温暖化が進む地球環境への悪影響を低減できる。 As described above, by providing the carbon-free fuel supply units 16A to 16D at a plurality of different positions in the vertical direction, which is the height direction of the furnace 11, the combustion sites of ammonia, which is known as flame retardancy, are dispersed and the overall High combustion efficiency can be achieved. Further, by adopting a configuration in which ammonia is gradually burned in each part of the furnace 11 in this way, it is possible to increase the supply amount of ammonia as a whole while maintaining high combustion efficiency. In other words, many conventional carbon-containing fuels, such as carbon-based coal, can be replaced by non-carbon-containing fuels such as ammonia and hydrogen. Since carbon-free fuels do not generate carbon-containing greenhouse gases such as carbon dioxide when burned, they can reduce adverse effects on the global environment as global warming progresses.
 続いて、炭素非含有燃料供給部16Cと一体的に構成される起動バーナ(起動バーナ16Cと表記する)を説明する。起動バーナ16Cには、炭素非含有燃料としてのアンモニアを貯留する炭素非含有燃料貯留部161Cと並列に、炭素含有燃料としての重油を貯留する炭素含有燃料貯留部163Cが設けられる。炭素非含有燃料貯留部161Cと噴射装置162Cの間には、炭素非含有燃料貯留部161Cから噴射装置162Cへのアンモニアの供給量を制御する炭素非含有燃料制御バルブ164Cが設けられ、炭素含有燃料貯留部163Cと噴射装置162Cの間には、炭素含有燃料貯留部163Cから噴射装置162Cへの重油の供給量を制御する炭素含有燃料制御バルブ165Cが設けられる。 Next, a start burner (denoted as a start burner 16C) configured integrally with the carbon-free fuel supply section 16C will be described. The starting burner 16C is provided with a carbon-containing fuel storage section 163C that stores heavy oil as a carbon-containing fuel in parallel with a carbon-free fuel storage section 161C that stores ammonia as a carbon-free fuel. A carbon-free fuel control valve 164C is provided between the carbon-free fuel reservoir 161C and the injector 162C to control the amount of ammonia supplied from the carbon-free fuel reservoir 161C to the injector 162C. A carbon-containing fuel control valve 165C is provided between the reservoir 163C and the injector 162C to control the amount of heavy oil supplied from the carbon-containing fuel reservoir 163C to the injector 162C.
 モード切替部166Cは、炭素非含有燃料制御バルブ164Cおよび炭素含有燃料制御バルブ165Cを制御し、それらの開閉状態を相補的に切り替える。炭素非含有燃料制御バルブ164Cが開状態かつ炭素含有燃料制御バルブ165Cが閉状態の第1モードでは、噴射装置162Cは炭素非含有燃料貯留部161Cからのアンモニアを火炉11内に供給する。炭素非含有燃料制御バルブ164Cが閉状態かつ炭素含有燃料制御バルブ165Cが開状態の第2モードでは、噴射装置162Cは炭素含有燃料貯留部163Cからの重油を火炉11内に供給する。具体的には、バーナとして構成される噴射装置162C内で空気と混合された重油が燃焼され、噴射装置162Cの先端はバーナの火口として重油の燃焼による炎を火炉11内に噴出する。 The mode switching unit 166C controls the carbon-free fuel control valve 164C and the carbon-containing fuel control valve 165C, and complementarily switches between open and closed states. In a first mode, with carbon-free fuel control valve 164C open and carbon-free fuel control valve 165C closed, injector 162C supplies ammonia from carbon-free fuel reservoir 161C into furnace 11 . In a second mode in which carbon-free fuel control valve 164C is closed and carbon-containing fuel control valve 165C is open, injector 162C supplies heavy oil into furnace 11 from carbon-containing fuel reservoir 163C. Specifically, heavy oil mixed with air is combusted in an injection device 162C configured as a burner, and the tip of the injection device 162C serves as the crater of the burner and ejects flames from the combustion of the heavy oil into the furnace 11.
 モード切替部166Cは、CFBボイラの起動時は第2モードに切り替え、CFBボイラの起動後は第1モードに切り替える。CFBボイラの起動時には、流動層Aを形成するための珪砂等の流動材が流動材供給部14から火炉11内に供給される。この際、固形燃料供給部15から石炭等の固形燃料を火炉11内に併せて供給してもよいし、炭素非含有燃料供給部16C以外の炭素非含有燃料供給部16A、16B、16Dからアンモニアや水素等の炭素非含有燃料を火炉11内に併せて供給してもよい。CFBボイラの起動時に第2モードで動作する噴射装置162Cは、重油の燃焼による炎で流動材供給部14から供給された流動材を加熱する。ここで、噴射装置162Cは下方に傾斜して設けられるため、流動材によって形成される流動層Aの表面が直接加熱され、流動層Aおよび火炉11内が効率的に昇温する。このように起動バーナ16Cは砂状の流動層Aを上方から加熱するため砂上バーナとも呼ばれる。 The mode switching unit 166C switches to the second mode when the CFB boiler is started, and switches to the first mode after the CFB boiler is started. When starting up the CFB boiler, a fluid material such as silica sand for forming the fluidized bed A is supplied from the fluid material supply unit 14 into the furnace 11 . At this time, a solid fuel such as coal may also be supplied into the furnace 11 from the solid fuel supply unit 15, or ammonia may be supplied from the carbon-free fuel supply units 16A, 16B, and 16D other than the carbon-free fuel supply unit 16C. A carbon-free fuel such as hydrogen or hydrogen may also be supplied into the furnace 11 . The injection device 162C, which operates in the second mode when the CFB boiler is started, heats the fluid material supplied from the fluid material supply unit 14 with flames generated by combustion of heavy oil. Here, since the injection device 162C is provided inclined downward, the surface of the fluidized bed A formed by the fluidized material is directly heated, and the temperature of the fluidized bed A and the inside of the furnace 11 is efficiently raised. Since the starting burner 16C heats the sand-like fluidized bed A from above in this manner, it is also called a burner on sand.
 流動層Aおよび火炉11内が十分に昇温したCFBボイラの起動後、すなわち流動層Aにおいて固形燃料の燃焼が可能となった後は、モード切替部166Cは第1モードに切り替える。第1モードで動作する噴射装置162Cは、その先端からアンモニアや水素等の炭素非含有燃料を流動層Aの表面に対して噴射する。以上のように、起動バーナ16Cは、起動時の第2モードでは炭素含有燃料としての重油を供給する炭素含有燃料供給部として機能し、起動後の第1モードでは炭素非含有燃料としてのアンモニアや水素等を供給する炭素非含有燃料供給部として機能するハイブリッド燃料供給部である。従来の起動バーナは重油等によって起動時の昇温を行った後は停止するが、本実施形態によれば起動後も起動バーナを炭素非含有燃料供給部として有効に活用できる。 After the fluidized bed A and the inside of the furnace 11 have sufficiently heated up the CFB boiler, that is, after the solid fuel can be burned in the fluidized bed A, the mode switching unit 166C switches to the first mode. The injector 162C operating in the first mode injects carbon-free fuel such as ammonia or hydrogen to the surface of the fluidized bed A from its tip. As described above, the startup burner 16C functions as a carbon-containing fuel supply section that supplies heavy oil as carbon-containing fuel in the second mode at startup, and ammonia and carbon-free fuel as carbon-free fuel in the first mode after startup. It is a hybrid fuel supply unit that functions as a carbon-free fuel supply unit that supplies hydrogen or the like. A conventional start-up burner is stopped after the temperature is raised by heavy oil or the like at start-up, but according to the present embodiment, the start-up burner can be effectively used as a carbon-free fuel supply section even after start-up.
 図2は、ハイブリッド燃料供給部としての起動バーナ16Cの構成例を模式的に示す。起動バーナ16Cの噴射装置162Cは、炭素非含有燃料貯留部161Cから炭素非含有燃料としてのアンモニアを受け入れる炭素非含有燃料受入部167Cおよび炭素含有燃料貯留部163Cから炭素含有燃料としての重油を受け入れる炭素含有燃料受入部168Cを備える。 FIG. 2 schematically shows a configuration example of the starting burner 16C as a hybrid fuel supply section. Injector 162C of start-up burner 16C receives carbon-free fuel receiving portion 167C as carbon-free fuel from carbon-free fuel reservoir 161C and heavy oil as carbon-containing fuel from carbon-containing fuel reservoir 163C. A contained fuel receiving portion 168C is provided.
 以上、CFBボイラの燃焼部1について詳細に説明した。続いて、CFBボイラの燃焼部1以外の構成を説明する。蒸気発生部2は、蒸気を発生させる水を貯留するドラム21と、ドラム21に水を供給する給水管22と、ドラム21内の水を高温の火炉11内に導いて加熱する水管23と、水管23で加熱された水から発生した蒸気をCFBボイラの出力としてドラム21から排出する蒸気管24を備える。給水管22は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで給水を予熱する節炭器を構成し、蒸気管24は燃焼部1の高温の排気が通る伝熱部4内を蛇行することで蒸気を過熱する過熱器を構成する。同様に、第1ブロワ71および第2ブロワ72が火炉11内に供給する加圧空気も伝熱部4内の高温の排気によって予熱される。 The combustion section 1 of the CFB boiler has been described in detail above. Next, the configuration of the CFB boiler other than the combustion section 1 will be described. The steam generating unit 2 includes a drum 21 that stores water for generating steam, a water supply pipe 22 that supplies water to the drum 21, a water pipe 23 that guides the water in the drum 21 into the high-temperature furnace 11 to heat it, A steam pipe 24 is provided for discharging steam generated from water heated in the water pipe 23 from the drum 21 as the output of the CFB boiler. The water supply pipe 22 meanders in the heat transfer section 4 through which the high-temperature exhaust gas of the combustion section 1 passes to form an economizer that preheats the water supply, and the steam pipe 24 is a heat transfer section through which the high-temperature exhaust gas of the combustion section 1 passes. A superheater that superheats steam is configured by meandering inside 4 . Similarly, the pressurized air supplied into the furnace 11 by the first blower 71 and the second blower 72 is also preheated by the high-temperature exhaust gas inside the heat transfer section 4 .
 流動材循環部3は、火炉11の上部から排出された排気から流動材を分離して捕集するサイクロン31と、サイクロン31で捕集された流動材を火炉11内に戻すシールポット32を備える。サイクロン31は、上部が略円筒状および下部が略円錐状に形成されたサイクロン式粉体分離器であり、内壁に沿って螺旋状に降下する気流を発生させる。火炉11からの排気に含まれる流動材は、気流に沿って螺旋状に降下する際にサイクロン31の内壁に接触して落下することで捕集される。なお、排気には流動材だけでなく、炭素非含有燃料供給部16A~16Dから供給されたアンモニアも含まれる。このため、排気中に窒素酸化物が残留していたとしても、サイクロン31内を激しく運動するアンモニアによって効率的に除去できる。更には、サイクロン31において排気に残留している未燃分としての炭素非含有燃料アンモニアと流動材との接触を促す、換言すればサイクロン31がアンモニアミキサーまたは炭素非含有燃料撹拌部として機能することで未燃分としてのアンモニアの完全燃焼が期待できる。なお、サイクロン31をアンモニアミキサーとして機能させる観点から、炭素非含有燃料供給部16A~16Dは排気の流れにおけるサイクロン31の上流側に設置することが好ましい。 The fluidizing material circulation unit 3 includes a cyclone 31 that separates and collects the fluidizing material from the exhaust discharged from the upper part of the furnace 11 and a seal pot 32 that returns the fluidizing material collected by the cyclone 31 into the furnace 11. . The cyclone 31 is a cyclone-type powder separator having a generally cylindrical upper portion and a generally conical lower portion, and generates an air flow spirally descending along the inner wall. The fluid material contained in the exhaust gas from the furnace 11 is collected by coming into contact with the inner wall of the cyclone 31 and falling down while spirally descending along the airflow. The exhaust gas contains not only the fluid material but also the ammonia supplied from the carbon-free fuel supply units 16A to 16D. Therefore, even if nitrogen oxides remain in the exhaust gas, they can be efficiently removed by ammonia vigorously moving in the cyclone 31 . Furthermore, the cyclone 31 promotes contact between the carbon-free fuel ammonia as an unburned matter remaining in the exhaust gas and the fluidizing material, in other words, the cyclone 31 functions as an ammonia mixer or a carbon-free fuel agitator. , complete combustion of ammonia as unburned content can be expected. From the viewpoint of making the cyclone 31 function as an ammonia mixer, the carbon-free fuel supply units 16A to 16D are preferably installed upstream of the cyclone 31 in the exhaust flow.
 サイクロン31の下方に設けられるシールポット32は流動材で充填されており、火炉11からサイクロン31への未燃ガス等の逆流を防止する。シールポット32に充填された流動材は、サイクロン31が新たに捕集する流動材の重みによって押し出される形で、徐々に火炉11内に戻される。 A seal pot 32 provided below the cyclone 31 is filled with a fluid material to prevent backflow of unburned gas from the furnace 11 to the cyclone 31. The fluid material filled in the seal pot 32 is pushed out by the weight of the fluid material newly collected by the cyclone 31 and is gradually returned into the furnace 11 .
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.
 実施形態ではボイラの例としてCFBボイラを説明したが、本発明はBFBボイラ(気泡型流動床ボイラ)にも適用できる。BFBボイラの構成は、火炉11外に出た流動材を捕集して火炉11内に戻す流動材循環部3を備えない点を除いて、CFBボイラと同様である。 Although a CFB boiler has been described as an example of a boiler in the embodiments, the present invention can also be applied to a BFB boiler (a bubbling fluidized bed boiler). The configuration of the BFB boiler is the same as that of the CFB boiler except that it does not include the fluid material circulation unit 3 that collects the fluid material that has flowed out of the furnace 11 and returns it to the inside of the furnace 11 .
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本発明は燃料を燃焼させる燃焼装置およびボイラに関する。 The present invention relates to combustion equipment and boilers that burn fuel.
 1 燃焼部、2 蒸気発生部、3 流動材循環部、4 伝熱部、11 火炉、13 外部循環機構、14 流動材供給部、15 固形燃料供給部、16 炭素非含有燃料供給部、16C 起動バーナ、31 サイクロン、32 シールポット、121 多孔板、122 風箱、166C モード切替部、167C 炭素非含有燃料受入部、168C 炭素含有燃料受入部。 1 Combustion section, 2 Steam generation section, 3 Fluid material circulation section, 4 Heat transfer section, 11 Furnace, 13 External circulation mechanism, 14 Fluid material supply section, 15 Solid fuel supply section, 16 Carbon-free fuel supply section, 16C Start Burner, 31 cyclone, 32 seal pot, 121 perforated plate, 122 wind box, 166C mode switching part, 167C carbon-free fuel receiving part, 168C carbon-containing fuel receiving part.

Claims (17)

  1.  流動材が流動する燃焼室内に燃料を供給して燃焼させる燃焼装置であって、
     炭素を含有しない炭素非含有燃料を前記燃焼室内に供給する炭素非含有燃料供給部を備える
     燃焼装置。
    A combustion device for supplying and burning fuel in a combustion chamber in which a fluid material flows,
    A combustion apparatus comprising a carbon-free fuel supply that supplies a carbon-free fuel that does not contain carbon into the combustion chamber.
  2.  炭素を含有する炭素含有燃料を前記燃焼室内に供給する炭素含有燃料供給部を更に備える請求項1に記載の燃焼装置。 The combustion apparatus according to claim 1, further comprising a carbon-containing fuel supply unit that supplies carbon-containing fuel containing carbon into the combustion chamber.
  3.  前記炭素非含有燃料供給部および前記炭素含有燃料供給部は一体的なハイブリッド燃料供給部として構成され、
     当該ハイブリッド燃料供給部は、前記炭素非含有燃料を受け入れる炭素非含有燃料受入部および前記炭素含有燃料を受け入れる炭素含有燃料受入部を備える
     請求項2に記載の燃焼装置。
    the carbon-free fuel supply unit and the carbon-containing fuel supply unit are configured as an integrated hybrid fuel supply unit;
    3. The combustion device of claim 2, wherein said hybrid fuel supply comprises a carbon-free fuel receiving portion for receiving said carbon-free fuel and a carbon-containing fuel receiving portion for receiving said carbon-containing fuel.
  4.  前記ハイブリッド燃料供給部は、前記炭素非含有燃料を前記燃焼室内に供給する第1モードおよび前記炭素含有燃料を前記燃焼室内に供給する第2モードを切り替えるモード切替部を更に備える請求項3に記載の燃焼装置。 4. The hybrid fuel supply unit according to claim 3, further comprising a mode switching unit for switching between a first mode of supplying the carbon-free fuel into the combustion chamber and a second mode of supplying the carbon-containing fuel into the combustion chamber. combustion device.
  5.  前記モード切替部は、前記燃焼装置の起動時は前記第2モードに切り替え、前記燃焼装置の起動後は前記第1モードに切り替える請求項4に記載の燃焼装置。 The combustion apparatus according to claim 4, wherein the mode switching unit switches to the second mode when the combustion apparatus is started, and switches to the first mode after the combustion apparatus is started.
  6.  前記燃焼室の底部に設けられ流体を透過させる流体透過部と、
     前記流体透過部を介して前記流動材を流動させる空気を前記燃焼室内に供給する流動流体供給部とを備え、
     前記炭素非含有燃料供給部は、前記流体透過部上の前記流動材に対して前記炭素非含有燃料を供給すると共に、流体である前記炭素非含有燃料を前記空気と共に前記流体透過部を介して前記燃焼室内に供給する
     請求項1から5のいずれかに記載の燃焼装置。
    a fluid permeable part provided at the bottom of the combustion chamber and allowing fluid to pass therethrough;
    a flowing fluid supply unit that supplies air for flowing the fluid material through the fluid permeable portion into the combustion chamber;
    The carbon-free fuel supply section supplies the carbon-free fuel to the fluid material on the fluid permeable section, and supplies the carbon-free fuel, which is a fluid, together with the air through the fluid permeable section. 6. The combustion device according to any one of claims 1 to 5, supplying into the combustion chamber.
  7.  前記炭素非含有燃料供給部は、前記燃焼室の底部の前記流動材に側方から前記炭素非含有燃料を供給する、請求項1から5のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 1 to 5, wherein the carbon-free fuel supply unit supplies the carbon-free fuel from the side to the fluid material at the bottom of the combustion chamber.
  8.  前記炭素非含有燃料供給部は、前記燃焼室の底部の前記流動材の側方において前記炭素非含有燃料を燃焼させるバーナである、請求項7に記載の燃焼装置。 The combustion apparatus according to claim 7, wherein the carbon-free fuel supply section is a burner that burns the carbon-free fuel at the side of the fluid material at the bottom of the combustion chamber.
  9.  前記バーナは、前記燃焼室の底面から1.5m未満の高さに設けられる、請求項8に記載の燃焼装置。 The combustion device according to claim 8, wherein the burner is provided at a height of less than 1.5m from the bottom of the combustion chamber.
  10.  前記バーナは、前記燃焼室の底面から1.5m以上の高さに設けられる、請求項8に記載の燃焼装置。 The combustion device according to claim 8, wherein the burner is provided at a height of 1.5 m or more from the bottom surface of the combustion chamber.
  11.  前記炭素非含有燃料供給部は前記燃焼室内の高さが異なる複数の位置に前記炭素非含有燃料を供給する請求項1から5のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 1 to 5, wherein the carbon-free fuel supply unit supplies the carbon-free fuel to a plurality of positions with different heights in the combustion chamber.
  12.  前記炭素非含有燃料は非固形燃料である請求項1から5のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 1 to 5, wherein the carbon-free fuel is a non-solid fuel.
  13.  前記非固形燃料はアンモニアおよび水素の少なくともいずれかである請求項12に記載の燃焼装置。 The combustion device according to claim 12, wherein the non-solid fuel is at least one of ammonia and hydrogen.
  14.  前記燃焼室外に出た前記流動材を捕集して前記燃焼室内に戻す流動材循環部を更に備える請求項1から5のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 1 to 5, further comprising a fluid material circulation unit that collects the fluid material that has come out of the combustion chamber and returns it to the combustion chamber.
  15.  前記燃焼装置は循環流動層ボイラである請求項1から5のいずれかに記載の燃焼装置。 The combustion apparatus according to any one of claims 1 to 5, wherein the combustion apparatus is a circulating fluidized bed boiler.
  16.  流動材が流動する燃焼室内に燃料を供給して燃焼させる燃焼部と、
     炭素を含有しない炭素非含有燃料を前記燃焼室内に供給する炭素非含有燃料供給部と、
     前記燃焼部で発生した熱によって水から蒸気を発生させる蒸気発生部と
     を備えるボイラ。
    a combustion unit that supplies and burns fuel into a combustion chamber in which the fluid material flows;
    a carbon-free fuel supply unit that supplies a carbon-free fuel that does not contain carbon into the combustion chamber;
    A boiler comprising: a steam generating section for generating steam from water by heat generated in the combustion section.
  17.  流動材が流動する燃焼室内に燃料を供給して燃焼させる燃焼方法であって、
     炭素を含有しない炭素非含有燃料を前記燃焼室内に供給する炭素非含有燃料供給ステップを備える
     燃焼方法。
    A combustion method in which fuel is supplied and burned in a combustion chamber in which a fluid material flows,
    A combustion method comprising a carbon-free fuel supply step of supplying carbon-free fuel containing no carbon into said combustion chamber.
PCT/JP2022/019015 2021-05-11 2022-04-27 Combustion device, boiler, combustion method WO2022239654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520968A JPWO2022239654A1 (en) 2021-05-11 2022-04-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080186 2021-05-11
JP2021080186 2021-05-11

Publications (1)

Publication Number Publication Date
WO2022239654A1 true WO2022239654A1 (en) 2022-11-17

Family

ID=84028301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019015 WO2022239654A1 (en) 2021-05-11 2022-04-27 Combustion device, boiler, combustion method

Country Status (3)

Country Link
JP (1) JPWO2022239654A1 (en)
TW (1) TW202309441A (en)
WO (1) WO2022239654A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2019178823A (en) * 2018-03-30 2019-10-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, multi-fuel fired boiler, and method for modifying boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP2019178823A (en) * 2018-03-30 2019-10-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, multi-fuel fired boiler, and method for modifying boiler

Also Published As

Publication number Publication date
TW202309441A (en) 2023-03-01
JPWO2022239654A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US5105747A (en) Process and apparatus for reducing pollutant emissions in flue gases
KR100595042B1 (en) Fuel gasification system
JP2657896B2 (en) Fluid bed reactor and combustion method
US5937772A (en) Reburn process
JPH05507140A (en) Collective concentric angular combustion system
CN1331788A (en) Method of operating tangential firing system
CN101280920B (en) Fluidization-suspension combined combustion boiler
CA2364400C (en) Fluidized bed incinerator and combustion method in which generation of nox, co and dioxine are suppressed
WO2022239654A1 (en) Combustion device, boiler, combustion method
Brereton Combustion performance
EP2574841A2 (en) Method for reducing nitrogen oxide emissions and corrosion in a bubbling fluidized bed boiler and a bubbling fluidized bed boiler
JP3770653B2 (en) Gasification combustion method using fluidized bed furnace
JP2005299938A (en) Circulated fluidized furnace
US5662049A (en) Combustion method and apparatus
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
FI126254B (en) Method for feeding air into a fluidized bed boiler, fluidized bed boiler and fluidized bed boiler fuel supply equipment
KR950013959B1 (en) Method for operating a fluidized bed combustion
JP2001272014A (en) Fluidized bed incinerator and its combustion method
JP2005121342A (en) Operation method of circulating fluidized bed furnace
JP5439115B2 (en) Powder fuel-fired combustion device
JPH0626612A (en) Method for burning liquid fuel in circulation type fluidized bed
RU2321799C1 (en) Method of burning combustible shale in boiler with circulating fluidized bed
JPH02195104A (en) Reducing nox in exhaust gas of internally circulating fluidized bed boiler
JP2643720B2 (en) Method and apparatus for reducing emitted pollutants in flue gas
JP2671078B2 (en) Fluidized bed combustion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520968

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807356

Country of ref document: EP

Kind code of ref document: A1