WO2022239346A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2022239346A1
WO2022239346A1 PCT/JP2022/006150 JP2022006150W WO2022239346A1 WO 2022239346 A1 WO2022239346 A1 WO 2022239346A1 JP 2022006150 W JP2022006150 W JP 2022006150W WO 2022239346 A1 WO2022239346 A1 WO 2022239346A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
section
imaging
rotating
substrate
Prior art date
Application number
PCT/JP2022/006150
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 宮野
雅春 坂田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023520787A priority Critical patent/JPWO2022239346A1/ja
Publication of WO2022239346A1 publication Critical patent/WO2022239346A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the present technology relates to an imaging device having an inertial sensor.
  • Patent Document 1 discloses an imaging device having a heat dissipation system.
  • the bottom of the housing is made of a member with high thermal conductivity.
  • a member with high thermal conductivity is also provided between the bottom portion and the imaging element.
  • Patent Document 2 discloses a unit with a rotating mechanism that can correct the inclination of the movable body.
  • This unit with a rotating mechanism has a movable body and a support, and is mounted on a moving body such as a vehicle or an aircraft through the support.
  • an inertial sensor detects the tilt of the support with respect to the horizontal plane.
  • the tilt of the movable body with respect to the reference posture is corrected based on the detection result of the inertial sensor.
  • the movable body can maintain the reference posture (paragraphs [0001] [0006] [0047] [0048] FIG. 1 of Patent Document 2, etc.).
  • the purpose of the present technology is to provide an imaging device capable of improving the measurement accuracy of the inertial sensor.
  • an imaging device includes a rotating section, an imaging section, a substrate, and an inertial sensor.
  • the rotating part is configured to be rotatable about a predetermined rotating shaft.
  • the imaging section is installed on the rotating section and rotates integrally with the rotating section.
  • the substrate is installed on the rotating section so as to be spaced apart from the imaging section, and rotates integrally with the rotating section.
  • the inertial sensor is arranged on the substrate.
  • an imaging unit is installed in a rotatable rotation unit. Further, a board is installed on the rotating part so as to be separated from the imaging part, and an inertial sensor is arranged on the board. This makes it possible to improve the measurement accuracy of the inertial sensor.
  • the imaging section may be installed on the rotating section so that the imaging direction faces the outside of the rotating section.
  • the imaging direction may change according to the rotation of the rotating section.
  • the rotating part may have an internal space in which the rotating shaft is arranged.
  • the substrate divides the internal space into a first divided space including the center of gravity of the imaging section and the imaging section by a plane that is perpendicular to a perpendicular line from the center of gravity of the imaging section to the rotation axis and includes the rotation axis.
  • the rotation part may be installed so that the center of gravity is included in the second divided space.
  • the imaging unit may be installed so as to be included in the first divided space.
  • the substrate may be installed so as to be included in the second divided space.
  • the substrate may be arranged in a direction orthogonal to the imaging direction of the imaging unit.
  • the rotating part may have an outer peripheral part.
  • the imaging device is further made of a material having thermal conductivity, is thermally connected to each of the imaging section and the outer peripheral section, and conducts heat generated from the imaging section to the outer peripheral section.
  • a heat conducting portion may be provided.
  • At least one of the thermal connection between the imaging section and the thermally conductive section or the thermal connection between the outer peripheral section and the thermally conductive section may be realized by connection via a heat dissipation material.
  • the heat conducting section may be installed on the rotating section so as to press the imaging section against the rotating section.
  • the imaging unit may be installed on the rotating unit via a cushion material.
  • the imaging device may further include a rotation driving section that rotates the rotating section.
  • the imaging device may further include a rotation driving section that rotates the rotating section.
  • the rotation driving section may be arranged so as to be spaced apart from the heat conducting section.
  • the imaging device may further include a rotation driving section that rotates the rotating section.
  • the rotation drive part may be arranged so as to be spaced apart from the heat dissipation material.
  • the imaging device may further include a balancer installed at a predetermined position of the rotating section so that the center of gravity of the imaging device is located on the rotation axis.
  • the inertial sensor may be configured to include at least one of an acceleration sensor and an angular velocity sensor.
  • the imaging device may further include a rotation control section that controls rotation of the rotating section based on the detection result of the inertial sensor.
  • FIG. 1 is a perspective view showing an appearance example of an imaging device
  • FIG. 3 is a functional block diagram for explaining basic operations of the imaging device
  • FIG. 1 is an exploded perspective view of an imaging device
  • FIG. FIG. 3 is a side view of the imaging device as seen from the positive direction side in the Z direction
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4
  • FIG. 3 is a side view of the imaging device viewed from the negative direction side in the Y direction
  • FIG. 7 is a cross-sectional view taken along line BB of FIG. 6
  • It is a perspective view which shows the internal structure of an imaging device.
  • 2 is a cross-sectional view showing a configuration example of a motor
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4;
  • FIG. 9 is a view of the imaging device shown in FIG. 8 as seen from the negative direction side in the Y direction;
  • FIG. 1 is a perspective view showing an appearance example of an imaging device according to this embodiment. As shown in FIG. 1, the imaging device 100 has a substantially cylindrical shape. FIG. 1 shows the exterior so that the bottom 2a and the side 3 of the two bottoms 2 (2a and 2b) of the imaging device 100 can be seen.
  • the depth direction (perpendicular to the bottom portion 2a) is defined as the X direction
  • the horizontal direction is defined as the Y direction
  • the vertical direction is defined as the Z direction.
  • the positive direction and negative direction of the X direction shown in FIG. 1 may be referred to as the front direction and the back direction.
  • the positive direction and negative direction of the Y direction may be described as the right direction and the left direction.
  • the positive direction and negative direction of the Z direction may be described as upward direction and downward direction.
  • the above expressions may be used to indicate the viewing direction of the imaging device 100 .
  • the expression "viewing the imaging device 100 from the positive side of the X direction” means “viewing the imaging device 100 from the tip side of the arrow indicating the X axis".
  • the orientation in which the imaging device 100 is used is not limited.
  • the imaging device 100 has a rotating section 1 configured to be rotatable about a predetermined rotation axis.
  • the rotating portion 1 has a bottom portion 2 (2a and 2b) and side portions 3, and is configured to be rotatable about a rotating shaft 5 passing through the center of the bottom portion 2 and extending in the X direction. be.
  • the rotating part 1 is rotatable about the rotating shaft 5 in the clockwise or counterclockwise direction when viewed from the X direction. In FIG. 1, the direction of rotation of the rotating portion 1 is indicated by a thick arrow.
  • the rotating section 1 also functions as a housing for the imaging device 100 .
  • a side portion 3 of the rotating portion 1 is provided with a window portion 4 .
  • a concave portion 6 is formed in the side portion 3 of the rotating portion 1 , and the window portion 4 is arranged on the bottom surface of the concave portion 6 .
  • the window part 4 has a substantially rectangular shape when viewed from the front. The shape of the window part 4 is not limited.
  • the window part 4 is configured as a transparent member. In the present disclosure, "transparency" includes not only complete transparency but also semi-transparency and colored transparency.
  • a camera module 21 (see FIG. 3) is installed inside the rotating portion 1 at a position facing the window portion 4 .
  • the camera module 21 is installed on the rotating part 1 so that the imaging direction 7 faces the outside of the rotating part 1 .
  • the camera module 21 is installed such that the imaging direction 7 is perpendicular to the window 4 .
  • the imaging direction 7 is the axial direction of the imaging optical axis of the camera module 21 .
  • the camera module 21 corresponds to an embodiment of an imaging unit according to the present technology.
  • the camera module 21 is installed on the rotating section 1 so as to rotate integrally with the rotating section 1 . Therefore, the imaging direction of the camera module 21 changes according to the rotation of the rotating section 1 . For example, by controlling the rotation of the rotating portion 1, it is possible to arbitrarily set the imaging direction of the camera module 21 over the entire circumference of 360 degrees with the rotation axis 5 as the center.
  • FIG. 2 is a functional block diagram for explaining the basic operation of the imaging device 100. As shown in FIG. As shown in FIG. 2 , the imaging device 100 has an inertial sensor 10 , a controller 11 and a rotation drive section 12 .
  • the inertial sensor 10 is a sensor capable of measuring inertial force.
  • the inertial sensor 10 is configured to include at least one of an acceleration sensor and an angular velocity sensor.
  • an IMU (Inertial Measurement Unit) sensor is used as the inertial sensor 10 .
  • IMU sensors are also called inertial measurement units.
  • the IMU sensor is capable of detecting (sensing) the acceleration and angular velocity of the imaging device 100 .
  • the IMU sensor can detect the acceleration and angular velocity of the imaging device 100 with respect to, for example, three mutually orthogonal axes.
  • the inertial sensor 10 only an acceleration sensor may be used, or only an angular velocity sensor may be used. Any configuration may be adopted as a specific configuration of the inertial sensor 10 .
  • the controller 11 has hardware necessary for configuring a computer, such as a CPU, ROM, RAM, and HDD.
  • a computer such as a CPU, ROM, RAM, and HDD.
  • the CPU loads a program according to the present technology prerecorded in the ROM or the like into the RAM and executes the program, thereby executing the processing related to the rotation control and the like according to the present technology.
  • a PLD such as FPGA or a device such as ASIC may be used.
  • Any computer such as a PC (Personal Computer) may function as the controller 11 .
  • the rotation control unit 13 as a functional block is configured by the CPU executing a predetermined program.
  • dedicated hardware such as an IC (integrated circuit) may be used to implement the functional blocks.
  • Programs are installed, for example, via various recording media. Alternatively, program installation may be performed via the Internet or the like.
  • the type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used.
  • any computer-readable non-transitory storage medium may be used.
  • the controller 11 is typically configured inside the imaging device 100 .
  • the controller 11 is not limited to this, and the controller 11 may be configured outside the imaging device 100 and connected to the inertial sensor 10, the rotation driving section 12, and the like so as to be communicable.
  • the rotation driving section 12 rotates the rotating section 1 .
  • a motor 16 (see FIG. 3) is used as the rotation drive section 12 .
  • the motor 16 is connected to the bottom portion 2b of the rotating portion 1 opposite to the bottom portion 2a.
  • a specific configuration of the motor 16 is not limited. Also, a device other than the motor 16 may be used as the rotation drive unit 12 .
  • the rotation control section 13 controls rotation of the rotating section 1 based on the detection result of the inertial sensor 10 .
  • an operator (user) or the like of the imaging device 100 inputs an operation for controlling the imaging direction of the camera module 21 .
  • the rotation control unit 13 controls the imaging direction 7 of the camera module 21 according to the operator's operation.
  • the rotation control unit 13 controls the rotation operation of the rotation driving unit 12 based on the detection result (sensing result) of the inertia sensor 10 . This makes it possible to control the rotation of the rotating section 1 with high accuracy, and to control the imaging direction 7 of the camera module 21 with high accuracy.
  • the imaging device 100 can be mounted on a moving object such as a drone. Based on the detection result of the inertial sensor 10, it is also possible to acquire information about the position and orientation of the imaging device 100 (camera module 21), and high-precision imaging by the imaging device 100 becomes possible. As a result, it becomes possible to capture a high-quality image.
  • a specific algorithm for rotation control by the rotation control unit 13 is not limited.
  • FIG. 3 is an exploded perspective view of the imaging device 100.
  • FIG. FIG. 3 shows a perspective view of the disassembled state in which the imaging device 100 faces the same direction as in FIG.
  • FIG. 4 is a side view of the imaging device 100 viewed from the positive side in the Z direction.
  • 5 is a cross-sectional view taken along line AA of FIG. 4.
  • FIG. 6 is a side view of the imaging device 100 viewed from the negative direction side in the Y direction.
  • 7 is a cross-sectional view taken along line BB of FIG. 6.
  • FIG. 8 is a perspective view showing the internal configuration of the imaging device 100.
  • FIG. 8 is a perspective view of the front holder 18 viewed from the inside.
  • FIG. 9 is a cross-sectional view showing a configuration example of the motor 16.
  • FIG. 10 is a cross-sectional view along line AA in FIG. 4, similar to FIG.
  • FIG. 11 is a view of the imaging device 100 shown in FIG. 8 as seen from the negative side in the Y direction.
  • FIG. 12 is a side view of the imaging device 100 shown in FIG. 11 viewed from the positive side in the Z direction.
  • 13A and 13B are diagrams showing a case in which the motor flexible board 17 is installed in the imaging device 100 shown in FIG. 14A and 14B are diagrams showing a case in which the motor flexible board 17 is installed in the imaging device 100 shown in FIG.
  • the imaging device 100 includes a window portion 4, a front holder 18, a cushion 19, a camera holder 20, a camera module 21, a camera flexible board 22, a heat sink 23, two heat sink screws 24, and three motors. Screw 25 , IMU board 26 , board screw 27 , weight 28 , and rear holder 29 .
  • the imaging device 100 also has a motor 16 and a motor flexible substrate 17 .
  • the front holder 18 functions as a housing for the imaging device 100 .
  • the front holder 18 has a semi-cylindrical portion 30 and a bottom portion 31 .
  • the semi-cylindrical portion 30 and the bottom portion 31 are made of, for example, rigid material.
  • various members of the imaging device 100 are protected from external impact.
  • the specific material and shape of the front holder 18 are not limited.
  • the semi-cylindrical portion 30 has a shape approximately equal to one of the two halves of a cylinder (that is, a hollow cylinder) divided by a plane including the central axis of the cylinder. That is, as shown in FIG. 3, the semi-cylindrical portion 30 has a shape of a cylinder cut in half. The semi-cylindrical portion 30 is arranged such that the central axis of the cylinder coincides with the rotation axis 5 .
  • the semi-cylindrical portion 30 has an inner surface 32 on the rotating shaft 5 side and an outer surface 33 on the opposite side of the inner surface 32 .
  • the semi-cylindrical portion 30 also has two semi-ring-shaped arc surfaces 34 (34a and 34b) facing each other along the X direction.
  • a concave portion 6 is formed on the outer surface 33 of the semi-cylindrical portion 30 .
  • An opening 35 is formed in the bottom surface of the recess 6 .
  • the opening 35 has a circular shape when viewed from the front. As shown in FIG. 3, the window portion 4 is arranged so as to cover the opening portion 35 of the recess portion 6 .
  • the window part 4 is made of a member having high transparency and rigidity, such as an acrylic plate. Moreover, the window portion 4 has a substantially rectangular shape that is substantially the same shape as the bottom surface of the recess portion 6 . Since the window part 4 has rigidity, it is possible to suppress the effect of the impact on the camera module 21 and the like when an impact is applied to the window part 4 from the outside. That is, the durability of the imaging device 100 is improved.
  • the material and shape of the window portion 4 are not limited, and any configuration may be adopted.
  • the method of fixing the window part 4 with respect to the recessed part 6 is not limited, either.
  • An internal space 61 is formed on the inner surface 32 side of the semi-cylindrical portion 30 .
  • the inner surface 32 of the semi-cylindrical portion 30 is provided with a mechanism for holding various members such as the camera module 21 and the IMU board 26 arranged in the internal space 61 .
  • the bottom portion 31 has a substantially disk shape.
  • the bottom portion 31 has a circumferential portion of which the bottom portion 31 has a half circumferential portion along the inner surface 32 of the semi-cylindrical portion 30 and further inside than the arc surface 34b on the negative direction side in the X direction (that is, X on the positive side of the direction).
  • the surface located on the inner side (the positive side in the X direction) will be referred to as an inner surface 36 .
  • a surface located on the outside side (negative direction side in the X direction) is called an outer surface 37 .
  • the motor 16 is screwed to the bottom portion 31 .
  • through holes 38 are formed in portions corresponding to the three motor screws 25 shown in FIGS.
  • the motor screw 25 passes through a through hole 38 formed in the bottom portion 31 and fits into a screw hole formed in the motor 16 .
  • the number of motor screws 25, fastening positions, etc. are not limited and may be designed arbitrarily.
  • an opening 39 into which the central shaft of the motor 16 is inserted is formed in the center of the bottom portion 31 .
  • the opening 39 has a circular shape when viewed from the X direction.
  • the rear holder 29 functions as a housing of the imaging device 100 together with the front holder 18 .
  • the rear holder 29 has a semi-cylindrical portion 40 and a bottom portion 41 .
  • the semi-cylindrical portion 40 and the bottom portion 41 are made of, for example, rigid material. Of course, specific materials and shapes are not limited.
  • the semi-cylindrical portion 40 of the rear holder 29 has substantially the same shape as the semi-cylindrical portion 30 of the front holder 18 .
  • the bottom portion 41 of the rear holder 29 also has substantially the same shape as the bottom portion 31 of the front holder 18 .
  • On the inner surface 42 of the semi-cylindrical portion 40 a mechanism for holding various members of the imaging device 100 is configured, similarly to the inner surface 32 of the semi-cylindrical portion 30 of the front holder 18. As shown in FIG.
  • the bottom portion 41 is formed with a cylindrical portion 46 .
  • the cylindrical portion 46 is configured to protrude from the bottom portion 41 in the positive direction of the X direction.
  • a circular opening is formed at the tip of the cylindrical portion 46 .
  • the bottom portion 41 is configured so that the half circumference portion of the circumference portion of the bottom portion 41 is along the inner surface 32 of the semi-cylindrical portion 40 . Also, the bottom portion 41 is configured at a position substantially equal to the end portion of the semi-cylindrical portion 40 (the portion on the most positive side in the X direction) when viewed from the Y direction.
  • the portion below the position of the rotating shaft 5 is the semi-cylindrical portion 30 of the front holder 18 .
  • a semi-cylindrical portion 40 of the rear holder 29 is formed above the position of the rotating shaft 5 .
  • the front holder 18 is arranged on the most positive side in the Y direction of the imaging device 100 .
  • the rear holder 29 is arranged on the most negative side in the Y direction.
  • other members are arranged in the internal space 61 inside the front holder 18 and the rear holder 29 . That is, in FIG. 3, the front holder 18 and the rear holder 29 are fitted to hold various members inside the front holder 18 and the rear holder 29, and the imaging device 100 is assembled as shown in FIG.
  • the semi-cylindrical portion 30 of the front holder 18 and the semi-cylindrical portion 40 of the rear holder 29 constitute the side portion 3 shown in FIG.
  • the bottom portion 31 of the front holder 18 constitutes the bottom portion 2b
  • the bottom portion 41 of the rear holder 29 constitutes the bottom portion 2a. That is, the front holder 18 and the rear holder 29 constitute the entire rotating portion 1 shown in FIG.
  • the front holder 18 and the rear holder 29 correspond to one embodiment of the rotating part according to the present technology.
  • the semi-cylindrical portion 30 of the front holder 18 and the semi-cylindrical portion 40 of the rear holder 29, that is, the side portion 3 of the rotating portion 1, correspond to an embodiment of the outer peripheral portion according to the present technology.
  • the cushion 19 is made of a soft material such as urethane. As shown in FIG. 3, the cushion 19 has a plate-like shape consisting of two generally square faces, and a circular opening is formed in the center of the square face. The cushion 19 is arranged so that the square faces are perpendicular to the Y-axis. Of course, the specific material and shape of the cushion 19 are not limited. Cushion 19 represents one embodiment of a cushioning material according to the present technology.
  • Camera holder 20 is a member for holding camera module 21 .
  • the camera holder 20 is made of, for example, rigid material.
  • the camera holder 20 has a hollow quadrangular prism shape and has two openings facing each other along the Y direction.
  • a camera module 21 is fitted inside the camera holder 20 . Note that the specific material and shape of the camera holder 20 are not limited.
  • the camera module 21 performs imaging of the outside of the imaging device 100 .
  • Any camera may be used as the camera module 21 .
  • a digital camera capable of capturing still images or moving images, an infrared camera, or the like is used.
  • a camera having a distance measuring function such as a ToF (Time Of Flight) camera, stereo camera, or monocular camera, may be used.
  • the camera module 21 has various mechanisms for imaging such as a lens system.
  • the camera module 21 corresponds to an embodiment of an imaging unit according to the present technology. A specific shape of the camera module 21 is not limited.
  • the camera module 21 rotates integrally with the front holder 18 and the rear holder 29 according to the rotation of the front holder 18 and the rear holder 29 . Further, the camera module 21 changes the imaging direction 7 according to the rotation of the front holder 18 and the rear holder 29 .
  • the camera flexible board 22 is a board for driving the camera module 21 .
  • flexible board 22 is connected to IMU board 26 .
  • the camera flexible substrate 22 has a rectangular shape and can be bent. One end of the camera flexible board 22 is connected to the camera module 21 . The other end of the camera flexible board 22 is connected to the IMU board 26 .
  • the camera flexible board 22 is folded in three along the Z direction and connected.
  • the camera flexible board 22 in a bent state has a substantially U shape when viewed from the Z direction.
  • the operation of the camera module 21 is controlled by the controller 11 . Power is supplied, control signals are output, and the like are performed via the camera flexible substrate 22 .
  • the heat sink 23 is a member for conducting heat generated from the camera module 21 .
  • the heat sink 23 is made of a thermally conductive material such as aluminum.
  • the heat sink 23 corresponds to one embodiment of the heat conducting part according to the present technology.
  • the heat sink 23 has a central abutment surface 48 , two connection surfaces 49 and two end abutment surfaces 47 . These surfaces are constructed by bending sheet metal. For example, two short sides of a substantially rectangular sheet metal are bent in the same direction by 90 degrees. The two bent portions become the two end contact surfaces 47 . In addition, a recess is formed in the central portion of the region between the two end contact surfaces 47 in the direction in which the two end contact surfaces 47 are bent. The bottom surface of the formed recess serves as the central contact surface 48 . Two connection surfaces 49 are provided between the two end contact surfaces 47 and the central contact surface 48 . A through hole 50 is formed in each of the two connection surfaces 49 . Note that the specific configuration of the heat sink 23 is not limited.
  • a method of installing the camera module 21 on the front holder 18 will be described with reference to FIG.
  • a camera module 21 is set in the camera holder 20 .
  • the camera module 21 is attached to the camera holder 20 so that the lens of the camera module 21 is exposed from the front opening of the camera holder 20 .
  • a cushion 19 is installed on the front surface of the camera module 21 .
  • the cushion 19 covers the camera module 21 so that the lens of the camera module 21 is exposed through the circular opening. In this way, the camera module 21, the camera holder 20, and the cushion 19 are integrated, and as shown in FIG. be done.
  • a central abutment surface 48 of the heat sink 23 is connected to the rear surface of the camera module 21 .
  • Through holes 50 formed in the two connection surfaces 49 of the heat sink 23 are aligned with screw holes formed in the front holder 18 .
  • the heat sink screw 24 is fitted into the screw hole via the through hole 50 .
  • the heat sink 23 is thereby fixed to the front holder 18 .
  • the heat sink 23 is installed on the front holder 18 so as to press the camera module 21 against the front holder 18 .
  • a front portion of the camera module 21 is pressed and fixed to the front holder 18 via the cushion 19 .
  • the two end contact surfaces 47 of the heat sink 23 are connected to the inner surface 32 of the front holder 18 . That is, the heat sink 23 is thermally connected to each of the camera module 21 and the front holder 18 . Therefore, the heat sink 23 can conduct heat generated from the camera module 21 to the front holder 18 .
  • a motor 16 is arranged to rotate the imaging device 100 .
  • the motor 16 corresponds to one embodiment of the rotation drive unit according to the present technology.
  • the motor 16 has a rotor 51 and a stator 52 .
  • the rotor 51 has a substantially cylindrical shape centered on the shaft portion 53 , and magnets are embedded in the side portion facing the stator 52 .
  • the shaft portion 53 is positioned on the rotating shaft 5 .
  • the stator 52 has a substantially cylindrical shape with the rotating shaft 5 as the center.
  • a coil 54 is wound around the stator 52 and functions as a motor coil.
  • the stator 52 is configured to cover the side portion of the rotor 51. By inserting the shaft portion 53 of the rotor 51 into the stator 52, the entire motor 16 is assembled as shown in FIG. .
  • the motor 16 is screwed to the bottom portion 31 of the front holder 18 with the motor screws 25 .
  • a screw hole is provided in the stator 52 , and the stator 52 is screwed through the through hole 38 of the bottom portion 31 .
  • the tip of the shaft portion 53 of the rotor 51 is inserted into the opening portion 39 provided at the center of the bottom portion 31 .
  • the motor 16 is fixed in the recess formed by the outer surface 37 of the bottom portion 31 of the front holder 18, the inner surface 32 of the semi-cylindrical portion 30 of the front holder 18, and the inner surface 42 of the semi-cylindrical portion 40 of the rear holder 29.
  • a motor 16 rotates the front holder 18 .
  • a power source (not shown) is connected to the motor 16, and the motor 16 is driven by power supplied from the power source.
  • the method of driving the motor 16 is not limited, and any method may be adopted.
  • the entire imaging device 100 (excluding the rotor 51) rotates relative to the rotor 51.
  • FIG. That is, for example, the stator 52 and the front holder 18 to which the stator 52 is fixed rotate.
  • the IMU board 26 rotates together with the front holder 18 and the rear holder 29 . In this way, each member constituting the imaging device 100 rotates together.
  • the shaft portion 53 of the rotor 51 is fixed to the outside of the imaging device 100 .
  • the shaft portion 53 is fixed to a moving body on which the imaging device 100 is mounted.
  • the imaging device 100 (excluding the rotor 51) rotates relative to the moving body.
  • rotation of the imaging device 100 is realized.
  • the motor flexible board 17 is a board for driving the motor 16 .
  • the motor flexible substrate 17 can be bent. As shown in FIG. 7 , one end of the motor flexible substrate 17 is connected to the stator 52 of the motor 16 . The other end is connected to the surface of the IMU board 26 on the negative direction side in the Y direction (the surface not facing the camera module 21). In this embodiment, the operation of the motor 16 is controlled by the rotation control section 13 of the controller 11 . Power supply, control signal output, and the like are performed via the motor flexible substrate 17 .
  • an IMU sensor 60 is arranged on the IMU board 26 .
  • the IMU board 26 is a board having a substantially rectangular plate shape.
  • the IMU board 26 represents one embodiment of a board according to the present technology.
  • each of the upper right corner and the lower right corner of the IMU board 26 is provided with a protrusion 55 protruding in the negative direction in the X direction.
  • the protrusion 55 is provided to be inserted into the front holder 18 .
  • a through hole 56 is formed near the upper left corner.
  • the IMU board 26 is screwed to the front holder 18 through the through holes 56 .
  • the front holder 18 is provided with a protrusion 57 at a position extending to the through hole 56 in the Y direction.
  • the convex portion 57 is provided with a screw hole.
  • the board screw 27 passes through the through hole 56 and is fitted into the screw hole formed in the projection 57 .
  • the IMU board 26 is thereby screwed.
  • a screw having a head and a screw portion is used as the board screw 27 .
  • the specific material and shape of the board screw 27 are not limited.
  • a through hole 58 is formed in the bottom portion 31 of the front holder 18 at a position corresponding to the convex portion 55 of the IMU board 26 . That is, two through holes 58 are formed in the bottom portion 31 . A projection 55 is inserted into each through hole 58 . Furthermore, the IMU board 26 is adhered to the front holder 18 by providing an adhesive 59 at the insertion position.
  • the IMU board 26 is connected to the front holder 18 by screwing at one location and bonding at two locations.
  • an IMU sensor 60 is arranged on the surface of the IMU board 26 on the negative direction side in the Y direction (the surface opposite to the camera module 21).
  • the IMU sensor 60 corresponds to one embodiment of an inertial sensor according to the present technology.
  • the camera flexible board 22 and the motor flexible board 17 (not shown) are connected.
  • the specific configuration of the IMU board 26 is not limited. For example, when the controller 11 is provided on the IMU board 26 , hardware such as CPU, ROM, RAM, and HDD may be arranged on the IMU board 26 .
  • a weight 28 is provided to adjust the center of gravity of the imaging device 100 .
  • the weight 28 is made of a material having a relatively high density, such as metal such as brass. Of course, the specific material and shape of the weight 28 are not limited. As shown in FIG. 7, in this embodiment, the weight 28 is arranged along the boundary between the semi-cylindrical portion 40 and the bottom portion 41 of the rear holder 29 . Weight 28 corresponds to one embodiment of a balancer according to the present technology.
  • the camera module 21 is installed above the imaging device 100 .
  • the IMU board 26 is installed below the rotating shaft 5 near the rotating shaft 5 .
  • the IMU board 26 and the camera module 21 are arranged so as to be separated from each other, and a space is formed between the IMU board 26 and the camera module 21 .
  • the IMU board 26 and the camera module 21 are arranged to face each other with the rotating shaft 5 interposed therebetween.
  • the front holder 18 and the rear holder 29 have an internal space 61 in which the rotating shaft 5 is arranged.
  • the IMU board 26 divides the internal space 61 into a first divided space including the center of gravity of the camera module 21 and a first divided space including the center of gravity of the camera module 21 by a plane that is perpendicular to the perpendicular from the center of gravity of the camera module 21 to the rotation axis 5 and includes the rotation axis 5 .
  • it is divided into a second divided space that does not include the center of gravity, it is installed in the front holder 18 so that the center of gravity is included in the second divided space.
  • the internal space 61 is a space surrounded by the front holder 18 and the rear holder 29 .
  • an internal space 61 is formed as a substantially cylindrical space surrounded by the front holder 18 and the rear holder 29 .
  • the rotary shaft 5 is arranged inside the internal space 61 .
  • the center of gravity 62 of the camera module 21 is the mass center of gravity of the camera module 21 (that is, the center of gravity considering the density).
  • the center of gravity 62 of the camera module 21 is indicated by a black square.
  • a perpendicular line 63 from the center of gravity 62 of the camera module 21 to the rotation axis 5 passes through the center of gravity 62 of the camera module 21 and forms a straight line parallel to the Y-axis.
  • the vertical line 63 is indicated by a solid line.
  • a plane orthogonal to the perpendicular 63 and containing the rotation axis 5 is a plane orthogonal to the Y-axis and containing the rotation axis 5 (parallel to the Z-axis). Therefore, the plane includes the rotation axis 5 and is parallel to the XZ plane.
  • This plane is hereinafter referred to as a dividing plane 64 .
  • the dividing plane 64 is schematically illustrated as a vertically long rectangle.
  • the dividing plane 64 divides the internal space 61 into two spaces. That is, as shown in FIG. 10, the internal space 61 is divided into a space on the right side of the dividing plane 64 and a space on the left side.
  • the right space contains the center of gravity of the camera module 21 . That is, the right space corresponds to the first divided space 65 including the center of gravity of the camera module 21 . Also, the center of gravity of the camera module 21 is not included in the left space. That is, the left space corresponds to the second divided space 66 that does not include the center of gravity of the camera module 21 .
  • the IMU board 26 When the internal space 61 is divided in this way, the IMU board 26 is installed in the front holder 18 so that the center of gravity is included in the second divided space 66 .
  • the center of gravity of IMU board 26 is also the center of mass of IMU board 26 .
  • the center of gravity 67 of the IMU board 26 is indicated by a black square. As shown in FIG. 10, the center of gravity 67 of the IMU board 26 is included in the second partitioned space 66 .
  • the center of gravity of the IMU board 26 and the center of gravity of the camera module 21 are located in different spaces (opposite sides).
  • the center of gravity of mass is contained in mutually different spaces, but the positional center of gravity is contained in the same space. may be adopted.
  • the camera module 21 is installed so as to be included in the first divided space 65 .
  • the IMU board 26 is installed so as to be included in the second divided space 66 . That is, not only the center of gravity 62 of the camera module 21 but the entire camera module 21 is installed so as to be included in the first divided space 65 . Also, not only the center of gravity 67 of the IMU board 26 but the entire IMU board 26 is installed so as to be included in the second divided space 66 . As shown in FIG. 10 , in this embodiment, the entire camera module 21 is included in the first divided space 65 and the entire IMU board 26 is also included in the second divided space 66 .
  • an arrangement configuration may be adopted in which only the center of gravity of the camera module 21 is included in the first divided space 65 and the entire camera module 21 is not included in the first divided space 65 .
  • the center of gravity 62 is located in the first divided space 65. Therefore, such an arrangement configuration is possible.
  • the IMU board 26 is the same applies to the IMU board 26 as well.
  • the IMU board 26 is arranged in a direction perpendicular to the imaging direction 7 of the camera module 21 . That is, the board surface of the IMU board 26 is arranged in a direction orthogonal to the imaging direction 7 . As shown in FIG. 10, the imaging direction 7 is parallel to the Y-axis. Also, the surface of the IMU board 26 is arranged parallel to the XZ plane. That is, the imaging direction 7 and the plane of the IMU board 26 are orthogonal. Of course, the orientation of the IMU board 26 is not limited. For example, the surface of the IMU board 26 may be arranged obliquely (not parallel) to the XZ plane.
  • the IMU board 26 and the camera module 21 are arranged in mutually different spaces (the first divided space 65 and the second divided space 66). As a result, the center of gravity of the imaging apparatus 100 as a whole is positioned near the rotation axis 5 .
  • the IMU board 26 and camera module 21 are members having a certain amount of mass. When these are arranged in the same space (for example, when the camera module 21 is arranged on the IMU board 26, etc.), the mass will be biased with respect to the one space. That is, the center of gravity of the imaging apparatus 100 as a whole is positioned away from the rotation axis 5 (on one side of the space). When the center of gravity of the imaging device 100 as a whole is away from the rotation axis 5, the torque required to rotate the imaging device 100 increases. That is, the power required by the motor 16 increases. Therefore, a load is applied to the motor 16, and the amount of heat generated from the motor 16 increases.
  • the center of gravity of the imaging apparatus 100 as a whole is positioned near the rotation axis 5, so the torque required for rotation is small, and heat generation by the motor 16 can be suppressed. This makes it possible to suppress heat transfer to the IMU board 26 and the like. Furthermore, since the required output of the motor 16 is reduced, it is possible to reduce the size of the entire imaging apparatus 100 including the motor 16 . Moreover, it is possible to suppress power consumption during rotation. Further, since the center of gravity is adjusted using the arrangement of the IMU board 26 and the camera module 21, no other mechanism for adjusting the center of gravity is required, and the weight of the imaging device 100 is reduced.
  • the IMU board 26 is arranged in a direction perpendicular to the imaging direction 7 of the camera module 21 .
  • the wiring between the IMU board 26 and the camera module 21 becomes the shortest, and connection with a simple configuration is possible. That is, the imaging device 100 is miniaturized.
  • the IMU board 26 is arranged parallel to the imaging direction 7 of the camera module 21, it is possible to adjust the center of gravity of the imaging device 100 to be positioned near the rotation axis 5. , such an arrangement in an orthogonal direction enables the center of gravity to be adjusted more precisely.
  • a heat sink 23 is thermally connected to the camera module 21 .
  • the rear surface of the camera module 21 is arranged in contact with the central contact surface 48 of the heat sink 23 .
  • the heat sink 23 is made of a thermally conductive material such as aluminum. When the camera module 21 generates heat, the generated heat is conducted from the rear surface of the camera module 21 to the heat sink 23 .
  • the end side contact surface 47 of the heat sink 23 is thermally connected to the front holder 18 . As shown in FIG. 5, the end side contact surfaces 47 of the heat sink 23 are arranged in contact with the upper and lower portions of the front holder 18 . When the heat sink 23 is heated (high temperature), the heat is conducted from the heat sink 23 to the front holder 18 .
  • the heat is first conducted from the rear surface of the camera module 21 to the heat sink 23 . Furthermore, heat is conducted from the heat sink 23 to the front holder 18 . That is, heat generated from the camera module 21 is conducted to the front holder 18 .
  • the heat generated from the camera module 21 can be efficiently released.
  • the imaging device 100 is rotating, or when the moving body on which the imaging device 100 is mounted is moving, a large wind speed is generated on the surface of the housing (the outer surface of the front holder 18). Therefore, the heat conducted to the front holder 18 is efficiently released to the outside of the imaging device 100 . Therefore, efficient heat dissipation can be realized.
  • the method of thermally connecting the camera module 21 and the front holder 18 to the heat sink 23 is not limited, and any method may be adopted.
  • At least one of the thermal connection between the camera module 21 and the heat sink 23 and the thermal connection between the front holder 18 and the heat sink 23 is made through a heat dissipation material. This is achieved by connecting In this embodiment, both of the two thermal connections are realized through connections via heat-dissipating materials.
  • an adhesive heat radiating agent 68 is applied to the connecting portion between the camera module 21 and the heat sink 23 . That is, the adhesive heat radiating agent 68 is applied between the rear surface of the camera module 21 and the central contact surface 48 of the heat sink 23 .
  • the adhesive heat sink 68 has thermal conductivity. Therefore, heat generated from the camera module 21 can be efficiently conducted to the heat sink 23 .
  • the adhesive heat-dissipating agent 68 is indicated by dotted circles, but it may be applied to the entire connecting portion. Of course, it may be applied only partially.
  • the heat dissipation material arranged in the connecting portion is not limited.
  • a heat-dissipating material having no adhesion function such as heat-dissipating grease or a heat-dissipating sheet, may be arranged.
  • the adhesive heat dissipation agent 68 corresponds to one embodiment of the heat dissipation material according to the present technology.
  • the adhesive heat-radiating agent 68 is also applied to the connecting portion between the front holder 18 and the heat sink 23 . That is, the adhesive heat-radiating agent 68 is applied between the inner surface 32 of the front holder 18 and the end-side contact surface 47 of the heat sink 23 . Thereby, heat can be efficiently conducted from the heat sink 23 to the front holder 18 .
  • the adhesive heat-radiating agent 68 may be applied only to one connecting portion. That is, for example, a configuration may be employed in which the adhesive heat-radiating agent 68 is applied to the connecting portion between the camera module 21 and the heat sink 23 and not applied to the connecting portion between the front holder 18 and the heat sink 23 . Also, different heat dissipating materials may be arranged at each connecting portion.
  • the adhesive heat dissipation agent 68 By applying the adhesive heat dissipation agent 68 in this way, more efficient heat dissipation can be achieved. For example, when the camera module 21 can capture an image with high resolution, the amount of heat generated increases. In such a case, by applying the adhesive heat-dissipating agent 68, efficient heat dissipation is realized, and it becomes possible to suppress thermal runaway of the camera module 21 or the like.
  • the camera module 21 is installed on the front holder 18 via a cushion material. As shown in FIG. 5, the cushion 19 is installed between the camera module 21 and the front holder 18 in this embodiment.
  • the camera module 21 is stably held.
  • the cushion 19 so as to fill the gap between the camera module 21 and the front holder 18, the position of the camera module 21 is less likely to shift even when the imaging device 100 rotates.
  • the heat sink 23 is installed on the front holder 18 so as to press the camera module 21 against the front holder 18 .
  • the camera module 21 is sandwiched between the heat sink 23 and the cushion 19 and pressed from both sides.
  • the space for installing the camera module 21 is reduced, and the pressure acting on the camera module 21 is increased.
  • the pressure acting on the camera module 21 is adjusted by appropriately adjusting the material of the cushion 19 and changing the flexibility of the cushion 19 . In this way, the camera module 21 is pressed with the desired pressure.
  • the method of pressing the camera module 21 is not limited, and any method may be adopted.
  • the camera module 21 is pressed against the heat sink 23, and heat is efficiently conducted.
  • the cushion 19 is sandwiched between the front surfaces of the camera module 21, a uniform pressure can be applied regardless of the contact position between the camera module 21 and the heat sink 23. FIG. That is, it is less likely that only a specific part of the back surface is pressed with a strong pressure, or part of the back surface is not in contact with the heat sink 23 . Therefore, efficient heat dissipation is possible.
  • FIG. 7 shows the heat sink 23 installed on the rear surface of the camera module 21. As shown in FIG. As shown in FIG. 7, the heat sink 23 is arranged parallel to the XZ plane. A gap is provided between the heat sink 23 and the motor 16 on the right side (that is, on the negative side in the X direction). For example, the camera flexible substrate 22 and the bottom portion 31 of the front holder 18 are positioned in the gap.
  • the heat sink 23 is spaced apart from the motor 16 .
  • the adhesive heat-radiating agent 68 applied to the rear surface of the camera module 21 is also spaced apart from the motor 16 .
  • the adhesive heat radiating agent 68 applied to the contact portion between the heat sink 23 and the front holder 18 is also arranged apart from the motor 16 .
  • the heat of the motor 16 is transferred to the heat sink 23 , and the heat transferred to the heat sink 23 is transferred to the camera module 21 .
  • the heat of the motor 16 is transferred to the camera module 21 .
  • the motor 16 and the adhesive heat radiating agent 68 are arranged in contact with each other.
  • the weight 28 is installed at a predetermined position of the front holder 18 so that the center of gravity of the imaging device 100 is positioned on the rotation axis 5 .
  • the weight 28 is arranged along the boundary between the semi-cylindrical portion 40 and the bottom portion 41 of the rear holder 29 . That is, the vicinity of the boundary corresponds to the predetermined position.
  • the center of gravity of the imaging apparatus 100 is adjusted to be positioned on the rotation axis 5 .
  • the position where the weight 28 is arranged and the shape of the weight 28 are adjusted.
  • the density and mass of the weight 28 may be adjusted by appropriately changing the material forming the weight 28 .
  • the position, shape, material, density, mass, etc. of the weight 28 are not limited and can be changed arbitrarily. For example, in FIG. 7, when the center of gravity is shifted upward with respect to the rotating shaft 5, adjustment is performed so that the mass of the weight 28 is increased. As a result, the center of gravity moves downward, and the position of the center of gravity can be aligned with the rotating shaft 5 .
  • the rotational load of the motor 16 is reduced, and heat generation by the motor 16 can be suppressed. That is, it is possible to suppress heat transfer to the IMU board 26 and the like.
  • the center of gravity is adjusted by the weight 26 having a small volume, the size of the imaging device 100 can be reduced.
  • FIG. 15 is a schematic diagram showing an outline of a holding structure 200 according to the present technology.
  • the holding structure 200 is a structure for installing the substrate 81 on which the inertial sensor 10 is arranged on the object 80 .
  • the holding structure 200 is configured at two or more locations on the substrate 81 and comprises two or more connection structures 82 for connecting the substrate 81 to the object 80 .
  • 15A and B show two connection structures 82 formed at two locations on the substrate 81, three or more connection structures 82 may be formed at three or more locations on the substrate 81.
  • FIG. 15 to 20 illustration of the inertial sensor 10 arranged on the substrate 81 is omitted.
  • each of the two or more connecting structure portions 82 is configured by an adhesive structure 83 .
  • the adhesive structure 83 is a structure in which an adhesive material is provided between the object 80 and the substrate 81 that are spaced apart from each other.
  • one of the two or more connection structures 82 is configured by the pressing structure 84 . Others are composed of the adhesive structure 83 .
  • the pressing structure 84 is a structure that presses and fixes the substrate 81 to the object 80 .
  • connection structures 82 greater than or equal to two, such as three or four, may be configured.
  • all of the connecting structure portions 82 may be the bonding structure 83 , or one may be the pressing structure 84 and all of the others may be the bonding structure 83 .
  • the bonding structure 83 and the pressing structure 84 can be configured in the following combinations, for example.
  • connection structures 82 When there are two connecting structure portions 82 There are two bonding structures 83 One bonding structure 83 and one pressing structure 84 (2) When there are three connecting structure portions 82 There are three bonding structures 83 Two bonding structures 83 and one pressing structure 84 (3) When there are four connection structures 82 Four bonding structures 83 Three bonding structures 83 and one pressing structure 84 That is, two or more connection structures 82 are configured, of which at most one is a pressing structure 84 and all others are bonding structures 83 .
  • the substrate 81 is connected to the object 80 by the bonding structure 83 or the pressing structure 84 . That is, installation of the substrate 81 with respect to the object 80 is realized.
  • the holding structure 200 shown in FIG. 15 is adopted with the front holder 18 (rotating section 1) as the object 80. As shown in FIG. That is, the holding structure 200 is configured to mount the IMU board 26 on the front holder 18 (rotating portion 1) so as to rotate integrally with the front holder 18 (rotating portion 1).
  • the IMU board 26 is screwed to the projection 57 of the front holder 18 .
  • This realizes a pressing structure 84 that presses and fixes the IMU board 26 to the front holder 18 .
  • the pressing structure 84 a structure is adopted in which the IMU board 26 is fixed to the front holder 18 via the board screw 27 (fastening member).
  • the projections 55 of the IMU board 26 are inserted into the two through holes 58 formed in the bottom portion 31 of the front holder 18 and adhered with the adhesive 59 .
  • a bonding structure 83 is realized in which the bonding material is provided between the front holder 18 and the IMU substrate 26 that are spaced apart from each other.
  • an adhesive material is provided with the position of the through-hole 58 as a reference in a state in which the convex portion 55 (insertion portion) of the IMU substrate 26 is inserted into the through-hole 58 of the front holder 18. structure is adopted.
  • the holding structure 200 comprises three connection structures 82 arranged at three locations on the IMU board 26 .
  • one connection structure portion 82 is configured by the pressing structure 84 .
  • the other two connecting structures 82 are constituted by adhesive structures 83 .
  • the portion to which the IMU board 26 is connected such as the convex portion 57 and the bottom portion 31, is sometimes called a holder.
  • the IMU board 26 is connected to the front holder 18 by being screwed at one location and adhered at two locations. Accordingly, three connection structure portions 82 are configured.
  • the order of screwing and bonding the IMU board 26 is not limited.
  • the adhesive may be applied after screwing.
  • a method may be adopted in which the screwed portions are temporarily fixed, and the temporarily fixed portions are screwed after the adhesion is performed.
  • screwing and bonding may be performed by any method.
  • a bonding portion between the through hole 58 configured in the bottom portion 31 and the convex portion 55 of the IMU substrate 26 corresponds to an embodiment of the bonding structure according to the present technology.
  • two adhesive structures 83 are configured in the imaging device 100 .
  • the protrusion 55 is inserted into the through hole 58 so as to be spaced apart. That is, the projection 55 is positioned in the space (inside the hole) formed by the through hole 58, but is inserted so as not to contact the surface of the bottom 31 forming the through hole 58.
  • An adhesive 59 is provided in the gap formed between the protrusion 55 and the through hole 58 and in the vicinity thereof.
  • the protrusion 55 and the through hole 58 are bonded together by the adhesive 59 so as to bridge the spaced apart protrusion 55 and the through hole 58 .
  • the adhesive 59 corresponds to one embodiment of the adhesive material according to the present technology.
  • the bonding structure 83 is not limited to such.
  • a portion where the convex portion 57 of the front holder 18 and the IMU board 26 are screwed corresponds to an embodiment of the pressing structure according to the present technology. That is, one pressing structure 84 is configured in the imaging device 100 .
  • the pressing structure 84 is a structure for fixing the IMU board 26 to the front holder 18 via the board screws 27 .
  • a through hole 56 is formed in the IMU board 26 , and the screw portion of the board screw 27 passes through the through hole 56 .
  • the screw hole formed in the convex portion 57 extends, and the screw hole and the screw portion are fitted.
  • the IMU board 26 is thereby screwed.
  • the board screw 27 corresponds to one embodiment of the fastening member and the screw according to the present technology.
  • the screwed IMU board 26 is sandwiched between the head of the board screw 27 and the projection 57 of the front holder 18 . That is, the head of the board screw 27 presses and fixes the IMU board 26 to the front holder 18 .
  • the pressing structure 84 is not limited to such a structure. That is, a pressing and fixing method other than the method using screws may be employed.
  • connection structures 82 By connecting the substrate 81 by two or more connection structures 82, one of which is a pressing structure 84 and all of which are adhesive structures 83, the measurement accuracy of the IMU sensor 60 arranged on the IMU substrate 26 can be improved. can be improved.
  • the bonding structure 83 enables the IMU board 26 to be fixed without applying stress to the IMU board 26 .
  • the IMU substrate 26 and the front holder 18 are spaced apart from each other at the bonding location by the bonding structure 83, and the adhesive 59 is provided therebetween. Therefore, no stress acts on the IMU board 26 from the front holder 18 . Instead, the adhesive 59 generates stress due to curing shrinkage during curing, but compared to the stress acting from the front holder 18 when connected by screws, it is extremely small and negligible. is the size of
  • the pressing structure 84 enables the IMU board 26 to be stably fixed.
  • the IMU board 26 is sandwiched between the head of the board screw 27 and the projection 57 of the front holder 18, and the threaded portion of the board screw 27 is fitted into the screw hole.
  • the holding of the IMU board 26 will not be weakened. That is, the IMU board 26 is stably fixed.
  • the IMU board 26 When the IMU board 26 is fixed only by screwing at one place, the IMU board 26 is stably fixed. However, when vibration occurs due to the movement of the imaging device 100 or the moving body, the IMU sensor 60 is greatly affected by the vibration. For example, the IMU board 26 vibrates, and the IMU sensor 60 mounted on the IMU board 26 also vibrates. As a result, the measurement accuracy of the IMU sensor 60 is degraded.
  • the IMU board 26 is fixed by one pressing structure 84 and one or more bonding structures 83 . That is, the IMU board 26 is fixed at a plurality of locations. This makes it possible to suppress the influence of vibration on the IMU board 26 .
  • the fixing method includes the pressing structure 84, the IMU board 26 is stably fixed.
  • the IMU board 26 When the IMU board 26 is fixed only by screwing at two or more locations, the IMU board 26 is stably fixed. However, a force that deforms the IMU board 26 acts on the board. Specifically, height variations occur due to design errors and the like at locations where the substrate is fixed by screws. When the IMU board 26 is screwed to each of a plurality of fixing points having different heights, the IMU board 26 is pulled and fixed to the fixing points having a smaller height, and the IMU board 26 is deformed. Power works.
  • the IMU board 26 is deformed, and the position and angle of the IMU sensor 60 on the board are shifted. That is, the measurement accuracy of the IMU sensor 60 is lowered.
  • the fixing method since the fixing method includes only one pressing structure 84, a force that deforms the IMU substrate 26 due to height variations does not act.
  • the measurement accuracy of the IMU sensor 60 can be improved by a fixing method in which all of the connection structures 82 are adhesive structures 83 .
  • each adhesive structure 83 fixes the IMU board 26 while suppressing the stress acting on the IMU board 26, so that the force that deforms the board does not act.
  • the IMU board 26 is fixed at two or more points, the influence of vibration is suppressed. This makes it possible to improve the measurement accuracy of the IMU sensor 60 .
  • FIG. 16 to 18 are schematic diagrams showing variations of the bonding structure 83.
  • the adhesive structure 83 includes a structure in which the adhesive 59 is provided with reference to the position of the hole in a state where the insertion portion of the substrate 81 is inserted into the hole of the object 80 .
  • a portion of the substrate 81 is inserted into the through hole 58 of the object 80.
  • the through-hole 58 corresponds to an embodiment of the hole included in the object according to the present technology.
  • the shape of the hole that the object 80 has is not limited.
  • a concave portion may be provided as the hole, and a portion of the substrate 81 may be inserted.
  • the portion of the substrate 81 that is inserted into the through hole 58 corresponds to an embodiment of the insertion portion of the substrate according to the present technology.
  • the insertion portion 86 is indicated by a dotted pattern.
  • the convex portion 55 formed on the IMU board 26 corresponds to an embodiment of the insertion portion of the board according to the present technology.
  • the adhesive 59 is provided with reference to the positions of the holes.
  • the adhesive 59 is provided so as to cover at least part of the opening of the through hole 58 .
  • an adhesive 59 is provided between the object 80 and the substrate 81 so as to partially cover the opening on the right side of the through hole 58 .
  • the adhesive 59 is provided so as to cover at least a portion of the opening on the side where the projection 55 is inserted.
  • the adhesive 59 may be provided so as to cover all of the two openings.
  • an adhesive 59 is filled inside the through hole 58 .
  • the adhesive 59 is filled in the entire space inside the through-hole 58 except for the area occupied by the insertion portion 86 . That is, the upper and lower portions of the insertion portion 86 are filled with the adhesive 59 so as to completely fill the space.
  • a part of the space inside the through hole 58 may be filled with the adhesive 59 .
  • the method of providing an adhesive 59 that covers at least part of the opening of the through hole 58 shown in FIG. 16 and the method of filling the inside of the through hole 58 shown in FIG. good may be employed in which the adhesive 59 filled inside the through hole 58 overflows the outside of the through hole 58 to cover the opening.
  • the shape of the hole that the substrate 81 has is not limited. For example, recesses may be provided as holes.
  • the bonding structure a structure in which an adhesive material is provided based on the position of the hole in a state where the insertion portion of the object 80 is inserted into the hole of the substrate 81 may be adopted.
  • An object 80 is shown on the left side of FIG.
  • the object 80 has an insertion portion 88 at its tip portion facing upward.
  • the insertion portion 88 is indicated by a dotted pattern.
  • the insertion section 88 corresponds to an embodiment of the insertion section of the object according to the present technology.
  • a boss configured on the object 80 functions as the insertion portion 88 .
  • the specific shape and the like of the insertion portion 88 are not limited.
  • the adhesive 59 is provided with reference to the positions of the holes.
  • the insertion portion 88 is inserted into the through hole 87 so as to protrude upward.
  • An adhesive 59 is provided to cover the upper opening of the through hole 87 .
  • the adhesive 59 is provided in contact with the surface of the upper portion of the insertion portion 88 and the upper portion of the substrate 81 near the through hole 87 . Thereby, the substrate 81 and the object 80 are adhered.
  • various variations of the bonding structure 83 as shown in FIGS. 16 to 18 can be adopted according to the configuration of the object 80, the substrate 81, and the like.
  • effective adhesion can be realized by adopting an adhesion structure 83 as shown in FIG.
  • the through holes 87 may function as positioning holes for the substrate 81 .
  • the specific structure of the bonding structure 83 is not limited, and any structure may be adopted.
  • the bonding may be over a wide area such that the entire side of the substrate 81 is bonded.
  • the bonding structure 83 may have different structures.
  • the IMU board 26 is fixed by screwing, but the pressing structure 84 is not limited to such a structure. Variations of the pressing structure 84 will be described below.
  • FIG. 19 and 20 are schematic diagrams showing an example of the pressing structure 84.
  • FIG. 19 and 20 show different examples of the pressing structure 84.
  • FIG. 19 and 20 the object 80 and the substrate 81 are bonded by the bonding structure 83 in a portion not shown.
  • the pressing structure 84 is a structure that sandwiches and fixes the substrate 81 between the object 80 .
  • the object 80 has a first fixing portion 89 protruding rightward. It also has a second fixing portion 90 protruding leftward.
  • the substrate 81 is sandwiched between the first fixing portion 89 and the second fixing portion 90 . That is, the substrate 81 is sandwiched so that the first fixing portion 89 is brought into contact with the left side surface of the substrate 81 and the second fixing portion 90 is brought into contact with the right side surface of the substrate 81, pressed and fixed.
  • each of the front holder 18 and the rear holder 29 is provided with a convex portion, and the IMU board 26 is sandwiched and fixed by each convex portion.
  • the front holder 18 and the rear holder 29 correspond to the object 80 .
  • the convex portion of the front holder 18 corresponds to the first fixing portion 89
  • the convex portion of the rear holder 29 corresponds to the second fixing portion 90 .
  • each specific shape is not limited.
  • the method of pinching and fixing by the object 80 is not limited, and any method may be adopted.
  • At least one of the first fixing portion 89 and the second fixing portion 90 may fix the substrate 81 via an elastic body.
  • a plate-like elastic body 91 is sandwiched between the first fixing portion 89 and the substrate 81 . Therefore, the left side surface of the substrate 81 is in contact with the right side surface of the elastic body 91, and the right side surface is in contact with the second fixing portion 90, so that the substrate 81 is sandwiched. pressed and fixed.
  • the substrate 81 is fixed via the elastic member 91 only by the first fixing portion 89 , but of course the elastic member 91 is sandwiched only between the second fixing portion 90 and the substrate 81 .
  • the elastic body 91 may be sandwiched between both the first fixing portion 89 and the substrate 81 and between the second fixing portion 90 and the substrate 81 .
  • any elastic member such as rubber or a spring may be used.
  • the method for fixing the substrate 81 via the elastic body 91 is not limited.
  • the substrate 81 may be fixed by a method other than the method in which the elastic body 91 is sandwiched between the substrate 81 and the fixing portion.
  • the substrate 81 can be stably fixed by the pressing structure 84 that sandwiches and fixes the substrate 81 between the objects 80 . Specifically, since the substrate 81 is strongly pressed by the force applied from the first fixing portion 89 and the second fixing portion 90, the substrate 81 is not fixed to the fixed portion when force acts on the substrate 81 from the outside. It becomes less likely to slip off or come off from the fixing point.
  • the substrate 81 is fixed via the elastic body 91, by appropriately adjusting the elasticity of the elastic body 91, it is possible to press and fix with a desired force. For example, by using the elastic body 91 having great elasticity, it is possible to stably fix the substrate 81 with a strong force.
  • connection structure portion 82 [Arrangement Configuration of Connection Structure] In this embodiment, the position of each of the two or more connection structures 82 is set with reference to the position of the inertial sensor 10 on the substrate 81 . Variations in the arrangement configuration of the connection structure portion 82 will be described below.
  • connection structure portions 82 are formed at three locations of the substrate 81 , the upper left corner, the lower left corner, and the upper right corner. Moreover, the inertial sensor 10 is arranged so as to be surrounded by the connecting structure portions 82 at three locations.
  • the inertial sensor 10 is arranged so as to be surrounded by the three connection structures 82 .
  • bonding structures 83 are formed at two locations, the upper left corner and the lower left corner of the IMU substrate 26 in FIG.
  • a pressing structure 84 is configured in the upper right corner.
  • the IMU sensor 60 is arranged near the center of the IMU board 26 so as to be surrounded by three connection structures 82 .
  • connection structure portions 82 are formed at four locations of the substrate 81, namely, the upper left corner, the lower left corner, the upper right corner, and the vicinity of the center of the lower side.
  • the inertial sensor 10 is arranged so as to be surrounded by the connection structures 82 at four locations.
  • the inertial sensor 10 is arranged so as to be surrounded by, for example, two or more connection structures 82 . That is, the position of the inertial sensor 10 is set with reference to the positions of the two or more connection structures 82 . In other words, the position of each of the two or more connection structures 82 is set so as to surround the inertial sensor 10 on the basis of the position of the inertial sensor 10 .
  • connection structure portion 82 may be configured at a portion other than the corner portion of the substrate 81 . Further, for example, when there are two connection structure portions 82 , the connection structure portions 82 may be arranged such that the inertial sensor 10 is positioned between the connection structure portions 82 . In addition, the position may be set by any method. Also, the combination of the bonding structure 83 and the pressing structure 84 of each connection structure 82 is not limited.
  • the residual stress acting on the substrate 81 can be reduced. Also, by arranging the inertial sensor 10 away from the position of the pressing structure 84, residual stress can be reduced. In addition, by arranging two or more bonding structures 83 and arranging the inertial sensor 10 inside the triangle connecting the two bonding structures 83 and one pressing structure 84, the measurement accuracy of the inertial sensor 10 can be improved. It becomes possible.
  • one bonding structure 83 and two pressing structures 84 are arranged to form an isosceles triangle with the bonding structure 83 as the apex, and the inertial sensor 10 is placed on a perpendicular line extending from the apex to the base,
  • the bonding structure 83 By arranging it in the vicinity of the bonding structure 83, it is possible to evenly and minimize the stress that the substrate 81 is subjected to.
  • the connection structure 82 and the inertial sensor 10 it is possible to suppress the effects of stress and vibration on the substrate 81, and it is possible to improve the measurement accuracy of the inertial sensor 10. becomes.
  • the inertial sensor 10 is arranged at the center of gravity of each position of the two or more connecting structures 82 .
  • the inertial sensor 10 is arranged at the triangular positional center of gravity formed by the three connection structures 82 .
  • the inertial sensor 10 is arranged at the center of gravity of the quadrangle formed by the four connection structures 82 .
  • the positional center of gravity is the middle point of the two connecting structure portions 82. FIG. Therefore, the inertial sensor 10 is arranged at the midpoint.
  • the inertial sensor 10 is stably arranged on the substrate 81 .
  • the connection structure 82 is configured at three locations, the upper left corner, the lower left corner, and the upper right corner, the lower right corner is attached to the object 80. It will not be fixed. Therefore, when the substrate 81 vibrates, the lower right corner is greatly affected by the vibration. For example, if the inertial sensor 10 is placed in the lower right corner, the inertial sensor 10 will vibrate and the sensing accuracy will decrease.
  • the area surrounded by the connection structure 82 on the substrate 81 is less susceptible to vibration.
  • the inertial sensor 10 is arranged in a location surrounded by the connection structure 82, the influence of vibration on the inertial sensor 10 can be suppressed. This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
  • the positional center of gravity of each connection structure portion 82 is a location that is particularly resistant to vibration.
  • the inertial sensor 10 is arranged at the positional center of gravity, it is possible to greatly suppress the influence of vibration on the inertial sensor 10 . This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
  • connection structures 82 are configured at two locations, for example, the upper left corner and the upper right corner of the substrate 81 , and the inertial sensor 10 is arranged at the center of the substrate 81 .
  • the camera module 21 is installed in the rotating section 1 configured to be rotatable. Also, an IMU board 26 is installed on the rotating part 1 so as to be separated from the camera module 21 , and an IMU sensor 60 is arranged on the IMU board 26 . This makes it possible to improve the measurement accuracy of the IMU sensor 60 .
  • the IMU sensor 60 is a device that is extremely sensitive to temperature changes. For example, when heat is transferred to the IMU board 26 and the IMU sensor 60, the IMU board 26 and the IMU sensor 60 are thermally deformed, and the sensing of the IMU sensor 60 is significantly affected. Specifically, erroneous values are detected as acceleration and angular velocity.
  • the camera module 21 generates heat as it performs operations such as imaging.
  • the generated heat is transmitted to members arranged around the camera module 21 .
  • the IMU board 26 and the IMU sensor 60 are arranged around the camera module 21, heat is transmitted, and the sensing accuracy of the IMU sensor 60 is lowered.
  • the IMU board 26 and the camera module 21 are arranged apart from each other, it is possible to suppress the transfer of heat from the camera module 21 to the IMU board 26 . That is, it becomes possible to improve the measurement accuracy of the IMU sensor 60 .
  • connection structure portions 82 for connecting the substrate 81 to the object 80 are formed at two or more locations on the substrate 81 .
  • Each of the two or more connection structures 82 is composed of a bonding structure 83 in which an adhesive 59 is provided between the object 80 and the substrate 81 which are spaced apart from each other.
  • one of the two or more connection structures 82 is configured by a pressing structure 84 that presses and fixes the substrate 81 to the object 80 , and the other is configured by an adhesive structure 83 . This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
  • the substrate 81 is fixed while suppressing the stress acting on the substrate 81 due to the configuration in which the entire connection structure portion 82 is the bonding structure 83 . Moreover, since the substrate 81 is fixed at two or more locations, the influence of vibration is suppressed. This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
  • expressions using "more than” such as “greater than A” and “less than A” encompass both the concept including the case of being equivalent to A and the concept not including the case of being equivalent to A. is an expression contained in For example, “greater than A” is not limited to not including equal to A, but also includes “greater than or equal to A.” Also, “less than A” is not limited to “less than A”, but also includes “less than A”. When implementing the present technology, specific settings and the like may be appropriately adopted from concepts included in “greater than A” and “less than A” so that the effects described above are exhibited.
  • the present technology can also adopt the following configuration.
  • a rotating part configured to be rotatable about a predetermined rotating shaft; an imaging unit that is installed on the rotating unit and rotates integrally with the rotating unit; a substrate that is installed in the rotating section so as to be spaced apart from the imaging section and that rotates integrally with the rotating section; and an inertial sensor arranged on the substrate.
  • the imaging device has an internal space in which the rotating shaft is arranged,
  • the substrate divides the internal space into a first divided space including the center of gravity of the imaging unit and the center of gravity of the imaging unit by a plane perpendicular to a perpendicular line from the center of gravity of the imaging unit to the rotation axis and including the rotation axis.
  • the imaging device is installed in the rotating section so that the center of gravity is included in the second divided space when divided into a second divided space that does not include the second divided space.
  • the imaging device is installed so as to be included in the first divided space, The imaging device, wherein the substrate is installed so as to be included in the second divided space.
  • the imaging device according to any one of (1) to (4), The imaging device, wherein the substrate is arranged in a direction orthogonal to the imaging direction of the imaging unit.
  • the rotating part has an outer peripheral part, The imaging device further includes a thermally conductive section that is made of a material having thermal conductivity, is thermally connected to each of the imaging section and the outer peripheral section, and conducts heat generated from the imaging section to the outer peripheral section.
  • An imaging device comprising: (7) The imaging device according to (6), At least one of thermal connection between the imaging section and the thermally conductive section and thermal connection between the outer peripheral section and the thermally conductive section is realized by connection via a heat dissipation material.
  • the imaging device further comprising: comprising a rotation drive unit that rotates the rotating unit; The imaging device, wherein the rotation drive unit is arranged to be spaced apart from the heat dissipation material.
  • the imaging device further comprising: An image pickup apparatus comprising a balancer installed at a predetermined position of the rotating section such that the center of gravity of the image pickup apparatus is positioned on the rotation axis.
  • the imaging device according to any one of (1) to (13), The imaging device, wherein the inertial sensor includes at least one of an acceleration sensor and an angular velocity sensor.
  • An imaging apparatus comprising a rotation control section that controls rotation of the rotating section based on a detection result of the inertial sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)

Abstract

An imaging device according to an embodiment of the present technology is provided with a rotation unit, an imaging unit, a board, and an inertial sensor. The rotation unit is configured to be rotatable about a predetermined rotation axis. The imaging unit is disposed in the rotation unit and rotates together with the rotation unit. The board is disposed in the rotation unit so as to be separated from the imaging unit, and rotates together with the rotation unit. The inertial sensor is disposed on the board. Therefore, the measurement accuracy of the inertial sensor can be improved.

Description

撮像装置Imaging device
 本技術は、慣性センサを有する撮像装置に関する。 The present technology relates to an imaging device having an inertial sensor.
 特許文献1には、放熱系を有する撮像装置について開示されている。この撮像装置は、筐体の底部が熱伝導性の高い部材で構成されている。また、底部と撮像素子の間にも、熱伝導性の高い部材が設けられる。これにより、撮像素子に発生した熱を効率よく放出することが可能となる(特許文献1の第2頁右下欄第17行-第20行、第3頁右上欄第1行-第4行、図1等)。 Patent Document 1 discloses an imaging device having a heat dissipation system. In this imaging device, the bottom of the housing is made of a member with high thermal conductivity. A member with high thermal conductivity is also provided between the bottom portion and the imaging element. As a result, the heat generated in the image pickup device can be efficiently released (Patent Document 1, page 2, lower right column, lines 17-20, page 3, upper right column, lines 1-4). , FIG. 1, etc.).
 特許文献2には、可動体の傾きを補正可能な回転機構付きユニットについて開示されている。この回転機構付きユニットは可動体及び支持体を有し、支持体を介して車両や飛行体等の移動体に搭載される。また、慣性センサにより、支持体の水平面に対する傾きが検出される。さらに、慣性センサの検出結果に基づいて、可動体の基準姿勢に対する傾きが補正される。これにより、可動体は基準姿勢を維持することが可能となる(特許文献2の明細書段落[0001][0006][0047][0048]図1等)。 Patent Document 2 discloses a unit with a rotating mechanism that can correct the inclination of the movable body. This unit with a rotating mechanism has a movable body and a support, and is mounted on a moving body such as a vehicle or an aircraft through the support. In addition, an inertial sensor detects the tilt of the support with respect to the horizontal plane. Furthermore, the tilt of the movable body with respect to the reference posture is corrected based on the detection result of the inertial sensor. As a result, the movable body can maintain the reference posture (paragraphs [0001] [0006] [0047] [0048] FIG. 1 of Patent Document 2, etc.).
特開昭63-94785号公報JP-A-63-94785 特開2019-75676号公報JP 2019-75676 A
 慣性センサを有する撮像装置に関して、慣性センサの測定精度の低下は問題となる。 Regarding imaging devices with inertial sensors, the decrease in measurement accuracy of inertial sensors is a problem.
 以上のような事情に鑑み、本技術の目的は、慣性センサの測定精度を向上させることが可能な撮像装置を提供することにある。 In view of the circumstances as described above, the purpose of the present technology is to provide an imaging device capable of improving the measurement accuracy of the inertial sensor.
 上記目的を達成するため、本技術の一形態に係る撮像装置は、回転部と、撮像部と、基板と、慣性センサとを具備する。
 前記回転部は、所定の回転軸を中心に回転可能に構成される。
 前記撮像部は、前記回転部に設置され、前記回転部と一体的に回転する。
 前記基板は、前記回転部に前記撮像部から離間するように設置され、前記回転部と一体的に回転する。
 前記慣性センサは、前記基板に配置される。
To achieve the above object, an imaging device according to one aspect of the present technology includes a rotating section, an imaging section, a substrate, and an inertial sensor.
The rotating part is configured to be rotatable about a predetermined rotating shaft.
The imaging section is installed on the rotating section and rotates integrally with the rotating section.
The substrate is installed on the rotating section so as to be spaced apart from the imaging section, and rotates integrally with the rotating section.
The inertial sensor is arranged on the substrate.
 この撮像装置では、回転可能に構成された回転部に撮像部が設置される。また、回転部に撮像部と離間するように基板が設置され、当該基板に慣性センサが配置される。これにより、慣性センサの測定精度を向上させることが可能となる。 In this imaging device, an imaging unit is installed in a rotatable rotation unit. Further, a board is installed on the rotating part so as to be separated from the imaging part, and an inertial sensor is arranged on the board. This makes it possible to improve the measurement accuracy of the inertial sensor.
 前記撮像部は、撮像方向が前記回転部の外側を向くように前記回転部に設置されてもよい。この場合、前記回転部の回転に応じて前記撮像方向が変化してもよい。 The imaging section may be installed on the rotating section so that the imaging direction faces the outside of the rotating section. In this case, the imaging direction may change according to the rotation of the rotating section.
 前記回転部は、前記回転軸が内部に配置される内部空間を有してもよい。
 この場合、前記基板は、前記撮像部の重心から前記回転軸への垂線に直交し前記回転軸を含む平面により前記内部空間を前記撮像部の重心を含む第1の分割空間と、前記撮像部の重心を含まない第2の分割空間とに分割した場合、重心が前記第2の分割空間に含まれるように前記回転部に設置されてもよい。
The rotating part may have an internal space in which the rotating shaft is arranged.
In this case, the substrate divides the internal space into a first divided space including the center of gravity of the imaging section and the imaging section by a plane that is perpendicular to a perpendicular line from the center of gravity of the imaging section to the rotation axis and includes the rotation axis. When it is divided into a second divided space that does not include the center of gravity, the rotation part may be installed so that the center of gravity is included in the second divided space.
 前記撮像部は、前記第1の分割空間に含まれるように設置されてもよい。この場合、前記基板は、前記第2の分割空間に含まれるように設置されてもよい。 The imaging unit may be installed so as to be included in the first divided space. In this case, the substrate may be installed so as to be included in the second divided space.
 前記基板は、前記撮像部の前記撮像方向に対して直交する向きに配置されてもよい。 The substrate may be arranged in a direction orthogonal to the imaging direction of the imaging unit.
 前記回転部は、外周部を有してもよい。この場合、前記撮像装置は、さらに、熱伝導性を有する材料により構成され、前記撮像部及び前記外周部の各々に熱的に接続され、前記撮像部から発生する熱を前記外周部に伝導する熱伝導部を具備してもよい。 The rotating part may have an outer peripheral part. In this case, the imaging device is further made of a material having thermal conductivity, is thermally connected to each of the imaging section and the outer peripheral section, and conducts heat generated from the imaging section to the outer peripheral section. A heat conducting portion may be provided.
 前記撮像部と前記熱伝導部との熱的な接続、又は前記外周部と前記熱伝導部との間の熱的な接続の少なくとも一方は、放熱材料を介した接続により実現されてもよい。 At least one of the thermal connection between the imaging section and the thermally conductive section or the thermal connection between the outer peripheral section and the thermally conductive section may be realized by connection via a heat dissipation material.
 前記熱伝導部は、前記撮像部を前記回転部に対して押圧するように、前記回転部に設置されてもよい。 The heat conducting section may be installed on the rotating section so as to press the imaging section against the rotating section.
 前記撮像部は、クッション材料を介して、前記回転部に設置されてもよい。 The imaging unit may be installed on the rotating unit via a cushion material.
 前記撮像装置は、さらに、前記回転部を回転させる回転駆動部を具備してもよい。 The imaging device may further include a rotation driving section that rotates the rotating section.
 前記撮像装置は、さらに、前記回転部を回転させる回転駆動部を具備してもよい。この場合、前記回転駆動部は、前記熱伝導部から離間するように配置されてもよい。 The imaging device may further include a rotation driving section that rotates the rotating section. In this case, the rotation driving section may be arranged so as to be spaced apart from the heat conducting section.
 前記撮像装置は、さらに、前記回転部を回転させる回転駆動部を具備してもよい。この場合、前記回転駆動部は、前記放熱材料から離間するように配置されてもよい。 The imaging device may further include a rotation driving section that rotates the rotating section. In this case, the rotation drive part may be arranged so as to be spaced apart from the heat dissipation material.
 前記撮像装置は、さらに、前記撮像装置の重心が前記回転軸上に位置するように、前記回転部の所定の位置に設置されるバランサを具備してもよい。 The imaging device may further include a balancer installed at a predetermined position of the rotating section so that the center of gravity of the imaging device is located on the rotation axis.
 前記慣性センサは、加速度センサ、又は角速度センサの少なくとも一方を含むように構成されてもよい。 The inertial sensor may be configured to include at least one of an acceleration sensor and an angular velocity sensor.
前記撮像装置は、さらに、前記慣性センサの検出結果に基づいて、前記回転部の回転を制御する回転制御部を具備してもよい。 The imaging device may further include a rotation control section that controls rotation of the rotating section based on the detection result of the inertial sensor.
撮像装置の外観例を示す斜視図である。1 is a perspective view showing an appearance example of an imaging device; FIG. 撮像装置の基本動作を説明するための機能的なブロック図である。3 is a functional block diagram for explaining basic operations of the imaging device; FIG. 撮像装置の分解斜視図である。1 is an exploded perspective view of an imaging device; FIG. 撮像装置をZ方向の正方向側から見た側面図である。FIG. 3 is a side view of the imaging device as seen from the positive direction side in the Z direction; 図4のA-A線での断面図である。FIG. 5 is a cross-sectional view taken along line AA of FIG. 4; 撮像装置をY方向の負方向側から見た側面図である。FIG. 3 is a side view of the imaging device viewed from the negative direction side in the Y direction; 図6のB-B線での断面図である。FIG. 7 is a cross-sectional view taken along line BB of FIG. 6; 撮像装置の内部構成を示す斜視図である。It is a perspective view which shows the internal structure of an imaging device. モータの構成例を示す断面図である。2 is a cross-sectional view showing a configuration example of a motor; FIG. 図4のA-A線での断面図である。FIG. 5 is a cross-sectional view taken along line AA of FIG. 4; 図8に示す撮像装置を、Y方向の負方向側から見た図である。FIG. 9 is a view of the imaging device shown in FIG. 8 as seen from the negative direction side in the Y direction; 図11に示す撮像装置を、Z方向の正方向側から見た側面図である。FIG. 12 is a side view of the imaging device shown in FIG. 11 as seen from the positive side in the Z direction; 図11に示す撮像装置に、モータ用フレキシブル基板を設置した場合の図である。12A and 12B are diagrams when a motor flexible substrate is installed in the imaging device shown in FIG. 11; 図12に示す撮像装置に、モータ用フレキシブル基板を設置した場合の図である。13A and 13B are diagrams when a motor flexible substrate is installed in the imaging device shown in FIG. 12; 保持構造の概要を示す模式図である。It is a schematic diagram which shows the outline|summary of a holding structure. 接着構造のバリエーション例を示す模式図である。It is a schematic diagram which shows the example of a variation of an adhesion structure. 接着構造のバリエーション例を示す模式図である。It is a schematic diagram which shows the example of a variation of an adhesion structure. 接着構造のバリエーション例を示す模式図である。It is a schematic diagram which shows the example of a variation of an adhesion structure. 押圧構造の一例を示す模式図である。It is a schematic diagram which shows an example of a pressing structure. 押圧構造の一例を示す模式図である。It is a schematic diagram which shows an example of a pressing structure. 接続構造部の配置構成の一例を示す模式図である。It is a schematic diagram which shows an example of the arrangement configuration of a connection structure part. 接続構造部の配置構成の一例を示す模式図である。It is a schematic diagram which shows an example of the arrangement configuration of a connection structure part.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments according to the present technology will be described with reference to the drawings.
 [撮像装置の概要]
 図1は、本実施形態に係る撮像装置の外観例を示す斜視図である。
 図1に示すように、撮像装置100は略円柱形状を有する。図1には、撮像装置100が有する2つの底部2(2a及び2b)のうちの底部2a、及び側部3が見えるように、外観が図示されている。
[Overview of Imaging Device]
FIG. 1 is a perspective view showing an appearance example of an imaging device according to this embodiment.
As shown in FIG. 1, the imaging device 100 has a substantially cylindrical shape. FIG. 1 shows the exterior so that the bottom 2a and the side 3 of the two bottoms 2 (2a and 2b) of the imaging device 100 can be seen.
 以下、撮像装置100の底部2aを正面から見て、奥行方向(底部2aに垂直な方向)をX方向、左右方向をY方向、上下方向をZ方向として説明を行う。
 また、図1に示すX方向の正方向及び負方向を、手前方向及び奥方向と記載する場合がある。Y方向の正方向及び負方向を、右方向及び左方向と記載する場合がある。Z方向の正方向及び負方向を、上方向及び下方向と記載する場合がある。
 さらに、上記の表現を用いて、撮像装置100を見る方向を示す場合がある。例えば「撮像装置100をX方向の正方向側から見る」という表現は、「X軸を示す矢印の先端側から撮像装置100を見る」という意味を持つ。
 もちろん、本技術の適用において、撮像装置100が使用される向き等が限定される訳ではない。
Hereinafter, the depth direction (perpendicular to the bottom portion 2a) is defined as the X direction, the horizontal direction is defined as the Y direction, and the vertical direction is defined as the Z direction.
Also, the positive direction and negative direction of the X direction shown in FIG. 1 may be referred to as the front direction and the back direction. The positive direction and negative direction of the Y direction may be described as the right direction and the left direction. The positive direction and negative direction of the Z direction may be described as upward direction and downward direction.
Furthermore, the above expressions may be used to indicate the viewing direction of the imaging device 100 . For example, the expression "viewing the imaging device 100 from the positive side of the X direction" means "viewing the imaging device 100 from the tip side of the arrow indicating the X axis".
Of course, in the application of the present technology, the orientation in which the imaging device 100 is used is not limited.
 撮像装置100は、所定の回転軸を中心に回転可能に構成される回転部1を有する。
 本実施形態では、回転部1は、底部2(2a及び2b)と、側部3とを有し、底部2の中心を通りX方向に延在する回転軸5を中心に回転可能に構成される。
 回転部1は、回転軸5を中心に、X方向から見て時計回り、あるいは反時計回りの方向に回転可能である。図1には、回転部1の回転方向が太矢印で示されている。
 また、回転部1は、撮像装置100の筐体としても機能する。
The imaging device 100 has a rotating section 1 configured to be rotatable about a predetermined rotation axis.
In this embodiment, the rotating portion 1 has a bottom portion 2 (2a and 2b) and side portions 3, and is configured to be rotatable about a rotating shaft 5 passing through the center of the bottom portion 2 and extending in the X direction. be.
The rotating part 1 is rotatable about the rotating shaft 5 in the clockwise or counterclockwise direction when viewed from the X direction. In FIG. 1, the direction of rotation of the rotating portion 1 is indicated by a thick arrow.
The rotating section 1 also functions as a housing for the imaging device 100 .
 図1に示すように、回転部1の側部3には窓部4が設けられる。
 具体的には、回転部1の側部3に凹部6が構成され、凹部6の底面に窓部4が配置される。窓部4は、正面から見て略長方形状を有する。窓部4の形状は限定されない。
 窓部4は、透明な部材として構成される。なお本開示において、透明は、完全な透明のみならず半透明や色が付された透明も含まれる。
As shown in FIG. 1, a side portion 3 of the rotating portion 1 is provided with a window portion 4 .
Specifically, a concave portion 6 is formed in the side portion 3 of the rotating portion 1 , and the window portion 4 is arranged on the bottom surface of the concave portion 6 . The window part 4 has a substantially rectangular shape when viewed from the front. The shape of the window part 4 is not limited.
The window part 4 is configured as a transparent member. In the present disclosure, "transparency" includes not only complete transparency but also semi-transparency and colored transparency.
 回転部1の内部には、窓部4と対向する位置にカメラモジュール21(図3参照)が設置される。
 カメラモジュール21は、撮像方向7が回転部1の外側を向くように、回転部1に設置される。図1に示すように、カメラモジュール21は、撮像方向7が、窓部4と直交するように設置される。
 なお撮像方向7は、カメラモジュール21の撮像光軸の軸方向である。
 カメラモジュール21は、本技術に係る撮像部の一実施形態に相当する。
A camera module 21 (see FIG. 3) is installed inside the rotating portion 1 at a position facing the window portion 4 .
The camera module 21 is installed on the rotating part 1 so that the imaging direction 7 faces the outside of the rotating part 1 . As shown in FIG. 1 , the camera module 21 is installed such that the imaging direction 7 is perpendicular to the window 4 .
Note that the imaging direction 7 is the axial direction of the imaging optical axis of the camera module 21 .
The camera module 21 corresponds to an embodiment of an imaging unit according to the present technology.
 後に詳しく説明するが、カメラモジュール21は、回転部1と一体的に回転するように、回転部1に設置される。
 従って、回転部1の回転に応じて、カメラモジュール21の撮像方向が変化する。
 例えば、回転部1の回転を制御することで、カメラモジュール21の撮像方向を、回転軸5を中心として、360度の全周にわたって任意に設定することが可能となる。
As will be described later in detail, the camera module 21 is installed on the rotating section 1 so as to rotate integrally with the rotating section 1 .
Therefore, the imaging direction of the camera module 21 changes according to the rotation of the rotating section 1 .
For example, by controlling the rotation of the rotating portion 1, it is possible to arbitrarily set the imaging direction of the camera module 21 over the entire circumference of 360 degrees with the rotation axis 5 as the center.
 [回転制御]
 図2は、撮像装置100の基本動作を説明するための機能的なブロック図である。
 図2に示すように、撮像装置100は、慣性センサ10、コントローラ11、及び回転駆動部12を有する。
[Rotation control]
FIG. 2 is a functional block diagram for explaining the basic operation of the imaging device 100. As shown in FIG.
As shown in FIG. 2 , the imaging device 100 has an inertial sensor 10 , a controller 11 and a rotation drive section 12 .
 慣性センサ10は、慣性力を測定可能なセンサである。本実施形態では、慣性センサ10は、加速度センサ、又は角速度センサの少なくとも一方を含むように構成される。本実施形態では、慣性センサ10として、IMU(Inertial Measurement Unit)センサが用いられる。IMUセンサは、慣性計測装置とも呼ばれる。
 IMUセンサは、撮像装置100の加速度及び角速度を検出(センシング)することが可能である。IMUセンサは、例えば互いに直交する3軸に対して、撮像装置100の加速度及び角速度を検出することが可能である。
 もちろん、慣性センサ10として、加速度センサのみが用いられてもよいし、角速度センサのみが用いられてもよい。
 また慣性センサ10の具体的な構成として、任意の構成が採用されてよい。
The inertial sensor 10 is a sensor capable of measuring inertial force. In this embodiment, the inertial sensor 10 is configured to include at least one of an acceleration sensor and an angular velocity sensor. In this embodiment, an IMU (Inertial Measurement Unit) sensor is used as the inertial sensor 10 . IMU sensors are also called inertial measurement units.
The IMU sensor is capable of detecting (sensing) the acceleration and angular velocity of the imaging device 100 . The IMU sensor can detect the acceleration and angular velocity of the imaging device 100 with respect to, for example, three mutually orthogonal axes.
Of course, as the inertial sensor 10, only an acceleration sensor may be used, or only an angular velocity sensor may be used.
Any configuration may be adopted as a specific configuration of the inertial sensor 10 .
 コントローラ11は、例えばCPU、ROM、RAM、及びHDD等のコンピュータの構成に必要なハードウェアを有する。例えばCPUがROM等に予め記録されている本技術に係るプログラムをRAMにロードして実行することにより、本技術に係る回転制御等に関する処理が実行される。
 コントローラ11として、例えばFPGA等のPLD、その他ASIC等のデバイスが用いられてもよい。またPC(Personal Computer)等の任意のコンピュータが、コントローラ11として機能してもよい。
 図2に示すように、本実施形態では、CPUが所定のプログラムを実行することで、機能ブロックとしての回転制御部13が構成される。もちろん機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが用いられてもよい。
 プログラムは、例えば種々の記録媒体を介してインストールされる。あるいは、インターネット等を介してプログラムのインストールが実行されてもよい。
 プログラムが記録される記録媒体の種類等は限定されず、コンピュータが読み取り可能な任意の記録媒体が用いられてよい。例えば、コンピュータが読み取り可能な非一過性の任意の記憶媒体が用いられてよい。
 なお、コントローラ11は、典型的には、撮像装置100の内部に構成される。これに限定されず、コントローラ11が撮像装置100の外部に構成され、慣性センサ10や回転駆動部12等と通信可能に接続されてもよい。
The controller 11 has hardware necessary for configuring a computer, such as a CPU, ROM, RAM, and HDD. For example, the CPU loads a program according to the present technology prerecorded in the ROM or the like into the RAM and executes the program, thereby executing the processing related to the rotation control and the like according to the present technology.
As the controller 11, for example, a PLD such as FPGA or a device such as ASIC may be used. Any computer such as a PC (Personal Computer) may function as the controller 11 .
As shown in FIG. 2, in this embodiment, the rotation control unit 13 as a functional block is configured by the CPU executing a predetermined program. Of course, dedicated hardware such as an IC (integrated circuit) may be used to implement the functional blocks.
Programs are installed, for example, via various recording media. Alternatively, program installation may be performed via the Internet or the like.
The type of recording medium on which the program is recorded is not limited, and any computer-readable recording medium may be used. For example, any computer-readable non-transitory storage medium may be used.
Note that the controller 11 is typically configured inside the imaging device 100 . The controller 11 is not limited to this, and the controller 11 may be configured outside the imaging device 100 and connected to the inertial sensor 10, the rotation driving section 12, and the like so as to be communicable.
 回転駆動部12は、回転部1を回転させる。
 本実施形態では、回転駆動部12として、モータ16(図3参照)が用いられる。
 モータ16は、回転部1の底部2aとは反対側の底部2bに接続される。
 モータ16の具体的な構成は限定されない。また回転駆動部12として、モータ16以外のデバイスが用いられてもよい。
The rotation driving section 12 rotates the rotating section 1 .
In this embodiment, a motor 16 (see FIG. 3) is used as the rotation drive section 12 .
The motor 16 is connected to the bottom portion 2b of the rotating portion 1 opposite to the bottom portion 2a.
A specific configuration of the motor 16 is not limited. Also, a device other than the motor 16 may be used as the rotation drive unit 12 .
 回転制御部13は、慣性センサ10の検出結果に基づいて、回転部1の回転を制御する。
 例えば、撮像装置100のオペレータ(ユーザ)等により、カメラモジュール21の撮像方向を制御する操作が入力される。回転制御部13は、オペレータの操作に応じて、カメラモジュール21の撮像方向7を制御する。
 その際に、回転制御部13は、慣性センサ10の検出結果(センシング結果)に基づいて、回転駆動部12の回転動作を制御する。これにより、高い精度で回転部1の回転を制御することが可能となり、高い精度でカメラモジュール21の撮像方向7を制御することが可能となる。
The rotation control section 13 controls rotation of the rotating section 1 based on the detection result of the inertial sensor 10 .
For example, an operator (user) or the like of the imaging device 100 inputs an operation for controlling the imaging direction of the camera module 21 . The rotation control unit 13 controls the imaging direction 7 of the camera module 21 according to the operator's operation.
At that time, the rotation control unit 13 controls the rotation operation of the rotation driving unit 12 based on the detection result (sensing result) of the inertia sensor 10 . This makes it possible to control the rotation of the rotating section 1 with high accuracy, and to control the imaging direction 7 of the camera module 21 with high accuracy.
 例えば、撮像装置100は、ドローン等の移動体に搭載することが可能である。
 慣性センサ10の検出結果に基づいて、撮像装置100(カメラモジュール21)の位置や姿勢に関する情報を取得することも可能であり、撮像装置100による高精度の撮影が可能となる。この結果、高品質な画像を撮像することが可能となる。
 なお、回転制御部13による回転制御の具体的なアルゴリズムは限定されない。
For example, the imaging device 100 can be mounted on a moving object such as a drone.
Based on the detection result of the inertial sensor 10, it is also possible to acquire information about the position and orientation of the imaging device 100 (camera module 21), and high-precision imaging by the imaging device 100 becomes possible. As a result, it becomes possible to capture a high-quality image.
A specific algorithm for rotation control by the rotation control unit 13 is not limited.
 [撮像装置の構成]
 図3~図14を参照して、撮像装置100の具体的な構成例について説明する。まず、各図の説明を記載する。
 図3は、撮像装置100の分解斜視図である。図3には、撮像装置100が図1と同じ方向を向いた状態で分解された状態の、斜視図が示されている。
 図4は、撮像装置100をZ方向の正方向側から見た側面図である。
 図5は、図4のA-A線での断面図である。
 図6は、撮像装置100をY方向の負方向側から見た側面図である。
 図7は、図6のB-B線での断面図である。
 図8は、撮像装置100の内部構成を示す斜視図である。図8は、フロントホルダ18を内部側から見た場合の、斜視図となる。
 図9は、モータ16の構成例を示す断面図である。
 図10は、図5と同様、図4のA-A線での断面図である。
 図11は、図8に示す撮像装置100を、Y方向の負方向側から見た図である。
 図12は、図11に示す撮像装置100を、Z方向の正方向側から見た側面図である。
 図13は、図11に示す撮像装置100に、モータ用フレキシブル基板17を設置した場合の図である。
 図14は、図12に示す撮像装置100に、モータ用フレキシブル基板17を設置した場合の図である。
[Configuration of imaging device]
A specific configuration example of the imaging apparatus 100 will be described with reference to FIGS. 3 to 14. FIG. First, the description of each figure is described.
FIG. 3 is an exploded perspective view of the imaging device 100. FIG. FIG. 3 shows a perspective view of the disassembled state in which the imaging device 100 faces the same direction as in FIG.
FIG. 4 is a side view of the imaging device 100 viewed from the positive side in the Z direction.
5 is a cross-sectional view taken along line AA of FIG. 4. FIG.
FIG. 6 is a side view of the imaging device 100 viewed from the negative direction side in the Y direction.
7 is a cross-sectional view taken along line BB of FIG. 6. FIG.
FIG. 8 is a perspective view showing the internal configuration of the imaging device 100. As shown in FIG. FIG. 8 is a perspective view of the front holder 18 viewed from the inside.
FIG. 9 is a cross-sectional view showing a configuration example of the motor 16. As shown in FIG.
FIG. 10 is a cross-sectional view along line AA in FIG. 4, similar to FIG.
FIG. 11 is a view of the imaging device 100 shown in FIG. 8 as seen from the negative side in the Y direction.
FIG. 12 is a side view of the imaging device 100 shown in FIG. 11 viewed from the positive side in the Z direction.
13A and 13B are diagrams showing a case in which the motor flexible board 17 is installed in the imaging device 100 shown in FIG.
14A and 14B are diagrams showing a case in which the motor flexible board 17 is installed in the imaging device 100 shown in FIG.
 図3に示すように、撮像装置100は、窓部4、フロントホルダ18、クッション19、カメラホルダ20、カメラモジュール21、カメラ用フレキシブル基板22、ヒートシンク23、2つのヒートシンク用ネジ24、3つのモータ用ネジ25、IMU基板26、基板用ネジ27、重り28、及びリアホルダ29を有する。
 また、撮像装置100は、モータ16及びモータ用フレキシブル基板17を有する。
As shown in FIG. 3, the imaging device 100 includes a window portion 4, a front holder 18, a cushion 19, a camera holder 20, a camera module 21, a camera flexible board 22, a heat sink 23, two heat sink screws 24, and three motors. screw 25 , IMU board 26 , board screw 27 , weight 28 , and rear holder 29 .
The imaging device 100 also has a motor 16 and a motor flexible substrate 17 .
 フロントホルダ18は、撮像装置100の筐体として機能する。
 フロントホルダ18は、半円筒部30と、底部31とを有する。半円筒部30及び底部31は、例えば剛性を有する材料により構成される。これにより、撮像装置100が有する種々の部材が、外部の衝撃から保護される。
 もちろん、フロントホルダ18の具体的な材料や形状は限定されない。
The front holder 18 functions as a housing for the imaging device 100 .
The front holder 18 has a semi-cylindrical portion 30 and a bottom portion 31 . The semi-cylindrical portion 30 and the bottom portion 31 are made of, for example, rigid material. As a result, various members of the imaging device 100 are protected from external impact.
Of course, the specific material and shape of the front holder 18 are not limited.
 本実施形態では、半円筒部30は、円筒(すなわち、中空の円柱)を、円筒の中心軸を含む平面により2つに分割した場合の、一方に相当する形状と略等しい形状を有する。
 すなわち、図3に示すように、半円筒部30は、円筒を半分に切り抜いたような形状を有する。
 円筒の中心軸が、回転軸5と一致するように、半円筒部30が配置される。
In the present embodiment, the semi-cylindrical portion 30 has a shape approximately equal to one of the two halves of a cylinder (that is, a hollow cylinder) divided by a plane including the central axis of the cylinder.
That is, as shown in FIG. 3, the semi-cylindrical portion 30 has a shape of a cylinder cut in half.
The semi-cylindrical portion 30 is arranged such that the central axis of the cylinder coincides with the rotation axis 5 .
 半円筒部30は、回転軸5側の内面32、及び内面32と反対側の外面33を有する。また半円筒部30は、X方向に沿って対向する、2つの半環形状の円弧面34(34a及び34b)を有する。 The semi-cylindrical portion 30 has an inner surface 32 on the rotating shaft 5 side and an outer surface 33 on the opposite side of the inner surface 32 . The semi-cylindrical portion 30 also has two semi-ring-shaped arc surfaces 34 (34a and 34b) facing each other along the X direction.
 半円筒部30の外面33には、凹部6が構成される。凹部6の底面には、開口部35が構成される。開口部35は、正面から見た場合に円形状を有する。
 図3に示すように、凹部6の開口部35を覆うように、窓部4が配置される。
A concave portion 6 is formed on the outer surface 33 of the semi-cylindrical portion 30 . An opening 35 is formed in the bottom surface of the recess 6 . The opening 35 has a circular shape when viewed from the front.
As shown in FIG. 3, the window portion 4 is arranged so as to cover the opening portion 35 of the recess portion 6 .
 窓部4は、例えばアクリル板等、高い透明度と剛性を有する部材により構成される。また、窓部4は、凹部6の底面と概ね同形状の略長方形状を有する。
 窓部4は剛性を有するため、外部から窓部4に対して衝撃が加わった場合に、カメラモジュール21等に対する衝撃の影響を抑制することが可能となる。すなわち、撮像装置100の耐久性が向上する。
 もちろん、窓部4の材料や形状は限定されず、任意の構成が採用されてよい。また、凹部6に対して窓部4を固定する方法も、限定されない。
The window part 4 is made of a member having high transparency and rigidity, such as an acrylic plate. Moreover, the window portion 4 has a substantially rectangular shape that is substantially the same shape as the bottom surface of the recess portion 6 .
Since the window part 4 has rigidity, it is possible to suppress the effect of the impact on the camera module 21 and the like when an impact is applied to the window part 4 from the outside. That is, the durability of the imaging device 100 is improved.
Of course, the material and shape of the window portion 4 are not limited, and any configuration may be adopted. Moreover, the method of fixing the window part 4 with respect to the recessed part 6 is not limited, either.
 半円筒部30の内面32側には、内部空間61が構成される。
 半円筒部30の内面32には、内部空間61に配置されるカメラモジュール21や、IMU基板26等の、種々の部材を保持するための機構が構成される。
An internal space 61 is formed on the inner surface 32 side of the semi-cylindrical portion 30 .
The inner surface 32 of the semi-cylindrical portion 30 is provided with a mechanism for holding various members such as the camera module 21 and the IMU board 26 arranged in the internal space 61 .
 底部31は、略円盤形状を有する。
 底部31は、底部31が有する円周部のうち、半周部分が半円筒部30の内面32に沿うように、かつ、X方向の負方向側の円弧面34bよりも内部側に(すなわち、X方向の正方向側に)配置される。
 以降、底部31が有する2つの円形状の面のうち、内部側(X方向の正方向側)に位置する面を内面36と呼称する。また、外部側(X方向の負方向側)に位置する面を外面37と呼称する。
The bottom portion 31 has a substantially disk shape.
The bottom portion 31 has a circumferential portion of which the bottom portion 31 has a half circumferential portion along the inner surface 32 of the semi-cylindrical portion 30 and further inside than the arc surface 34b on the negative direction side in the X direction (that is, X on the positive side of the direction).
Hereinafter, of the two circular surfaces of the bottom portion 31 , the surface located on the inner side (the positive side in the X direction) will be referred to as an inner surface 36 . A surface located on the outside side (negative direction side in the X direction) is called an outer surface 37 .
 底部31には、モータ16がネジ止めされる。
 具体的には、図3や図5に示す3つのモータ用ネジ25に対応する部分に、貫通孔38が形成される。
 モータ用ネジ25は、底部31に形成された貫通孔38を貫通して、モータ16に形成されるネジ孔に嵌合する。これにより、底部31にモータ16がネジ止めされる。
 モータ用ネジ25の数や、締結位置等は限定されず、任意に設計されてよい。
 また、図7に示すように、底部31の中心には、モータ16の中心軸が挿入される開口部39が構成される。開口部39は、X方向から見た場合に円形状を有する。
The motor 16 is screwed to the bottom portion 31 .
Specifically, through holes 38 are formed in portions corresponding to the three motor screws 25 shown in FIGS.
The motor screw 25 passes through a through hole 38 formed in the bottom portion 31 and fits into a screw hole formed in the motor 16 . As a result, the motor 16 is screwed to the bottom portion 31 .
The number of motor screws 25, fastening positions, etc. are not limited and may be designed arbitrarily.
Further, as shown in FIG. 7, an opening 39 into which the central shaft of the motor 16 is inserted is formed in the center of the bottom portion 31 . The opening 39 has a circular shape when viewed from the X direction.
 リアホルダ29は、フロントホルダ18と共に、撮像装置100の筐体として機能する。
 リアホルダ29は、半円筒部40と、底部41とを有する。半円筒部40及び底部41は、例えば剛性を有する材料により構成される。もちろん、具体的な材料や形状は限定されない。
 図3に示すように、リアホルダ29が有する半円筒部40は、フロントホルダ18が有する半円筒部30と、概ね同形状を有する。また、リアホルダ29が有する底部41も、フロントホルダ18が有する底部31と、概ね同形状を有する。
 半円筒部40の内面42には、フロントホルダ18が有する半円筒部30の内面32と同様に、撮像装置100が有する種々の部材を保持するための機構が構成される。
The rear holder 29 functions as a housing of the imaging device 100 together with the front holder 18 .
The rear holder 29 has a semi-cylindrical portion 40 and a bottom portion 41 . The semi-cylindrical portion 40 and the bottom portion 41 are made of, for example, rigid material. Of course, specific materials and shapes are not limited.
As shown in FIG. 3 , the semi-cylindrical portion 40 of the rear holder 29 has substantially the same shape as the semi-cylindrical portion 30 of the front holder 18 . The bottom portion 41 of the rear holder 29 also has substantially the same shape as the bottom portion 31 of the front holder 18 .
On the inner surface 42 of the semi-cylindrical portion 40, a mechanism for holding various members of the imaging device 100 is configured, similarly to the inner surface 32 of the semi-cylindrical portion 30 of the front holder 18. As shown in FIG.
 図3等に示すように、底部41には、円筒形状の円柱部46が構成される。図4に示すように、円柱部46は、底部41からX方向の正方向に突出するように構成される。
 円柱部46の先端部には、円形状の開口が形成されている。
As shown in FIG. 3 and the like, the bottom portion 41 is formed with a cylindrical portion 46 . As shown in FIG. 4, the cylindrical portion 46 is configured to protrude from the bottom portion 41 in the positive direction of the X direction.
A circular opening is formed at the tip of the cylindrical portion 46 .
 底部41は、底部41が有する円周部のうち、半周部分が半円筒部40の内面32に沿うように構成される。
 また底部41は、Y方向から見た場合に、半円筒部40の端部(X方向の、最も正方向側である部分)と略等しい位置に構成される。
The bottom portion 41 is configured so that the half circumference portion of the circumference portion of the bottom portion 41 is along the inner surface 32 of the semi-cylindrical portion 40 .
Also, the bottom portion 41 is configured at a position substantially equal to the end portion of the semi-cylindrical portion 40 (the portion on the most positive side in the X direction) when viewed from the Y direction.
 図4において、回転軸5の位置よりも下方側の部分が、フロントホルダ18の半円筒部30となる。また回転軸5の位置よりも上方側の部分が、リアホルダ29の半円筒部40となる。 In FIG. 4 , the portion below the position of the rotating shaft 5 is the semi-cylindrical portion 30 of the front holder 18 . A semi-cylindrical portion 40 of the rear holder 29 is formed above the position of the rotating shaft 5 .
 図3に示す状態では、フロントホルダ18が、撮像装置100の最もY方向の正方向側に配置される。また、リアホルダ29が最もY方向の負方向側に配置される。
 さらに、その他の部材が、フロントホルダ18及びリアホルダ29の内側の内部空間61に配置される。
 すなわち、図3において、フロントホルダ18とリアホルダ29とが嵌合されることで、種々の部材がフロントホルダ18及びリアホルダ29の内側に保持され、図1に示すように撮像装置100が組み立てられる。
In the state shown in FIG. 3, the front holder 18 is arranged on the most positive side in the Y direction of the imaging device 100 . Also, the rear holder 29 is arranged on the most negative side in the Y direction.
Further, other members are arranged in the internal space 61 inside the front holder 18 and the rear holder 29 .
That is, in FIG. 3, the front holder 18 and the rear holder 29 are fitted to hold various members inside the front holder 18 and the rear holder 29, and the imaging device 100 is assembled as shown in FIG.
 フロントホルダ18が有する半円筒部30、及びリアホルダ29が有する半円筒部40により、図1に示す側部3が構成される。また、フロントホルダ18が有する底部31により底部2bが構成され、リアホルダ29が有する底部41により底部2aが構成される。すなわち、フロントホルダ18とリアホルダ29とにより、図1に示す回転部1全体が構成される。
 フロントホルダ18及びリアホルダ29は、本技術に係る、回転部の一実施形態に相当する。
 また、フロントホルダ18が有する半円筒部30及びリアホルダ29が有する半円筒部40、すなわち回転部1の側部3は、本技術に係る、外周部の一実施形態に相当する。
The semi-cylindrical portion 30 of the front holder 18 and the semi-cylindrical portion 40 of the rear holder 29 constitute the side portion 3 shown in FIG. The bottom portion 31 of the front holder 18 constitutes the bottom portion 2b, and the bottom portion 41 of the rear holder 29 constitutes the bottom portion 2a. That is, the front holder 18 and the rear holder 29 constitute the entire rotating portion 1 shown in FIG.
The front holder 18 and the rear holder 29 correspond to one embodiment of the rotating part according to the present technology.
In addition, the semi-cylindrical portion 30 of the front holder 18 and the semi-cylindrical portion 40 of the rear holder 29, that is, the side portion 3 of the rotating portion 1, correspond to an embodiment of the outer peripheral portion according to the present technology.
 クッション19は、例えばウレタン等の柔らかい材料により構成される。
 図3に示すように、クッション19は概ね正方形の2つの面からなる板状の形状を有し、正方形の面の中央には、円形状の開口が構成される。クッション19は、正方形の面がY軸に垂直になるように配置される。
 もちろん、クッション19の具体的な材料や形状は限定されない。
 クッション19は、本技術に係る、クッション材料の一実施形態に相当する。
The cushion 19 is made of a soft material such as urethane.
As shown in FIG. 3, the cushion 19 has a plate-like shape consisting of two generally square faces, and a circular opening is formed in the center of the square face. The cushion 19 is arranged so that the square faces are perpendicular to the Y-axis.
Of course, the specific material and shape of the cushion 19 are not limited.
Cushion 19 represents one embodiment of a cushioning material according to the present technology.
 カメラホルダ20は、カメラモジュール21を保持するための部材である。
 カメラモジュール21を安定して保持するために、カメラホルダ20は、例えば剛性を有する材料により構成される。
 図3に示すように、カメラホルダ20は、中空の四角柱形状を有し、Y方向に沿って対向する2つの開口を有する。カメラホルダ20の内部に、カメラモジュール21が嵌合される。
 なお、カメラホルダ20の具体的な材料や形状は限定されない。
Camera holder 20 is a member for holding camera module 21 .
In order to stably hold the camera module 21, the camera holder 20 is made of, for example, rigid material.
As shown in FIG. 3, the camera holder 20 has a hollow quadrangular prism shape and has two openings facing each other along the Y direction. A camera module 21 is fitted inside the camera holder 20 .
Note that the specific material and shape of the camera holder 20 are not limited.
 カメラモジュール21は、撮像装置100の外部の撮像を実行する。
 カメラモジュール21として、任意のカメラが用いられてよい。例えば静止画や動画像を撮像可能なデジタルカメラや、赤外線カメラ等が用いられる。または、ToF(Time Of Flight)カメラ、ステレオカメラ、又は単眼カメラ等の、測距機能を有するカメラが用いられてもよい。
 カメラモジュール21は、レンズ系等、撮像のための種々の機構を有する。
 カメラモジュール21は、本技術に係る、撮像部の一実施形態に相当する。
 カメラモジュール21の具体的な形状は限定されない。
The camera module 21 performs imaging of the outside of the imaging device 100 .
Any camera may be used as the camera module 21 . For example, a digital camera capable of capturing still images or moving images, an infrared camera, or the like is used. Alternatively, a camera having a distance measuring function, such as a ToF (Time Of Flight) camera, stereo camera, or monocular camera, may be used.
The camera module 21 has various mechanisms for imaging such as a lens system.
The camera module 21 corresponds to an embodiment of an imaging unit according to the present technology.
A specific shape of the camera module 21 is not limited.
 カメラモジュール21は、フロントホルダ18及びリアホルダ29の回転に応じて、フロントホルダ18及びリアホルダ29と一体的に回転する。またカメラモジュール21は、フロントホルダ18及びリアホルダ29の回転に応じて、撮像方向7が変化する。 The camera module 21 rotates integrally with the front holder 18 and the rear holder 29 according to the rotation of the front holder 18 and the rear holder 29 . Further, the camera module 21 changes the imaging direction 7 according to the rotation of the front holder 18 and the rear holder 29 .
 カメラ用フレキシブル基板22は、カメラモジュール21を駆動するための基板である。本実施形態では、フレキシブル基盤22は、IMU基板26に接続される。
 カメラ用フレキシブル基板22は、長方形状を有し、折り曲げが可能である。カメラ用フレキシブル基板22の一方の端部は、カメラモジュール21に接続される。カメラ用フレキシブル基板22の他方の端部は、IMU基板26に接続される。
 本実施形態では、図3に示すように、カメラ用フレキシブル基板22がZ方向に沿って3つ折りに折り曲げられ、接続される。折り曲げられた状態のカメラ用フレキシブル基板22は、Z方向から見た場合に概ねU字形状を有する。
 本実施形態では、コントローラ11により、カメラモジュール21の動作が制御される。カメラ用フレキシブル基板22を介して、電力の供給や、制御信号の出力等が行われる。
The camera flexible board 22 is a board for driving the camera module 21 . In this embodiment, flexible board 22 is connected to IMU board 26 .
The camera flexible substrate 22 has a rectangular shape and can be bent. One end of the camera flexible board 22 is connected to the camera module 21 . The other end of the camera flexible board 22 is connected to the IMU board 26 .
In this embodiment, as shown in FIG. 3, the camera flexible board 22 is folded in three along the Z direction and connected. The camera flexible board 22 in a bent state has a substantially U shape when viewed from the Z direction.
In this embodiment, the operation of the camera module 21 is controlled by the controller 11 . Power is supplied, control signals are output, and the like are performed via the camera flexible substrate 22 .
 ヒートシンク23は、カメラモジュール21から発生する熱を伝導するための部材である。
 ヒートシンク23は、例えばアルミニウム等、熱伝導性を有する材料により構成される。
 ヒートシンク23は、本技術に係る、熱伝導部の一実施形態に相当する。
The heat sink 23 is a member for conducting heat generated from the camera module 21 .
The heat sink 23 is made of a thermally conductive material such as aluminum.
The heat sink 23 corresponds to one embodiment of the heat conducting part according to the present technology.
 図3及び図5に示すように、ヒートシンク23は、中央当接面48と、2つの接続面49と、2つの端部側当接面47とを有する。これらの面は、板金を折り曲げることで構成される。
 例えば、略長方形状の板金の2つの短辺の近傍領域を、同じ方向に90度折り曲げる。折り曲げられた2つの部分が、2つの端部側当接面47となる。
 また、2つの端部側当接面47の間の領域の中央部分に、2つの端部側当接面47が折り曲げられた方向に向かって凹部を構成する。構成された凹部の底面が中央当接面48となる。2つの端部側当接面47と、中央当接面48との間が、2つの接続面49となる。
 2つの接続面49の各々には、貫通孔50が形成される。
 なお、ヒートシンク23の具体的な構成は限定されない。
As shown in FIGS. 3 and 5 , the heat sink 23 has a central abutment surface 48 , two connection surfaces 49 and two end abutment surfaces 47 . These surfaces are constructed by bending sheet metal.
For example, two short sides of a substantially rectangular sheet metal are bent in the same direction by 90 degrees. The two bent portions become the two end contact surfaces 47 .
In addition, a recess is formed in the central portion of the region between the two end contact surfaces 47 in the direction in which the two end contact surfaces 47 are bent. The bottom surface of the formed recess serves as the central contact surface 48 . Two connection surfaces 49 are provided between the two end contact surfaces 47 and the central contact surface 48 .
A through hole 50 is formed in each of the two connection surfaces 49 .
Note that the specific configuration of the heat sink 23 is not limited.
 図5を参照して、フロントホルダ18に対する、カメラモジュール21の設置方法について説明する。
 カメラモジュール21は、カメラホルダ20にセットされる。
 カメラモジュール21のレンズがカメラホルダ20の前方側の開口から露出するように、カメラモジュール21のカメラホルダ20に取付けられる。
 カメラモジュール21の前方側の面には、クッション19が設置される。クッション19は、円形状の開口からカメラモジュール21のレンズが露出するように、カメラモジュール21に被せられる。
 このようにしてカメラモジュール21、カメラホルダ20、及びクッション19が一体となり、図5に示すように、フロントホルダ18の半円筒部30の内面32側の、2つの凸部の間の空間に配置される。
A method of installing the camera module 21 on the front holder 18 will be described with reference to FIG.
A camera module 21 is set in the camera holder 20 .
The camera module 21 is attached to the camera holder 20 so that the lens of the camera module 21 is exposed from the front opening of the camera holder 20 .
A cushion 19 is installed on the front surface of the camera module 21 . The cushion 19 covers the camera module 21 so that the lens of the camera module 21 is exposed through the circular opening.
In this way, the camera module 21, the camera holder 20, and the cushion 19 are integrated, and as shown in FIG. be done.
 カメラモジュール21の背面に、ヒートシンク23の中央当接面48が接続される。またヒートシンク23の2つの接続面49に形成された貫通孔50が、フロントホルダ18に形成されたネジ穴に合わせられる。
 ヒートシンク用ネジ24が、貫通孔50を介して、ネジ穴に嵌合される。これにより、ヒートシンク23がフロントホルダ18に固定される。また、ヒートシンク23は、カメラモジュール21をフロントホルダ18に対して押圧するように、フロントホルダ18に設置される。
 カメラモジュール21の前方側の部分が、クッション19を介して、フロントホルダ18に押圧されて固定される。
A central abutment surface 48 of the heat sink 23 is connected to the rear surface of the camera module 21 . Through holes 50 formed in the two connection surfaces 49 of the heat sink 23 are aligned with screw holes formed in the front holder 18 .
The heat sink screw 24 is fitted into the screw hole via the through hole 50 . The heat sink 23 is thereby fixed to the front holder 18 . Also, the heat sink 23 is installed on the front holder 18 so as to press the camera module 21 against the front holder 18 .
A front portion of the camera module 21 is pressed and fixed to the front holder 18 via the cushion 19 .
 なお、ヒートシンク23の2つの端部側当接面47は、フロントホルダ18の内面32に接続される。
 すなわちヒートシンク23は、カメラモジュール21及びフロントホルダ18の各々に熱的に接続される。従って、ヒートシンク23により、カメラモジュール21から発生する熱を、フロントホルダ18に伝導することが可能となる。
The two end contact surfaces 47 of the heat sink 23 are connected to the inner surface 32 of the front holder 18 .
That is, the heat sink 23 is thermally connected to each of the camera module 21 and the front holder 18 . Therefore, the heat sink 23 can conduct heat generated from the camera module 21 to the front holder 18 .
 モータ16は、撮像装置100を回転させるために配置される。モータ16は、本技術に係る回転駆動部の一実施形態に相当する。
 図9に示すように、モータ16は、ロータ(回転子)51と、ステータ(固定子)52とを有する。
 図9Aに示すように、ロータ51は、軸部53を中心とする略円柱形状からなり、ステータ52に対向する側面部分には、磁石が埋め込まれている。
 軸部53は、回転軸5上に位置する。
A motor 16 is arranged to rotate the imaging device 100 . The motor 16 corresponds to one embodiment of the rotation drive unit according to the present technology.
As shown in FIG. 9 , the motor 16 has a rotor 51 and a stator 52 .
As shown in FIG. 9A , the rotor 51 has a substantially cylindrical shape centered on the shaft portion 53 , and magnets are embedded in the side portion facing the stator 52 .
The shaft portion 53 is positioned on the rotating shaft 5 .
 図9Bに示すように、ステータ52は、回転軸5を中心とする略円筒形状からなる。ステータ52にはコイル54が巻かれており、モータコイルとして機能する。
 ステータ52は、ロータ51の側面部分を覆うように構成され、ロータ51の軸部53がステータ52に挿入されることで、図7に示すように、モータ16の全体が組み立てられた状態となる。
As shown in FIG. 9B, the stator 52 has a substantially cylindrical shape with the rotating shaft 5 as the center. A coil 54 is wound around the stator 52 and functions as a motor coil.
The stator 52 is configured to cover the side portion of the rotor 51. By inserting the shaft portion 53 of the rotor 51 into the stator 52, the entire motor 16 is assembled as shown in FIG. .
 先述した通り、モータ16は、モータ用ネジ25により、フロントホルダ18の底部31にネジ止めされる。
 具体的には、ステータ52にネジ孔が設けられ、底部31の貫通孔38を介して、ステータ52がネジ止めされる。
 また、図7に示すように、底部31の中心に設けられた開口部39には、ロータ51の軸部53の先端が挿入される。
 このようにして、フロントホルダ18の底部31の外面37、フロントホルダ18の半円筒部30の内面32、及びリアホルダ29の半円筒部40の内面42により構成される凹部に、モータ16が固定される。
As described above, the motor 16 is screwed to the bottom portion 31 of the front holder 18 with the motor screws 25 .
Specifically, a screw hole is provided in the stator 52 , and the stator 52 is screwed through the through hole 38 of the bottom portion 31 .
Further, as shown in FIG. 7, the tip of the shaft portion 53 of the rotor 51 is inserted into the opening portion 39 provided at the center of the bottom portion 31 .
In this manner, the motor 16 is fixed in the recess formed by the outer surface 37 of the bottom portion 31 of the front holder 18, the inner surface 32 of the semi-cylindrical portion 30 of the front holder 18, and the inner surface 42 of the semi-cylindrical portion 40 of the rear holder 29. be.
 モータ16は、フロントホルダ18を回転させる。
 本実施形態では、モータ16に対して図示しない電源が接続され、電源から供給される電力により、モータ16が駆動する。もちろん、モータ16を駆動させる方法は限定されず、任意の方法が採用されてよい。
 モータ16が駆動すると、ロータ51に対して、撮像装置100全体(ロータ51を除く)が相対的に回転する。すなわち、例えばステータ52や、ステータ52が固定されているフロントホルダ18が回転する。また、例えばIMU基板26が、フロントホルダ18及びリアホルダ29と一体的に回転する。このように、撮像装置100を構成する各々の部材が一体となって回転する。
A motor 16 rotates the front holder 18 .
In this embodiment, a power source (not shown) is connected to the motor 16, and the motor 16 is driven by power supplied from the power source. Of course, the method of driving the motor 16 is not limited, and any method may be adopted.
When the motor 16 is driven, the entire imaging device 100 (excluding the rotor 51) rotates relative to the rotor 51. FIG. That is, for example, the stator 52 and the front holder 18 to which the stator 52 is fixed rotate. Also, for example, the IMU board 26 rotates together with the front holder 18 and the rear holder 29 . In this way, each member constituting the imaging device 100 rotates together.
 さらに、本実施形態では、ロータ51の軸部53が、撮像装置100の外部に固定される。具体的には、例えば撮像装置100が搭載される移動体に、軸部53が固定される。
 この場合、移動体に対して相対的に撮像装置100(ロータ51を除く)が回転することとなる。
 このようにして、撮像装置100の回転が実現される。
Furthermore, in this embodiment, the shaft portion 53 of the rotor 51 is fixed to the outside of the imaging device 100 . Specifically, for example, the shaft portion 53 is fixed to a moving body on which the imaging device 100 is mounted.
In this case, the imaging device 100 (excluding the rotor 51) rotates relative to the moving body.
Thus, rotation of the imaging device 100 is realized.
 モータ用フレキシブル基板17は、モータ16を駆動するための基板である。
 モータ用フレキシブル基板17は、折り曲げが可能である。図7に示すように、モータ用フレキシブル基板17の一方の端部は、モータ16のステータ52に接続される。また、他方の端部は、IMU基板26の、Y方向の負方向側の面(カメラモジュール21に対向しない側の面)に接続される。
 本実施形態では、コントローラ11の回転制御部13により、モータ16の動作が制御される。モータ用フレキシブル基板17を介して、電力の供給や、制御信号の出力等が行われる。
The motor flexible board 17 is a board for driving the motor 16 .
The motor flexible substrate 17 can be bent. As shown in FIG. 7 , one end of the motor flexible substrate 17 is connected to the stator 52 of the motor 16 . The other end is connected to the surface of the IMU board 26 on the negative direction side in the Y direction (the surface not facing the camera module 21).
In this embodiment, the operation of the motor 16 is controlled by the rotation control section 13 of the controller 11 . Power supply, control signal output, and the like are performed via the motor flexible substrate 17 .
 図8等に示すように、IMU基板26には、IMUセンサ60が配置される。
 IMU基板26は、略長方形の板形状を有する基板である。
 IMU基板26は、本技術に係る、基板の一実施形態に相当する。
 図3に示すように、IMU基板26の右上の角と右下の角の各々には、X方向の負方向側に突出した凸部55が構成される。凸部55は、フロントホルダ18に挿入されるために設けられる。
As shown in FIG. 8 and the like, an IMU sensor 60 is arranged on the IMU board 26 .
The IMU board 26 is a board having a substantially rectangular plate shape.
The IMU board 26 represents one embodiment of a board according to the present technology.
As shown in FIG. 3, each of the upper right corner and the lower right corner of the IMU board 26 is provided with a protrusion 55 protruding in the negative direction in the X direction. The protrusion 55 is provided to be inserted into the front holder 18 .
 また、左上の角の近傍には、貫通孔56が構成される。IMU基板26は、貫通孔56を介してフロントホルダ18にネジ止めされる。
 具体的には、図3に示すように、フロントホルダ18には、Y方向において貫通孔56に延在する位置に、凸部57が構成される。また、凸部57にはネジ孔が設けられる。
A through hole 56 is formed near the upper left corner. The IMU board 26 is screwed to the front holder 18 through the through holes 56 .
Specifically, as shown in FIG. 3, the front holder 18 is provided with a protrusion 57 at a position extending to the through hole 56 in the Y direction. Further, the convex portion 57 is provided with a screw hole.
 図8に示すように、基板用ネジ27が貫通孔56を貫通し、凸部57に構成されたネジ孔に嵌合される。これにより、IMU基板26がネジ止めされる。
 本実施形態では、基板用ネジ27として、頭部及びネジ部を有するネジが用いられる。もちろん、基板用ネジ27の具体的な材料や形状は限定されない。
As shown in FIG. 8 , the board screw 27 passes through the through hole 56 and is fitted into the screw hole formed in the projection 57 . The IMU board 26 is thereby screwed.
In this embodiment, a screw having a head and a screw portion is used as the board screw 27 . Of course, the specific material and shape of the board screw 27 are not limited.
 また、フロントホルダ18の底部31の、IMU基板26の凸部55に対応する位置には、貫通孔58が構成される。すなわち、底部31には、2つの貫通孔58が構成される。
 各々の貫通孔58には、凸部55が挿入される。さらに、挿入位置に接着剤59が設けられることで、フロントホルダ18に対してIMU基板26が接着される。
A through hole 58 is formed in the bottom portion 31 of the front holder 18 at a position corresponding to the convex portion 55 of the IMU board 26 . That is, two through holes 58 are formed in the bottom portion 31 .
A projection 55 is inserted into each through hole 58 . Furthermore, the IMU board 26 is adhered to the front holder 18 by providing an adhesive 59 at the insertion position.
 このように、本実施形態では1箇所のネジ止めと2箇所の接着により、フロントホルダ18に対してIMU基板26が接続される。 Thus, in this embodiment, the IMU board 26 is connected to the front holder 18 by screwing at one location and bonding at two locations.
 図8に示すように、IMU基板26のY方向の負方向側の面(カメラモジュール21と反対側の面)には、IMUセンサ60が配置される。
 IMUセンサ60は、本技術に係る、慣性センサの一実施形態に相当する。
 また、カメラ用フレキシブル基板22や、図示されていないモータ用フレキシブル基板17が接続される。
 その他、IMU基板26の具体的な構成は限定されない。例えばコントローラ11がIMU基板26上に設けられる場合に、CPU、ROM、RAM、及びHDD等のハードウェアが、IMU基板26上に配置されてもよい。
As shown in FIG. 8, an IMU sensor 60 is arranged on the surface of the IMU board 26 on the negative direction side in the Y direction (the surface opposite to the camera module 21).
The IMU sensor 60 corresponds to one embodiment of an inertial sensor according to the present technology.
Also, the camera flexible board 22 and the motor flexible board 17 (not shown) are connected.
In addition, the specific configuration of the IMU board 26 is not limited. For example, when the controller 11 is provided on the IMU board 26 , hardware such as CPU, ROM, RAM, and HDD may be arranged on the IMU board 26 .
 重り28は、撮像装置100の重心を調整するために設けられる。
 重り28は、例えば真鍮等の金属等、ある程度密度が大きい物質により構成される。もちろん、重り28の具体的な材料や形状は限定されない。
 図7に示すように、本実施形態では、リアホルダ29の半円筒部40と、底部41との境界に沿って、重り28が配置される。
 重り28は、本技術に係る、バランサの一実施形態に相当する。
A weight 28 is provided to adjust the center of gravity of the imaging device 100 .
The weight 28 is made of a material having a relatively high density, such as metal such as brass. Of course, the specific material and shape of the weight 28 are not limited.
As shown in FIG. 7, in this embodiment, the weight 28 is arranged along the boundary between the semi-cylindrical portion 40 and the bottom portion 41 of the rear holder 29 .
Weight 28 corresponds to one embodiment of a balancer according to the present technology.
 [IMU基板及びカメラモジュールの配置構成]
 IMU基板26とカメラモジュール21との具体的な配置構成について説明する。
 本実施形態では、IMU基板26は、フロントホルダ18に、カメラモジュール21から離間するように設置される。
[Arrangement configuration of IMU board and camera module]
A specific arrangement configuration of the IMU board 26 and the camera module 21 will be described.
In this embodiment, the IMU board 26 is installed on the front holder 18 so as to be separated from the camera module 21 .
 図7の中では、カメラモジュール21は、撮像装置100の上方側に設置されている。また、IMU基板26は、回転軸5付近の、回転軸5の下方に設置されている。
 このように、IMU基板26とカメラモジュール21とが互いに離間するように配置され、IMU基板26とカメラモジュール21との間に、空間が形成される。
 さらに本実施形態では、IMU基板26及びカメラモジュール21が、回転軸5を挟んで対向して配置される。
 具体的には、フロントホルダ18及びリアホルダ29は、回転軸5が内部に配置される内部空間61を有する。IMU基板26は、カメラモジュール21の重心から回転軸5への垂線に直交し回転軸5を含む平面により内部空間61をカメラモジュール21の重心を含む第1の分割空間と、カメラモジュール21の重心を含まない第2の分割空間とに分割した場合、重心が第2の分割空間に含まれるようにフロントホルダ18に設置される。
In FIG. 7, the camera module 21 is installed above the imaging device 100 . Also, the IMU board 26 is installed below the rotating shaft 5 near the rotating shaft 5 .
Thus, the IMU board 26 and the camera module 21 are arranged so as to be separated from each other, and a space is formed between the IMU board 26 and the camera module 21 .
Furthermore, in this embodiment, the IMU board 26 and the camera module 21 are arranged to face each other with the rotating shaft 5 interposed therebetween.
Specifically, the front holder 18 and the rear holder 29 have an internal space 61 in which the rotating shaft 5 is arranged. The IMU board 26 divides the internal space 61 into a first divided space including the center of gravity of the camera module 21 and a first divided space including the center of gravity of the camera module 21 by a plane that is perpendicular to the perpendicular from the center of gravity of the camera module 21 to the rotation axis 5 and includes the rotation axis 5 . When it is divided into a second divided space that does not include the center of gravity, it is installed in the front holder 18 so that the center of gravity is included in the second divided space.
 ここで、内部空間61とは、フロントホルダ18及びリアホルダ29により囲まれた空間である。
 図10に示すように、フロントホルダ18及びリアホルダ29により囲まれた略円柱形状を有する空間として、内部空間61が形成される。内部空間61の内部には、回転軸5が配置される。
Here, the internal space 61 is a space surrounded by the front holder 18 and the rear holder 29 .
As shown in FIG. 10, an internal space 61 is formed as a substantially cylindrical space surrounded by the front holder 18 and the rear holder 29 . The rotary shaft 5 is arranged inside the internal space 61 .
 カメラモジュール21の重心62とは、カメラモジュール21の質量重心(すなわち、密度を考慮した重心)である。図10には、カメラモジュール21の重心62が黒塗りの四角形で示されている。
 カメラモジュール21の重心62から回転軸5への垂線63は、カメラモジュール21の重心62を通り、Y軸に平行な直線となる。
 図10には、垂線63が実線で示されている。
The center of gravity 62 of the camera module 21 is the mass center of gravity of the camera module 21 (that is, the center of gravity considering the density). In FIG. 10, the center of gravity 62 of the camera module 21 is indicated by a black square.
A perpendicular line 63 from the center of gravity 62 of the camera module 21 to the rotation axis 5 passes through the center of gravity 62 of the camera module 21 and forms a straight line parallel to the Y-axis.
In FIG. 10, the vertical line 63 is indicated by a solid line.
 垂線63に直交し回転軸5を含む平面は、すなわちY軸に直交し回転軸5(Z軸に平行)を含む平面である。従って、回転軸5を含み、XZ平面に平行な平面となる。以降、当該平面を分割平面64と呼称する。
 図10には、分割平面64が縦長の四角形にて模式的に図示されている。
A plane orthogonal to the perpendicular 63 and containing the rotation axis 5 is a plane orthogonal to the Y-axis and containing the rotation axis 5 (parallel to the Z-axis). Therefore, the plane includes the rotation axis 5 and is parallel to the XZ plane. This plane is hereinafter referred to as a dividing plane 64 .
In FIG. 10, the dividing plane 64 is schematically illustrated as a vertically long rectangle.
 さらに、分割平面64により、内部空間61が2つの空間に分割される。
 すなわち図10に示すように、内部空間61が、分割平面64の右側の空間と、左側の空間とに分割される。
 右側の空間には、カメラモジュール21の重心が含まれる。すなわち、右側の空間が、カメラモジュール21の重心を含む第1の分割空間65に相当する。
 また、左側の空間には、カメラモジュール21の重心が含まれない。すなわち、左側の空間が、カメラモジュール21の重心を含まない第2の分割空間66に相当する。
Furthermore, the dividing plane 64 divides the internal space 61 into two spaces.
That is, as shown in FIG. 10, the internal space 61 is divided into a space on the right side of the dividing plane 64 and a space on the left side.
The right space contains the center of gravity of the camera module 21 . That is, the right space corresponds to the first divided space 65 including the center of gravity of the camera module 21 .
Also, the center of gravity of the camera module 21 is not included in the left space. That is, the left space corresponds to the second divided space 66 that does not include the center of gravity of the camera module 21 .
 このように内部空間61が分割された場合に、IMU基板26は、重心が第2の分割空間66に含まれるようにフロントホルダ18に設置される。
 IMU基板26の重心もまた、IMU基板26の質量重心である。図10には、IMU基板26の重心67が黒塗りの四角形で示されている。
 図10に示すとおり、IMU基板26の重心67は、第2の分割空間66に含まれている。
When the internal space 61 is divided in this way, the IMU board 26 is installed in the front holder 18 so that the center of gravity is included in the second divided space 66 .
The center of gravity of IMU board 26 is also the center of mass of IMU board 26 . In FIG. 10, the center of gravity 67 of the IMU board 26 is indicated by a black square.
As shown in FIG. 10, the center of gravity 67 of the IMU board 26 is included in the second partitioned space 66 .
 このように、フロントホルダ18及びリアホルダ29の内部空間61が、回転軸5を含み、XZ平面に平行な平面によって2つの空間に分割された場合に、IMU基板26の重心とカメラモジュール21の重心とは、互いに異なる空間(反対側)に位置する。 In this way, when the internal space 61 of the front holder 18 and the rear holder 29 includes the rotation axis 5 and is divided into two spaces by a plane parallel to the XZ plane, the center of gravity of the IMU board 26 and the center of gravity of the camera module 21 are located in different spaces (opposite sides).
 例えば、カメラモジュール21及びIMU基板26の各々において、質量重心と位置重心が異なっている場合に、質量重心は互いに異なる空間に含まれるが、位置重心は互いに同じ空間に含まれる、といった配置構成が採用されてもよい。 For example, in each of the camera module 21 and the IMU board 26, when the center of gravity of mass and the center of gravity of position are different, the center of gravity of mass is contained in mutually different spaces, but the positional center of gravity is contained in the same space. may be adopted.
 さらに、本実施形態では、カメラモジュール21は、第1の分割空間65に含まれるように設置される。またIMU基板26は、第2の分割空間66に含まれるように設置される。
 すなわち、カメラモジュール21の重心62のみならず、カメラモジュール21全体が、第1の分割空間65に含まれるように設置される。また、IMU基板26の重心67のみならず、IMU基板26全体が、第2の分割空間66に含まれるように設置される。
 図10に示すとおり、本実施形態においては、カメラモジュール21の全体が第1の分割空間65に含まれ、IMU基板26の全体も、第2の分割空間66に含まれている。
Furthermore, in this embodiment, the camera module 21 is installed so as to be included in the first divided space 65 . Also, the IMU board 26 is installed so as to be included in the second divided space 66 .
That is, not only the center of gravity 62 of the camera module 21 but the entire camera module 21 is installed so as to be included in the first divided space 65 . Also, not only the center of gravity 67 of the IMU board 26 but the entire IMU board 26 is installed so as to be included in the second divided space 66 .
As shown in FIG. 10 , in this embodiment, the entire camera module 21 is included in the first divided space 65 and the entire IMU board 26 is also included in the second divided space 66 .
 もちろん、例えばカメラモジュール21の重心のみが第1の分割空間65に含まれ、カメラモジュール21全体は第1の分割空間65に含まれないような配置構成が採用されてもよい。
 例えば、カメラモジュール21の端部のみが第2の分割空間66に含まれており、その他の大部分が第1の分割空間65に含まれる場合に、重心62は第1の分割空間65に位置するため、このような配置構成となりうる。
 このことは、IMU基板26についても同様である。
Of course, for example, an arrangement configuration may be adopted in which only the center of gravity of the camera module 21 is included in the first divided space 65 and the entire camera module 21 is not included in the first divided space 65 .
For example, if only the end of the camera module 21 is included in the second divided space 66 and most of the rest is included in the first divided space 65, the center of gravity 62 is located in the first divided space 65. Therefore, such an arrangement configuration is possible.
The same applies to the IMU board 26 as well.
 さらに、本実施形態では、IMU基板26は、カメラモジュール21の撮像方向7に対して直交する向きに配置される。
 すなわち、IMU基板26の基板の面が、撮像方向7に対して直交する向きに配置される。
 図10に示すように、撮像方向7はY軸に平行である。また、IMU基板26の面は、XZ平面に平行に配置される。すなわち、撮像方向7及びIMU基板26の面は、直交している。
 もちろん、IMU基板26の配置の向きは限定されない。例えばIMU基板26の面が、XZ平面に対して斜めになるように(平行でないように)配置されてもよい。
Furthermore, in this embodiment, the IMU board 26 is arranged in a direction perpendicular to the imaging direction 7 of the camera module 21 .
That is, the board surface of the IMU board 26 is arranged in a direction orthogonal to the imaging direction 7 .
As shown in FIG. 10, the imaging direction 7 is parallel to the Y-axis. Also, the surface of the IMU board 26 is arranged parallel to the XZ plane. That is, the imaging direction 7 and the plane of the IMU board 26 are orthogonal.
Of course, the orientation of the IMU board 26 is not limited. For example, the surface of the IMU board 26 may be arranged obliquely (not parallel) to the XZ plane.
 このように、IMU基板26及びカメラモジュール21が離間して配置されることにより、カメラモジュール21の熱の、IMU基板26に対する伝達を抑制することが可能となる。すなわち、IMUセンサ60の測定精度を向上させることが可能となる。 By arranging the IMU board 26 and the camera module 21 apart from each other in this way, it is possible to suppress the transfer of heat from the camera module 21 to the IMU board 26 . That is, it becomes possible to improve the measurement accuracy of the IMU sensor 60 .
 さらに、本実施形態では、IMU基板26及びカメラモジュール21が、互いに異なる空間(第1の分割空間65と第2の分割空間66)に配置される。
 これにより、撮像装置100全体の重心が、回転軸5の近傍に位置するようになる。
Furthermore, in this embodiment, the IMU board 26 and the camera module 21 are arranged in mutually different spaces (the first divided space 65 and the second divided space 66).
As a result, the center of gravity of the imaging apparatus 100 as a whole is positioned near the rotation axis 5 .
 IMU基板26及びカメラモジュール21は、ある程度の質量を持った部材である。これらが同じ空間に配置された場合(例えば、IMU基板26上にカメラモジュール21が配置される場合等)には、当該一方の空間に対して質量が偏ることになる。
 すなわち、撮像装置100全体の重心が、回転軸5から離れて(一方の空間側に)位置することとなる。
 撮像装置100全体の重心が回転軸5から離れていると、撮像装置100を回転させるために必要なトルクが増大する。すなわち、モータ16による、必要とされる出力が増大する。従って、モータ16に対して負荷がかかり、モータ16から発生する熱量が増大する。
The IMU board 26 and camera module 21 are members having a certain amount of mass. When these are arranged in the same space (for example, when the camera module 21 is arranged on the IMU board 26, etc.), the mass will be biased with respect to the one space.
That is, the center of gravity of the imaging apparatus 100 as a whole is positioned away from the rotation axis 5 (on one side of the space).
When the center of gravity of the imaging device 100 as a whole is away from the rotation axis 5, the torque required to rotate the imaging device 100 increases. That is, the power required by the motor 16 increases. Therefore, a load is applied to the motor 16, and the amount of heat generated from the motor 16 increases.
 本実施形態では、撮像装置100全体の重心が、回転軸5の近傍に位置するため、回転のために必要なトルクが小さくなり、モータ16による発熱が抑制できる。これにより、IMU基板26等への熱の伝達を抑制することが可能となる。
 さらに、必要とされるモータ16の出力が少なくなるため、モータ16を始めとした、撮像装置100全体の小型化が可能となる。また、回転における電力の消費を抑えることが可能となる。
 また、IMU基板26及びカメラモジュール21の配置を利用して重心が調整されるため、重心を調整するための他の機構が不要であり、撮像装置100が軽量化される。
In this embodiment, the center of gravity of the imaging apparatus 100 as a whole is positioned near the rotation axis 5, so the torque required for rotation is small, and heat generation by the motor 16 can be suppressed. This makes it possible to suppress heat transfer to the IMU board 26 and the like.
Furthermore, since the required output of the motor 16 is reduced, it is possible to reduce the size of the entire imaging apparatus 100 including the motor 16 . Moreover, it is possible to suppress power consumption during rotation.
Further, since the center of gravity is adjusted using the arrangement of the IMU board 26 and the camera module 21, no other mechanism for adjusting the center of gravity is required, and the weight of the imaging device 100 is reduced.
 これらの効果は、IMU基板26及びカメラモジュール21の各々の重心が互いに異なる空間に位置する場合に現れるが、重心のみならず、IMU基板26全体及びカメラモジュール21全体が互いに異なる空間に配置される場合には、さらに高い効果を得ることが可能となる。 These effects appear when the center of gravity of each of the IMU board 26 and the camera module 21 are positioned in mutually different spaces. In this case, even higher effects can be obtained.
 さらに、本実施形態では、IMU基板26が、カメラモジュール21の撮像方向7に対して直交する向きに配置される。これにより、例えばIMU基板26とカメラモジュール21との配線が最短となり、簡易な構成による接続が可能となる。すなわち、撮像装置100が小型化される。
 また、例えばIMU基板26を、カメラモジュール21の撮像方向7に対して平行に配置する場合でも、撮像装置100の重心を、回転軸5の近傍に位置するように調整することが可能であるが、このような直交する向きの配置により、重心をさらに精度よく調整することが可能となる。
Furthermore, in this embodiment, the IMU board 26 is arranged in a direction perpendicular to the imaging direction 7 of the camera module 21 . As a result, for example, the wiring between the IMU board 26 and the camera module 21 becomes the shortest, and connection with a simple configuration is possible. That is, the imaging device 100 is miniaturized.
Further, for example, even when the IMU board 26 is arranged parallel to the imaging direction 7 of the camera module 21, it is possible to adjust the center of gravity of the imaging device 100 to be positioned near the rotation axis 5. , such an arrangement in an orthogonal direction enables the center of gravity to be adjusted more precisely.
 [ヒートシンク等の配置構成]
 ヒートシンク23等の、詳細な配置構成について説明する。
 ヒートシンク23は、カメラモジュール21に熱的に接続される。
 図5に示すように、本実施形態では、ヒートシンク23の中央当接面48に、カメラモジュール21の背面が接触して配置される。
 先述したとおり、ヒートシンク23は例えばアルミニウム等、熱伝導性を有する材料により構成される。カメラモジュール21が発熱した場合には、発生した熱はカメラモジュール21の背面から、ヒートシンク23に伝導される。
[Arrangement configuration of heat sink, etc.]
A detailed arrangement configuration of the heat sink 23 and the like will be described.
A heat sink 23 is thermally connected to the camera module 21 .
As shown in FIG. 5 , in this embodiment, the rear surface of the camera module 21 is arranged in contact with the central contact surface 48 of the heat sink 23 .
As described above, the heat sink 23 is made of a thermally conductive material such as aluminum. When the camera module 21 generates heat, the generated heat is conducted from the rear surface of the camera module 21 to the heat sink 23 .
 また、ヒートシンク23の端部側当接面47は、フロントホルダ18に熱的に接続される。
 図5に示すように、フロントホルダ18の上部及び下部に、ヒートシンク23の端部側当接面47が接触して配置される。
 ヒートシンク23が熱を帯びた(温度が高い)場合には、熱はヒートシンク23から、フロントホルダ18に伝導される。
Further, the end side contact surface 47 of the heat sink 23 is thermally connected to the front holder 18 .
As shown in FIG. 5, the end side contact surfaces 47 of the heat sink 23 are arranged in contact with the upper and lower portions of the front holder 18 .
When the heat sink 23 is heated (high temperature), the heat is conducted from the heat sink 23 to the front holder 18 .
 従って、カメラモジュール21が発熱した場合には、まずカメラモジュール21の背面から、ヒートシンク23に熱が伝導される。さらに、ヒートシンク23から、フロントホルダ18に熱が伝導される。すなわち、カメラモジュール21から発生する熱は、フロントホルダ18に伝導される。 Therefore, when the camera module 21 generates heat, the heat is first conducted from the rear surface of the camera module 21 to the heat sink 23 . Furthermore, heat is conducted from the heat sink 23 to the front holder 18 . That is, heat generated from the camera module 21 is conducted to the front holder 18 .
 これにより、カメラモジュール21から発生する熱を、効率的に放出することが可能となる。
 撮像装置100が回転している場合や、撮像装置100が搭載された移動体が移動している場合には、筐体の表面(フロントホルダ18の外面)に、大きな風速が発生する。そのため、フロントホルダ18に伝導された熱は、撮像装置100の外部に対して効率よく放出される。従って、効率的な放熱が実現可能となる。
 もちろん、ヒートシンク23に対して、カメラモジュール21及びフロントホルダ18を熱的に接続する方法は限定されず、任意の方法が採用されてよい。
Thereby, the heat generated from the camera module 21 can be efficiently released.
When the imaging device 100 is rotating, or when the moving body on which the imaging device 100 is mounted is moving, a large wind speed is generated on the surface of the housing (the outer surface of the front holder 18). Therefore, the heat conducted to the front holder 18 is efficiently released to the outside of the imaging device 100 . Therefore, efficient heat dissipation can be realized.
Of course, the method of thermally connecting the camera module 21 and the front holder 18 to the heat sink 23 is not limited, and any method may be adopted.
 また図5に示すように、本実施形態では、カメラモジュール21とヒートシンク23との熱的な接続、又はフロントホルダ18とヒートシンク23との間の熱的な接続の少なくとも一方は、放熱材料を介した接続により実現される。
 本実施形態では、2つの熱的な接続の双方が、放熱材料を介した接続により実現される。
Further, as shown in FIG. 5, in this embodiment, at least one of the thermal connection between the camera module 21 and the heat sink 23 and the thermal connection between the front holder 18 and the heat sink 23 is made through a heat dissipation material. This is achieved by connecting
In this embodiment, both of the two thermal connections are realized through connections via heat-dissipating materials.
 具体的には、図5に示すように、カメラモジュール21とヒートシンク23との接続部分に、接着放熱剤68が塗布される。すなわち、カメラモジュール21の背面と、ヒートシンク23の中央当接面48との間に、接着放熱剤68が塗布される。
 接着放熱剤68は熱伝導性を有する。従って、カメラモジュール21から発生する熱を、効率的にヒートシンク23に伝導させることが可能となる。
Specifically, as shown in FIG. 5, an adhesive heat radiating agent 68 is applied to the connecting portion between the camera module 21 and the heat sink 23 . That is, the adhesive heat radiating agent 68 is applied between the rear surface of the camera module 21 and the central contact surface 48 of the heat sink 23 .
The adhesive heat sink 68 has thermal conductivity. Therefore, heat generated from the camera module 21 can be efficiently conducted to the heat sink 23 .
 図5においては、接着放熱剤68は、点模様の丸印にて示されているが、接続部分の全体に塗布されてもよい。もちろん、一部のみに塗布されてもよい。
 また、接続部分に配置される放熱材料は限定されない。例えば放熱グリスや放熱シート等、接着の機能を有さない放熱材料が配置されてもよい。
 接着放熱剤68は、本技術に係る、放熱材料の一実施形態に相当する。
In FIG. 5, the adhesive heat-dissipating agent 68 is indicated by dotted circles, but it may be applied to the entire connecting portion. Of course, it may be applied only partially.
Moreover, the heat dissipation material arranged in the connecting portion is not limited. For example, a heat-dissipating material having no adhesion function, such as heat-dissipating grease or a heat-dissipating sheet, may be arranged.
The adhesive heat dissipation agent 68 corresponds to one embodiment of the heat dissipation material according to the present technology.
 また、図5に示すように、フロントホルダ18とヒートシンク23の接続部分にも、接着放熱剤68が塗布される。すなわち、フロントホルダ18の内面32と、ヒートシンク23の端部側当接面47との間に、接着放熱剤68が塗布される。
 これにより、ヒートシンク23からフロントホルダ18に、効率的に熱を伝導させることが可能となる。
In addition, as shown in FIG. 5, the adhesive heat-radiating agent 68 is also applied to the connecting portion between the front holder 18 and the heat sink 23 . That is, the adhesive heat-radiating agent 68 is applied between the inner surface 32 of the front holder 18 and the end-side contact surface 47 of the heat sink 23 .
Thereby, heat can be efficiently conducted from the heat sink 23 to the front holder 18 .
 もちろん、接着放熱剤68が、一方の接続部分のみに塗布されてもよい。すなわち、例えばカメラモジュール21とヒートシンク23との接続部分に接着放熱剤68が塗布され、フロントホルダ18とヒートシンク23の接続部分には塗布されない、といった構成が採用されてもよい。また、各々の接続部分に異なる放熱材料が配置されてもよい。 Of course, the adhesive heat-radiating agent 68 may be applied only to one connecting portion. That is, for example, a configuration may be employed in which the adhesive heat-radiating agent 68 is applied to the connecting portion between the camera module 21 and the heat sink 23 and not applied to the connecting portion between the front holder 18 and the heat sink 23 . Also, different heat dissipating materials may be arranged at each connecting portion.
 このように、接着放熱剤68が塗布されることで、さらに効率的な放熱が実現可能となる。
 例えば、カメラモジュール21が、解像度が高い画像を撮像可能な場合には、発熱量が増大する。このような場合において、接着放熱剤68が塗布されることで、効率的な放熱が実現され、カメラモジュール21の熱暴走等を抑制することが可能となる。
By applying the adhesive heat dissipation agent 68 in this way, more efficient heat dissipation can be achieved.
For example, when the camera module 21 can capture an image with high resolution, the amount of heat generated increases. In such a case, by applying the adhesive heat-dissipating agent 68, efficient heat dissipation is realized, and it becomes possible to suppress thermal runaway of the camera module 21 or the like.
 また、カメラモジュール21は、クッション材料を介して、フロントホルダ18に設置される。
 図5に示すように、本実施形態では、クッション19が、カメラモジュール21とフロントホルダ18の間に設置される。
Also, the camera module 21 is installed on the front holder 18 via a cushion material.
As shown in FIG. 5, the cushion 19 is installed between the camera module 21 and the front holder 18 in this embodiment.
 これにより、カメラモジュール21が安定して保持される。例えばカメラモジュール21とフロントホルダ18との隙間を埋めるように、クッション19が設計されることで、撮像装置100が回転した場合にも、カメラモジュール21の位置がずれにくくなる。
 また、例えば移動体の移動等の振動による、カメラモジュール21のずれを抑制することが可能となる。
Thereby, the camera module 21 is stably held. For example, by designing the cushion 19 so as to fill the gap between the camera module 21 and the front holder 18, the position of the camera module 21 is less likely to shift even when the imaging device 100 rotates.
In addition, it is possible to suppress displacement of the camera module 21 due to vibration such as movement of a moving object.
 また、ヒートシンク23は、カメラモジュール21をフロントホルダ18に対して押圧するように、フロントホルダ18に設置される。
 本実施形態では、カメラモジュール21は、ヒートシンク23及びクッション19により挟み込まれ、双方から押し付けられた状態となる。
 例えば、ヒートシンク23がフロントホルダ18に対して近い位置に固定されることで、カメラモジュール21が設置されるための空間が小さくなり、カメラモジュール21に対してはたらく圧力が大きくなる。また、クッション19の材料が適宜調整され、クッション19が有する軟性等を変化させることにより、カメラモジュール21に対してはたらく圧力が調整される。このようにして、カメラモジュール21が、所望の圧力で押圧される。
 もちろん、カメラモジュール21を押圧する方法は限定されず、任意の方法が採用されてよい。
Also, the heat sink 23 is installed on the front holder 18 so as to press the camera module 21 against the front holder 18 .
In this embodiment, the camera module 21 is sandwiched between the heat sink 23 and the cushion 19 and pressed from both sides.
For example, by fixing the heat sink 23 at a position close to the front holder 18, the space for installing the camera module 21 is reduced, and the pressure acting on the camera module 21 is increased. Further, the pressure acting on the camera module 21 is adjusted by appropriately adjusting the material of the cushion 19 and changing the flexibility of the cushion 19 . In this way, the camera module 21 is pressed with the desired pressure.
Of course, the method of pressing the camera module 21 is not limited, and any method may be adopted.
 これにより、ヒートシンク23に対してカメラモジュール21が押し付けられた状態となり、熱が効率的に伝導される。
 また、カメラモジュール21の前面にはクッション19が挟み込まれているため、カメラモジュール21とヒートシンク23との接触位置によらない、均一な圧力での押圧が実現される。すなわち、背面のうち特定の一部のみが強い圧力で押圧される、又は背面のうち一部がヒートシンク23に接触していない、といったことが起きにくくなる。従って、効率的な放熱が可能となる。
As a result, the camera module 21 is pressed against the heat sink 23, and heat is efficiently conducted.
In addition, since the cushion 19 is sandwiched between the front surfaces of the camera module 21, a uniform pressure can be applied regardless of the contact position between the camera module 21 and the heat sink 23. FIG. That is, it is less likely that only a specific part of the back surface is pressed with a strong pressure, or part of the back surface is not in contact with the heat sink 23 . Therefore, efficient heat dissipation is possible.
 [モータの配置構成]
 本実施形態では、モータ16は、ヒートシンク23から離間するように配置される。
 また、モータ16は、接着放熱剤68から離間するように配置される。
 図7には、カメラモジュール21の背面に設置されたヒートシンク23が図示されている。図7に示すように、ヒートシンク23は、XZ平面と平行に配置される。
 ヒートシンク23の右側(すなわち、X方向の負方向側)には、モータ16との間に隙間が設けられている。当該隙間には、例えばカメラ用フレキシブル基板22や、フロントホルダ18の底部31が位置している。
[Arrangement of motors]
In this embodiment, the motor 16 is arranged away from the heat sink 23 .
Also, the motor 16 is arranged so as to be spaced apart from the adhesive heat radiating agent 68 .
FIG. 7 shows the heat sink 23 installed on the rear surface of the camera module 21. As shown in FIG. As shown in FIG. 7, the heat sink 23 is arranged parallel to the XZ plane.
A gap is provided between the heat sink 23 and the motor 16 on the right side (that is, on the negative side in the X direction). For example, the camera flexible substrate 22 and the bottom portion 31 of the front holder 18 are positioned in the gap.
 このように、ヒートシンク23は、モータ16から離間して配置される。
 また、図7に示すように、カメラモジュール21の背面に塗布された接着放熱剤68もまた、モータ16から離間して配置されている。
 図7には図示されていないが、もちろん、ヒートシンク23とフロントホルダ18との接触部分に塗布された接着放熱剤68も、モータ16から離間して配置される。
Thus, the heat sink 23 is spaced apart from the motor 16 .
In addition, as shown in FIG. 7, the adhesive heat-radiating agent 68 applied to the rear surface of the camera module 21 is also spaced apart from the motor 16 .
Although not shown in FIG. 7, of course, the adhesive heat radiating agent 68 applied to the contact portion between the heat sink 23 and the front holder 18 is also arranged apart from the motor 16 .
 例えば、モータ16とヒートシンク23とが接触して配置される場合には、モータ16の熱がヒートシンク23に伝わり、さらに、ヒートシンク23に伝わった熱は、カメラモジュール21に伝導する。すなわち、モータ16の熱が、逆にカメラモジュール21に伝導してしまうような状態となる。このことは、モータ16と接着放熱剤68とが接触して配置される場合においても、同様である。
 本実施形態のように、モータ16がヒートシンク23及び接着放熱剤68から離間するように配置されることにより、カメラモジュール21に対するモータ16の熱の伝導を抑制することが可能となる。
 もちろん、モータ16を離間して配置する方法(具体的な配置構成等)は、限定されない。
For example, when the motor 16 and the heat sink 23 are arranged in contact with each other, the heat of the motor 16 is transferred to the heat sink 23 , and the heat transferred to the heat sink 23 is transferred to the camera module 21 . In other words, the heat of the motor 16 is transferred to the camera module 21 . This is the same even when the motor 16 and the adhesive heat radiating agent 68 are arranged in contact with each other.
By arranging the motor 16 away from the heat sink 23 and the adhesive heat radiating agent 68 as in the present embodiment, it is possible to suppress the conduction of heat from the motor 16 to the camera module 21 .
Of course, the method of arranging the motors 16 apart (specific arrangement configuration, etc.) is not limited.
 [重りの配置構成]
 重り28は、撮像装置100の重心が回転軸5上に位置するように、フロントホルダ18の所定の位置に設置される。
 本実施形態では、図7に示すように、リアホルダ29の半円筒部40と底部41の境界に沿って、重り28が配置される。すなわち、当該境界の近傍が、所定の位置に相当する。
[Arrangement of weights]
The weight 28 is installed at a predetermined position of the front holder 18 so that the center of gravity of the imaging device 100 is positioned on the rotation axis 5 .
In this embodiment, as shown in FIG. 7, the weight 28 is arranged along the boundary between the semi-cylindrical portion 40 and the bottom portion 41 of the rear holder 29 . That is, the vicinity of the boundary corresponds to the predetermined position.
 重り28が配置されることにより、撮像装置100全体の重心が、回転軸5上に位置するように調整される。
 具体的には、重り28が配置される位置や、重り28の形状が調整される。または、重り28を構成する材料を適宜変更することにより、重り28の密度や質量が調整されてもよい。重り28の位置、形状、材料、密度、及び質量等は限定されず、任意に変更可能である。
 例えば、図7において、重心が回転軸5に対して上方側に寄っている場合には、重り28の質量が大きくなるように、調整が行われる。これにより、重心が下方側に移動し、重心の位置を回転軸5上に合わせることが可能となる。
By arranging the weight 28 , the center of gravity of the imaging apparatus 100 as a whole is adjusted to be positioned on the rotation axis 5 .
Specifically, the position where the weight 28 is arranged and the shape of the weight 28 are adjusted. Alternatively, the density and mass of the weight 28 may be adjusted by appropriately changing the material forming the weight 28 . The position, shape, material, density, mass, etc. of the weight 28 are not limited and can be changed arbitrarily.
For example, in FIG. 7, when the center of gravity is shifted upward with respect to the rotating shaft 5, adjustment is performed so that the mass of the weight 28 is increased. As a result, the center of gravity moves downward, and the position of the center of gravity can be aligned with the rotating shaft 5 .
 これにより、モータ16の回転負荷が軽減され、モータ16による発熱を抑制することが可能となる。すなわち、IMU基板26等への熱の伝達を抑制することが可能となる。
 また、体積の小さい重り26により重心が調整されるため、撮像装置100を小型化することが可能となる。
As a result, the rotational load of the motor 16 is reduced, and heat generation by the motor 16 can be suppressed. That is, it is possible to suppress heat transfer to the IMU board 26 and the like.
In addition, since the center of gravity is adjusted by the weight 26 having a small volume, the size of the imaging device 100 can be reduced.
 [基板の保持構造]
 以下、基板を保持するための、保持構造の概要を説明する。
 図15は、本技術に係る保持構造200の概要を示す模式図である。
[Substrate holding structure]
The outline of the holding structure for holding the substrate will be described below.
FIG. 15 is a schematic diagram showing an outline of a holding structure 200 according to the present technology.
 図15A及びBに示すように、保持構造200は、慣性センサ10が配置された基板81を対象物80に設置するための構造である。
 保持構造200は、基板81の2以上の箇所に構成され、対象物80に対して基板81を接続するための2以上の接続構造部82を具備する。
 図15A及びBでは、基板81の2箇所に構成された2つの接続構造部82が図示されているが、基板81の3以上の箇所に3以上の接続構造部82が構成されてもよい。
 なお、図15~図20において、基板81に配置される慣性センサ10の図示は省略されている。
As shown in FIGS. 15A and 15B , the holding structure 200 is a structure for installing the substrate 81 on which the inertial sensor 10 is arranged on the object 80 .
The holding structure 200 is configured at two or more locations on the substrate 81 and comprises two or more connection structures 82 for connecting the substrate 81 to the object 80 .
15A and B show two connection structures 82 formed at two locations on the substrate 81, three or more connection structures 82 may be formed at three or more locations on the substrate 81. FIG.
15 to 20, illustration of the inertial sensor 10 arranged on the substrate 81 is omitted.
 図15Aに示す例では、2以上の接続構造部82の各々が、接着構造83により構成されている。
 接着構造83は、互いに離間するように配置された対象物80と基板81との間に接着材料が設けられる構造である。
 図15Bに示す例では、2以上の接続構造部82の1つが押圧構造84により構成されている。そして、その他が接着構造83により構成されている。
 押圧構造84は、対象物80に基板81を押圧して固定する構造である。
In the example shown in FIG. 15A , each of the two or more connecting structure portions 82 is configured by an adhesive structure 83 .
The adhesive structure 83 is a structure in which an adhesive material is provided between the object 80 and the substrate 81 that are spaced apart from each other.
In the example shown in FIG. 15B , one of the two or more connection structures 82 is configured by the pressing structure 84 . Others are composed of the adhesive structure 83 .
The pressing structure 84 is a structure that presses and fixes the substrate 81 to the object 80 .
 図15A及びBに示した例に限定されず、例えば3つや4つ等、2以上の任意の数の接続構造部82が構成されてよい。また、接続構造部82の全てが接着構造83であってもよいし、1つが押圧構造84であって、その他全てが接着構造83であってもよい。
 接着構造83及び押圧構造84は、例えば以下のような個数の組み合わせで構成されうる。
 (1)接続構造部82が2つである場合
  接着構造83が2つ
  接着構造83が1つ、押圧構造84が1つ
 (2)接続構造部82が3つである場合
  接着構造83が3つ
  接着構造83が2つ、押圧構造84が1つ
 (3)接続構造部82が4つである場合
  接着構造83が4つ
  接着構造83が3つ、押圧構造84が1つ
 すなわち、2以上の接続構造部82が構成され、そのうち押圧構造84は多くとも1つであり、その他全ては接着構造83となる。
It is not limited to the examples shown in FIGS. 15A and 15B, and any number of connection structures 82 greater than or equal to two, such as three or four, may be configured. Also, all of the connecting structure portions 82 may be the bonding structure 83 , or one may be the pressing structure 84 and all of the others may be the bonding structure 83 .
The bonding structure 83 and the pressing structure 84 can be configured in the following combinations, for example.
(1) When there are two connecting structure portions 82 There are two bonding structures 83 One bonding structure 83 and one pressing structure 84 (2) When there are three connecting structure portions 82 There are three bonding structures 83 Two bonding structures 83 and one pressing structure 84 (3) When there are four connection structures 82 Four bonding structures 83 Three bonding structures 83 and one pressing structure 84 That is, two or more connection structures 82 are configured, of which at most one is a pressing structure 84 and all others are bonding structures 83 .
 以上のように、接着構造83又は押圧構造84により、対象物80に対する基板81の接続が実現される。
 すなわち、対象物80に対する基板81の設置が実現される。
As described above, the substrate 81 is connected to the object 80 by the bonding structure 83 or the pressing structure 84 .
That is, installation of the substrate 81 with respect to the object 80 is realized.
 [撮像装置における保持構造]
 本実施形態に係る撮像装置100において、フロントホルダ18(回転部1)を対象物80として、図15に示す保持構造200が採用されている。すなわち、フロントホルダ18(回転部1)に対して、フロントホルダ18(回転部1)と一体的に回転するようにIMU基板26を設置するために、保持構造200が構成されている。
[Holding structure in imaging device]
In the imaging device 100 according to the present embodiment, the holding structure 200 shown in FIG. 15 is adopted with the front holder 18 (rotating section 1) as the object 80. As shown in FIG. That is, the holding structure 200 is configured to mount the IMU board 26 on the front holder 18 (rotating portion 1) so as to rotate integrally with the front holder 18 (rotating portion 1).
 図8に示すように、本実施形態では、フロントホルダ18の凸部57に対して、IMU基板26がネジ止めされる。
 これにより、フロントホルダ18にIMU基板26を押圧して固定する押圧構造84が実現されている。
 本実施形態では、押圧構造84として、基板用ネジ27(締結部材)を介して、IMU基板26をフロントホルダ18に固定する構造が採用されている。
As shown in FIG. 8, in this embodiment, the IMU board 26 is screwed to the projection 57 of the front holder 18 .
This realizes a pressing structure 84 that presses and fixes the IMU board 26 to the front holder 18 .
In this embodiment, as the pressing structure 84, a structure is adopted in which the IMU board 26 is fixed to the front holder 18 via the board screw 27 (fastening member).
 また本実施形態では、フロントホルダ18の底部31に構成された2つの貫通孔58に対して、IMU基板26の凸部55が挿入され、接着剤59により接着される。
 これにより、互いに離間するように配置されたフロントホルダ18とIMU基板26との間に接着材料が設けられる接着構造83が実現されている。
 本実施形態では、接着構造83として、フロントホルダ18が有する貫通孔58にIMU基板26が有する凸部55(挿入部)が挿入された状態で、貫通孔58の位置を基準として接着材料が設けられる構造が採用されている。
Further, in this embodiment, the projections 55 of the IMU board 26 are inserted into the two through holes 58 formed in the bottom portion 31 of the front holder 18 and adhered with the adhesive 59 .
As a result, a bonding structure 83 is realized in which the bonding material is provided between the front holder 18 and the IMU substrate 26 that are spaced apart from each other.
In this embodiment, as the bonding structure 83, an adhesive material is provided with the position of the through-hole 58 as a reference in a state in which the convex portion 55 (insertion portion) of the IMU substrate 26 is inserted into the through-hole 58 of the front holder 18. structure is adopted.
 すなわち本実施形態では、保持構造200は、IMU基板26の3つの箇所に構成された3つの接続構造部82を具備する。
 そして、3つの接続構造部82のうち、1つの接続構造部82が、押圧構造84により構成されている。その他の2つの接続構造部82は、接着構造83により構成される。
That is, in this embodiment, the holding structure 200 comprises three connection structures 82 arranged at three locations on the IMU board 26 .
Among the three connection structure portions 82 , one connection structure portion 82 is configured by the pressing structure 84 . The other two connecting structures 82 are constituted by adhesive structures 83 .
 また、凸部57や底部31といった、IMU基板26が接続される部分が、ホルダと呼称されることもある。 Also, the portion to which the IMU board 26 is connected, such as the convex portion 57 and the bottom portion 31, is sometimes called a holder.
 撮像装置100においては、IMU基板26が1箇所においてネジ止めされ、2箇所において接着されることにより、フロントホルダ18に接続されている。
 従って、接続構造部82が3つ構成されている。
 もちろん、IMU基板26のネジ止め及び接着の順番等は限定されない。例えば、ネジ止めがされた後で、接着がなされてもよい。また、ネジ止め箇所が仮止めされ、接着がなされた後で、仮止めされた箇所をネジ止めする、といった方法が採用されてもよい。その他、任意の方法によりネジ止め及び接着がなされてよい。
In the imaging device 100, the IMU board 26 is connected to the front holder 18 by being screwed at one location and adhered at two locations.
Accordingly, three connection structure portions 82 are configured.
Of course, the order of screwing and bonding the IMU board 26 is not limited. For example, the adhesive may be applied after screwing. Alternatively, a method may be adopted in which the screwed portions are temporarily fixed, and the temporarily fixed portions are screwed after the adhesion is performed. In addition, screwing and bonding may be performed by any method.
 底部31に構成された貫通孔58と、IMU基板26の凸部55との接着箇所は、本技術に係る、接着構造の一実施形態に相当する。すなわち、撮像装置100においては、接着構造83が2つ構成される。
 本実施形態では、凸部55は、貫通孔58に対して離間するように挿入される。すなわち、凸部55は貫通孔58が構成する空間内(孔の内部)に位置するが、貫通孔58を形成する底部31の面には接触しないように、挿入される。
 凸部55と貫通孔58との間に形成される隙間や、その近傍には、接着剤59が設けられる。すなわち、離間した凸部55と貫通孔58とが、接着剤59により橋渡しされるような形で接着される。
 接着剤59は、本技術に係る接着材料の一実施形態に相当する。
 もちろん、接着構造83はこのようなものに限定されない。
A bonding portion between the through hole 58 configured in the bottom portion 31 and the convex portion 55 of the IMU substrate 26 corresponds to an embodiment of the bonding structure according to the present technology. In other words, two adhesive structures 83 are configured in the imaging device 100 .
In this embodiment, the protrusion 55 is inserted into the through hole 58 so as to be spaced apart. That is, the projection 55 is positioned in the space (inside the hole) formed by the through hole 58, but is inserted so as not to contact the surface of the bottom 31 forming the through hole 58. As shown in FIG.
An adhesive 59 is provided in the gap formed between the protrusion 55 and the through hole 58 and in the vicinity thereof. That is, the protrusion 55 and the through hole 58 are bonded together by the adhesive 59 so as to bridge the spaced apart protrusion 55 and the through hole 58 .
The adhesive 59 corresponds to one embodiment of the adhesive material according to the present technology.
Of course, the bonding structure 83 is not limited to such.
 フロントホルダ18の凸部57と、IMU基板26とがネジ止めされた箇所は、本技術に係る、押圧構造の一実施形態に相当する。すなわち、撮像装置100においては、押圧構造84が1つ構成される。
 本実施形態では、押圧構造84は、基板用ネジ27を介してIMU基板26をフロントホルダ18に固定する構造である。
 具体的には、IMU基板26には貫通孔56が構成され、基板用ネジ27のネジ部が貫通孔56を貫通する。さらに、凸部57に構成されたネジ孔が延在し、ネジ孔とネジ部とが嵌合する。これにより、IMU基板26がネジ止めされる。
 基板用ネジ27は、本技術に係る、締結部材及びネジの一実施形態に相当する。
A portion where the convex portion 57 of the front holder 18 and the IMU board 26 are screwed corresponds to an embodiment of the pressing structure according to the present technology. That is, one pressing structure 84 is configured in the imaging device 100 .
In this embodiment, the pressing structure 84 is a structure for fixing the IMU board 26 to the front holder 18 via the board screws 27 .
Specifically, a through hole 56 is formed in the IMU board 26 , and the screw portion of the board screw 27 passes through the through hole 56 . Furthermore, the screw hole formed in the convex portion 57 extends, and the screw hole and the screw portion are fitted. The IMU board 26 is thereby screwed.
The board screw 27 corresponds to one embodiment of the fastening member and the screw according to the present technology.
 ネジ止めされたIMU基板26は、基板用ネジ27の頭部と、フロントホルダ18の凸部57との間に挟まれた状態となる。
 すなわち、基板用ネジ27の頭部により、フロントホルダ18に対して、IMU基板26が押圧して固定される。
 もちろん、押圧構造84はこのようなものに限定されない。すなわち、ネジを用いた方法以外の、押圧及び固定方法が採用されてもよい。
The screwed IMU board 26 is sandwiched between the head of the board screw 27 and the projection 57 of the front holder 18 .
That is, the head of the board screw 27 presses and fixes the IMU board 26 to the front holder 18 .
Of course, the pressing structure 84 is not limited to such a structure. That is, a pressing and fixing method other than the method using screws may be employed.
 1つが押圧構造84であり、その他全てが接着構造83であるような、2以上の接続構造部82により基板81が接続されることで、IMU基板26に配置されたIMUセンサ60の測定精度を向上させることが可能となる。 By connecting the substrate 81 by two or more connection structures 82, one of which is a pressing structure 84 and all of which are adhesive structures 83, the measurement accuracy of the IMU sensor 60 arranged on the IMU substrate 26 can be improved. can be improved.
 具体的には、まず接着構造83により、IMU基板26に対して応力をかけずに、IMU基板26を固定することが可能となる。
 接着構造83による接着箇所においては、IMU基板26とフロントホルダ18とが離間して配置され、その間に接着剤59が設けられる。
 従って、IMU基板26に対して、フロントホルダ18から応力ははたらかない。代わりに接着剤59から、硬化中に生じる硬化収縮分の応力が発生することになるが、ネジ止めにより接続された場合の、フロントホルダ18からはたらく応力と比較すると、限りなく小さく、無視できる力の大きさである。
Specifically, first, the bonding structure 83 enables the IMU board 26 to be fixed without applying stress to the IMU board 26 .
The IMU substrate 26 and the front holder 18 are spaced apart from each other at the bonding location by the bonding structure 83, and the adhesive 59 is provided therebetween.
Therefore, no stress acts on the IMU board 26 from the front holder 18 . Instead, the adhesive 59 generates stress due to curing shrinkage during curing, but compared to the stress acting from the front holder 18 when connected by screws, it is extremely small and negligible. is the size of
 また、押圧構造84により、IMU基板26を安定して固定することが可能となる。例えば撮像装置100においては、IMU基板26が基板用ネジ27の頭部とフロントホルダ18の凸部57との間に挟まれ、さらに基板用ネジ27のネジ部は、ネジ孔と嵌合する。これにより、例えばIMU基板26に振動がかかり続けた場合にも、IMU基板26の保持が弱くなることはない。すなわち、IMU基板26が安定して固定される。 Also, the pressing structure 84 enables the IMU board 26 to be stably fixed. For example, in the imaging device 100, the IMU board 26 is sandwiched between the head of the board screw 27 and the projection 57 of the front holder 18, and the threaded portion of the board screw 27 is fitted into the screw hole. As a result, even if the IMU board 26 continues to vibrate, the holding of the IMU board 26 will not be weakened. That is, the IMU board 26 is stably fixed.
 IMU基板26が1箇所のネジ止めのみにより固定された場合には、IMU基板26は安定して固定される。しかしながら、撮像装置100や移動体の動きに起因して振動が発生した場合に、IMUセンサ60は振動の影響を大きく受けることとなる。
 例えばIMU基板26が振動し、IMU基板26上に設置されたIMUセンサ60もまた、振動する。これにより、IMUセンサ60の測定精度が低下してしまう。
When the IMU board 26 is fixed only by screwing at one place, the IMU board 26 is stably fixed. However, when vibration occurs due to the movement of the imaging device 100 or the moving body, the IMU sensor 60 is greatly affected by the vibration.
For example, the IMU board 26 vibrates, and the IMU sensor 60 mounted on the IMU board 26 also vibrates. As a result, the measurement accuracy of the IMU sensor 60 is degraded.
 本実施形態では、IMU基板26が1つの押圧構造84と、1つ以上の接着構造83により固定される。すなわち複数箇所により、IMU基板26が固定される。これにより、IMU基板26に対する振動の影響を抑制することが可能となる。
 加えて、押圧構造84を含んだ固定方法であるため、IMU基板26が安定して固定される。
In this embodiment, the IMU board 26 is fixed by one pressing structure 84 and one or more bonding structures 83 . That is, the IMU board 26 is fixed at a plurality of locations. This makes it possible to suppress the influence of vibration on the IMU board 26 .
In addition, since the fixing method includes the pressing structure 84, the IMU board 26 is stably fixed.
 IMU基板26が2箇所以上のネジ止めのみにより固定された場合には、IMU基板26は安定して固定される。しかしながら、IMU基板26に対して、基板を変形させる力がはたらいてしまう。
 具体的には、基板のネジ止めによる固定箇所には、設計上の誤差等に起因して、高さばらつきが発生する。高さが異なる複数の固定箇所の各々に対してIMU基板26がネジ止めされると、IMU基板26が高さの小さい固定箇所に引っ張られるように固定された状態となり、IMU基板26を変形させる力がはたらく。
When the IMU board 26 is fixed only by screwing at two or more locations, the IMU board 26 is stably fixed. However, a force that deforms the IMU board 26 acts on the board.
Specifically, height variations occur due to design errors and the like at locations where the substrate is fixed by screws. When the IMU board 26 is screwed to each of a plurality of fixing points having different heights, the IMU board 26 is pulled and fixed to the fixing points having a smaller height, and the IMU board 26 is deformed. Power works.
 これにより、IMU基板26が変形し、IMUセンサ60の基板上の位置や角度がずれてしまう。すなわち、IMUセンサ60の測定精度が低下してしまう。
 本実施形態では、押圧構造84を1つのみ含んだ固定方法であるため、高さばらつきに起因して、IMU基板26を変形させる力がはたらくことはない。
As a result, the IMU board 26 is deformed, and the position and angle of the IMU sensor 60 on the board are shifted. That is, the measurement accuracy of the IMU sensor 60 is lowered.
In this embodiment, since the fixing method includes only one pressing structure 84, a force that deforms the IMU substrate 26 due to height variations does not act.
 以上のように、1つが押圧構造84であり、その他全てが接着構造83であるような構成により、IMU基板26を変形させる力を抑制しながら、IMU基板26を安定して固定することが可能となる。
 また、IMU基板26に対する振動の影響を抑制することが可能となる。
 これにより、IMUセンサ60の測定精度を向上させることが可能となる。
As described above, with the configuration in which one is the pressing structure 84 and all others are the bonding structures 83, it is possible to stably fix the IMU board 26 while suppressing the force that deforms the IMU board 26. becomes.
Also, it is possible to suppress the influence of vibration on the IMU board 26 .
This makes it possible to improve the measurement accuracy of the IMU sensor 60 .
 また、接続構造部82の全てが接着構造83であるような固定方法によっても、IMUセンサ60の測定精度を向上させることが可能となる。
 具体的には、各々の接着構造83により、IMU基板26に対してはたらく応力を抑制しつつIMU基板26が固定されるため、基板を変形させる力がはたらくことはない。
 また、2以上の箇所によりIMU基板26が固定されるため、振動の影響が抑制される。
 これにより、IMUセンサ60の測定精度を向上させることが可能となる。
Also, the measurement accuracy of the IMU sensor 60 can be improved by a fixing method in which all of the connection structures 82 are adhesive structures 83 .
Specifically, each adhesive structure 83 fixes the IMU board 26 while suppressing the stress acting on the IMU board 26, so that the force that deforms the board does not act.
In addition, since the IMU board 26 is fixed at two or more points, the influence of vibration is suppressed.
This makes it possible to improve the measurement accuracy of the IMU sensor 60 .
 [接着構造のバリエーション]
 図16~18は、接着構造83のバリエーション例を示す模式図である。
 なお、図16~18の右方側には、押圧構造84の一例として、ネジ止めによる接続箇所が図示されている。
[Variation of adhesion structure]
16 to 18 are schematic diagrams showing variations of the bonding structure 83. FIG.
16 to 18, as an example of the pressing structure 84, connection points by screwing are illustrated.
 接着構造83は、対象物80が有する孔に基板81が有する挿入部が挿入された状態で、孔の位置を基準として接着剤59が設けられる構造を含む。
 図16に示す例では、基板81の一部が、対象物80の貫通孔58に挿入されている。すなわち、貫通孔58は、本技術に係る対象物が有する孔の一実施形態に相当する。もちろん、対象物80が有する孔の形状は限定されない。例えば、孔として貫通孔ではなく凹部が設けられ、基板81の一部が挿入されてもよい。
The adhesive structure 83 includes a structure in which the adhesive 59 is provided with reference to the position of the hole in a state where the insertion portion of the substrate 81 is inserted into the hole of the object 80 .
In the example shown in FIG. 16, a portion of the substrate 81 is inserted into the through hole 58 of the object 80. In the example shown in FIG. That is, the through-hole 58 corresponds to an embodiment of the hole included in the object according to the present technology. Of course, the shape of the hole that the object 80 has is not limited. For example, instead of a through hole, a concave portion may be provided as the hole, and a portion of the substrate 81 may be inserted.
 また、基板81のうち貫通孔58に挿入されている部分が、本技術に係る基板が有する挿入部の一実施形態に相当する。図16には、挿入部86が点模様にて示されている。
 撮像装置100においては、IMU基板26に構成された凸部55が、本技術に係る基板が有する挿入部の一実施形態に相当する。
Also, the portion of the substrate 81 that is inserted into the through hole 58 corresponds to an embodiment of the insertion portion of the substrate according to the present technology. In FIG. 16, the insertion portion 86 is indicated by a dotted pattern.
In the imaging device 100, the convex portion 55 formed on the IMU board 26 corresponds to an embodiment of the insertion portion of the board according to the present technology.
 接着剤59は、孔の位置を基準として設けられる。
 図16に示す例では、接着剤59が、貫通孔58の開口の少なくとも一部を覆うように設けられる。
 具体的には、貫通孔58の右側の開口の一部が覆われるように、対象物80と基板81との間に、接着材59が設けられる。
 典型的には、凸部55が挿入される側の開口の少なくとも一部が覆われるように、接着材59が設けられる。
 もちろんこれに限定されず、2つの開口の全てが覆われるように、接着材59が設けられてもよい。
The adhesive 59 is provided with reference to the positions of the holes.
In the example shown in FIG. 16, the adhesive 59 is provided so as to cover at least part of the opening of the through hole 58 .
Specifically, an adhesive 59 is provided between the object 80 and the substrate 81 so as to partially cover the opening on the right side of the through hole 58 .
Typically, the adhesive 59 is provided so as to cover at least a portion of the opening on the side where the projection 55 is inserted.
Of course, it is not limited to this, and the adhesive 59 may be provided so as to cover all of the two openings.
 図17に示す例では、接着剤59が、貫通孔58の内部に充填される。
 図17においては、貫通孔58の内部のうち、挿入部86が占める領域以外の全ての空間に、接着剤59が充填されている。すなわち、挿入部86の上部及び下部に、空間を隙間なく埋めるように接着剤59が充填されている。
 もちろん、貫通孔58の内部のうち一部の空間に、接着剤59が充填されてもよい。
In the example shown in FIG. 17, an adhesive 59 is filled inside the through hole 58 .
In FIG. 17 , the adhesive 59 is filled in the entire space inside the through-hole 58 except for the area occupied by the insertion portion 86 . That is, the upper and lower portions of the insertion portion 86 are filled with the adhesive 59 so as to completely fill the space.
Of course, a part of the space inside the through hole 58 may be filled with the adhesive 59 .
 図16に示す貫通孔58の開口の少なくとも一部を覆うような接着剤59を設ける方法と、図17に示す貫通孔58の内部に接着剤59を充填する方法とが、同時に実現されてもよい。
 すなわち、貫通孔58の内部に充填された接着剤59が、貫通孔58の外部にも溢れて開口を覆うような構成が採用されてもよい。
 もちろん、基板81が有する孔の形状は限定されない。例えば、孔として凹部が設けられてもよい。
The method of providing an adhesive 59 that covers at least part of the opening of the through hole 58 shown in FIG. 16 and the method of filling the inside of the through hole 58 shown in FIG. good.
That is, a configuration may be employed in which the adhesive 59 filled inside the through hole 58 overflows the outside of the through hole 58 to cover the opening.
Of course, the shape of the hole that the substrate 81 has is not limited. For example, recesses may be provided as holes.
 図18に示すように、接着構造として、基板81が有する孔に対象物80が有する挿入部が挿入された状態で、孔の位置を基準として接着材料が設けられる構造が採用されてもよい。
 図18の左方側には、対象物80が示されている。対象物80は、上方向を向いた先端部分に挿入部88を有している。図18には、挿入部88が点模様にて示されている。
 挿入部88は、本技術に係る、対象物が有する挿入部の一実施形態に相当する。
 例えば対象物80に構成されたボスが、挿入部88として機能する。もちろん、挿入部88の具体的な形状等は限定されない。
As shown in FIG. 18, as the bonding structure, a structure in which an adhesive material is provided based on the position of the hole in a state where the insertion portion of the object 80 is inserted into the hole of the substrate 81 may be adopted.
An object 80 is shown on the left side of FIG. The object 80 has an insertion portion 88 at its tip portion facing upward. In FIG. 18, the insertion portion 88 is indicated by a dotted pattern.
The insertion section 88 corresponds to an embodiment of the insertion section of the object according to the present technology.
For example, a boss configured on the object 80 functions as the insertion portion 88 . Of course, the specific shape and the like of the insertion portion 88 are not limited.
 接着剤59は、孔の位置を基準として設けられる。
 図18に示す例では、挿入部88が、貫通孔87に対して上方向に突き出るように挿入されている。また、貫通孔87の上部の開口を覆うように、接着剤59が設けられている。
 接着剤59は、挿入部88の上部、及び基板81の上部のうち貫通孔87の付近の面に接触して設けられている。これにより、基板81と対象物80とが、接着される。
The adhesive 59 is provided with reference to the positions of the holes.
In the example shown in FIG. 18, the insertion portion 88 is inserted into the through hole 87 so as to protrude upward. An adhesive 59 is provided to cover the upper opening of the through hole 87 .
The adhesive 59 is provided in contact with the surface of the upper portion of the insertion portion 88 and the upper portion of the substrate 81 near the through hole 87 . Thereby, the substrate 81 and the object 80 are adhered.
 このように、対象物80や基板81等の構成に合わせて、図16~18に示したような種々のバリエーションの接着構造83が採用可能である。
 例えば、撮像装置100において、IMU基板26に貫通孔を設けることが設計上有利な場合には、図18に示すような接着構造83を採用する等、効果的な接着が実現可能である。
As described above, various variations of the bonding structure 83 as shown in FIGS. 16 to 18 can be adopted according to the configuration of the object 80, the substrate 81, and the like.
For example, in the imaging device 100, if it is advantageous in terms of design to provide a through hole in the IMU substrate 26, effective adhesion can be realized by adopting an adhesion structure 83 as shown in FIG.
 特に、図18の例においては、貫通孔87が、基板81の位置決め孔として機能してもよい。この場合、対象物80に対して基板81を精度よく位置決めすることが可能となる。
 その他、接着構造83の具体的な構造は限定されず、任意の構造が採用されてよい。例えば、基板81の辺全体が接着されるような、広い範囲での接着がなされてもよい。
 また、接着構造83が複数の箇所に構成される場合に、各々異なる構造の接着構造83が構成されてもよい。
In particular, in the example of FIG. 18, the through holes 87 may function as positioning holes for the substrate 81 . In this case, it is possible to accurately position the substrate 81 with respect to the object 80 .
In addition, the specific structure of the bonding structure 83 is not limited, and any structure may be adopted. For example, the bonding may be over a wide area such that the entire side of the substrate 81 is bonded.
Moreover, when the bonding structure 83 is configured at a plurality of locations, the bonding structure 83 may have different structures.
 [押圧構造のバリエーション]
 撮像装置100においては、IMU基板26がネジ止めにより固定されるが、押圧構造84はこのような構造に限定されない。
 以下、押圧構造84のバリエーションについて説明する。
[Variation of pressing structure]
In the imaging device 100, the IMU board 26 is fixed by screwing, but the pressing structure 84 is not limited to such a structure.
Variations of the pressing structure 84 will be described below.
 図19及び図20は、押圧構造84の一例を示す模式図である。
 図19及び図20には、押圧構造84として、各々異なる例が図示されている。
 なお、図19及び図20においては、図示しない部分で、接着構造83による対象物80と基板81との接着がなされている。
19 and 20 are schematic diagrams showing an example of the pressing structure 84. FIG.
19 and 20 show different examples of the pressing structure 84. FIG.
19 and 20, the object 80 and the substrate 81 are bonded by the bonding structure 83 in a portion not shown.
 図19に示す例においては、押圧構造84は、対象物80により基板81を挟み込んで固定する構造である。
 図19に示すように、対象物80は、右方側に向かって突き出した第1の固定部89を有する。また、左方側に向かって突き出した第2の固定部90を有する。
 基板81は、第1の固定部89及び第2の固定部90により挟み込まれている。すなわち、基板81の左方側の面に第1の固定部89が当接され、かつ右方側の面に第2の固定部90が当接されるようにして、基板81が挟み込まれ、押圧して固定されている。
In the example shown in FIG. 19 , the pressing structure 84 is a structure that sandwiches and fixes the substrate 81 between the object 80 .
As shown in FIG. 19, the object 80 has a first fixing portion 89 protruding rightward. It also has a second fixing portion 90 protruding leftward.
The substrate 81 is sandwiched between the first fixing portion 89 and the second fixing portion 90 . That is, the substrate 81 is sandwiched so that the first fixing portion 89 is brought into contact with the left side surface of the substrate 81 and the second fixing portion 90 is brought into contact with the right side surface of the substrate 81, pressed and fixed.
 撮像装置100において、このような押圧構造84が実現される場合には、例えばフロントホルダ18及びリアホルダ29の各々に凸部が設けられ、各々の凸部により、IMU基板26が挟み込まれて固定される。この場合、フロントホルダ18及びリアホルダ29は、対象物80に相当する。また、例えばフロントホルダ18が有する凸部が、第1の固定部89に相当し、リアホルダ29が有する凸部が、第2の固定部90に相当する。
 もちろん、第1の固定部89及び第2の固定部90が構成される場合の、各々の具体的な形状は限定されない。また、対象物80による挟み込み及び固定の方法も限定されず、任意の方法が採用されてよい。
When such a pressing structure 84 is realized in the imaging device 100, for example, each of the front holder 18 and the rear holder 29 is provided with a convex portion, and the IMU board 26 is sandwiched and fixed by each convex portion. be. In this case, the front holder 18 and the rear holder 29 correspond to the object 80 . Further, for example, the convex portion of the front holder 18 corresponds to the first fixing portion 89 , and the convex portion of the rear holder 29 corresponds to the second fixing portion 90 .
Of course, when the first fixing portion 89 and the second fixing portion 90 are configured, each specific shape is not limited. Also, the method of pinching and fixing by the object 80 is not limited, and any method may be adopted.
 また、第1の固定部89又は第2の固定部90の少なくとも一方が、弾性体を介して、基板81を固定してもよい。
 図20に示す例では、第1の固定部89と基板81との間に、板状の弾性体91が挟み込まれている。従って、基板81の左方側の面は、弾性体91の右方側の面に接するように、右方側の面は第2の固定部90に接するようにして、基板81が挟み込まれ、押圧して固定されている。
At least one of the first fixing portion 89 and the second fixing portion 90 may fix the substrate 81 via an elastic body.
In the example shown in FIG. 20 , a plate-like elastic body 91 is sandwiched between the first fixing portion 89 and the substrate 81 . Therefore, the left side surface of the substrate 81 is in contact with the right side surface of the elastic body 91, and the right side surface is in contact with the second fixing portion 90, so that the substrate 81 is sandwiched. pressed and fixed.
 本例では、第1の固定部89のみにより、弾性体91を介して基板81が固定されているが、もちろん、第2の固定部90と基板81との間のみに、弾性体91が挟み込まれてもよい。また、第1の固定部89と基板81との間、及び第2の固定部90と基板81との間の両方に、弾性体91が挟み込まれてもよい。 In this example, the substrate 81 is fixed via the elastic member 91 only by the first fixing portion 89 , but of course the elastic member 91 is sandwiched only between the second fixing portion 90 and the substrate 81 . may be Also, the elastic body 91 may be sandwiched between both the first fixing portion 89 and the substrate 81 and between the second fixing portion 90 and the substrate 81 .
 弾性体91としては、例えばゴムやバネ等、弾性を有する任意の部材が用いられてよい。
 また、弾性体91を介した基板81の固定方法については、限定されない。例えば弾性体91が基板81及び固定部により挟み込まれる方法以外の方法により、基板81が固定されてもよい。
As the elastic body 91, any elastic member such as rubber or a spring may be used.
Moreover, the method for fixing the substrate 81 via the elastic body 91 is not limited. For example, the substrate 81 may be fixed by a method other than the method in which the elastic body 91 is sandwiched between the substrate 81 and the fixing portion.
 対象物80により基板81を挟み込んで固定する押圧構造84により、基板81を安定して固定することが可能となる。
 具体的には、基板81が、第1の固定部89及び第2の固定部90から加わる力によって強く押さえつけられるため、外部から基板81に対して力がはたらいた場合に、基板81が固定箇所からずれる、または固定箇所から抜けるといったことが起きにくくなる。
The substrate 81 can be stably fixed by the pressing structure 84 that sandwiches and fixes the substrate 81 between the objects 80 .
Specifically, since the substrate 81 is strongly pressed by the force applied from the first fixing portion 89 and the second fixing portion 90, the substrate 81 is not fixed to the fixed portion when force acts on the substrate 81 from the outside. It becomes less likely to slip off or come off from the fixing point.
 また、弾性体91を介して基板81が固定される場合においては、弾性体91の弾性を適宜調整することで、所望の力での押圧固定が可能となる。例えば大きな弾性を有する弾性体91を用いることで、強い力で、安定して基板81を固定することが可能となる。 In addition, when the substrate 81 is fixed via the elastic body 91, by appropriately adjusting the elasticity of the elastic body 91, it is possible to press and fix with a desired force. For example, by using the elastic body 91 having great elasticity, it is possible to stably fix the substrate 81 with a strong force.
 [接続構造部の配置構成]
 本実施形態では、2以上の接続構造部82の各々の位置は、基板81上の慣性センサ10の位置を基準として設定される。
 以下、接続構造部82の配置構成のバリエーションについて、説明する。
[Arrangement Configuration of Connection Structure]
In this embodiment, the position of each of the two or more connection structures 82 is set with reference to the position of the inertial sensor 10 on the substrate 81 .
Variations in the arrangement configuration of the connection structure portion 82 will be described below.
 図21及び図22は、接続構造部82の配置構成の一例を示す模式図である。
 図21に示す例では、基板81の左上の隅部、左下の隅部、及び右上の隅部の3箇所に、接続構造部82が構成されている。
 また、3箇所の接続構造部82に囲まれるようにして、慣性センサ10が配置されている。
21 and 22 are schematic diagrams showing an example of the arrangement configuration of the connection structure portion 82. FIG.
In the example shown in FIG. 21 , connection structure portions 82 are formed at three locations of the substrate 81 , the upper left corner, the lower left corner, and the upper right corner.
Moreover, the inertial sensor 10 is arranged so as to be surrounded by the connecting structure portions 82 at three locations.
 撮像装置100においても、3箇所の接続構造部82に囲まれるようにして、慣性センサ10が配置される。具体的には、図11における、IMU基板26の左上の隅部及び左下の隅部の2箇所に、接着構造83が構成される。また、右上の隅部に、押圧構造84が構成される。IMUセンサ60は、IMU基板26の中央付近に、3箇所の接続構造部82に囲まれるようにして配置されている。 In the imaging device 100 as well, the inertial sensor 10 is arranged so as to be surrounded by the three connection structures 82 . Specifically, bonding structures 83 are formed at two locations, the upper left corner and the lower left corner of the IMU substrate 26 in FIG. Also, a pressing structure 84 is configured in the upper right corner. The IMU sensor 60 is arranged near the center of the IMU board 26 so as to be surrounded by three connection structures 82 .
 図22に示す例では、基板81の左上の隅部、左下の隅部、右上の隅部、及び下辺の中央付近の4箇所に、接続構造部82が構成されている。
 本例においても、4箇所の接続構造部82に囲まれるようにして、慣性センサ10が配置されている。
In the example shown in FIG. 22, connection structure portions 82 are formed at four locations of the substrate 81, namely, the upper left corner, the lower left corner, the upper right corner, and the vicinity of the center of the lower side.
In this example as well, the inertial sensor 10 is arranged so as to be surrounded by the connection structures 82 at four locations.
 このように、例えば2以上の接続構造部82に囲まれるようにして、慣性センサ10が配置される。すなわち、慣性センサ10の位置は、2以上の接続構造部82の各々の位置を基準として設定される。
 言い換えれば、慣性センサ10の位置を基準として、慣性センサ10を囲むように、2以上の接続構造部82の各々の位置が設定されている。
In this way, the inertial sensor 10 is arranged so as to be surrounded by, for example, two or more connection structures 82 . That is, the position of the inertial sensor 10 is set with reference to the positions of the two or more connection structures 82 .
In other words, the position of each of the two or more connection structures 82 is set so as to surround the inertial sensor 10 on the basis of the position of the inertial sensor 10 .
 慣性センサ10の位置を基準とした、2以上の接続構造部82の各々の位置の設定方法は限定されない。
 例えば、接続構造部82が基板81の隅部以外に構成されてもよい。
 また、例えば接続構造部82が2箇所である場合に、慣性センサ10が接続構造部82の間に位置するように、接続構造部82が配置されてもよい。
 その他、任意の方法により位置が設定されてよい。
 また、各々の接続構造部82の、接着構造83及び押圧構造84の組み合わせも、限定されない。
A method of setting the positions of the two or more connection structures 82 with reference to the position of the inertial sensor 10 is not limited.
For example, the connection structure portion 82 may be configured at a portion other than the corner portion of the substrate 81 .
Further, for example, when there are two connection structure portions 82 , the connection structure portions 82 may be arranged such that the inertial sensor 10 is positioned between the connection structure portions 82 .
In addition, the position may be set by any method.
Also, the combination of the bonding structure 83 and the pressing structure 84 of each connection structure 82 is not limited.
 例えば、押圧構造84の数をできるだけ少なくすることにより、基板81にはたらく残留応力を少なくすることが可能である。
 また、慣性センサ10を押圧構造84の位置から離間して配置させることにより、残留応力を少なくすることが可能である。
 また、接着構造83を2つ以上配置し、2つの接着構造83と、1つの押圧構造84を結ぶ三角形の内側に慣性センサ10を配置させることにより、慣性センサ10の測定精度を向上させることが可能となる。
 また、1つの接着構造83と、2つの押圧構造84を、接着構造83を頂角とする二等辺三角形をなすように配置し、慣性センサ10を、頂角から底辺に下ろした垂線上の、接着構造83の近傍に配置することにより、基板81が受ける応力を均等かつ最小とすることが可能である。
 このように、接続構造部82及び慣性センサ10の位置を適宜設定することにより、基板81に対する応力や振動の影響を抑制することが可能であり、慣性センサ10の測定精度を向上させることが可能となる。
For example, by minimizing the number of pressing structures 84, the residual stress acting on the substrate 81 can be reduced.
Also, by arranging the inertial sensor 10 away from the position of the pressing structure 84, residual stress can be reduced.
In addition, by arranging two or more bonding structures 83 and arranging the inertial sensor 10 inside the triangle connecting the two bonding structures 83 and one pressing structure 84, the measurement accuracy of the inertial sensor 10 can be improved. It becomes possible.
In addition, one bonding structure 83 and two pressing structures 84 are arranged to form an isosceles triangle with the bonding structure 83 as the apex, and the inertial sensor 10 is placed on a perpendicular line extending from the apex to the base, By arranging it in the vicinity of the bonding structure 83, it is possible to evenly and minimize the stress that the substrate 81 is subjected to.
In this way, by appropriately setting the positions of the connection structure 82 and the inertial sensor 10, it is possible to suppress the effects of stress and vibration on the substrate 81, and it is possible to improve the measurement accuracy of the inertial sensor 10. becomes.
 さらに、本例では、慣性センサ10は、2以上の接続構造部82の各々の位置の、重心に配置される。
 図21においては、3つの接続構造部82により構成される三角形の位置重心に、慣性センサ10が配置されている。
 また、図22においては、4つの接続構造部82により構成される四角形の位置重心に、慣性センサ10が配置されている。
 その他、例えば接続構造部82が2箇所である場合には、位置重心は2箇所の接続構造部82の中点となる。従って、中点に慣性センサ10が配置される。
Furthermore, in this example, the inertial sensor 10 is arranged at the center of gravity of each position of the two or more connecting structures 82 .
In FIG. 21 , the inertial sensor 10 is arranged at the triangular positional center of gravity formed by the three connection structures 82 .
In addition, in FIG. 22, the inertial sensor 10 is arranged at the center of gravity of the quadrangle formed by the four connection structures 82 .
In addition, for example, when there are two connecting structure portions 82, the positional center of gravity is the middle point of the two connecting structure portions 82. FIG. Therefore, the inertial sensor 10 is arranged at the midpoint.
 このように接続構造部82の位置が設定されることにより、基板81上に慣性センサ10が安定して配置される。
 例えば図21のように、左上の隅部、左下の隅部、及び右上の隅部の3箇所に、接続構造部82が構成される場合には、右下の隅部は、対象物80に固定されない状態となる。従って、基板81が振動した場合に、右下の隅部は、振動の影響を大きく受けることになる。
 すなわち、例えば右下の隅部に慣性センサ10が配置された場合には、慣性センサ10が振動し、センシングの精度が低下してしまう。
By setting the position of the connection structure 82 in this manner, the inertial sensor 10 is stably arranged on the substrate 81 .
For example, as shown in FIG. 21, when the connection structure 82 is configured at three locations, the upper left corner, the lower left corner, and the upper right corner, the lower right corner is attached to the object 80. It will not be fixed. Therefore, when the substrate 81 vibrates, the lower right corner is greatly affected by the vibration.
For example, if the inertial sensor 10 is placed in the lower right corner, the inertial sensor 10 will vibrate and the sensing accuracy will decrease.
 一方で、基板81上の、接続構造部82により囲まれた箇所は、振動の影響を受けにくい。本実施形態では、接続構造部82により囲まれた箇所に慣性センサ10が配置されるため、慣性センサ10に対する振動の影響を抑制することが可能となる。
 これにより、慣性センサ10の測定精度を向上させることが可能となる。
On the other hand, the area surrounded by the connection structure 82 on the substrate 81 is less susceptible to vibration. In the present embodiment, since the inertial sensor 10 is arranged in a location surrounded by the connection structure 82, the influence of vibration on the inertial sensor 10 can be suppressed.
This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
 また、接続構造部82により囲まれた箇所のうち、各々の接続構造部82の位置重心は、特に振動の影響を受けにくい箇所となる。
 本実施形態では、位置重心に慣性センサ10が配置されるため、慣性センサ10に対する振動の影響を大きく抑制することが可能となる。
 これにより、慣性センサ10の測定精度を向上させることが可能となる。
Further, among the locations surrounded by the connection structure portions 82, the positional center of gravity of each connection structure portion 82 is a location that is particularly resistant to vibration.
In this embodiment, since the inertial sensor 10 is arranged at the positional center of gravity, it is possible to greatly suppress the influence of vibration on the inertial sensor 10 .
This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
 なお、基板81が小さい場合には、基板81は振動の影響を受けにくい。このような場合には、慣性センサ10が接続構造部82により囲まれて配置されなくとも、慣性センサ10に対する振動の影響はそれほど大きく現れない。
 従って、例えば基板81の左上の隅部及び右上の隅部の2箇所に、接続構造部82が構成され、慣性センサ10が基板81の中央に配置されるといった配置構成も、採用可能である。
Note that when the substrate 81 is small, the substrate 81 is less susceptible to vibration. In such a case, even if the inertial sensor 10 is not surrounded by the connection structure 82, the influence of the vibration on the inertial sensor 10 does not appear so large.
Therefore, it is also possible to employ an arrangement configuration in which the connection structures 82 are configured at two locations, for example, the upper left corner and the upper right corner of the substrate 81 , and the inertial sensor 10 is arranged at the center of the substrate 81 .
 以上、本実施形態に係る撮像装置100では、回転可能に構成された回転部1にカメラモジュール21が設置される。また、回転部1にカメラモジュール21と離間するようにIMU基板26が設置され、当該IMU基板26にIMUセンサ60が配置される。これにより、IMUセンサ60の測定精度を向上させることが可能となる。 As described above, in the imaging device 100 according to the present embodiment, the camera module 21 is installed in the rotating section 1 configured to be rotatable. Also, an IMU board 26 is installed on the rotating part 1 so as to be separated from the camera module 21 , and an IMU sensor 60 is arranged on the IMU board 26 . This makes it possible to improve the measurement accuracy of the IMU sensor 60 .
 IMUセンサ60は、温度変化に対して極めてセンシティブな装置である。例えばIMU基板26やIMUセンサ60に対して熱が伝達すると、IMU基板26やIMUセンサ60が熱変形し、IMUセンサ60のセンシングに対して顕著な影響が現れる。具体的には、加速度や角速度として、誤った値が検出されるようになる。 The IMU sensor 60 is a device that is extremely sensitive to temperature changes. For example, when heat is transferred to the IMU board 26 and the IMU sensor 60, the IMU board 26 and the IMU sensor 60 are thermally deformed, and the sensing of the IMU sensor 60 is significantly affected. Specifically, erroneous values are detected as acceleration and angular velocity.
 カメラモジュール21は、撮像等の動作に伴い、熱を発生させる。発生した熱は、カメラモジュール21の周辺に配置される部材に伝達する。IMU基板26やIMUセンサ60がカメラモジュール21の周辺に配置されると、熱が伝達し、IMUセンサ60のセンシングの精度が低下してしまう。 The camera module 21 generates heat as it performs operations such as imaging. The generated heat is transmitted to members arranged around the camera module 21 . When the IMU board 26 and the IMU sensor 60 are arranged around the camera module 21, heat is transmitted, and the sensing accuracy of the IMU sensor 60 is lowered.
 本実施形態では、IMU基板26及びカメラモジュール21が離間して配置されるため、カメラモジュール21の熱の、IMU基板26に対する伝達を抑制することが可能となる。すなわち、IMUセンサ60の測定精度を向上させることが可能となる。 In this embodiment, since the IMU board 26 and the camera module 21 are arranged apart from each other, it is possible to suppress the transfer of heat from the camera module 21 to the IMU board 26 . That is, it becomes possible to improve the measurement accuracy of the IMU sensor 60 .
 また、本実施形態に係る保持構造200では、基板81の2以上の箇所に、対象物80に対して基板81を接続するための2以上の接続構造部82が構成される。2以上の接続構造部82の各々は、互いに離間するように配置された対象物80と基板81との間に接着材59が設けられる接着構造83により構成される。又は、2以上の接続構造部82の1つが対象物80に対して基板81を押圧して固定する押圧構造84により構成され、その他が接着構造83により構成される。これにより、慣性センサ10の測定精度を向上させることが可能となる。 Also, in the holding structure 200 according to the present embodiment, two or more connection structure portions 82 for connecting the substrate 81 to the object 80 are formed at two or more locations on the substrate 81 . Each of the two or more connection structures 82 is composed of a bonding structure 83 in which an adhesive 59 is provided between the object 80 and the substrate 81 which are spaced apart from each other. Alternatively, one of the two or more connection structures 82 is configured by a pressing structure 84 that presses and fixes the substrate 81 to the object 80 , and the other is configured by an adhesive structure 83 . This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
 1つが押圧構造84であり、その他全てが接着構造83であるような構成により、基板81を変形させる力を抑制しながら、基板81を安定して固定することが可能となる。また、基板81に対する振動の影響を抑制することが可能となる。
 これにより、慣性センサ10の測定精度を向上させることが可能となる。
With a configuration in which one is the pressing structure 84 and all the others are the bonding structures 83 , it is possible to stably fix the substrate 81 while suppressing the force that deforms the substrate 81 . Moreover, it is possible to suppress the influence of vibration on the substrate 81 .
This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
 また、接続構造部82の全てが接着構造83であるような構成により、基板81に対してはたらく応力を抑制しつつ基板81が固定される。また、2以上の箇所により基板81が固定されるため、振動の影響が抑制される。
 これにより、慣性センサ10の測定精度を向上させることが可能となる。
Moreover, the substrate 81 is fixed while suppressing the stress acting on the substrate 81 due to the configuration in which the entire connection structure portion 82 is the bonding structure 83 . Moreover, since the substrate 81 is fixed at two or more locations, the influence of vibration is suppressed.
This makes it possible to improve the measurement accuracy of the inertial sensor 10 .
 各図面を参照して説明した撮像装置、保持構造等の各構成はあくまで一実施形態であり、本技術の趣旨を逸脱しない範囲で、任意に変形可能である。すなわち本技術を実施するための他の任意の構成等が採用されてよい。 Each configuration such as the imaging device and the holding structure described with reference to each drawing is merely one embodiment, and can be arbitrarily modified without departing from the scope of the present technology. That is, any other configuration or the like for implementing the present technology may be adopted.
 本開示において、「略」という文言が使用される場合、これはあくまで説明の理解を容易とするための使用であり、「略」という言の使用/不使用に特別な意味があるわけではない。
 すなわち、本開示において、「中心」「中央」「均一」「等しい」「同じ」「直交」「平行」「対称」「延在」「軸方向」「円柱形状」「円筒形状」「リング形状」「円環形状」「長方形状」「円盤形状」等の、形状、サイズ、位置関係、状態等を規定する概念は、「実質的に中心」「実質的に中央」「実質的に均一」「実質的に等しい」「実質的に同じ」「実質的に直交」「実質的に平行」「実質的に対称」「実質的に延在」「実質的に軸方向」「実質的に円柱形状」「実質的に円筒形状」「実質的にリング形状」「実質的に円環形状」「実質的に長方形状」「実質的に円盤形状」等を含む概念とする。
 例えば「完全に中心」「完全に中央」「完全に均一」「完全に等しい」「完全に同じ」「完全に直交」「完全に平行」「完全に対称」「完全に延在」「完全に軸方向」「完全に円柱形状」「完全に円筒形状」「完全にリング形状」「完全に円環形状」「完全に長方形状」「完全に円盤形状」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。
 従って、「略」の文言が付加されていない場合でも、いわゆる「略」を付加して表現される概念が含まれ得る。反対に、「略」を付加して表現された状態について、完全な状態が排除される訳ではない。
In the present disclosure, when the word “abbreviated” is used, it is used only for the purpose of facilitating the understanding of the description, and the use/non-use of the word “abbreviated” does not have a special meaning. .
That is, in the present disclosure, “central,” “central,” “uniform,” “equal,” “identical,” “perpendicular,” “parallel,” “symmetric,” “extended,” “axial,” “cylindrical,” “cylindrical,” and “ring-shaped.” Concepts that define shape, size, positional relationship, state, etc. such as "annular shape", "rectangular shape", "disk shape" are "substantially centered", "substantially central", "substantially uniform", " substantially equal, substantially the same, substantially orthogonal, substantially parallel, substantially symmetrical, substantially elongated, substantially axial, substantially cylindrical The concept includes "substantially cylindrical shape", "substantially ring shape", "substantially toric shape", "substantially rectangular shape", "substantially disk shape", and the like.
For example, "perfectly centered", "perfectly centered", "perfectly uniform", "perfectly equal", "perfectly identical", "perfectly orthogonal", "perfectly parallel", "perfectly symmetrical", "perfectly extended", "perfectly Axial direction", "perfectly cylindrical", "perfectly cylindrical", "perfectly ring", "perfectly toric", "perfectly rectangular", "perfectly disk", etc. ±10% range) is also included.
Therefore, even when the word "abbreviation" is not added, the concept expressed by adding the so-called "abbreviation" can be included. Conversely, a complete state is not excluded for states expressed with the addition of "abbreviated".
 本開示において、「Aより大きい」「Aより小さい」といった「より」を使った表現は、Aと同等である場合を含む概念と、Aと同等である場合を含まない概念の両方を包括的に含む表現である。例えば「Aより大きい」は、Aと同等は含まない場合に限定されず、「A以上」も含む。また「Aより小さい」は、「A未満」に限定されず、「A以下」も含む。
 本技術を実施する際には、上記で説明した効果が発揮されるように、「Aより大きい」及び「Aより小さい」に含まれる概念から、具体的な設定等を適宜採用すればよい。
In the present disclosure, expressions using "more than" such as "greater than A" and "less than A" encompass both the concept including the case of being equivalent to A and the concept not including the case of being equivalent to A. is an expression contained in For example, "greater than A" is not limited to not including equal to A, but also includes "greater than or equal to A." Also, "less than A" is not limited to "less than A", but also includes "less than A".
When implementing the present technology, specific settings and the like may be appropriately adopted from concepts included in “greater than A” and “less than A” so that the effects described above are exhibited.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 It is also possible to combine at least two characteristic portions among the characteristic portions according to the present technology described above. That is, various characteristic portions described in each embodiment may be combined arbitrarily without distinguishing between each embodiment. Moreover, the various effects described above are only examples and are not limited, and other effects may be exhibited.
 なお、本技術は以下のような構成も採ることができる。
(1)
 所定の回転軸を中心に回転可能に構成された回転部と、
 前記回転部に設置され、前記回転部と一体的に回転する撮像部と、
 前記回転部に前記撮像部から離間するように設置され、前記回転部と一体的に回転する基板と、
 前記基板に配置された慣性センサと
 を具備する撮像装置。
(2)(1)に記載の撮像装置であって、
 前記撮像部は、撮像方向が前記回転部の外側を向くように前記回転部に設置され、前記回転部の回転に応じて前記撮像方向が変化する
 撮像装置。
(3)(1)又は(2)に記載の撮像装置であって、
 前記回転部は、前記回転軸が内部に配置される内部空間を有し、
 前記基板は、前記撮像部の重心から前記回転軸への垂線に直交し前記回転軸を含む平面により前記内部空間を前記撮像部の重心を含む第1の分割空間と、前記撮像部の重心を含まない第2の分割空間とに分割した場合、重心が前記第2の分割空間に含まれるように前記回転部に設置される
 撮像装置。
(4)(3)に記載の撮像装置であって、
 前記撮像部は、前記第1の分割空間に含まれるように設置され、
 前記基板は、前記第2の分割空間に含まれるように設置される
 撮像装置。
(5)(1)から(4)のうちいずれか1つに記載の撮像装置であって、
 前記基板は、前記撮像部の前記撮像方向に対して直交する向きに配置される
 撮像装置。
(6)(1)から(5)のうちいずれか1つに記載の撮像装置であって、
 前記回転部は、外周部を有し、
 前記撮像装置は、さらに、熱伝導性を有する材料により構成され、前記撮像部及び前記外周部の各々に熱的に接続され、前記撮像部から発生する熱を前記外周部に伝導する熱伝導部を具備する
 撮像装置。
(7)(6)に記載の撮像装置であって、
 前記撮像部と前記熱伝導部との熱的な接続、又は前記外周部と前記熱伝導部との間の熱的な接続の少なくとも一方は、放熱材料を介した接続により実現される
 撮像装置。
(8)(6)又は(7)に記載の撮像装置であって、
 前記熱伝導部は、前記撮像部を前記回転部に対して押圧するように、前記回転部に設置される
 撮像装置。
(9)(1)から(8)のうちいずれか1つに記載の撮像装置であって、
 前記撮像部は、クッション材料を介して、前記回転部に設置される
 撮像装置。
(10)(1)から(9)のうちいずれか1つに記載の撮像装置であって、さらに、
 前記回転部を回転させる回転駆動部を具備する
 撮像装置。
(11)(6)又は(7)に記載の撮像装置であって、さらに、
 前記回転部を回転させる回転駆動部を具備し、
 前記回転駆動部は、前記熱伝導部から離間するように配置される
 撮像装置。
(12)(7)に記載の撮像装置であって、さらに、
 前記回転部を回転させる回転駆動部を具備し、
 前記回転駆動部は、前記放熱材料から離間するように配置される
 撮像装置。
(13)(1)から(12)のうちいずれか1つに記載の撮像装置であって、さらに、
 前記撮像装置の重心が前記回転軸上に位置するように、前記回転部の所定の位置に設置されるバランサを具備する
 撮像装置。
(14)(1)から(13)のうちいずれか1つに記載の撮像装置であって、
 前記慣性センサは、加速度センサ、又は角速度センサの少なくとも一方を含むように構成される
 撮像装置。
(15)(1)から(14)のうちいずれか1つに記載の撮像装置であって、さらに、
 前記慣性センサの検出結果に基づいて、前記回転部の回転を制御する回転制御部を具備する
 撮像装置。
Note that the present technology can also adopt the following configuration.
(1)
a rotating part configured to be rotatable about a predetermined rotating shaft;
an imaging unit that is installed on the rotating unit and rotates integrally with the rotating unit;
a substrate that is installed in the rotating section so as to be spaced apart from the imaging section and that rotates integrally with the rotating section;
and an inertial sensor arranged on the substrate.
(2) The imaging device according to (1),
The imaging device, wherein the imaging section is installed on the rotating section so that the imaging direction faces the outside of the rotating section, and the imaging direction changes according to the rotation of the rotating section.
(3) The imaging device according to (1) or (2),
The rotating part has an internal space in which the rotating shaft is arranged,
The substrate divides the internal space into a first divided space including the center of gravity of the imaging unit and the center of gravity of the imaging unit by a plane perpendicular to a perpendicular line from the center of gravity of the imaging unit to the rotation axis and including the rotation axis. The imaging device is installed in the rotating section so that the center of gravity is included in the second divided space when divided into a second divided space that does not include the second divided space.
(4) The imaging device according to (3),
The imaging unit is installed so as to be included in the first divided space,
The imaging device, wherein the substrate is installed so as to be included in the second divided space.
(5) The imaging device according to any one of (1) to (4),
The imaging device, wherein the substrate is arranged in a direction orthogonal to the imaging direction of the imaging unit.
(6) The imaging device according to any one of (1) to (5),
The rotating part has an outer peripheral part,
The imaging device further includes a thermally conductive section that is made of a material having thermal conductivity, is thermally connected to each of the imaging section and the outer peripheral section, and conducts heat generated from the imaging section to the outer peripheral section. An imaging device comprising:
(7) The imaging device according to (6),
At least one of thermal connection between the imaging section and the thermally conductive section and thermal connection between the outer peripheral section and the thermally conductive section is realized by connection via a heat dissipation material.
(8) The imaging device according to (6) or (7),
The imaging device, wherein the heat conducting section is installed on the rotating section so as to press the imaging section against the rotating section.
(9) The imaging device according to any one of (1) to (8),
The imaging device, wherein the imaging unit is installed on the rotating unit via a cushion material.
(10) The imaging device according to any one of (1) to (9), further comprising:
An imaging device comprising a rotation driving section that rotates the rotating section.
(11) The imaging device according to (6) or (7), further comprising:
comprising a rotation drive unit that rotates the rotating unit;
The imaging device, wherein the rotation driving section is arranged to be spaced apart from the heat conducting section.
(12) The imaging device according to (7), further comprising:
comprising a rotation drive unit that rotates the rotating unit;
The imaging device, wherein the rotation drive unit is arranged to be spaced apart from the heat dissipation material.
(13) The imaging device according to any one of (1) to (12), further comprising:
An image pickup apparatus comprising a balancer installed at a predetermined position of the rotating section such that the center of gravity of the image pickup apparatus is positioned on the rotation axis.
(14) The imaging device according to any one of (1) to (13),
The imaging device, wherein the inertial sensor includes at least one of an acceleration sensor and an angular velocity sensor.
(15) The imaging device according to any one of (1) to (14), further comprising:
An imaging apparatus comprising a rotation control section that controls rotation of the rotating section based on a detection result of the inertial sensor.
 1…回転部
 5…回転軸
 7…撮像方向
 10…慣性センサ
 12…回転駆動部
 13…回転制御部
 16…モータ
 18…フロントホルダ
 19…クッション
 21…カメラモジュール
 23…ヒートシンク
 26…IMU基板
 27…基板用ネジ
 28…重り
 29…リアホルダ
 59…接着剤
 60…IMUセンサ
 61…内部空間
 62…重心
 63…垂線
 64…分割平面
 65…第1の分割空間
 66…第2の分割空間
 67…重心
 68…接着放熱剤
 80…対象物
 81…基板
 82…接続構造部
 83…接着構造
 84…押圧構造
 86…挿入部
 87…貫通孔
 88…挿入部
 89…第1の固定部
 90…第2の固定部
 91…弾性体
 100…撮像装置
 200…保持構造
DESCRIPTION OF SYMBOLS 1... Rotation part 5... Rotation shaft 7... Imaging direction 10... Inertia sensor 12... Rotation drive part 13... Rotation control part 16... Motor 18... Front holder 19... Cushion 21... Camera module 23... Heat sink 26... IMU board 27... Board screw 28 weight 29 rear holder 59 adhesive 60 IMU sensor 61 internal space 62 center of gravity 63 vertical line 64 divided plane 65 first divided space 66 second divided space 67 center of gravity 68 adhesion Heat dissipation agent 80 Object 81 Substrate 82 Connection structure 83 Bonding structure 84 Pressing structure 86 Insertion part 87 Through hole 88 Insertion part 89 First fixed part 90 Second fixed part 91 Elastic body 100... Imaging device 200... Holding structure

Claims (15)

  1.  所定の回転軸を中心に回転可能に構成された回転部と、
     前記回転部に設置され、前記回転部と一体的に回転する撮像部と、
     前記回転部に前記撮像部から離間するように設置され、前記回転部と一体的に回転する基板と、
     前記基板に配置された慣性センサと
     を具備する撮像装置。
    a rotating part configured to be rotatable about a predetermined rotating shaft;
    an imaging unit that is installed on the rotating unit and rotates integrally with the rotating unit;
    a substrate that is installed in the rotating section so as to be spaced apart from the imaging section and that rotates integrally with the rotating section;
    and an inertial sensor arranged on the substrate.
  2.  請求項1に記載の撮像装置であって、
     前記撮像部は、撮像方向が前記回転部の外側を向くように前記回転部に設置され、前記回転部の回転に応じて前記撮像方向が変化する
     撮像装置。
    The imaging device according to claim 1,
    The imaging device, wherein the imaging section is installed on the rotating section so that the imaging direction faces the outside of the rotating section, and the imaging direction changes according to the rotation of the rotating section.
  3.  請求項1に記載の撮像装置であって、
     前記回転部は、前記回転軸が内部に配置される内部空間を有し、
     前記基板は、前記撮像部の重心から前記回転軸への垂線に直交し前記回転軸を含む平面により前記内部空間を前記撮像部の重心を含む第1の分割空間と、前記撮像部の重心を含まない第2の分割空間とに分割した場合、重心が前記第2の分割空間に含まれるように前記回転部に設置される
     撮像装置。
    The imaging device according to claim 1,
    The rotating part has an internal space in which the rotating shaft is arranged,
    The substrate divides the internal space into a first divided space including the center of gravity of the imaging unit and the center of gravity of the imaging unit by a plane perpendicular to a perpendicular line from the center of gravity of the imaging unit to the rotation axis and including the rotation axis. The imaging device is installed in the rotating section so that the center of gravity is included in the second divided space when divided into a second divided space that does not include the second divided space.
  4.  請求項3に記載の撮像装置であって、
     前記撮像部は、前記第1の分割空間に含まれるように設置され、
     前記基板は、前記第2の分割空間に含まれるように設置される
     撮像装置。
    The imaging device according to claim 3,
    The imaging unit is installed so as to be included in the first divided space,
    The imaging device, wherein the substrate is installed so as to be included in the second divided space.
  5.  請求項1に記載の撮像装置であって、
     前記基板は、前記撮像部の前記撮像方向に対して直交する向きに配置される
     撮像装置。
    The imaging device according to claim 1,
    The imaging device, wherein the substrate is arranged in a direction orthogonal to the imaging direction of the imaging unit.
  6.  請求項1に記載の撮像装置であって、
     前記回転部は、外周部を有し、
     前記撮像装置は、さらに、熱伝導性を有する材料により構成され、前記撮像部及び前記外周部の各々に熱的に接続され、前記撮像部から発生する熱を前記外周部に伝導する熱伝導部を具備する
     撮像装置。
    The imaging device according to claim 1,
    The rotating part has an outer peripheral part,
    The imaging device further includes a thermally conductive section that is made of a material having thermal conductivity, is thermally connected to each of the imaging section and the outer peripheral section, and conducts heat generated from the imaging section to the outer peripheral section. An imaging device comprising:
  7.  請求項6に記載の撮像装置であって、
     前記撮像部と前記熱伝導部との熱的な接続、又は前記外周部と前記熱伝導部との間の熱的な接続の少なくとも一方は、放熱材料を介した接続により実現される
     撮像装置。
    The imaging device according to claim 6,
    At least one of thermal connection between the imaging section and the thermally conductive section and thermal connection between the outer peripheral section and the thermally conductive section is realized by connection via a heat dissipation material.
  8.  請求項6に記載の撮像装置であって、
     前記熱伝導部は、前記撮像部を前記回転部に対して押圧するように、前記回転部に設置される
     撮像装置。
    The imaging device according to claim 6,
    The imaging device, wherein the heat conducting section is installed on the rotating section so as to press the imaging section against the rotating section.
  9.  請求項1に記載の撮像装置であって、
     前記撮像部は、クッション材料を介して、前記回転部に設置される
     撮像装置。
    The imaging device according to claim 1,
    The imaging device, wherein the imaging unit is installed on the rotating unit via a cushion material.
  10.  請求項1に記載の撮像装置であって、さらに、
     前記回転部を回転させる回転駆動部を具備する
     撮像装置。
    The imaging device according to claim 1, further comprising:
    An imaging device comprising a rotation driving section that rotates the rotating section.
  11.  請求項6に記載の撮像装置であって、さらに、
     前記回転部を回転させる回転駆動部を具備し、
     前記回転駆動部は、前記熱伝導部から離間するように配置される
     撮像装置。
    The imaging device according to claim 6, further comprising:
    comprising a rotation drive unit that rotates the rotating unit;
    The imaging device, wherein the rotation driving section is arranged to be spaced apart from the heat conducting section.
  12.  請求項7に記載の撮像装置であって、さらに、
     前記回転部を回転させる回転駆動部を具備し、
     前記回転駆動部は、前記放熱材料から離間するように配置される
     撮像装置。
    The imaging device according to claim 7, further comprising:
    comprising a rotation drive unit that rotates the rotating unit;
    The imaging device, wherein the rotation drive unit is arranged to be spaced apart from the heat dissipation material.
  13.  請求項1に記載の撮像装置であって、さらに、
     前記撮像装置の重心が前記回転軸上に位置するように、前記回転部の所定の位置に設置されるバランサを具備する
     撮像装置。
    The imaging device according to claim 1, further comprising:
    An image pickup apparatus comprising a balancer installed at a predetermined position of the rotating section such that the center of gravity of the image pickup apparatus is positioned on the rotation axis.
  14.  請求項1に記載の撮像装置であって、
     前記慣性センサは、加速度センサ、又は角速度センサの少なくとも一方を含むように構成される
     撮像装置。
    The imaging device according to claim 1,
    The imaging device, wherein the inertial sensor includes at least one of an acceleration sensor and an angular velocity sensor.
  15.  請求項1に記載の撮像装置であって、さらに、
     前記慣性センサの検出結果に基づいて、前記回転部の回転を制御する回転制御部を具備する
     撮像装置。
    The imaging device according to claim 1, further comprising:
    An imaging apparatus comprising a rotation control section that controls rotation of the rotating section based on a detection result of the inertial sensor.
PCT/JP2022/006150 2021-05-12 2022-02-16 Imaging device WO2022239346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023520787A JPWO2022239346A1 (en) 2021-05-12 2022-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080972 2021-05-12
JP2021080972 2021-05-12

Publications (1)

Publication Number Publication Date
WO2022239346A1 true WO2022239346A1 (en) 2022-11-17

Family

ID=84029012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006150 WO2022239346A1 (en) 2021-05-12 2022-02-16 Imaging device

Country Status (2)

Country Link
JP (1) JPWO2022239346A1 (en)
WO (1) WO2022239346A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120670A (en) * 2002-09-30 2004-04-15 Hitachi Ltd Folding type portable terminal equipment
JP2009036974A (en) * 2007-08-01 2009-02-19 Fujinon Corp Camera housing
CN204264462U (en) * 2014-10-22 2015-04-15 王军 Three axle The Cloud Terrace capture apparatus
US20190002125A1 (en) * 2016-01-26 2019-01-03 SZ DJI Technology Co., Ltd. Stabilizing platform and camera
CN210578836U (en) * 2019-11-08 2020-05-19 上海摩象网络科技有限公司 Photographing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120670A (en) * 2002-09-30 2004-04-15 Hitachi Ltd Folding type portable terminal equipment
JP2009036974A (en) * 2007-08-01 2009-02-19 Fujinon Corp Camera housing
CN204264462U (en) * 2014-10-22 2015-04-15 王军 Three axle The Cloud Terrace capture apparatus
US20190002125A1 (en) * 2016-01-26 2019-01-03 SZ DJI Technology Co., Ltd. Stabilizing platform and camera
CN210578836U (en) * 2019-11-08 2020-05-19 上海摩象网络科技有限公司 Photographing apparatus

Also Published As

Publication number Publication date
JPWO2022239346A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
TWI658314B (en) Optical unit with shake correction function
JP6811588B2 (en) Optical unit with runout correction function
JP6465031B2 (en) Display device
CN106353950B (en) Optical unit with shake correction function and method of manufacturing the same
JP6921601B2 (en) Optical unit with runout correction function
JP6779104B2 (en) Optical unit with runout correction function
JP6883467B2 (en) Optical unit with runout correction function
US8033668B2 (en) Imaging displacement module for increasing image resolution of projection apparatus
JP6800707B2 (en) Optical unit with runout correction function
KR20170008680A (en) Optical unit having shaking correction function and fabricating method thereof
JP6483980B2 (en) Optical unit with shake correction function
JP2003111449A (en) Moving mechanism
JP7250458B2 (en) Optical unit with anti-shake function
WO2022239346A1 (en) Imaging device
WO2022239347A1 (en) Holding structure and holding method
KR102490560B1 (en) 3-axis rotating apparatus mounted on a flying object
CN108073009B (en) Optical unit with shake correction function
JP7123784B2 (en) Display device with touch panel
JP7013628B1 (en) Lens device, image pickup device, image pickup system, mobile body
JP2020052248A5 (en)
JP2000111825A (en) Scanning optical device
WO2020149085A1 (en) Camera device
JP6815269B2 (en) Imaging device
JP2010085928A (en) Vibration detection unit, and camera equipped with shake correction function
TWI773527B (en) Optical member driving device, camera module and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807053

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023520787

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807053

Country of ref document: EP

Kind code of ref document: A1