WO2022239345A1 - Imaging element, imaging device, and method for manufacturing imaging element - Google Patents

Imaging element, imaging device, and method for manufacturing imaging element Download PDF

Info

Publication number
WO2022239345A1
WO2022239345A1 PCT/JP2022/006008 JP2022006008W WO2022239345A1 WO 2022239345 A1 WO2022239345 A1 WO 2022239345A1 JP 2022006008 W JP2022006008 W JP 2022006008W WO 2022239345 A1 WO2022239345 A1 WO 2022239345A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
imaging device
conversion element
unit
switch
Prior art date
Application number
PCT/JP2022/006008
Other languages
French (fr)
Japanese (ja)
Inventor
武裕 大谷
智彦 柴田
武 松木
伸 北野
祐喜 小澤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022239345A1 publication Critical patent/WO2022239345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to an image pickup device, an image pickup device, and an image pickup device control method.
  • an asynchronous image pickup device solid-state image pickup device
  • This imaging device is a sensor that has a function of detecting a change in the light amount of a photodiode (PD) and outputting it as an event signal, and is called an EVS (Event-based Vision Sensor), for example.
  • EVS Event-based Vision Sensor
  • a stacked EVS has been developed, and the stacked EVS is configured by bonding an upper chip and a lower chip.
  • FIG. 7 is a diagram showing part of the schematic configuration of the pixel circuit shown in FIG. 6;
  • FIG. FIG. 4 is a first diagram for explaining an application example of a switch to a pixel array section according to an embodiment of the present disclosure;
  • FIG. 7 is a second diagram for explaining an application example of the switch to the pixel array section according to the embodiment of the present disclosure;
  • FIG. 10 is a diagram showing part of a schematic configuration of a pixel circuit according to Modification 1;
  • FIG. 10 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 2;
  • FIG. 11 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 3;
  • Embodiment 1-1 Configuration example of imaging device 1-2.
  • Configuration example of imaging device 1-3 Configuration example of pixel 1-4.
  • Configuration example of pixel circuit 1-5 Operation example of supply unit 1-6.
  • Application example of switch for each pixel in pixel array section 1-7 Modification of pixel circuit 1-8. Action and effect 2.
  • Other Embodiments 3.
  • Application example 4 Supplementary note
  • FIG. 1 is a diagram showing an example of a schematic configuration of an imaging device 100 according to this embodiment.
  • the imaging device 100 includes an imaging lens 110, an imaging element (solid-state imaging element) 200, a recording section 120, and a control section .
  • Examples of the imaging device 100 include a camera mounted on a wearable device, an industrial robot, and the like, and an in-vehicle camera mounted on a car and the like.
  • the imaging element 200 photoelectrically converts incident light, detects the presence or absence of an event (address event), and generates the detection result. For example, the imaging device 200 detects, as an event, that the absolute value of the amount of change in luminance exceeds a threshold for each of a plurality of pixels.
  • This imaging device 200 is also called an EVS (Event-based Vision Sensor).
  • events include on-events and off-events
  • detection results include 1-bit on-event detection results and 1-bit off-event detection results.
  • An on-event means, for example, that the amount of change in the amount of incident light (the amount of increase in luminance) exceeds a predetermined upper threshold.
  • an off event means, for example, that the amount of change in the amount of incident light (the amount of decrease in luminance) has fallen below a predetermined lower threshold (a value less than the upper threshold).
  • the imaging device 200 processes the detection result of the event (address event) and outputs data indicating the processing result to the recording unit 120 via the signal line 209 .
  • the imaging device 200 generates a detection signal (event signal) indicating the detection result of an event for each pixel.
  • Each detection signal includes an on-event detection signal indicating presence/absence of an on-event and an off-event detection signal indicating presence/absence of an off-event. Note that the imaging device 200 may detect only one of the on-event detection signal and the off-event detection signal.
  • the image sensor 200 executes predetermined signal processing such as image recognition processing on image data composed of detection signals, and outputs the processed data to the recording unit 120 via the signal line 209 .
  • the imaging element 200 may output at least data based on the event detection result. For example, if the image data is unnecessary in subsequent processing, a configuration may be adopted in which the image data is not output.
  • the recording unit 120 records data input from the imaging device 200 .
  • storage such as flash memory, DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory) is used.
  • the control unit 130 controls each unit of the imaging device 100 by outputting various instructions to the imaging device 200 via the signal line 139 .
  • the control unit 130 controls the imaging device 200 and causes the imaging device 200 to detect the presence or absence of an event (address event).
  • a computer such as a CPU (Central Processing Unit) or MCU (Micro Control Unit) is used.
  • FIG. 2 is a diagram showing an example of the layered structure of the imaging element 200 according to this embodiment.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the imaging device 200 according to this embodiment.
  • the imaging device 200 includes a light receiving chip (light receiving substrate) 201 and a detection chip (detection substrate) 202 .
  • the light receiving chip 201 is stacked on the detection chip 202 .
  • the light receiving chip 201 corresponds to the first chip
  • the detection chip 202 corresponds to the second chip.
  • the light-receiving chip 201 is provided with a light-receiving element (for example, a photoelectric conversion element such as a photodiode), and the detection chip 202 is provided with a circuit.
  • the light-receiving chip 201 and the detection chip 202 are electrically connected through connecting portions such as vias, Cu--Cu junctions, and bumps.
  • the imaging device 200 includes a pixel array section 12, a driving section 13, an arbiter section (arbitration section) 14, a column processing section 15, and a signal processing section 16.
  • the drive section 13 , arbiter section 14 , column processing section 15 and signal processing section 16 are provided as a peripheral circuit section of the pixel array section 12 .
  • the pixel array section 12 has a plurality of pixels 11 . These pixels 11 are two-dimensionally arranged in an array, for example, in a matrix. A pixel address indicating the position of each pixel 11 is defined by a row address and a column address based on the matrix arrangement of the pixels 11 . Each pixel 11 generates, as a pixel signal, an analog signal having a voltage corresponding to a photocurrent as an electrical signal generated by photoelectric conversion. Further, each pixel 11 detects the presence or absence of an event depending on whether or not a change exceeding a predetermined threshold occurs in the photocurrent corresponding to the luminance of incident light. In other words, each pixel 11 detects as an event that the luminance change exceeds a predetermined threshold.
  • each pixel 11 When each pixel 11 detects an event, it outputs a request to the arbiter unit 14 requesting output of event data representing the occurrence of the event. Then, each of the pixels 11 outputs the event data to the drive unit 13 and the signal processing unit 16 when receiving a response indicating permission to output the event data from the arbiter unit 14 . Also, the pixels 11 that have detected the event output analog pixel signals generated by photoelectric conversion to the column processing unit 15 .
  • the driving section 13 drives each pixel 11 of the pixel array section 12 .
  • the drive unit 13 detects an event, drives the pixel 11 that outputs the event data, and outputs an analog pixel signal of the pixel 11 to the column processing unit 15 .
  • the arbiter unit 14 arbitrates requests requesting output of event data supplied from each of the plurality of pixels 11, and responds based on the arbitration result (permission/non-permission of event data output) and event detection. A reset signal for resetting is transmitted to the pixel 11 .
  • the column processing unit 15 performs a process of converting analog pixel signals output from the pixels 11 in each column of the pixel array unit 12 into digital signals.
  • the column processing unit 15 can also perform CDS (Correlated Double Sampling) processing on digitized pixel signals.
  • the column processing section 15 has, for example, an analog-to-digital converter made up of a set of analog-to-digital converters provided for each pixel column of the pixel array section 12 .
  • an analog-digital converter for example, a single-slope analog-digital converter can be exemplified.
  • the change in the photocurrent generated by the pixel 11 can be understood as the change in the amount of light (luminance change) incident on the pixel 11 . Therefore, it can be said that the occurrence of an event is a change in light amount (luminance change) of the pixel 11 exceeding a predetermined threshold.
  • the event data representing the occurrence of an event includes, for example, positional information such as coordinates representing the position of the pixel 11 where the change in the amount of light has occurred as an event.
  • the event data can include the polarity of the change in the amount of light in addition to the positional information.
  • FIG. 4 is a diagram showing an example of a schematic configuration of the pixel 11 according to this embodiment.
  • each pixel 11 has a light receiving section 61, a pixel signal generating section 62, and an event detecting section 63.
  • the light receiving unit 61 photoelectrically converts incident light to generate a photocurrent. Then, under the control of the drive unit 13 (see FIG. 3), the light receiving unit 61 outputs a voltage corresponding to the photocurrent generated by photoelectrically converting the incident light to either the pixel signal generation unit 62 or the event detection unit 63. provide a signal.
  • the pixel signal generation unit 62 generates a voltage signal corresponding to the photocurrent supplied from the light receiving unit 61 as an analog pixel signal SIG. Then, the pixel signal generation unit 62 supplies the generated analog pixel signal SIG to the column processing unit 15 (see FIG. 3) via the vertical signal line VSL wired for each pixel column of the pixel array unit 12 .
  • the event detection unit 63 detects whether an event has occurred, depending on whether the amount of change in photocurrent from each of the light receiving units 61 has exceeded a predetermined threshold.
  • the events include, for example, an ON event indicating that the amount of change in photocurrent has exceeded the upper limit threshold, and an OFF event indicating that the amount of change has fallen below the lower limit threshold.
  • the event data representing the occurrence of an event consists of, for example, 1 bit indicating the detection result of an on-event and 1 bit indicating the detection result of an off-event. Note that the event detection unit 63 may be configured to detect only on-events.
  • the configuration of the pixel 11 exemplified here is an example, and the configuration is not limited to this example.
  • a pixel configuration without the pixel signal generator 62 may be employed.
  • By adopting a pixel configuration that does not output a pixel signal it is possible to reduce the scale of the imaging device 200 .
  • the event detection section 63 When an event occurs, the event detection section 63 outputs a request to the arbiter section 14 (see FIG. 3) requesting output of event data representing the occurrence of the event. When receiving a response to the request from the arbiter unit 14 , the event detection unit 63 outputs event data to the drive unit 13 and the signal processing unit 16 .
  • the present invention is not limited to this.
  • a plurality of pixels 11 eg, four pixels 11
  • the pixel signal generator 62 and event detector 63 may be provided for each pixel block.
  • the pixel signal generator 62 and the event detector 63 are common to the pixels 11 in the pixel block.
  • FIG. 5 and 6 are diagrams each showing an example of a schematic configuration of the pixel circuit 301 according to this embodiment.
  • the pixel circuit 301 has a current-voltage conversion section 310, a buffer 320, a differentiation circuit 330, a comparator 340, and a transfer section 350. These current-voltage conversion section 310 , buffer 320 , differentiating circuit 330 , comparator 340 and transfer section 350 function as an event detection section 63 .
  • the pixel circuit 301 also includes the light receiving section 61, the pixel signal generating section 62, and the like.
  • the current-voltage converter 310 logarithmically converts a photocurrent into a pixel voltage Vp. For example, the photocurrent is converted into a pixel voltage Vp proportional to the logarithm of the photocurrent.
  • the current-voltage converter 310 supplies the pixel voltage Vp to the buffer 320 .
  • the buffer 320 outputs the pixel voltage Vp from the current-voltage converter 310 to the differentiating circuit 330 .
  • This buffer 320 can ensure impedance isolation before and after the buffer. Also, the buffer 320 can ensure noise isolation associated with the switching operation in the latter stage.
  • the differentiating circuit 330 obtains the amount of change in the pixel voltage Vp by differential calculation.
  • the amount of change in the pixel voltage Vp indicates the amount of change in the amount of light.
  • the differentiating circuit 330 supplies the comparator 340 with a differential signal Vout that indicates the amount of change in the amount of light.
  • the comparator 340 compares the differentiated signal Vout with a predetermined threshold (upper threshold or lower threshold).
  • the comparison result COMP of this comparator 340 indicates the detection result of the event (address event).
  • the comparator 340 supplies the comparison result COMP to the transfer section 350 .
  • the transfer unit 350 transfers the detection signal DET, and after transfer, supplies the auto-zero signal XAZ to the differentiating circuit 330 for initialization.
  • the transfer unit 350 supplies the arbiter unit 14 with a request to transfer the detection signal DET when an event is detected.
  • the transfer section 350 Upon receiving a response to the request, the transfer section 350 supplies the comparison result COMP as the detection signal DET to the signal processing section 16 and supplies the auto-zero signal XAZ to the differentiating circuit 330 .
  • the light receiving section 61 has a photoelectric conversion element 311 .
  • the photoelectric conversion element 311 generates photocurrent by photoelectric conversion of incident light.
  • a photodiode (FD), for example, is used as the photoelectric conversion element 311 .
  • the current-voltage conversion section 310 includes an N-type transistor 312 , a supply section 313 , a P-type transistor 314 and an N-type transistor 315 .
  • the supply unit 313 has a switch (first switch) 313a.
  • MOS Metal-Oxide-Semiconductor
  • the photoelectric conversion element 311, the N-type transistor 312, and the N-type transistor 315 are arranged in the light receiving chip 201, and the other switches 313a, P-type transistor 314, and subsequent circuits (buffer 320, differentiating circuit 330, comparator 340), etc. are placed on the detection chip 202 .
  • the light receiving chip 201 and the detection chip 202 are electrically connected by, for example, Cu--Cu bonding (CCC).
  • CCC Cu--Cu bonding
  • the source of the N-type transistor 312 is connected to the photoelectric conversion element 311, and the drain is connected to the power supply terminal via the switch 313a.
  • the P-type transistor 314 and N-type transistor 315 are connected in series between a power supply terminal and a reference terminal of a predetermined reference potential (ground potential, etc.).
  • the source of the P-type transistor 314 and the drain of the N-type transistor 315 are connected to the gate of the N-type transistor 312 and the input terminal of the buffer 320 .
  • a connection point between the N-type transistor 312 and the photoelectric conversion element 311 is connected to the gate of the N-type transistor 315 .
  • the N-type transistor 312 and the N-type transistor 315 are connected in a loop.
  • a predetermined bias voltage is applied to the gate of the P-type transistor 314 .
  • the supply unit 313 switches the path through which the current flows to the photoelectric conversion element 311 using the switch 313 a , and applies a potential Vsw (eg, ground potential) that disables the operations of the photoelectric conversion element 311 and the N-type transistor 312 to the N-type transistor 312 . give to the drain (node).
  • the switch 313 a is an element for switching the path through which the current flows through the photoelectric conversion element 311 .
  • the switch 313a is formed so as to switch between the connection between the drain of the N-type transistor 312 and the power supply terminal and the connection between the drain of the N-type transistor 312 and the Vsw terminal.
  • the operation of the switch 313a is controlled by the controller 130, for example.
  • the buffer 320 includes a P-type transistor 321 and a P-type transistor 322 .
  • MOS transistors are used as these transistors.
  • the P-type transistor 321 and the P-type transistor 322 are connected in series between the power supply terminal and the reference potential terminal.
  • the gate of the P-type transistor 322 is connected to the current-voltage converter 310 , and the connection point between the P-type transistors 321 and 322 is connected to the differentiating circuit 330 .
  • a predetermined bias voltage Vbsf is applied to the gate of the P-type transistor 321 .
  • the differentiating circuit 330 includes a capacitor 331 , a P-type transistor 332 , a P-type transistor 333 , a capacitor 334 and an N-type transistor 335 .
  • a MOS transistor for example, is used as the transistor in the differentiating circuit 330 .
  • the P-type transistor 333 and the N-type transistor 335 are connected in series between the power supply terminal and the reference potential terminal.
  • a predetermined bias voltage Vbdiff is input to the gate of the N-type transistor 335 .
  • These transistors function as an inverting circuit having the gate of the P-type transistor 333 as an input terminal 391 and the connection point between the P-type transistor 333 and the N-type transistor 335 as an output terminal 392 .
  • a capacitor 331 is inserted between the buffer 320 and the input terminal 391 .
  • the capacitor 331 supplies the input terminal 391 with a current corresponding to the time differentiation (in other words, the amount of change) of the pixel voltage Vp from the buffer 320 .
  • the capacitor 334 is inserted between the input terminal 391 and the output terminal 392 .
  • the P-type transistor 332 opens and closes the path between the input terminal 391 and the output terminal 392 according to the auto-zero signal XAZ from the transfer section 350 . For example, when a low-level auto-zero signal XAZ is input, the P-type transistor 332 transitions to an ON state according to the auto-zero signal XAZ and initializes the differential signal Vout.
  • the comparator 340 includes a P-type transistor 341 , an N-type transistor 342 , a P-type transistor 343 and an N-type transistor 344 .
  • MOS transistors are used as these transistors.
  • P-type transistor 341 and N-type transistor 342 are connected in series between the power supply terminal and the reference terminal, and P-type transistor 343 and N-type transistor 344 are also connected in series between the power supply terminal and the reference terminal. .
  • Gates of the P-type transistor 341 and the P-type transistor 343 are connected to the differentiating circuit 330 .
  • An upper voltage Vhigh indicating an upper threshold is applied to the gate of the N-type transistor 342
  • a lower voltage Vlow indicating a lower threshold is applied to the gate of the N-type transistor 344 .
  • a connection point between the P-type transistor 341 and the N-type transistor 342 is connected to the transfer section 350, and the voltage at this connection point is output as the comparison result COMP+ with the upper limit threshold.
  • a connection point between the P-type transistor 343 and the N-type transistor 344 is also connected to the transfer section 350, and the voltage at this connection point is output as the comparison result COMP- with the lower limit threshold.
  • the upper threshold is determined by the current driving capabilities of the P-type transistor 341 and the N-type transistor 342, respectively, and the lower threshold is determined by the current driving capabilities of the P-type transistor 343 and the N-type transistor 344, respectively.
  • the comparison result COMP is a signal composed of these comparison results COMP+ and COMP-.
  • the comparator 340 compares both the upper limit threshold and the lower limit threshold with the differentiated signal Vout, only one of them may be compared with the differentiated signal Vout. In this case, unnecessary transistors can be eliminated. For example, when comparing only with the upper threshold, only the P-type transistor 341 and the N-type transistor 342 are arranged.
  • a capacitor may be added to the current-voltage converter 310. This capacitance is inserted, for example, between the gate of the N-type transistor 312 and the gate of the N-type transistor 315 .
  • the capacitor 334 may be reduced.
  • the buffer 320 may be removed from the pixel circuit 301 . In this manner, various elements, circuits, and the like can be added to the pixel circuit 301 and various elements, circuits, and the like can be deleted from the pixel circuit 301 .
  • FIG. 7 is a diagram showing part of the schematic configuration of the pixel circuit 301 shown in FIG. 6 according to this embodiment.
  • the switch 313a is switched to connect the drain of the N-type transistor 312 to the Vsw terminal.
  • the drain of the N-type transistor 312 is connected to the Vsw terminal by the switch 313a.
  • the potential Vsw eg, ground potential or the like
  • the operations of the photoelectric conversion element 311 and the N-type transistor 312 are disabled.
  • the switch 313a is switched, and the drain of the N-type transistor 312 is connected to the power supply terminal by the switch 313a (Fig. 6).
  • the power supply potential VDD is applied to the drain of the N-type transistor 312, and the photoelectric conversion element 311 and the N-type transistor 312 can operate (normal operation).
  • the switch 313a is switched according to the control by the control unit 130.
  • the control unit 130 may switch the switch 313a according to an operator's input operation to an input unit (not shown).
  • an operator such as an evaluator can switch the switch 313a as necessary.
  • the control unit 130 automatically performs characteristic evaluation, it is possible to automatically switch the switch 313a at the timing when the control unit 130 performs characteristic evaluation.
  • FIG. 8 and 9 are diagrams for explaining application examples of the switch 313a for each pixel of the pixel array section 12 according to the present embodiment.
  • the switch 313a is applied to all effective pixels of the pixel array section 12, that is, the pixels 11 used for imaging. This switch 313a is provided for each effective pixel. In the example of FIG. 8, effective pixels are provided over the entire surface of the pixel array section 12 .
  • a switch 313a is applied to some of the test pixels in the pixel array section 12, that is, the pixels 11 that are not used for imaging.
  • This switch 313a is provided for each test pixel.
  • the test pixels are provided in one row at the end of the pixel array section 12 (lower end in FIG. 9).
  • the test pixels may be provided, for example, at the ends such as the upper end, the left end, and the right end in FIG. 9, or may be provided in a plurality of columns. may be provided in
  • the supply unit 313, that is, the switch 313a shown in FIG. 7 may be applied to either the effective pixels or the test pixels. However, depending on the position where the switch 313a is provided with respect to the current-voltage converter 310, it may be preferable to provide it in the test pixel.
  • the switch 313a is provided for each pixel 11 such as an effective pixel or a test pixel, but is not limited to this.
  • the switch 313a may be provided for each pixel block (specific area) having a plurality of pixels 11, or only one switch 313a may be provided for all pixels 11 (entire area).
  • FIGS. 10 to 21 are diagrams showing a part of the schematic configuration of the pixel circuit 301 according to the modified examples (modified examples 1 to 12), respectively.
  • switch 313a may be provided in light-receiving chip 201, unlike the configuration shown in FIG.
  • the configuration shown in FIG. 10 may be applied to either effective pixels or test pixels.
  • a switch 313b may be provided in addition to the configuration according to Modification 1 (see FIG. 10).
  • the supply unit 313 has a switch (first switch) 313a and a switch (second switch) 313b.
  • the switch 313b is an element for switching a path through which a current flows through the photoelectric conversion element 311, and switches a potential Vsw2 (for example, a ground potential) that disables the operation of the photoelectric conversion element 311 to the cathode (node) of the photoelectric conversion element 311.
  • Vsw2 for example, a ground potential
  • This switch 313b is formed so as to be able to switch between connection and disconnection of the cathode of the photoelectric conversion element 311 and the Vsw2 terminal.
  • the operations of the switches 313a and 313b are controlled by the control unit 130, for example.
  • the switches 313a and 313b are switched, the drain of the N-type transistor 312 is connected to the Vsw1 terminal, and the cathode of the photoelectric conversion element 311 is connected to the Vsw2 terminal.
  • the potential Vsw1 for example, ground potential
  • the potential Vsw2 for example, ground potential
  • the potential Vsw2 is directly applied to the cathode of the photoelectric conversion element 311, so that the operation of the photoelectric conversion element 311 can be reliably disabled. can.
  • the configuration shown in FIG. 11 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels. Since the addition of the switch 313b increases the leakage path of the pixel current, if the configuration shown in FIG. 11, that is, the switch 313a and the switch 313b are applied to the effective pixels, there is a concern that the characteristics of the image sensor 200 will deteriorate. In order to suppress this characteristic deterioration, it is preferable to apply the switches 313a and 313b to the test pixels.
  • a fixing portion 317 may be provided in addition to the configuration according to Modification 2 (see FIG. 11).
  • the configuration shown in FIG. 12 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels. The reason for this is the same as the reason described above, so the explanation thereof is omitted (the same applies hereinafter).
  • the fixing unit 317 fixes the output potential from the light receiving chip 201 to the detection chip 202 at a predetermined potential.
  • the fixed part 317 has a switch (third switch) 317a.
  • the switch 317a is an element for fixing the output potential to a predetermined potential, and the potential Vsw3 (for example, a predetermined potential required for characteristic evaluation) is applied to the drain (node) of the P-type transistor 314, that is, the buffer 320 (see FIG. 6). ) to the input terminal (node).
  • This switch 317a is formed so as to be able to switch between connection and disconnection of the drain of the P-type transistor 314 and the Vsw3 terminal.
  • the operation of the switch 317a is controlled by the controller 130, for example.
  • the switches 313a and 313b are switched to disable the photoelectric conversion element 311 and the N-type transistor 312 as in the second modification. Furthermore, the switch 317a is turned on, and the source of the P-type transistor 314 is connected to the Vsw3 terminal. As a result, the potential Vsw3 (for example, a predetermined potential required for characteristic evaluation) is applied to the drain of the P-type transistor 314, that is, the input terminal of the buffer 320, and the output potential from the light receiving chip 201 to the detection chip 202 reaches a predetermined potential. Fixed. At this time, the output potential from the light receiving chip 201 to the detecting chip 202 is stabilized by being fixed at a predetermined potential as compared with the modification 2 (see FIG. 11). The characteristics of the detection chip 202 alone can be evaluated with high accuracy.
  • Vsw3 for example, a predetermined potential required for characteristic evaluation
  • the switch 317a may be provided in the light-receiving chip 201, unlike the modification 3 (see FIG. 12).
  • the configuration shown in FIG. 13 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • a switching unit 318 may be provided in addition to the configuration according to Modification 2 (see FIG. 11).
  • the configuration shown in FIG. 14 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the switching unit 318 switches the electrical connection between the light receiving chip 201 and the detecting chip 202 (output connection from the light receiving chip 201 to the detecting chip 202) between a disconnected state and a connected state.
  • the switching unit 318 has a switch (fourth switch) 318a.
  • the switch 318 a is an element for switching the output connection between a disconnected state and a connected state, and is provided between the connection point of the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 .
  • the switch 318 a is formed so as to be capable of switching connection and disconnection between the connection point of the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 .
  • the operation of the switch 318a is controlled by the controller 130, for example.
  • the switches 313a and 313b are switched to disable the photoelectric conversion element 311 and the N-type transistor 312 as in the second modification. Furthermore, the switch 318a is turned off (disconnected state), and the connection point between the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 are disconnected. As a result, the electrical connection between the light receiving chip 201 and the detection chip 202 is cut off. At this time, the electrical connection between the light-receiving chip 201 and the detection chip 202 is cut off compared to the modification 2 (see FIG. 11). can be accurately evaluated.
  • the switch 318a may be provided in the light-receiving chip 201, unlike the fifth modification (see FIG. 14).
  • the configuration shown in FIG. 15 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the P-type transistor 314 may be provided in the light-receiving chip 201, unlike the sixth modification (see FIG. 15).
  • the configuration shown in FIG. 16 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • Modification 8 As shown in FIG. 17, modification 3 (see FIG. 12) and modification 5 (see FIG. 14) may be combined. Thereby, the effects of Modifications 3 and 5 can be obtained.
  • the configuration shown in FIG. 17 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the switch 318a may be provided in the light-receiving chip 201, unlike the eighth modification (see FIG. 17).
  • the configuration shown in FIG. 18 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the P-type transistor 314 may be provided in the light-receiving chip 201, unlike the ninth modification (see FIG. 18).
  • the configuration shown in FIG. 19 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the switch 317a may be provided in the light receiving chip 201, unlike the ninth modification (see FIG. 18).
  • the configuration shown in FIG. 20 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • the P-type transistor 314 and the switch 318a may be provided in the light receiving chip 201, unlike the ninth modification (see FIG. 18).
  • the configuration shown in FIG. 21 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
  • a light receiving substrate for example, a light chip 201 and a detection substrate (for example, a detection substrate (for example, A detection chip 202) and a supply unit 313 for applying a potential to disable the operation of the photoelectric conversion element 311 or the first element to the node of the photoelectric conversion element 311 or the node of the first element are provided.
  • a potential that disables the operation of the photoelectric conversion element 311 or the first element to the node of the photoelectric conversion element 311 or the node of the first element
  • the influence of the light receiving substrate can be separated in the imaging element 200.
  • the characteristics of the detection substrate alone can be evaluated. Therefore, when analyzing a characteristic problem in characteristic evaluation, it is possible to determine whether the cause of an abnormality (for example, the cause of a defect, etc.) that cannot solve the characteristic problem is due to the light receiving substrate or the detection substrate. can facilitate identification.
  • the supply unit 313 also includes a first switch 313a for switching the path through which the current flows to the photoelectric conversion element 311 and for applying a potential that disables the operation of the first element to the node of the first element. good too.
  • a potential that disables the operation of the first element to the node of the first element it is possible to reliably separate the influence of the light receiving substrate in the imaging element 200. Evaluation can be performed with high accuracy.
  • the supply unit 313 can be realized with a simple configuration.
  • the first switch 313a may be provided on the detection substrate. Thereby, the degree of freedom in design can be improved.
  • the first switch 313a may be provided on the light receiving substrate. Thereby, the degree of freedom in design can be improved.
  • the supply unit 313 has a second switch 313b for switching the path through which the current flows to the photoelectric conversion element 311 and for applying a potential that disables the operation of the photoelectric conversion element 311 to the node of the photoelectric conversion element 311. good too.
  • a potential that disables the operation of the photoelectric conversion element 311 to the node of the photoelectric conversion element 311 it is possible to reliably separate the influence of the light receiving substrate in the imaging device 200, and the detection substrate alone can be isolated. Characteristic evaluation can be performed with high accuracy.
  • the supply unit 313 can be realized with a simple configuration.
  • a fixing portion 317 may be provided for fixing the output potential from the light receiving substrate to the detection substrate to a predetermined potential.
  • the output potential from the light-receiving substrate to the detection substrate is fixed at a predetermined potential, so that the influence of the light-receiving substrate can be separated in the imaging device 200, and the characteristics of the detection substrate alone can be evaluated more accurately.
  • the fixing section 317 may have a third switch 317a for fixing the output potential from the light receiving substrate to the detection substrate to a predetermined potential. Accordingly, the fixing portion 317 can be realized with a simple configuration.
  • the third switch 317a may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
  • the third switch 317a may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
  • a switching unit 318 may be provided for switching the electrical connection between the light receiving substrate and the detection substrate between a disconnected state and a connected state. As a result, the electrical connection between the light-receiving substrate and the detection substrate is disconnected, so that the characteristics of the detection substrate alone can be evaluated more accurately while separating the influence of the light-receiving substrate in the imaging device 200 .
  • the switching section 318 may have a fourth switch 318a for switching the electrical connection between the light receiving substrate and the detection substrate between the disconnected state and the connected state.
  • the switching unit 318 can be realized with a simple configuration.
  • the fourth switch 318a may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
  • the fourth switch 318a may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
  • the event detection unit 63 also includes a current-voltage conversion unit 310 that converts the current output from the photoelectric conversion element 311 into a voltage. type transistor 314, N-type transistor 315, etc.). As a result, the event detector 63 can be realized with a simple configuration.
  • part of each transistor may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
  • all of the transistors may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
  • a pixel array portion 12 having a plurality of pixels 11 arranged in an array (for example, matrix) is provided.
  • Each pixel 11 has a photoelectric conversion element 311, a first element, and a plurality of elements. 11 may be divided into active pixels and test pixels, and the feed section 313 may be provided in the test pixels. As a result, it is possible to prevent the supply unit 313 from adversely affecting the effective pixels, so deterioration of the characteristics of the image sensor 200 can be suppressed.
  • a pixel array portion 12 having a plurality of pixels 11 arranged in an array (for example, matrix) is provided.
  • Each pixel 11 has a photoelectric conversion element 311, a first element, and a plurality of elements.
  • 11 may be divided into a plurality of pixel blocks each containing a predetermined number (eg, four, etc.) of pixels 11, and the supply unit 313 may be provided for each pixel block. Accordingly, the device configuration can be simplified as compared with the case where the supply unit 313 is provided for each pixel 11 .
  • each component of each device illustrated is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • a color filter may be provided for each pixel 11 .
  • the imaging device 200 can detect an event in a specific wavelength band based on color filters. As a result, information in various wavelength bands can be detected as events.
  • a color filter is an example of an optical filter that transmits predetermined light. Arbitrary light can be received as incident light by providing this color filter in the pixel 11 .
  • the event data represents the occurrence of a change in pixel value in an image showing a visible subject.
  • the event data indicates occurrence of a change in the distance to the subject.
  • the event data indicates the occurrence of a change in the temperature of the subject.
  • various color filters such as a 4 ⁇ 4 pixel quad Bayer array (also referred to as a quadra array), an 8 ⁇ 8 pixel array, and a 2 ⁇ 2 pixel Bayer array are used.
  • a color filter which is an example of a wavelength selection element, may be provided for each pixel 11 in the imaging device 200, and threshold detection may be performed for each pixel 11, thereby enabling event detection for each color.
  • event signals for each color in each wavelength band can be used to detect (detect) the lighting (blinking) of vehicle brake lights and tail lights, the blinking of direction indicators, the color changes of traffic lights, and the detection of electronic signs. can be done.
  • an RCCC filter in which R (red) pixels and C (clear) pixels are combined, or an RCCB filter in which B (blue) pixels are combined with R and C pixels.
  • a filter or an RGB Bayer array filter in which R pixels, G (green), and B pixels are combined may be used.
  • the C pixel is a pixel with no color filter or with a transparent filter, and is the same pixel as the W (white) pixel.
  • an RCCC filter that combines R (red) pixels and C (clear) pixels can realize high sensitivity capable of imaging distant obstacles and people even at low illumination equivalent to moonlit nights.
  • the RCCC filter can improve the detection accuracy of light in the red wavelength band (for example, tail lamps, red lights of traffic lights, etc.), which is important for in-vehicle sensing and the like.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 22 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 .
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600.
  • the communication network 7010 that connects these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare.
  • Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided. In FIG.
  • the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown.
  • Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection section 7110 is connected to the drive system control unit 7100 .
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included.
  • Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • Body system control unit 7200 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
  • the vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed.
  • the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 .
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • the vehicle exterior information detectors 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices.
  • the exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
  • the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
  • the input section 7800 may include an input control circuit that generates an input signal based on information input by the passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example.
  • a passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .

Abstract

The imaging element in one aspect according to the present disclosure comprises: a light-receiving chip (201) that is one example of a light-receiving substrate having a photoelectric conversion element (311) and an N-type transistor (312), which is one example of a first element electrically connected to the photoelectric conversion element (311); a detection chip (202) that is one example of a detection substrate having a plurality of elements that are electrically connected to the light-receiving chip (201) and that are included in an event detection unit for outputting an event signal in accordance with a change in the current outputted from the photoelectric conversion element (311); and a supply unit (313) that imparts, to a node of the photoelectric conversion element (311) or to a node of the N-type transistor (312), an electrical potential for deactivating an operation of the photoelectric conversion element (311) or the N-type transistor (312).

Description

撮像素子、撮像装置及び撮像素子の制御方法IMAGE SENSOR, IMAGING DEVICE, AND IMAGE SENSOR CONTROL METHOD
 本開示は、撮像素子、撮像装置及び撮像素子の制御方法に関する。 The present disclosure relates to an image pickup device, an image pickup device, and an image pickup device control method.
 近年、画素の光量が閾値を超えた旨をイベントとして画素ごとに検出する非同期型の撮像素子(固体撮像素子)が提案されている。この撮像素子は、フォトダイオード(PD)の光量変化を検知し、イベント信号として出力する機能を持つセンサであり、例えば、EVS(Event based Vision Sensor)と呼ばれる。このEVSとしては、積層型EVSが開発されており、積層型EVSは上チップと下チップを貼り合わせて構成される。 In recent years, an asynchronous image pickup device (solid-state image pickup device) has been proposed that detects for each pixel that the amount of light in a pixel exceeds a threshold as an event. This imaging device is a sensor that has a function of detecting a change in the light amount of a photodiode (PD) and outputting it as an event signal, and is called an EVS (Event-based Vision Sensor), for example. As this EVS, a stacked EVS has been developed, and the stacked EVS is configured by bonding an upper chip and a lower chip.
 詳細には、積層型EVSは、上チップ(例えば、受光基板)に複数のPDやそれらに付随するトランジスタ等を備え、下チップ(例えば、検出基板)に信号増幅素子やリセット素子、イベント検知部等を備える。理想としては、任意のレベル以上の輝度変化があった場合のみにイベント信号が出力されるが、実際には、特定の条件下もしくは不特定の条件下で定常光が入力されても、イベント信号が断続的に出力される欠陥画素が複数存在する。逆に、コントラスト光が入力されても、イベント信号が全く出力されない無反応画素(欠陥画素)も存在する。 Specifically, the stacked EVS includes a plurality of PDs and associated transistors on an upper chip (for example, a light receiving substrate), and a signal amplification element, a reset element, and an event detection section on a lower chip (for example, a detection substrate). etc. Ideally, an event signal is output only when there is a luminance change of an arbitrary level or more. There are a plurality of defective pixels in which is intermittently output. Conversely, there are non-responsive pixels (defective pixels) that do not output any event signal even when contrast light is input.
特開2019-176334号公報JP 2019-176334 A
 前述のような積層型EVSでは、特性評価や試験の際に上チップと下チップを切り離すことができない。このため、特性課題を解析する際に、特性課題を解決できない異常原因(例えば、欠陥原因等)が上チップ起因か下チップ起因かを断定することができず、異常原因箇所の特定は難しい。 In the above-mentioned stacked EVS, the upper chip and lower chip cannot be separated during characteristic evaluation and testing. For this reason, when analyzing the characteristic problem, it is not possible to determine whether the cause of an abnormality (for example, the cause of a defect) that cannot solve the characteristic problem is due to the upper chip or the lower chip, and it is difficult to specify the location of the cause of the abnormality.
 そこで、本開示では、異常原因箇所の特定を容易にすることが可能な撮像素子、撮像装置及び撮像素子の制御方法を提案する。 Therefore, the present disclosure proposes an image pickup device, an image pickup device, and a control method for the image pickup device that can facilitate identification of the location of the cause of an abnormality.
 本開示の実施形態に係る撮像素子は、光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、を備える。 An imaging device according to an embodiment of the present disclosure includes: a light receiving substrate having a photoelectric conversion device and a first device electrically connected to the photoelectric conversion device; a detection substrate having a plurality of elements included in an event detection unit that outputs an event signal according to a change in the current output from the photoelectric conversion element or the first element; and a supply for providing a node of the conversion element or a node of the first element.
 本開示の実施形態に係る撮像装置は、撮像レンズと、撮像素子と、を備え、前記撮像素子は、光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、を有する。 An imaging device according to an embodiment of the present disclosure includes an imaging lens and an imaging element, and the imaging element includes a photoelectric conversion element and a light receiving substrate having a first element electrically connected to the photoelectric conversion element. a detection substrate electrically connected to the light-receiving substrate and having a plurality of elements included in an event detection unit that outputs an event signal according to a change in current output from the photoelectric conversion element; and the photoelectric conversion element. or a supply unit for applying a potential that disables the operation of the first element to the node of the photoelectric conversion element or the node of the first element.
 本開示の実施形態に係る撮像素子の制御方法は、光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板とを備える撮像素子を制御する方法であって、前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える、ことを含む。 A method for controlling an imaging element according to an embodiment of the present disclosure includes a light receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element; and a detection substrate having a plurality of elements included in an event detection unit that outputs an event signal according to a change in current output from a photoelectric conversion element, the method comprising: the photoelectric conversion element or the applying a potential to the node of the photoelectric conversion element or the node of the first element to disable the operation of the first element.
本開示の実施形態に係る撮像装置の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an imaging device according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る撮像素子の積層構造の一例を示す図である。1 is a diagram showing an example of a layered structure of an imaging device according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る撮像素子の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of an imaging device according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る画素の概略構成の一例を示す図である。1 is a diagram illustrating an example of a schematic configuration of a pixel according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る画素回路の概略構成の一例を示す第1の図である。1 is a first diagram showing an example of a schematic configuration of a pixel circuit according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る画素回路の概略構成の一例を示す第2の図である。2 is a second diagram illustrating an example of a schematic configuration of a pixel circuit according to an embodiment of the present disclosure; FIG. 図6に示す画素回路の概略構成の一部を示す図である。7 is a diagram showing part of the schematic configuration of the pixel circuit shown in FIG. 6; FIG. 本開示の実施形態に係る画素アレイ部に対するスイッチの適用例を説明するための第1の図である。FIG. 4 is a first diagram for explaining an application example of a switch to a pixel array section according to an embodiment of the present disclosure; 本開示の実施形態に係る画素アレイ部に対するスイッチの適用例を説明するための第2の図である。FIG. 7 is a second diagram for explaining an application example of the switch to the pixel array section according to the embodiment of the present disclosure; 変形例1に係る画素回路の概略構成の一部を示す図である。FIG. 10 is a diagram showing part of a schematic configuration of a pixel circuit according to Modification 1; 変形例2に係る画素回路の概略構成の一部を示す図である。FIG. 10 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 2; 変形例3に係る画素回路の概略構成の一部を示す図である。FIG. 11 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 3; 変形例4に係る画素回路の概略構成の一部を示す図である。FIG. 11 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 4; 変形例5に係る画素回路の概略構成の一部を示す図である。FIG. 11 is a diagram showing a part of a schematic configuration of a pixel circuit according to modification 5; 変形例6に係る画素回路の概略構成の一部を示す図である。FIG. 12 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 6; 変形例7に係る画素回路の概略構成の一部を示す図である。FIG. 21 is a diagram showing a part of a schematic configuration of a pixel circuit according to Modification 7; 変形例8に係る画素回路の概略構成の一部を示す図である。FIG. 20 is a diagram showing part of a schematic configuration of a pixel circuit according to Modification 8; 変形例9に係る画素回路の概略構成の一部を示す図である。FIG. 21 is a diagram showing part of a schematic configuration of a pixel circuit according to Modification 9; 変形例10に係る画素回路の概略構成の一部を示す図である。FIG. 20 is a diagram showing part of a schematic configuration of a pixel circuit according to Modification 10; 変形例11に係る画素回路の概略構成の一部を示す図である。FIG. 21 is a diagram showing a part of a schematic configuration of a pixel circuit according to modification 11; 変形例12に係る画素回路の概略構成の一部を示す図である。FIG. 21 is a diagram showing a part of a schematic configuration of a pixel circuit according to modification 12; 車両制御システムの概略構成の一例を示すブロック図である。1 is a block diagram showing an example of a schematic configuration of a vehicle control system; FIG. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
 以下に、添付図面を参照しながら、本開示の実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、基本的に同一の符号を付することにより重複説明を省略する。本開示の実施の形態により本開示に係る素子や装置、方法、システム等が限定されるものではない。 Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are given basically the same reference numerals, thereby omitting redundant description. Elements, devices, methods, systems, etc. according to the present disclosure are not limited by the embodiments of the present disclosure.
 また、以下に説明される1又は複数の実施形態(実施例、変形例を含む)は、各々が独立に実施されることが可能である。一方で、以下に説明される複数の実施形態は少なくとも一部が他の実施形態の少なくとも一部と適宜組み合わせて実施されてもよい。これら複数の実施形態は、互いに異なる新規な特徴を含み得る。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し得、互いに異なる効果を奏し得る。 Also, one or more embodiments (including examples and modifications) described below can be implemented independently. On the other hand, at least some of the embodiments described below may be implemented in combination with at least some of the other embodiments as appropriate. These multiple embodiments may include novel features that differ from each other. Therefore, these multiple embodiments can contribute to solving different purposes or problems, and can produce different effects.
 以下に示す項目順序に従って本開示を説明する。
 1.実施形態
 1-1.撮像装置の構成例
 1-2.撮像素子の構成例
 1-3.画素の構成例
 1-4.画素回路の構成例
 1-5.供給部の動作例
 1-6.画素アレイ部の各画素に対するスイッチの適用例
 1-7.画素回路の変形例
 1-8.作用・効果
 2.他の実施形態
 3.応用例
 4.付記
The present disclosure will be described according to the order of items shown below.
1. Embodiment 1-1. Configuration example of imaging device 1-2. Configuration example of imaging device 1-3. Configuration example of pixel 1-4. Configuration example of pixel circuit 1-5. Operation example of supply unit 1-6. Application example of switch for each pixel in pixel array section 1-7. Modification of pixel circuit 1-8. Action and effect 2. Other Embodiments 3. Application example 4 . Supplementary note
 <1.実施形態>
 <1-1.撮像装置の構成例>
 本実施形態に係る撮像装置100の構成例について図1を参照して説明する。図1は、本実施形態に係る撮像装置100の概略構成の一例を示す図である。
<1. embodiment>
<1-1. Configuration Example of Imaging Device>
A configuration example of an imaging device 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of a schematic configuration of an imaging device 100 according to this embodiment.
 図1に示すように、撮像装置100は、撮像レンズ110と、撮像素子(固体撮像素子)200と、記録部120と、制御部130とを備える。撮像装置100としては、例えば、ウェアラブルデバイスや産業用ロボット等に搭載されるカメラ、また、車等に搭載される車載カメラ等がある。 As shown in FIG. 1, the imaging device 100 includes an imaging lens 110, an imaging element (solid-state imaging element) 200, a recording section 120, and a control section . Examples of the imaging device 100 include a camera mounted on a wearable device, an industrial robot, and the like, and an in-vehicle camera mounted on a car and the like.
 撮像レンズ110は、入射光を集光して撮像素子200に導くものである。例えば、撮像レンズ110は、被写体からの入射光を取り込んで撮像素子200の撮像面(受光面)上に結像する。 The imaging lens 110 collects incident light and guides it to the imaging device 200 . For example, the imaging lens 110 captures incident light from a subject and forms an image on the imaging surface (light receiving surface) of the imaging device 200 .
 撮像素子200は、入射光を光電変換してイベント(アドレスイベント)の有無を検出し、その検出結果を生成するものである。例えば、撮像素子200は、複数の画素のそれぞれについて、輝度の変化量の絶対値が閾値を超えた旨をイベントとして検出する。この撮像素子200は、EVS(Event-based Vision Sensor)とも呼称される。 The imaging element 200 photoelectrically converts incident light, detects the presence or absence of an event (address event), and generates the detection result. For example, the imaging device 200 detects, as an event, that the absolute value of the amount of change in luminance exceeds a threshold for each of a plurality of pixels. This imaging device 200 is also called an EVS (Event-based Vision Sensor).
 ここで、例えば、イベントはオンイベント及びオフイベントを含み、検出結果は1ビットのオンイベントの検出結果と1ビットのオフイベントの検出結果とを含む。オンイベントは、例えば、入射光の光量の変化量(輝度の上昇量)が所定の上限閾値を超えた旨を意味する。一方、オフイベントは、例えば、入射光の光量の変化量(輝度の低下量)が所定の下限閾値(上限閾値未満の値)を下回った旨を意味する。 Here, for example, events include on-events and off-events, and detection results include 1-bit on-event detection results and 1-bit off-event detection results. An on-event means, for example, that the amount of change in the amount of incident light (the amount of increase in luminance) exceeds a predetermined upper threshold. On the other hand, an off event means, for example, that the amount of change in the amount of incident light (the amount of decrease in luminance) has fallen below a predetermined lower threshold (a value less than the upper threshold).
 例えば、撮像素子200は、イベント(アドレスイベント)の検出結果を処理し、その処理結果を示すデータを記録部120に信号線209を介して出力する。例えば、撮像素子200は、イベントの検出結果を示す検出信号(イベント信号)を画素ごとに生成する。それぞれの検出信号は、オンイベントの有無を示すオンイベント検出信号と、オフイベントの有無を示すオフイベント検出信号とを含む。なお、撮像素子200は、オンイベント検出信号及びオフイベント検出信号の一方のみを検出してもよい。 For example, the imaging device 200 processes the detection result of the event (address event) and outputs data indicating the processing result to the recording unit 120 via the signal line 209 . For example, the imaging device 200 generates a detection signal (event signal) indicating the detection result of an event for each pixel. Each detection signal includes an on-event detection signal indicating presence/absence of an on-event and an off-event detection signal indicating presence/absence of an off-event. Note that the imaging device 200 may detect only one of the on-event detection signal and the off-event detection signal.
 また、例えば、撮像素子200は、検出信号からなる画像データに対し、画像認識処理などの所定の信号処理を実行し、その処理後のデータを記録部120に信号線209を介して出力する。なお、撮像素子200は、少なくとも、イベントの検出結果に基づくデータを出力すればよく、例えば、画像データが後段の処理において不要である場合、画像データを出力しない構成を採用してもよい。 Also, for example, the image sensor 200 executes predetermined signal processing such as image recognition processing on image data composed of detection signals, and outputs the processed data to the recording unit 120 via the signal line 209 . Note that the imaging element 200 may output at least data based on the event detection result. For example, if the image data is unnecessary in subsequent processing, a configuration may be adopted in which the image data is not output.
 記録部120は、撮像素子200から入力されるデータを記録するものである。記録部120としては、例えば、フラッシュメモリやDRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等のストレージが用いられる。 The recording unit 120 records data input from the imaging device 200 . As the recording unit 120, for example, storage such as flash memory, DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory) is used.
 制御部130は、信号線139を介して撮像素子200に種々の指示を出力することで、撮像装置100の各部を制御する。例えば、制御部130は、撮像素子200を制御し、その撮像素子200にイベント(アドレスイベント)の有無を検出させるものである。制御部130としては、例えば、CPU(Central Processing Unit)やMCU(Micro Control Unit)等のコンピュータが用いられる。 The control unit 130 controls each unit of the imaging device 100 by outputting various instructions to the imaging device 200 via the signal line 139 . For example, the control unit 130 controls the imaging device 200 and causes the imaging device 200 to detect the presence or absence of an event (address event). As the control unit 130, for example, a computer such as a CPU (Central Processing Unit) or MCU (Micro Control Unit) is used.
 <1-2.撮像素子の概略構成の一例>
 本実施形態に係る撮像素子200の概略構成の一例について図2及び図3を参照して説明する。図2は、本実施形態に係る撮像素子200の積層構造の一例を示す図である。図3は、本実施形態に係る撮像素子200の概略構成の一例を示す図である。
<1-2. Example of Schematic Configuration of Imaging Device>
An example of the schematic configuration of the imaging element 200 according to this embodiment will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a diagram showing an example of the layered structure of the imaging element 200 according to this embodiment. FIG. 3 is a diagram showing an example of a schematic configuration of the imaging device 200 according to this embodiment.
 図2に示すように、撮像素子200は、受光チップ(受光基板)201と、検出チップ(検出基板)202とを備える。受光チップ201は、検出チップ202に積層される。この受光チップ201は第1のチップに相当し、検出チップ202は第2のチップに相当する。例えば、受光チップ201に受光素子(例えば、フォトダイオード等の光電変換素子)が配置され、検出チップ202に回路が配置される。受光チップ201及び検出チップ202は、ビアやCu-Cu接合、バンプ等の接続部を介して電気的に接続される。 As shown in FIG. 2 , the imaging device 200 includes a light receiving chip (light receiving substrate) 201 and a detection chip (detection substrate) 202 . The light receiving chip 201 is stacked on the detection chip 202 . The light receiving chip 201 corresponds to the first chip, and the detection chip 202 corresponds to the second chip. For example, the light-receiving chip 201 is provided with a light-receiving element (for example, a photoelectric conversion element such as a photodiode), and the detection chip 202 is provided with a circuit. The light-receiving chip 201 and the detection chip 202 are electrically connected through connecting portions such as vias, Cu--Cu junctions, and bumps.
 図3に示すように、撮像素子200は、画素アレイ部12と、駆動部13と、アービタ部(調停部)14と、カラム処理部15と、信号処理部16とを備える。駆動部13、アービタ部14、カラム処理部15及び信号処理部16は、画素アレイ部12の周辺回路部として設けられている。 As shown in FIG. 3, the imaging device 200 includes a pixel array section 12, a driving section 13, an arbiter section (arbitration section) 14, a column processing section 15, and a signal processing section 16. The drive section 13 , arbiter section 14 , column processing section 15 and signal processing section 16 are provided as a peripheral circuit section of the pixel array section 12 .
 画素アレイ部12は、複数の画素11を有する。これらの画素11はアレイ状、例えば、行列状に2次元配列されている。各画素11の位置を示す画素アドレスは、画素11の行列配置に基づいて行アドレス及び列アドレスで規定される。各画素11のそれぞれは、光電変換によって生成される電気信号としての光電流に応じた電圧のアナログ信号を画素信号として生成する。また、各画素11のそれぞれは、入射光の輝度に応じた光電流に、所定の閾値を超える変化が生じたか否かによって、イベントの有無を検出する。換言すれば、各画素11のそれぞれは、輝度変化が所定の閾値を超えたことをイベントとして検出する。 The pixel array section 12 has a plurality of pixels 11 . These pixels 11 are two-dimensionally arranged in an array, for example, in a matrix. A pixel address indicating the position of each pixel 11 is defined by a row address and a column address based on the matrix arrangement of the pixels 11 . Each pixel 11 generates, as a pixel signal, an analog signal having a voltage corresponding to a photocurrent as an electrical signal generated by photoelectric conversion. Further, each pixel 11 detects the presence or absence of an event depending on whether or not a change exceeding a predetermined threshold occurs in the photocurrent corresponding to the luminance of incident light. In other words, each pixel 11 detects as an event that the luminance change exceeds a predetermined threshold.
 各画素11のそれぞれは、イベントを検出した際に、イベントの発生を表すイベントデータの出力を要求するリクエストをアービタ部14に出力する。そして、各画素11のそれぞれは、イベントデータの出力の許可を表す応答をアービタ部14から受け取った場合、駆動部13及び信号処理部16に対してイベントデータを出力する。また、イベントを検出した画素11は、光電変換によって生成されるアナログの画素信号をカラム処理部15に対して出力する。 When each pixel 11 detects an event, it outputs a request to the arbiter unit 14 requesting output of event data representing the occurrence of the event. Then, each of the pixels 11 outputs the event data to the drive unit 13 and the signal processing unit 16 when receiving a response indicating permission to output the event data from the arbiter unit 14 . Also, the pixels 11 that have detected the event output analog pixel signals generated by photoelectric conversion to the column processing unit 15 .
 駆動部13は、画素アレイ部12の各画素11を駆動する。例えば、駆動部13は、イベントを検出し、イベントデータを出力した画素11を駆動し、当該画素11のアナログの画素信号を、カラム処理部15へ出力させる。 The driving section 13 drives each pixel 11 of the pixel array section 12 . For example, the drive unit 13 detects an event, drives the pixel 11 that outputs the event data, and outputs an analog pixel signal of the pixel 11 to the column processing unit 15 .
 アービタ部14は、複数の画素11のそれぞれから供給されるイベントデータの出力を要求するリクエストを調停し、その調停結果(イベントデータの出力の許可/不許可)に基づく応答、及び、イベント検出をリセットするリセット信号を画素11に送信する。 The arbiter unit 14 arbitrates requests requesting output of event data supplied from each of the plurality of pixels 11, and responds based on the arbitration result (permission/non-permission of event data output) and event detection. A reset signal for resetting is transmitted to the pixel 11 .
 カラム処理部15は、画素アレイ部12の画素列毎に、その列の画素11から出力されるアナログの画素信号をデジタル信号に変換する処理を行う。例えば、カラム処理部15は、デジタル化した画素信号に対して、CDS(Correlated Double Sampling)処理を行うこともできる。このカラム処理部15は、例えば、画素アレイ部12の画素列毎に設けられたアナログ-デジタル変換器の集合から成るアナログ-デジタル変換部を有する。アナログ-デジタル変換器としては、例えば、シングルスロープ型のアナログ-デジタル変換器を例示することができる。 The column processing unit 15 performs a process of converting analog pixel signals output from the pixels 11 in each column of the pixel array unit 12 into digital signals. For example, the column processing unit 15 can also perform CDS (Correlated Double Sampling) processing on digitized pixel signals. The column processing section 15 has, for example, an analog-to-digital converter made up of a set of analog-to-digital converters provided for each pixel column of the pixel array section 12 . As an analog-digital converter, for example, a single-slope analog-digital converter can be exemplified.
 信号処理部16は、カラム処理部15から供給されるデジタル化された画素信号や、画素アレイ部12から出力されるイベントデータに対して所定の信号処理を実行し、信号処理後のイベントデータ及び画素信号を出力する。 The signal processing unit 16 performs predetermined signal processing on the digitized pixel signals supplied from the column processing unit 15 and the event data output from the pixel array unit 12, and converts the signal-processed event data and Outputs pixel signals.
 ここで、画素11で生成される光電流の変化は、画素11に入射する光の光量変化(輝度変化)として捉えられる。したがって、イベントの発生は、所定の閾値を超える画素11の光量変化(輝度変化)であると言える。なお、イベントの発生を表すイベントデータには、例えば、イベントとしての光量変化が発生した画素11の位置を表す座標等の位置情報が含まれる。イベントデータには、位置情報の他、光量変化の極性を含ませることも可能である。 Here, the change in the photocurrent generated by the pixel 11 can be understood as the change in the amount of light (luminance change) incident on the pixel 11 . Therefore, it can be said that the occurrence of an event is a change in light amount (luminance change) of the pixel 11 exceeding a predetermined threshold. Note that the event data representing the occurrence of an event includes, for example, positional information such as coordinates representing the position of the pixel 11 where the change in the amount of light has occurred as an event. The event data can include the polarity of the change in the amount of light in addition to the positional information.
 <1-3.画素の構成例>
 本実施形態に係る画素11の構成例について図4を参照して説明する。図4は、本実施形態に係る画素11の概略構成の一例を示す図である。
<1-3. Configuration Example of Pixel>
A configuration example of the pixel 11 according to the present embodiment will be described with reference to FIG. FIG. 4 is a diagram showing an example of a schematic configuration of the pixel 11 according to this embodiment.
 図4に示すように、各画素11のそれぞれは、受光部61と、画素信号生成部62と、イベント検出部63とを有する。 As shown in FIG. 4, each pixel 11 has a light receiving section 61, a pixel signal generating section 62, and an event detecting section 63.
 受光部61は、入射光を光電変換して光電流を生成する。そして、受光部61は、駆動部13(図3参照)の制御に従って、画素信号生成部62及びイベント検出部63のいずれかに、入射光を光電変換して生成した光電流に応じた電圧の信号を供給する。 The light receiving unit 61 photoelectrically converts incident light to generate a photocurrent. Then, under the control of the drive unit 13 (see FIG. 3), the light receiving unit 61 outputs a voltage corresponding to the photocurrent generated by photoelectrically converting the incident light to either the pixel signal generation unit 62 or the event detection unit 63. provide a signal.
 画素信号生成部62は、受光部61から供給される光電流に応じた電圧の信号を、アナログの画素信号SIGとして生成する。そして、画素信号生成部62は、生成したアナログの画素信号SIGを、画素アレイ部12の画素列毎に配線された垂直信号線VSLを介してカラム処理部15(図3参照)に供給する。 The pixel signal generation unit 62 generates a voltage signal corresponding to the photocurrent supplied from the light receiving unit 61 as an analog pixel signal SIG. Then, the pixel signal generation unit 62 supplies the generated analog pixel signal SIG to the column processing unit 15 (see FIG. 3) via the vertical signal line VSL wired for each pixel column of the pixel array unit 12 .
 イベント検出部63は、受光部61のそれぞれからの光電流の変化量が所定の閾値を超えたか否かにより、イベントの発生の有無を検出する。イベントは、例えば、光電流の変化量が上限の閾値を超えた旨を示すオンイベントと、その変化量が下限の閾値を下回った旨を示すオフイベントとを含む。また、イベントの発生を表すイベントデータは、例えば、オンイベントの検出結果を示す1ビット、及び、オフイベントの検出結果を示す1ビットから成る。なお、イベント検出部63については、オンイベントのみを検出する構成とすることもできる。 The event detection unit 63 detects whether an event has occurred, depending on whether the amount of change in photocurrent from each of the light receiving units 61 has exceeded a predetermined threshold. The events include, for example, an ON event indicating that the amount of change in photocurrent has exceeded the upper limit threshold, and an OFF event indicating that the amount of change has fallen below the lower limit threshold. Also, the event data representing the occurrence of an event consists of, for example, 1 bit indicating the detection result of an on-event and 1 bit indicating the detection result of an off-event. Note that the event detection unit 63 may be configured to detect only on-events.
 なお、ここで例示した画素11の構成は一例であって、この構成例に限定されるものではない。例えば、画素信号SIGを出力する必要がない場合には、画素信号生成部62を備えない画素構成とすることもできる。画素信号を出力しない画素構成とすることにより、撮像素子200の規模の抑制を実現することができる。 The configuration of the pixel 11 exemplified here is an example, and the configuration is not limited to this example. For example, when there is no need to output the pixel signal SIG, a pixel configuration without the pixel signal generator 62 may be employed. By adopting a pixel configuration that does not output a pixel signal, it is possible to reduce the scale of the imaging device 200 .
 このイベント検出部63は、イベントが発生した際に、イベントの発生を表すイベントデータの出力を要求するリクエストをアービタ部14(図3参照)に出力する。そして、イベント検出部63は、リクエストに対する応答をアービタ部14から受け取った場合、駆動部13及び信号処理部16に対してイベントデータを出力する。 When an event occurs, the event detection section 63 outputs a request to the arbiter section 14 (see FIG. 3) requesting output of event data representing the occurrence of the event. When receiving a response to the request from the arbiter unit 14 , the event detection unit 63 outputs event data to the drive unit 13 and the signal processing unit 16 .
 なお、画素信号生成部62及びイベント検出部63は、画素11(受光部61)毎に設けられているが、これに限られるものではない。例えば、複数の画素11(一例として、四つの画素11)を一群として画素ブロックとし、画素信号生成部62及びイベント検出部63を画素ブロック毎に設けてもよい。この場合、画素信号生成部62及びイベント検出部63は画素ブロック内の画素11に共通となる。 Although the pixel signal generation unit 62 and the event detection unit 63 are provided for each pixel 11 (light receiving unit 61), the present invention is not limited to this. For example, a plurality of pixels 11 (eg, four pixels 11) may be grouped into a pixel block, and the pixel signal generator 62 and event detector 63 may be provided for each pixel block. In this case, the pixel signal generator 62 and the event detector 63 are common to the pixels 11 in the pixel block.
 <1-4.画素回路の構成例>
 本実施形態に係る画素回路301の構成例について図5及び図6を参照して説明する。図5及び図6は、それぞれ本実施形態に係る画素回路301の概略構成の一例を示す図である。
<1-4. Configuration Example of Pixel Circuit>
A configuration example of the pixel circuit 301 according to the present embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 and 6 are diagrams each showing an example of a schematic configuration of the pixel circuit 301 according to this embodiment.
 図5に示すように、画素回路301は、電流電圧変換部310と、バッファ320と、微分回路330と、コンパレータ340と、転送部350とを有する。これらの電流電圧変換部310、バッファ320、微分回路330、コンパレータ340及び転送部350は、イベント検出部63として機能する。なお、図5の例では、図示は省略されているが、画素回路301は、受光部61や画素信号生成部62等も含む。 As shown in FIG. 5, the pixel circuit 301 has a current-voltage conversion section 310, a buffer 320, a differentiation circuit 330, a comparator 340, and a transfer section 350. These current-voltage conversion section 310 , buffer 320 , differentiating circuit 330 , comparator 340 and transfer section 350 function as an event detection section 63 . Although not shown in the example of FIG. 5, the pixel circuit 301 also includes the light receiving section 61, the pixel signal generating section 62, and the like.
 電流電圧変換部310は、光電流を画素電圧Vpに対数的に変換するものであり、例えば、光電流を、その光電流の対数値に比例した画素電圧Vpに変換する。この電流電圧変換部310は、画素電圧Vpをバッファ320に供給する。 The current-voltage converter 310 logarithmically converts a photocurrent into a pixel voltage Vp. For example, the photocurrent is converted into a pixel voltage Vp proportional to the logarithm of the photocurrent. The current-voltage converter 310 supplies the pixel voltage Vp to the buffer 320 .
 バッファ320は、電流電圧変換部310からの画素電圧Vpを微分回路330に出力するものである。このバッファ320により、バッファ前後のインピーダンスのアイソレーションを確保することができる。また、バッファ320により、後段のスイッチング動作に伴うノイズのアイソレーションを確保することができる。 The buffer 320 outputs the pixel voltage Vp from the current-voltage converter 310 to the differentiating circuit 330 . This buffer 320 can ensure impedance isolation before and after the buffer. Also, the buffer 320 can ensure noise isolation associated with the switching operation in the latter stage.
 微分回路330は、微分演算により画素電圧Vpの変化量を求めるものである。この画素電圧Vpの変化量は、光量の変化量を示す。微分回路330は、光量の変化量を示す微分信号Voutをコンパレータ340に供給する。 The differentiating circuit 330 obtains the amount of change in the pixel voltage Vp by differential calculation. The amount of change in the pixel voltage Vp indicates the amount of change in the amount of light. The differentiating circuit 330 supplies the comparator 340 with a differential signal Vout that indicates the amount of change in the amount of light.
 コンパレータ340は、微分信号Voutと所定の閾値(上限閾値や下限閾値)とを比較するものである。このコンパレータ340の比較結果COMPは、イベント(アドレスイベント)の検出結果を示す。コンパレータ340は、比較結果COMPを転送部350に供給する。 The comparator 340 compares the differentiated signal Vout with a predetermined threshold (upper threshold or lower threshold). The comparison result COMP of this comparator 340 indicates the detection result of the event (address event). The comparator 340 supplies the comparison result COMP to the transfer section 350 .
 転送部350は、検出信号DETを転送し、転送後にオートゼロ信号XAZを微分回路330に供給して初期化するものである。この転送部350は、イベントが検出された際に、検出信号DETの転送を要求するリクエストをアービタ部14に供給する。そして、リクエストに対する応答を受け取ると、転送部350は、比較結果COMPを検出信号DETとして信号処理部16に供給し、オートゼロ信号XAZを微分回路330に供給する。 The transfer unit 350 transfers the detection signal DET, and after transfer, supplies the auto-zero signal XAZ to the differentiating circuit 330 for initialization. The transfer unit 350 supplies the arbiter unit 14 with a request to transfer the detection signal DET when an event is detected. Upon receiving a response to the request, the transfer section 350 supplies the comparison result COMP as the detection signal DET to the signal processing section 16 and supplies the auto-zero signal XAZ to the differentiating circuit 330 .
 詳細には、図6に示すように、受光部61は、光電変換素子311を有する。光電変換素子311は、入射光に対する光電変換により光電流を生成する。この光電変換素子311としては、例えば、フォトダイオード(FD)が用いられる。 Specifically, as shown in FIG. 6 , the light receiving section 61 has a photoelectric conversion element 311 . The photoelectric conversion element 311 generates photocurrent by photoelectric conversion of incident light. A photodiode (FD), for example, is used as the photoelectric conversion element 311 .
 電流電圧変換部310は、N型トランジスタ312と、供給部313と、P型トランジスタ314と、N型トランジスタ315とを備える。供給部313は、スイッチ(第1のスイッチ)313aを有する。N型トランジスタ312、P型トランジスタ314及びN型トランジスタ315としては、例えば、MOS(Metal-Oxide-Semiconductor)トランジスタが用いられる。 The current-voltage conversion section 310 includes an N-type transistor 312 , a supply section 313 , a P-type transistor 314 and an N-type transistor 315 . The supply unit 313 has a switch (first switch) 313a. As the N-type transistor 312, the P-type transistor 314, and the N-type transistor 315, for example, MOS (Metal-Oxide-Semiconductor) transistors are used.
 ここで、光電変換素子311、N型トランジスタ312及びN型トランジスタ315は受光チップ201に配置され、その他のスイッチ313aやP型トランジスタ314、後段の回路(バッファ320、微分回路330、コンパレータ340)等は検出チップ202に配置される。受光チップ201及び検出チップ202は、例えば、Cu-Cu接合(CCC)により電気的に接続される。なお、受光チップ201及び検出チップ202のそれぞれに配置される回路や素子は、この構成に限定されるものではない。 Here, the photoelectric conversion element 311, the N-type transistor 312, and the N-type transistor 315 are arranged in the light receiving chip 201, and the other switches 313a, P-type transistor 314, and subsequent circuits (buffer 320, differentiating circuit 330, comparator 340), etc. are placed on the detection chip 202 . The light receiving chip 201 and the detection chip 202 are electrically connected by, for example, Cu--Cu bonding (CCC). The circuits and elements arranged in each of the light receiving chip 201 and the detection chip 202 are not limited to this configuration.
 N型トランジスタ312のソースは光電変換素子311に接続され、ドレインはスイッチ313aを介して電源端子に接続される。P型トランジスタ314及びN型トランジスタ315は、電源端子と所定の基準電位(接地電位など)の基準端子との間において、直列に接続される。また、P型トランジスタ314のソース及びN型トランジスタ315のドレインは、N型トランジスタ312のゲートとバッファ320の入力端子とに接続される。N型トランジスタ312及び光電変換素子311の接続点は、N型トランジスタ315のゲートに接続される。このようにN型トランジスタ312及びN型トランジスタ315はループ状に接続されている。また、P型トランジスタ314のゲートには、所定のバイアス電圧が印加される。 The source of the N-type transistor 312 is connected to the photoelectric conversion element 311, and the drain is connected to the power supply terminal via the switch 313a. The P-type transistor 314 and N-type transistor 315 are connected in series between a power supply terminal and a reference terminal of a predetermined reference potential (ground potential, etc.). The source of the P-type transistor 314 and the drain of the N-type transistor 315 are connected to the gate of the N-type transistor 312 and the input terminal of the buffer 320 . A connection point between the N-type transistor 312 and the photoelectric conversion element 311 is connected to the gate of the N-type transistor 315 . Thus, the N-type transistor 312 and the N-type transistor 315 are connected in a loop. A predetermined bias voltage is applied to the gate of the P-type transistor 314 .
 供給部313は、光電変換素子311に電流が流れる経路をスイッチ313aにより切り替え、光電変換素子311及びN型トランジスタ312の動作を無効にする電位Vsw(例えば、接地電位等)をN型トランジスタ312のドレイン(ノード)に与える。スイッチ313aは、光電変換素子311に電流が流れる経路を切り替えるための素子である。このスイッチ313aは、N型トランジスタ312のドレイン及び電源端子の接続と、N型トランジスタ312のドレイン及びVsw端子の接続とを切替可能に形成されている。スイッチ313aの動作は、例えば、制御部130により制御される。 The supply unit 313 switches the path through which the current flows to the photoelectric conversion element 311 using the switch 313 a , and applies a potential Vsw (eg, ground potential) that disables the operations of the photoelectric conversion element 311 and the N-type transistor 312 to the N-type transistor 312 . give to the drain (node). The switch 313 a is an element for switching the path through which the current flows through the photoelectric conversion element 311 . The switch 313a is formed so as to switch between the connection between the drain of the N-type transistor 312 and the power supply terminal and the connection between the drain of the N-type transistor 312 and the Vsw terminal. The operation of the switch 313a is controlled by the controller 130, for example.
 バッファ320は、P型トランジスタ321及びP型トランジスタ322を備える。これらのトランジスタとしては、例えば、MOSトランジスタが用いられる。 The buffer 320 includes a P-type transistor 321 and a P-type transistor 322 . For example, MOS transistors are used as these transistors.
 P型トランジスタ321及びP型トランジスタ322は、電源端子と基準電位の端子との間において直列に接続される。また、P型トランジスタ322のゲートは、電流電圧変換部310に接続され、P型トランジスタ321及びP型トランジスタ322の接続点は、微分回路330に接続される。P型トランジスタ321のゲートには、所定のバイアス電圧Vbsfが印加される。 The P-type transistor 321 and the P-type transistor 322 are connected in series between the power supply terminal and the reference potential terminal. The gate of the P-type transistor 322 is connected to the current-voltage converter 310 , and the connection point between the P- type transistors 321 and 322 is connected to the differentiating circuit 330 . A predetermined bias voltage Vbsf is applied to the gate of the P-type transistor 321 .
 微分回路330は、容量331と、P型トランジスタ332と、P型トランジスタ333と、容量334と、N型トランジスタ335とを備える。微分回路330内のトランジスタとしては、例えば、MOSトランジスタが用いられる。 The differentiating circuit 330 includes a capacitor 331 , a P-type transistor 332 , a P-type transistor 333 , a capacitor 334 and an N-type transistor 335 . A MOS transistor, for example, is used as the transistor in the differentiating circuit 330 .
 P型トランジスタ333及びN型トランジスタ335は、電源端子と基準電位の端子との間において直列に接続される。N型トランジスタ335のゲートには、所定のバイアス電圧Vbdiffが入力される。これらのトランジスタは、P型トランジスタ333のゲートを入力端子391とし、P型トランジスタ333及びN型トランジスタ335の接続点を出力端子392とする反転回路として機能する。 The P-type transistor 333 and the N-type transistor 335 are connected in series between the power supply terminal and the reference potential terminal. A predetermined bias voltage Vbdiff is input to the gate of the N-type transistor 335 . These transistors function as an inverting circuit having the gate of the P-type transistor 333 as an input terminal 391 and the connection point between the P-type transistor 333 and the N-type transistor 335 as an output terminal 392 .
 容量331は、バッファ320と入力端子391との間に挿入される。この容量331は、バッファ320からの画素電圧Vpの時間微分(言い換えれば、変化量)に応じた電流を入力端子391に供給する。また、容量334は、入力端子391と出力端子392との間に挿入される。 A capacitor 331 is inserted between the buffer 320 and the input terminal 391 . The capacitor 331 supplies the input terminal 391 with a current corresponding to the time differentiation (in other words, the amount of change) of the pixel voltage Vp from the buffer 320 . Also, the capacitor 334 is inserted between the input terminal 391 and the output terminal 392 .
 P型トランジスタ332は、転送部350からのオートゼロ信号XAZに従って入力端子391と出力端子392との間の経路を開閉するものである。例えば、ローレベルのオートゼロ信号XAZが入力されるとP型トランジスタ332は、オートゼロ信号XAZに従ってオン状態に移行し、微分信号Voutを初期値にする。 The P-type transistor 332 opens and closes the path between the input terminal 391 and the output terminal 392 according to the auto-zero signal XAZ from the transfer section 350 . For example, when a low-level auto-zero signal XAZ is input, the P-type transistor 332 transitions to an ON state according to the auto-zero signal XAZ and initializes the differential signal Vout.
 コンパレータ340は、P型トランジスタ341と、N型トランジスタ342と、P型トランジスタ343と、N型トランジスタ344とを備える。これらのトランジスタとしては、例えば、MOSトランジスタが用いられる。 The comparator 340 includes a P-type transistor 341 , an N-type transistor 342 , a P-type transistor 343 and an N-type transistor 344 . For example, MOS transistors are used as these transistors.
 P型トランジスタ341及びN型トランジスタ342は、電源端子と基準端子との間において直列に接続され、P型トランジスタ343及びN型トランジスタ344も、電源端子と基準端子との間において直列に接続される。また、P型トランジスタ341及びP型トランジスタ343のゲートは、微分回路330に接続される。N型トランジスタ342のゲートには上限閾値を示す上限電圧Vhighが印加され、N型トランジスタ344のゲートには下限閾値を示す下限電圧Vlowが印加される。 P-type transistor 341 and N-type transistor 342 are connected in series between the power supply terminal and the reference terminal, and P-type transistor 343 and N-type transistor 344 are also connected in series between the power supply terminal and the reference terminal. . Gates of the P-type transistor 341 and the P-type transistor 343 are connected to the differentiating circuit 330 . An upper voltage Vhigh indicating an upper threshold is applied to the gate of the N-type transistor 342 , and a lower voltage Vlow indicating a lower threshold is applied to the gate of the N-type transistor 344 .
 P型トランジスタ341及びN型トランジスタ342の接続点は、転送部350に接続され、この接続点の電圧が上限閾値との比較結果COMP+として出力される。P型トランジスタ343及びN型トランジスタ344の接続点も、転送部350に接続され、この接続点の電圧が下限閾値との比較結果COMP-として出力される。上限閾値はP型トランジスタ341及びN型トランジスタ342それぞれの電流駆動能力により決定され、下限閾値はP型トランジスタ343及びN型トランジスタ344それぞれの電流駆動能力により決定される。比較結果COMPは、これらの比較結果COMP+及びCOMP-からなる信号である。 A connection point between the P-type transistor 341 and the N-type transistor 342 is connected to the transfer section 350, and the voltage at this connection point is output as the comparison result COMP+ with the upper limit threshold. A connection point between the P-type transistor 343 and the N-type transistor 344 is also connected to the transfer section 350, and the voltage at this connection point is output as the comparison result COMP- with the lower limit threshold. The upper threshold is determined by the current driving capabilities of the P-type transistor 341 and the N-type transistor 342, respectively, and the lower threshold is determined by the current driving capabilities of the P-type transistor 343 and the N-type transistor 344, respectively. The comparison result COMP is a signal composed of these comparison results COMP+ and COMP-.
 なお、コンパレータ340は、上限閾値及び下限閾値の両方を、微分信号Voutと比較しているが、一方のみを微分信号Voutと比較してもよい。この場合には、不要なトランジスタを削減することができる。例えば、上限閾値とのみ比較する際には、P型トランジスタ341及びN型トランジスタ342のみが配置される。 Although the comparator 340 compares both the upper limit threshold and the lower limit threshold with the differentiated signal Vout, only one of them may be compared with the differentiated signal Vout. In this case, unnecessary transistors can be eliminated. For example, when comparing only with the upper threshold, only the P-type transistor 341 and the N-type transistor 342 are arranged.
 また、画素回路301において、電流電圧変換部310に容量を追加してもよい。この容量は、例えば、N型トランジスタ312のゲートとN型トランジスタ315のゲートとの間に挿入される。一方で、微分回路330に容量334を配置しているが、その容量334を削減してもよい。また、画素回路301からバッファ320を削除してもよい。このように画素回路301に対して各種の素子や回路等を追加したり、画素回路301から各種の素子や回路等を削除したりすることが可能である。 Also, in the pixel circuit 301, a capacitor may be added to the current-voltage converter 310. This capacitance is inserted, for example, between the gate of the N-type transistor 312 and the gate of the N-type transistor 315 . On the other hand, although the capacitor 334 is arranged in the differentiating circuit 330, the capacitor 334 may be reduced. Also, the buffer 320 may be removed from the pixel circuit 301 . In this manner, various elements, circuits, and the like can be added to the pixel circuit 301 and various elements, circuits, and the like can be deleted from the pixel circuit 301 .
 <1-5.供給部の動作例>
 本実施形態に係る供給部313の動作例について図7を参照して説明する。図7は、本実施形態に係る図6に示す画素回路301の概略構成の一部を示す図である。
<1-5. Operation example of supply unit>
An operation example of the supply unit 313 according to this embodiment will be described with reference to FIG. FIG. 7 is a diagram showing part of the schematic configuration of the pixel circuit 301 shown in FIG. 6 according to this embodiment.
 図7に示すように、供給部313では、スイッチ313aが切り替えられ、N型トランジスタ312のドレインがVsw端子に接続される。詳しくは、撮像素子200において受光チップ201の影響を分離し、検出チップ202単体の特性評価を行う場合、N型トランジスタ312のドレインがスイッチ313aによりVsw端子に接続される。これにより、電位Vsw(例えば、接地電位等)がN型トランジスタ312のドレインに与えられ、光電変換素子311及びN型トランジスタ312の動作が無効にされる。 As shown in FIG. 7, in the supply unit 313, the switch 313a is switched to connect the drain of the N-type transistor 312 to the Vsw terminal. Specifically, when the influence of the light receiving chip 201 is separated in the imaging device 200 and the characteristics of the detection chip 202 alone are evaluated, the drain of the N-type transistor 312 is connected to the Vsw terminal by the switch 313a. Thereby, the potential Vsw (eg, ground potential or the like) is applied to the drain of the N-type transistor 312, and the operations of the photoelectric conversion element 311 and the N-type transistor 312 are disabled.
 一方、例えば、受光チップ201及び検出チップ202の両方の特性評価を行う場合や撮像を行う場合等、スイッチ313aが切り替えられ、N型トランジスタ312のドレインがスイッチ313aにより電源端子に接続される(図6参照)。これにより、電源電位VDDがN型トランジスタ312のドレインに与えられ、光電変換素子311及びN型トランジスタ312の動作(通常動作)が可能となる。 On the other hand, for example, when evaluating characteristics of both the light-receiving chip 201 and the detecting chip 202 or when performing imaging, the switch 313a is switched, and the drain of the N-type transistor 312 is connected to the power supply terminal by the switch 313a (Fig. 6). As a result, the power supply potential VDD is applied to the drain of the N-type transistor 312, and the photoelectric conversion element 311 and the N-type transistor 312 can operate (normal operation).
 このように、受光チップ201及び検出チップ202の動作を無効化する電位VswをN型トランジスタ312のドレインに与えることで、撮像素子200において受光チップ201の影響を分離することが可能であり、検出チップ202単体の特性評価を行うことができる。したがって、特性評価において特性課題を解析する際に、特性課題を解決できない異常原因(例えば、欠陥原因等)が受光チップ201起因か検出チップ202起因かを断定することが可能となるので、異常原因箇所の特定を容易にすることができる。 In this way, by applying the potential Vsw that disables the operation of the light receiving chip 201 and the detecting chip 202 to the drain of the N-type transistor 312, it is possible to separate the influence of the light receiving chip 201 in the image pickup device 200, and the detection Characteristic evaluation of the chip 202 alone can be performed. Therefore, when analyzing the characteristic problem in the characteristic evaluation, it is possible to determine whether the cause of the abnormality (for example, the cause of the defect) that cannot solve the characteristic problem is due to the light receiving chip 201 or the detection chip 202. Location can be easily identified.
 ここで、例えば、スイッチ313aは、制御部130による制御に応じて切り替えられる。制御部130は、一例として、入力部(図示省略)に対する操作者の入力操作に応じてスイッチ313aを切り替えてもよい。この場合、評価者等の操作者は、必要に応じてスイッチ313aを切り替えることが可能である。また、例えば、制御部130が特性評価を自動的に行う場合等、制御部130が特性評価を行うタイミングで自動的にスイッチ313aを切り替えることも可能である。 Here, for example, the switch 313a is switched according to the control by the control unit 130. As an example, the control unit 130 may switch the switch 313a according to an operator's input operation to an input unit (not shown). In this case, an operator such as an evaluator can switch the switch 313a as necessary. Further, for example, when the control unit 130 automatically performs characteristic evaluation, it is possible to automatically switch the switch 313a at the timing when the control unit 130 performs characteristic evaluation.
 なお、通常の撮像素子において、暗時で光電変換素子311のノイズレベルの増大が起因し、誤検知が増えると予想されるが、通常では、受光チップ201と検出チップ202を切り分けて特性を評価するのは困難であり、検出チップ202が起因となる誤検知を否定することはできない。そこで、本実施形態によれば、光電変換素子311の電流が流れる経路をスイッチ313aにより切り替えることで、例えば、特性評価の際に、受光チップ201上の回路と検出チップ202上の回路とを切り分けることが可能になり、また、回路の特定ノードを任意の電位に固定することで、特定の素子の影響等を排除することが可能となる。これにより、複数のチップを有する撮像素子200(例えば、積層型EVS)において、解析または試験等による特性評価を容易化することができる。 In addition, it is expected that false detection will increase due to an increase in the noise level of the photoelectric conversion element 311 in the dark in a normal image pickup device. It is difficult to do so, and erroneous detection caused by the detection chip 202 cannot be denied. Therefore, according to the present embodiment, by switching the path through which the current of the photoelectric conversion element 311 flows by the switch 313a, the circuit on the light receiving chip 201 and the circuit on the detection chip 202 are separated, for example, during characteristic evaluation. In addition, by fixing a specific node of the circuit to an arbitrary potential, it is possible to eliminate the influence of a specific element. This makes it possible to facilitate characteristic evaluation by analysis, test, or the like in the imaging device 200 (for example, stacked EVS) having a plurality of chips.
 <1-6.画素アレイ部の各画素に対するスイッチの適用例>
 本実施形態に係る画素アレイ部12の各画素に対するスイッチ313aの適用例について図8及び図9を参照して説明する。図8及び図9は、それぞれ本実施形態に係る画素アレイ部12の各画素に対するスイッチ313aの適用例を説明するための図である。
<1-6. Application Example of Switch for Each Pixel in Pixel Array Section>
An application example of the switch 313a for each pixel of the pixel array section 12 according to this embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 and 9 are diagrams for explaining application examples of the switch 313a for each pixel of the pixel array section 12 according to the present embodiment.
 図8に示すように、画素アレイ部12の全ての有効画素、すなわち、撮影に使用する画素11にスイッチ313aが適用される。このスイッチ313aは、有効画素毎に設けられる。図8の例では、有効画素は画素アレイ部12の全面に設けられている。 As shown in FIG. 8, the switch 313a is applied to all effective pixels of the pixel array section 12, that is, the pixels 11 used for imaging. This switch 313a is provided for each effective pixel. In the example of FIG. 8, effective pixels are provided over the entire surface of the pixel array section 12 .
 図9に示すように、画素アレイ部12の一部のテスト用画素、すなわち、撮影に使用しない画素11にスイッチ313aが適用される。このスイッチ313aは、テスト用画素毎に設けられる。図9の例では、テスト用画素は画素アレイ部12の端部(図9中の下端)の一列に設けられている。なお、テスト用画素は、例えば、図9中の上端や左端、右端等の端部に設けられてもよく、また、複数列に設けられてもよく、画素アレイ部12の端部以外の個所に設けられてもよい。 As shown in FIG. 9, a switch 313a is applied to some of the test pixels in the pixel array section 12, that is, the pixels 11 that are not used for imaging. This switch 313a is provided for each test pixel. In the example of FIG. 9, the test pixels are provided in one row at the end of the pixel array section 12 (lower end in FIG. 9). The test pixels may be provided, for example, at the ends such as the upper end, the left end, and the right end in FIG. 9, or may be provided in a plurality of columns. may be provided in
 ここで、図7に示す供給部313、すなわち、スイッチ313aは、有効画素及びテスト用画素のどちらに適用されてもよい。ただし、電流電圧変換部310に対してスイッチ313aを設ける位置によっては、テスト用画素に設けることが好ましい場合もある。 Here, the supply unit 313, that is, the switch 313a shown in FIG. 7 may be applied to either the effective pixels or the test pixels. However, depending on the position where the switch 313a is provided with respect to the current-voltage converter 310, it may be preferable to provide it in the test pixel.
 また、スイッチ313aは、有効画素やテスト用画素等の画素11毎に設けられているが、これに限られるものではない。例えば、スイッチ313aは、複数の画素11を有する画素ブロック(特定エリア)毎に設けられてもよく、あるいは、全ての画素11(全エリア)に対して一つだけ設けられていてもよい。 Also, the switch 313a is provided for each pixel 11 such as an effective pixel or a test pixel, but is not limited to this. For example, the switch 313a may be provided for each pixel block (specific area) having a plurality of pixels 11, or only one switch 313a may be provided for all pixels 11 (entire area).
 <1-7.画素回路の変形例>
 本実施形態に係る画素回路301の変形例1から12について図10から図21を参照して説明する。図10から図21は、それぞれ変形例(変形例1から12)に係る画素回路301の概略構成の一部を示す図である。
<1-7. Modification of Pixel Circuit>
Modifications 1 to 12 of the pixel circuit 301 according to the present embodiment will be described with reference to FIGS. 10 to 21. FIG. 10 to 21 are diagrams showing a part of the schematic configuration of the pixel circuit 301 according to the modified examples (modified examples 1 to 12), respectively.
 [変形例1]
 図10に示すように、スイッチ313aは、図7に示す構成に比べ、受光チップ201に設けられてもよい。この図10に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよい。
[Modification 1]
As shown in FIG. 10, switch 313a may be provided in light-receiving chip 201, unlike the configuration shown in FIG. The configuration shown in FIG. 10 may be applied to either effective pixels or test pixels.
 [変形例2]
 図11に示すように、変形例1(図10参照)に係る構成に加え、スイッチ313bが設けられてもよい。供給部313は、スイッチ(第1のスイッチ)313a及びスイッチ(第2のスイッチ)313bを有する。スイッチ313bは、光電変換素子311に電流が流れる経路を切り替えるための素子であり、光電変換素子311の動作を無効にする電位Vsw2(例えば、接地電位等)を光電変換素子311のカソード(ノード)に与える。このスイッチ313bは、光電変換素子311のカソード及びVsw2端子の接続と切断を切替可能に形成されている。スイッチ313a及びスイッチ313bの動作は、例えば、制御部130により制御される。
[Modification 2]
As shown in FIG. 11, a switch 313b may be provided in addition to the configuration according to Modification 1 (see FIG. 10). The supply unit 313 has a switch (first switch) 313a and a switch (second switch) 313b. The switch 313b is an element for switching a path through which a current flows through the photoelectric conversion element 311, and switches a potential Vsw2 (for example, a ground potential) that disables the operation of the photoelectric conversion element 311 to the cathode (node) of the photoelectric conversion element 311. give to This switch 313b is formed so as to be able to switch between connection and disconnection of the cathode of the photoelectric conversion element 311 and the Vsw2 terminal. The operations of the switches 313a and 313b are controlled by the control unit 130, for example.
 このような構成において、スイッチ313a及びスイッチ313bが切り替えられ、N型トランジスタ312のドレインがVsw1端子に接続され、光電変換素子311のカソードがVsw2端子に接続される。これにより、電位Vsw1(例えば、接地電位等)がN型トランジスタ312のドレインに与えられ、また、電位Vsw2(例えば、接地電位等)が光電変換素子311のカソードに与えられ、N型トランジスタ312及び光電変換素子311の動作が無効にされる。このとき、変形例1(図10参照)に比べ、電位Vsw2(例えば、接地電位等)が光電変換素子311のカソードに直接与えられるので、光電変換素子311の動作を確実に無効にすることができる。 In such a configuration, the switches 313a and 313b are switched, the drain of the N-type transistor 312 is connected to the Vsw1 terminal, and the cathode of the photoelectric conversion element 311 is connected to the Vsw2 terminal. As a result, the potential Vsw1 (for example, ground potential) is applied to the drain of the N-type transistor 312, and the potential Vsw2 (for example, ground potential) is applied to the cathode of the photoelectric conversion element 311. The operation of photoelectric conversion element 311 is disabled. At this time, compared to Modification 1 (see FIG. 10), the potential Vsw2 (for example, ground potential) is directly applied to the cathode of the photoelectric conversion element 311, so that the operation of the photoelectric conversion element 311 can be reliably disabled. can.
 図11に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。スイッチ313bの追加により画素電流のリークパスが増えるため、図11に示す構成、すなわち、スイッチ313a及びスイッチ313bを有効画素に適用すると、撮像素子200の特性悪化が懸念される。この特性悪化を抑えるためには、スイッチ313a及びスイッチ313bをテスト用画素に適用することが好ましい。 The configuration shown in FIG. 11 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels. Since the addition of the switch 313b increases the leakage path of the pixel current, if the configuration shown in FIG. 11, that is, the switch 313a and the switch 313b are applied to the effective pixels, there is a concern that the characteristics of the image sensor 200 will deteriorate. In order to suppress this characteristic deterioration, it is preferable to apply the switches 313a and 313b to the test pixels.
 [変形例3]
 図12に示すように、変形例2(図11参照)に係る構成に加え、固定部317が設けられてもよい。この図12に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。この理由は前述した理由と同じであるため、その説明を省略する(以下も同様)。
[Modification 3]
As shown in FIG. 12, a fixing portion 317 may be provided in addition to the configuration according to Modification 2 (see FIG. 11). The configuration shown in FIG. 12 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels. The reason for this is the same as the reason described above, so the explanation thereof is omitted (the same applies hereinafter).
 固定部317は、受光チップ201から検出チップ202への出力電位を所定電位に固定する。固定部317は、スイッチ(第3のスイッチ)317aを有する。スイッチ317aは、出力電位を所定電位に固定するための素子であり、電位Vsw3(例えば、特性評価に必要な所定電位等)をP型トランジスタ314のドレイン(ノード)、すなわちバッファ320(図6参照)の入力端子(ノード)に与える。このスイッチ317aは、P型トランジスタ314のドレイン及びVsw3端子の接続と切断を切替可能に形成されている。スイッチ317aの動作は、例えば、制御部130により制御される。 The fixing unit 317 fixes the output potential from the light receiving chip 201 to the detection chip 202 at a predetermined potential. The fixed part 317 has a switch (third switch) 317a. The switch 317a is an element for fixing the output potential to a predetermined potential, and the potential Vsw3 (for example, a predetermined potential required for characteristic evaluation) is applied to the drain (node) of the P-type transistor 314, that is, the buffer 320 (see FIG. 6). ) to the input terminal (node). This switch 317a is formed so as to be able to switch between connection and disconnection of the drain of the P-type transistor 314 and the Vsw3 terminal. The operation of the switch 317a is controlled by the controller 130, for example.
 このような構成において、スイッチ313a及びスイッチ313bが切り替えられ、前述の変形例2のように、光電変換素子311及びN型トランジスタ312の動作が無効にされる。さらに、スイッチ317aがON状態にされ、P型トランジスタ314のソースがVsw3端子に接続される。これにより、電位Vsw3(例えば、特性評価に必要な所定電位等)がP型トランジスタ314のドレイン、すなわちバッファ320の入力端子に与えられ、受光チップ201から検出チップ202への出力電位が所定電位に固定される。このとき、変形例2(図11参照)に比べ、受光チップ201から検出チップ202への出力電位が所定電位に固定されて安定するので、撮像素子200において受光チップ201の影響を分離しつつ、検出チップ202単体の特性評価を精度よく行うことができる。 In such a configuration, the switches 313a and 313b are switched to disable the photoelectric conversion element 311 and the N-type transistor 312 as in the second modification. Furthermore, the switch 317a is turned on, and the source of the P-type transistor 314 is connected to the Vsw3 terminal. As a result, the potential Vsw3 (for example, a predetermined potential required for characteristic evaluation) is applied to the drain of the P-type transistor 314, that is, the input terminal of the buffer 320, and the output potential from the light receiving chip 201 to the detection chip 202 reaches a predetermined potential. Fixed. At this time, the output potential from the light receiving chip 201 to the detecting chip 202 is stabilized by being fixed at a predetermined potential as compared with the modification 2 (see FIG. 11). The characteristics of the detection chip 202 alone can be evaluated with high accuracy.
 [変形例4]
 図13に示すように、スイッチ317aは、変形例3(図12参照)に比べ、受光チップ201に設けられてもよい。この図13に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 4]
As shown in FIG. 13, the switch 317a may be provided in the light-receiving chip 201, unlike the modification 3 (see FIG. 12). The configuration shown in FIG. 13 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例5]
 図14に示すように、変形例2(図11参照)に係る構成に加え、切替部318が設けられてもよい。この図14に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 5]
As shown in FIG. 14, a switching unit 318 may be provided in addition to the configuration according to Modification 2 (see FIG. 11). The configuration shown in FIG. 14 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 切替部318は、受光チップ201及び検出チップ202の電気的な接続(受光チップ201から検出チップ202への出力接続)を切断状態と接続状態に切り替える。切替部318は、スイッチ(第4のスイッチ)318aを有する。スイッチ318aは、出力接続を切断状態と接続状態に切り替えるための素子であり、N型トランジスタ312及びN型トランジスタ315の接続点とP型トランジスタ314のドレインとの間に設けられている。このスイッチ318aは、N型トランジスタ312及びN型トランジスタ315の接続点とP型トランジスタ314のドレインとの接続と切断を切替可能に形成されている。スイッチ318aの動作は、例えば、制御部130により制御される。 The switching unit 318 switches the electrical connection between the light receiving chip 201 and the detecting chip 202 (output connection from the light receiving chip 201 to the detecting chip 202) between a disconnected state and a connected state. The switching unit 318 has a switch (fourth switch) 318a. The switch 318 a is an element for switching the output connection between a disconnected state and a connected state, and is provided between the connection point of the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 . The switch 318 a is formed so as to be capable of switching connection and disconnection between the connection point of the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 . The operation of the switch 318a is controlled by the controller 130, for example.
 このような構成において、スイッチ313a及びスイッチ313bが切り替えられ、前述の変形例2のように、光電変換素子311及びN型トランジスタ312の動作が無効にされる。さらに、スイッチ318aがOFF状態(切断状態)にされ、N型トランジスタ312及びN型トランジスタ315の接続点とP型トランジスタ314のドレインとが切断される。これにより、受光チップ201及び検出チップ202の電気的な接続が切断状態になる。このとき、変形例2(図11参照)に比べ、受光チップ201及び検出チップ202の電気的な接続が切断されるので、撮像素子200において受光チップ201の影響を分離しつつ、検出チップ202単体の特性評価を精度よく行うことができる。 In such a configuration, the switches 313a and 313b are switched to disable the photoelectric conversion element 311 and the N-type transistor 312 as in the second modification. Furthermore, the switch 318a is turned off (disconnected state), and the connection point between the N-type transistor 312 and the N-type transistor 315 and the drain of the P-type transistor 314 are disconnected. As a result, the electrical connection between the light receiving chip 201 and the detection chip 202 is cut off. At this time, the electrical connection between the light-receiving chip 201 and the detection chip 202 is cut off compared to the modification 2 (see FIG. 11). can be accurately evaluated.
 [変形例6]
 図15に示すように、スイッチ318aは、変形例5(図14参照)に比べ、受光チップ201に設けられてもよい。この図15に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 6]
As shown in FIG. 15, the switch 318a may be provided in the light-receiving chip 201, unlike the fifth modification (see FIG. 14). The configuration shown in FIG. 15 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例7]
 図16に示すように、P型トランジスタ314は、変形例6(図15参照)に比べ、受光チップ201に設けられてもよい。この図16に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 7]
As shown in FIG. 16, the P-type transistor 314 may be provided in the light-receiving chip 201, unlike the sixth modification (see FIG. 15). The configuration shown in FIG. 16 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例8]
 図17に示すように、変形例3(図12参照)及び変形例5(図14参照)が組み合わされてもよい。これにより、変形例3及び変形例5の効果を得ることができる。この図17に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 8]
As shown in FIG. 17, modification 3 (see FIG. 12) and modification 5 (see FIG. 14) may be combined. Thereby, the effects of Modifications 3 and 5 can be obtained. The configuration shown in FIG. 17 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例9]
 図18に示すように、スイッチ318aは、変形例8(図17参照)に比べ、受光チップ201に設けられてもよい。この図18に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 9]
As shown in FIG. 18, the switch 318a may be provided in the light-receiving chip 201, unlike the eighth modification (see FIG. 17). The configuration shown in FIG. 18 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例10]
 図19に示すように、P型トランジスタ314は、変形例9(図18参照)に比べ、受光チップ201に設けられてもよい。この図19に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 10]
As shown in FIG. 19, the P-type transistor 314 may be provided in the light-receiving chip 201, unlike the ninth modification (see FIG. 18). The configuration shown in FIG. 19 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例11]
 図20に示すように、スイッチ317aは、変形例9(図18参照)に比べ、受光チップ201に設けられてもよい。この図20に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 11]
As shown in FIG. 20, the switch 317a may be provided in the light receiving chip 201, unlike the ninth modification (see FIG. 18). The configuration shown in FIG. 20 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 [変形例12]
 図21に示すように、P型トランジスタ314及びスイッチ318aは、変形例9(図18参照)に比べ、受光チップ201に設けられてもよい。この図21に示す構成は、有効画素及びテスト用画素のどちらに適用されてもよいが、テスト用画素に適用されることが好ましい。
[Modification 12]
As shown in FIG. 21, the P-type transistor 314 and the switch 318a may be provided in the light receiving chip 201, unlike the ninth modification (see FIG. 18). The configuration shown in FIG. 21 may be applied to either effective pixels or test pixels, but is preferably applied to test pixels.
 <1-8.作用・効果>
 以上説明したように、本実施形態によれば、光電変換素子311及び光電変換素子311に電気的に接続された第1の素子(例えば、N型トランジスタ312等)を有する受光基板(例えば、受光チップ201)と、受光基板に電気的に接続され、光電変換素子311から出力される電流の変化に応じてイベント信号を出力するイベント検出部63に含まれる複数の素子を有する検出基板(例えば、検出チップ202)と、光電変換素子311又は第1の素子の動作を無効にする電位を光電変換素子311のノード又は第1の素子のノードに与える供給部313とが設けられる。これにより、光電変換素子311又は第1の素子の動作を無効にする電位を光電変換素子311のノード又は第1の素子のノードに与えることで、撮像素子200において受光基板の影響を分離することが可能であり、検出基板単体の特性評価を行うことができる。したがって、特性評価において特性課題を解析する際に、特性課題を解決できない異常原因(例えば、欠陥原因等)が受光基板起因か検出基板起因かを断定することが可能となるので、異常原因箇所の特定を容易にすることができる。
<1-8. Action/Effect>
As described above, according to the present embodiment, a light receiving substrate (for example, a light chip 201) and a detection substrate (for example, a detection substrate (for example, A detection chip 202) and a supply unit 313 for applying a potential to disable the operation of the photoelectric conversion element 311 or the first element to the node of the photoelectric conversion element 311 or the node of the first element are provided. Thus, by applying a potential that disables the operation of the photoelectric conversion element 311 or the first element to the node of the photoelectric conversion element 311 or the node of the first element, the influence of the light receiving substrate can be separated in the imaging element 200. is possible, and the characteristics of the detection substrate alone can be evaluated. Therefore, when analyzing a characteristic problem in characteristic evaluation, it is possible to determine whether the cause of an abnormality (for example, the cause of a defect, etc.) that cannot solve the characteristic problem is due to the light receiving substrate or the detection substrate. can facilitate identification.
 また、供給部313は、光電変換素子311に電流が流れる経路を切り替え、第1の素子の動作を無効にする電位を第1の素子のノードに与えるための第1のスイッチ313aを有してもよい。これにより、第1の素子の動作を無効にする電位を第1の素子のノードに与えることで、撮像素子200において受光基板の影響を確実に分離することが可能であり、検出基板単体の特性評価を精度よく行うことができる。また、簡略な構成により供給部313を実現することができる。 The supply unit 313 also includes a first switch 313a for switching the path through which the current flows to the photoelectric conversion element 311 and for applying a potential that disables the operation of the first element to the node of the first element. good too. Thus, by applying a potential that disables the operation of the first element to the node of the first element, it is possible to reliably separate the influence of the light receiving substrate in the imaging element 200. Evaluation can be performed with high accuracy. Moreover, the supply unit 313 can be realized with a simple configuration.
 また、第1のスイッチ313aは、検出基板に設けられてもよい。これにより、設計自由度を向上させることができる。 Also, the first switch 313a may be provided on the detection substrate. Thereby, the degree of freedom in design can be improved.
 また、第1のスイッチ313aは、受光基板に設けられてもよい。これにより、設計自由度を向上させることができる。 Also, the first switch 313a may be provided on the light receiving substrate. Thereby, the degree of freedom in design can be improved.
 また、供給部313は、光電変換素子311に電流が流れる経路を切り替え、光電変換素子311の動作を無効にする電位を光電変換素子311のノードに与えるための第2のスイッチ313bを有してもよい。これにより、光電変換素子311の動作を無効にする電位を光電変換素子311のノードに直接与えることで、撮像素子200において受光基板の影響を確実に分離することが可能であり、検出基板単体の特性評価を精度よく行うことができる。また、簡略な構成により供給部313を実現することができる。 Further, the supply unit 313 has a second switch 313b for switching the path through which the current flows to the photoelectric conversion element 311 and for applying a potential that disables the operation of the photoelectric conversion element 311 to the node of the photoelectric conversion element 311. good too. As a result, by directly applying a potential that disables the operation of the photoelectric conversion element 311 to the node of the photoelectric conversion element 311, it is possible to reliably separate the influence of the light receiving substrate in the imaging device 200, and the detection substrate alone can be isolated. Characteristic evaluation can be performed with high accuracy. Moreover, the supply unit 313 can be realized with a simple configuration.
 また、受光基板から検出基板への出力電位を所定電位に固定する固定部317が設けられてもよい。これにより、受光基板から検出基板への出力電位が所定電位に固定されるので、撮像素子200において受光基板の影響を分離しつつ、検出基板単体の特性評価をより精度よく行うことができる。 Further, a fixing portion 317 may be provided for fixing the output potential from the light receiving substrate to the detection substrate to a predetermined potential. As a result, the output potential from the light-receiving substrate to the detection substrate is fixed at a predetermined potential, so that the influence of the light-receiving substrate can be separated in the imaging device 200, and the characteristics of the detection substrate alone can be evaluated more accurately.
 また、固定部317は、受光基板から検出基板への出力電位を所定電位に固定するための第3のスイッチ317aを有してもよい。これにより、簡略な構成で固定部317を実現することができる。 Further, the fixing section 317 may have a third switch 317a for fixing the output potential from the light receiving substrate to the detection substrate to a predetermined potential. Accordingly, the fixing portion 317 can be realized with a simple configuration.
 また、第3のスイッチ317aは、検出基板に設けられてもよい。これにより、受光基板側の設計自由度を向上させることができる。 Also, the third switch 317a may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
 また、第3のスイッチ317aは、受光基板に設けられてもよい。これにより、検出基板側の設計自由度を向上させることができる。 Also, the third switch 317a may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
 また、受光基板及び検出基板の電気的な接続を切断状態と接続状態に切り替える切替部318が設けられてもよい。これにより、受光基板及び検出基板の電気的な接続が切断状態にされるので、撮像素子200において受光基板の影響を分離しつつ、検出基板単体の特性評価をより精度よく行うことができる。 Also, a switching unit 318 may be provided for switching the electrical connection between the light receiving substrate and the detection substrate between a disconnected state and a connected state. As a result, the electrical connection between the light-receiving substrate and the detection substrate is disconnected, so that the characteristics of the detection substrate alone can be evaluated more accurately while separating the influence of the light-receiving substrate in the imaging device 200 .
 また、切替部318は、受光基板及び検出基板の電気的な接続を切断状態と接続状態に切り替えるための第4のスイッチ318aを有してもよい。これにより、簡略な構成で切替部318を実現することができる。 Further, the switching section 318 may have a fourth switch 318a for switching the electrical connection between the light receiving substrate and the detection substrate between the disconnected state and the connected state. Thereby, the switching unit 318 can be realized with a simple configuration.
 また、第4のスイッチ318aは、検出基板に設けられてもよい。これにより、受光基板側の設計自由度を向上させることができる。 Also, the fourth switch 318a may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
 また、第4のスイッチ318aは、受光基板に設けられてもよい。これにより、検出基板側の設計自由度を向上させることができる。 Also, the fourth switch 318a may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
 また、イベント検出部63は、光電変換素子311から出力される電流を電圧に変換する電流電圧変換部310を有し、電流電圧変換部310は、複数のトランジスタ(例えば、N型トランジスタ312やP型トランジスタ314、N型トランジスタ315等)を有してもよい。これにより、簡略な構成でイベント検出部63を実現することができる。 The event detection unit 63 also includes a current-voltage conversion unit 310 that converts the current output from the photoelectric conversion element 311 into a voltage. type transistor 314, N-type transistor 315, etc.). As a result, the event detector 63 can be realized with a simple configuration.
 また、各トランジスタの一部は、検出基板に設けられてもよい。これにより、受光基板側の設計自由度を向上させることができる。 Also, part of each transistor may be provided on the detection substrate. As a result, it is possible to improve the degree of freedom in designing the light-receiving substrate.
 また、各トランジスタの全部は、受光基板に設けられてもよい。これにより、検出基板側の設計自由度を向上させることができる。 Also, all of the transistors may be provided on the light receiving substrate. As a result, the degree of freedom in designing the detection substrate can be improved.
 また、複数の画素11をアレイ状(例えば、マトリクス状)に有する画素アレイ部12が設けられ、各画素11は、光電変換素子311、第1の素子及び複数の素子をそれぞれ有し、各画素11は、有効画素及びテスト用画素に分けられ、供給部313は、テスト用画素に設けられてもよい。これにより、供給部313が有効画素に悪影響を及ぼすことを抑えることが可能になるので、撮像素子200の特性悪化を抑制することができる。 Further, a pixel array portion 12 having a plurality of pixels 11 arranged in an array (for example, matrix) is provided. Each pixel 11 has a photoelectric conversion element 311, a first element, and a plurality of elements. 11 may be divided into active pixels and test pixels, and the feed section 313 may be provided in the test pixels. As a result, it is possible to prevent the supply unit 313 from adversely affecting the effective pixels, so deterioration of the characteristics of the image sensor 200 can be suppressed.
 また、複数の画素11をアレイ状(例えば、マトリクス状)に有する画素アレイ部12が設けられ、各画素11は、光電変換素子311、第1の素子及び複数の素子をそれぞれ有し、各画素11は、所定数(例えば、四つ等)の画素11をそれぞれ含む複数の画素ブロックに分けられ、供給部313は、画素ブロック毎に設けられてもよい。これにより、供給部313を画素11毎に設ける場合に比べ、装置構成を簡略化することができる。 Further, a pixel array portion 12 having a plurality of pixels 11 arranged in an array (for example, matrix) is provided. Each pixel 11 has a photoelectric conversion element 311, a first element, and a plurality of elements. 11 may be divided into a plurality of pixel blocks each containing a predetermined number (eg, four, etc.) of pixels 11, and the supply unit 313 may be provided for each pixel block. Accordingly, the device configuration can be simplified as compared with the case where the supply unit 313 is provided for each pixel 11 .
 <2.他の実施形態>
 上述した実施形態(又は変形例)に係る処理は、上記実施形態以外にも種々の異なる形態(変形例)にて実施されてよい。例えば、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
<2. Other Embodiments>
The processing according to the above-described embodiments (or modifications) may be implemented in various different forms (modifications) other than the above embodiments. For example, among the processes described in the above embodiments, all or part of the processes described as being automatically performed can be manually performed, or the processes described as being performed manually can be performed manually. All or part of this can also be done automatically by known methods. In addition, information including processing procedures, specific names, various data and parameters shown in the above documents and drawings can be arbitrarily changed unless otherwise specified. For example, the various information shown in each drawing is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Also, each component of each device illustrated is functionally conceptual and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、上述した実施形態(又は変形例)は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 In addition, the above-described embodiments (or modifications) can be appropriately combined within a range that does not contradict the processing content. Also, the effects described in this specification are only examples and are not limited, and other effects may be provided.
 また、上述した実施形態(又は変形例)において、画素11毎にカラーフィルタが設けられてもよい。撮像素子200は、カラーフィルタに基づく特定の波長帯でイベント検出を行うことが可能になる。これにより、種々の波長帯の情報をイベントとして検出することができる。カラーフィルタは、所定の光を透過する光学フィルタの一例である。このカラーフィルタを画素11に設けることによって、入射光として任意の光を受光することができる。例えば、画素11において、入射光として、可視光を受光する場合、イベントデータは、視認することができる被写体が映る画像における画素値の変化の発生を表す。また、例えば、画素11において、入射光として、測距のための赤外線やミリ波等を受光する場合、イベントデータは、被写体までの距離の変化の発生を表す。さらに、例えば、画素11において、入射光として、温度の測定のための赤外線を受光する場合、イベントデータは、被写体の温度の変化の発生を表す。なお、カラーフィルタとしては、例えば、4×4画素のクアッドベイヤー配列(クワドラ配列ともいう)や8×8画素の配列、2×2画素のベイヤー配列等の種々のカラーフィルタが用いられる。 Also, in the embodiment (or modification) described above, a color filter may be provided for each pixel 11 . The imaging device 200 can detect an event in a specific wavelength band based on color filters. As a result, information in various wavelength bands can be detected as events. A color filter is an example of an optical filter that transmits predetermined light. Arbitrary light can be received as incident light by providing this color filter in the pixel 11 . For example, when the pixel 11 receives visible light as incident light, the event data represents the occurrence of a change in pixel value in an image showing a visible subject. Further, for example, when the pixel 11 receives infrared rays, millimeter waves, or the like for distance measurement as incident light, the event data indicates occurrence of a change in the distance to the subject. Further, for example, when the pixel 11 receives infrared rays for temperature measurement as incident light, the event data indicates the occurrence of a change in the temperature of the subject. As the color filter, for example, various color filters such as a 4×4 pixel quad Bayer array (also referred to as a quadra array), an 8×8 pixel array, and a 2×2 pixel Bayer array are used.
 ここで、例えば、車両の走行中等、運転者の目には、自車の前を走行中の車のブレーキランプやテールランプの点灯(点滅)、方向指示器の点滅、信号機の色の変化、電光標識等、種々の波長帯の情報、特に、R(赤色)の波長帯の情報(ブレーキランプ、テールランプ、信号機の赤信号等)が飛び込んでくる。これら各種の情報については、基本的に、運転者が目視で検出し、その内容を判断することになるが、撮像素子200が運転者と同様にその検出、判断を行うことができれば非常に便利である。そこで、撮像素子200に画素11毎に、波長選択素子の一例であるカラーフィルタを設け、それぞれの画素11における閾値検出を行うことにより、色毎のイベント検出を可能にしてもよい。例えば、色毎にイベント検出した物体の動き検出を行う。これにより、各波長帯における色毎のイベント信号を、車のブレーキランプやテールランプの点灯(点滅)、方向指示器の点滅、信号機の色の変化、電光標識等の検出(検知)に活用することができる。 Here, for example, when a vehicle is running, the driver's eyes can see the lighting (blinking) of the brake lamps and tail lamps of the vehicle running in front of the own vehicle, the blinking of the direction indicator, the color change of the traffic light, and the electric light. Information in various wavelength bands such as signs, in particular, information in the R (red) wavelength band (brake lamps, tail lamps, red signals of traffic lights, etc.) jumps in. Basically, the driver visually detects and judges the contents of these various types of information. is. Therefore, a color filter, which is an example of a wavelength selection element, may be provided for each pixel 11 in the imaging device 200, and threshold detection may be performed for each pixel 11, thereby enabling event detection for each color. For example, motion detection of an object whose event is detected for each color is performed. As a result, event signals for each color in each wavelength band can be used to detect (detect) the lighting (blinking) of vehicle brake lights and tail lights, the blinking of direction indicators, the color changes of traffic lights, and the detection of electronic signs. can be done.
 なお、カラーフィルタの配列としては、例えば、R(赤色)の画素とC(クリア)の画素とを組み合わせたRCCCフィルタや、Rの画素及びCの画素にB(青色)の画素を組み合わせたRCCBフィルタや、Rの画素、G(緑色)、及び、Bの画素を組み合わせたRGBベイヤー配列のフィルタが用いられてもよい。Cの画素は、色フィルタが設けられていないか、透明のフィルタが設けられている画素であり、W(白色)の画素と同様の画素である。例えば、R(赤色)の画素とC(クリア)の画素とを組み合わせたRCCCフィルタは、月明かりの夜間に相当する低照度でも、遠方の障害物や人物などを撮像できる高感度を実現できる。また、RCCCフィルタは、例えば、車載センシング等で重要となる赤色の波長帯の光(例えば、テールランプや信号機の赤信号等)の検出精度を向上させることができる。 As for the arrangement of the color filters, for example, an RCCC filter in which R (red) pixels and C (clear) pixels are combined, or an RCCB filter in which B (blue) pixels are combined with R and C pixels. A filter or an RGB Bayer array filter in which R pixels, G (green), and B pixels are combined may be used. The C pixel is a pixel with no color filter or with a transparent filter, and is the same pixel as the W (white) pixel. For example, an RCCC filter that combines R (red) pixels and C (clear) pixels can realize high sensitivity capable of imaging distant obstacles and people even at low illumination equivalent to moonlit nights. In addition, the RCCC filter can improve the detection accuracy of light in the red wavelength band (for example, tail lamps, red lights of traffic lights, etc.), which is important for in-vehicle sensing and the like.
 <3.応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
<3. Application example>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
 図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 22 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied. Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 . In the example shown in FIG. 22, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600. . The communication network 7010 that connects these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図22では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare. Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided. In FIG. 22, the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown. Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 A vehicle state detection section 7110 is connected to the drive system control unit 7100 . The vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included. Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. Body system control unit 7200 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed. For example, at least one of the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 . The imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図23は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 23 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420. FIG. The imaging units 7910 , 7912 , 7914 , 7916 , and 7918 are provided, for example, at least one of the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 7900 . An image pickup unit 7910 provided in the front nose and an image pickup unit 7918 provided above the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900 . Imaging units 7912 and 7914 provided in the side mirrors mainly acquire side images of the vehicle 7900 . An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900 . An imaging unit 7918 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図23には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 23 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively, and the imaging range d is The imaging range of an imaging unit 7916 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detectors 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices. The exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example. These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
 図22に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to Fig. 22 to continue the explanation. The vehicle exterior information detection unit 7400 causes the imaging section 7410 to capture an image of the exterior of the vehicle, and receives the captured image data. The vehicle exterior information detection unit 7400 also receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, radar device, or LIDAR device, the vehicle exterior information detection unit 7400 emits ultrasonic waves, electromagnetic waves, or the like, and receives reflected wave information. The vehicle exterior information detection unit 7400 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received information. The vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, etc., based on the received information. The vehicle exterior information detection unit 7400 may calculate the distance to the vehicle exterior object based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 In addition, the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too. The vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects in-vehicle information. The in-vehicle information detection unit 7500 is connected to, for example, a driver state detection section 7510 that detects the state of the driver. The driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects the biometric information of the driver, a microphone that collects sounds in the vehicle interior, or the like. A biosensor is provided, for example, on a seat surface, a steering wheel, or the like, and detects biometric information of a passenger sitting on a seat or a driver holding a steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls overall operations within the vehicle control system 7000 according to various programs. An input section 7800 is connected to the integrated control unit 7600 . The input unit 7800 is realized by a device that can be input-operated by the passenger, such as a touch panel, button, microphone, switch or lever. The integrated control unit 7600 may be input with data obtained by recognizing voice input by a microphone. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an externally connected device such as a mobile phone or PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. may The input unit 7800 may be, for example, a camera, in which case the passenger can input information through gestures. Alternatively, data obtained by detecting movement of a wearable device worn by a passenger may be input. Furthermore, the input section 7800 may include an input control circuit that generates an input signal based on information input by the passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example. A passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. Also, the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication between various devices existing in the external environment 7750. General-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced) , or other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi®), Bluetooth®, and the like. General-purpose communication I / F 7620, for example, via a base station or access point, external network (e.g., Internet, cloud network or operator-specific network) equipment (e.g., application server or control server) connected to You may In addition, the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle. may be connected with
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I/F 7630 is a communication I/F that supports a communication protocol designed for use in vehicles. The dedicated communication I/F 7630 uses standard protocols such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of lower layer IEEE 802.11p and higher layer IEEE 1609, or cellular communication protocol. May be implemented. The dedicated communication I/F 7630 is typically used for vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) perform V2X communication, which is a concept involving one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640, for example, receives GNSS signals from GNSS (Global Navigation Satellite System) satellites (for example, GPS signals from GPS (Global Positioning System) satellites), performs positioning, and obtains the latitude, longitude, and altitude of the vehicle. Generate location information containing Note that the positioning unit 7640 may specify the current position by exchanging signals with a wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smart phone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from wireless stations installed on the road, and acquires information such as the current position, traffic jams, road closures, or required time. Note that the function of the beacon reception unit 7650 may be included in the dedicated communication I/F 7630 described above.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I/F 7660 is a communication interface that mediates connections between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle. The in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB). In addition, the in-vehicle device I/F 7660 is connected via a connection terminal (and cable if necessary) not shown, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High -definition Link), etc. In-vehicle equipment 7760 includes, for example, at least one of mobile equipment or wearable equipment possessed by passengers, or information equipment carried in or attached to the vehicle. In-vehicle equipment 7760 may also include a navigation device that searches for a route to an arbitrary destination.In-vehicle equipment I/F 7660 exchanges control signals with these in-vehicle equipment or exchange data signals.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 uses at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680. The vehicle control system 7000 is controlled according to various programs on the basis of the information acquired by. For example, the microcomputer 7610 calculates control target values for the driving force generator, steering mechanism, or braking device based on acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. good too. For example, the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control may be performed for the purpose of In addition, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, etc. based on the acquired information about the surroundings of the vehicle, thereby autonomously traveling without depending on the operation of the driver. Cooperative control may be performed for the purpose of driving or the like.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 Microcomputer 7610 receives information obtained through at least one of general-purpose communication I/F 7620, dedicated communication I/F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I/F 7660, and in-vehicle network I/F 7680. Based on this, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including the surrounding information of the current position of the vehicle may be created. Further, based on the acquired information, the microcomputer 7610 may predict dangers such as vehicle collisions, pedestrians approaching or entering closed roads, and generate warning signals. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio/image output unit 7670 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 22, an audio speaker 7710, a display section 7720, and an instrument panel 7730 are illustrated as output devices. Display 7720 may include, for example, at least one of an on-board display and a head-up display. The display unit 7720 may have an AR (Augmented Reality) display function. Other than these devices, the output device may be headphones, a wearable device such as an eyeglass-type display worn by a passenger, or other devices such as a projector or a lamp. When the output device is a display device, the display device displays the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually. When the output device is a voice output device, the voice output device converts an audio signal including reproduced voice data or acoustic data into an analog signal and outputs the analog signal audibly.
 なお、図22に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 22, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, an individual control unit may be composed of multiple control units. Furthermore, vehicle control system 7000 may comprise other control units not shown. Also, in the above description, some or all of the functions that any control unit has may be provided to another control unit. In other words, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units. Similarly, sensors or devices connected to any control unit may be connected to other control units, and multiple control units may send and receive detection information to and from each other via communication network 7010. .
 なお、各実施形態(変形例も含む)において説明した撮像装置100の各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 A computer program for realizing each function of the imaging device 100 described in each embodiment (including modifications) can be installed in any control unit or the like. It is also possible to provide a computer-readable recording medium storing such a computer program. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 以上説明した車両制御システム7000において、各実施形態(変形例も含む)において説明した撮像装置100は、図22に示した応用例の統合制御ユニット7600に適用することができる。例えば、撮像装置100の制御部130や記録部(記憶部)120等は、統合制御ユニット7600のマイクロコンピュータ7610や記憶部7690により実現されてもよい。また、各実施形態において説明した撮像装置100は、図22に示した応用例の撮像部7410及び車外情報検出部7420、例えば、図23に示した応用例の撮像部7910、7912、7914、7916、7918や車外情報検出部7920~7930などに適用することができる。各実施形態において説明した撮像装置100を用いることによって、車両制御システム7000においても、異常原因箇所の特定を容易にすることができる。 In the vehicle control system 7000 described above, the imaging device 100 described in each embodiment (including modifications) can be applied to the integrated control unit 7600 of the application example shown in FIG. For example, the control unit 130 and the recording unit (storage unit) 120 of the imaging device 100 may be realized by the microcomputer 7610 and the storage unit 7690 of the integrated control unit 7600 . Further, the imaging device 100 described in each embodiment includes the imaging unit 7410 and the vehicle exterior information detection unit 7420 of the application example shown in FIG. , 7918, vehicle exterior information detection units 7920 to 7930, and the like. By using the imaging device 100 described in each embodiment, the vehicle control system 7000 can also easily identify the location of the cause of the abnormality.
 また、各実施形態(変形例も含む)において説明した撮像装置100の少なくとも一部の構成要素は、図22に示した応用例の統合制御ユニット7600のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、各実施形態において説明した撮像装置100の一部が、図22に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。 Moreover, at least some of the components of the imaging device 100 described in each embodiment (including modifications) are modules (for example, composed of one die) for the integrated control unit 7600 of the application example shown in FIG. integrated circuit module). Alternatively, part of the imaging device 100 described in each embodiment may be implemented by multiple control units of the vehicle control system 7000 shown in FIG.
 <4.付記>
 なお、本技術は以下のような構成も取ることができる。
(1)
 光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、
 前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、
 前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、
を備える撮像素子。
(2)
 前記供給部は、
 前記光電変換素子に前記電流が流れる経路を切り替え、前記第1の素子の動作を無効にする電位を前記第1の素子のノードに与えるための第1のスイッチを有する、
 上記(1)に記載の撮像素子。
(3)
 前記第1のスイッチは、前記検出基板に設けられている、
 上記(2)に記載の撮像素子。
(4)
 前記第1のスイッチは、前記受光基板に設けられている、
 上記(2)に記載の撮像素子。
(5)
 前記供給部は、
 前記光電変換素子に前記電流が流れる経路を切り替え、前記光電変換素子の動作を無効にする電位を前記光電変換素子のノードに与えるための第2のスイッチをさらに有する、
 上記(2)から(4)のいずれか一つに記載の撮像素子。
(6)
 前記受光基板から前記検出基板への出力電位を所定電位に固定する固定部をさらに備える、
 上記(1)から(5)のいずれか一つに記載の撮像素子。
(7)
 前記固定部は、
 前記出力電位を前記所定電位に固定するための第3のスイッチを有する、
 上記(6)に記載の撮像素子。
(8)
 前記第3のスイッチは、前記検出基板に設けられている、
 上記(7)に記載の撮像素子。
(9)
 前記第3のスイッチは、前記受光基板に設けられている、
 上記(7)に記載の撮像素子。
(10)
 前記受光基板及び前記検出基板の電気的な接続を切断状態と接続状態に切り替える切替部をさらに備える、
 上記(1)から(9)のいずれか一つに記載の撮像素子。
(11)
 前記切替部は、
 前記受光基板及び前記検出基板の電気的な前記接続を前記切断状態と前記接続状態に切り替えるための第4のスイッチを有する、
 上記(10)に記載の撮像素子。
(12)
 前記第4のスイッチは、前記検出基板に設けられている、
 上記(11)に記載の撮像素子。
(13)
 前記第4のスイッチは、前記受光基板に設けられている、
 上記(11)に記載の撮像素子。
(14)
 前記イベント検出部は、
 前記光電変換素子から出力される前記電流を電圧に変換する電流電圧変換部を有し、
 前記電流電圧変換部は、複数のトランジスタを有する、
 上記(1)から(13)のいずれか一つに記載の撮像素子。
(15)
 前記複数のトランジスタの一部は、前記検出基板に設けられている、
 上記(14)に記載の撮像素子。
(16)
 前記複数のトランジスタの全部は、前記受光基板に設けられている、
 上記(14)に記載の撮像素子。
(17)
 複数の画素をアレイ状に有する画素アレイ部をさらに備え、
 前記複数の画素は、前記光電変換素子、前記第1の素子及び前記複数の素子をそれぞれ有し、
 前記複数の画素は、有効画素及びテスト用画素に分けられており、
 前記供給部は、前記テスト用画素に設けられている、
 上記(1)から(16)のいずれか一つに記載の撮像素子。
(18)
 複数の画素をアレイ状に有する画素アレイ部をさらに備え、
 前記複数の画素は、前記光電変換素子、前記第1の素子及び前記複数の素子をそれぞれ有し、
 前記複数の画素は、所定数の画素をそれぞれ含む複数の画素ブロックに分けられており、
 前記供給部は、前記画素ブロック毎に設けられている、
 上記(1)から(16)のいずれか一つに記載の撮像素子。
(19)
 撮像レンズと、
 撮像素子と、
を備え、
 前記撮像素子は、
 光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、
 前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、
 前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、
を有する撮像装置。
(20)
 光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板とを備える撮像素子を制御する方法であって、
 前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える、
ことを含む撮像素子の制御方法。
(21)
 上記(1)から(18)のいずれか一つに記載の撮像素子を備える撮像装置。
(22)
 上記(1)から(18)のいずれか一つに記載の撮像素子を制御する撮像素子の制御方法。
<4. Note>
Note that the present technology can also take the following configuration.
(1)
a light receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element;
a detection substrate electrically connected to the light-receiving substrate and having a plurality of elements included in an event detection unit that outputs an event signal according to a change in the current output from the photoelectric conversion element;
a supply unit that applies a potential that disables the operation of the photoelectric conversion element or the first element to a node of the photoelectric conversion element or the node of the first element;
An image sensor.
(2)
The supply unit
a first switch for switching a path through which the current flows to the photoelectric conversion element and for applying a potential to a node of the first element to disable the operation of the first element;
The imaging device according to (1) above.
(3)
The first switch is provided on the detection substrate,
The imaging device according to (2) above.
(4)
The first switch is provided on the light receiving substrate,
The imaging device according to (2) above.
(5)
The supply unit
a second switch for switching a path through which the current flows to the photoelectric conversion element and for applying a potential to a node of the photoelectric conversion element to disable the operation of the photoelectric conversion element;
The imaging device according to any one of (2) to (4) above.
(6)
further comprising a fixing unit that fixes an output potential from the light receiving substrate to the detection substrate to a predetermined potential;
The imaging device according to any one of (1) to (5) above.
(7)
The fixed part is
a third switch for fixing the output potential to the predetermined potential;
The imaging device according to (6) above.
(8)
The third switch is provided on the detection substrate,
The imaging device according to (7) above.
(9)
The third switch is provided on the light receiving substrate,
The imaging device according to (7) above.
(10)
further comprising a switching unit for switching electrical connection between the light receiving substrate and the detection substrate between a disconnected state and a connected state;
The imaging device according to any one of (1) to (9) above.
(11)
The switching unit is
a fourth switch for switching the electrical connection between the light receiving substrate and the detection substrate between the disconnected state and the connected state;
The imaging device according to (10) above.
(12)
The fourth switch is provided on the detection substrate,
The imaging device according to (11) above.
(13)
The fourth switch is provided on the light receiving substrate,
The imaging device according to (11) above.
(14)
The event detection unit
a current-voltage conversion unit that converts the current output from the photoelectric conversion element into a voltage;
The current-voltage conversion unit has a plurality of transistors,
The imaging device according to any one of (1) to (13) above.
(15)
Some of the plurality of transistors are provided on the detection substrate,
The imaging device according to (14) above.
(16)
all of the plurality of transistors are provided on the light receiving substrate;
The imaging device according to (14) above.
(17)
further comprising a pixel array section having a plurality of pixels in an array,
the plurality of pixels each have the photoelectric conversion element, the first element, and the plurality of elements;
the plurality of pixels are divided into effective pixels and test pixels;
The supply unit is provided in the test pixel,
The imaging device according to any one of (1) to (16) above.
(18)
further comprising a pixel array section having a plurality of pixels in an array,
the plurality of pixels each have the photoelectric conversion element, the first element, and the plurality of elements;
the plurality of pixels are divided into a plurality of pixel blocks each including a predetermined number of pixels;
The supply unit is provided for each pixel block,
The imaging device according to any one of (1) to (16) above.
(19)
an imaging lens;
an imaging device;
with
The imaging element is
a light receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element;
a detection substrate electrically connected to the light-receiving substrate and having a plurality of elements included in an event detection unit that outputs an event signal according to a change in the current output from the photoelectric conversion element;
a supply unit that supplies a node of the photoelectric conversion element or the node of the first element with a potential that disables the operation of the photoelectric conversion element or the first element;
An imaging device having
(20)
a light-receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element; A method for controlling an imaging device comprising a detection substrate having a plurality of elements included in an event detection unit that outputs a signal,
Applying a potential that disables the operation of the photoelectric conversion element or the first element to the node of the photoelectric conversion element or the node of the first element;
A control method for an imaging device, comprising:
(21)
An imaging device comprising the imaging device according to any one of (1) to (18) above.
(22)
An imaging device control method for controlling the imaging device according to any one of (1) to (18) above.
 11   画素
 12   画素アレイ部
 13   駆動部
 14   アービタ部
 15   カラム処理部
 16   信号処理部
 61   受光部
 62   画素信号生成部
 63   イベント検出部
 100  撮像装置
 110  撮像レンズ
 120  記録部
 130  制御部
 139  信号線
 200  撮像素子
 201  受光チップ
 202  検出チップ
 209  信号線
 301  画素回路
 310  電流電圧変換部
 311  光電変換素子
 312  N型トランジスタ
 313  供給部
 313a スイッチ
 313b スイッチ
 314  P型トランジスタ
 315  N型トランジスタ
 317  固定部
 317a スイッチ
 318  切替部
 318a スイッチ
 320  バッファ
 321  P型トランジスタ
 322  P型トランジスタ
 330  微分回路
 331  容量
 332  P型トランジスタ
 333  P型トランジスタ
 334  容量
 335  N型トランジスタ
 340  コンパレータ
 341  P型トランジスタ
 342  N型トランジスタ
 343  P型トランジスタ
 344  N型トランジスタ
 350  転送部
 391  入力端子
 392  出力端子
11 pixel 12 pixel array unit 13 driving unit 14 arbiter unit 15 column processing unit 16 signal processing unit 61 light receiving unit 62 pixel signal generation unit 63 event detection unit 100 imaging device 110 imaging lens 120 recording unit 130 control unit 139 signal line 200 imaging element 201 light-receiving chip 202 detection chip 209 signal line 301 pixel circuit 310 current-voltage conversion unit 311 photoelectric conversion element 312 N-type transistor 313 supply unit 313a switch 313b switch 314 P-type transistor 315 N-type transistor 317 fixed unit 317a switch 318 switching unit 318a switch 320 Buffer 321 P-type Transistor 322 P-type Transistor 330 Differentiation Circuit 331 Capacitance 332 P-type Transistor 333 P-type Transistor 334 Capacitance 335 N-type Transistor 340 Comparator 341 P-type Transistor 342 N-type Transistor 343 P-type Transistor 344 N-type Transistor 350 Transfer Unit 391 Input terminal 392 Output terminal

Claims (20)

  1.  光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、
     前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、
     前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、
    を備える撮像素子。
    a light receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element;
    a detection substrate electrically connected to the light-receiving substrate and having a plurality of elements included in an event detection unit that outputs an event signal according to a change in the current output from the photoelectric conversion element;
    a supply unit that applies a potential that disables the operation of the photoelectric conversion element or the first element to a node of the photoelectric conversion element or the node of the first element;
    An image sensor.
  2.  前記供給部は、
     前記光電変換素子に前記電流が流れる経路を切り替え、前記第1の素子の動作を無効にする電位を前記第1の素子のノードに与えるための第1のスイッチを有する、
     請求項1に記載の撮像素子。
    The supply unit
    a first switch for switching a path through which the current flows to the photoelectric conversion element and for applying a potential that disables the operation of the first element to a node of the first element;
    The imaging device according to claim 1 .
  3.  前記第1のスイッチは、前記検出基板に設けられている、
     請求項2に記載の撮像素子。
    The first switch is provided on the detection substrate,
    The imaging device according to claim 2 .
  4.  前記第1のスイッチは、前記受光基板に設けられている、
     請求項2に記載の撮像素子。
    The first switch is provided on the light receiving substrate,
    The imaging device according to claim 2 .
  5.  前記供給部は、
     前記光電変換素子に前記電流が流れる経路を切り替え、前記光電変換素子の動作を無効にする電位を前記光電変換素子のノードに与えるための第2のスイッチをさらに有する、
     請求項2に記載の撮像素子。
    The supply unit
    a second switch for switching a path through which the current flows to the photoelectric conversion element and for applying a potential to a node of the photoelectric conversion element to disable the operation of the photoelectric conversion element;
    The imaging device according to claim 2 .
  6.  前記受光基板から前記検出基板への出力電位を所定電位に固定する固定部をさらに備える、
     請求項1に記載の撮像素子。
    further comprising a fixing unit that fixes an output potential from the light receiving substrate to the detection substrate to a predetermined potential;
    The imaging device according to claim 1 .
  7.  前記固定部は、
     前記出力電位を前記所定電位に固定するための第3のスイッチを有する、
     請求項6に記載の撮像素子。
    The fixed part is
    a third switch for fixing the output potential to the predetermined potential;
    The imaging device according to claim 6 .
  8.  前記第3のスイッチは、前記検出基板に設けられている、
     請求項7に記載の撮像素子。
    The third switch is provided on the detection substrate,
    The imaging device according to claim 7 .
  9.  前記第3のスイッチは、前記受光基板に設けられている、
     請求項7に記載の撮像素子。
    The third switch is provided on the light receiving substrate,
    The imaging device according to claim 7 .
  10.  前記受光基板及び前記検出基板の電気的な接続を切断状態と接続状態に切り替える切替部をさらに備える、
     請求項1に記載の撮像素子。
    further comprising a switching unit for switching electrical connection between the light receiving substrate and the detection substrate between a disconnected state and a connected state;
    The imaging device according to claim 1 .
  11.  前記切替部は、
     前記受光基板及び前記検出基板の電気的な前記接続を前記切断状態と前記接続状態に切り替えるための第4のスイッチを有する、
     請求項10に記載の撮像素子。
    The switching unit is
    a fourth switch for switching the electrical connection between the light receiving substrate and the detection substrate between the disconnected state and the connected state;
    The imaging device according to claim 10.
  12.  前記第4のスイッチは、前記検出基板に設けられている、
     請求項11に記載の撮像素子。
    The fourth switch is provided on the detection substrate,
    The imaging device according to claim 11.
  13.  前記第4のスイッチは、前記受光基板に設けられている、
     請求項11に記載の撮像素子。
    The fourth switch is provided on the light receiving substrate,
    The imaging device according to claim 11.
  14.  前記イベント検出部は、
     前記光電変換素子から出力される前記電流を電圧に変換する電流電圧変換部を有し、
     前記電流電圧変換部は、複数のトランジスタを有する、
     請求項1に記載の撮像素子。
    The event detection unit
    a current-voltage conversion unit that converts the current output from the photoelectric conversion element into a voltage;
    The current-voltage conversion unit has a plurality of transistors,
    The imaging device according to claim 1 .
  15.  前記複数のトランジスタの一部は、前記検出基板に設けられている、
     請求項14に記載の撮像素子。
    Some of the plurality of transistors are provided on the detection substrate,
    The imaging device according to claim 14.
  16.  前記複数のトランジスタの全部は、前記受光基板に設けられている、
     請求項14に記載の撮像素子。
    all of the plurality of transistors are provided on the light receiving substrate;
    The imaging device according to claim 14.
  17.  複数の画素をアレイ状に有する画素アレイ部をさらに備え、
     前記複数の画素は、前記光電変換素子、前記第1の素子及び前記複数の素子をそれぞれ有し、
     前記複数の画素は、有効画素及びテスト用画素に分けられており、
     前記供給部は、前記テスト用画素に設けられている、
     請求項1に記載の撮像素子。
    further comprising a pixel array section having a plurality of pixels in an array,
    the plurality of pixels each have the photoelectric conversion element, the first element, and the plurality of elements;
    the plurality of pixels are divided into effective pixels and test pixels;
    The supply unit is provided in the test pixel,
    The imaging device according to claim 1 .
  18.  複数の画素をアレイ状に有する画素アレイ部をさらに備え、
     前記複数の画素は、前記光電変換素子、前記第1の素子及び前記複数の素子をそれぞれ有し、
     前記複数の画素は、所定数の画素をそれぞれ含む複数の画素ブロックに分けられており、
     前記供給部は、前記画素ブロック毎に設けられている、
     請求項1に記載の撮像素子。
    further comprising a pixel array section having a plurality of pixels in an array,
    the plurality of pixels each have the photoelectric conversion element, the first element, and the plurality of elements;
    the plurality of pixels are divided into a plurality of pixel blocks each including a predetermined number of pixels;
    The supply unit is provided for each pixel block,
    The imaging device according to claim 1 .
  19.  撮像レンズと、
     撮像素子と、
    を備え、
     前記撮像素子は、
     光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、
     前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板と、
     前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える供給部と、
    を有する撮像装置。
    an imaging lens;
    an imaging device;
    with
    The imaging element is
    a light receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element;
    a detection substrate electrically connected to the light-receiving substrate and having a plurality of elements included in an event detection unit that outputs an event signal according to a change in the current output from the photoelectric conversion element;
    a supply unit that applies a potential that disables the operation of the photoelectric conversion element or the first element to a node of the photoelectric conversion element or the node of the first element;
    An imaging device having
  20.  光電変換素子及び前記光電変換素子に電気的に接続された第1の素子を有する受光基板と、前記受光基板に電気的に接続され、前記光電変換素子から出力される電流の変化に応じてイベント信号を出力するイベント検出部に含まれる複数の素子を有する検出基板とを備える撮像素子を制御する方法であって、
     前記光電変換素子又は前記第1の素子の動作を無効にする電位を前記光電変換素子のノード又は前記第1の素子のノードに与える、
    ことを含む撮像素子の制御方法。
    a light-receiving substrate having a photoelectric conversion element and a first element electrically connected to the photoelectric conversion element; A method of controlling an imaging device comprising a detection substrate having a plurality of elements included in an event detection unit that outputs a signal, comprising:
    applying a potential that disables the operation of the photoelectric conversion element or the first element to the node of the photoelectric conversion element or the node of the first element;
    A control method for an imaging device, comprising:
PCT/JP2022/006008 2021-05-10 2022-02-15 Imaging element, imaging device, and method for manufacturing imaging element WO2022239345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079718A JP2022173796A (en) 2021-05-10 2021-05-10 Image pickup device, imaging apparatus, and method for controlling image pickup device
JP2021-079718 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239345A1 true WO2022239345A1 (en) 2022-11-17

Family

ID=84029097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006008 WO2022239345A1 (en) 2021-05-10 2022-02-15 Imaging element, imaging device, and method for manufacturing imaging element

Country Status (2)

Country Link
JP (1) JP2022173796A (en)
WO (1) WO2022239345A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129046A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Testing circuit of current-voltage conversion amplifier
JPH10284707A (en) * 1997-04-03 1998-10-23 Rohm Co Ltd Photoelectric conversion ic
WO2019187684A1 (en) * 2018-03-28 2019-10-03 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, test system, and control method for solid-state imaging element
JP2020053827A (en) * 2018-09-27 2020-04-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging apparatus
JP2020088723A (en) * 2018-11-29 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08129046A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Testing circuit of current-voltage conversion amplifier
JPH10284707A (en) * 1997-04-03 1998-10-23 Rohm Co Ltd Photoelectric conversion ic
WO2019187684A1 (en) * 2018-03-28 2019-10-03 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element, test system, and control method for solid-state imaging element
JP2020053827A (en) * 2018-09-27 2020-04-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging apparatus
JP2020088723A (en) * 2018-11-29 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and imaging device

Also Published As

Publication number Publication date
JP2022173796A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
US11863911B2 (en) Imaging system, method of controlling imaging system, and object recognition system
US11895398B2 (en) Imaging device and imaging system
WO2020196092A1 (en) Imaging system, method of controlling imaging system, and object recognition system
US11683606B2 (en) Imaging device and electronic equipment
US20230047180A1 (en) Imaging device and imaging method
TWI788818B (en) Camera device and camera method
WO2022009664A1 (en) Imaging device and imaging method
WO2020195822A1 (en) Image capturing system
WO2019073726A1 (en) Solid-state imaging element, method for driving solid-state imaging element, and electronic device
WO2021153428A1 (en) Imaging device, electronic apparatus, and imaging method
WO2022239345A1 (en) Imaging element, imaging device, and method for manufacturing imaging element
JP2023093778A (en) Imaging apparatus and imaging method
WO2022209256A1 (en) Imaging element, imaging device, and method for manufacturing imaging element
WO2022202053A1 (en) Imaging element, imaging device, and method for controlling imaging element
WO2022065032A1 (en) Imaging device and imaging method
WO2023248855A1 (en) Light detection device and electronic apparatus
WO2022181265A1 (en) Image processing device, image processing method, and image processing system
WO2024075492A1 (en) Solid-state imaging device, and comparison device
WO2023145344A1 (en) Light-receiving element and electronic apparatus
WO2023032298A1 (en) Solid-state imaging device
WO2022186040A1 (en) Image capturing device, method for driving same, and electronic appliance
WO2024070523A1 (en) Light detection element and electronic device
WO2023013139A1 (en) Negative voltage monitoring circuit, and light receiving device
US20240080587A1 (en) Solid-state imaging device and electronic instrument
WO2023281824A1 (en) Light receiving device, distance measurment device, and light receiving device control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE