WO2022239343A1 - Circuit unit for aerosol generation device, and aerosol generation device - Google Patents

Circuit unit for aerosol generation device, and aerosol generation device Download PDF

Info

Publication number
WO2022239343A1
WO2022239343A1 PCT/JP2022/005855 JP2022005855W WO2022239343A1 WO 2022239343 A1 WO2022239343 A1 WO 2022239343A1 JP 2022005855 W JP2022005855 W JP 2022005855W WO 2022239343 A1 WO2022239343 A1 WO 2022239343A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
substrate
mcu
communication line
mode
Prior art date
Application number
PCT/JP2022/005855
Other languages
French (fr)
Japanese (ja)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to EP22807050.4A priority Critical patent/EP4338610A1/en
Priority to JP2022573768A priority patent/JPWO2022239343A1/ja
Publication of WO2022239343A1 publication Critical patent/WO2022239343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present invention relates to a circuit unit of an aerosol generator and an aerosol generator.
  • Electronic cigarettes and heat-not-burn cigarettes are known as devices that generate aerosol by heating an aerosol source.
  • E-cigarettes produce an aerosol by atomizing a liquid that is an aerosol source.
  • heat-not-burn cigarettes generate an aerosol by heating a stick, which is an aerosol source, without burning it.
  • electronic cigarettes and heat-not-burn cigarettes are collectively referred to as "aerosol generators.” It should be noted that unless otherwise specified, the term "aerosol generator” includes nebulizers, electronic cigarettes, and heat-not-burn cigarettes that do not contain tobacco-derived ingredients in the aerosol source.
  • Today's aerosol generators may have multiple ICs as they become more sophisticated.
  • Serial communication is adopted for communication between a plurality of ICs.
  • the wiring pattern on the board becomes more complicated and denser.
  • costs and heat generation increase, and communication busyness may also increase.
  • An object of the present invention is to provide an aerosol generator and its circuit unit with improved mounting of electrical components on a substrate for serial communication.
  • a first feature includes a heater connector connected to a heater that consumes power supplied from a power supply to heat an aerosol source, and a first communication terminal and a second communication terminal for serial communication,
  • a controller that controls power supply to the heater and the controller are separate entities, and a first IC including a third communication terminal for serial communication, the controller and the first IC are separate entities, and a second IC including a fourth communication terminal for serial communication, a first communication line connecting the first communication terminal and the third communication terminal, and the second communication terminal and the fourth communication terminal.
  • a second communication line to be connected, a first substrate, and a second substrate separate from the first substrate and separated from the first substrate, wherein the controller and the first IC are: A circuit unit of an aerosol generator mounted on the first substrate and the second IC mounted on the second substrate.
  • a second feature is the circuit unit according to the first feature, wherein the communication protocol used in the first communication line is the same as the communication protocol used in the second communication line.
  • a third feature is the circuit unit according to the first feature, wherein the communication protocol used in the first communication line is I2C or SPI.
  • a fourth feature is the circuit unit according to the second or third feature, wherein the second board is a board adjacent to the first board, and the communication protocol used in the second communication line is I2C. or SPI.
  • a fifth feature is the circuit unit according to the second or third feature, wherein the a third substrate; and a third communication line connecting a sixth communication terminal of the first substrate and a seventh communication terminal of the third substrate, wherein the third substrate is closer to the second substrate than the second substrate. is separated from the first substrate, and the communication protocol used in the third communication line is UART.
  • a sixth feature is the circuit unit according to any one of the second to fifth features, wherein the communication frequency on the second communication line is higher than the communication frequency on the first communication line, and the communication frequency on the first communication line is higher than that on the first communication line.
  • the communication protocol used on the communication line is I2C.
  • a seventh feature is the circuit unit according to any one of the second to fifth features, wherein the number of ICs connected to the controller via the first communication line is equal to the number of ICs connected to the second communication line. and the communication protocol used on the first communication line is I2C.
  • An eighth feature is the circuit unit according to any one of the first to seventh features, wherein the controller, the first IC, and the second IC are separated from each other, and a circuit unit for serial communication is provided.
  • a third IC including a fifth communication terminal is further provided, the first communication line connects the first communication terminal and the fifth communication terminal, and the third IC is mounted on the first substrate.
  • a ninth feature is the circuit unit according to the eighth feature, wherein the controller communicates with the first IC when a first condition is satisfied, and a second condition different from the first condition is satisfied, it is configured to communicate with the third IC.
  • a tenth feature is the circuit unit according to the eighth feature, wherein the controller operates in any one of a plurality of modes, and the controller operates in one of a plurality of modes, and the controller operates in the first IC and the third IC in the plurality of modes. includes a mode of communicating only with the third IC.
  • An eleventh feature is the circuit unit according to any one of the first to tenth features, wherein the number of ICs connected to the controller via the first communication line is equal to the second communication line.
  • a twelfth feature is the circuit unit according to the eleventh feature, wherein the IC connected to the controller via the second communication line is only the second IC.
  • a thirteenth feature is the circuit unit according to the twelfth feature, wherein the second IC is a fuel gauge IC that acquires information on the power supply.
  • a fourteenth feature is the circuit unit according to the first feature, wherein a communication protocol used in the first communication line is different from a communication protocol used in the second communication line.
  • a fifteenth feature includes a heater connector to which a heater that consumes power supplied from a power source and heats the aerosol source is connected, and a first communication terminal and a second communication terminal for serial communication.
  • a controller that controls power supply to the heater and the controller are separate entities, and a first IC including a third communication terminal for serial communication, the controller and the first IC are separate entities, and a second IC including a fourth communication terminal for serial communication, a first communication line connecting the first communication terminal and the third communication terminal, and the second communication terminal and the fourth communication terminal.
  • the aerosol generating device is mounted on the first substrate, and the second IC is mounted on the second substrate.
  • the MCU can communicate with the IC frequently and without delay, and the aerosol generator can be made highly functional.
  • the cost of the aerosol generator can be reduced by suppressing the complexity and density of the wiring, and the MCU can communicate with the IC frequently and without delay, thereby improving the functionality of the aerosol generator. realizable.
  • the cost of the aerosol generating device can be reduced and the functionality of the aerosol generating device can be improved by I2C communication, which can simplify wiring due to the small number of terminals used for communication.
  • the cost of the aerosol generator can be reduced and the functionality of the aerosol generator can be improved by means of I2C communication in which the number of first communication terminals of the controller does not change even if the number of connected ICs increases. can be realized.
  • the controller does not need to have a dedicated communication terminal for communicating with the third IC.
  • the aerosol generator since the communication timings of the plurality of ICs sharing the first communication line do not overlap, a decrease in communication speed can be suppressed. According to the tenth feature, the communication modes of the plurality of ICs sharing the first communication line are different, so it is possible to suppress a decrease in communication speed and realize high functionality of the aerosol generating device. According to the eleventh feature, since the frequency of communication with the ICs connected to the second communication line can be improved, the accuracy of control using information from the ICs connected to the second communication line can be improved.
  • the twelfth feature since the frequency of communication with the second IC can be improved without restriction, the accuracy of control using information of the second IC connected to the second communication line can be improved. According to the thirteenth feature, the latest information on the power supply can be easily obtained from the fuel gauge IC, so the safety of the aerosol generating device can be improved. According to the fourteenth feature, the communication speed and accuracy of communication with the IC can be improved by communication using an appropriate protocol according to the characteristics and mounting method of the IC. According to the fifteenth feature, complication and high density of wiring are suppressed, and the cost of the aerosol generator can be reduced.
  • FIG. 4 is a diagram for explaining an appearance example of a circuit unit incorporated in an external case; 4 is a diagram illustrating a configuration example of the front side of the MCU substrate used in Embodiment 1; FIG.
  • FIG. 4 is a diagram for explaining a configuration example of the back side of the MCU board used in Embodiment 1;
  • FIG. 4 is a diagram illustrating a power supply path of a charging IC operating in a charging mode; BUS voltage V It is a diagram for explaining a power supply path of a charging IC operating in a power supply mode by USB .
  • FIG. 4 is a diagram for explaining power supply paths of a charging IC operating in a power supply mode using a USB voltage VUSB and a battery voltage VBAT;
  • FIG. 4 is a diagram illustrating a power supply path of a charging IC operating in a power supply mode based on a battery voltage VBAT ;
  • FIG. 4 is a diagram for explaining a power supply path of a charging IC operating in a power supply mode with an OTG function for battery voltage VBAT ;
  • FIG. 3 is a diagram illustrating a configuration example of the front side of a USB connector board used in Embodiment 1; 4 is a diagram illustrating a configuration example of the rear surface side of the USB connector board used in Embodiment 1;
  • FIG. It is a figure explaining the function of fuel gauge IC.
  • 3 is a diagram for explaining a configuration example of a Bluetooth substrate and a Hall IC substrate used in Embodiment 1;
  • FIG. 4 is a diagram illustrating an example of a communication protocol employed by circuit units; It is a figure explaining the image of I2C communication.
  • FIG. 3 is a diagram for explaining operation modes prepared in the aerosol generating device used in Embodiment 1 and transition conditions between the operation modes. 4 is a chart for explaining the content of communication for each operation mode according to Embodiment 1.
  • FIG. It is a figure explaining communication in charge mode M1.
  • FIG. 11 is a chart for explaining the content of communication for each operation mode according to the second embodiment;
  • FIG. FIG. 11 is a chart for explaining the content of communication for each operation mode in Embodiment 3;
  • FIG. 1 is a diagram for explaining a connection form of SPI communication, which is one form of serial communication;
  • FIG. FIG. 2 is a diagram illustrating an example of an external configuration of an aerosol generating device compatible with electronic cigarettes;
  • FIG. 1A is a view of the front side of the aerosol generating device 1 observed obliquely from above.
  • FIG. 1B is a view of the front side of the aerosol generating device 1 observed obliquely from below.
  • FIG. 1C is a diagram for observing the upper surface of the aerosol generator 1 with the shutter 30 removed.
  • FIG. 1D is a front view of the body housing 20 with the external panel 10 removed.
  • the aerosol generator 1 used in Embodiment 1 has a size that allows a user to hold it with one hand.
  • the aerosol generator 1 has a body housing 20, an external panel 10 attached to the front of the body housing 20, and a shutter 30 arranged on the upper surface of the body housing 20 and slidable along the upper surface.
  • the external panel 10 is a member that can be attached to and detached from the body housing 20 . A user attaches and detaches the external panel 10 in the first embodiment.
  • the external panel 10 is provided with an information window 10A.
  • the information window 10A is provided at a position facing the light emitting element provided on the body housing 20 side.
  • the information window 10A in Embodiment 1 is made of a material that transmits light. However, the information window 10A may be a hole penetrating from the front surface to the back surface.
  • the lighting and blinking of the light-emitting elements represent the state of the aerosol generating device 1 . Lighting and blinking of the light emitting element may be controlled by the MCU 101, which will be described later.
  • the external panel 10 serves not only as decoration but also as a buffer for heat emitted from the body housing 20 .
  • the external panel 10 deforms when the user presses a position below the information window 10A with a fingertip.
  • a push button 23 provided on the main body housing 20 can be pressed.
  • the shape and type of the USB connector 21 are examples.
  • the USB connector 21 may be a USB other than type C.
  • the USB connector 21 is exclusively used for charging the battery 50 (see FIG. 2A) built in the body housing 20 .
  • an insertion hole 22 is provided on the upper surface of the body housing 20, into which a stick as an aerosol source is inserted into the paper tube.
  • the stick has a substantially cylindrical appearance wrapped in a paper tube.
  • the insertion hole 22 is exposed when the shutter 30 is opened and is hidden when the shutter 30 is closed.
  • the opening of insertion hole 22 is substantially circular.
  • the diameter of the opening is such that a substantially cylindrical stick can be inserted.
  • the diameter of the stick is such that it can be inserted into the insertion hole 22 .
  • a magnet is attached inside the shutter 30 .
  • the opening/closing of the shutter 30 is detected by a Hall IC 401 (see FIG. 2B) provided on the body housing 20 side.
  • the Hall IC 401 is also called a magnetic sensor, and is composed of a Hall element, an operational amplifier, and the like.
  • a Hall element is an element that outputs a voltage corresponding to the strength of the magnetic field of a magnet.
  • the body housing 20 is composed of an inner panel 20A and an outer case 20B. In the case of Embodiment 1, the inner panel 20A is screwed to the outer case 20B.
  • a push button 23 is arranged substantially in the center of the inner panel 20A. As described above, push button 23 is operated by deformation of external panel 10 . Through the operation of the push button 23, the tactile switch 301 (see FIG. 2B) on the side of the outer case 20B located behind the push button 23 is operated.
  • a translucent component 24 that transmits light is exposed at a position corresponding to the information window 10A of the external panel 10 on the internal panel 20A.
  • the translucent component 24 is arranged at a position covering the surface of the LED 302 .
  • Magnets 25 used for attaching the external panel 10 are provided on the upper and lower parts of the internal panel 20A.
  • the magnet 25 is provided at a position facing the magnet on the external panel 10 side.
  • the outer panel 10 is detachably attached to the inner panel 20A.
  • the magnet 25 is fixed to the chassis 500 (see FIG. 2A) inside the outer case 20B and exposed through the opening of the inner panel 20A.
  • magnets 25 may be fixed to inner panel 20A.
  • FIG. 2A is a diagram illustrating a configuration example inside the outer case 20B that appears when the inner panel 20A (see FIG. 1D) is removed.
  • FIG. 2B is a diagram illustrating an appearance example of the circuit unit 1000 built in the outer case 20B.
  • a circuit unit 1000 is a portion obtained by removing the battery 50, the chassis 500, and the heater of the heating unit 40 from the external case 20B.
  • MCU Micro Control Unit
  • the heating unit 40 is a unit that heats the tobacco stick inserted into the insertion hole 22 (see FIG. 1C).
  • the insertion hole 22 is defined as a space surrounded by the inner wall of the cylindrical container 22A.
  • the container 22A used in Embodiment 1 has a bottom. However, a bottomless container 22A may also be used.
  • a flat portion is prepared on its side wall. In other words, a flat portion is provided in the cross section when the container 22A is cut along a plane perpendicular to the axis of the container 22A.
  • the flat portion compresses and deforms the side surface of the tobacco stick inserted into the opening of the insertion hole 22 (see FIG. 1C) to improve heating efficiency.
  • the cross-sectional shape may be substantially circular, substantially elliptical, or substantially polygonal. Further, the cross-sectional shape may be the same from the opening side to the bottom surface, or may vary from the opening side to the bottom surface.
  • the container 22A is preferably made of metal with high thermal conductivity.
  • the container 22A is made of stainless steel, for example.
  • a film-like heater is arranged around the outer periphery of the container 22A to cover the outer peripheral surface. The heater generates heat by consuming power supplied from the battery 50 . When the heater generates heat, the stick is heated from the outer periphery and an aerosol is generated.
  • the heating unit 40 is connected to heater connectors 206A and 206B (see FIG. 7A) provided on the USB connector board 200 to receive power.
  • the heating unit 40 is also provided with a thermistor 41 used to detect a puff (that is, intake air) and a thermistor 42 used to measure the temperature of the heater.
  • the resistance values of the thermistor 41 and the thermistor 42 change greatly due to the temperature rise caused by the heat generation of the heater and the temperature drop caused by the puff.
  • the thermistor 42 may be a PTC thermistor or an NTC thermistor.
  • a change in the resistance value of the thermistor 41 or thermistor 42 is detected by the MCU 101 (see FIG. 3A) as a voltage change.
  • the MCU 101 measures the temperature of the external case 20B through a separate thermistor.
  • the battery 50 is a power source that supplies power necessary for operating the circuit unit built in the outer case 20B.
  • a rechargeable lithium ion secondary battery or the like is used as the battery 50 .
  • Power from the battery 50 is supplied to each part through a power line connected to the negative electrode 51 and the positive electrode 52 .
  • a thermistor 53 used for measuring the temperature of the battery 50 (hereinafter referred to as "battery temperature") is provided on the outer circumference of the battery 50. As shown in FIG. A change in the resistance value of the thermistor 53 is detected as a change in voltage by the fuel gauge IC 201 (see FIG. 7B) on the USB connector board 200 .
  • the thermistor 53 may be a PTC thermistor or an NTC thermistor.
  • FIG. 3A is a diagram illustrating a configuration example of the front side of the MCU board 100 used in the first embodiment.
  • FIG. 3B is a diagram illustrating a configuration example of the back side of the MCU board 100 used in the first embodiment.
  • the front and back surfaces in FIGS. 3A and 3B are used only in the description of the first embodiment.
  • the MCU board 100 is a double-sided mounting board.
  • the MCU board 100 is mounted with an MCU 101 that controls the overall operation of the device, an EEPROM 102 that records information regarding the use of the device, and a charging IC 103 that switches the power supply path.
  • the MCU 101 is a so-called controller.
  • the operation of the MCU 101 is defined through execution of firmware and programs operating on the firmware.
  • the MCU 101 in Embodiment 1 uses I2C communication and UART communication, which are serial communication methods, for communication with other ICs. In the case of the first embodiment, two communication lines for I2C communication are prepared.
  • the first system is a communication line used by the MCU 101 for I2C communication with the EEPROM 102 and the charging IC 103 mounted on the same substrate (that is, the MCU substrate 100).
  • the second system is a communication line used by the MCU 101 for I2C communication with the fuel gauge IC 201 mounted on another board adjacent to the MCU board 100 (that is, the USB connector board 200).
  • the first system and the second system do not have electrical contacts. Therefore, the communication of the first system and the communication of the second system are independent of each other.
  • the MCU 101 uses UART communication to communicate with the LED located farther than the USB connector board 200 when viewed from the MCU board 100 and the Bluetooth IC 303 (see FIG. 9) mounted on the Bluetooth board 300 .
  • the charging IC 103 is provided with a BAT terminal for receiving the battery voltage VBAT from the battery 50 and a VBUS terminal for receiving the BUS voltage VUSB from an external power supply.
  • the power supply line used for supplying the battery voltage V BAT is branched into two systems.
  • Charging IC 103 is connected to one power supply line.
  • the other power supply line is connected to a fuel gauge IC 201 and a step-up DC/DC circuit 202 (see FIG. 7B) that generates voltage to be applied to the heater.
  • the battery voltage V BAT is also connected to the battery 50 protection IC 203 (see FIG. 7B).
  • a load switch 104 is mounted on the MCU board 100 to turn on or off the power line that connects the external power supply and the charging IC 103 .
  • An external power supply is an external device connected through the USB connector 21 .
  • External devices here include, for example, personal computers, smart phones, tablet terminals, and outlets.
  • the MCU board 100 is mounted with a step-up/step-down DC/DC circuit 105 that generates a 3.3V system power supply Vcc33_0 from the voltage Vcc output from the charging IC 103 .
  • the step-up/step-down DC/DC circuit 105 may step up the voltage Vcc output from the charging IC 103 to generate the system power supply Vcc33_0 , or step down the voltage Vcc output from the charging IC 103 to generate the system power supply Vcc.
  • cc33_0 may be generated, or the voltage Vcc output from the charging IC 103 may be directly output to generate the system power supply Vcc33_0 .
  • the buck-boost DC/DC circuit 105 boosts the battery voltage V BAT when it is lower than 3.3V, and steps it down when the battery voltage V BAT is higher than 3.3V, so that the battery voltage V BAT reaches 3.3V. If equal, output as is.
  • the system power supply Vcc33_0 here is a primitive power supply that continues to be supplied even when the MCU 101 is not operating.
  • the system power supply Vcc33_0 is supplied through the power supply line to the power switch driver 108, the load switch 106 for stopping the system, and the flip-flop 107 that latches (stores) a value indicating whether or not the heater is in an overheating state. In other words, these circuit elements operate even when the system is stopped.
  • the system stop load switch 106 is off, only the circuit elements to which the system power supply Vcc33_0 is supplied are in an operating state. As a result, most circuit elements including the MCU 101 stop operating.
  • a power switch driver 108 is mounted on the MCU board 100 .
  • the power switch driver IC 108 is a circuit that controls the on/off of the load switch 106 .
  • the power switch driver 108 detects that the push button 23 (see FIG. 1D) is pressed while the external panel 10 is removed, the power switch driver 108 controls the load switch 106 to be off.
  • the removal of the external panel 10 is performed by a Hall IC 304 (see FIG. 9) used to detect attachment and detachment of the external panel 10 to the main body housing 20 and a single Schmidt trigger inverter 305 (see FIG. 9) whose input is the output potential of the Hall IC 304. ).
  • the MCU 101 is not involved in the control of the load switch 106 by the power switch driver 108 . That is, control of the load switch 106 is executed independently of the MCU 101 .
  • the 3.3V system power supply supplied to each part from the ON state load switch 106 is denoted as Vcc33 to distinguish it from the system power supply Vcc33_0 that continues to be supplied even when the system is stopped.
  • the MCU board 100 is mounted with a load switch 109 that supplies the system power supply VCC33_SLP to the three thermistors described above when the shutter 30 is open. Therefore, when the shutter 30 is closed, the three thermistors are not supplied with the system power supply V CC33_SLP .
  • the load switch 109 is supplied with the system power supply Vcc33 of 3.3V from the load switch 106 for system stop.
  • the MCU board 100 is mounted with a flip-flop 110 that latches a value indicating whether the temperature of the external case 20B is abnormal.
  • the flip-flop 110 is supplied with the system power supply Vcc33 from the load switch 106 for stopping the system.
  • An operational amplifier 111 used for measuring heater resistance (heater temperature) is mounted on the MCU board 100 .
  • a connector 112 for the vibrator 60 is mounted on the MCU board 100 .
  • the MCU board 100 is mounted with connectors 113A and 113B for the thermistor 42 that measures the heater temperature.
  • the connector 113A is for positive electrodes
  • the connector 113B is for negative electrodes. Note that the wires connecting thermistor 41 to connectors 114A and 114B are omitted in FIG. 3B.
  • the MCU board 100 is mounted with connectors 114A and 114B for the thermistor 41 used to detect puffs (that is, inhalation).
  • the connector 114A is for the positive electrode
  • the connector 114B is for the negative electrode.
  • the MCU board 100 is mounted with connectors 115A and 115B for thermistors used to detect the temperature of the outer case 20B.
  • the connector 115A is for positive electrodes
  • the connector 115B is for negative electrodes.
  • the MCU board 100 uses a flexible board 600 on which wiring patterns used for communication with circuit elements mounted on boards other than the MCU board 100 are formed.
  • the flexible substrate 600 also includes power traces.
  • FIG. 4 is a diagram for explaining circuit elements appearing on the power supply line and voltages appearing between the circuit elements.
  • the power supply line of the battery 50 is branched into two systems. One of the two systems is connected to the BAT terminal of the charging IC 103 , and the other system is connected to the VBAT terminal of the fuel gauge IC 201 and the VIN terminal of the boost DC/DC circuit 202 .
  • the large current supplied to the heater does not pass through the charging IC 103 . Therefore, the charging IC 103 does not become bulky.
  • the fuel gauge IC 201 operates by being supplied with the system power supply Vcc33 , and monitors the battery voltage VBAT and the like supplied to the BAT terminal.
  • a boost DC/DC circuit 202 boosts the battery voltage V BAT to generate a boosted voltage V boost to be applied to the heater.
  • power supply to the heater is realized by ON control of a MOSFET (not shown) connected to the output terminal of the boost DC/DC circuit 202 .
  • the fuel gauge IC 201 and the step-up DC/DC circuit 202 are mounted on the USB connector board 200 .
  • the charging IC 103 generates a voltage Vcc from the battery voltage V BAT supplied from the battery 50 and the BUS voltage V USB supplied from the external power supply, and supplies the voltage Vcc to the step-up/step-down DC/DC circuit 105 .
  • the step-up/step-down DC/DC circuit 105 generates a system power supply Vcc33_0 of 3.3V from the voltage Vcc, and supplies it to the load switch 106 and the like.
  • the system power supply Vcc33_0 continues to be supplied even while the system is stopped (while the MCU 101 is stopped).
  • the load switch 106 supplies the 3.3V system power supply Vcc33 to the MCU 101, the load switch 109, and the like only when the MCU 101 (see FIG. 3A) and the like are operated.
  • This system power supply Vcc33 is also supplied to the fuel gauge IC201.
  • the load switch 109 outputs the 3.3V system power supply V CC33_SLP to the power supply line only when performing temperature measurement with three thermistors.
  • the three thermistors here refer to the thermistor 41 used for puff detection, the thermistor 42 used for measuring the temperature of the heater, and the thermistor used for measuring the temperature of the outer case 20B.
  • the charging IC 103 supplies the 5V power generated from the battery voltage VBAT as Vcc5 to the LED 302 (see FIG. 2B).
  • the LED 302 may be supplied with the BUS voltage VUSB .
  • FIG. 5 is a diagram illustrating an internal configuration example of the charging IC 103 used in the first embodiment.
  • the charging IC 103 shown in FIG. 5 is provided with an I2C interface 103A, a logic circuit 103B, a gate driver 103C, a low dropout regulator (hereinafter referred to as "LDO") 103D, and four MOSFETs Q1 to Q4.
  • I2C interface 103A is used for I2C communication with MCU 101 on the same board.
  • a battery 50 is connected to the BAT terminal of the charging IC 103 through a power supply line. Therefore, the battery voltage V BAT is supplied to the BAT terminal of the charging IC 103 except during charging.
  • a USB connector 21 is connected to the VBUS terminal of the charging IC 103 through a load switch 104 (see FIG. 4).
  • the load switch 104 is controlled to the ON state only when the reception of the BUS voltage VUSB , which is the external power supply, is detected, and is controlled to the OFF state when the reception of the BUS voltage VUSB is not detected.
  • the MCU 101 may switch the load switch 104 between the ON state and the OFF state.
  • the charging IC 103 supports five power feeding modes.
  • FIG. 6A is a diagram illustrating power supply paths of the charging IC 103 operating in the charging mode.
  • the charging mode is executed when a low level signal is applied from the MCU 101 to the CE terminal while the USB cable is connected to the USB connector 21 (see FIG. 1B).
  • FETQ1 and Q4 are controlled to be ON
  • FETQ3 is controlled to be OFF
  • the charging IC 103 operates as a step-down regulator (converter).
  • the BUS voltage VUSB applied to the VBUS terminal is a power supply of approximately 5V.
  • the ON or OFF of the FETQ2 is controlled by the gate driver 103C.
  • the switching of the gate driver 103C is performed based on the charging current and charging voltage that the logic circuit 103B acquires from terminals and wirings (not shown).
  • the BUS voltage V USB is stepped down to a voltage suitable for charging the battery 50 by switching the FET Q2.
  • the voltage Vcc output from the SW terminal of the charging IC 103 via the inductance is re-input to the SYS terminal and then output (charged) from the BAT terminal to the battery 50 (see FIG. 2A).
  • FIG. 6B is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode using BUS voltage VUSB .
  • This power supply mode is executed when a high level signal is applied from the MCU 101 to the CE terminal in a state in which a USB cable is connected to the USB connector 21 (see FIG. 1B) and an abnormality has occurred in the battery 50. be.
  • the term "abnormality of the battery 50" as used herein refers to a state in which discharge of the battery 50 is prohibited due to being in an over-discharged state, a deep-discharged state, or the like.
  • the FETs Q1 and Q2 are controlled to be on, and the FETs Q3 and Q4 are controlled to be off. Since the FETs Q1 and Q2 are turned on and the FET Q3 is turned off, the system power supply Vcc appearing at the SW terminal becomes equal to the BUS voltage VUSB . Since the FET Q4 is turned off, the battery 50 is disconnected from the charging IC 103.
  • FIG. 6C is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode using both USB voltage V USB and battery voltage V BAT .
  • This power feeding mode is executed when a high-level signal is applied from the MCU 101 to the CE terminal in a state in which the USB cable is connected to the USB connector 21 (see FIG. 1B) and the battery 50 is normal. .
  • the FETs Q1 and Q4 are controlled to be on, the FET Q3 is controlled to be off, and the FET Q2 is PWM controlled.
  • the buck-boost DC/DC circuit 105 (see FIG. 4) is supplied with power derived from the BUS voltage VUSB and power derived from the battery 50 in a combined state.
  • the voltage of the SYS terminal and the battery voltage V BAT are the same, so the discharge of the battery 50 is also continued.
  • FIG. 6D is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode based on battery voltage VBAT .
  • This power feeding mode is executed when a high level signal is applied from the MCU 101 to the CE terminal while the USB cable is not connected to the USB connector 21 (see FIG. 1B).
  • the FET Q4 is turned on and the FETs Q1, Q2 and Q3 are turned off.
  • the voltage Vcc output from the SYS terminal is equal to the voltage value of the battery voltage VBAT . Therefore, when the voltage value of the battery voltage V BAT drops below that at full charge, the voltage V cc also drops. In this feeding mode, the voltage Vcc at the SYS terminal fluctuates. The line between the SW terminal and the VBUS terminal is blocked by the parasitic diode of the FETQ1. Therefore, the voltage of 5V is not generated by the reverse power flow (OTG function) of the charging IC 103 .
  • FIG. 6E is a diagram illustrating power supply paths of the charging IC 103 operating in the power supply mode by the OTG function of the battery voltage VBAT .
  • This power supply mode is executed when the MCU 101 applies a high-level signal to the CE terminal while the I2C interface 103A is instructed by the MCU 101 to use the OTG function through I2C communication.
  • the FETs Q1 and Q4 are controlled to be on, the FET Q2 is controlled to be off, and the FET Q3 is PWM controlled.
  • the charging IC 103 operates as a boost regulator (converter).
  • the voltage Vcc output from the SYS terminal is the same as the voltage value of the battery voltage VBAT . Therefore, when the voltage value of the battery voltage V BAT drops below that at full charge, the voltage V cc also drops.
  • a current flows through the GND terminal via the inductance while the FET Q3 is on-controlled. After that, when the FET Q3 is turned off, a back electromotive voltage is generated in the inductance. Due to this back electromotive force, a voltage obtained by boosting the voltage Vcc to 5V appears at the VBUS terminal. A voltage of 5V is output to enable the use of the LED 302 (see FIG. 2B).
  • the transistor In order for the LED 302 to emit light, the transistor must be closed inside the MCU 101 . In other words, the LED 302 is connected to ground through a transistor provided inside the MCU 101 .
  • the charging IC 103 in which the CE terminal operates in positive logic may be used instead.
  • a high level signal should be applied from the MCU 101 to the CE terminal.
  • FIG. 7A is a diagram illustrating a configuration example of the front side of the USB connector board 200 used in Embodiment 1.
  • FIG. 7B is a diagram illustrating a configuration example of the back side of the USB connector board 200 used in the first embodiment.
  • the front and back surfaces in FIGS. 7A and 7B are used only in the description of the first embodiment.
  • the USB connector board 200 is a board that handles higher voltage than other boards.
  • the USB connector board 200 is also a double-sided mounting board.
  • a USB connector 21 is mounted on the USB connector board 200 .
  • the USB connector 21 in this embodiment is used to receive power from an external power supply via a USB cable.
  • the USB connector board 200 is mounted with a fuel gauge IC 201 for collecting information on the battery 50 (see FIG. 2A) and a boost DC/DC circuit 202 .
  • the fuel gauge IC 201 has a VBAT terminal to which the power supply line of the battery 50 is connected. However, the fuel gauge IC 201 operates by receiving a system power supply Vcc 33 of 3.3 V from the load switch 106 (see FIG. 4), and receives information such as the remaining capacity of the battery 50 based on the input to the VBAT terminal. get.
  • FIG. 8 is a diagram for explaining the function of the fuel gauge IC 201. As shown in FIG. FIG. 8 shows a digital calculation unit 201A, a register 201B, and an I2C interface 201C as representative components of the fuel gauge IC 201. As shown in FIG. Although not shown in FIG. 8, the fuel gauge IC 201 has a terminal such as a VBAT terminal to which information of the battery 50 is input.
  • Digital operation unit 201A calculates remaining capacity (Ah) based on battery temperature T BAT (°C), battery voltage V BAT (V), and battery current I BAT (A), and stores it in register 201B.
  • the digital calculator 201A also calculates the full charge capacity (Ah) at the current time. Note that the battery temperature T BAT (°C) is measured by the thermistor 53 (see FIG. 2A).
  • the digital calculation unit 201A has a function of calculating a state of charge (SOC) when the fully charged state at the current time is 100% and the fully discharged state is 0%.
  • the calculated SOC is also stored in register 201B.
  • the calculated SOH is also stored in register 201B.
  • the SOH may be expressed as a ratio of the full charge capacity at the current time to the full charge capacity when new.
  • the SOH when new is 100%. Instead of the full charge capacity, the ratio of the internal resistance of the battery 50 at the current time to the internal resistance of the battery 50 when new may be used as the SOH.
  • the I2C interface 201C is used for serial communication with the MCU 101 mounted on the adjacent MCU board 100 .
  • a protection IC 203 for the battery 50 is mounted on the USB connector board 200 .
  • the protection IC 203 monitors overcharging, overdischarging, and overcurrent during charging or discharging of the battery 50, and protects the battery 50 when these are detected.
  • Connectors 204A and 204B are mounted on the USB connector board 200 to be connected to the negative electrode 51 and the positive electrode 52 (see FIG. 2B) used to extract power from the battery 50, respectively.
  • the connector 204A is for the positive electrode and the connector 204B is for the negative electrode.
  • a connector 205 for the thermistor 53 used for battery temperature measurement is also mounted on the USB connector board 200 .
  • heater connectors 206A and 206B are mounted on the USB connector board 200 .
  • the heater connector 206A is for the positive electrode
  • the heater connector 206B is for the negative electrode.
  • an overvoltage protection IC is also mounted on the USB connector board 200 .
  • An overvoltage protection IC is located between the USB connector 21 (see FIG. 1B) and the load switch 104 and is used to monitor the power supplied from the USB connector 21 .
  • the overvoltage protection IC cuts off the electrical connection between the USB connector 21 and the load switch 104 when overcurrent and/or overvoltage is detected.
  • FIG. 9 is a diagram illustrating a configuration example of the LED and Bluetooth board 300 and the Hall IC board 400 used in the first embodiment.
  • a tactile switch 301 and an LED 302 are mounted on the LED and Bluetooth board 300 .
  • the tactile switch 301 is used as a so-called power button. In the case of a long press operation with the external panel 10 removed, the tactile switch 301 also functions as a reset button for the MCU 101 .
  • the number of LEDs 302 in Embodiment 1 is eight. In FIG. 9, the LEDs 302 are arranged in a row on the LED and Bluetooth board 300 . The number of LEDs 302 and the arrangement of the LEDs and the Bluetooth board 300 can be changed arbitrarily.
  • a voltage Vcc5 of 5 V is applied to the LED 302 from the charging IC 103 (see FIG. 4) or the USB connector 21 .
  • Various information is notified to the user by a combination of light emission of the eight LEDs 302 .
  • the remaining capacity of the battery 50 is displayed.
  • it is notified that a reset will be executed. Reset is executed when the push button 23 (that is, the tactile switch 301) is pressed long while the external panel 10 is removed from the main body housing 20.
  • FIG. Light emission of the LED 302 is PWM-controlled by the MCU 101 (see FIG. 3A).
  • LED and Bluetooth board 300 to which the voltage Vcc5 of 5V is applied is provided separately from the MCU board 100 and the USB connector board 200, wiring and heat do not concentrate on one board.
  • a driver may be used to control the light emission of the LED 302 at a higher level.
  • a Bluetooth IC 303 is mounted on the LED and Bluetooth board 300 .
  • the Bluetooth IC 303 executes communication with paired external devices. Pairing is performed on the condition that the tactile switch 301 is pressed while the shutter 30 is closed.
  • the Bluetooth IC 303 is supplied with a 3.3V system power supply Vcc33 . UART communication is used for communication between the Bluetooth IC 303 and the MCU 101 .
  • the LED and Bluetooth board 300 is mounted with a Hall IC 304 used to detect attachment and detachment of the external panel 10 to the main body housing 20, and a single Schmidt trigger inverter 305 that stabilizes the output of the Hall IC 304 with hysteresis characteristics. .
  • the Hall IC 304 and the single Schmitt trigger inverter 305 are also supplied with the 3.3V system power supply Vcc33 .
  • Single Schmidt trigger inverter 305 may be omitted.
  • a Hall IC 401 for detecting opening and closing of the shutter 30 is mounted on the Hall IC substrate 400 .
  • the Hall IC 401 is also supplied with the 3.3V system power Vcc33 .
  • Hall IC substrate 400 is also connected to MCU 101 through flexible substrate 600 .
  • FIG. 10 is a diagram illustrating an example of a communication protocol employed by the circuit unit 1000 (see FIG. 2B). Specifically, FIG. 10 illustrates communication protocols that the MCU 101 uses to communicate with other ICs. MCU 101 in Embodiment 1 communicates with other ICs using a plurality of communication protocols. Specifically, I2C communication and UART communication are used. In the case of the first embodiment, there are two communication lines corresponding to I2C communication, and one communication line corresponding to UART communication.
  • the two communication lines corresponding to the I2C communication are a first communication line used for communication with an IC on the same substrate as the MCU 101 and a communication line used for communication with an IC on a substrate different from the MCU 101.
  • a second communication line There is no electrical contact between the first communication line and the second communication line. That is, the communication on the first communication line and the communication on the second communication line are independent.
  • One communication line corresponding to UART communication is the third communication line.
  • the first communication line is denoted as "I2C1" and the second communication line is denoted as "I2C2".
  • the first communication line is mounted on the MCU board 100 as a wiring pattern.
  • the MCU board 100 is also called a first board.
  • the MCU 101 is provided with a first communication terminal 101A for the first communication line and a second communication terminal 101B for the second communication line.
  • MCU 101 is connected to EEPROM 102 and charging IC 103 through a first communication line.
  • the charging IC 103 is also called a first IC
  • the EEPROM 102 is also called a third IC.
  • the charging IC 103 is provided with a third communication terminal 103A1 for the first communication line
  • the EEPROM 102 is provided with a fifth communication terminal 102A for the first communication line.
  • the second communication line is included in flexible substrate 600 (see FIG. 7B) that connects MCU substrate 100 and USB connector substrate 200 .
  • the board surface of the MCU board 100 and the board surface of the USB connector board 200 are installed substantially parallel. This relationship between the substrates can also be seen, for example, from FIGS. 2A, 2B and 3A.
  • the USB connector board 200 is located next to the MCU board 100 .
  • the distance of the flexible board 600 connecting the MCU board 100 and the USB connector board 200 is shorter than the distance of the flexible board 600 connecting the MCU board 100 and the LED and Bluetooth board 300 .
  • the distance between the MCU board 100 and the flexible board 600 connecting the LED and Bluetooth board 300 is shorter than the distance between the flexible board 600 connecting the MCU board 100 and the Hall IC board 400 . This installation relationship can be seen from FIG. 9, for example.
  • the USB connector board 200 is also called a second board.
  • the MCU 101 is connected to the fuel gauge IC 201 through the second communication line.
  • the fuel gauge IC 201 is also called a second IC.
  • the fuel gauge IC 201 is provided with a fourth communication terminal 201A1 for the second communication line.
  • the LED and Bluetooth board 300 is also called a third board.
  • a third communication line for UART communication is included in the flexible board 600 (see FIG. 7A) connecting the MCU board 100 and the LED and Bluetooth board 300 .
  • MCU 101 is connected to Bluetooth IC 303 through a third communication line.
  • the Bluetooth IC 303 is also called a fourth IC.
  • the MCU 101 is provided with a sixth communication terminal 101C for the third communication line.
  • the Bluetooth IC 303 is provided with a seventh communication terminal 303A for the third communication line.
  • I2C communication is capable of one-to-many communication. That is, I2C communication is a bus connection. Therefore, in the case of I2C communication, a communication destination is specified by an address.
  • FIG. 11 is a diagram illustrating an image of I2C communication.
  • FIG. 11 illustrates communication between the MCU 101 and the fuel gauge IC 201 . That is, FIG. 11 shows an example of communication using the second communication line.
  • I2C communication is executed in the order of address transmission, command transmission, and data transmission.
  • command transmission and data transmission are in multi-byte format, but they may be in single-byte format.
  • the number of signal lines for both the first communication line and the second communication line corresponding to I2C communication is two, a clock line SCL for serial communication and a data line SDA for serial communication, regardless of the number of connected ICs. is.
  • the speed of I2C communication is 0.1 to 1 Mbps.
  • the clock line SCL is used for transmitting and receiving clock pulses and ACKs that give synchronization timing
  • the data line SDA is used for transmitting and receiving the above-described addresses, commands, and data.
  • UART communication is one-to-one connection and asynchronous communication that does not use a clock.
  • the number of signal lines for UART communication is one, but in the case of bidirectional communication, the number of signal lines for UART communication is two. In the example of FIG. 10, three signal lines including the reset line are used.
  • the speed of UART communication is 0.1 to 115 kbps. That is, the speed of UART communication is slower than that of I2C communication.
  • UART communication is capable of long-distance communication. Therefore, in Embodiment 1, UART communication is used for communication between the MCU 101 and the LED and the Bluetooth board 300 where the distance of the flexible board 600 is long.
  • FIG. 12 is a diagram for explaining operation modes prepared in the aerosol generating device 1 used in Embodiment 1 and transition conditions between the operation modes. In the following description, transition between operation modes may also be referred to as transition mode.
  • the aerosol generator 1 used in the embodiment has nine operation modes. There are nine modes: charging mode M1, sleep mode M2, error mode M3, permanent error mode M4, Bluetooth pairing mode M5, active mode M6, initialization mode M7, vaping mode M8, and vaping end mode M9. Each operation mode will be described in order below.
  • the charge mode M1 is a mode in which the battery 50 is charged using the BUS voltage VUSB .
  • the charge mode M1 when the battery voltage V BAT of the battery 50 (see FIG. 2A) is extremely low, deep discharge or over discharge may be detected.
  • ⁇ Sleep mode M2 Sleep mode M2 is a state in which most of the functions cannot be used except detection of the closed state of the shutter 30 (see FIG. 1A) and monitoring of the battery 50 by the fuel gauge IC201. Therefore, the sleep mode M2 consumes less power than the other modes. However, the supply of the system power supply Vcc33_0 to some flip-flops is continued. As a result, the value of the flip-flop that continues to be powered is held.
  • the sleep mode M2 is entered in the charging mode M1 when the USB is removed or charging is completed. Conversely, the charge mode M1 is entered when the USB is connected in the sleep mode M2.
  • sleep mode M2 can also transition to Bluetooth pairing mode M5 and active mode M6. Note that the charging mode M1 may be entered even when the USB is connected in a mode other than the sleep mode M2.
  • the error mode M3 is a mode for temporarily saving when a recoverable error such as abnormal temperature occurs. When it shifts to the error mode M3, an error is notified, and the sleep mode M2 is restored after a certain period of time has passed or after a predetermined condition for canceling the error has been satisfied. Incidentally, the error mode M3 also shifts from the charging mode M1, the active mode M6, the vaping initialization mode M7, and the vaping mode M8.
  • the permanent error mode M4 is a mode that prohibits transition to other modes when an unrecoverable error such as deep discharge, battery life, or short circuit occurs. Also in FIG. 12, there are no arrows from the permanent error mode M4 to other modes.
  • the Bluetooth pairing mode M5 is a mode for executing pairing with an external device by Bluetooth. Paired external devices are recorded in the whitelist. That is, they are bonded.
  • the Bluetooth pairing mode M5 is entered by operating the push button 23 (see FIG. 1D) while the shutter 30 is closed in the sleep mode M2. If bonding is successful or unsuccessful in Bluetooth pairing mode M5, it transitions to sleep mode M2.
  • Active mode M6 is a mode in which most functions except heating are available.
  • the active mode M6 is entered when the shutter 30 is opened in the sleep mode M2. On the contrary, when the shutter 30 is closed in the active mode M6 or when a certain period of time elapses, the mode shifts to the sleep mode M2.
  • vaping initialization mode M7 is a mode in which initialization and the like are performed when heating the stick is started.
  • the initialization mode M7 is entered by operating the push button 23 in the active mode M6. If an error occurs during initialization, the initialization mode M7 is shifted to the error mode M3.
  • Vaping mode M8 is a mode for heating tobacco sticks.
  • the heater is energized alternately for generating heat and for obtaining the resistance value. Note that the temperature profile of the heater changes over time.
  • the vaping mode M8 is entered. If an error occurs during vaping mode M8, the mode shifts to error mode M3.
  • the vaping end mode M9 is a mode for executing heating end processing.
  • the vaping end mode M9 is entered in the vaping mode M8 when the time or the number of puffs reaches the upper limit, when the shutter 30 is closed, or when the USB is connected.
  • the charging mode M1 may be subsequently shifted to. Note that when the end of heating is detected in the vaping end mode M9, the mode shifts to the active mode M6.
  • FIG. 13A and 13B are charts for explaining the contents of communication for each operation mode according to the first embodiment.
  • FIG. 13 illustrates the contents of communication for a total of 11 modes, 9 operating modes and 2 transition modes from the sleep mode.
  • FIG. 13 shows communication on the three communication lines described above, that is, the first and second communication lines for I2C communication and the third communication line for UART communication.
  • MCU 101, EEPROM 102, and charging IC 103 are connected to the first communication line.
  • the MCU 101 and the fuel gauge IC 201 are connected to the second communication line.
  • the MCU 101 and the Bluetooth IC 303 are connected to the third communication line.
  • the MCU 101 receives charging information from the charging IC 103 through the first communication line. Meanwhile, the MCU 101 transmits a command to turn off the OTG function to the charging IC 103 through the first communication line. That is, the MCU 101 instructs the charging IC 103 to stop the function of generating a voltage of 5V from the battery voltage VBAT . This allows the LED 302 to be supplied with the BUS voltage V_USB .
  • the MCU 101 also transmits commands to the EEPROM 102 through the first communication line. For example, the MCU 101 transmits a command to the EEPROM 102 to store the charging start date and time and the remaining battery level at that time. Also, for example, the MCU 101 transmits a command to the EEPROM 102 to store the charging end date and time and the remaining battery level at that time.
  • FIG. 14 is a diagram illustrating communication during the charging mode M1. Note that the initial state of the processing operation shown in FIG. 14 is the sleep mode M2. In the sleep mode M2, when the voltage input to the PA9 terminal of the MCU 101 changes to H level, the MCU 101 detects the USB connection and changes the operation mode to the charge mode M1. A voltage obtained by dividing the BUS voltage VUSB is applied to the PA9 terminal. By connecting one end of the voltage dividing circuit to the ground, the potential of the PA9 terminal becomes equal to the ground potential when the USB is not connected.
  • the MCU 101 sends an OTG off command to the charging IC 103 on the same board through the first communication line (that is, the first system of I2C).
  • the MCU 101 changes the voltage output to the PC9 terminal to H level, and turns on the load switch 104 (see FIG. 4).
  • the load switch 104 is turned on, the power supply of the BUS voltage VUSB to the charging IC 103 is started.
  • the MCU 101 may turn on the load switch 104 by setting the voltage output to the PC9 terminal to L level or indefinite. In this case, the ON terminal of the load switch 104 is supplied with a voltage obtained by dividing the BUS voltage VUSB .
  • the ON terminal of the load switch 104 becomes H level by the voltage obtained by dividing the BUS voltage VUSB .
  • charging of the battery 50 by the charging IC 103 does not start even if the supply of the BUS voltage VUSB starts.
  • Charging of the battery 50 is started when the MCU 101 notifies the charging IC 103 of a charging command. Note that the first communication line is not used for this notification.
  • the MCU 101 transmits/receives I2C commands to/from the fuel gauge IC 201 at intervals of one second through the second communication line (that is, the second I2C system). Communication between the MCU 101 and the fuel gauge 201 using this second communication line continues during the charging mode M1. That is, MCU 101 can concentrate on communication with fuel gauge IC 201 without being interrupted by communication with EEPROM 102 and charging IC 103 . In other words, the MCU 101 can communicate with the EEPROM 102 and the charging IC 103 by communicating with the fuel gauge IC 201 .
  • the MCU 101 After controlling the load switch 104 to the ON state, the MCU 101 writes charging start information into the EEPROM 102 through the first communication line. Specifically, the charging start date and time and the remaining battery capacity at that time are recorded. At this point, charging has not yet started. After that, MCU 101 transmits a charging command to charging IC 103 . This charging command is executed by changing the potential of the PB3 terminal of the MCU 101 to L level. A change in potential appearing at the PB3 terminal is applied to the CE terminal (see FIG. 5) of the charging IC 103 . When charging is started by receiving a charging command, the MCU 101 and the charging IC 103 transmit and receive I2C commands at regular time intervals (for example, x second intervals).
  • the MCU 101 instructs the EEPROM 102 to write charging completion information. Also, the MCU 101 notifies the charging IC 103 of a charging stop command by changing the potential of the PB3 terminal to H level. A charging stop command to the charging IC 103 is executed by changing the potential of the PB3 terminal to H level. After that, when the voltage input to the PA9 terminal changes to L level, the MCU 101 detects removal of the USB. Subsequently, the MCU 101 changes the voltage output to the PC9 terminal to the L level, and controls the load switch 104 to be off. When the load switch 104 is controlled to be in an off state, the charging IC 103 cannot be supplied with the BUS voltage VUSB .
  • MCU 101 communicates with each of EEPROM 102 and charging IC 103 individually. That is, the timing at which MCU 101 and EEPROM 102 communicate does not overlap with the timing at which MCU 101 communicates with charging IC 103 . More specifically, the MCU 101 and the EEPROM 102 communicate with each other at the beginning (before charging starts) and the end (after charging is completed) in the charging mode M1. The timing for communication between the MCU 101 and the charging IC 103 is the middle period (during charging) in the charging mode M1.
  • Communication between the MCU 101 and the EEPROM 102, communication of the OTG off command from the MCU 101 to the charging IC 103, and communication of the completion of charging from the charging IC 103 to the MCU 101 are executed when each event occurs.
  • communication on the first communication line is performed aperiodically.
  • communication on the second communication line is performed periodically during the charging mode M1.
  • the timing of communication on the first communication line overlaps with the timing of communication on the second communication line.
  • the second communication line is a communication line that connects the USB connector board 200 different from the MCU board 100 on which the MCU 101 is mounted. is. Therefore, it becomes possible to collect the information of the battery 50 in a cycle of one second.
  • the communication frequency of the second communication line is higher than the communication frequency of the first communication line. It is common technical knowledge that the I2C communication used for the second communication line is not suitable for long-distance communication across a plurality of boards.
  • the USB connector board 200 on which the fuel gauge IC 201 is mounted is positioned next to the MCU board 100 .
  • high-frequency communication by I2C communication is possible even with the fuel gauge IC 201 mounted on another substrate.
  • the MCU 101 communicates with the LED on which the Bluetooth IC 303 is mounted and the Bluetooth board 300 through the third communication line.
  • the third communication line here uses UART communication with a long communication distance as a communication protocol.
  • the MCU 101 sends charging information to the Bluetooth IC 303 . This charging information can be transmitted to the paired external device.
  • ⁇ Sleep mode M2 MCU 101 does not communicate with EEPROM 102 , charging IC 103 , or Bluetooth IC 303 . However, in the transition period from the active mode M6 to the sleep mode M2, the MCU 101 transmits a command to turn off the OTG function to the charging IC 103 through the first communication line. The MCU 101 also commands the Bluetooth IC 303 to sleep through the third communication line. The transition from active mode M6 to sleep mode M2 is also one of two transition modes.
  • the MCU 101 transmits a command to turn on the OTG function to the charging IC 103 through the first communication line. Also, the MCU 101 instructs the Bluetooth IC 303 to start up through the third communication line.
  • the transition period here is an example of a first condition in which communication is performed only with the charging IC 103 as the first IC.
  • the transition from sleep mode M2 to active mode M6 is also the other of the two transition modes.
  • the MCU 101 stores the error information in the EEPROM 102 through the first communication line. Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. Also, the MCU 101 sends error information to the Bluetooth IC 303 through the third communication line.
  • the error mode M3 and the permanent error mode M4 are examples of second conditions for communicating with the EEPROM 102 as the third IC.
  • the MCU 101 receives information on the paired terminal from the Bluetooth IC 303 through the third communication line. After that, the MCU 101 stores the paired terminals in the EEPROM 102 through the first communication line. Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
  • the Bluetooth pairing mode M5 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
  • ⁇ Active mode M6 The MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. Note that the MCU 101 in active mode M6 communicates only with the fuel gauge IC 201 .
  • the MCU 101 stores the heating start time in the EEPROM 102 through the first communication line. Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
  • the initialization mode M7 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
  • ⁇ Vaping mode M8 The MCU 101 stores the puff timing in the EEPROM 102 through the first communication line. The puff timing is detected by the thermistor 41 used for puff detection. Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. The vaping mode M8 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
  • the MCU 101 stores the vaping mode time in the EEPROM 102 through the first communication line. Note that the heating end time may be stored. Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. Also, the MCU 101 sends suction information to the Bluetooth IC 303 through the third communication line.
  • the vaping end mode M9 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
  • the circuit unit 1000 of the aerosol generating device 1 used in Embodiment 1 provides two communication lines for I2C communication between the MCU 101 and other ICs. As a result, even if the number of ICs with which the MCU 101 communicates increases, high-frequency and low-delay communication can be realized with a plurality of ICs. As a result, the control accuracy and functionality of the MCU 101 are improved.
  • the two communication lines here include a first communication line mounted on the MCU board 100 and a second communication line connecting the MCU board 100 and the USB connector board 200 . Since two systems for I2C communication are provided for each substrate to be communicated with, communication lines do not concentrate on one substrate, and complication and high density of wiring patterns are suppressed. As a result, the manufacturing cost of the aerosol generator 1 can be reduced.
  • I2C communication is adopted for communication with the USB connector board 200 adjacent to the MCU board 100, high-speed communication between the MCU 101 and the fuel gauge IC 201 can be realized. In other words, the MCU 101 can acquire the state of the battery 50 with a short delay.
  • UART communication for communication with the LED and the Bluetooth board 300 whose communication distance is longer than that of the USB connector board 200 by the flexible board 600, reliable communication is realized even with the Bluetooth IC 303 having a long communication distance.
  • the MCU 101 communicates with each of the plurality of ICs sharing the first communication line at different timings, the accuracy of communication between the MCU 101 and each IC is also improved.
  • the charging mode M1 is a mode in which the MCU 101 communicates with both the EEPROM 102 and the charging IC 103 through the first communication line.
  • Sleep mode M2 is a mode in which MCU 101 does not communicate with both EEPROM 102 and charging IC 103 through the first communication line.
  • the MCU 101 communicates with the fuel gauge IC 201 through the second communication line.
  • the transition period from the active mode M6 and the transition period to the active mode M6 are modes in which the MCU 101 communicates only with the charging IC 103 through the first communication line.
  • Active mode M6 is a mode in which MCU 101 does not communicate with both EEPROM 102 and charging IC 103 through the first communication line.
  • the remaining operating modes namely error mode M3, permanent error mode M4, Bluetooth pairing mode M5, initialization mode M7, vaping mode M8, and vaping end mode M9, MCU 101 communicates only with EEPROM 102 through the first communication line. mode.
  • Embodiment 2 The aerosol generator 1 (see FIG. 1A) used in Embodiment 2 differs from Embodiment 1 in part of the communication during the operation mode. 15A and 15B are charts for explaining the contents of communication for each operation mode according to the second embodiment.
  • the aerosol generator 1 used in the second embodiment differs from the first embodiment in that it does not communicate with the fuel gauge IC 201 through the second communication line in the error mode M3 and the permanent error mode M4.
  • Embodiment 3 The aerosol generator 1 (see FIG. 1A) used in Embodiment 3 differs from Embodiment 1 in part of the communication during the operation mode. 16A and 16B are charts for explaining the contents of communication for each operation mode according to the third embodiment.
  • the aerosol generator 1 used in Embodiment 3 differs from Embodiment 1 in that it communicates with the fuel gauge IC 201 through the second communication line in all operations including the sleep mode M2.
  • FIG. 17 is a diagram for explaining a connection form of SPI communication, which is one form of serial communication.
  • SPI communication as signal lines, a clock line, a master output line, a master input line, and slave selection lines for the number of slaves are required. For example, if there is one slave, there are four signal lines, and if there are three slaves, there are six signal lines.
  • SPI communication is capable of communication at a speed of 1 to several Mbps, but is not suitable for long-distance communication. Therefore, SPI communication can be adopted as an alternative configuration for I2C communication.
  • the MCU 101 communicates with two ICs on the same substrate. good too. Also, although the MCU 101 communicates with one IC on the USB connector board 200 , it may communicate with a plurality of ICs on the USB connector board 200 . The same is true for communication with the LEDs and Bluetooth board 300 .
  • the USB connector board 200 is the only other board that uses I2C communication for communication with the MCU 101. However, if the communication distance with the MCU board 100 is short, other boards and You may employ
  • FIG. 18 is a diagram illustrating an example of the external configuration of an aerosol generating device 1A compatible with electronic cigarettes.
  • the aerosol generator 1A is a tool for generating flavored aerosol without combustion, and has a rod shape extending along the longitudinal direction A. As shown in FIG.
  • the aerosol generator 1A is composed of a power supply unit 710, a first cartridge 720, and a second cartridge 730 along the longitudinal direction A. As shown in FIG.
  • the first cartridge 720 is detachable from the power supply unit 710 .
  • the second cartridge 730 is detachable with respect to the first cartridge 720 .
  • the first cartridge 720 and the second cartridge 730 are each replaceable.
  • the power supply unit 710 corresponds to the external case 20B (see FIG. 1D) in Embodiment 1, and incorporates MCU and other circuits in addition to the battery.
  • the power supply unit 710 incorporates a circuit corresponding to the circuit unit 1000 .
  • a button 714 is provided on the side surface of the power supply unit 710 . This button 714 corresponds to the push button 23 (see FIG. 1D).
  • the first cartridge 720 incorporates a tank that stores liquid as an aerosol source, a wick that draws the liquid from the tank by capillary action, and a coil that heats and vaporizes the liquid held in the wick.
  • the first cartridge 720 is also called an atomizer.
  • the first cartridge 720 incorporates a flavor unit that adds flavor to the aerosol.
  • a suction port 732 is provided in the second cartridge 730 . Note that the appearance of the aerosol generating device 1A shown in FIG. 18 is an example.
  • the aerosol generator that heats the aerosol source has been described, but application to a nebulizer that generates aerosol using ultrasonic waves or the like is also possible.
  • an ultrasonic vibrator is used instead of the heater.
  • the MCU is configured to be able to control the vibration of the ultrasonic transducer.
  • the aerosol generator was exemplified, but the configuration of the circuit unit described above can also be applied to portable electronic devices that do not have an aerosol generation mechanism. In particular, it can be applied to portable electronic equipment containing a plurality of ICs.

Abstract

A circuit unit of an aerosol generation device according to the present invention comprises: a heater connector to which a heater that consumes power supplied from a power supply and heats an aerosol source is connected; a controller that includes a first communication terminal and a second communication terminal for serial communications and controls the supply of power to the heater from the power supply; a first IC that is separate from the controller and that includes a third communication terminal for serial communications; a second IC that is separate from the controller and the first IC and that includes a fourth communication terminal for serial communications; a first communication line that connects the first communication terminal and the third communication terminal; a second communication line that connects the second communication terminal and the fourth communication terminal; a first substrate; and a second substrate that is separate from the first substrate and that is distanced from the first substrate, wherein the controller and the first IC are mounted on the first substrate, and the second IC is mounted on the second substrate.

Description

エアロゾル生成装置の回路ユニット及びエアロゾル生成装置Circuit unit of aerosol generator and aerosol generator
 本発明は、エアロゾル生成装置の回路ユニット及びエアロゾル生成装置に関する。 The present invention relates to a circuit unit of an aerosol generator and an aerosol generator.
 エアロゾル源の加熱によりエアロゾルを生成する装置として、電子たばこや加熱式たばこが知られている。電子たばこは、エアロゾル源である液体を霧化してエアロゾルを生成する。一方、加熱式たばこは、エアロゾル源であるスティックを燃焼させずに加熱することでエアロゾルを生成する。以下では、電子たばこや加熱式たばこを総称する場合、「エアロゾル生成装置」という。なお、特に断りのない限り、「エアロゾル生成装置」には、ネブライザーや、エアロゾル源にたばこ由来の成分を含まない電子たばこや加熱式たばこが含まれる点に留意されたい。 Electronic cigarettes and heat-not-burn cigarettes are known as devices that generate aerosol by heating an aerosol source. E-cigarettes produce an aerosol by atomizing a liquid that is an aerosol source. On the other hand, heat-not-burn cigarettes generate an aerosol by heating a stick, which is an aerosol source, without burning it. Hereinafter, electronic cigarettes and heat-not-burn cigarettes are collectively referred to as "aerosol generators." It should be noted that unless otherwise specified, the term "aerosol generator" includes nebulizers, electronic cigarettes, and heat-not-burn cigarettes that do not contain tobacco-derived ingredients in the aerosol source.
特表2019-526889号公報Japanese Patent Publication No. 2019-526889 特表2019-511909号公報Japanese Patent Application Publication No. 2019-511909 米国特許出願公開第2020/0000146号公報明細書U.S. Patent Application Publication No. 2020/0000146
 今日のエアロゾル生成装置は、高機能化に伴い、複数のICを有することがある。複数のIC間の通信には、シリアル通信が採用される。一方で、シリアル通信で接続されるICの数が増えると、基板上における配線パターンの複雑化や高密度化をまねく。結果的に、コストや発熱が増大し、通信のビジーも増加する可能性がある。 Today's aerosol generators may have multiple ICs as they become more sophisticated. Serial communication is adopted for communication between a plurality of ICs. On the other hand, as the number of ICs connected by serial communication increases, the wiring pattern on the board becomes more complicated and denser. As a result, costs and heat generation increase, and communication busyness may also increase.
 本発明は、シリアル通信のための電気部品の基板への実装が改善されたエアロゾル生成装置及びその回路ユニットを提供することを目的とする。 An object of the present invention is to provide an aerosol generator and its circuit unit with improved mounting of electrical components on a substrate for serial communication.
 第1の特徴は、電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、シリアル通信用の第1通信端子と第2通信端子を含み、前記電源から前記ヒータへの電力の供給を制御するコントローラと、前記コントローラとは別体であり、かつ、シリアル通信用の第3通信端子を含む第1ICと、前記コントローラ及び前記第1ICとは別体であり、かつ、シリアル通信用の第4通信端子を含む第2ICと、前記第1通信端子と前記第3通信端子とを接続する第1通信ラインと、前記第2通信端子と前記第4通信端子とを接続する第2通信ラインと、第1基板と、前記第1基板とは別体であり、かつ、当該第1基板から離間した第2基板と、を有し、前記コントローラ及び前記第1ICは、前記第1基板に実装され、前記第2ICは、前記第2基板に実装される、エアロゾル生成装置の回路ユニットである。
 第2の特徴は、第1の特徴に記載の回路ユニットにおいて、前記第1通信ラインで用いられる通信プロトコルは、前記第2通信ラインで用いられる通信プロトコルと同じである。
 第3の特徴は、第1の特徴に記載の回路ユニットにおいて、前記第1通信ラインで用いられる通信プロトコルは、I2C又はSPIである。
 第4の特徴は、第2又は第3の特徴に記載の回路ユニットにおいて、前記第2基板は、前記第1基板に隣接する基板であり、前記第2通信ラインで用いられる通信プロトコルは、I2C又はSPIである。
 第5の特徴は、第2又は第3の特徴に記載の回路ユニットにおいて、前記第1基板及び前記第2基板とは別体であり、かつ、当該第1基板及び当該第2基板から離間した第3基板と、前記第1基板の第6通信端子と前記第3基板の第7通信端子とを接続する第3通信ラインと、を更に有し、前記第3基板は、前記第2基板よりも前記第1基板から離間し、前記第3通信ラインで用いられる通信プロトコルは、UARTである。
 第6の特徴は、第2~第5の特徴のうちいずれか1つに記載の回路ユニットにおいて、前記第2通信ラインにおける通信頻度は、前記第1通信ラインにおける通信頻度より高く、前記第1通信ラインで用いられる通信プロトコルは、I2Cである。
 第7の特徴は、第2~第5の特徴のうちいずれか1つに記載の回路ユニットにおいて、前記第1通信ラインを介して前記コントローラへ接続されるICの数は、前記第2通信ラインを介して前記コントローラへ接続されるICの数より多く、前記第1通信ラインで用いられる通信プロトコルは、I2Cである。
 第8の特徴は、第1~第7の特徴のうちいずれか1つに記載の回路ユニットにおいて、前記コントローラ、前記第1IC及び前記第2ICのいずれとも別体であり、かつ、シリアル通信用の第5通信端子を含む第3ICを更に有し、前記第1通信ラインは、前記第1通信端子と前記第5通信端子とを接続し、前記第3ICは、前記第1基板に実装される。
 第9の特徴は、第8の特徴に記載の回路ユニットにおいて、前記コントローラは、第1条件が満たされたことを契機として、前記第1ICと通信し、前記第1条件とは異なる第2条件が満たされたことを契機として、前記第3ICと通信するように構成される。
 第10の特徴は、第8の特徴に記載の回路ユニットにおいて、前記コントローラは、複数のモードのうちいずれか1つで動作し、前記複数のモードは、前記コントローラが前記第1ICと前記第3ICのうち前記第3ICのみと通信するモードを含む。
 第11の特徴は、第1~第10の特徴のうちいずれか1つに記載の回路ユニットにおいて、前記第1通信ラインを介して前記コントローラへ接続されるICの数は、前記第2通信ラインを介して前記コントローラへ接続されるICの数より多い。
 第12の特徴は、第11の特徴に記載の回路ユニットにおいて、前記第2通信ラインを介して前記コントローラへ接続されるICは、前記第2ICのみである。
 第13の特徴は、第12の特徴に記載の回路ユニットにおいて、前記第2ICは、前記電源の情報を取得する残量計ICである。
 第14の特徴は、第1の特徴に記載の回路ユニットにおいて、前記第1通信ラインで用いられる通信プロトコルは、前記第2通信ラインで用いられる通信プロトコルとは異なる。
 第15の特徴は、電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、シリアル通信用の第1通信端子と第2通信端子を含み、前記電源から前記ヒータへの電力の供給を制御するコントローラと、前記コントローラとは別体であり、かつ、シリアル通信用の第3通信端子を含む第1ICと、前記コントローラ及び前記第1ICとは別体であり、かつ、シリアル通信用の第4通信端子を含む第2ICと、前記第1通信端子と前記第3通信端子とを接続する第1通信ラインと、前記第2通信端子と前記第4通信端子とを接続する第2通信ラインと、第1基板と、前記第1基板とは別体であり、かつ、当該第1基板から離間した第2基板と、を有し、前記コントローラ及び前記第1ICは、前記第1基板に実装され、前記第2ICは、前記第2基板に実装される、エアロゾル生成装置である。
A first feature includes a heater connector connected to a heater that consumes power supplied from a power supply to heat an aerosol source, and a first communication terminal and a second communication terminal for serial communication, A controller that controls power supply to the heater and the controller are separate entities, and a first IC including a third communication terminal for serial communication, the controller and the first IC are separate entities, and a second IC including a fourth communication terminal for serial communication, a first communication line connecting the first communication terminal and the third communication terminal, and the second communication terminal and the fourth communication terminal. a second communication line to be connected, a first substrate, and a second substrate separate from the first substrate and separated from the first substrate, wherein the controller and the first IC are: A circuit unit of an aerosol generator mounted on the first substrate and the second IC mounted on the second substrate.
A second feature is the circuit unit according to the first feature, wherein the communication protocol used in the first communication line is the same as the communication protocol used in the second communication line.
A third feature is the circuit unit according to the first feature, wherein the communication protocol used in the first communication line is I2C or SPI.
A fourth feature is the circuit unit according to the second or third feature, wherein the second board is a board adjacent to the first board, and the communication protocol used in the second communication line is I2C. or SPI.
A fifth feature is the circuit unit according to the second or third feature, wherein the a third substrate; and a third communication line connecting a sixth communication terminal of the first substrate and a seventh communication terminal of the third substrate, wherein the third substrate is closer to the second substrate than the second substrate. is separated from the first substrate, and the communication protocol used in the third communication line is UART.
A sixth feature is the circuit unit according to any one of the second to fifth features, wherein the communication frequency on the second communication line is higher than the communication frequency on the first communication line, and the communication frequency on the first communication line is higher than that on the first communication line. The communication protocol used on the communication line is I2C.
A seventh feature is the circuit unit according to any one of the second to fifth features, wherein the number of ICs connected to the controller via the first communication line is equal to the number of ICs connected to the second communication line. and the communication protocol used on the first communication line is I2C.
An eighth feature is the circuit unit according to any one of the first to seventh features, wherein the controller, the first IC, and the second IC are separated from each other, and a circuit unit for serial communication is provided. A third IC including a fifth communication terminal is further provided, the first communication line connects the first communication terminal and the fifth communication terminal, and the third IC is mounted on the first substrate.
A ninth feature is the circuit unit according to the eighth feature, wherein the controller communicates with the first IC when a first condition is satisfied, and a second condition different from the first condition is satisfied, it is configured to communicate with the third IC.
A tenth feature is the circuit unit according to the eighth feature, wherein the controller operates in any one of a plurality of modes, and the controller operates in one of a plurality of modes, and the controller operates in the first IC and the third IC in the plurality of modes. includes a mode of communicating only with the third IC.
An eleventh feature is the circuit unit according to any one of the first to tenth features, wherein the number of ICs connected to the controller via the first communication line is equal to the second communication line. more than the number of ICs connected to the controller via .
A twelfth feature is the circuit unit according to the eleventh feature, wherein the IC connected to the controller via the second communication line is only the second IC.
A thirteenth feature is the circuit unit according to the twelfth feature, wherein the second IC is a fuel gauge IC that acquires information on the power supply.
A fourteenth feature is the circuit unit according to the first feature, wherein a communication protocol used in the first communication line is different from a communication protocol used in the second communication line.
A fifteenth feature includes a heater connector to which a heater that consumes power supplied from a power source and heats the aerosol source is connected, and a first communication terminal and a second communication terminal for serial communication. A controller that controls power supply to the heater and the controller are separate entities, and a first IC including a third communication terminal for serial communication, the controller and the first IC are separate entities, and a second IC including a fourth communication terminal for serial communication, a first communication line connecting the first communication terminal and the third communication terminal, and the second communication terminal and the fourth communication terminal. a second communication line to be connected, a first substrate, and a second substrate separate from the first substrate and separated from the first substrate, wherein the controller and the first IC are: The aerosol generating device is mounted on the first substrate, and the second IC is mounted on the second substrate.
 第1の特徴によれば、配線の複雑化や高密度化が抑制され、エアロゾル生成装置のコストを低減できる。
 第2の特徴によれば、配線の複雑化や高密度化が抑制され、エアロゾル生成装置のコストを低減できる。
 第3の特徴によれば、MCUがICと高頻度かつ遅延なく通信でき、エアロゾル生成装置の高機能化を実現できる。
 第4の特徴によれば、配線の複雑化や高密度化を抑制してエアロゾル生成装置のコストを低減しつつ、MCUがICと高頻度かつ遅延なく通信でき、エアロゾル生成装置の高機能化を実現できる。
 第5の特徴によれば、基板間の距離に応じたプロトコルの採用により、エアロゾル生成装置のコストを低減しつつ、エアロゾル生成装置の高機能化を実現できる。
 第6の特徴によれば、通信に用いる端子数が少ないために配線を簡略化できるI2C通信によって、エアロゾル生成装置のコストを低減しつつ、エアロゾル生成装置の高機能化を実現できる。
 第7の特徴によれば、接続されるICの数が増えてもコントローラの第1通信端子の数が変わらないI2C通信によって、エアロゾル生成装置のコストを低減しつつ、エアロゾル生成装置の高機能化を実現できる。
 第8の特徴によれば、コントローラが第3ICと通信するための専用の通信端子を有さなくてよいため、配線の複雑化や高密度化を抑制してエアロゾル生成装置のコストを低減しつつ、エアロゾル生成装置の高機能化を実現できる。
 第9の特徴によれば、第1通信ラインを共用する複数のICが通信するタイミングが重複しないので通信速度の低下を抑制できる。
 第10の特徴によれば、第1通信ラインを共用する複数のICが通信するモードが異なるので、通信速度の低下を抑制してエアロゾル生成装置の高機能化を実現できる。
 第11の特徴によれば、第2通信ラインに接続されるICとの通信頻度を向上できるため、第2通信ラインに接続されるICの情報を使用する制御の精度を向上できる。
 第12の特徴によれば、第2ICとの通信頻度を制約なく向上できるので、第2通信ラインに接続される第2ICの情報を使用する制御の精度を向上できる。
 第13の特徴によれば、電源の最新の情報を残量計ICから取得しやすくなるので、エアロゾル生成装置の安全性を向上できる。
 第14の特徴によれば、ICの特性や実装方法に応じた適切なプロトコルによる通信により、ICとの通信速度や通信の精度を向上できる。
 第15の特徴によれば、配線の複雑化や高密度化が抑制され、エアロゾル生成装置のコストを低減できる。
According to the first feature, complication and high density of wiring can be suppressed, and the cost of the aerosol generator can be reduced.
According to the second feature, complication and high density of wiring can be suppressed, and the cost of the aerosol generator can be reduced.
According to the third feature, the MCU can communicate with the IC frequently and without delay, and the aerosol generator can be made highly functional.
According to the fourth feature, the cost of the aerosol generator can be reduced by suppressing the complexity and density of the wiring, and the MCU can communicate with the IC frequently and without delay, thereby improving the functionality of the aerosol generator. realizable.
According to the fifth feature, by adopting a protocol according to the distance between substrates, it is possible to reduce the cost of the aerosol generating device and achieve high functionality of the aerosol generating device.
According to the sixth feature, the cost of the aerosol generating device can be reduced and the functionality of the aerosol generating device can be improved by I2C communication, which can simplify wiring due to the small number of terminals used for communication.
According to the seventh feature, the cost of the aerosol generator can be reduced and the functionality of the aerosol generator can be improved by means of I2C communication in which the number of first communication terminals of the controller does not change even if the number of connected ICs increases. can be realized.
According to the eighth feature, the controller does not need to have a dedicated communication terminal for communicating with the third IC. , it is possible to achieve high functionality of the aerosol generator.
According to the ninth feature, since the communication timings of the plurality of ICs sharing the first communication line do not overlap, a decrease in communication speed can be suppressed.
According to the tenth feature, the communication modes of the plurality of ICs sharing the first communication line are different, so it is possible to suppress a decrease in communication speed and realize high functionality of the aerosol generating device.
According to the eleventh feature, since the frequency of communication with the ICs connected to the second communication line can be improved, the accuracy of control using information from the ICs connected to the second communication line can be improved.
According to the twelfth feature, since the frequency of communication with the second IC can be improved without restriction, the accuracy of control using information of the second IC connected to the second communication line can be improved.
According to the thirteenth feature, the latest information on the power supply can be easily obtained from the fuel gauge IC, so the safety of the aerosol generating device can be improved.
According to the fourteenth feature, the communication speed and accuracy of communication with the IC can be improved by communication using an appropriate protocol according to the characteristics and mounting method of the IC.
According to the fifteenth feature, complication and high density of wiring are suppressed, and the cost of the aerosol generator can be reduced.
エアロゾル生成装置の正面側を斜め上方から観察する図である。It is a figure which observes the front side of an aerosol generation apparatus from diagonally upper direction. エアロゾル生成装置の正面側を斜め下方から観察する図である。It is a figure which observes the front side of an aerosol generation apparatus from the diagonally downward direction. シャッタを取り外したエアロゾル生成装置の上面を観察する図である。It is a figure which observes the upper surface of the aerosol generator which removed the shutter. 外部パネルを取り外した本体ハウジングを正面から観察する図である。It is a figure which observes a main body housing from the front from which the external panel was removed. 内部パネルを取り外すことで出現する外部ケース内の構成例を説明する図である。It is a figure explaining the structural example in an external case which appears by removing an internal panel. 外部ケースに内蔵される回路ユニットの外観例を説明する図である。FIG. 4 is a diagram for explaining an appearance example of a circuit unit incorporated in an external case; 実施の形態1で使用するMCU基板の表面側の構成例を説明する図である。4 is a diagram illustrating a configuration example of the front side of the MCU substrate used in Embodiment 1; FIG. 実施の形態1で使用するMCU基板の裏面側の構成例を説明する図である。4 is a diagram for explaining a configuration example of the back side of the MCU board used in Embodiment 1; FIG. 電源ライン上に現れる回路素子と各回路素子間に現れる電圧を説明する図である。FIG. 2 is a diagram for explaining circuit elements appearing on a power supply line and voltages appearing between the circuit elements; 実施の形態1で使用する充電ICの内部構成例を説明する図である。3 is a diagram illustrating an internal configuration example of a charging IC used in Embodiment 1; FIG. 充電モードで動作する充電ICの電力の供給経路を説明する図である。FIG. 4 is a diagram illustrating a power supply path of a charging IC operating in a charging mode; BUS電圧VUSBによる給電モードで動作する充電ICの電力の供給経路を説明する図である。BUS voltage V It is a diagram for explaining a power supply path of a charging IC operating in a power supply mode by USB . USB電圧VUSBとバッテリ電圧VBATによる給電モードで動作する充電ICの電力の供給経路を説明する図である。FIG. 4 is a diagram for explaining power supply paths of a charging IC operating in a power supply mode using a USB voltage VUSB and a battery voltage VBAT; バッテリ電圧VBATによる給電モードで動作する充電ICの電力の供給経路を説明する図である。FIG. 4 is a diagram illustrating a power supply path of a charging IC operating in a power supply mode based on a battery voltage VBAT ; バッテリ電圧VBATのOTG機能による給電モードで動作する充電ICの電力の供給経路を説明する図である。FIG. 4 is a diagram for explaining a power supply path of a charging IC operating in a power supply mode with an OTG function for battery voltage VBAT ; 実施の形態1で使用するUSBコネクタ基板の表面側の構成例を説明する図である。FIG. 3 is a diagram illustrating a configuration example of the front side of a USB connector board used in Embodiment 1; 実施の形態1で使用するUSBコネクタ基板の裏面側の構成例を説明する図である。4 is a diagram illustrating a configuration example of the rear surface side of the USB connector board used in Embodiment 1; FIG. 残量計ICの機能を説明する図である。It is a figure explaining the function of fuel gauge IC. 実施の形態1で使用するブルートゥース基板とホールIC基板の構成例を説明する図である。3 is a diagram for explaining a configuration example of a Bluetooth substrate and a Hall IC substrate used in Embodiment 1; FIG. 回路ユニットで採用する通信プロトコルの一例を説明する図である。FIG. 4 is a diagram illustrating an example of a communication protocol employed by circuit units; I2C通信のイメージを説明する図である。It is a figure explaining the image of I2C communication. 実施の形態1で使用するエアロゾル生成装置に用意されている動作モードと動作モード間の遷移の条件を説明する図である。FIG. 3 is a diagram for explaining operation modes prepared in the aerosol generating device used in Embodiment 1 and transition conditions between the operation modes. 実施の形態1における動作モード別の通信の内容を説明する図表である。4 is a chart for explaining the content of communication for each operation mode according to Embodiment 1. FIG. 充電モードM1中の通信を説明する図である。It is a figure explaining communication in charge mode M1. 実施の形態2における動作モード別の通信の内容を説明する図表である。FIG. 11 is a chart for explaining the content of communication for each operation mode according to the second embodiment; FIG. 実施の形態3における動作モード別の通信の内容を説明する図表である。FIG. 11 is a chart for explaining the content of communication for each operation mode in Embodiment 3; FIG. シリアル通信の一形態であるSPI通信の接続形態を説明する図である。1 is a diagram for explaining a connection form of SPI communication, which is one form of serial communication; FIG. 電子たばこに対応するエアロゾル生成装置の外観構成例を説明する図である。FIG. 2 is a diagram illustrating an example of an external configuration of an aerosol generating device compatible with electronic cigarettes;
 以下、図面を参照して、本発明の実施の形態を説明する。各図面には、同一の部分に同一の符号を付して示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same parts are indicated by the same reference numerals.
<実施の形態1>
<エアロゾル生成装置の外観構成例>
 まず、実施の形態1で使用するエアロゾル生成装置1の外観構成例を説明する。実施の形態1で使用するエアロゾル生成装置1は、加熱式たばこの一形態である。
 図1Aは、エアロゾル生成装置1の正面側を斜め上方から観察する図である。
 図1Bは、エアロゾル生成装置1の正面側を斜め下方から観察する図である。
 図1Cは、シャッタ30を取り外したエアロゾル生成装置1の上面を観察する図である。
 図1Dは、外部パネル10を取り外した本体ハウジング20を正面から観察する図である。
<Embodiment 1>
<External configuration example of aerosol generator>
First, an example of the external configuration of the aerosol generator 1 used in Embodiment 1 will be described. The aerosol generator 1 used in Embodiment 1 is a form of heated cigarette.
FIG. 1A is a view of the front side of the aerosol generating device 1 observed obliquely from above.
FIG. 1B is a view of the front side of the aerosol generating device 1 observed obliquely from below.
FIG. 1C is a diagram for observing the upper surface of the aerosol generator 1 with the shutter 30 removed.
FIG. 1D is a front view of the body housing 20 with the external panel 10 removed.
 実施の形態1で使用するエアロゾル生成装置1は、ユーザが片手で保持可能なサイズを有している。
 エアロゾル生成装置1は、本体ハウジング20と、本体ハウジング20の正面に装着される外部パネル10と、本体ハウジング20の上面に配置され、上面に沿ってスライド操作が可能なシャッタ30を有している。
 外部パネル10は、本体ハウジング20に対して着脱が可能な部材である。実施の形態1における外部パネル10の着脱はユーザが行う。
The aerosol generator 1 used in Embodiment 1 has a size that allows a user to hold it with one hand.
The aerosol generator 1 has a body housing 20, an external panel 10 attached to the front of the body housing 20, and a shutter 30 arranged on the upper surface of the body housing 20 and slidable along the upper surface. .
The external panel 10 is a member that can be attached to and detached from the body housing 20 . A user attaches and detaches the external panel 10 in the first embodiment.
 外部パネル10には、情報窓10Aが設けられている。情報窓10Aは、本体ハウジング20側に設けられる発光素子と対面する位置に設けられる。実施の形態1の場合、発光素子にはLED(=Light Emitting Diode)302(図2B参照)が用いられる。
 実施の形態1における情報窓10Aは、光を透過する素材で構成される。もっとも、情報窓10Aは表面から裏面まで貫通する穴でもよい。なお、発光素子の点灯や点滅は、エアロゾル生成装置1の状態を表現する。発光素子の点灯や点滅は、後述するMCU101によって制御されてもよい。
 外部パネル10は、装飾としての役割の他、本体ハウジング20から放出される熱を緩衝する役割も有する。
The external panel 10 is provided with an information window 10A. The information window 10A is provided at a position facing the light emitting element provided on the body housing 20 side. In the case of Embodiment 1, an LED (=Light Emitting Diode) 302 (see FIG. 2B) is used as the light emitting element.
The information window 10A in Embodiment 1 is made of a material that transmits light. However, the information window 10A may be a hole penetrating from the front surface to the back surface. The lighting and blinking of the light-emitting elements represent the state of the aerosol generating device 1 . Lighting and blinking of the light emitting element may be controlled by the MCU 101, which will be described later.
The external panel 10 serves not only as decoration but also as a buffer for heat emitted from the body housing 20 .
 外部パネル10は、情報窓10Aよりも下方の位置をユーザが指先で押すことで変形する。外部パネル10を指先で押して凹ませると、本体ハウジング20に設けられている押しボタン23を押すことができる。 The external panel 10 deforms when the user presses a position below the information window 10A with a fingertip. When the external panel 10 is depressed by pressing with a fingertip, a push button 23 provided on the main body housing 20 can be pressed.
 本体ハウジング20の底面側には、タイプCのUSB(=Universal Serial Bus)コネクタ21が設けられている。なお、USBコネクタ21の形状や種類は一例である。換言すれば、USBコネクタ21をタイプC以外のUSBとしてもよい。実施の形態1の場合、USBコネクタ21は、専ら、本体ハウジング20に内蔵されるバッテリ50(図2A参照)の充電に使用される。
 また、本体ハウジング20の上面部には、紙筒の内にエアロゾル源であるスティックが挿入される挿入孔22が設けられている。スティックは、紙筒で巻かれた略円柱状の外観を有している。挿入孔22は、シャッタ30を開くと露出し、シャッタ30を閉じると隠蔽される。
 実施の形態1の場合、挿入孔22の開口は略円形である。開口の直径は、略円柱状のスティックの挿入が可能な寸法である。換言すると、スティックの直径は、挿入孔22に挿入が可能な寸法である。
A type C USB (=Universal Serial Bus) connector 21 is provided on the bottom side of the body housing 20 . Note that the shape and type of the USB connector 21 are examples. In other words, the USB connector 21 may be a USB other than type C. In the case of Embodiment 1, the USB connector 21 is exclusively used for charging the battery 50 (see FIG. 2A) built in the body housing 20 .
Further, an insertion hole 22 is provided on the upper surface of the body housing 20, into which a stick as an aerosol source is inserted into the paper tube. The stick has a substantially cylindrical appearance wrapped in a paper tube. The insertion hole 22 is exposed when the shutter 30 is opened and is hidden when the shutter 30 is closed.
In the case of Embodiment 1, the opening of insertion hole 22 is substantially circular. The diameter of the opening is such that a substantially cylindrical stick can be inserted. In other words, the diameter of the stick is such that it can be inserted into the insertion hole 22 .
 シャッタ30の内側には、磁石が取り付けられている。シャッタ30の開閉は、本体ハウジング20側に設けられたホールIC401(図2B参照)により検知される。
 ホールIC401は、磁気センサとも呼ばれ、ホール素子とオペアンプ等で構成される。ホール素子は、磁石の磁界の強度に応じた電圧を出力する素子である。
 本体ハウジング20は、内部パネル20Aと外部ケース20Bとで構成される。実施の形態1の場合、内部パネル20Aは、外部ケース20Bに対してビス留めされている。
A magnet is attached inside the shutter 30 . The opening/closing of the shutter 30 is detected by a Hall IC 401 (see FIG. 2B) provided on the body housing 20 side.
The Hall IC 401 is also called a magnetic sensor, and is composed of a Hall element, an operational amplifier, and the like. A Hall element is an element that outputs a voltage corresponding to the strength of the magnetic field of a magnet.
The body housing 20 is composed of an inner panel 20A and an outer case 20B. In the case of Embodiment 1, the inner panel 20A is screwed to the outer case 20B.
 内部パネル20Aの略中央には押しボタン23が配置される。前述したように、押しボタン23は、外部パネル10の変形により操作される。押しボタン23の操作を通じ、押しボタン23の背後に位置する外部ケース20B側のタクタイルスイッチ301(図2B参照)が操作される。
 押しボタン23は、例えば装置本体の電源のオンとオフ、ヒータの加熱、ブルートゥースのペアリング等に使用される。なお、外部パネル10が取り外された状態で押しボタン23を長押しすると(例えば5秒以上押すと)、リセット機能が作動する。なお、実施の形態1の場合、ブルートゥースとして、BLE(=Bluetooth Low Energy)を使用する。
 なお、内部パネル20Aの略中央からタクタイルスイッチ301が露出することで、押しボタン23を省略してもよい。この場合において、外部パネル10の変形は、タクタイルスイッチ301へ直接伝わる。
A push button 23 is arranged substantially in the center of the inner panel 20A. As described above, push button 23 is operated by deformation of external panel 10 . Through the operation of the push button 23, the tactile switch 301 (see FIG. 2B) on the side of the outer case 20B located behind the push button 23 is operated.
The push button 23 is used, for example, to turn on/off the power of the device main body, heat the heater, and perform Bluetooth pairing. If the push button 23 is pressed for a long time (for example, if it is pressed for 5 seconds or more) with the external panel 10 removed, the reset function is activated. In addition, in the case of Embodiment 1, BLE (=Bluetooth Low Energy) is used as Bluetooth.
Note that the push button 23 may be omitted by exposing the tactile switch 301 from substantially the center of the internal panel 20A. In this case, the deformation of the external panel 10 is transmitted directly to the tactile switch 301. FIG.
 内部パネル20Aには、外部パネル10の情報窓10Aに対応する位置に、光を透過する透光部品24が露出している。透光部品24は、LED302の表面を覆う位置に配置される。
 内部パネル20Aの上部と下部には、外部パネル10の取り付けに使用する磁石25が設けられている。磁石25は、外部パネル10側の磁石と対向する位置に設けられる。これらの磁石により、外部パネル10は、内部パネル20Aに着脱可能に装着される。
 実施の形態1の場合、磁石25は、外部ケース20B内のシャーシ500(図2A参照)に固定されており、内部パネル20Aの開口から露出される。実施の形態1に代えて、磁石25は内部パネル20Aに固定されてもよい。
A translucent component 24 that transmits light is exposed at a position corresponding to the information window 10A of the external panel 10 on the internal panel 20A. The translucent component 24 is arranged at a position covering the surface of the LED 302 .
Magnets 25 used for attaching the external panel 10 are provided on the upper and lower parts of the internal panel 20A. The magnet 25 is provided at a position facing the magnet on the external panel 10 side. By these magnets, the outer panel 10 is detachably attached to the inner panel 20A.
In the case of Embodiment 1, the magnet 25 is fixed to the chassis 500 (see FIG. 2A) inside the outer case 20B and exposed through the opening of the inner panel 20A. As an alternative to the first embodiment, magnets 25 may be fixed to inner panel 20A.
<エアロゾル生成装置の内部構成例>
 図2Aは、内部パネル20A(図1D参照)を取り外すことで出現する外部ケース20B内の構成例を説明する図である。
 図2Bは、外部ケース20Bに内蔵される回路ユニット1000の外観例を説明する図である。実施の形態1では、外部ケース20Bから、バッテリ50と、シャーシ500と、ヒーティングユニット40のヒータを取り除いた部分を回路ユニット1000という。
<Example of internal configuration of aerosol generator>
FIG. 2A is a diagram illustrating a configuration example inside the outer case 20B that appears when the inner panel 20A (see FIG. 1D) is removed.
FIG. 2B is a diagram illustrating an appearance example of the circuit unit 1000 built in the outer case 20B. In Embodiment 1, a circuit unit 1000 is a portion obtained by removing the battery 50, the chassis 500, and the heater of the heating unit 40 from the external case 20B.
 実施の形態1における外部ケース20B内には、ヒーティングユニット40と、バッテリ50と、MCU(=Micro Control Unit)基板100と、USBコネクタ基板200と、LED及びブルートゥース(登録商標)基板300と、ホールIC基板400と、バイブレータ60、これらの部材が取り付けられるシャーシ500が設けられている。すなわち、外部ケース20B内には、別体の4つの基板が設けられている。4つの基板は、互いに離間している。 In the external case 20B in Embodiment 1, there are a heating unit 40, a battery 50, an MCU (=Micro Control Unit) board 100, a USB connector board 200, an LED and Bluetooth (registered trademark) board 300, A Hall IC substrate 400, a vibrator 60, and a chassis 500 to which these members are attached are provided. That is, four separate substrates are provided in the outer case 20B. The four substrates are spaced apart from each other.
 ヒーティングユニット40は、挿入孔22(図1C参照)に挿入されたタバコスティックを加熱するユニットである。挿入孔22は、円筒型の容器22Aの内壁で囲まれた空間として規定される。
 実施の形態1で使用する容器22Aは底を有している。もっとも、底を有しない容器22Aを用いてもよい。
 実施の形態1で使用する容器22Aの場合、その側壁に平坦部を用意する。換言すると、容器22Aの軸線に対して直交する平面で容器22Aを破断した場合の断面に平坦部が設けられる。
The heating unit 40 is a unit that heats the tobacco stick inserted into the insertion hole 22 (see FIG. 1C). The insertion hole 22 is defined as a space surrounded by the inner wall of the cylindrical container 22A.
The container 22A used in Embodiment 1 has a bottom. However, a bottomless container 22A may also be used.
In the case of the container 22A used in Embodiment 1, a flat portion is prepared on its side wall. In other words, a flat portion is provided in the cross section when the container 22A is cut along a plane perpendicular to the axis of the container 22A.
 平坦部は、挿入孔22(図1C参照)の開口に挿入されたタバコスティックの側面を圧縮変形し、加熱効率を向上させる。なお、断面の形状は、略円でも、略楕円でも、略多角形でもよい。また、断面の形状は、開口側から底面に至るまで全て同じでもよいが、開口側から底面に至るまでの間に変化してもよい。 The flat portion compresses and deforms the side surface of the tobacco stick inserted into the opening of the insertion hole 22 (see FIG. 1C) to improve heating efficiency. The cross-sectional shape may be substantially circular, substantially elliptical, or substantially polygonal. Further, the cross-sectional shape may be the same from the opening side to the bottom surface, or may vary from the opening side to the bottom surface.
 容器22Aは、熱伝導率の高い金属で構成されることが好ましい。実施の形態1の場合、容器22Aは、例えばステンレス鋼で形成される。
 容器22Aの外周には、外周面を覆うフィルム状のヒータが配置される。ヒータは、バッテリ50から供給される電力を消費することで発熱する。ヒータが発熱すると、スティックが外周から加熱され、エアロゾルが生成される。
The container 22A is preferably made of metal with high thermal conductivity. In the case of Embodiment 1, the container 22A is made of stainless steel, for example.
A film-like heater is arranged around the outer periphery of the container 22A to cover the outer peripheral surface. The heater generates heat by consuming power supplied from the battery 50 . When the heater generates heat, the stick is heated from the outer periphery and an aerosol is generated.
 ヒーティングユニット40には、USBコネクタ基板200に設けられたヒータコネクタ206A及び206B(図7A参照)に接続され、電力の供給を受ける。ヒーティングユニット40には、パフ(すなわち吸気)の検知に使用するサーミスタ41やヒータの温度の測定に使用するサーミスタ42も設けられている。サーミスタ41とサーミスタ42の抵抗値は、ヒータの発熱に伴う温度の上昇やパフに伴う温度の低下により大きく変化する。
 サーミスタ41には、温度の上昇に伴い抵抗値が増加するPTC(=Positive Temperature Coefficient)サーミスタを用いてもよいし、温度の上昇に伴い抵抗値が減少するNTC(=Negative Temperature Coefficient)サーミスタを用いてもよい。同様に、サーミスタ42には、PTCサーミスタを用いてもよいし、NTCサーミスタを用いてもよい。
 サーミスタ41やサーミスタ42の抵抗値の変化は、電圧の変化としてMCU101(図3A参照)により検知される。
 この他、MCU101は、別体のサーミスタを通じ、外部ケース20Bの温度を測定する。
The heating unit 40 is connected to heater connectors 206A and 206B (see FIG. 7A) provided on the USB connector board 200 to receive power. The heating unit 40 is also provided with a thermistor 41 used to detect a puff (that is, intake air) and a thermistor 42 used to measure the temperature of the heater. The resistance values of the thermistor 41 and the thermistor 42 change greatly due to the temperature rise caused by the heat generation of the heater and the temperature drop caused by the puff.
As the thermistor 41, a PTC (=Positive Temperature Coefficient) thermistor whose resistance value increases as the temperature rises may be used, or an NTC (=Negative Temperature Coefficient) thermistor whose resistance value decreases as the temperature rises may be used. may Similarly, the thermistor 42 may be a PTC thermistor or an NTC thermistor.
A change in the resistance value of the thermistor 41 or thermistor 42 is detected by the MCU 101 (see FIG. 3A) as a voltage change.
In addition, the MCU 101 measures the temperature of the external case 20B through a separate thermistor.
 バッテリ50は、外部ケース20Bに内蔵されている回路ユニットの動作に必要な電力を供給する電源である。実施の形態1では、バッテリ50として、繰り返し充電が可能なリチウムイオン二次電池等を使用する。バッテリ50の電力は、マイナス電極51とプラス電極52に接続された電源ラインを通じて各部に供給される。
 バッテリ50の外周には、バッテリ50の温度(以下「バッテリ温度」という)の測定に使用するサーミスタ53が設けられている。サーミスタ53の抵抗値の変化は、電圧の変化としてUSBコネクタ基板200の残量計IC201(図7B参照)により検知される。サーミスタ53には、PTCサーミスタを用いてもよいし、NTCサーミスタを用いてもよい。
The battery 50 is a power source that supplies power necessary for operating the circuit unit built in the outer case 20B. In Embodiment 1, a rechargeable lithium ion secondary battery or the like is used as the battery 50 . Power from the battery 50 is supplied to each part through a power line connected to the negative electrode 51 and the positive electrode 52 .
A thermistor 53 used for measuring the temperature of the battery 50 (hereinafter referred to as "battery temperature") is provided on the outer circumference of the battery 50. As shown in FIG. A change in the resistance value of the thermistor 53 is detected as a change in voltage by the fuel gauge IC 201 (see FIG. 7B) on the USB connector board 200 . The thermistor 53 may be a PTC thermistor or an NTC thermistor.
<MCU基板100の構成>
 図3Aは、実施の形態1で使用するMCU基板100の表面側の構成例を説明する図である。
 図3Bは、実施の形態1で使用するMCU基板100の裏面側の構成例を説明する図である。
 図3A及び図3Bにおける表面と裏面は、実施の形態1における説明でのみ使用する。
 MCU基板100は、両面実装基板である。
<Structure of MCU board 100>
FIG. 3A is a diagram illustrating a configuration example of the front side of the MCU board 100 used in the first embodiment.
FIG. 3B is a diagram illustrating a configuration example of the back side of the MCU board 100 used in the first embodiment.
The front and back surfaces in FIGS. 3A and 3B are used only in the description of the first embodiment.
The MCU board 100 is a double-sided mounting board.
 MCU基板100には、装置全体の動作を制御するMCU101と、装置の利用に関する情報等を記録するEEPROM102と、電力の供給経路を切り替える充電IC103が実装される。
 MCU101は、いわゆるコントローラである。MCU101の動作は、ファームウェアやファームウェア上で動作するプログラムの実行を通じて規定される。
 実施の形態1におけるMCU101は、他のICとの通信に、シリアル通信方式であるI2C通信やUART通信を使用する。実施の形態1の場合、I2C通信用の通信ラインを2系統用意する。
The MCU board 100 is mounted with an MCU 101 that controls the overall operation of the device, an EEPROM 102 that records information regarding the use of the device, and a charging IC 103 that switches the power supply path.
The MCU 101 is a so-called controller. The operation of the MCU 101 is defined through execution of firmware and programs operating on the firmware.
The MCU 101 in Embodiment 1 uses I2C communication and UART communication, which are serial communication methods, for communication with other ICs. In the case of the first embodiment, two communication lines for I2C communication are prepared.
 第1系統は、MCU101が、自身と同じ基板(すなわちMCU基板100)に実装されているEEPROM102及び充電IC103とのI2C通信に使用する通信ラインである。
 第2系統は、MCU101が、MCU基板100に隣接する別の基板(すなわちUSBコネクタ基板200)に実装されている残量計IC201とのI2C通信に使用する通信ラインである。
 第1系統と第2系統は、電気的な接点を有していない。このため、第1系統の通信と第2系統の通信は互いに独立である。MCU101は、MCU基板100から見て、USBコネクタ基板200よりも遠くに位置するLED及びブルートゥース基板300に実装されているブルートゥースIC303(図9参照)との通信にUART通信を使用する。
The first system is a communication line used by the MCU 101 for I2C communication with the EEPROM 102 and the charging IC 103 mounted on the same substrate (that is, the MCU substrate 100).
The second system is a communication line used by the MCU 101 for I2C communication with the fuel gauge IC 201 mounted on another board adjacent to the MCU board 100 (that is, the USB connector board 200).
The first system and the second system do not have electrical contacts. Therefore, the communication of the first system and the communication of the second system are independent of each other. The MCU 101 uses UART communication to communicate with the LED located farther than the USB connector board 200 when viewed from the MCU board 100 and the Bluetooth IC 303 (see FIG. 9) mounted on the Bluetooth board 300 .
 充電IC103には、バッテリ50からバッテリ電圧VBATの給電を受けるBAT端子と、外部電源からBUS電圧VUSBの供給を受けるVBUS端子が設けられている。
 実施の形態1におけるエアロゾル生成装置1の場合、バッテリ電圧VBATの供給に用いる電源ラインは2系統に分岐される。充電IC103は、一方の電源ラインに接続される。他方の電源ラインは、残量計IC201とヒータに印加する電圧を生成する昇圧DC/DC回路202(図7B参照)とに接続される。この他、バッテリ電圧VBATは、バッテリ50の保護IC203(図7B参照)にも接続される。
The charging IC 103 is provided with a BAT terminal for receiving the battery voltage VBAT from the battery 50 and a VBUS terminal for receiving the BUS voltage VUSB from an external power supply.
In the case of the aerosol generator 1 according to Embodiment 1, the power supply line used for supplying the battery voltage V BAT is branched into two systems. Charging IC 103 is connected to one power supply line. The other power supply line is connected to a fuel gauge IC 201 and a step-up DC/DC circuit 202 (see FIG. 7B) that generates voltage to be applied to the heater. In addition, the battery voltage V BAT is also connected to the battery 50 protection IC 203 (see FIG. 7B).
 MCU基板100には、外部電源と充電IC103を接続する電源ラインをオン又はオフするロードスイッチ104が実装される。外部電源は、USBコネクタ21を通じて接続される外部デバイスである。ここでの外部デバイスには、例えばパーソナルコンピュータ、スマートフォン、タブレット端末、コンセントがある。 A load switch 104 is mounted on the MCU board 100 to turn on or off the power line that connects the external power supply and the charging IC 103 . An external power supply is an external device connected through the USB connector 21 . External devices here include, for example, personal computers, smart phones, tablet terminals, and outlets.
 MCU基板100には、充電IC103から出力される電圧Vccから3.3Vのシステム電源Vcc33_0を生成する昇降圧DC/DC回路105が実装される。昇降圧DC/DC回路105は、充電IC103から出力される電圧Vccを昇圧してシステム電源Vcc33_0を生成してもよいし、充電IC103から出力される電圧Vccを降圧してシステム電源Vcc33_0を生成してもよいし、充電IC103から出力される電圧Vccをそのまま出力してシステム電源Vcc33_0を生成してもよい。
 昇降圧DC/DC回路105は、バッテリ電圧VBATが3.3Vより低い場合には昇圧し、バッテリ電圧VBATが3.3Vより高い場合には降圧し、バッテリ電圧VBATが3.3Vに等しい場合にはそのまま出力する。
 ここでのシステム電源Vcc33_0は、MCU101が動作していない状態でも供給が継続される原始的な電源である。
The MCU board 100 is mounted with a step-up/step-down DC/DC circuit 105 that generates a 3.3V system power supply Vcc33_0 from the voltage Vcc output from the charging IC 103 . The step-up/step-down DC/DC circuit 105 may step up the voltage Vcc output from the charging IC 103 to generate the system power supply Vcc33_0 , or step down the voltage Vcc output from the charging IC 103 to generate the system power supply Vcc. cc33_0 may be generated, or the voltage Vcc output from the charging IC 103 may be directly output to generate the system power supply Vcc33_0 .
The buck-boost DC/DC circuit 105 boosts the battery voltage V BAT when it is lower than 3.3V, and steps it down when the battery voltage V BAT is higher than 3.3V, so that the battery voltage V BAT reaches 3.3V. If equal, output as is.
The system power supply Vcc33_0 here is a primitive power supply that continues to be supplied even when the MCU 101 is not operating.
 システム電源Vcc33_0は、電源ラインを通じ、電源スイッチドライバ108と、システム停止用のロードスイッチ106と、ヒータが過加熱状態か否かを表す値をラッチ(保存)するフリップフロップ107に供給される。換言すると、これらの回路素子には、システムの停止中も動作する。
 システム停止用のロードスイッチ106がオフの場合、システム電源Vcc33_0が供給される回路素子のみが動作する状態になる。結果的に、MCU101を含むほとんどの回路素子の動作が停止する。
The system power supply Vcc33_0 is supplied through the power supply line to the power switch driver 108, the load switch 106 for stopping the system, and the flip-flop 107 that latches (stores) a value indicating whether or not the heater is in an overheating state. In other words, these circuit elements operate even when the system is stopped.
When the system stop load switch 106 is off, only the circuit elements to which the system power supply Vcc33_0 is supplied are in an operating state. As a result, most circuit elements including the MCU 101 stop operating.
 MCU基板100には、電源スイッチドライバ108が実装される。電源スイッチドライバIC108は、ロードスイッチ106のオンとオフを制御する回路である。
 電源スイッチドライバ108は、外部パネル10が取り外された状態で押しボタン23(図1D参照)の押下を検知すると、ロードスイッチ106をオフに制御する。
 外部パネル10の取り外しは、外部パネル10の本体ハウジング20への着脱の検知に使用するホールIC304(図9参照)とホールIC304の出力電位を入力とするシングル・シュミットトリガ・インバータ305(図9参照)により検知される。
A power switch driver 108 is mounted on the MCU board 100 . The power switch driver IC 108 is a circuit that controls the on/off of the load switch 106 .
When the power switch driver 108 detects that the push button 23 (see FIG. 1D) is pressed while the external panel 10 is removed, the power switch driver 108 controls the load switch 106 to be off.
The removal of the external panel 10 is performed by a Hall IC 304 (see FIG. 9) used to detect attachment and detachment of the external panel 10 to the main body housing 20 and a single Schmidt trigger inverter 305 (see FIG. 9) whose input is the output potential of the Hall IC 304. ).
 電源スイッチドライバ108によるロードスイッチ106の制御に、MCU101は関与しない。すなわち、ロードスイッチ106の制御は、MCU101とは独立に実行される。
 本実施の形態では、オン状態のロードスイッチ106から各部に提供される3.3Vのシステム電源をVcc33と表記し、システムの停止中も供給が継続されるシステム電源Vcc33_0と区別する。
The MCU 101 is not involved in the control of the load switch 106 by the power switch driver 108 . That is, control of the load switch 106 is executed independently of the MCU 101 .
In the present embodiment, the 3.3V system power supply supplied to each part from the ON state load switch 106 is denoted as Vcc33 to distinguish it from the system power supply Vcc33_0 that continues to be supplied even when the system is stopped.
 MCU基板100には、シャッタ30が開状態の場合に、前述した3つのサーミスタに対してシステム電源VCC33_SLPを供給するロードスイッチ109が実装される。
 従って、シャッタ30が閉状態の場合、3つのサーミスタにはシステム電源VCC33_SLPが供給されない。なお、ロードスイッチ109には、システム停止用のロードスイッチ106から3.3Vのシステム電源Vcc33が供給される。
 MCU基板100には、外部ケース20Bの温度が異常か否かを示す値をラッチするフリップフロップ110が実装される。フリップフロップ110には、システム停止用のロードスイッチ106からシステム電源Vcc33が供給される。
The MCU board 100 is mounted with a load switch 109 that supplies the system power supply VCC33_SLP to the three thermistors described above when the shutter 30 is open.
Therefore, when the shutter 30 is closed, the three thermistors are not supplied with the system power supply V CC33_SLP . The load switch 109 is supplied with the system power supply Vcc33 of 3.3V from the load switch 106 for system stop.
The MCU board 100 is mounted with a flip-flop 110 that latches a value indicating whether the temperature of the external case 20B is abnormal. The flip-flop 110 is supplied with the system power supply Vcc33 from the load switch 106 for stopping the system.
 MCU基板100には、ヒータ抵抗値(ヒータ温度)の測定に用いるオペアンプ111が実装される。
 MCU基板100には、バイブレータ60用のコネクタ112が実装される。
 MCU基板100には、ヒータ温度を測定するサーミスタ42用のコネクタ113A及び113Bが実装される。コネクタ113Aは正極用であり、コネクタ113Bは負極用である。なお、コネクタ114A及び114Bへサーミスタ41を接続する配線は、図3Bにおいて省略されている点に留意されたい。
 MCU基板100には、パフ(すなわち吸気)の検知に使用するサーミスタ41用のコネクタ114A及び114Bが実装される。コネクタ114Aは正極用であり、コネクタ114Bは負極用である。
An operational amplifier 111 used for measuring heater resistance (heater temperature) is mounted on the MCU board 100 .
A connector 112 for the vibrator 60 is mounted on the MCU board 100 .
The MCU board 100 is mounted with connectors 113A and 113B for the thermistor 42 that measures the heater temperature. The connector 113A is for positive electrodes, and the connector 113B is for negative electrodes. Note that the wires connecting thermistor 41 to connectors 114A and 114B are omitted in FIG. 3B.
The MCU board 100 is mounted with connectors 114A and 114B for the thermistor 41 used to detect puffs (that is, inhalation). The connector 114A is for the positive electrode, and the connector 114B is for the negative electrode.
 MCU基板100には、外部ケース20Bの温度の検知に使用するサーミスタ用のコネクタ115A及び115Bが実装される。コネクタ115Aは正極用であり、コネクタ115Bは負極用である。
 MCU基板100は、MCU基板100以外の基板に実装された回路素子との通信に用いる配線パターンが形成されたフレキシブル基板600を使用する。フレキシブル基板600には電源パターンも含まれる。
The MCU board 100 is mounted with connectors 115A and 115B for thermistors used to detect the temperature of the outer case 20B. The connector 115A is for positive electrodes, and the connector 115B is for negative electrodes.
The MCU board 100 uses a flexible board 600 on which wiring patterns used for communication with circuit elements mounted on boards other than the MCU board 100 are formed. The flexible substrate 600 also includes power traces.
 図4は、電源ライン上に現れる回路素子と各回路素子間に現れる電圧を説明する図である。
 実施の形態1におけるエアロゾル生成装置1の場合、バッテリ50の電源ラインは2系統に分岐されている。2系統のうち一方の系統は、充電IC103のBAT端子に接続され、他方の系統は、残量計IC201のVBAT端子と昇圧DC/DC回路202のVIN端子に接続される。電源ラインを2系統に分岐することで、ヒータに供給される大電流が充電IC103を通過せずに済む。このため、充電IC103が肥大化せずに済む。
FIG. 4 is a diagram for explaining circuit elements appearing on the power supply line and voltages appearing between the circuit elements.
In the case of the aerosol generator 1 according to Embodiment 1, the power supply line of the battery 50 is branched into two systems. One of the two systems is connected to the BAT terminal of the charging IC 103 , and the other system is connected to the VBAT terminal of the fuel gauge IC 201 and the VIN terminal of the boost DC/DC circuit 202 . By branching the power supply line into two systems, the large current supplied to the heater does not pass through the charging IC 103 . Therefore, the charging IC 103 does not become bulky.
 残量計IC201は、システム電源Vcc33が供給されることで動作し、BAT端子に供給されるバッテリ電圧VBAT等を監視する。
 昇圧DC/DC回路202は、バッテリ電圧VBATを昇圧してヒータに印加する昇圧電圧Vboostを生成する。もっとも、ヒータへの電力の供給は、昇圧DC/DC回路202の出力端子へ接続される不図示のMOS型FETのオン制御により実現される。
 因みに、残量計IC201と昇圧DC/DC回路202は、USBコネクタ基板200に実装されている。
The fuel gauge IC 201 operates by being supplied with the system power supply Vcc33 , and monitors the battery voltage VBAT and the like supplied to the BAT terminal.
A boost DC/DC circuit 202 boosts the battery voltage V BAT to generate a boosted voltage V boost to be applied to the heater. However, power supply to the heater is realized by ON control of a MOSFET (not shown) connected to the output terminal of the boost DC/DC circuit 202 .
Incidentally, the fuel gauge IC 201 and the step-up DC/DC circuit 202 are mounted on the USB connector board 200 .
 充電IC103は、バッテリ50から供給を受けたバッテリ電圧VBATや外部電源から供給を受けたBUS電圧VUSBから電圧Vccを生成し、昇降圧DC/DC回路105に供給する。
 昇降圧DC/DC回路105は、電圧Vccから3.3Vのシステム電源Vcc33_0を生成し、ロードスイッチ106等に供給する。システム電源Vcc33_0は、システムの停止中(MCU101の停止中)も供給が継続される。
The charging IC 103 generates a voltage Vcc from the battery voltage V BAT supplied from the battery 50 and the BUS voltage V USB supplied from the external power supply, and supplies the voltage Vcc to the step-up/step-down DC/DC circuit 105 .
The step-up/step-down DC/DC circuit 105 generates a system power supply Vcc33_0 of 3.3V from the voltage Vcc, and supplies it to the load switch 106 and the like. The system power supply Vcc33_0 continues to be supplied even while the system is stopped (while the MCU 101 is stopped).
 ロードスイッチ106は、MCU101(図3A参照)等を動作させる場合に限り、3.3Vのシステム電源Vcc33を、MCU101やロードスイッチ109等に供給する。このシステム電源Vcc33は、残量計IC201にも供給される。
 ロードスイッチ109は、3つのサーミスタによる温度の測定を実行する場合に限り、3.3Vのシステム電源VCC33_SLPを電源ラインに出力する。ここでいう3つのサーミスタとは、パフの検知に使用するサーミスタ41と、ヒータの温度の測定に使用するサーミスタ42と、外部ケース20Bの温度の測定に使用するサーミスタと、を指している。
 なお、充電IC103は、バッテリ電圧VBATから生成された5Vの電源をVcc5としてLED302(図2B参照)に供給する。LED302には、BUS電圧VUSBが供給されてもよい。
The load switch 106 supplies the 3.3V system power supply Vcc33 to the MCU 101, the load switch 109, and the like only when the MCU 101 (see FIG. 3A) and the like are operated. This system power supply Vcc33 is also supplied to the fuel gauge IC201.
The load switch 109 outputs the 3.3V system power supply V CC33_SLP to the power supply line only when performing temperature measurement with three thermistors. The three thermistors here refer to the thermistor 41 used for puff detection, the thermistor 42 used for measuring the temperature of the heater, and the thermistor used for measuring the temperature of the outer case 20B.
The charging IC 103 supplies the 5V power generated from the battery voltage VBAT as Vcc5 to the LED 302 (see FIG. 2B). The LED 302 may be supplied with the BUS voltage VUSB .
 図5は、実施の形態1で使用する充電IC103の内部構成例を説明する図である。
 図5に示す充電IC103には、I2Cインタフェース103Aと、ロジック回路103Bと、ゲートドライバ103Cと、低ドロップアウト・レギュレータ(以下「LDO」という)103Dと、4つのMOS型FETQ1~Q4が設けられている。
 I2Cインタフェース103Aは、同じ基板上のMCU101とのI2C通信に使用される。
FIG. 5 is a diagram illustrating an internal configuration example of the charging IC 103 used in the first embodiment.
The charging IC 103 shown in FIG. 5 is provided with an I2C interface 103A, a logic circuit 103B, a gate driver 103C, a low dropout regulator (hereinafter referred to as "LDO") 103D, and four MOSFETs Q1 to Q4. there is
I2C interface 103A is used for I2C communication with MCU 101 on the same board.
 充電IC103のBAT端子には、電源ラインを通じ、バッテリ50が接続される。このため、充電IC103のBAT端子には、充電時を除きバッテリ電圧VBATが供給される。
 充電IC103のVBUS端子には、ロードスイッチ104(図4参照)を通じてUSBコネクタ21が接続されている。ロードスイッチ104は、外部電源であるBUS電圧VUSBの受電が検知された場合に限りオン状態に制御され、BUS電圧VUSBの受電が検知されない場合はオフ状態に制御される。ロードスイッチ104のオン状態とオフ状態の切り替えは、MCU101が行ってもよい。
A battery 50 is connected to the BAT terminal of the charging IC 103 through a power supply line. Therefore, the battery voltage V BAT is supplied to the BAT terminal of the charging IC 103 except during charging.
A USB connector 21 is connected to the VBUS terminal of the charging IC 103 through a load switch 104 (see FIG. 4). The load switch 104 is controlled to the ON state only when the reception of the BUS voltage VUSB , which is the external power supply, is detected, and is controlled to the OFF state when the reception of the BUS voltage VUSB is not detected. The MCU 101 may switch the load switch 104 between the ON state and the OFF state.
 充電IC103は、5種類の給電モードに対応する。
 5種類の給電モードは、充電モード、BUS電圧VUSBによる給電モード、BUS電圧VUSBとバッテリ電圧VBATの両方による給電モード、バッテリ電圧VBATによる給電モード、バッテリ電圧VBATのOTG(=On-The-Go)機能による給電モードである。
The charging IC 103 supports five power feeding modes.
The five power supply modes are charging mode, power supply mode with BUS voltage VUSB , power supply mode with both BUS voltage VUSB and battery voltage VBAT , power supply mode with battery voltage VBAT , OTG (=On -The-Go) function.
 図6Aは、充電モードで動作する充電IC103の電力の供給経路を説明する図である。
 充電モードは、USBコネクタ21(図1B参照)にUSBケーブルが接続された状態で、MCU101からCE端子にローレベル信号が印加された場合に実行される。
 充電モードの場合、FETQ1及びQ4がオンに制御され、FETQ3はオフに制御され、FETQ2はPWM(=Pulse Width Modulation)制御される。このようにFETQ1~Q4を制御することで、充電IC103は、降圧レギュレータ(コンバータ)として動作する。
 VBUS端子に印加されたBUS電圧VUSBは、およそ5Vの電源である。
FIG. 6A is a diagram illustrating power supply paths of the charging IC 103 operating in the charging mode.
The charging mode is executed when a low level signal is applied from the MCU 101 to the CE terminal while the USB cable is connected to the USB connector 21 (see FIG. 1B).
In the charging mode, FETQ1 and Q4 are controlled to be ON, FETQ3 is controlled to be OFF, and FETQ2 is PWM (=Pulse Width Modulation) controlled. By controlling the FETs Q1 to Q4 in this manner, the charging IC 103 operates as a step-down regulator (converter).
The BUS voltage VUSB applied to the VBUS terminal is a power supply of approximately 5V.
 FETQ2のオン又はオフは、ゲートドライバ103Cにより制御される。ゲートドライバ103Cのスイッチングは、ロジック回路103Bが不図示の端子や配線から取得する充電電流や充電電圧に基づいて実行される。FETQ2のスイッチングにより、BUS電圧VUSBは、バッテリ50の充電に適した電圧へ降圧される。
 充電IC103のSW端子からインダクタンスを経て出力される電圧Vccは、SYS端子に再入力された後、BAT端子からバッテリ50(図2A参照)に出力(充電)される。
ON or OFF of the FETQ2 is controlled by the gate driver 103C. The switching of the gate driver 103C is performed based on the charging current and charging voltage that the logic circuit 103B acquires from terminals and wirings (not shown). The BUS voltage V USB is stepped down to a voltage suitable for charging the battery 50 by switching the FET Q2.
The voltage Vcc output from the SW terminal of the charging IC 103 via the inductance is re-input to the SYS terminal and then output (charged) from the BAT terminal to the battery 50 (see FIG. 2A).
 図6Bは、BUS電圧VUSBによる給電モードで動作する充電IC103の電源の供給経路を説明する図である。
 この給電モードは、USBコネクタ21(図1B参照)にUSBケーブルが接続され、かつ、バッテリ50に異常が生じた状態で、CE端子に対し、MCU101からハイレベル信号が印加された場合に実行される。ここでいうバッテリ50の異常とは、過放電状態や深放電状態などにあることでバッテリ50の放電が禁止される状態を指す。
 CE端子にハイレベル信号が印加されると、FETQ2のPWM制御は停止される。
FIG. 6B is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode using BUS voltage VUSB .
This power supply mode is executed when a high level signal is applied from the MCU 101 to the CE terminal in a state in which a USB cable is connected to the USB connector 21 (see FIG. 1B) and an abnormality has occurred in the battery 50. be. The term "abnormality of the battery 50" as used herein refers to a state in which discharge of the battery 50 is prohibited due to being in an over-discharged state, a deep-discharged state, or the like.
When a high level signal is applied to the CE terminal, PWM control of FETQ2 is stopped.
 この給電モードの場合、FETQ1及びQ2がオンに制御され、FETQ3及びQ4がオフに制御される。
 FETQ1及びQ2がオンに制御され、FETQ3がオフに制御されるので、SW端子に現れるシステム電源Vccは、BUS電圧VUSBと等しくなる。
 FETQ4がオフされるので、バッテリ50が充電IC103から切り離される。
In this power feeding mode, the FETs Q1 and Q2 are controlled to be on, and the FETs Q3 and Q4 are controlled to be off.
Since the FETs Q1 and Q2 are turned on and the FET Q3 is turned off, the system power supply Vcc appearing at the SW terminal becomes equal to the BUS voltage VUSB .
Since the FET Q4 is turned off, the battery 50 is disconnected from the charging IC 103.
 図6Cは、USB電圧VUSBとバッテリ電圧VBATの両方による給電モードで動作する充電IC103の電力の供給経路を説明する図である。
 この給電モードは、USBコネクタ21(図1B参照)にUSBケーブルが接続され、かつ、バッテリ50に異常が生じていない状態で、MCU101からCE端子にハイレベル信号が印加された場合に実行される。
 この給電モードの場合、FETQ1及びQ4がオンに制御され、FETQ3がオフに制御され、FETQ2がPWM制御される。
FIG. 6C is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode using both USB voltage V USB and battery voltage V BAT .
This power feeding mode is executed when a high-level signal is applied from the MCU 101 to the CE terminal in a state in which the USB cable is connected to the USB connector 21 (see FIG. 1B) and the battery 50 is normal. .
In this power supply mode, the FETs Q1 and Q4 are controlled to be on, the FET Q3 is controlled to be off, and the FET Q2 is PWM controlled.
 この給電モードにおけるPWM制御は、SYS端子の電圧がバッテリ電圧VBATと同じになるように実行される。このため、昇降圧DC/DC回路105(図4参照)には、BUS電圧VUSBに由来の電力とバッテリ50に由来する電力が合成された状態で供給される。
 この給電モードの場合、SYS端子の電圧とバッテリ電圧VBATが同じなので、バッテリ50の放電も継続される。
PWM control in this power supply mode is performed so that the voltage at the SYS terminal is the same as the battery voltage V BAT . Therefore, the buck-boost DC/DC circuit 105 (see FIG. 4) is supplied with power derived from the BUS voltage VUSB and power derived from the battery 50 in a combined state.
In this power supply mode, the voltage of the SYS terminal and the battery voltage V BAT are the same, so the discharge of the battery 50 is also continued.
 図6Dは、バッテリ電圧VBATによる給電モードで動作する充電IC103の電力の供給経路を説明する図である。
 この給電モードは、USBコネクタ21(図1B参照)にUSBケーブルが接続されていない状態で、MCU101からCE端子にハイレベル信号が印加された場合に実行される。
 この給電モードの場合、FETQ4がオンに制御され、FETQ1、Q2及びQ3がオフに制御される。
FIG. 6D is a diagram illustrating a power supply path of charging IC 103 operating in a power supply mode based on battery voltage VBAT .
This power feeding mode is executed when a high level signal is applied from the MCU 101 to the CE terminal while the USB cable is not connected to the USB connector 21 (see FIG. 1B).
In this power supply mode, the FET Q4 is turned on and the FETs Q1, Q2 and Q3 are turned off.
 この給電モードの場合、SYS端子から出力される電圧Vccは、バッテリ電圧VBATの電圧値と同じになる。従って、バッテリ電圧VBATの電圧値が満充電時よりも低下すると、電圧Vccも同じように低下する。
 この給電モードの場合、SYS端子の電圧Vccは変動する。
 なお、SW端子とVBUS端子の線路は、FETQ1の寄生ダイオードでブロックされる。このため、充電IC103の逆潮流(OTG機能)による5Vの電圧は生成されない。
In this power supply mode, the voltage Vcc output from the SYS terminal is equal to the voltage value of the battery voltage VBAT . Therefore, when the voltage value of the battery voltage V BAT drops below that at full charge, the voltage V cc also drops.
In this feeding mode, the voltage Vcc at the SYS terminal fluctuates.
The line between the SW terminal and the VBUS terminal is blocked by the parasitic diode of the FETQ1. Therefore, the voltage of 5V is not generated by the reverse power flow (OTG function) of the charging IC 103 .
 図6Eは、バッテリ電圧VBATのOTG機能による給電モードで動作する充電IC103の電力の供給経路を説明する図である。
 この給電モードは、I2Cインタフェース103AがI2C通信によってMCU101からOTG機能を使用するように指示された状態で、MCU101からCE端子にハイレベル信号が印加された場合に実行される。
 この給電モードの場合、FETQ1とQ4がオンに制御され、FETQ2がオフに制御され、FETQ3がPWM制御される。このようにFETQ1~Q4を制御することで、充電IC103は昇圧レギュレータ(コンバータ)として動作する。
FIG. 6E is a diagram illustrating power supply paths of the charging IC 103 operating in the power supply mode by the OTG function of the battery voltage VBAT .
This power supply mode is executed when the MCU 101 applies a high-level signal to the CE terminal while the I2C interface 103A is instructed by the MCU 101 to use the OTG function through I2C communication.
In this power supply mode, the FETs Q1 and Q4 are controlled to be on, the FET Q2 is controlled to be off, and the FET Q3 is PWM controlled. By controlling the FETs Q1 to Q4 in this manner, the charging IC 103 operates as a boost regulator (converter).
 この給電モードの場合も、SYS端子から出力される電圧Vccは、バッテリ電圧VBATの電圧値と同じになる。従って、バッテリ電圧VBATの電圧値が満充電時よりも低下すると、電圧Vccも同じように低下する。
 この給電モードの場合、FETQ3がオン制御されている間、インダクタンス経由でGND端子に電流が流れる。この後、FETQ3がオフ制御されると、インダクタンスに逆起電圧が発生する。この逆起電力により、VBUS端子には、電圧Vccを5Vまで昇圧した電圧が出現する。5Vの電圧が出力されることで、LED302(図2B参照)の利用が可能になる。なお、LED302が発光するのは、MCU101の内部でトランジスタが閉じられることが必要である。換言すれば、LED302は、MCU101の内部に設けられたトランジスタを介してグランドへ接続される。
Also in this power supply mode, the voltage Vcc output from the SYS terminal is the same as the voltage value of the battery voltage VBAT . Therefore, when the voltage value of the battery voltage V BAT drops below that at full charge, the voltage V cc also drops.
In this power feeding mode, a current flows through the GND terminal via the inductance while the FET Q3 is on-controlled. After that, when the FET Q3 is turned off, a back electromotive voltage is generated in the inductance. Due to this back electromotive force, a voltage obtained by boosting the voltage Vcc to 5V appears at the VBUS terminal. A voltage of 5V is output to enable the use of the LED 302 (see FIG. 2B). In order for the LED 302 to emit light, the transistor must be closed inside the MCU 101 . In other words, the LED 302 is connected to ground through a transistor provided inside the MCU 101 .
 以上、各動作モードにおいて、充電IC103のCE端子が負論理動作である場合について説明したが、CE端子が正論理動作する充電IC103を代わりに用いてもよい。
 この場合、例えば充電IC103を充電モードで動作させるためには、MCU101からCE端子にハイレベル信号が印加されればよい。
As described above, in each operation mode, the case where the CE terminal of the charging IC 103 operates in negative logic has been described, but the charging IC 103 in which the CE terminal operates in positive logic may be used instead.
In this case, for example, in order to operate the charging IC 103 in the charging mode, a high level signal should be applied from the MCU 101 to the CE terminal.
<USBコネクタ基板の構成>
 図7Aは、実施の形態1で使用するUSBコネクタ基板200の表面側の構成例を説明する図である。
 図7Bは、実施の形態1で使用するUSBコネクタ基板200の裏面側の構成例を説明する図である。
 図7A及び図7Bにおける表面と裏面は、実施の形態1における説明でのみ使用する。
 USBコネクタ基板200は、他の基板に比して高い電圧を扱う基板である。
<Configuration of USB connector board>
FIG. 7A is a diagram illustrating a configuration example of the front side of the USB connector board 200 used in Embodiment 1. FIG.
FIG. 7B is a diagram illustrating a configuration example of the back side of the USB connector board 200 used in the first embodiment.
The front and back surfaces in FIGS. 7A and 7B are used only in the description of the first embodiment.
The USB connector board 200 is a board that handles higher voltage than other boards.
 USBコネクタ基板200も、両面実装基板である。
 USBコネクタ基板200には、USBコネクタ21が実装されている。本実施の形態におけるUSBコネクタ21は、USBケーブル経由で外部電源から電力の供給を受けるために使用される。
 この他、USBコネクタ基板200には、バッテリ50(図2A参照)の情報を収集する残量計IC201と、昇圧DC/DC回路202が実装される。
The USB connector board 200 is also a double-sided mounting board.
A USB connector 21 is mounted on the USB connector board 200 . The USB connector 21 in this embodiment is used to receive power from an external power supply via a USB cable.
In addition, the USB connector board 200 is mounted with a fuel gauge IC 201 for collecting information on the battery 50 (see FIG. 2A) and a boost DC/DC circuit 202 .
 残量計IC201は、VBAT端子を有し、このVBAT端子にバッテリ50の電源ラインが接続されている。ただし、残量計IC201は、ロードスイッチ106(図4参照)から3.3Vのシステム電源Vcc33の供給を受けて動作し、VBAT端子への入力などに基づきバッテリ50の残容量等の情報を取得する。
 図8は、残量計IC201の機能を説明する図である。図8には、残量計IC201の代表的な構成要素として、デジタル演算部201Aと、レジスタ201Bと、I2Cインタフェース201Cを表している。図8においては不図示ではあるが、残量計IC201は、VBAT端子等のバッテリ50の情報が入力される端子を有している。
The fuel gauge IC 201 has a VBAT terminal to which the power supply line of the battery 50 is connected. However, the fuel gauge IC 201 operates by receiving a system power supply Vcc 33 of 3.3 V from the load switch 106 (see FIG. 4), and receives information such as the remaining capacity of the battery 50 based on the input to the VBAT terminal. get.
FIG. 8 is a diagram for explaining the function of the fuel gauge IC 201. As shown in FIG. FIG. 8 shows a digital calculation unit 201A, a register 201B, and an I2C interface 201C as representative components of the fuel gauge IC 201. As shown in FIG. Although not shown in FIG. 8, the fuel gauge IC 201 has a terminal such as a VBAT terminal to which information of the battery 50 is input.
 デジタル演算部201Aは、バッテリ温度TBAT(℃)と、バッテリ電圧VBAT(V)と、バッテリ電流IBAT(A)とに基づいて残容量(Ah)を計算し、レジスタ201Bに格納する。デジタル演算部201Aは、現在時刻における満充電容量(Ah)も計算する。なお、バッテリ温度TBAT(℃)は、サーミスタ53(図2A参照)により測定される。 Digital operation unit 201A calculates remaining capacity (Ah) based on battery temperature T BAT (°C), battery voltage V BAT (V), and battery current I BAT (A), and stores it in register 201B. The digital calculator 201A also calculates the full charge capacity (Ah) at the current time. Note that the battery temperature T BAT (°C) is measured by the thermistor 53 (see FIG. 2A).
 デジタル演算部201Aには、現在時刻における満充電状態を100%、完全放電状態を0%とする場合の充電状態SOC(=State Of Charge)を計算する機能が設けられている。計算されたSOCもレジスタ201Bに格納される。
 デジタル演算部201Aには、バッテリ50の健全度や劣化状態の指標であるSOH(=State of Health)を計算する機能も設けられている。計算されたSOHもレジスタ201Bに格納される。なお、SOHは、新品時の満充電容量に対する現在時刻の満充電容量の比率として表されてもよい。新品時のSOHは、100%となる。満充電容量に代えて、新品時のバッテリ50の内部抵抗に対する現在時刻のバッテリ50の内部抵抗の比率を、SOHに用いてもよい。
 I2Cインタフェース201Cは、隣接するMCU基板100に実装されているMCU101とのシリアル通信に使用される。
The digital calculation unit 201A has a function of calculating a state of charge (SOC) when the fully charged state at the current time is 100% and the fully discharged state is 0%. The calculated SOC is also stored in register 201B.
The digital operation unit 201A also has a function of calculating SOH (=State of Health), which is an index of the state of health and deterioration of the battery 50 . The calculated SOH is also stored in register 201B. Note that the SOH may be expressed as a ratio of the full charge capacity at the current time to the full charge capacity when new. The SOH when new is 100%. Instead of the full charge capacity, the ratio of the internal resistance of the battery 50 at the current time to the internal resistance of the battery 50 when new may be used as the SOH.
The I2C interface 201C is used for serial communication with the MCU 101 mounted on the adjacent MCU board 100 .
 図7A及び図7Bの説明に戻る。
 この他、USBコネクタ基板200には、バッテリ50の保護IC203が実装される。保護IC203は、バッテリ50の過充電や過放電、充電時や放電時の過電流を監視し、これらを検知したらバッテリ50の保護を図る。
 USBコネクタ基板200には、バッテリ50から電力の取り出しに使用するマイナス電極51及びプラス電極52(図2B参照)にそれぞれ接続されるコネクタ204A及び204Bが実装される。コネクタ204Aは正極用であり、コネクタ204Bは負極用である。
 USBコネクタ基板200には、バッテリ温度の測定に使用するサーミスタ53用のコネクタ205も実装される。
Returning to the description of FIGS. 7A and 7B.
In addition, a protection IC 203 for the battery 50 is mounted on the USB connector board 200 . The protection IC 203 monitors overcharging, overdischarging, and overcurrent during charging or discharging of the battery 50, and protects the battery 50 when these are detected.
Connectors 204A and 204B are mounted on the USB connector board 200 to be connected to the negative electrode 51 and the positive electrode 52 (see FIG. 2B) used to extract power from the battery 50, respectively. The connector 204A is for the positive electrode and the connector 204B is for the negative electrode.
A connector 205 for the thermistor 53 used for battery temperature measurement is also mounted on the USB connector board 200 .
 また、USBコネクタ基板200には、ヒータコネクタ206A及び206Bが実装される。ヒータコネクタ206Aは正極用であり、ヒータコネクタ206Bは負極用である。
 この他、USBコネクタ基板200には、過電圧保護ICも実装される。過電圧保護ICは、USBコネクタ21(図1B参照)とロードスイッチ104の間に位置し、USBコネクタ21から供給される電力の監視に用いられる。過電圧保護ICは、過電流及び/又は過電圧が検知された場合、USBコネクタ21とロードスイッチ104の間の電気的な接続を遮断する。
Also, heater connectors 206A and 206B are mounted on the USB connector board 200 . The heater connector 206A is for the positive electrode, and the heater connector 206B is for the negative electrode.
In addition, an overvoltage protection IC is also mounted on the USB connector board 200 . An overvoltage protection IC is located between the USB connector 21 (see FIG. 1B) and the load switch 104 and is used to monitor the power supplied from the USB connector 21 . The overvoltage protection IC cuts off the electrical connection between the USB connector 21 and the load switch 104 when overcurrent and/or overvoltage is detected.
<LED及びブルートゥース基板とホールIC基板の構成>
 図9は、実施の形態1で使用するLED及びブルートゥース基板300とホールIC基板400の構成例を説明する図である。
 LED及びブルートゥース基板300には、タクタイルスイッチ301とLED302が実装されている。タクタイルスイッチ301は、いわゆる電源ボタンとして用いられる。なお、外部パネル10が取り外された状態での長押し操作の場合、タクタイルスイッチ301は、MCU101のリセットボタンとしても機能する。
 実施の形態1におけるLED302の数は8個である。図9の場合、LED302は、LED及びブルートゥース基板300上に一列に配置されている。なお、LED302の数やLED及びブルートゥース基板300上における配置は任意に変更可能である。
<Structure of LED and Bluetooth board and Hall IC board>
FIG. 9 is a diagram illustrating a configuration example of the LED and Bluetooth board 300 and the Hall IC board 400 used in the first embodiment.
A tactile switch 301 and an LED 302 are mounted on the LED and Bluetooth board 300 . The tactile switch 301 is used as a so-called power button. In the case of a long press operation with the external panel 10 removed, the tactile switch 301 also functions as a reset button for the MCU 101 .
The number of LEDs 302 in Embodiment 1 is eight. In FIG. 9, the LEDs 302 are arranged in a row on the LED and Bluetooth board 300 . The number of LEDs 302 and the arrangement of the LEDs and the Bluetooth board 300 can be changed arbitrarily.
 LED302には、充電IC103(図4参照)又はUSBコネクタ21から5Vの電圧Vcc5が印加される。8個のLED302の発光の組み合わせにより、ユーザに対して様々な情報が通知される。例えばバッテリ50の残容量が表示される。また例えばリセットが実行される旨が通知される。リセットは、外部パネル10が本体ハウジング20から取り外された状態で押しボタン23(すなわちタクタイルスイッチ301)が長押しされた場合に実行される。
 LED302の発光は、MCU101(図3A参照)によりPWM制御される。
 5Vの電圧Vcc5が印加されるLED及びブルートゥース基板300を、前述したMCU基板100やUSBコネクタ基板200とは別に設けるので、配線や熱が1つの基板に集中せずに済む。なお、LED302の発光をより高度に制御するためにドライバを用いてもよい。
A voltage Vcc5 of 5 V is applied to the LED 302 from the charging IC 103 (see FIG. 4) or the USB connector 21 . Various information is notified to the user by a combination of light emission of the eight LEDs 302 . For example, the remaining capacity of the battery 50 is displayed. Also, for example, it is notified that a reset will be executed. Reset is executed when the push button 23 (that is, the tactile switch 301) is pressed long while the external panel 10 is removed from the main body housing 20. FIG.
Light emission of the LED 302 is PWM-controlled by the MCU 101 (see FIG. 3A).
Since the LED and Bluetooth board 300 to which the voltage Vcc5 of 5V is applied is provided separately from the MCU board 100 and the USB connector board 200, wiring and heat do not concentrate on one board. A driver may be used to control the light emission of the LED 302 at a higher level.
 この他、LED及びブルートゥース基板300には、ブルートゥースIC303が実装される。ブルートゥースIC303は、ペアリングされた外部機器との通信を実行する。ペアリングは、シャッタ30が閉じられた状態でタクタイルスイッチ301が押されることを条件に実行される。ブルートゥースIC303には、3.3Vのシステム電源Vcc33が供給される。
 ブルートゥースIC303と、MCU101との通信には、UART通信が使用される。
In addition, a Bluetooth IC 303 is mounted on the LED and Bluetooth board 300 . The Bluetooth IC 303 executes communication with paired external devices. Pairing is performed on the condition that the tactile switch 301 is pressed while the shutter 30 is closed. The Bluetooth IC 303 is supplied with a 3.3V system power supply Vcc33 .
UART communication is used for communication between the Bluetooth IC 303 and the MCU 101 .
 LED及びブルートゥース基板300には、外部パネル10の本体ハウジング20への着脱の検知に使用するホールIC304と、ヒステリシス特性によりホールIC304の出力を安定化するシングル・シュミットトリガ・インバータ305が実装されている。ホールIC304とシングル・シュミットトリガ・インバータ305にも、3.3Vのシステム電源Vcc33が供給される。シングル・シュミットトリガ・インバータ305は省略されてもよい。
 ホールIC基板400には、シャッタ30の開閉を検知するホールIC401が実装されている。ホールIC401にも、3.3Vのシステム電源をVcc33が供給される。ホールIC基板400も、フレキシブル基板600を通じて、MCU101と接続される。
The LED and Bluetooth board 300 is mounted with a Hall IC 304 used to detect attachment and detachment of the external panel 10 to the main body housing 20, and a single Schmidt trigger inverter 305 that stabilizes the output of the Hall IC 304 with hysteresis characteristics. . The Hall IC 304 and the single Schmitt trigger inverter 305 are also supplied with the 3.3V system power supply Vcc33 . Single Schmidt trigger inverter 305 may be omitted.
A Hall IC 401 for detecting opening and closing of the shutter 30 is mounted on the Hall IC substrate 400 . The Hall IC 401 is also supplied with the 3.3V system power Vcc33 . Hall IC substrate 400 is also connected to MCU 101 through flexible substrate 600 .
<通信プロトコル>
 図10は、回路ユニット1000(図2B参照)で採用する通信プロトコルの一例を説明する図である。具体的には、図10は、MCU101が他のICとの通信に使用する通信プロトコルを例示する。
 実施の形態1におけるMCU101は、複数の通信プロトコルを使用して他のICと通信する。具体的には、I2C通信とUART通信を使用する。
 実施の形態1の場合、I2C通信に対応する通信ラインは2系統であり、UART通信に対応する通信ラインは1系統である。
<Communication protocol>
FIG. 10 is a diagram illustrating an example of a communication protocol employed by the circuit unit 1000 (see FIG. 2B). Specifically, FIG. 10 illustrates communication protocols that the MCU 101 uses to communicate with other ICs.
MCU 101 in Embodiment 1 communicates with other ICs using a plurality of communication protocols. Specifically, I2C communication and UART communication are used.
In the case of the first embodiment, there are two communication lines corresponding to I2C communication, and one communication line corresponding to UART communication.
 実施の形態1の場合、I2C通信に対応する2系統の通信ラインは、MCU101と同じ基板上のICとの通信に用いる第1通信ラインと、MCU101とは異なる基板上のICとの通信に用いる第2通信ラインである。第1通信ラインと第2通信ラインの間には電気的接点はない。すなわち、第1通信ライン上の通信と第2通信ライン上の通信は、それぞれ独立である。
 なお、UART通信に対応する1系統の通信ラインは、第3通信ラインである。
 図10では、第1通信ラインを「I2C1」と表記し、第2通信ラインを「I2C2」と表記する。
 第1通信ラインは、MCU基板100に配線パターンとして実装される。実施の形態1では、MCU基板100を第1基板ともいう。
In the case of the first embodiment, the two communication lines corresponding to the I2C communication are a first communication line used for communication with an IC on the same substrate as the MCU 101 and a communication line used for communication with an IC on a substrate different from the MCU 101. A second communication line. There is no electrical contact between the first communication line and the second communication line. That is, the communication on the first communication line and the communication on the second communication line are independent.
One communication line corresponding to UART communication is the third communication line.
In FIG. 10, the first communication line is denoted as "I2C1" and the second communication line is denoted as "I2C2".
The first communication line is mounted on the MCU board 100 as a wiring pattern. In Embodiment 1, the MCU board 100 is also called a first board.
 図10の場合、MCU101には、第1通信ライン用の第1通信端子101Aと、第2通信ライン用の第2通信端子101Bが設けられる。
 MCU101は、第1通信ラインを通じ、EEPROM102と充電IC103に接続される。
 実施の形態1では、充電IC103を第1ICとも呼び、EEPROM102を第3ICとも呼ぶ。
 図10の場合、充電IC103には、第1通信ライン用の第3通信端子103A1が設けられ、EEPROM102には、第1通信ライン用の第5通信端子102Aが設けられる。
In the case of FIG. 10, the MCU 101 is provided with a first communication terminal 101A for the first communication line and a second communication terminal 101B for the second communication line.
MCU 101 is connected to EEPROM 102 and charging IC 103 through a first communication line.
In Embodiment 1, the charging IC 103 is also called a first IC, and the EEPROM 102 is also called a third IC.
In the case of FIG. 10, the charging IC 103 is provided with a third communication terminal 103A1 for the first communication line, and the EEPROM 102 is provided with a fifth communication terminal 102A for the first communication line.
 第2通信ラインは、MCU基板100とUSBコネクタ基板200を接続するフレキシブル基板600(図7B参照)に含まれる。
 実施の形態1の場合、MCU基板100の基板面とUSBコネクタ基板200の基板面は概略平行に設置される。この基板間の関係は、例えば図2A、図2B及び図3Aからも確認される。換言すると、USBコネクタ基板200は、MCU基板100の隣に位置する。
The second communication line is included in flexible substrate 600 (see FIG. 7B) that connects MCU substrate 100 and USB connector substrate 200 .
In the case of the first embodiment, the board surface of the MCU board 100 and the board surface of the USB connector board 200 are installed substantially parallel. This relationship between the substrates can also be seen, for example, from FIGS. 2A, 2B and 3A. In other words, the USB connector board 200 is located next to the MCU board 100 .
 MCU基板100とUSBコネクタ基板200を接続するフレキシブル基板600の距離は、MCU基板100とLED及びブルートゥース基板300を接続するフレキシブル基板600の距離よりも短い。なお、MCU基板100とLED及びブルートゥース基板300を接続するフレキシブル基板600の距離は、MCU基板100とホールIC基板400を接続するフレキシブル基板600の距離よりも短い。この設置上の関係は、例えば図9から確認される。 The distance of the flexible board 600 connecting the MCU board 100 and the USB connector board 200 is shorter than the distance of the flexible board 600 connecting the MCU board 100 and the LED and Bluetooth board 300 . The distance between the MCU board 100 and the flexible board 600 connecting the LED and Bluetooth board 300 is shorter than the distance between the flexible board 600 connecting the MCU board 100 and the Hall IC board 400 . This installation relationship can be seen from FIG. 9, for example.
 実施の形態1では、USBコネクタ基板200を第2基板ともいう。
 MCU101は、第2通信ラインを通じ、残量計IC201に接続される。
 実施の形態1では、残量計IC201を第2ICとも呼ぶ。
 図10の場合、残量計IC201には、第2通信ライン用の第4通信端子201A1が設けられる。
 実施の形態1では、LED及びブルートゥース基板300を第3基板ともいう。
In Embodiment 1, the USB connector board 200 is also called a second board.
The MCU 101 is connected to the fuel gauge IC 201 through the second communication line.
In Embodiment 1, the fuel gauge IC 201 is also called a second IC.
In the case of FIG. 10, the fuel gauge IC 201 is provided with a fourth communication terminal 201A1 for the second communication line.
In Embodiment 1, the LED and Bluetooth board 300 is also called a third board.
 UART通信用の第3通信ラインは、MCU基板100とLED及びブルートゥース基板300を接続するフレキシブル基板600(図7A参照)に含まれる。
 MCU101は、第3通信ラインを通じ、ブルートゥースIC303に接続される。
 実施の形態1では、ブルートゥースIC303を第4ICとも呼ぶ。
 図10の場合、MCU101には、第3通信ライン用の第6通信端子101Cが設けられる。一方、ブルートゥースIC303には、第3通信ライン用の第7通信端子303Aが設けられる。
A third communication line for UART communication is included in the flexible board 600 (see FIG. 7A) connecting the MCU board 100 and the LED and Bluetooth board 300 .
MCU 101 is connected to Bluetooth IC 303 through a third communication line.
In Embodiment 1, the Bluetooth IC 303 is also called a fourth IC.
In the case of FIG. 10, the MCU 101 is provided with a sixth communication terminal 101C for the third communication line. On the other hand, the Bluetooth IC 303 is provided with a seventh communication terminal 303A for the third communication line.
 I2C通信は、1対多の通信が可能である。すなわち、I2C通信はバス接続である。従って、I2C通信の場合、通信先はアドレスにより指定される。
 図11は、I2C通信のイメージを説明する図である。図11では、MCU101と残量計IC201との通信を例示する。すなわち、図11は、第2通信ラインを用いた通信例を示している。図11に示すように、I2C通信は、アドレスの送信、コマンドの送信、データの送信の順番に実行される。なお、図11に示すI2C通信においては、コマンドの送信とデータの送信はマルチバイト形式であるが、これをシングルバイト形式としてもよい。
 I2C通信に対応する第1通信ラインも第2通信ラインも、信号線の数は、接続されるICの数によらず、シリアル通信用のクロックラインSCLとシリアル通信用のデータラインSDAの2本である。なお、I2C通信の速度は、0.1~1Mbpsである。なお、クロックラインSCLは、同期のタイミングを与えるクロックパルスやACKの送受に用いられ、データラインSDAは前述したアドレス、コマンド、データの送受に用いられる。
I2C communication is capable of one-to-many communication. That is, I2C communication is a bus connection. Therefore, in the case of I2C communication, a communication destination is specified by an address.
FIG. 11 is a diagram illustrating an image of I2C communication. FIG. 11 illustrates communication between the MCU 101 and the fuel gauge IC 201 . That is, FIG. 11 shows an example of communication using the second communication line. As shown in FIG. 11, I2C communication is executed in the order of address transmission, command transmission, and data transmission. In the I2C communication shown in FIG. 11, command transmission and data transmission are in multi-byte format, but they may be in single-byte format.
The number of signal lines for both the first communication line and the second communication line corresponding to I2C communication is two, a clock line SCL for serial communication and a data line SDA for serial communication, regardless of the number of connected ICs. is. The speed of I2C communication is 0.1 to 1 Mbps. The clock line SCL is used for transmitting and receiving clock pulses and ACKs that give synchronization timing, and the data line SDA is used for transmitting and receiving the above-described addresses, commands, and data.
 一方、UART通信は、1対1の接続であり、クロックを用いない非同期式の通信である。
 単方向通信の場合、UART通信の信号線の数は1本であるが、双方向通信の場合、UART通信の信号線の数は2本である。図10の例では、リセット線を含めた3本の信号線を使用している。
 なお、UART通信の速度は、0.1~115kbpsである。すなわち、UART通信の速度は、I2C通信よりも低速である。
 ただし、UART通信は、長距離通信が可能である。このため、実施の形態1では、フレキシブル基板600の距離が長くなるMCU101とLED及びブルートゥース基板300との通信にUART通信を使用している。
On the other hand, UART communication is one-to-one connection and asynchronous communication that does not use a clock.
In the case of unidirectional communication, the number of signal lines for UART communication is one, but in the case of bidirectional communication, the number of signal lines for UART communication is two. In the example of FIG. 10, three signal lines including the reset line are used.
The speed of UART communication is 0.1 to 115 kbps. That is, the speed of UART communication is slower than that of I2C communication.
However, UART communication is capable of long-distance communication. Therefore, in Embodiment 1, UART communication is used for communication between the MCU 101 and the LED and the Bluetooth board 300 where the distance of the flexible board 600 is long.
<動作モード>
 図12は、実施の形態1で使用するエアロゾル生成装置1に用意されている動作モードと動作モード間の遷移の条件を説明する図である。なお、以降の説明では、動作モード間の遷移を遷移モードとも呼ぶことがある。
 実施の形態で使用するエアロゾル生成装置1は、9つの動作モードを有している。充電モードM1、スリープモードM2、エラーモードM3、パーマネントエラーモードM4、ブルートゥースペアリングモードM5、アクティブモードM6、初期化モードM7、ベイピングモードM8、ベイピング終了モードM9の9つである。
 以下順番に、各動作モードについて説明する。
<Operating mode>
FIG. 12 is a diagram for explaining operation modes prepared in the aerosol generating device 1 used in Embodiment 1 and transition conditions between the operation modes. In the following description, transition between operation modes may also be referred to as transition mode.
The aerosol generator 1 used in the embodiment has nine operation modes. There are nine modes: charging mode M1, sleep mode M2, error mode M3, permanent error mode M4, Bluetooth pairing mode M5, active mode M6, initialization mode M7, vaping mode M8, and vaping end mode M9.
Each operation mode will be described in order below.
・充電モードM1
 充電モードM1は、BUS電圧VUSBを利用してバッテリ50を充電するモードである。
 充電モードM1では、バッテリ50(図2A参照)のバッテリ電圧VBATが極端に低い場合、深放電や過放電の検知なども行われてもよい。
・Charging mode M1
The charge mode M1 is a mode in which the battery 50 is charged using the BUS voltage VUSB .
In the charge mode M1, when the battery voltage V BAT of the battery 50 (see FIG. 2A) is extremely low, deep discharge or over discharge may be detected.
・スリープモードM2
 スリープモードM2は、シャッタ30(図1A参照)の閉状態の検知と、残量計IC201によるバッテリ50の監視を除き、ほとんどの機能が使えない状態である。このため、スリープモードM2は、他のモードに比して消費電力が少なく済む。
 ただし、一部のフリップフロップへのシステム電源Vcc33_0の供給は継続される。その結果、給電が継続されるフリップフロップの値が保持される。
 スリープモードM2には、充電モードM1で、USBが取り外された場合又は充電が完了した場合に移行される。反対に、充電モードM1には、スリープモードM2でUSBが接続された場合に移行される。この他、スリープモードM2は、ブルートゥースペアリングモードM5、アクティブモードM6にも遷移可能である。なお、スリープモードM2以外のモードにおいてUSBが接続された場合にも、充電モードM1に移行してもよい。
・Sleep mode M2
Sleep mode M2 is a state in which most of the functions cannot be used except detection of the closed state of the shutter 30 (see FIG. 1A) and monitoring of the battery 50 by the fuel gauge IC201. Therefore, the sleep mode M2 consumes less power than the other modes.
However, the supply of the system power supply Vcc33_0 to some flip-flops is continued. As a result, the value of the flip-flop that continues to be powered is held.
The sleep mode M2 is entered in the charging mode M1 when the USB is removed or charging is completed. Conversely, the charge mode M1 is entered when the USB is connected in the sleep mode M2. In addition, sleep mode M2 can also transition to Bluetooth pairing mode M5 and active mode M6. Note that the charging mode M1 may be entered even when the USB is connected in a mode other than the sleep mode M2.
・エラーモードM3
 エラーモードM3は、温度異常など復旧可能なエラーが生じた際に一時的に退避させるモードである。
 エラーモードM3に移行すると、エラー通知を行い、一定時間が経過した後又はエラーを解除する所定の条件が満たされた後にスリープモードM2に復旧する。
 因みに、エラーモードM3には、充電モードM1、アクティブモードM6、ベイピングの初期化モードM7、ベイピングモードM8からも移行する。
・Error mode M3
The error mode M3 is a mode for temporarily saving when a recoverable error such as abnormal temperature occurs.
When it shifts to the error mode M3, an error is notified, and the sleep mode M2 is restored after a certain period of time has passed or after a predetermined condition for canceling the error has been satisfied.
Incidentally, the error mode M3 also shifts from the charging mode M1, the active mode M6, the vaping initialization mode M7, and the vaping mode M8.
・パーマネントエラーモードM4
 パーマネントエラーモードM4は、深放電、電池寿命、短絡等の復旧不能なエラーが生じた場合に、他のモードへの遷移を禁止するモードである。図12でも、パーマネントエラーモードM4から他のモードへの矢印はない。
・Permanent error mode M4
The permanent error mode M4 is a mode that prohibits transition to other modes when an unrecoverable error such as deep discharge, battery life, or short circuit occurs. Also in FIG. 12, there are no arrows from the permanent error mode M4 to other modes.
・ブルートゥースペアリングモードM5
 ブルートゥースペアリングモードM5は、ブルートゥースによる外部機器とのペアリングを実行するモードである。ペアリングされた外部機器は、ホワイトリストに記録される。すなわち、ボンディングされる。
 なお、ブルートゥースペアリングモードM5には、スリープモードM2において、シャッタ30を閉じたまま押しボタン23(図1D参照)を操作することで移行する。
 ブルートゥースペアリングモードM5においてボンディングが成功又は失敗すると、スリープモードM2に移行する。
・Bluetooth pairing mode M5
The Bluetooth pairing mode M5 is a mode for executing pairing with an external device by Bluetooth. Paired external devices are recorded in the whitelist. That is, they are bonded.
The Bluetooth pairing mode M5 is entered by operating the push button 23 (see FIG. 1D) while the shutter 30 is closed in the sleep mode M2.
If bonding is successful or unsuccessful in Bluetooth pairing mode M5, it transitions to sleep mode M2.
・アクティブモードM6
 アクティブモードM6は、加熱を除くほとんどの機能が利用可能なモードである。
 アクティブモードM6には、スリープモードM2でシャッタ30が開かれると移行する。反対に、アクティブモードM6において、シャッタ30が閉じられると又は一定時間が経過すると、スリープモードM2に移行する。
・Active mode M6
Active mode M6 is a mode in which most functions except heating are available.
The active mode M6 is entered when the shutter 30 is opened in the sleep mode M2. On the contrary, when the shutter 30 is closed in the active mode M6 or when a certain period of time elapses, the mode shifts to the sleep mode M2.
・ベイピングの初期化モードM7
 ベイピングの初期化モードM7は、スティックの加熱を開始するにあたり初期設定等を行うモードである。
 初期化モードM7には、アクティブモードM6で押しボタン23を操作することで移行する。
 なお、初期化中にエラーが発生した場合、初期化モードM7からエラーモードM3に移行する。
・Vaping initialization mode M7
The vaping initialization mode M7 is a mode in which initialization and the like are performed when heating the stick is started.
The initialization mode M7 is entered by operating the push button 23 in the active mode M6.
If an error occurs during initialization, the initialization mode M7 is shifted to the error mode M3.
・ベイピングモードM8
 ベイピングモードM8は、タバコスティックの加熱を実行するモードである。ヒータへの通電は、発熱のためのものと、抵抗値の取得のためのものが交互に実行される。なお、ヒータの温度プロファイルは継時的に変化する。
 ベイピングモードM8には、初期化モードM7で初期設定が完了することで移行する。なお、ベイピングモードM8中にエラーが発生すると、エラーモードM3に移行する。
・Vaping mode M8
Vaping mode M8 is a mode for heating tobacco sticks. The heater is energized alternately for generating heat and for obtaining the resistance value. Note that the temperature profile of the heater changes over time.
When the initial setting is completed in the initialization mode M7, the vaping mode M8 is entered. If an error occurs during vaping mode M8, the mode shifts to error mode M3.
・ベイピング終了モードM9
 ベイピング終了モードM9は、加熱の終了処理を実行するモードである。
 ベイピング終了モードM9には、ベイピングモードM8において、時間又はパフ回数が上限に達したとき、シャッタ30が閉じられたとき、又は、USBが接続されたときに移行する。USBが接続されることによりベイピング終了モードM9に移行した場合、続いて充電モードM1に移行してもよい。
 なお、ベイピング終了モードM9において、加熱の終了が検知されると、アクティブモードM6に移行する。
・Vaping end mode M9
The vaping end mode M9 is a mode for executing heating end processing.
The vaping end mode M9 is entered in the vaping mode M8 when the time or the number of puffs reaches the upper limit, when the shutter 30 is closed, or when the USB is connected. When the USB is connected to shift to the vaping end mode M9, the charging mode M1 may be subsequently shifted to.
Note that when the end of heating is detected in the vaping end mode M9, the mode shifts to the active mode M6.
<動作モード別の通信の内容>
 図13は、実施の形態1における動作モード別の通信の内容を説明する図表である。
 図13には、9つの動作モードと、スリープモードからの2つの遷移モードの計11個のモードについて通信の内容を説明している。
<Contents of communication by operation mode>
13A and 13B are charts for explaining the contents of communication for each operation mode according to the first embodiment. FIG.
FIG. 13 illustrates the contents of communication for a total of 11 modes, 9 operating modes and 2 transition modes from the sleep mode.
 図13では、前述した3つの通信ライン、すなわちI2C通信用の第1通信ライン及び第2通信ラインとUART通信用の第3通信ライン上の通信を表している。
 第1通信ラインには、MCU101と、EEPROM102と、充電IC103が接続されている。
 第2通信ラインには、MCU101と残量計IC201が接続されている。
 第3通信ラインには、MCU101とブルートゥースIC303が接続されている。
FIG. 13 shows communication on the three communication lines described above, that is, the first and second communication lines for I2C communication and the third communication line for UART communication.
MCU 101, EEPROM 102, and charging IC 103 are connected to the first communication line.
The MCU 101 and the fuel gauge IC 201 are connected to the second communication line.
The MCU 101 and the Bluetooth IC 303 are connected to the third communication line.
・充電モードM1
 MCU101は、第1通信ラインを通じ、充電IC103から充電情報を受け取る。一方、MCU101は、第1通信ラインを通じ、充電IC103に対し、OTG機能をオフにするコマンドを送信する。すなわち、MCU101は、バッテリ電圧VBATから5Vの電圧を生成させる機能の停止を、充電IC103に指示する。これによりLED302にはBUS電圧VUSBが供給可能になる。 
 MCU101は、同じく第1通信ラインを通じ、EEPROM102に対してコマンドを送信する。例えばMCU101は、EEPROM102に対し、充電開始日時とその時の電池残量を記憶させるコマンドを送信する。また例えばMCU101は、EEPROM102に対し、充電終了日時とその時の電池残量を記憶させるコマンドを送信する。
・Charging mode M1
The MCU 101 receives charging information from the charging IC 103 through the first communication line. Meanwhile, the MCU 101 transmits a command to turn off the OTG function to the charging IC 103 through the first communication line. That is, the MCU 101 instructs the charging IC 103 to stop the function of generating a voltage of 5V from the battery voltage VBAT . This allows the LED 302 to be supplied with the BUS voltage V_USB .
The MCU 101 also transmits commands to the EEPROM 102 through the first communication line. For example, the MCU 101 transmits a command to the EEPROM 102 to store the charging start date and time and the remaining battery level at that time. Also, for example, the MCU 101 transmits a command to the EEPROM 102 to store the charging end date and time and the remaining battery level at that time.
 本実施の形態の場合、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。なお、1秒周期は一例である。
 図14は、充電モードM1中の通信を説明する図である。なお、図14に示す処理動作の初期状態はスリープモードM2である。
 スリープモードM2において、MCU101のPA9端子に入力する電圧がHレベルに変化すると、MCU101は、USBの接続を検知し、動作モードを充電モードM1に変更する。なお、PA9端子には、BUS電圧VUSBを分圧した電圧が与えられる。分圧回路の一端をグランドへ接続しておけば、USBが接続されていない場合には、PA9端子の電位はグランドの電位と等しくなる。
In the case of the present embodiment, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. Note that the one-second period is an example.
FIG. 14 is a diagram illustrating communication during the charging mode M1. Note that the initial state of the processing operation shown in FIG. 14 is the sleep mode M2.
In the sleep mode M2, when the voltage input to the PA9 terminal of the MCU 101 changes to H level, the MCU 101 detects the USB connection and changes the operation mode to the charge mode M1. A voltage obtained by dividing the BUS voltage VUSB is applied to the PA9 terminal. By connecting one end of the voltage dividing circuit to the ground, the potential of the PA9 terminal becomes equal to the ground potential when the USB is not connected.
 充電モードM1が開始すると、MCU101は、第1通信ライン(すなわちI2Cの第1系統)を通じ、同じ基板上の充電IC103にOTGオフ指令を送信する。
 次に、MCU101は、PC9端子に出力する電圧をHレベルに変化させ、ロードスイッチ104(図4参照)をオンに制御する。ロードスイッチ104がオン状態になると、充電IC103に対するBUS電圧VUSBの給電が開始される。
 なお、MCU101はPC9端子に出力する電圧をLレベル又は不定にすることで、ロードスイッチ104をオンに制御してもよい。この場合において、ロードスイッチ104のON端子には、BUS電圧VUSBを分圧した電圧が与えられる。つまり、PC9端子に出力する電圧をLレベル又は不定にすれば、ロードスイッチ104のON端子は、BUS電圧VUSBを分圧した電圧によりHレベルになる。
 もっとも、BUS電圧VUSBの給電が開始しても、充電IC103によるバッテリ50の充電は開始されない。バッテリ50の充電は、MCU101による充電指令が充電IC103に通知されることで開始される。なお、この通知には、第1通信ラインは使用されない。
When the charging mode M1 starts, the MCU 101 sends an OTG off command to the charging IC 103 on the same board through the first communication line (that is, the first system of I2C).
Next, the MCU 101 changes the voltage output to the PC9 terminal to H level, and turns on the load switch 104 (see FIG. 4). When the load switch 104 is turned on, the power supply of the BUS voltage VUSB to the charging IC 103 is started.
Note that the MCU 101 may turn on the load switch 104 by setting the voltage output to the PC9 terminal to L level or indefinite. In this case, the ON terminal of the load switch 104 is supplied with a voltage obtained by dividing the BUS voltage VUSB . That is, if the voltage output to the PC9 terminal is L level or indefinite, the ON terminal of the load switch 104 becomes H level by the voltage obtained by dividing the BUS voltage VUSB .
However, charging of the battery 50 by the charging IC 103 does not start even if the supply of the BUS voltage VUSB starts. Charging of the battery 50 is started when the MCU 101 notifies the charging IC 103 of a charging command. Note that the first communication line is not used for this notification.
 なお、充電モードM1が開始すると、MCU101は、第2通信ライン(すなわちI2Cの第2系統)を通じ、残量計IC201との間で、1秒周期でI2Cコマンドを送受信する。
 この第2通信ラインを用いるMCU101と残量計201の間の通信は充電モードM1の間継続される。すなわち、MCU101は、EEPROM102や充電IC103との通信に妨げられることなく、残量計IC201との通信に専念できる。
 換言すると、MCU101は、残量計IC201との通信により、EEPROM102や充電IC103との通信が妨げられずに済む。
Note that when the charging mode M1 starts, the MCU 101 transmits/receives I2C commands to/from the fuel gauge IC 201 at intervals of one second through the second communication line (that is, the second I2C system).
Communication between the MCU 101 and the fuel gauge 201 using this second communication line continues during the charging mode M1. That is, MCU 101 can concentrate on communication with fuel gauge IC 201 without being interrupted by communication with EEPROM 102 and charging IC 103 .
In other words, the MCU 101 can communicate with the EEPROM 102 and the charging IC 103 by communicating with the fuel gauge IC 201 .
 ロードスイッチ104をオン状態に制御した後、MCU101は、第1通信ラインを通じ、EEPROM102に充電開始情報を書き込む。具体的には、充電開始日時やその時のバッテリ残量を記録させる。この時点では、まだ充電は開始していない。
 この後、MCU101は、充電IC103に対する充電指令を送信する。この充電指令は、MCU101のPB3端子の電位をLレベルに変化させることで実行される。PB3端子に現れる電位の変化は、充電IC103のCE端子(図5参照)に与えられる。
 充電指令の受信により充電が開始されると、MCU101と充電IC103は一定時間周期(例えばx秒周期)でI2Cコマンドを送受する。
After controlling the load switch 104 to the ON state, the MCU 101 writes charging start information into the EEPROM 102 through the first communication line. Specifically, the charging start date and time and the remaining battery capacity at that time are recorded. At this point, charging has not yet started.
After that, MCU 101 transmits a charging command to charging IC 103 . This charging command is executed by changing the potential of the PB3 terminal of the MCU 101 to L level. A change in potential appearing at the PB3 terminal is applied to the CE terminal (see FIG. 5) of the charging IC 103 .
When charging is started by receiving a charging command, the MCU 101 and the charging IC 103 transmit and receive I2C commands at regular time intervals (for example, x second intervals).
 やがて、充電の完了が充電IC103からMCU101に通知されると、MCU101は、EEPROM102に対して充電終了情報の書き込みを指示する。また、MCU101は、PB3端子の電位をHレベルに変化させることで、充電IC103に対し、充電停止指令を通知する。充電IC103に対する充電停止指令は、PB3端子の電位をHレベルに変化させることで実行される。
 この後、PA9端子に入力する電圧がLレベルに変化すると、MCU101は、USBの取り外しを検知する。続いて、MCU101は、PC9端子に出力する電圧をLレベルに変化させ、ロードスイッチ104をオフ状態に制御する。ロードスイッチ104がオフ状態に制御されると、充電IC103に対するBUS電圧VUSBの給電が不能となる。
When the charging IC 103 notifies the MCU 101 of the completion of charging, the MCU 101 instructs the EEPROM 102 to write charging completion information. Also, the MCU 101 notifies the charging IC 103 of a charging stop command by changing the potential of the PB3 terminal to H level. A charging stop command to the charging IC 103 is executed by changing the potential of the PB3 terminal to H level.
After that, when the voltage input to the PA9 terminal changes to L level, the MCU 101 detects removal of the USB. Subsequently, the MCU 101 changes the voltage output to the PC9 terminal to the L level, and controls the load switch 104 to be off. When the load switch 104 is controlled to be in an off state, the charging IC 103 cannot be supplied with the BUS voltage VUSB .
 なお、充電モードM1の間、MCU101は、EEPROM102と充電IC103のそれぞれと、個別に通信する。すなわち、MCU101とEEPROM102が通信するタイミングと、MCU101が充電IC103と通信するタイミンは重ならない。より詳述すると、MCU101とEEPROM102が通信するタイミングは、充電モードM1における初期(充電開始前)と末期(充電完了後)である。MCU101と充電IC103が通信するタイミングは、充電モードM1における中期(充電中)である。
 また、MCU101とEEPROM102との通信、MCU101から充電IC103へのOTGオフ指令の通信、充電IC103からMCU101に対する充電完了の通信は、各イベントが発生した時点で実行される。換言すると、第1通信ライン上の通信は非周期的に実行される。
 一方、第2通信ライン上の通信は、充電モードM1の期間中、周期的に実行される。
During charging mode M1, MCU 101 communicates with each of EEPROM 102 and charging IC 103 individually. That is, the timing at which MCU 101 and EEPROM 102 communicate does not overlap with the timing at which MCU 101 communicates with charging IC 103 . More specifically, the MCU 101 and the EEPROM 102 communicate with each other at the beginning (before charging starts) and the end (after charging is completed) in the charging mode M1. The timing for communication between the MCU 101 and the charging IC 103 is the middle period (during charging) in the charging mode M1.
Communication between the MCU 101 and the EEPROM 102, communication of the OTG off command from the MCU 101 to the charging IC 103, and communication of the completion of charging from the charging IC 103 to the MCU 101 are executed when each event occurs. In other words, communication on the first communication line is performed aperiodically.
On the other hand, communication on the second communication line is performed periodically during the charging mode M1.
 図14に示すように、充電モードM1において、第1通信ライン上の通信のタイミングと第2通信ライン上の通信のタイミングは重なっている。
 しかし、前述したように、第1通信ラインと第2通信ラインは、異なる通信ラインであるので、他の通信ライン上の通信を妨げることなく実行が可能である。
 また、第2通信ラインは、MCU101が実装されているMCU基板100とは別のUSBコネクタ基板200を接続する通信ラインであるが、I2C通信であるのでUART通信に比して高速の通信が可能である。このため、1秒周期でバッテリ50の情報を収集することが可能になる。換言すると、第2通信ラインの通信頻度は、第1通信ラインの通信頻度よりも高い。
 第2通信ラインに用いられるI2C通信は、複数の基板を跨ぐような長距離の通信には不向きであるというのが技術常識である。しかし、長距離の通信に向いたUART通信などを用いてしまうと、残量計IC201との通信頻度が低下し、MCU101がバッテリ50の最新の状態を取得しにくくなってしまう。そこで、残量計IC201が実装されるUSBコネクタ基板200を、MCU基板100の隣に位置させる。これにより、別の基板に実装された残量計IC201に対しても、I2C通信による高頻度な通信が可能となる。
As shown in FIG. 14, in charging mode M1, the timing of communication on the first communication line overlaps with the timing of communication on the second communication line.
However, as described above, since the first communication line and the second communication line are different communication lines, it is possible to execute communication on other communication lines without interfering.
Also, the second communication line is a communication line that connects the USB connector board 200 different from the MCU board 100 on which the MCU 101 is mounted. is. Therefore, it becomes possible to collect the information of the battery 50 in a cycle of one second. In other words, the communication frequency of the second communication line is higher than the communication frequency of the first communication line.
It is common technical knowledge that the I2C communication used for the second communication line is not suitable for long-distance communication across a plurality of boards. However, if UART communication or the like suitable for long-distance communication is used, the frequency of communication with the fuel gauge IC 201 decreases, making it difficult for the MCU 101 to acquire the latest state of the battery 50 . Therefore, the USB connector board 200 on which the fuel gauge IC 201 is mounted is positioned next to the MCU board 100 . As a result, high-frequency communication by I2C communication is possible even with the fuel gauge IC 201 mounted on another substrate.
 図13の説明に戻る。
 これら第1通信ライン及び第2通信ラインを使用した通信と並列して、MCU101は、ブルートゥースIC303が実装されているLED及びブルートゥース基板300と第3通信ラインを通じて通信する。
 ここでの第3通信ラインは、通信プロトコルに通信距離が長いUART通信を使用する。因みに、MCU101は、ブルートゥースIC303に対し、充電情報を送る。この充電情報は、ペアリングされた外部機器に送信することが可能になる。
Returning to the description of FIG.
In parallel with communication using these first and second communication lines, the MCU 101 communicates with the LED on which the Bluetooth IC 303 is mounted and the Bluetooth board 300 through the third communication line.
The third communication line here uses UART communication with a long communication distance as a communication protocol. Incidentally, the MCU 101 sends charging information to the Bluetooth IC 303 . This charging information can be transmitted to the paired external device.
・スリープモードM2
 MCU101は、EEPROM102、充電IC103、及びブルートゥースIC303のいずれとも通信を実行しない。
 ただし、アクティブモードM6からスリープモードM2への移行期の場合、MCU101は、第1通信ラインを通じ、充電IC103に対し、OTG機能をオフにするコマンドを送信する。また、MCU101は、第3通信ラインを通じ、ブルートゥースIC303にスリープを指令する。アクティブモードM6からスリープモードM2への移行期は、2つの遷移モードのうち一方でもある。
・Sleep mode M2
MCU 101 does not communicate with EEPROM 102 , charging IC 103 , or Bluetooth IC 303 .
However, in the transition period from the active mode M6 to the sleep mode M2, the MCU 101 transmits a command to turn off the OTG function to the charging IC 103 through the first communication line. The MCU 101 also commands the Bluetooth IC 303 to sleep through the third communication line. The transition from active mode M6 to sleep mode M2 is also one of two transition modes.
 一方、スリープモードM2からアクティブモードM6への移行期の場合、MCU101は、第1通信ラインを通じ、充電IC103に対し、OTG機能をオンにするコマンドを送信する。また、MCU101は、第3通信ラインを通じ、ブルートゥースIC303に起動を指令する。
 ここでの移行期は、第1ICとしての充電IC103とのみ通信する第1条件の一例である。スリープモードM2からアクティブモードM6への移行期は、2つの遷移モードのうち他方でもある。
On the other hand, in the transition period from the sleep mode M2 to the active mode M6, the MCU 101 transmits a command to turn on the OTG function to the charging IC 103 through the first communication line. Also, the MCU 101 instructs the Bluetooth IC 303 to start up through the third communication line.
The transition period here is an example of a first condition in which communication is performed only with the charging IC 103 as the first IC. The transition from sleep mode M2 to active mode M6 is also the other of the two transition modes.
・エラーモードM3及びパーマネントエラーモードM4
 MCU101は、第1通信ラインを通じ、EEPROM102にエラー情報を記憶させる。
 また、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。
 また、MCU101は、第3通信ラインを通じ、ブルートゥースIC303にエラー情報を送る。
 エラーモードM3及びパーマネントエラーモードM4は、第3ICとしてのEEPROM102と通信する第2条件の一例である。
・Error mode M3 and permanent error mode M4
The MCU 101 stores the error information in the EEPROM 102 through the first communication line.
Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
Also, the MCU 101 sends error information to the Bluetooth IC 303 through the third communication line.
The error mode M3 and the permanent error mode M4 are examples of second conditions for communicating with the EEPROM 102 as the third IC.
・ブルートゥースペアリングモードM5
 MCU101は、第3通信ラインを通じ、ブルートゥースIC303からペアリングした端末の情報を受け取る。
 この後、MCU101は、第1通信ラインを通じ、EEPROM102にペアリングした端末を記憶させる。
 また、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。
 ここでのブルートゥースペアリングモードM5も、第3ICとしてのEEPROM102と通信する第2条件の一例である。
・Bluetooth pairing mode M5
The MCU 101 receives information on the paired terminal from the Bluetooth IC 303 through the third communication line.
After that, the MCU 101 stores the paired terminals in the EEPROM 102 through the first communication line.
Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
The Bluetooth pairing mode M5 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
・アクティブモードM6
 MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。なお、アクティブモードM6のMCU101は、残量計IC201とのみ通信する。
・Active mode M6
The MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second. Note that the MCU 101 in active mode M6 communicates only with the fuel gauge IC 201 .
・ベイピングの初期化モードM7
 MCU101は、第1通信ラインを通じ、EEPROM102に加熱開始時間を記憶させる。
 また、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。
 ここでの初期化モードM7も、第3ICとしてのEEPROM102と通信する第2条件の一例である。
・Vaping initialization mode M7
The MCU 101 stores the heating start time in the EEPROM 102 through the first communication line.
Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
The initialization mode M7 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
・ベイピングモードM8
 MCU101は、第1通信ラインを通じ、EEPROM102にパフタイミングを記憶させる。パフタイミングは、パフの検知に使用するサーミスタ41により検知される。
 また、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。
 ここでのベイピングモードM8も、第3ICとしてのEEPROM102と通信する第2条件の一例である。
・Vaping mode M8
The MCU 101 stores the puff timing in the EEPROM 102 through the first communication line. The puff timing is detected by the thermistor 41 used for puff detection.
Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
The vaping mode M8 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
・ベイピング終了モードM9
 MCU101は、第1通信ラインを通じ、EEPROM102にベイピングモードの時間を記憶させる。なお、加熱終了時間を記憶してもよい。
 また、MCU101は、第2通信ラインを通じ、残量計IC201から1秒周期でバッテリ情報を受け取る。
 また、MCU101は、第3通信ラインを通じ、ブルートゥースIC303に吸引情報を送る。
 ここでのベイピング終了モードM9も、第3ICとしてのEEPROM102と通信する第2条件の一例である。
・Vaping end mode M9
The MCU 101 stores the vaping mode time in the EEPROM 102 through the first communication line. Note that the heating end time may be stored.
Also, the MCU 101 receives battery information from the fuel gauge IC 201 through the second communication line at intervals of one second.
Also, the MCU 101 sends suction information to the Bluetooth IC 303 through the third communication line.
The vaping end mode M9 here is also an example of the second condition for communicating with the EEPROM 102 as the third IC.
・まとめ
 実施の形態1で使用するエアロゾル生成装置1の回路ユニット1000は、MCU101と他のICとのI2C通信に2系統の通信ラインを設ける。これにより、MCU101が通信するICの数が増加しても、複数のICとの間で高頻度かつ低遅延の通信を実現できる。結果的に、MCU101による制御の精度の向上や高機能化が実現される。
- Summary The circuit unit 1000 of the aerosol generating device 1 used in Embodiment 1 provides two communication lines for I2C communication between the MCU 101 and other ICs. As a result, even if the number of ICs with which the MCU 101 communicates increases, high-frequency and low-delay communication can be realized with a plurality of ICs. As a result, the control accuracy and functionality of the MCU 101 are improved.
 ここでの2系統の通信ラインには、MCU基板100上に実装される第1通信ラインと、同基板とUSBコネクタ基板200を接続する第2通信ラインがある。
 I2C通信を通信対象である基板別に2系統設けるので、1つの基板上に通信ラインが集中せずに済み、配線パターンの複雑化や高密度化が抑制される。結果的に、エアロゾル生成装置1の製造コストの低減が実現される。
The two communication lines here include a first communication line mounted on the MCU board 100 and a second communication line connecting the MCU board 100 and the USB connector board 200 .
Since two systems for I2C communication are provided for each substrate to be communicated with, communication lines do not concentrate on one substrate, and complication and high density of wiring patterns are suppressed. As a result, the manufacturing cost of the aerosol generator 1 can be reduced.
 また、MCU基板100に隣接するUSBコネクタ基板200との通信にはI2C通信を採用するので、MCU101と残量計IC201の高速通信を実現できる。換言すれば、MCU101はバッテリ50の状態を低遅延で取得できる。
 一方、フレキシブル基板600による通信距離がUSBコネクタ基板200よりも長いLED及びブルートゥース基板300との通信にはUART通信を採用することで、通信距離が長いブルートゥースIC303とも確実な通信が実現される。
Further, since I2C communication is adopted for communication with the USB connector board 200 adjacent to the MCU board 100, high-speed communication between the MCU 101 and the fuel gauge IC 201 can be realized. In other words, the MCU 101 can acquire the state of the battery 50 with a short delay.
On the other hand, by adopting UART communication for communication with the LED and the Bluetooth board 300 whose communication distance is longer than that of the USB connector board 200 by the flexible board 600, reliable communication is realized even with the Bluetooth IC 303 having a long communication distance.
 また、MCU101は、第1通信ラインを共有する複数のICのそれぞれと異なるタイミングで通信するので、MCU101と各ICとの通信の精度も向上される。
 なお、充電モードM1は、第1通信ラインを通じ、MCU101が、EEPROM102と充電IC103の両方と通信するモードである。
 スリープモードM2は、第1通信ラインを通じ、MCU101が、EEPROM102と充電IC103の両方と通信しないモードである。ただし、MCU101は、第2通信ラインを通じ、残量計IC201とは通信する。
Also, since the MCU 101 communicates with each of the plurality of ICs sharing the first communication line at different timings, the accuracy of communication between the MCU 101 and each IC is also improved.
Note that the charging mode M1 is a mode in which the MCU 101 communicates with both the EEPROM 102 and the charging IC 103 through the first communication line.
Sleep mode M2 is a mode in which MCU 101 does not communicate with both EEPROM 102 and charging IC 103 through the first communication line. However, the MCU 101 communicates with the fuel gauge IC 201 through the second communication line.
 スリープモードM2のうち、アクティブモードM6からの遷移期間やアクティブモードM6への遷移期間は、第1通信ラインを通じ、MCU101が、充電IC103のみと通信するモードである。
 アクティブモードM6は、第1通信ラインを通じ、MCU101が、EEPROM102と充電IC103の両方と通信しないモードである。
 残る動作モード、すなわちエラーモードM3、パーマネントエラーモードM4、ブルートゥースペアリングモードM5、初期化モードM7、ベイピングモードM8、ベイピング終了モードM9は、第1通信ラインを通じ、MCU101が、EEPROM102のみと通信するモードである。
In the sleep mode M2, the transition period from the active mode M6 and the transition period to the active mode M6 are modes in which the MCU 101 communicates only with the charging IC 103 through the first communication line.
Active mode M6 is a mode in which MCU 101 does not communicate with both EEPROM 102 and charging IC 103 through the first communication line.
The remaining operating modes, namely error mode M3, permanent error mode M4, Bluetooth pairing mode M5, initialization mode M7, vaping mode M8, and vaping end mode M9, MCU 101 communicates only with EEPROM 102 through the first communication line. mode.
<実施の形態2>
 実施の形態2で使用するエアロゾル生成装置1(図1A参照)は、動作モード中の通信の一部が実施の形態1と相違する。
 図15は、実施の形態2における動作モード別の通信の内容を説明する図表である。
 実施の形態2で使用するエアロゾル生成装置1は、エラーモードM3とパーマネントエラーモードM4において、第2通信ラインを通じて残量計IC201と通信しない点で、実施の形態1と相違する。
<Embodiment 2>
The aerosol generator 1 (see FIG. 1A) used in Embodiment 2 differs from Embodiment 1 in part of the communication during the operation mode.
15A and 15B are charts for explaining the contents of communication for each operation mode according to the second embodiment.
The aerosol generator 1 used in the second embodiment differs from the first embodiment in that it does not communicate with the fuel gauge IC 201 through the second communication line in the error mode M3 and the permanent error mode M4.
<実施の形態3>
 実施の形態3で使用するエアロゾル生成装置1(図1A参照)は、動作モード中の通信の一部が実施の形態1と相違する。
 図16は、実施の形態3における動作モード別の通信の内容を説明する図表である。
 実施の形態3で使用するエアロゾル生成装置1は、スリープモードM2を含む全ての動作において、第2通信ラインを通じて残量計IC201と通信する点で、実施の形態1と相違する。
<Embodiment 3>
The aerosol generator 1 (see FIG. 1A) used in Embodiment 3 differs from Embodiment 1 in part of the communication during the operation mode.
16A and 16B are charts for explaining the contents of communication for each operation mode according to the third embodiment.
The aerosol generator 1 used in Embodiment 3 differs from Embodiment 1 in that it communicates with the fuel gauge IC 201 through the second communication line in all operations including the sleep mode M2.
<他の実施の形態>
(1)以上、本発明の実施の形態について説明したが、本発明の技術的範囲は前述した実施の形態に記載の範囲に限定されない。前述した実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
<Other embodiments>
(1) Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the scope described in the above-described embodiments. It is clear from the scope of claims that the technical scope of the present invention includes various modifications and improvements to the above-described embodiment.
(2)前述の実施の形態においては、第1通信ラインと第2通信ラインの通信プロトコルにI2C通信を用いているが、いずれか一方又は両方にSPI(=Serial Peripheral Interface)通信を使用してもよい。
 図17は、シリアル通信の一形態であるSPI通信の接続形態を説明する図である。SPI通信の場合、信号線は、クロックラインと、マスタ出力ラインと、マスタ入力ラインと、スレーブ数分のスレーブ選択ラインが必要になる。例えばスレーブの数が1つの場合、信号線は4本になり、スレーブの数が3つの場合、信号線は6本になる。
 SPI通信は、1~数Mbpsの速度で通信が可能であるが、遠距離の通信には向いていない。このため、SPI通信は、I2C通信の代替構成としての採用が可能である。
(2) In the above-described embodiments, I2C communication is used as the communication protocol for the first communication line and the second communication line. good too.
FIG. 17 is a diagram for explaining a connection form of SPI communication, which is one form of serial communication. In the case of SPI communication, as signal lines, a clock line, a master output line, a master input line, and slave selection lines for the number of slaves are required. For example, if there is one slave, there are four signal lines, and if there are three slaves, there are six signal lines.
SPI communication is capable of communication at a speed of 1 to several Mbps, but is not suitable for long-distance communication. Therefore, SPI communication can be adopted as an alternative configuration for I2C communication.
(3)前述の実施の形態の場合、MCU101が同じ基板上で通信するICの数が2つであるが、1つのICとのみ通信してもよいし、3つ以上のICと通信してもよい。
 また、MCU101がUSBコネクタ基板200の1つのICと通信しているが、USBコネクタ基板200上の複数のICと通信してもよい。LED及びブルートゥース基板300との通信についても同様である。
(3) In the above-described embodiment, the MCU 101 communicates with two ICs on the same substrate. good too.
Also, although the MCU 101 communicates with one IC on the USB connector board 200 , it may communicate with a plurality of ICs on the USB connector board 200 . The same is true for communication with the LEDs and Bluetooth board 300 .
(4)前述の実施の形態の場合、MCU101との通信にI2C通信を採用する他の基板がUSBコネクタ基板200のみであるが、MCU基板100との通信距離が短ければ複数の他の基板との通信にI2C通信を採用してもよい。 (4) In the above-described embodiment, the USB connector board 200 is the only other board that uses I2C communication for communication with the MCU 101. However, if the communication distance with the MCU board 100 is short, other boards and You may employ|adopt I2C communication for communication of this.
(5)前述の実施の形態では、エアロゾル生成装置1として加熱式たばこを想定したが、前述した回路ユニット1000の構成は、電子たばこに応用してもよい。
 図18は、電子たばこに対応するエアロゾル生成装置1Aの外観構成例を説明する図である。
 エアロゾル生成装置1Aは、燃焼を伴わずに香味が付加されたエアロゾルを生成するための器具であり、長手方向Aに沿って延びる棒形状を有している。エアロゾル生成装置1Aは、長手方向Aに沿うように、電源ユニット710と、第1カートリッジ720と、第2カートリッジ730とで構成される。
(5) In the above-described embodiment, the aerosol generator 1 is assumed to be a heated cigarette, but the configuration of the circuit unit 1000 described above may be applied to electronic cigarettes.
FIG. 18 is a diagram illustrating an example of the external configuration of an aerosol generating device 1A compatible with electronic cigarettes.
The aerosol generator 1A is a tool for generating flavored aerosol without combustion, and has a rod shape extending along the longitudinal direction A. As shown in FIG. The aerosol generator 1A is composed of a power supply unit 710, a first cartridge 720, and a second cartridge 730 along the longitudinal direction A. As shown in FIG.
 ここで、第1カートリッジ720は、電源ユニット710に対して着脱可能である。また、第2カートリッジ730は、第1カートリッジ720に対して着脱可能である。
 換言すると、第1カートリッジ720及び第2カートリッジ730は、それぞれ交換が可能である。
 電源ユニット710は、実施の形態1における外部ケース20B(図1D参照)に対応し、バッテリに加え、MCUその他の回路が内蔵されている。換言すると、電源ユニット710には、回路ユニット1000に相当する回路が内蔵されている。因みに、電源ユニット710の側面には、ボタン714が設けられている。このボタン714は、押しボタン23(図1D参照)に対応する。
Here, the first cartridge 720 is detachable from the power supply unit 710 . Also, the second cartridge 730 is detachable with respect to the first cartridge 720 .
In other words, the first cartridge 720 and the second cartridge 730 are each replaceable.
The power supply unit 710 corresponds to the external case 20B (see FIG. 1D) in Embodiment 1, and incorporates MCU and other circuits in addition to the battery. In other words, the power supply unit 710 incorporates a circuit corresponding to the circuit unit 1000 . Incidentally, a button 714 is provided on the side surface of the power supply unit 710 . This button 714 corresponds to the push button 23 (see FIG. 1D).
 第1カートリッジ720は、エアロゾル源である液体を貯留するタンクと、毛細現象によりタンクから液体を引き込むウイックと、ウイックに保持される液体を加熱して蒸気化するコイルとを内蔵する。
 第1カートリッジ720は、アトマイザとも呼ばれる。この他、第1カートリッジ720には、エアロゾルに香味を加える香味ユニットが内蔵される。
 第2カートリッジ730には、吸口732が設けられている。
 なお、図18に示すエアロゾル生成装置1Aの外観は一例である。
The first cartridge 720 incorporates a tank that stores liquid as an aerosol source, a wick that draws the liquid from the tank by capillary action, and a coil that heats and vaporizes the liquid held in the wick.
The first cartridge 720 is also called an atomizer. In addition, the first cartridge 720 incorporates a flavor unit that adds flavor to the aerosol.
A suction port 732 is provided in the second cartridge 730 .
Note that the appearance of the aerosol generating device 1A shown in FIG. 18 is an example.
(6)前述の実施の形態においては、エアロゾル源を加熱する方式のエアロゾル生成装置について説明したが、超音波等を使用してエアロゾルを生成するネブライザーへの応用も可能である。この場合、ヒータに変えて超音波振動子が用いられる。この場合、MCUは、超音波振動子の振動を制御可能に構成される。
(7)前述の実施の形態においては、エアロゾル生成装置を例示したが、前述した回路ユニットの構成は、エアロゾルの生成機構を有しない携帯型の電子機器にも応用が可能である。特に複数のICを内蔵する携帯型の電子機器に応用が可能である。
(6) In the above-described embodiments, the aerosol generator that heats the aerosol source has been described, but application to a nebulizer that generates aerosol using ultrasonic waves or the like is also possible. In this case, an ultrasonic vibrator is used instead of the heater. In this case, the MCU is configured to be able to control the vibration of the ultrasonic transducer.
(7) In the above-described embodiments, the aerosol generator was exemplified, but the configuration of the circuit unit described above can also be applied to portable electronic devices that do not have an aerosol generation mechanism. In particular, it can be applied to portable electronic equipment containing a plurality of ICs.
1、1A…エアロゾル生成装置、10…外部パネル、10A…情報窓、20…本体ハウジング、内部パネル20A、20B…外部ケース、22…挿入孔、22A…容器、24…透光部品、30…シャッタ、40…ヒーティングユニット、50…バッテリ、60…バイブレータ、100…MCU基板、101…MCU、102…EEPROM、103…充電IC、104、106、109…ロードスイッチ、200…USBコネクタ基板、201…残量計IC、300…LED及びブルートゥース基板、303…ブルートゥースIC、400…ホールIC基板、500…シャーシ、600…フレキシブル基板、710…電源ユニット、720…第1カートリッジ、730…第2カートリッジ、1000…回路ユニット DESCRIPTION OF SYMBOLS 1, 1A... Aerosol generator, 10... External panel, 10A... Information window, 20... Main body housing, Internal panels 20A, 20B... External case, 22... Insertion hole, 22A... Container, 24... Translucent component, 30... Shutter , 40... Heating unit 50... Battery 60... Vibrator 100... MCU board 101... MCU 102... EEPROM 103... Charging IC 104, 106, 109... Load switch 200... USB connector board 201... Fuel gauge IC 300 LED and Bluetooth board 303 Bluetooth IC 400 Hall IC board 500 Chassis 600 Flexible board 710 Power supply unit 720 First cartridge 730 Second cartridge 1000 … circuit unit

Claims (15)

  1.  電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、
     シリアル通信用の第1通信端子と第2通信端子を含み、前記電源から前記ヒータへの電力の供給を制御するコントローラと、
     前記コントローラとは別体であり、かつ、シリアル通信用の第3通信端子を含む第1ICと、
     前記コントローラ及び前記第1ICとは別体であり、かつ、シリアル通信用の第4通信端子を含む第2ICと、
     前記第1通信端子と前記第3通信端子とを接続する第1通信ラインと、
     前記第2通信端子と前記第4通信端子とを接続する第2通信ラインと、
     第1基板と、
     前記第1基板とは別体であり、かつ、当該第1基板から離間した第2基板と、
     を有し、
     前記コントローラ及び前記第1ICは、前記第1基板に実装され、
     前記第2ICは、前記第2基板に実装される、
     エアロゾル生成装置の回路ユニット。
    a heater connector to which a heater that consumes power supplied from a power source and heats the aerosol source is connected;
    a controller including a first communication terminal and a second communication terminal for serial communication and controlling power supply from the power supply to the heater;
    a first IC that is separate from the controller and includes a third communication terminal for serial communication;
    a second IC that is separate from the controller and the first IC and that includes a fourth communication terminal for serial communication;
    a first communication line connecting the first communication terminal and the third communication terminal;
    a second communication line connecting the second communication terminal and the fourth communication terminal;
    a first substrate;
    a second substrate that is separate from the first substrate and spaced apart from the first substrate;
    has
    The controller and the first IC are mounted on the first substrate,
    The second IC is mounted on the second substrate,
    A circuit unit for an aerosol generator.
  2.  前記第1通信ラインで用いられる通信プロトコルは、前記第2通信ラインで用いられる通信プロトコルと同じである、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    The communication protocol used in the first communication line is the same as the communication protocol used in the second communication line.
    A circuit unit of an aerosol generator according to claim 1.
  3.  前記第1通信ラインで用いられる通信プロトコルは、I2C又はSPIである、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    The communication protocol used in the first communication line is I2C or SPI.
    A circuit unit of an aerosol generator according to claim 1.
  4.  前記第2基板は、前記第1基板に隣接する基板であり、
     前記第2通信ラインで用いられる通信プロトコルは、I2C又はSPIである、
     請求項2又は3に記載のエアロゾル生成装置の回路ユニット。
    the second substrate is a substrate adjacent to the first substrate;
    The communication protocol used in the second communication line is I2C or SPI.
    A circuit unit of an aerosol generator according to claim 2 or 3.
  5.  前記第1基板及び前記第2基板とは別体であり、かつ、当該第1基板及び当該第2基板から離間した第3基板と、
     前記第1基板の第6通信端子と前記第3基板の第7通信端子とを接続する第3通信ラインと、
     を更に有し、
     前記第3基板は、前記第2基板よりも前記第1基板から離間し、
     前記第3通信ラインで用いられる通信プロトコルは、UARTである、
     請求項2又は3に記載のエアロゾル生成装置の回路ユニット。
    a third substrate separate from the first substrate and the second substrate and separated from the first substrate and the second substrate;
    a third communication line connecting a sixth communication terminal of the first substrate and a seventh communication terminal of the third substrate;
    further having
    the third substrate is spaced apart from the first substrate more than the second substrate;
    the communication protocol used in the third communication line is UART;
    A circuit unit of an aerosol generator according to claim 2 or 3.
  6.  前記第2通信ラインにおける通信頻度は、前記第1通信ラインにおける通信頻度より高く、
     前記第1通信ラインで用いられる通信プロトコルは、I2Cである、
     請求項2~5のいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    the frequency of communication on the second communication line is higher than the frequency of communication on the first communication line;
    The communication protocol used on the first communication line is I2C.
    The circuit unit of the aerosol generator according to any one of claims 2-5.
  7.  前記第1通信ラインを介して前記コントローラへ接続されるICの数は、前記第2通信ラインを介して前記コントローラへ接続されるICの数より多く、
     前記第1通信ラインで用いられる通信プロトコルは、I2Cである、
     請求項2~5のいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    the number of ICs connected to the controller via the first communication line is greater than the number of ICs connected to the controller via the second communication line;
    The communication protocol used on the first communication line is I2C.
    The circuit unit of the aerosol generator according to any one of claims 2-5.
  8.  前記コントローラ、前記第1IC及び前記第2ICのいずれとも別体であり、かつ、シリアル通信用の第5通信端子を含む第3ICを更に有し、
     前記第1通信ラインは、前記第1通信端子と前記第5通信端子とを接続し、
     前記第3ICは、前記第1基板に実装される、
     請求項1~7のいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    a third IC that is separate from any of the controller, the first IC, and the second IC and that includes a fifth communication terminal for serial communication;
    The first communication line connects the first communication terminal and the fifth communication terminal,
    The third IC is mounted on the first substrate,
    A circuit unit of an aerosol generator according to any one of claims 1-7.
  9.  前記コントローラは、
     第1条件が満たされたことを契機として、前記第1ICと通信し、
     前記第1条件とは異なる第2条件が満たされたことを契機として、前記第3ICと通信するように構成される、
     請求項8に記載のエアロゾル生成装置の回路ユニット。
    The controller is
    Communicating with the first IC when the first condition is satisfied,
    Configured to communicate with the third IC when a second condition different from the first condition is satisfied,
    A circuit unit of an aerosol generator according to claim 8.
  10.  前記コントローラは、複数のモードのうちいずれか1つで動作し、
     前記複数のモードは、前記コントローラが前記第1ICと前記第3ICのうち前記第3ICのみと通信するモードを含む、
     請求項8に記載のエアロゾル生成装置の回路ユニット。
    the controller operates in any one of a plurality of modes;
    wherein the plurality of modes includes a mode in which the controller communicates with only the third IC out of the first IC and the third IC;
    A circuit unit of an aerosol generator according to claim 8.
  11.  前記第1通信ラインを介して前記コントローラへ接続されるICの数は、前記第2通信ラインを介して前記コントローラへ接続されるICの数より多い、
     請求項1~10のいずれか1項に記載のエアロゾル生成装置の回路ユニット。
    the number of ICs connected to the controller via the first communication line is greater than the number of ICs connected to the controller via the second communication line;
    A circuit unit of an aerosol generator according to any one of claims 1-10.
  12.  前記第2通信ラインを介して前記コントローラへ接続されるICは、前記第2ICのみである、
     請求項11に記載のエアロゾル生成装置の回路ユニット。
    The second IC is the only IC connected to the controller via the second communication line.
    A circuit unit of an aerosol generator according to claim 11.
  13.  前記第2ICは、前記電源の情報を取得する残量計ICである、
     請求項12に記載のエアロゾル生成装置の回路ユニット。
    The second IC is a fuel gauge IC that acquires information on the power supply,
    Circuit unit of an aerosol generator according to claim 12.
  14.  前記第1通信ラインで用いられる通信プロトコルは、前記第2通信ラインで用いられる通信プロトコルとは異なる、
     請求項1に記載のエアロゾル生成装置の回路ユニット。
    The communication protocol used in the first communication line is different from the communication protocol used in the second communication line,
    A circuit unit of an aerosol generator according to claim 1.
  15.  電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、
     シリアル通信用の第1通信端子と第2通信端子を含み、前記電源から前記ヒータへの電力の供給を制御するコントローラと、
     前記コントローラとは別体であり、かつ、シリアル通信用の第3通信端子を含む第1ICと、
     前記コントローラ及び前記第1ICとは別体であり、かつ、シリアル通信用の第4通信端子を含む第2ICと、
     前記第1通信端子と前記第3通信端子とを接続する第1通信ラインと、
     前記第2通信端子と前記第4通信端子とを接続する第2通信ラインと、
     第1基板と、
     前記第1基板とは別体であり、かつ、当該第1基板から離間した第2基板と、
     を有し、
     前記コントローラ及び前記第1ICは、前記第1基板に実装され、
     前記第2ICは、前記第2基板に実装される、
     エアロゾル生成装置。
    a heater connector to which a heater that consumes power supplied from a power source and heats the aerosol source is connected;
    a controller including a first communication terminal and a second communication terminal for serial communication and controlling power supply from the power supply to the heater;
    a first IC that is separate from the controller and includes a third communication terminal for serial communication;
    a second IC that is separate from the controller and the first IC and that includes a fourth communication terminal for serial communication;
    a first communication line connecting the first communication terminal and the third communication terminal;
    a second communication line connecting the second communication terminal and the fourth communication terminal;
    a first substrate;
    a second substrate separate from the first substrate and separated from the first substrate;
    has
    The controller and the first IC are mounted on the first substrate,
    The second IC is mounted on the second substrate,
    Aerosol generator.
PCT/JP2022/005855 2021-05-10 2022-02-15 Circuit unit for aerosol generation device, and aerosol generation device WO2022239343A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22807050.4A EP4338610A1 (en) 2021-05-10 2022-02-15 Circuit unit for aerosol generation device, and aerosol generation device
JP2022573768A JPWO2022239343A1 (en) 2021-05-10 2022-02-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-080021 2021-05-10
JP2021080021 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239343A1 true WO2022239343A1 (en) 2022-11-17

Family

ID=84029105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005855 WO2022239343A1 (en) 2021-05-10 2022-02-15 Circuit unit for aerosol generation device, and aerosol generation device

Country Status (3)

Country Link
EP (1) EP4338610A1 (en)
JP (1) JPWO2022239343A1 (en)
WO (1) WO2022239343A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200000146A1 (en) 2018-06-27 2020-01-02 Juul Labs, Inc. Vaporizer device
WO2020064347A1 (en) * 2018-09-24 2020-04-02 Jt International Sa Dual battery electronic cigarette
JP6856810B1 (en) * 2020-09-07 2021-04-14 日本たばこ産業株式会社 Power supply unit of aerosol generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200000146A1 (en) 2018-06-27 2020-01-02 Juul Labs, Inc. Vaporizer device
WO2020064347A1 (en) * 2018-09-24 2020-04-02 Jt International Sa Dual battery electronic cigarette
JP6856810B1 (en) * 2020-09-07 2021-04-14 日本たばこ産業株式会社 Power supply unit of aerosol generator

Also Published As

Publication number Publication date
JPWO2022239343A1 (en) 2022-11-17
EP4338610A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
EP3683921B1 (en) Power supply unit for aerosol inhaler
EP3937343B1 (en) Power supply unit for aerosol generation device
EP3935966A1 (en) Power supply unit for aerosol generation device
WO2022239343A1 (en) Circuit unit for aerosol generation device, and aerosol generation device
WO2022239337A1 (en) Circuit unit for aerosol generation device, and aerosol generation device
EP4088592B1 (en) Aerosol generation device
JP7336624B2 (en) Power supply unit for aerosol generator
RU2774104C1 (en) Power supply unit for aerosol generating device
EP3937340A1 (en) Power supply unit for aerosol generation device
WO2023105771A1 (en) Power supply unit for aerosol generating device
US20240100275A1 (en) Controller for inhalation apparatus
EP4340163A1 (en) Power supply unit for aerosol generation device
WO2022239374A1 (en) Power supply unit of aerosol generation device
EP4338623A1 (en) Power supply unit for aerosol generation device
JPWO2022239343A5 (en)
WO2022239407A1 (en) Power supply unit for aerosol generation device
EP4360482A1 (en) Controller for suction apparatus
WO2022239405A1 (en) Power supply unit of aerosol generator
WO2023105776A1 (en) Power supply unit for aerosol generation device
WO2024053052A1 (en) Aerosol generation device and program
WO2022239412A1 (en) Power supply unit for aerosol generation device
RU2774106C1 (en) Power supply unit for aerosol generating device
EP4338626A1 (en) Power supply unit for aerosol generation device
WO2022239279A1 (en) Power supply unit for aerosol generation device
WO2022239360A1 (en) Power supply unit for aerosol generation device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022573768

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022807050

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807050

Country of ref document: EP

Effective date: 20231211