WO2022239280A1 - Power supply unit for aerosol generation device - Google Patents

Power supply unit for aerosol generation device Download PDF

Info

Publication number
WO2022239280A1
WO2022239280A1 PCT/JP2021/043912 JP2021043912W WO2022239280A1 WO 2022239280 A1 WO2022239280 A1 WO 2022239280A1 JP 2021043912 W JP2021043912 W JP 2021043912W WO 2022239280 A1 WO2022239280 A1 WO 2022239280A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery
state
terminal
supply unit
Prior art date
Application number
PCT/JP2021/043912
Other languages
French (fr)
Japanese (ja)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2022239280A1 publication Critical patent/WO2022239280A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Aerosol generating devices such as electronic cigarettes have a configuration for heating the liquid to form the aerosol.
  • Patent Document 1 protects the power supply unit of the aerosol generator by using a power supply monitoring circuit that monitors various characteristics of the power supply, there is room for improvement in this protection.
  • An object of some aspects of the present invention is to provide a technique for improving the safety of the power supply unit of the aerosol generator.
  • a power supply unit for an aerosol generator comprising: a power supply; a heater connector connected to a heater that consumes power supplied from the power supply to heat the aerosol source; a control circuit for controlling power supply from the power source to the heater and monitoring the state of the power source; a power supply monitoring circuit that monitors the state of the power supply, The power supply monitoring circuit supplies an error signal to the control circuit when the state of the power supply satisfies an error notification condition; The control circuit is a standby state waiting for the error signal to be supplied from the power supply monitoring circuit; A power supply unit is provided that is operable in a monitoring state that transitions in response to the supply of the error signal from the power supply monitoring circuit during operation in the standby state and monitors the state of the power supply.
  • the control circuit since the control circuit is in a standby state until the error signal is supplied from the power supply monitoring circuit, the power consumption of the power supply unit can be reduced.
  • the control circuit since the control circuit monitors the state of the power supply when an error signal is supplied from the power supply monitoring circuit, the safety of the power supply unit can be improved.
  • the power supply monitoring circuit while the control circuit is operating in the standby state, the power supply monitoring circuit monitors a predetermined physical quantity of the power supply in a first period, While the control circuit is operating in the monitoring state, the control circuit monitors the predetermined physical quantity of the power supply in a second period;
  • a power supply unit according to a first aspect is provided, wherein the first period is longer than the second period.
  • the control circuit when the state of the power supply satisfies a predetermined condition during operation in the monitoring state, the control circuit performs charging of the power supply and supply of power from the power supply to the heater.
  • a power supply unit according to the first aspect or the second aspect is provided, wherein at least one is at least temporarily limited. According to this aspect, since the charging or discharging of the power supply is restricted, the safety of the power supply unit is improved.
  • the power supply unit according to any one of the first to third aspects, wherein the control circuit acquires the state of the power supply through the power supply monitoring circuit while operating in the monitoring state.
  • the control circuit does not require a unique function for measuring the state of the power supply, or the function can be made small, so that the size of the control circuit can be reduced.
  • the power supply monitoring circuit outputs the error signal to the control circuit when the power supply enters a predetermined state continuously n times while the control circuit is operating in the standby state. supply and The control circuit performs at least one of charging the power supply and supplying power from the power supply to the heater when the power supply enters a predetermined state m consecutive times during operation in the monitoring state.
  • the power supply unit according to any one of the first to fourth aspects, wherein said m is greater than said n.
  • the control circuit can quickly shift to the monitoring state, and the control circuit operating in the monitoring state can monitor the state of the battery with high accuracy. This allows the power supply unit to be quickly and adequately protected.
  • the time required for the control circuit to determine that the power source has entered the predetermined state m consecutive times is determined by the power supply monitor that the power source has entered the predetermined state n times consecutively.
  • a power supply unit according to the fifth aspect is provided that takes less time than the circuit takes to determine.
  • the control circuit can monitor the state of the battery with high accuracy in a short period of time.
  • the power supply monitoring circuit supplies the error signal to the control circuit when the state of the power supply satisfies any condition of the first condition set, The control circuit determines whether any condition of a second condition set is satisfied based on the state of the power supply newly acquired after receiving the error signal.
  • a power supply unit according to one is provided.
  • the power supply unit 1 can transition to the failure state based on the determination result by the control circuit, so the power supply unit can be appropriately protected.
  • the first condition set includes conditions regarding physical quantities of the power supply that are not monitored by the second condition set.
  • the power consumption of the power supply unit can be reduced by not monitoring some of the physical quantities by the power supply monitoring circuit.
  • the control circuit transitions the power supply unit to a failure state in which charging and discharging of the power supply is permanently prohibited when any condition of the second condition set is satisfied.
  • a power supply unit according to the eighth aspect is provided. According to this aspect, since the power supply unit transitions to the failure state when an error of high importance determined by the control circuit occurs, the safety of the power supply unit is further improved.
  • the power supply unit according to any one of the seventh to ninth aspects wherein the second condition set includes a condition that the temperature of the power supply is higher than the upper limit temperature. be.
  • the high-temperature state of the power supply which is of high importance, is determined by a separate circuit, so the power supply unit can be appropriately protected.
  • the safety of the power supply unit of the aerosol generator is improved.
  • FIG. 4 is a diagram showing an appearance example of a power supply unit of an aerosol generating device according to some embodiments
  • FIG. 2 is a perspective view showing an internal configuration example of a power supply unit according to some embodiments
  • FIG. 4 is a diagram illustrating an example of a battery monitoring condition set according to some embodiments
  • 4 is a flow diagram illustrating an example battery monitoring operation by an MCU of some embodiments
  • FIG. 4 is a flow diagram illustrating an example battery monitoring operation by an MCU of some embodiments
  • FIG. FIG. 4 is a flow diagram illustrating an example of battery monitoring operation by the battery monitoring circuit of some embodiments
  • FIG. 4 is a flow diagram illustrating an example of battery monitoring operation by the battery monitoring circuit of some embodiments; 4 is a flow diagram illustrating an example of interrupt operation by an MCU of some embodiments; FIG. 4 is a flow diagram illustrating an example of battery monitoring operation by a protection circuit of some embodiments; FIG. FIG. 4 is a flow diagram illustrating an example of a battery deep discharge determination operation according to some embodiments; FIG. 5 is a diagram illustrating an example of a normal temperature range of a battery according to some embodiments;
  • FIG. 1 is an external perspective view schematically showing a configuration example of a power supply unit 1 of an aerosol generating device according to one embodiment of the present invention.
  • the power supply unit 1 has a substantially rectangular parallelepiped case 2 with rounded corners. Case 2 constitutes the surface of power supply unit 1 .
  • the surface shown in FIG. 1(a) is the front surface
  • the surface shown in FIG. 1(b) is the rear surface.
  • the surface shown in FIG. 1(c) is the bottom surface
  • the surface shown in FIG. 1(d) is the top surface.
  • the power supply unit 1 has a case (enclosure) 2 and a front panel 11 that can be attached to and detached from the case 2 .
  • FIG. 1(f) shows a state in which the front panel 11 is removed from the state shown in FIG. 1(a).
  • FIG. 1(g) shows the front panel 11 viewed from the inside.
  • the front panel 11 functions as a front cover of the case 2 and allows the user to freely replace it to customize its appearance.
  • Two pairs of magnets 14A and 14B and magnets 15A and 15B are provided at opposing positions on the inner surface of the front panel 11 and the front surface of the case 2, respectively.
  • the magnets 14A and 15A attract each other, and the magnets 14B and 15B attract each other, so that the front panel 11 is held in front of the case 2 by magnetic force.
  • a pushable switch SW and a light emitting unit NU are provided on the front of the case 2 .
  • a protrusion 16 is provided on the inner surface of the front panel 11 at a position facing the switch SW.
  • a slider 13 that can be opened and closed is provided on the top surface of the case 2 .
  • the heater chamber 17 appears as shown in FIG. 1(e).
  • the slider 13 is not shown in FIG. 1(e) for the sake of convenience.
  • the heater chamber 17 is a cylindrical space having an elliptical (elliptical) horizontal cross section, and heats a stick or cartridge inserted into the heater chamber 17 .
  • the stick is cylindrical and has a horizontal cross-sectional diameter larger than the minor axis of the horizontal cross-section of the heater chamber 17 .
  • the stick is radially compressed when it is inserted into the heater chamber 17, so that the contact between the outer surface of the stick and the heater chamber 17 is enhanced and the contact area is increased. Therefore, the stick can be efficiently heated. This can improve the amount and flavor of the aerosol generated from the stick.
  • the stick heated by the heater chamber 17 may contain only the aerosol source, or may contain the aerosol source and the flavoring substance.
  • Aerosol sources can include liquids such as, for example, polyhydric alcohols such as glycerin or propylene glycol.
  • the aerosol source may comprise a mixed solution of glycerin and propylene glycol.
  • the aerosol source may include a drug or herbal medicine.
  • the aerosol source may contain a flavoring agent such as menthol.
  • the aerosol source may comprise liquid phase nicotine.
  • the aerosol source can be liquid, solid, or a mixture of liquid and solid.
  • a vapor source such as water may be used instead of or in addition to an aerosol source.
  • the stick may include a carrier for carrying the aerosol source.
  • the carrier itself may be a solid aerosol source.
  • the carrier may include a sheet formed from raw materials derived from tobacco leaves.
  • a connector USBC is provided on the bottom of the case 2 for connecting an external device.
  • the connector USBC is a receptacle conforming to the USB Type-C standard.
  • an external device USB charger, mobile battery, personal computer, etc.
  • the connector USBC may conform to standards other than the USB Type-C standard.
  • the power supply unit 1 may be provided with a power receiving coil for non-contact charging.
  • FIG. 2 is a perspective view schematically showing the power supply unit 1 with the case 2 removed.
  • the same reference numerals are given to the same components as in FIG.
  • the heater unit HT (hereinafter simply referred to as heater HT) is a load that is provided on the outer periphery of the heater chamber 17 and heats the heater chamber 17 by consuming power supplied from the power source, thereby heating the aerosol source.
  • the heater HT is covered with a heat insulating material.
  • a heater thermistor TH attached to the heat insulating material of the heater HT or the heater HT itself is a temperature sensor that indirectly measures the temperature of the heater HT.
  • the heater HT may be of an induction heating type.
  • the heater HT includes at least a coil for electromagnetic induction.
  • a susceptor (metal piece) that receives the magnetic field sent from the electromagnetic induction coil may be included in the heater HT or may be built in the stick.
  • the puff thermistor TP is a suction sensor arranged at the upper end of the heater chamber 17 .
  • the temperature detected by the puff thermistor TP fluctuates, which can be used to detect the inhalation.
  • the case thermistor TC is provided near the inner surface of the front of the case 2 and detects the case temperature.
  • the battery BT is rechargeable, for example a lithium-ion secondary battery.
  • the battery BT is a power supply that supplies basic power for the power supply unit 1 .
  • the battery BT is attached at the time of manufacture, and the power supply unit 1 is shipped in a state (sleep state) in which power is being supplied to most of the components except for the heater, thermistor, and the like.
  • the detector 170 is an open/close sensor that detects opening and closing of the slider 13, and may be an integrated circuit (Hall IC) using a Hall element.
  • Hall IC integrated circuit
  • the circuits of the power supply unit 1 are distributed and arranged on four circuit boards PCB1 to PCB4. Alternatively, the circuits of the power supply unit 1 may be arranged on one circuit board, or may be distributed on two or three or more circuit boards.
  • the power supply unit 1 has the heater HT.
  • the cartridge containing the aerosol source may have the heater.
  • the power supply unit 1 has a heater connector, and this heater connector is connected to the connector on the heater side by attaching the cartridge to the power supply unit 1 .
  • the power supply unit 1 supplies power to the heater inside the cartridge through the heater connector.
  • a positive terminal of the battery BT is electrically connected to the first power connector BC+, and a negative terminal of the battery BT is electrically connected to the second power connector BC-.
  • the potential of the positive electrode of the battery BT can be supplied to the VBAT terminal of the protection circuit 90, the VBAT terminal of the battery monitoring circuit 100, the VIN terminal of the transformer circuit 120, the BAT terminal of the charging circuit 20, and the potential input terminal of the switch circuit 80.
  • the protection circuit 90 measures the current flowing through the path through which the current output from the battery BT flows using the resistor R2, and protects the battery BT according to the current.
  • the protection circuit 90 measures the output voltage of the battery BT using the input to the VBAT terminal, and protects the battery BT according to the measured output voltage.
  • a battery monitoring circuit 100 (also referred to as a power supply monitoring circuit) can measure the state of the battery BT using a resistor R1 arranged in a path through which current output from the battery BT flows.
  • the overvoltage protection circuit 110 receives the voltage V BUS supplied from the connector USBC as a power supply connector and outputs the voltage V USB to the V USB line.
  • the overvoltage protection circuit 110 functions as a protection circuit that, even if the voltage V BUS supplied from the connector USBC exceeds the specified voltage value, drops it to the specified voltage value and supplies it to the output side of the overvoltage protection circuit 110. I can.
  • This specified voltage value may be set based on the voltage value input to the OVLo terminal.
  • Transformation circuit 120 is a DC/DC converter that transforms power supply voltage V BAT supplied from battery BT to generate heater voltage V BOOST for driving heater HT.
  • the transformer circuit 120 may be a step-up circuit, a step-up/step-down circuit, or a step-down circuit.
  • a heater HT is arranged to heat the aerosol source. A positive terminal of the heater HT can be electrically connected to the first heater connector HC+ and a negative terminal of the heater HT can be electrically connected to the second heater connector HC-.
  • the heater HT may be attached to the power supply unit 1 in such a manner that it cannot be removed without being destroyed (for example, by soldering), or may be attached in such a manner that it can be removed without being destroyed. good.
  • an electrical connection by a "connector" can be divided into a form in which it cannot be separated from each other without being broken, and a form in which it can be separated from each other without being broken. It will be described as any one.
  • the MCU 130 is a processor-based control circuit equipped with a program-executable processor, memory, interface, etc., and controls the operation of the power supply unit 1 .
  • Programs executed by MCU 130 may reside in internal memory, non-volatile memory 70, or both.
  • the MCU 130 controls power supply to the heater HT for heating the aerosol source using power supplied from the battery BT. From another point of view, the MCU 130 controls heat generation of the heater HT for heating the aerosol source using power supplied from the battery BT. In still another aspect, the MCU 130 controls power supply to the heater HT and charging operation of the battery BT.
  • the MCU 130 When causing the heater HT to generate heat, the MCU 130 turns on the switches SH and SS and turns off the switch SM. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 to the heater HT through the switch SH. When measuring the temperature or resistance of the heater HT, the MCU 130 turns off the switch SH and turns on the switches SM and SS. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 through the switch SM to the heater HT.
  • the operational amplifier A1 When measuring the temperature or resistance value of the heater HT, the operational amplifier A1 detects the voltage between the positive terminal and the negative terminal of the heater HT, in other words, the voltage between the first heater connector HC+ and the second heater connector HC-. to the PA7 terminal of the MCU 130.
  • the operational amplifier A1 may be understood as a measurement circuit that measures the resistance value or temperature of the heater HT.
  • a shunt resistor RS can be arranged in a path electrically connecting the switch SM and the first heater connector HC+.
  • the resistance value of the shunt resistor RS can be determined so that the switch SR is turned on during the heating period of the heater HT and turned off during the period of measuring the temperature or resistance value of the heater HT.
  • the switch SR is composed of an N-channel MOSFET, the drain terminal of the switch SR is connected to the output terminal of the operational amplifier A1, the gate terminal of the switch SR is connected between the shunt resistor RS and the first heater connector HC+, The source terminal of switch SR is connected to ground potential.
  • a voltage obtained by dividing the heater voltage V BOOST mainly by the shunt resistor RS and the heater HT is input to the gate terminal of the switch SR.
  • the resistance value of the shunt resistor RS can be determined so that the divided value is greater than or equal to the threshold voltage of the switch SR.
  • the current flowing through the heater HT when the switch SH is turned off and the switches SM and the switches SS are turned on by the shunt resistor RS is the heater HT when the switches SH and the switches SS are turned on and the switch SM is turned off. is smaller than the current flowing through As a result, it is possible to prevent the temperature of the heater HT from changing due to the current flowing through the heater HT when measuring the temperature or resistance of the heater HT.
  • the load switch 10 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC5 from the VOUT terminal to the VCC5 line.
  • the voltage value of the voltage VCC5 is, for example, 5.0 [V].
  • the VCC5 line is connected to the VBUS and VAC terminals of the charging circuit 20, which will be described later, and the light emitting unit NU.
  • the ON terminal of the load switch 10 is connected to the collector terminal of an npn bipolar transistor.
  • the emitter terminal of this bipolar transistor is connected to the ground potential and the base terminal is connected to the PC9 terminal of the MCU 130 . That is, the MCU 130 can control opening/closing of the load switch 10 through the bipolar transistor by adjusting the potential of the PC9 terminal.
  • Charging circuit 20 has a charging mode. In the charging mode, the charging circuit 20 electrically connects the SYS terminal and the BAT terminal internally. Thus, the voltage VCC5 supplied to the VBUS terminal via the VCC5 line can be used to supply the charging voltage from the BAT terminal to the battery BT via the first conductive path PT1. Charging circuit 20 preferably generates a suitable charging voltage by stepping down voltage VCC5 .
  • the charging mode can be enabled or activated by supplying a low level to the /CE terminal.
  • the VCC line is connected to the VIN and EN terminals of transformer circuit 30, which will be described later.
  • the charging circuit 20 can have a power pass function.
  • the charging circuit 20 uses the voltage VCC5 supplied to the VBUS terminal through the VCC5 line, or the BAT from the battery BT through the first conductive path PT1.
  • a power supply voltage V BAT applied to a terminal is used to provide the voltage V CC on the V CC line.
  • the charging circuit 20 electrically connects the VBUS terminal and the SW terminal internally, and supplies the VCC5 line.
  • VCC5 is used to supply voltage VCC on the VCC line.
  • the charging circuit 20 electrically connects the BAT terminal and the SW terminal internally, and the first conductive path from the battery BT.
  • the power supply voltage V BAT supplied to the BAT terminal through PT1 is used to provide the voltage V CC on the V CC line.
  • the charging circuit 20 has an OTG (On-The-GO) function.
  • OTG On-The-GO
  • the charging circuit 20 uses the power supply voltage V BAT supplied from the battery BT to the BAT terminal through the first conductive path PT1 to apply the voltage V from the VBUS terminal to the V CC5 line. Feed CC5 .
  • the charging circuit 20 is configured so that the voltage supplied to the light emitting unit NU is about the same as when generating the voltage V CC5 from the voltage V USB .
  • voltage V BAT is boosted to provide voltage V CC5 . With such a configuration, the operation of the light emitting unit NU is stabilized.
  • the charging circuit 20 operates using either the power pass function or the OTG function set by default or one enabled by the MCU 130 . sell.
  • Transformer circuit 30 is a DC/DC converter, which may be a boost circuit, a buck-boost circuit, or a buck circuit, and is enabled by applying voltage VCC to the VCC line. Specifically, the transformer circuit 30 is enabled by inputting a high-level signal to the EN terminal. Since the VIN and EN terminals are connected to the VCC line, transformer circuit 30 is enabled by applying voltage VCC to the VCC line. Transformer circuit 30 provides voltage V CC33_0 from the VOUT terminal to the V CC33_0 line. The voltage value of the voltage V CC33_0 is, for example, 3.3 [V]. The VCC33_0 line is connected to the VIN terminal of the load switch 40, which will be described later, the VIN terminal and RSTB terminal of the reboot controller 50, which will be described later, and the VCC terminal and D terminal of FF2.
  • the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33 from the VOUT terminal to the VCC33 line.
  • the voltage value of the voltage VCC33 is, for example, 3.3 [V].
  • the VCC 33 line is connected to the VIN terminal of the load switch 60 described later, the VCC terminal of the nonvolatile memory 70, the VDD and CE terminals of the battery monitoring circuit 100 described later, the VDD terminal of the MCU 130, the VDD terminal of the detector 140 described later, and the VDD terminal of the detector 140 described later.
  • VCC_NRF terminal of the communication interface circuit 160 a VDD terminal of the detector 170, a VCC terminal and a D terminal of the FF1, a positive power supply terminal of the operational amplifier A1, and a positive power supply of the operational amplifier A2, which will be described later. terminal, and a positive power supply terminal of an operational amplifier A3, which will be described later.
  • the VIN terminal of the load switch 40 is electrically connected to the VOUT terminal of the transformer circuit 30 and supplied with the voltage VCC33_0 from the transformer circuit 30 . In order not to complicate the circuit board of the power supply unit 1, it is preferable that the voltage value of the voltage VCC33_0 and the voltage value of the voltage VCC33 are substantially equal.
  • the reboot controller 50 outputs a low level from the RSTB terminal in response to the low level being supplied to the SW1 terminal and the SW2 terminal for a predetermined time.
  • the RSTB terminal is electrically connected to the ON terminal of the load switch 40 . Accordingly, in response to the supply of the low level to the SW1 terminal and the SW2 terminal of the reboot controller 50 for a predetermined period of time, the load switch 40 stops outputting the voltage VCC33 from the VOUT terminal.
  • the output of the voltage VCC33 from the VOUT terminal of the load switch 40 stops, the supply of the voltage VCC33 to the VDD terminal (power supply terminal) of the MCU 130 is cut off, so the MCU 130 stops operating.
  • a low level is supplied from the detector 140 to the SW2 terminal of the reboot controller 50 via the Schmidt trigger circuit 150 .
  • the switch SW is pressed, a low level is supplied to the SW1 terminal of the reboot controller 50 . Therefore, when the switch SW is pressed while the front panel 11 is removed from the power supply unit 1 (state shown in FIG. 1(f)), the SW1 terminal and the SW2 terminal of the reboot controller 50 are supplied with a low level.
  • the reboot controller 50 recognizes that a command to reset or restart the power supply unit 1 has been input when a low level is continuously supplied to the SW1 terminal and the SW2 terminal for a predetermined time (for example, several seconds).
  • the reboot controller 50 does not output a low level from the RSTB terminal after outputting a low level from the RSTB terminal.
  • a low level is input to the ON terminal of the load switch 40, the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal, and the voltage VCC33 is applied to the VCC33 line. is no longer output.
  • the MCU 130 stops outputting the low level from the RSTB terminal
  • the high level voltage VCC33_0 is input to the ON terminal of the load switch 40, so that the load switch 40 electrically connects the VIN terminal and the VOUT terminal. to output the voltage VCC33 again from the VOUT terminal to the VCC33 line.
  • the MCU 130 that has stopped operating can be restarted.
  • the load switch 60 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33_SLP from the VOUT terminal to the VCC33_SLP line.
  • the voltage value of the voltage V CC33_SLP is, for example, 3.3 [V].
  • the VCC33_SLP line is connected to a puff thermistor TP, which will be described later, a heater thermistor TH, which will be described later, and a case thermistor TC, which will be described later.
  • the ON terminal of the load switch 60 is electrically connected to the PC11 terminal of the MCU 130 .
  • the MCU 130 transitions the logic level of the PC11 terminal from high level to low level when the power supply unit 1 shifts to the sleep mode, and transitions the logic level of the PC11 terminal to low level when the power supply unit 1 shifts from the sleep mode to the active mode. Make a transition from level to high level.
  • voltage VCC33_SLP is not available in sleep mode and becomes available when transitioning from sleep mode to active mode.
  • the voltage value of the voltage VCC33_SLP and the voltage value of the voltage VCC33 are substantially equal.
  • the power supply unit 1 can include a puff thermistor TP (for example, an NTC thermistor or a PTC thermistor) that constitutes a puff sensor for detecting a puff (sucking) action by the user.
  • the puff thermistor TP may be arranged, for example, to detect temperature changes in the airflow path associated with the puff.
  • the puff thermistor TP is only a specific example of the puff sensor.
  • a microphone capacitor, a pressure sensor, a flow sensor, a flow velocity sensor, or the like may be used as the puff sensor.
  • the power supply unit 1 may include a vibrator M. Vibrator M can be activated, for example, by turning on switch SN.
  • the switch SN may be composed of a transistor, and a control signal may be supplied from the PH0 terminal of the MCU 130 to the base or gate of the transistor.
  • the power supply unit 1 may have a driver for controlling the vibrator M.
  • the power supply unit 1 can include a heater thermistor TH (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the heater HT.
  • the temperature of the heater HT may be detected indirectly by detecting the temperature in the vicinity of the heater HT.
  • the operational amplifier A2 can output a voltage corresponding to the resistance value of the thermistor TH, in other words, a voltage corresponding to the temperature of the heater HT.
  • the power supply unit 1 may include a case thermistor TC (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the housing (case) 2 of the power supply unit.
  • the temperature of case 2 may be detected indirectly by detecting the temperature in the vicinity of case 2 .
  • the operational amplifier A3 outputs a voltage corresponding to the resistance value of the thermistor TC, in other words, a voltage corresponding to the temperature of the case 2.
  • Detector 140 may be configured to detect that front panel 11 is removed from power supply unit 1 .
  • the output of detector 140 may be supplied to the SW2 terminal of reboot controller 50 and the PD2 terminal of MCU 130 via Schmitt trigger circuit 150 .
  • One end of the switch SW may be connected to the V CC 33 line, the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130 .
  • the other end of the switch SW can be connected to ground potential. Accordingly, when the switch SW is pressed, a low level is supplied to the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130, and when the switch SW is not pressed, a high level is supplied to the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130. can be
  • the detector 170 can be configured to detect opening and closing of the slider 13 .
  • the output of detector 170 may be provided to the PC13 terminal of MCU 130 .
  • the detectors 140 and 170 can be configured by integrated circuits (Hall ICs) using Hall elements, for example.
  • the communication interface circuit 160 provides the MCU 130 with a function of wirelessly communicating with external devices such as smartphones, mobile phones, and personal computers.
  • Communication interface circuit 160 may be, for example, a communication interface circuit compliant with one or more of any wireless communication standards, such as Bluetooth (registered trademark).
  • FF1 and FF2 are holding circuits that hold 1-bit information (0 or 1) indicating whether an abnormality has been detected as a low level or a high level.
  • FF is an abbreviation for flip-flop.
  • FF2 outputs the value obtained by inverting the value of the information it holds from the /Q terminal.
  • FF1 also outputs the value of the information it holds from the Q terminal.
  • FF1 and FF2 are preferably D-type flip-flop ICs.
  • FF1 and FF2 have a /CLR terminal, and when the input level of the /CLR terminal changes from high level to low level, the value of the held information is initialized to 0 (low level). A change in the input level of the /CLR terminal from low level to high level does not affect the value of the held information.
  • power is supplied to FF1 and FF2 through different power supply lines. That is, the VCC terminal (power supply terminal) of FF1 is supplied with the voltage VCC33 , and the VCC terminal (power supply terminal) of FF2 is supplied with the voltage VCC33_0 .
  • the voltage VCC33_0 is continuously supplied even while the voltage VCC33 , which is the power supply of the MCU 130, is temporarily stopped in the reset operation. Therefore, the information held by the FF 2 (the output of the Q and /Q terminals) is held without disappearing even if the reset operation of the power supply unit 1 is executed.
  • the information held by FF1 is erased during the reset operation.
  • FF1 and FF2 the input to the VCC terminal is also input to the D terminal. Therefore, while FF1 and FF2 are operating, a high level is always input to the D terminal. FF1 and FF2 have synchronization terminals (not shown), and when the input of the synchronization terminal changes from low level to high level, the input level of the D terminal is held. When the power supply unit 1 is operating normally, FF1 and FF2 keep high level.
  • a voltage that varies according to the resistance value of the heater thermistor TH is supplied to the inverting input of the operational amplifier A2, and a reference voltage is supplied to the non-inverting input.
  • This reference voltage is such that the voltage of the non-inverting input is higher than the voltage of the inverting input when the heater HT is not overheated, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the heater HT is overheated. designed to be higher than Therefore, the output of the operational amplifier A2 becomes high level when the heater HT is not overheated (normal state), and becomes low level when the heater HT is overheated (abnormal state).
  • the output of operational amplifier A2 is connected to the /CLR terminal of FF2.
  • the output of operational amplifier A2 is also connected to the D terminal and /CLR terminal of FF1 via a reverse diode.
  • the output of the operational amplifier A2 is connected to the cathode of the diode, and the D terminal and /CLR terminal of FF1 are connected to the anode of the diode. If the temperature of the heater HT is normal, the input to the /CLR terminal of FF2 becomes high level. When the input of the /CLR terminal is at high level, the output of the Q terminal of FF2 maintains the initial state. That is, the Q terminal of DD2 outputs a high level.
  • a voltage VCC33_0 is input to the D terminal of FF2, and FF2 holds the input level of the D terminal in the initial state if there is no abnormality at startup. Therefore, when the temperature of the heater HT is normal, the Q terminal output of FF2 is at high level and the /Q terminal output is at low level.
  • the output of the operational amplifier A2 changes to low level.
  • the input of the /CLR terminal of FF2 changes to low level.
  • FF2 is forcibly initialized, the output of the Q terminal becomes low level, and the output of the /Q terminal becomes high level.
  • the output of the /Q terminal of FF2 is supplied to the PB14 terminal of MCU130. Therefore, the MCU 130 can detect that the heater HT is in an overheating state in response to the signal input to the PB14 terminal switching from low level to high level.
  • the case thermistor TC is arranged at a position close to the inner surface of the case 2.
  • the case thermistor TC is arranged at a position in contact with the inner surface of the case 2 .
  • the resistance value of the case thermistor TC can be used as the temperature of the case 2 .
  • a voltage that varies according to the resistance value of the case thermistor TC is supplied to the inverting input of the operational amplifier A3, and a reference voltage is supplied to the non-inverting input.
  • This reference voltage is such that the voltage of the non-inverting input is higher than the voltage of the inverting input when the case 2 of the power supply unit 1 is not at a high temperature, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the case 2 is at a high temperature. designed to be higher than Therefore, the output of the operational amplifier A3 is high level when the case 2 is not at a high temperature (normal state), and is low level when the case 2 is at a high temperature (abnormal state).
  • the output of operational amplifier A3 is connected to the /CLR terminal and D terminal of FF1. If the temperature of Case 2 is normal, the input to the /CLR terminal of FF1 becomes high level. When the input of the /CLR terminal is high level, the output of the Q terminal of FF1 maintains the initial state. A voltage VCC33 is input to the D terminal of FF1, and if there is no abnormality at startup, FF1 holds the input level of the D terminal in the initial state. Therefore, if the temperature of case 2 is normal, the output from the Q terminal of FF1 is at high level. When case 2 becomes hot, the output of operational amplifier A3 changes to low level. As a result, the input of the /CLR terminal of FF1 changes to low level.
  • FF1 When the /CLR terminal becomes low level, FF1 is forcibly initialized and the output of the Q terminal becomes low level.
  • the output from the Q terminal of FF1 is supplied to the PA10 terminal of MCU 130 and the base of switch SL. Therefore, the MCU 130 can detect that the case 2 is at a high temperature in response to the signal input to the PA10 terminal switching from high level to low level.
  • the switch SL when the output from the Q terminal of FF1 switches from high level to low level, the switch SL is turned on.
  • the collector of switch SL is connected to the /CE terminal of charging circuit 20, and the emitter of switch SL is connected to the VCC33 line.
  • switch SL When switch SL is turned on, voltage VCC33 is input to the /CE terminal of charging circuit 20 .
  • the signal supplied to the /CE terminal of charging circuit 20 switches to high level, and charging circuit 20 stops operating.
  • FIG. 4 is a circuit diagram extracting and describing the configuration related to the operation for protecting the power supply unit 1 based on the information regarding the battery BT among the components described using FIG.
  • the protection operation includes a direct operation such as stopping the current flowing to the battery BT, and an indirect operation such as sending a signal requesting other circuits to perform such a direct operation. may include both
  • the protection operation may include, at least temporarily, limiting charging of the battery BT and/or power supply from the battery BT to the heater HT, as described in detail below. These restrictions on the operation of the battery BT may include completely disabling this operation (e.g.
  • Components of the power supply unit 1 protected by the protection operation may be arbitrary components such as the battery BT and the MCU 130 .
  • MCU 130, battery monitoring circuit 100, protection circuit 90, FF1, and charging circuit 20 each perform individual protection operations. Components for these protection operations are collectively referred to as a protection control unit 200 .
  • the MCU 130, the battery monitoring circuit 100, the protection circuit 90, the FF1, and the charging circuit 20 included in the protection control unit 200 are configured as separate circuits.
  • the protection circuit 90 measures the current flowing through the battery BT and the voltage of the battery BT. Specifically, the CS terminal of the protection circuit 90 is connected to one end of the resistor R2, and the VSS terminal of the protection circuit 90 is connected to the other end of the resistor R2. The resistance value of the resistor R2 is stored in the protection circuit 90 in advance. Protection circuit 90 measures the current through resistor R2 by dividing the voltage between the VSS and CS terminals by the resistance of resistor R2. The resistor R2 is connected to a second power connector BC- to which the negative electrode of the battery BT is connected. Therefore, the current flowing through the resistor R2 is correlated with the current flowing through the battery BT. The protection circuit 90 can determine the direction of the current flowing through the resistor R2 by comparing the potential of the VSS terminal and the potential of the CS terminal. Thereby, the protection circuit 90 can determine whether the battery BT is being charged or discharged.
  • the VBAT terminal of the protection circuit 90 is connected to the first power connector BC+ to which the positive electrode of the battery BT is connected, and the VSS terminal of the protection circuit 90 is connected to the second power connector BC- to which the negative electrode of the battery BT is connected. It is connected. Therefore, the voltage between the VBAT terminal and the VSS terminal of the protection circuit 90 is equal to the voltage of the battery BT (power supply voltage V BAT ). Therefore, the protection circuit 90 can measure the voltage of the battery BT by measuring the voltage of the VBAT terminal.
  • the protection circuit 90 can turn off the switch SD by switching the output from the DOUT terminal from high level to low level.
  • a gate of the switch SD is electrically connected to the DOUT terminal of the protection circuit.
  • the gate of switch SD functions as the control terminal of switch SD.
  • Switch SD switches its conduction state based on the input to the gate. When the switch SD is turned off, the current path for discharging the battery BT is cut off, thereby limiting the discharge from the battery BT. Thus, switch SD functions as a discharge cutoff switch.
  • the protection circuit 90 can turn off the switch SC by switching the output from the COUT terminal from high level to low level.
  • a gate of the switch SC is electrically connected to the COUT terminal of the protection circuit.
  • the gate of switch SC functions as the control terminal of switch SC.
  • Switch SC switches its conduction state based on the input to the gate.
  • the switch SC When the switch SC is turned off, the current path for charging the battery BT is cut off, thereby limiting the charging of the battery BT.
  • the switch SC functions as a charge cutoff switch.
  • the protection circuit 90 maintains the output from the DOUT terminal and the output from the COUT terminal at a high level during operation, and when the state of the battery BT satisfies a predetermined condition described later, the switches SC and The control signal supplied to SD is switched to low level.
  • the charging circuit 20 has the function of charging the battery BT as described above with reference to FIG.
  • a BAT terminal of the charging circuit 20 is connected to a first power connector BC+ to which the positive electrode of the battery BT is connected.
  • Charging circuit 20 charges battery BT by supplying power from the BAT terminal to battery BT.
  • Charging circuit 20 monitors the potential of the BAT terminal, and limits power supply to battery BT when this potential satisfies a predetermined condition.
  • the SCL terminal of the charging circuit 20 is connected to the PB8 terminal of the MCU130, and the SDA terminal of the charging circuit 20 is connected to the PB9 terminal of the MCU130.
  • the charging circuit 20 performs I2C communication with the MCU 130 through the SCL terminal and the SDA terminal. Specifically, the clock is communicated through the SCL terminal of the charging circuit 20 and the data is communicated through the SDA terminal of the charging circuit 20 . Since data can be transmitted by both the MCU 130 and the charging circuit 20 , data can be communicated bidirectionally between the charging circuit 20 and the MCU 130 .
  • An enable signal is supplied to the /CE terminal of the charging circuit 20 .
  • the charging circuit 20 performs a charging operation when a low level is supplied to the /CE terminal, and does not perform a charging operation when a high level is supplied to the /CE terminal.
  • the battery monitoring circuit 100 monitors various physical quantities of the battery BT. In some embodiments, battery monitoring circuit 100 monitors the temperature of battery BT, the voltage of battery BT, and the current through battery BT. Alternatively, battery monitoring circuit 100 may monitor only some of these physical quantities, or may monitor other physical quantities.
  • a resistor R3 and a battery thermistor TB are connected in series between the TREG terminal of the battery monitoring circuit 100 and the ground potential to which the negative electrode of the battery BT is connected. Furthermore, the THM terminal of the battery monitoring circuit 100 is connected to the node between the resistor R3 and the battery thermistor TB.
  • Battery thermistor TB is a thermistor (temperature sensor) for measuring the temperature of battery BT, and is arranged near battery BT. The resistance value of battery thermistor TB changes according to a predetermined temperature characteristic. The relationship between the actual temperature of battery BT and the resistance value of battery thermistor TB is measured in advance and stored in battery monitoring circuit 100 in advance.
  • the resistance value of the resistor R3 is stored in the battery monitoring circuit 100 in advance.
  • the battery monitoring circuit 100 can measure the temperature of the battery BT by measuring the voltage between the TREG terminal and the THM terminal or the voltage between the THM terminal and the VSS terminal.
  • the VRSM terminal of the battery monitoring circuit 100 is connected to one end of the resistor R1, and the VRSP terminal of the battery monitoring circuit 100 is connected to the other end of the resistor R1.
  • the resistance value of resistor R1 is stored in battery monitoring circuit 100 in advance.
  • Battery monitoring circuit 100 measures the current through resistor R1 by dividing the voltage between the VRSM and VRSP terminals by the resistance of resistor R1.
  • the resistor R2 is connected in series with the second power connector BC- to which the negative electrode of the battery BT is connected. Therefore, the current flowing through the resistor R2 is correlated with the current flowing through the battery BT.
  • the battery monitoring circuit 100 can determine the direction of the current flowing through the resistor R1 by comparing the potential of the VRSM terminal and the potential of the VRSP terminal. Thereby, the battery monitoring circuit 100 can determine whether the battery BT is being charged or discharged.
  • the VBAT terminal of the battery monitoring circuit 100 is connected to the first power connector BC+ to which the positive terminal of the battery BT is connected, and the VSS terminal of the battery monitoring circuit 100 is connected to the second power supply via the switches SD and SC and the resistor R2. It is connected to the power connector BC-.
  • the VSS terminal of the battery monitoring circuit 100 is also connected to the ground potential. Therefore, the voltage between the VBAT terminal and the VSS terminal of battery monitoring circuit 100 is substantially equal to the voltage of battery BT. Therefore, the battery monitoring circuit 100 can measure the voltage of the battery BT by measuring the voltage of the VBAT terminal.
  • the SCL terminal of the battery monitoring circuit 100 is connected to the PC0 terminal of the MCU 130
  • the SDA terminal of the battery monitoring circuit 100 is connected to the PC1 terminal of the MCU 130
  • the battery monitoring circuit 100 performs I2C communication with the MCU 130 through the SCL terminal and the SDA terminal. Specifically, the clock is communicated through the SCL terminal of the battery monitoring circuit 100 and the data is communicated through the SDA terminal of the battery monitoring circuit 100 . Since both the MCU 130 and the battery monitoring circuit 100 can transmit data, data can be communicated bidirectionally between the battery monitoring circuit 100 and the MCU 130 .
  • the VDD and CE terminals of the battery monitoring circuit 100 are each connected to the VCC33 line.
  • the operating power of the battery monitoring circuit 100 is supplied to the VDD terminal of the battery monitoring circuit 100 .
  • An enable signal is supplied to the CE terminal of the battery monitoring circuit 100 .
  • the battery monitoring circuit 100 operates when a high level is supplied to the CE terminal, and does not operate when a low level is supplied to the CE terminal. Therefore, the battery monitoring circuit 100 operates while the voltage VCC33 is supplied to the VCC33 line.
  • the IO5 terminal of the battery monitoring circuit 100 is connected to the PB12 terminal of the MCU 130 .
  • the battery monitoring circuit 100 outputs the nGAUGE_INT2 signal to the MCU 130 through the IO5 terminal. This signal is communicated uni-directionally from the battery monitoring circuit 100 to the MCU 130 .
  • Battery monitoring circuit 100 maintains the nGAUGE_INT2 signal at a high level while the measurement result for battery BT is normal.
  • the battery monitoring circuit 100 switches the nGAUGE_INT2 signal to low level when an abnormality occurs in the battery BT. Therefore, the low-level nGAUGE_INT2 signal may be regarded as an error signal that notifies an error. Specific conditions for battery monitoring circuit 100 to transmit an error signal to MCU 130 will be described later.
  • the ALERT terminal of the battery monitoring circuit 100 is connected to the /CLR terminal and D terminal of FF1 via a reverse diode D1.
  • the cathode of diode D1 is connected to the ALERT terminal of battery monitoring circuit 100
  • the anode of diode D1 is connected to the /CLR and D terminals of FF1.
  • the battery monitoring circuit 100 outputs the nGAUGE_INT1 signal to FF1 through the ALERT terminal. This signal is communicated uni-directionally from battery monitoring circuit 100 to FF1.
  • the battery monitoring circuit 100 maintains the nGAUGE_INT1 signal at high level while the measurement result regarding the battery BT is normal.
  • the battery monitoring circuit 100 switches the nGAUGE_INT1 signal to low level when an abnormality occurs in the battery BT. Therefore, the low-level nGAUGE_INT1 signal may be regarded as an error signal that notifies an error. A specific condition for the battery monitoring circuit 100 to transmit the error signal to FF1 will be described later.
  • the Q terminal of FF1 is connected to the gate of switch SS via reverse diode D2.
  • the cathode of diode D2 is connected to the Q terminal of FF1 and the anode of diode D1 is connected to the gate of switch SS.
  • the Q terminal of FF1 is also connected to the base of switch SL.
  • the switch SL When the output from the Q terminal of FF1 becomes low level, the switch SL is turned on.
  • the resistor R6 no longer contributes to the voltage division of the voltage VCC33 with the resistor R7, and charging is prohibited because the input to the /CE terminal of the charging circuit 20 becomes the same high level as the voltage VCC33 . .
  • the output of FF1 By setting the output of FF1 to a low level in this manner, the charging and discharging of the battery BT and the energization of the heater HT can be prohibited without going through the MCU 130, thereby protecting the circuit.
  • the Q terminal of FF1 is also connected to the PA10 terminal of MCU130.
  • the MCU 130 can detect that FF1 has notified an error in response to the input of the PA10 terminal switching from high level to low level. In response to this, the MCU 130 may prompt the user to perform a reset operation using the light emitting unit NU or the vibrator M.
  • the MCU 130 can communicate with battery monitoring circuit 100 via I2C communication, as described above.
  • the MCU 130 acquires information on the battery BT from the battery monitoring circuit 100, and performs protection operations based on this information.
  • the PC2 terminal of MCU 130 is connected to switch circuit 80 via resistor R4.
  • the switch circuit 80 becomes conductive when the input from the PB4 terminal of the MCU 130 becomes high level, and the PC2 terminal of the MCU 130 and the positive electrode of the battery BT become conductive.
  • the PC2 terminal of the MCU 130 is supplied with the power supply voltage V BAT divided by the resistors R4 and R5.
  • the power supply voltage V BAT divided by resistors R4 and R5 is also referred to as voltage ADCB+. Therefore, the MCU 130 can acquire the voltage of the battery BT without going through the battery monitoring circuit 100 by switching the output of the PB4 terminal to high level.
  • each component of protection control section 200 ie, battery monitoring circuit 100, protection circuit 90, and charging circuit 20, performs individual protection operations according to individual conditions.
  • a column 501 in FIG. 5 indicates the physical quantity of the battery BT monitored by the protection control unit 200 .
  • Protection control unit 200 monitors the current, temperature, and voltage of battery BT.
  • a column 502 indicates the contents of monitoring by the protection control unit 200 .
  • the protection control unit 200 monitors the current of the battery BT for overcurrent, the temperature of the battery BT for overheating and low temperature, and the voltage of the battery BT for overcharge, overdischarge and deep discharge. Deep discharge refers to a state in which battery BT is discharged more than overdischarge. Overdischarge refers to a state in which the output voltage of battery BT is lower than the final discharge voltage.
  • Column 503 in FIG. 5 indicates the timing of monitoring the physical quantity in column 501 .
  • Charging it is determined whether the physical quantity of the battery BT satisfies the condition only while the battery BT is being charged by the charging circuit 20 .
  • disharging it is determined whether the physical quantity of the battery BT satisfies the condition only while the charging circuit 20 is not charging the battery BT.
  • the condition is satisfied while power is being supplied from the battery BT to the heater HT (for example, while the heater voltage V BOOST is being applied to the heater HT).
  • the row described as “always” it is determined whether the physical quantity of the battery BT satisfies the condition regardless of whether the battery BT is being charged by the charging circuit 20 or not.
  • a column 504 represents conditions for MCU 130 to periodically monitor the physical quantity of battery BT and to perform protection operations based on the monitoring results. As will be described later, the MCU 130 periodically acquires the physical quantity of the battery BT from the battery monitoring circuit 100 via I 2 C communication, and executes protection operation based on the acquired physical quantity of the battery BT.
  • a column 505 indicates conditions for the battery monitoring circuit 100 to monitor the physical quantity of the battery BT and to request FF1 to perform the protection operation based on the monitoring result.
  • Column 506 represents conditions for battery monitoring circuit 100 to monitor the physical quantity of battery BT and to request MCU 130 to perform a protection operation based on this monitoring result. As will be described later, the battery monitoring circuit 100 requests the MCU 130 to execute a protection operation by means of an interrupt signal.
  • MCU 130 Upon receiving the interrupt signal, MCU 130 starts monitoring the physical quantity of battery BT.
  • Column 507 represents conditions for charging circuit 20 to monitor the physical quantity of battery BT and to perform protection operation based on the monitoring result.
  • a column 508 represents conditions for the protection circuit 90 to monitor the physical quantity of the battery BT and perform protection operation based on the monitoring result.
  • a combination of the timing in column 503 and the conditions in columns 504 to 508 defines the condition for starting the protection operation.
  • the top item in column 505 defines a condition that protection operation is started when the current of battery BT is 10 [A] or more during discharge.
  • FIG. 5 describes a plurality of conditions for the protection control section 200 to start the protection operation.
  • a set composed of these conditions is hereinafter referred to as a monitoring condition set, and each element of this set is referred to as a monitoring condition.
  • the protection control unit 200 executes a protection operation when any monitoring condition included in the monitoring condition set is satisfied.
  • the content of the protective action to be performed depends on which monitoring condition is satisfied. Numerical values for each monitoring condition described in FIG. 5 are an example, and other numerical values may be used.
  • the protection control unit 200 may not use some of the conditions shown in FIG. 5 as the monitoring conditions, or may use conditions not shown in FIG.
  • Bold-lined frames in FIG. 5 indicate transition destinations of the state of the power supply unit 1 when the protection control unit 200 executes the protection operation.
  • a solid line frame indicates a condition for transitioning the power supply unit 1 to the failure state.
  • a dashed frame indicates a condition for transitioning the power supply unit 1 to the reset standby state.
  • the dashed-dotted frame indicates the conditions for transitioning the power supply unit 1 to the connection standby state.
  • the failure state is a state in which the power supply unit 1 cannot be changed to the normal state by the operation of the power supply unit 1 or by the operation of the user of the aerosol generation device equipped with the power supply unit 1 (hereinafter simply referred to as the user). be.
  • a fault condition also means a condition that permanently inhibits charging and discharging of the battery BT.
  • the normal state may refer to a state in which the heater HT can be heated by the power supply unit 1 by a user's operation.
  • a fault condition can be resolved, for example, by repairing the power supply unit 1 at the factory.
  • a failure condition may be referred to as a permanent failure condition.
  • the reset waiting state is a state in which a reset operation by the user can transition to a normal state.
  • the connection standby state is a state in which a transition to a normal state can be made by a user connecting an external device to the connector USBC via a USB plug.
  • the reset waiting state and the connection waiting state are states that require an error resolution action by the user. Therefore, the reset waiting state and the connection waiting state can be collectively referred to as the user action waiting state.
  • the user operation standby state is a state in which transition to a normal state cannot be performed by an operation of the power supply unit 1, but transition to a normal state can be performed by an operation by the user. In other words, a user action is required to release the limited discharge or charge of the power source in the user action waterfall state.
  • the operation for the protection control unit 200 to transition the power supply unit 1 to the reset standby state and the method for resolving the state will be described.
  • the MCU 130 and the FF1 can each transition the power supply unit 1 to the reset standby state.
  • Other circuits in the protection control unit 200 may request the MCU 130 or FF1 to transition to the reset waiting state.
  • the MCU 130 switches the output of the PC12 terminal of the MCU 130 from high level to low level. This turns off the switch SS and disconnects the negative terminal HC- of the heater HT from the ground potential.
  • the PC12 terminal of MCU 130 is also connected to the EN terminal of transformer circuit 120 . Therefore, when the output of the PC12 terminal of the MCU 130 switches from high level to low level, the operation of the transformer circuit 120 is stopped and the application of the heater voltage V BOOST to the heater HT is prohibited. By the operation described above, power supply from the battery BT to the heater HT is restricted. Furthermore, the MCU 130 switches the output of the PB3 terminal of the MCU 130 from low level to high level. As a result, the /CE terminal of the charging circuit 20 becomes high level, so that the charging circuit 20 prohibits charging.
  • FF1 switches the output of the Q terminal of FF1 from high level to low level. This turns off the switch SS and disconnects the negative terminal HC- of the heater HT from the ground potential.
  • the Q terminal of FF1 is also connected to the EN terminal of the transformer circuit 120 via a reverse diode D2. Therefore, when the output of the D terminal of FF1 switches from high level to low level, the operation of the transformer circuit 120 is stopped, and the application of the heater voltage V BOOST to the heater HT is also prohibited. By the operation described above, power supply from the battery BT to the heater HT is restricted .
  • the charging circuit 20 requests the MCU 130 to shift the power supply unit 1 to the reset standby state through I 2 C communication. In response to this request, the MCU 130 transitions the power supply unit 1 to the reset standby state by executing the above operation.
  • the power supply unit 1 of the present embodiment detects: Recognize that the reset operation has been performed by the user.
  • the reboot controller 50 detects these conditions.
  • the SW1 terminal of the reboot controller 50 is connected to the switch SW, and the SW2 terminal is connected to the Schmitt trigger circuit 150 that outputs a signal indicating attachment/detachment of the front panel 11 .
  • the switch SW is pressed with the front panel 11 removed, both the inputs of the SW1 terminal and the SW2 terminal become low level.
  • the reboot controller 50 starts a reset operation.
  • the reboot controller 50 monitors whether the state in which both the SW1 terminal and the SW2 terminal are at low level continues until a user-settable reboot delay time (for example, 1 to 20 seconds) elapses.
  • a user-settable reboot delay time for example, 1 to 20 seconds.
  • the MCU 130 uses the light emitting unit NU and the vibrator M to notify the user of the reset.
  • the reboot controller 50 changes the output of the RSTB terminal to low level when the state in which both the SW1 terminal and the SW2 terminal are at low level continues for the reboot delay time. As a result, the ON terminal of the load switch 40 becomes low level, and the supply of the voltage VCC33 from the VOUT terminal of the load switch 40 and the voltage VCC33_SLP from the VOUT terminal of the load switch 60 are stopped. As a result, power supply to the MCU 130 is cut off, and the MCU 130 stops operating.
  • the reboot controller 50 does not automatically set the RSTB terminal to low level after a predetermined time (for example, 0.4 seconds) has elapsed since the RSTB terminal was set to low level.
  • a predetermined time for example, 0.4 seconds
  • the voltage VCC33_0 is input to the ON terminal of the load switch 40 via the VCC33_0 line.
  • Supply of the voltage VCC33 from the load switch 40 is resumed, and the MCU 130 is activated.
  • the MCU 130 is activated when the state in which power is not supplied to the VDD terminal changes to the state in which power is supplied.
  • the power supply unit 1 enters a sleep state or a charging state when the MCU 130 is activated.
  • Voltage VCC33_SLP is not provided at this time.
  • the protection circuit 90 can transition the power supply unit 1 to the connection standby state. Further, another circuit of the protection control unit 200 may request the protection circuit 90 to transition to the connection standby state.
  • the operation for the protection circuit 90 to transition the power supply unit 1 to the connection standby state will be described.
  • the protection circuit 90 maintains the output of the DOUT terminal and the output of the COUT terminal at high level while the power supply unit 1 is in a normal state.
  • the protection circuit 90 switches the output of the DOUT terminal and the output of the COUT terminal to low level in order to transition the power supply unit 1 to the connection standby state.
  • the switches SD and SC are turned off, so that when an external device is not connected to the connector USBC via a USB plug, power supply to all circuits other than the protection circuit 90 in the power supply unit 1 is stopped. be done.
  • the power supply unit 1 transitions to the failure state. Otherwise, MCU 130 maintains the output of PB3 of MCU 130 at a low level. As a result, the input to the /CE terminal of charging circuit 20 is maintained at a low level, and power is supplied from the BAT terminal of charging circuit 20 to the VBAT terminal of protection circuit 90 . When the remaining amount of the battery BT recovers, the protection circuit 90 switches the output from the DOUT terminal and the COUT terminal to high level. As a result, the power supply unit 1 transitions to the normal state.
  • the protection circuit 90 turned off both the switch SC and the switch SD in order to transition the power supply unit 1 to the connection standby state.
  • the protection circuit 90 may turn off only one of the switches SC and SD.
  • the protection circuit 90 may turn off the switch SC functioning as a charge cutoff switch and leave the switch SD functioning as a discharge cutoff switch turned on.
  • the protection circuit 90 may turn off the switch SD functioning as a discharge cutoff switch and leave the switch SC functioning as a charge cutoff switch turned on.
  • the MCU 130 stops the power pass function of the charging circuit 20 (the function of outputting power input to the VBUS terminal and the BAT terminal from the SYS terminal) through I 2 C communication with the charging circuit 20 .
  • the voltage VCC is no longer supplied from the charging circuit 20, and the supply of the voltages VCC33_0 , VCC33 , and VCC33_SLP derived from the voltage VCC is stopped. Therefore, power is not supplied to most of the circuits including the MCU 130, and the power supply unit 1 substantially stops operating. Since power is not supplied to the reboot controller 50, the reset operation is also not accepted.
  • the MCU 130 may prohibit discharging and charging of the battery BT by the method described above before stopping the power pass function of the charging circuit 20.
  • This monitoring condition set is, as described above, a set of conditions for MCU 130 to periodically monitor the physical quantity of battery BT and to perform protection operations based on the monitoring results. It is assumed that the power supply unit 1 is in a sleep state at the start of the operations in FIGS. 6A and 6B.
  • the sleep state is a state in which the user can use the power supply unit 1 and the user is not using the power supply unit 1 (specifically, the switch SW has not been pressed for a predetermined time, and the connector USBC is connected to the USB plug).
  • the sleep state is a state in which an external device is not connected via
  • the sleep state is a state in which the power consumption of the battery BT is reduced when the power supply unit 1 is not used by the user. While the power supply unit 1 is in the sleep state, the MCU 130 does not generate the voltage VCC33_SLP described with reference to FIG. 3 (that is, sets the output of the PC11 terminal to low level). Also, while the power supply unit 1 is in the sleep state, the MCU 130 monitors signals from other circuits.
  • the input of the PC10 terminal whose value changes according to the depression of the switch SW the input of the PC13 terminal whose value changes according to the opening of the slider 13, and the Input from the PB12 terminal to which the nGAUGE_INT2 signal is supplied from the IO5 terminal, input from the PA10 terminal to which the signal from the Q terminal of FF1 is supplied, and when an external device is connected to the connector USBC via a USB plug.
  • the MCU 130 determines whether the slider 13 has been opened.
  • the MCU 130 shifts the process to step S602 when the slider 13 is opened ("YES” in step S601), and shifts the process to step S612 otherwise ("NO” in step S601).
  • the opening of the slider 13 can be detected by the signal supplied from the OUT terminal of the detector 170 to the PC13 terminal of the MCU 130 switching to a high level.
  • step S602 MCU 130 determines whether the temperature of battery BT is 51° C. or higher. MCU 130 shifts the process to step S610 if the temperature of battery BT is 51° C. or higher ("YES" in step S602), otherwise ("NO” in step S602) shifts the process to step S603. do.
  • the MCU 130 can acquire the temperature of the battery BT from the battery monitoring circuit 100 through I2C communication. Regarding determination of the temperature of the battery BT in other steps in FIGS. 6A and 6B, the MCU 130 can similarly acquire the temperature of the battery BT. In the determination in step S602, YES is given when the condition satisfies the equation (when the temperature of the battery BT is exactly 51° C.), but NO may be given in this case. The same applies to other conditions described below.
  • MCU 130 determines that battery BT is normal, and in step S603, transitions power supply unit 1 to the heating standby state. do.
  • the heating standby state is a state in which the aerosol source can be heated according to user instructions.
  • the MCU 130 In order to transition to the heating standby state, the MCU 130 generates the voltage VCC33_SLP by setting the output of the PC11 terminal to high level.
  • step S602 MCU 130 determines that the temperature of battery BT is not suitable for transition to the heating standby state. In this case, the MCU 130 waits until the temperature of the battery BT becomes 45° C. or less in step S610 while keeping the power supply unit 1 in the sleep state. Specifically, in step S610, MCU 130 determines whether the temperature of battery BT is 45° C. or lower. MCU 130 shifts the process to step S601 if the temperature of battery BT is 45° C. or less (“YES” in step S610), and repeats step S610 otherwise (“NO” in step S610). As a result, the power supply unit 1 in which the temperature of the battery BT is determined to be 51° C. or higher can transition to a state other than the sleep state when the temperature of the battery BT becomes 45° C. or lower.
  • step S604 After transitioning the power supply unit 1 to the heating standby state in step S603, in step S604, the MCU 130 determines whether or not the user has issued a heating instruction.
  • the MCU 130 shifts the process to step S605 if the user has issued a heating instruction ("YES” in step S604), otherwise ("NO” in step S604) to step S604.
  • the heating instruction can be detected by switching the input of the PC10 terminal of the MCU 130 to low level by pressing the switch SW. Note that if the heating instruction is not issued for a predetermined period of time, the MCU 130 may advance the process to step S611.
  • step S605 the MCU 130 determines whether the temperature of the battery BT is 51°C or higher. MCU 130 shifts the process to step S609 if the temperature of battery BT is 51° C. or higher ("YES" in step S605), otherwise ("NO” in step S605) shifts the process to step S606. do.
  • MCU 130 determines that battery BT is normal, and in step S606, transitions power supply unit 1 to the heating state.
  • a heated state is a state in which the aerosol source is heated.
  • the MCU 130 activates the transformer circuit 120 and turns on the switch SS by setting the output of the PC12 terminal to high level.
  • the MCU 130 turns on the switch SH by setting the output of the PA2 terminal to low level. This forms a closed circuit between the battery BT and the heater HT.
  • the MCU 130 may control the temperature of the heater HT while the power supply unit 1 is in the heating state.
  • the temperature control of the heater HT may be feedback control based on the output of the operational amplifier A1 while the switch SS is on or the input of the PA6 terminal to which the heater thermistor TH is connected.
  • This feedback control may be realized by PID control.
  • the gain of at least one component of PID control may be zero.
  • the duty ratio of the switch SH calculated as the manipulated variable of the PID control may be realized by PWM control or by PFM control.
  • MCU 130 determines that the temperature of battery BT is not suitable for transition to the heated state. In this case, the MCU 130 transitions the power supply unit 1 to the sleep state in step S609, and waits until the temperature of the battery BT becomes 45° C. or lower in step S610.
  • step S607 the MCU 130 determines whether the temperature of the battery BT is 55°C or higher. MCU 130 shifts the process to step S618 if the temperature of battery BT is 55° C. or higher ("YES" in step S607), otherwise ("NO” in step S607) shifts the process to step S608. do.
  • the MCU 130 determines that the battery BT is normal and keeps the power supply unit 1 in a heated state. On the other hand, if the determination in S607 is YES (that is, if the temperature of the battery BT is 55° C. or higher), the MCU 130 determines that an error has occurred in the battery BT, and waits for the power supply unit 1 to reset in step S618. state.
  • the MCU 130 determines whether to end the heating state.
  • the MCU 130 shifts the process to step S611 when ending the heating state ("YES” in step S608), and shifts the process to step S607 in other cases ("NO” in step S608).
  • the MCU 130 determines to end the heating state when the slider 13 is closed, when the number of puffs by the user reaches the upper limit, or when a predetermined time has elapsed since transitioning to the heating state.
  • the MCU 130 transitions the power supply unit 1 to the sleep state in step S611.
  • step S612 the MCU 130 determines whether an external device is connected to the connector USBC via a USB plug.
  • the MCU 130 shifts the process to step S613 when an external device is connected to the connector USBC via a USB plug ("YES” in step S612), otherwise ("NO” in step S612).
  • the process transitions to step S601.
  • the connection of an external device to the connector USBC via the USB plug can be detected by switching the PA9 terminal to high level.
  • the MCU 130 may continue to execute the process of step S612 even after step S602, and if determined to be "YES", stop the process of step S602 and thereafter, and proceed to step S613.
  • step S613 MCU 130 determines whether battery BT is not in a deeply discharged state by executing a deeply discharged determination process, which will be described later. As will be described later, when the battery BT is not normal, the power supply unit 1 transitions to the reset standby state or failure state, and the process is terminated. If battery BT is normal, MCU 130 starts normal charging to battery BT in step S614. Specifically, MCU 130 maintains power supply from charging circuit 20 to battery BT by maintaining the output of PB3 terminal at a low level. In normal charging, charging of the battery BT is first started with a current of about 2000 mA. A specific current value may be transmitted from the MCU 130 to the charging circuit 20 through I2C communication.
  • step S615 MCU 130 determines whether the current flowing through battery BT is 1.1 times or more the set value. MCU 130 shifts the process to step S618 if the current flowing through battery BT is 1.1 times or more the set value ("YES” in step S615), otherwise ("NO” in step S615). The process transitions to step S616.
  • the MCU 130 can acquire the current flowing through the battery BT from the battery monitoring circuit 100 through I 2 C communication.
  • the set value is a current value predetermined for CC (Constant-Current) charging among CCCV charging performed by the charging circuit 20 .
  • the MCU 130 determines that the battery BT is normal and continues charging the battery BT. .
  • the determination in S615 is YES (that is, if the current flowing through the battery BT is 1.1 times or more of the set value)
  • the MCU 130 determines that an error has occurred in the battery BT, and in step S618, Transition the power supply unit 1 to the reset standby state.
  • step S616 the MCU 130 determines whether the temperature of the battery BT is 55°C or higher or 0°C or lower. If the temperature of the battery BT is 55° C. or higher or 0° C. or lower (“YES” in step S616), MCU 130 shifts the process to step S618, otherwise (“NO” in step S616). The process transitions to step S617.
  • MCU 130 determines that battery BT is normal and continues charging battery BT. On the other hand, if the determination in S616 is YES (that is, if the temperature of the battery BT is 55° C. or higher or 0° C. or lower), the MCU 130 determines that an error has occurred in the battery BT. 1 to the reset waiting state. Note that the order of steps S615 and S616 may be reversed. Also, the MCU 130 may perform steps S615 and S616 at the same time.
  • step S617 MCU 130 determines whether or not to end charging.
  • the MCU 130 shifts the process to step S611 if charging is to be terminated ("YES” in step S617), and otherwise shifts the process to step S615 ("NO” in step S617).
  • the MCU 130 determines to end charging when the USB plug and the external device are removed from the connector USBC, when the voltage of the battery BT reaches a predetermined voltage, or the like.
  • the MCU 130 may determine to end charging by receiving a notification that charging has ended from the charging circuit 20 through I2C communication.
  • the MCU 130 transitions the power supply unit 1 to the sleep state.
  • the MCU 130 determines whether any of the monitoring condition sets including a plurality of monitoring conditions (S602, S605, S607, S613, S615, S616) are satisfied for the physical quantity of the battery. Among these monitoring conditions, when any one of the monitoring conditions (S607, S615, S616) is satisfied, the MCU 130 transitions the power supply unit 1 to the reset waiting state. Among these monitoring conditions, if any of the other monitoring conditions (S602, S605) are satisfied, the MCU 130 maintains or transitions the power supply unit 1 to the sleep state, and the predetermined condition (S610).
  • the MCU 130 can transition the power supply unit 1 to an error state or a reset standby state, as will be described later.
  • Some of the conditions in FIGS. 6A and 6B (S605, S607, S610, S615, S616) are repeatedly determined.
  • the MCU 130 may determine these conditions at predetermined intervals (for example, every second).
  • this monitoring condition set is a set of conditions for battery monitoring circuit 100 to monitor the physical quantity of battery BT and FF 1 or MCU 130 to perform a protection operation based on the monitoring results.
  • Battery monitor circuit 100 repeats the operations of FIGS. 7A and 7B during operation (ie, while voltage VCC33 is being generated).
  • the battery monitoring circuit 100 keeps the nGAUGE_INT1 signal and the nGAUGE_INT2 signal high unless the conditions described below are met. After changing the nGAUGE_INT1 signal and the nGAUGE_INT2 signal to low level, the battery monitoring circuit 100 maintains these signals at low level until the battery monitoring circuit 100 is reset.
  • the battery monitoring circuit 100 determines whether the voltage of the battery BT is 4.235V or more or 2.8V or less.
  • the battery monitoring circuit 100 shifts the process to step S702 if the voltage of the battery BT is 4.235 V or more or 2.8 V or less (“YES” in step S701), otherwise (“NO” in step S701). ”), the process shifts to step S703.
  • the battery monitoring circuit 100 can acquire the input of the VBAT terminal as the voltage of the battery BT. The same applies to obtaining the voltage of the battery BT in other steps in FIGS. 7A and 7B.
  • the battery monitoring circuit 100 determines that the battery BT is not normal when the voltage of the battery BT is 4.235 V or more or 2.8 V or less, and switches the nGAUGE_INT2 signal to low level in step S702. After executing step S702, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
  • the battery monitoring circuit 100 determines whether the battery BT is discharging. If the battery BT is being discharged ("YES" in step S703), the battery monitoring circuit 100 shifts the process to step S704; otherwise ("NO” in step S703), the process shifts to step S714. do. Battery monitoring circuit 100 can determine whether battery BT is discharging by measuring the direction of current through resistor R1. Battery monitoring circuit 100 may determine YES in step S703 only in some cases during discharging from battery BT. For example, the battery monitoring circuit 100 may determine YES in step S703 only when the power supply unit 1 is in a heating state. Battery monitoring circuit 100 may determine whether power supply unit 1 is in a heating state based on information provided from MCU 130 through I2C communication. If YES is determined in step S703, the battery monitoring circuit 100 performs the processes of steps S704 to S713.
  • the battery monitoring circuit 100 determines whether the current (discharge current) flowing through the battery BT is 9.75 A or more. Battery monitoring circuit 100 shifts the process to step S705 if the current flowing through battery BT is 9.75 A or more ("YES” in step S704), otherwise ("NO” in step S704). Then, the process transitions to step S708.
  • the battery monitoring circuit 100 can acquire the current flowing through the battery BT from the inputs of the VRSM terminal and the VRSP terminal. The same applies to obtaining the current flowing through the battery BT in the other steps of FIGS. 7A and 7B.
  • the battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 9.75 A or more, and switches the nGAUGE_INT2 signal to low level in step S705.
  • the battery monitoring circuit 100 determines whether the current flowing through the battery BT is 10A or more. Battery monitoring circuit 100 shifts the process to step S707 if the current flowing through battery BT is 10 A or more ("YES” in step S706), otherwise ("NO” in step S706). to step S708. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 10 A or more, and switches the nGAUGE_INT1 signal to low level in step S707. After executing step S707, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
  • step S708 the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained above 60°C for more than two seconds.
  • the battery monitoring circuit 100 shifts the process to step S709 if the temperature of the battery BT is 60° C. or higher for two seconds or longer (“YES” in step S708), otherwise (“NO” in step S708). ”), the process transitions to step S712.
  • the battery monitoring circuit 100 can acquire the temperature of the battery BT based on the input of the THM terminal. The same applies to obtaining the temperature of the battery BT in other steps in FIGS. 7A and 7B.
  • the battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 60° C. or higher for two minutes or longer, and switches the nGAUGE_INT1 signal to low level in step S709. After executing step S709, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
  • step S710 the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained at 85°C or higher for two minutes or longer.
  • the battery monitoring circuit 100 shifts the process to step S711 if the temperature of the battery BT has been 85° C. or higher for two minutes or more (“YES” in step S710), otherwise (“NO” in step S710). ”), the process transitions to step S712.
  • the battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 85° C. or higher for two minutes or longer, and switches the nGAUGE_INT2 signal to low level in step S711.
  • the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
  • step S712 the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained below -5°C for five seconds or longer.
  • the battery monitoring circuit 100 shifts the process to step S713 if the temperature of the battery BT has remained at ⁇ 5° C. or lower for five seconds or longer (“YES” in step S712); otherwise (step S712 ("NO” in step S701).
  • the battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is ⁇ 5° C. or lower for five seconds or more, and switches the nGAUGE_INT2 signal to low level in step S713.
  • the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
  • the battery monitoring circuit 100 determines whether the battery BT is being charged. If the battery BT is being charged ("YES” in step S714), the battery monitoring circuit 100 shifts the process to step S715; otherwise ("NO” in step S714), the process shifts to step S701. do. Battery monitoring circuit 100 can determine whether battery BT is being charged by measuring the direction of current through resistor R1. Battery monitoring circuit 100 may determine YES in step S714 only while battery BT is being charged (that is, only while power is being supplied to battery BT from the BAT terminal of the charging circuit). Alternatively, battery monitoring circuit 100 may determine YES in step S714 when an external device is connected to connector USBC via a USB plug. If YES is determined in step S714, the battery monitoring circuit 100 performs the processes of steps S715 to S720.
  • the battery monitoring circuit 100 determines whether the current (charging current) flowing through the battery BT is 2.75 A or more. Battery monitoring circuit 100 shifts the process to step S716 if the current flowing through battery BT is 2.75 A or more ("YES” in step S715), otherwise ("NO” in step S715). Then, the process transitions to step S719. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 2.75 A or more, and switches the nGAUGE_INT2 signal to low level in step S716.
  • the battery monitoring circuit 100 determines whether the current flowing through the battery BT is 3.0A or more. Battery monitoring circuit 100 shifts the process to step S718 if the current flowing through battery BT is 3.0 A or more ("YES” in step S717), otherwise ("NO” in step S717). Then, the process transitions to step S719. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 3.0 A or more, and switches the nGAUGE_INT1 signal to low level in step S718. The battery monitoring circuit 100 does not have to perform subsequent processes in FIGS. 7A and 7B after performing step S718.
  • step S719 the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained at 85°C or higher for two minutes or longer. Battery monitoring circuit 100 shifts the process to step S720 if the temperature of battery BT has remained at 85° C. or higher for two minutes or more (“YES” in step S719), otherwise (“NO” in step S719). ”), the process transitions to step S701. The battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 85° C. or higher for two minutes or longer, and switches the nGAUGE_INT2 signal to low level in step S720. The battery monitoring circuit 100 does not have to perform subsequent processes in FIGS. 7A and 7B after performing step S720.
  • any condition of the monitoring condition set including a plurality of monitoring conditions (S701, S704, S706, S708, S710, S712, S715, S717, S719) is satisfied for the physical quantity of the battery. determine whether or not The battery monitoring circuit 100 switches the nGAUGE_INT1 signal or the nGAUGE_INT2 signal to low level as a protection operation when any condition of the monitoring condition set is satisfied.
  • the nGAUGE_INT1 signal is supplied to FF1, and in response to the switching of the nGAUGE_INT1 signal to the low level, FF1 transitions the power supply unit 1 to the reset waiting state as described above.
  • the nGAUGE_INT2 signal is supplied to the MCU 130, and in response to the nGAUGE_INT2 signal switching to a low level, the MCU 130 performs a protection operation, which will be described later.
  • the order of determining the monitoring conditions may be different from that of FIGS. 7A and 7B, or may be performed in parallel.
  • the battery monitoring circuit 100 may determine these conditions at predetermined intervals (for example, every second). Furthermore, the battery monitoring circuit 100 may determine each monitoring condition with a different period for each monitoring condition. For example, the battery monitoring circuit 100 may determine the monitoring condition of step S710 (85° C. or higher continues for two minutes or longer) in a one-minute cycle.
  • the MCU 130 can operate regardless of the state of the power supply unit 1 (for example, sleep state, heating standby state, heating state, etc.) if it can operate (that is, if operating power is supplied to the VDD terminal). , may perform the operations of FIG. When executing the operations of FIG. 8, the MCU 130 may interrupt other operations being executed or may execute them in parallel. Thus, MCU 130 treats the low level nGAUGE_INT2 signal as an interrupt signal.
  • step S801 the MCU 130 acquires the cause of switching the nGAUGE_INT2 signal to low level from the battery monitoring circuit 100 through I2C communication.
  • the battery monitoring circuit 100 may internally store the cause, and respond to the inquiry from the MCU 130 with this cause.
  • MCU 130 may newly acquire information on battery BT from battery monitoring circuit 100 and determine which monitoring condition is satisfied.
  • step S802 the MCU 130 determines whether the high temperature was the cause (that is, whether S710 or S719 was the cause). If the cause is high temperature ("YES" in step S802), the MCU 130 shifts the process to step S803, otherwise ("NO" in step S802), shifts the process to step S805.
  • step S803 the MCU 130 determines whether the temperature of the battery BT has remained at 85°C or higher for 5 seconds or longer.
  • the MCU 130 shifts the process to step S804 if the temperature of the battery BT has remained at 85° C. or higher for five seconds or more (“YES” in step S803), otherwise (“NO” in step S803)
  • the process transitions to step S806.
  • the MCU 130 determines that the battery BT is not normal and cannot be recovered by resetting, and puts the power supply unit 1 into a failure state in step S804. Transition. If the temperature of the battery BT has not remained above 85° C. for five seconds or more, the MCU 130 determines that recovery is possible by resetting, and transitions the power supply unit 1 to the reset standby state in step S806.
  • step S805 the MCU 130 determines whether or not the monitoring condition requiring transition to the reset standby state is satisfied.
  • the MCU 130 shifts the process to step S806 if the monitoring condition requiring transition to the reset standby state is satisfied ("YES” in step S805), otherwise ("NO” in step S805). to step S807.
  • the monitoring conditions that require a transition to the reset standby state are the monitoring conditions surrounded by dashed lines in the column 506 of FIG. is.
  • a condition that requires a transition to the reset standby state can also be understood as a condition that, when satisfied, requires the MCU 130 to transition the power supply unit 1 to the reset standby state.
  • the MCU 130 determines that recovery by reset is possible when the monitoring condition requiring transition to the reset standby state is satisfied, and in step S806, transitions the power supply unit 1 to the reset standby state.
  • the MCU 130 determines that the power supply unit 1 is in a state other than the sleep state. Determine if the state is In the present embodiment, the case where the monitoring condition requiring a transition to the reset standby state is not satisfied is not the condition caused by a high temperature among the monitoring conditions, but the monitoring condition requiring a transition to the reset standby state. It can also be understood as a case where the condition is satisfied.
  • step S807 If the power supply unit 1 is in a state other than the sleep state ("YES" in step S807), the MCU 130 shifts the process to step S808; otherwise ("NO” in step S807), the process shifts to step S809. Transition.
  • step S808 the MCU 130 transitions the power supply unit 1 to the sleep state. Note that the MCU 130 may notify the user of the error via the light emitting unit NU or the vibrator M before proceeding to step S808 or in step S808.
  • step S809 the MCU 130 determines whether the low temperature was the cause (that is, whether S712 was the cause). The MCU 130 shifts the process to step S810 if the low temperature is the cause ("YES” in step S809), otherwise ends the process ("NO” in step S809). If the cause is low temperature, the MCU 130 determines that the use of the battery BT in this state is not suitable, and keeps the power supply unit 1 in the sleep state. wait until This is for the purpose of suppressing the progress of electrodeposition, which will be described later. Specifically, in step S810, MCU 130 determines whether the temperature of battery BT is 0° C. or higher. MCU 130 ends the process if the temperature of battery BT is 0° C.
  • step S810 the power supply unit 1 in which the temperature of the battery BT is determined to be ⁇ 5° C. or lower can transition to a state other than the sleep state in response to the temperature of the battery BT becoming 0° C. or higher. In other words, the power supply unit 1 is forcibly maintained in the sleep state unless the temperature of the battery BT reaches 0° C. or higher (unless "YES” is determined in step S810).
  • the MCU 130 may determine these conditions at predetermined intervals (for example, every second).
  • This monitoring condition set is a set of conditions for protection circuit 90 to monitor the physical quantity of battery BT and to perform a protection operation based on the monitoring results, as described above. Protection circuit 90 repeats the operations of FIG. 9 during operation (ie, while power supply voltage V BAT is present). The protection circuit 90 maintains the DOUT and COUT signals at high level unless the conditions described below are met.
  • step S901 the protection circuit 90 determines whether the voltage of the battery BT is 4.28V or more or 2.5V or less.
  • the protection circuit 90 shifts the process to step S904 if the voltage of the battery BT is 4.8 V or more or 2.5 V or less ("YES” in step S901), otherwise ("NO” in step S901). ), the process transitions to step S902.
  • the protection circuit 90 can acquire the input of the VBAT terminal as the voltage of the battery BT.
  • the protection circuit 90 determines that the battery BT is not normal when the voltage of the battery BT is 4.8 V or more or 2.5 V or less, and transitions the power supply unit 1 to the connection standby state in step S904.
  • the protection circuit 90 may cause only the COUT signal of the DOUT signal and the COUT signal to transition to a high level when the process proceeds to step S904 because the voltage of the battery BT is 4.28V or higher. In other words, in such a case, the protection circuit 90 may turn off only the switch SC out of the switches SC and SD. Further, when the voltage of the battery BT is 2.5 V or less and the process proceeds to step S904, the protection circuit 90 may cause only the DOUT signal to transition to a high level among the DOUT signal and the COUT signal. In other words, in such a case, the protection circuit 90 may turn off only the switch SD out of the switches SC and SD.
  • the protection circuit 90 determines whether the battery BT is discharging. If the battery BT is being discharged ("YES” in step S902), the protection circuit 90 shifts the process to step S903, otherwise ("NO” in step S902), shifts the process to step S901. . Protection circuit 90 can determine whether battery BT is discharging by measuring the direction of current through resistor R2.
  • step S903 the protection circuit 90 determines whether the current (discharge current) flowing through the battery BT is 12.67 A or more. If the current flowing through battery BT is 12.67 A or more ("YES" in step S903), protection circuit 90 causes the process to proceed to step S904; The process transitions to step S901.
  • the protection circuit 90 can acquire the current flowing through the battery BT from the inputs of the CS terminal and the VSS terminal. The protection circuit 90 determines that the battery BT is not normal when the current flowing through the battery BT is 12.67 A or more, and transitions the power supply unit 1 to the connection standby state in step S904.
  • the protection circuit 90 may cause only the DOUT signal out of the DOUT signal and the COUT signal to transition to a high level. good. In other words, in such a case, the protection circuit 90 may turn off only the switch SD out of the switches SC and SD.
  • the battery monitoring circuit 100 transmits an error signal to the MCU 130 when the temperature of the battery BT is 85° C. or higher for two minutes or longer (step S710 to step S711).
  • the MCU 130 After receiving the error signal, the MCU 130 newly acquires the temperature of the battery BT, and if this temperature continues to be 85° C. or higher for 5 seconds or longer, the power supply unit 1 transitions to the failure state (from step S803 to step S804).
  • the power supply unit 1 can be properly protected because the power supply unit 1 can transition to the failure state based on the determination result of a separate circuit. In other words, since the transition to the failure state of the power supply unit 1 is an irreversible transition, erroneous transition can be suppressed.
  • the battery monitoring circuit 100 may determine at a predetermined cycle whether the temperature of the battery BT has remained at 85° C. or higher for two minutes or longer. For example, the battery monitoring circuit 100 may determine whether the temperature of the battery BT has remained at 85° C. or higher for two minutes or longer at intervals of one minute. In this case, the battery monitoring circuit 100 may supply an error signal to the MCU 130 when the temperature of the battery BT is detected to be 85° C. or higher twice consecutively. Note that the period at which the battery monitoring circuit 100 obtains the temperature of the battery BT may be shorter than one minute. MCU 130 may determine at a predetermined cycle whether the temperature of battery BT has remained at 85° C. or higher for five seconds or longer.
  • the MCU 130 may determine whether the temperature of the battery BT is 85° C. or higher for five seconds or longer at intervals of one second. In this case, the MCU 130 transitions the power supply unit 1 to the failure state when the temperature of the battery BT is detected to be 85° C. or higher five times consecutively. The period and number of times are not limited to this example.
  • the battery monitoring circuit 100 monitors whether the temperature of the battery BT is 85° C. or higher in a first period (for example, 1 minute), and if this state occurs n times (for example, twice) consecutively, , provides an error signal to MCU 130 . In other words, a low level nGAUGE_INT2 signal is provided to MCU 130 .
  • the MCU 130 monitors whether the temperature of the battery BT is 85° C. or higher in a second cycle (for example, 1 second), and when this state occurs m times (for example, 5 times) in succession, the power supply unit 1 is turned on. Transition to fault state.
  • the first period is longer than the second period and m is greater than n.
  • the value of the second period ⁇ m is shorter than the value of the first period ⁇ n.
  • the time required for the MCU 130 to determine whether or not to transition the power supply unit 1 to the failure state is shorter than the time required for the battery monitoring circuit 100 to determine whether or not to supply the MCU 130 with the low-level nGAUGE_INT2 signal.
  • the MCU 130 can determine the high temperature in a shorter time than the high temperature determination by the battery monitoring circuit 100 .
  • the MCU 130 After receiving the error signal, the MCU 130 does not acquire new information on the battery BT except for the conditions related to the temperature of the battery BT (specifically, its high temperature state), and follows the determination result of the battery monitoring circuit 100 to protect the battery BT. Actions may be performed. Thereby, the power consumption of the power supply unit 1 can be reduced.
  • FIG. 10 is an example of processing for determining deep discharge, and deep discharge may be determined by other processing.
  • the operation of FIG. 10 is performed with an external device connected to the connector USBC via a USB plug.
  • step S1001 MCU 130 determines whether voltage ADCB+ is 0.1V or less or power supply voltage V BAT is 1.5V or less. If the voltage ADCB+ is 0.1 V or less or the power supply voltage V BAT is 1.5 V or less ("YES" in step S1001), the MCU 130 shifts the process to step S1002; otherwise ("NO” in step S1001). ”), the process transitions to step S1011. Voltage ADCB+ is the voltage that appears at the PC2 terminal when switch circuit 80 is on. The MCU 130 can obtain the power supply voltage V BAT from the battery monitoring circuit 100 via I 2 C communication. If this condition is not satisfied, MCU 130 determines that battery BT is normal in step S1011.
  • the voltage ADCB+ is a voltage obtained by dividing the power supply voltage V BAT by resistors R4 and R5, and one end of the resistor R5 on the low potential side of the voltage dividing circuit is connected to the ground potential. Therefore, when the battery BT discharges to the extent that the switch circuit 80 cannot be turned on, the voltage ADCB+ becomes substantially equal to the ground potential. Therefore, in step S1001, the threshold for the voltage ADCB+ is set to 0.1V.
  • the MCU 130 starts charging at 540 mA, waits for 1 second while continuing charging, and then transitions to step S1003. Since the charging in this step is performed on the battery BT that may be deeply discharged, the value of the charging current in this step is preferably smaller than the value of the charging current in step S614 described above. Also, it should be noted that this charging is continued in subsequent steps S1003 to S1011.
  • step S1003 the MCU 130 determines whether the voltage ADCB+ is 3.5V or higher.
  • the MCU 130 shifts the process to step S1004 if the voltage ADCB+ is 3.5 V or higher ("YES" in step S1003), and otherwise shifts the process to step S1008 ("NO" in step S1003).
  • step S1004 MCU 130 determines whether current I BAT is greater than -20 mA and less than 20 mA. If the current I BAT is greater than ⁇ 20 mA and less than 20 mA ("YES" in step S1004), MCU 130 shifts the process to step S1005; transition to A current I BAT is a current flowing through the battery BT, and can be obtained by the MCU 130 from the battery monitoring circuit 100 via I 2 C communication.
  • the current I BAT with a + (plus) sign means a charging current
  • the current I BAT with a - (minus) sign means a discharging current. If this condition is not satisfied, the MCU 130 determines that the battery BT is not in the deep discharge state, and transitions the power supply unit 1 to the sleep state.
  • step S1005 the MCU 130 determines whether S1003 and S1004 have been repeated a predetermined number of times. If the MCU 130 repeats S1003 and S1004 a predetermined number of times ("YES" in step S1005), the MCU 130 shifts the process to step S1006; otherwise ("NO” in step S1005), the process shifts to step S1003. . If S1003 and S1004 are satisfied even after the predetermined number of repetitions, the MCU 130 determines that the battery BT is in a deeply discharged state, and transitions the power supply unit 1 to a failure state.
  • step S1005 If the determination is "YES" in step S1005, the voltage ADCB+ indicates a large value even though the battery BT has been charged with the charging current of 540 mA for only a short period of several seconds. This is probably because deep discharge of the battery BT causes an irreversible change in its internal structure, and the internal resistance (impedance) of the battery BT greatly increases (worsens). Note that step S1004 is for confirming whether or not the voltage ADCB+ includes a voltage drop corresponding to the internal resistance of the battery BT.
  • step S1008 the MCU 130 determines whether the voltage ADCB+ is less than 3.35V. MCU 130 shifts the process to step S1009 if the voltage ADCB+ is less than 3.35 V ("YES" in step S1008), otherwise shifts the process to step S1011 ("NO” in step S1008). . If this condition is not satisfied, MCU 130 determines that battery BT is normal in step S1011.
  • step S1009 MCU 130 determines whether power supply voltage V BAT obtained from battery monitoring circuit 100 via I2C communication is less than 2.35V or higher than 2.65V. MCU 130 transitions the process to step S1010 if the power supply voltage V BAT is less than 2.35 V or higher than 2.65 V ("YES" in step S1009), otherwise ("NO” in step S1009) The process transitions to step S1008.
  • the MCU 130 determines whether a predetermined time has passed since charging was started at step S1002.
  • the MCU 130 shifts the process to step S1007 if a predetermined time has elapsed since charging was started in step S1002 ("YES” in step S1010), otherwise ("NO” in step S1010). to step S1008. If S1008 and S1009 are satisfied even after repeating for a predetermined period of time, the MCU 130 determines that an error has occurred in the charging of the battery BT by the charging circuit 20, and transitions the power supply unit 1 to the sleep state in step S1007.
  • MCU 130 conditions the value of ADCB+.
  • ADCB+ conditions can be determined without using information acquired from the battery monitoring circuit 100, so even if the battery monitoring circuit 100 cannot normally acquire the state of the battery BT, deep discharge can be determined correctly. can.
  • battery monitoring circuit 100 is optimized to accurately monitor the state of battery BT when the voltage of battery BT is normal. In other words, when the voltage of battery BT is not normal, the state of battery BT acquired by battery monitoring circuit 100 is likely to have an error.
  • the state in which the voltage of the battery BT is normal refers to the state in which the power supply voltage V BAT is equal to or lower than the full charge voltage of the battery BT and equal to or higher than the final discharge voltage.
  • the battery monitoring circuit 100 supplies an error signal (low-level nGAUGE_INT1 signal) to FF1 when any condition of the monitoring condition set defined in column 505 is satisfied, and If either condition is met, another error signal (low level nGAUGE_INT2 signal) is provided to MCU 130 . Therefore, each condition in the set of monitoring conditions defined in column 505 and each condition in the set of monitoring conditions defined in column 506 may be referred to as an error notification condition for providing an error signal.
  • the error signal itself supplied to FF1 is not supplied to MCU130.
  • the error signal supplied to MCU 130 is not supplied to FF1.
  • FF1 When the error signal is supplied to FF1, FF1 executes the protection operation by hardware as described above. Thus, FF1 functions as an error processing circuit. On the other hand, when an error signal is supplied to the MCU 130, the MCU 130 executes the protection operation by software as described above. In this way, by individually supplying error signals to both FF1 and MCU 130 from battery monitoring circuit 100, even if one of FF1 and MCU 130 does not operate normally, power supply unit 1 can be operated properly. protected by
  • any monitoring condition in the set of monitoring conditions defined in column 505 causes the power supply unit 1 to transition to the reset standby state.
  • the reset waiting state is a state that requires user action to release the restriction on discharging or charging of the battery BT. Therefore, by automatically canceling the restriction on discharging or charging the battery BT regardless of the user's operation, it is possible to suppress the occurrence of further errors.
  • FF1 restricts the discharging or charging of battery BT by means of hardware. This restriction does not cause the power supply unit 1 to fail because it has not been determined by the MCU 130, which is highly accurate. This enhances user convenience. In other words, the MCU 130 is more resistant to external noise such as static electricity and internal noise such as glitch noise than FF1. Therefore, the determination by the MCU 130 is excellent in accuracy.
  • the MCU 130 transitions the power supply unit 1 to the failure state. Since the power supply unit 1 transitions to the failure state when a specific condition is satisfied, the safety of the power supply unit 1 is further improved. In addition, since the power supply unit 1 transitions to the failure state based on the determination by the MCU 130, it is possible to accurately determine whether this transition is possible.
  • the number of conditions included in the set of monitoring conditions defined in column 506 is greater than the number of conditions included in the set of monitoring conditions defined in column 505 . As a result, some conditions of high importance are processed by the MCU 130 regardless of the FF1, so the power supply unit 1 can be protected more appropriately.
  • the physical quantity of battery BT monitored by the monitoring condition set defined in column 506 includes the physical quantity of battery BT not monitored by the monitoring condition set defined in column 505 .
  • the monitoring condition set defined in column 506 includes a condition regarding the voltage of battery BT, but the monitoring condition set defined in column 505 does not include a condition regarding the voltage of battery BT.
  • the monitoring condition set defined in column 506 includes a condition regarding the lower limit temperature of battery BT, but the monitoring condition set defined in column 505 does not include a condition regarding the lower limit temperature of battery BT.
  • Conditions related to overheating of battery BT are included in both the set of monitoring conditions defined in column 505 and the set of monitoring conditions defined in column 506 .
  • the high-precision error processing by the control circuit causes the power supply unit to transition to the failure state
  • the hardware error processing by the error processing circuit causes the power supply unit to transition to the reset waiting state.
  • the power supply unit 1 can be protected even if one of them does not operate normally.
  • the upper limit temperature (60° C.) monitored by the set of monitoring conditions defined in column 505 is lower than the upper limit temperature (85° C.) monitored by the set of monitoring conditions defined in column 506 .
  • the protection operation is performed first by FF1, which operates faster, so that the high temperature state of the battery BT can be maintained and progress of deterioration of the battery BT can be suppressed.
  • the condition regarding the overcurrent of the battery BT is included in both the monitoring condition set defined in column 505 and the monitoring condition set defined in column 506. Since both FF 1 and MCU 130 monitor conditions related to overcurrent of battery BT, power supply unit 1 can be protected even if one of them does not operate normally. Further, the upper limit current value (10 A during discharging, 3.0 A during charging) monitored by the monitoring condition set defined in column 505 is the upper limit current value monitored by the monitoring condition set defined in column 505 ( 9.75A, 2.75A when charging). As a result, since the MCU 130 performs the protective operation first, the high temperature state of the battery BT can be maintained, and progress of deterioration of the battery BT can be suppressed. At the same time, even if the MCU 130 has a failure such as freezing, the FF1 performs a protection operation.
  • the set of conditions monitored by the protection circuit 90 defined in column 508 includes conditions related to the current flowing through the battery BT (specifically, overcurrent during discharge) and the voltage of the battery BT (specifically, overcharge and overdischarge). including conditions relating to Since the current and voltage are also monitored by the battery monitoring circuit 100, the power supply unit 1 can be protected even if one of the battery monitoring circuit 100 and the protection circuit 90 does not operate normally.
  • the monitoring condition (9.75 A or more) for switching the nGAUGE_INT2 signal is stricter than the monitoring condition (10 A or more) for switching the nGAUGE_INT1 signal.
  • the monitoring condition for switching the nGAUGE_INT2 signal S704 is met first, followed by the monitoring condition for switching the nGAUGE_INT1 signal (S706).
  • the monitoring condition (2.75 A or higher) for switching the nGAUGE_INT2 signal is stricter than the monitoring condition (3.0 A or higher) for switching the nGAUGE_INT1 signal.
  • the monitoring condition for switching the nGAUGE_INT2 signal (S715) is met first, followed by the monitoring condition for switching the nGAUGE_INT1 signal (S717).
  • the monitoring condition for switching the nGAUGE_INT2 signal (85°C or higher continues for 2 minutes) is looser than the monitoring condition for switching the nGAUGE_INT1 signal (60°C or higher continues for 2 seconds).
  • the monitoring condition for switching the nGAUGE_INT1 signal (S709) is met first, and then the monitoring condition for switching the nGAUGE_INT2 signal (S711) is met.
  • the monitoring condition (10 A or more or 9.75 A or more) for the battery monitoring circuit 100 to generate an error signal for the current flowing through the battery BT during discharging is the condition for the protection circuit 90 to limit the discharging or charging of the battery BT.
  • the conditions are stricter than the monitoring conditions (12.67 A or more). In other words, if the current through battery BT continues to increase during discharging, the monitoring conditions for battery monitoring circuit 100 to generate an error signal are met first, and then protection circuit 90 discharges or charges battery BT. is satisfied. Also, regarding the voltage of the battery BT, the monitoring condition (4.235 V or more or 2.8 V or less) for the battery monitoring circuit 100 to generate an error signal is the condition for the protection circuit 90 to limit discharging or charging of the battery BT.
  • the conditions are stricter than the monitoring conditions (4.28 V or more or 2.5 V or less). In other words, if the voltage of battery BT continues to increase or decrease, the monitoring conditions for battery monitoring circuit 100 to generate an error signal are met first, and then protection circuit 90 limits the discharging or charging of battery BT.
  • the monitoring conditions for Releasing the protection operation by the protection circuit 90 requires connection of an external device via a USB plug, and therefore takes more time and effort than the protection operation by the battery monitoring circuit 100 . User convenience is improved by performing the protection operation by the battery monitoring circuit 100 first.
  • a monitoring condition set for the battery monitoring circuit 100 to generate an error signal includes the condition that the current flowing through the battery BT is 10A or more and the condition that it is 9.75A or more. The difference between these thresholds is 0.25A. The difference between the thresholds of these conditions (10 A and 9.75 A) and the threshold of the condition for the protection circuit 90 to limit the discharge or charge of the battery BT (12.67 A) is 2.67 A and 2.92 A respectively. is. Both of these are greater than 0.25A. This makes it easier to prevent the protection operation by the battery monitoring circuit 100 and the protection operation by the protection circuit 90 from functioning at the same time. Moreover, the protection operation by the battery monitoring circuit 100 can be realized before the protection operation by the protection circuit 90 . That is, if the battery monitoring circuit 100 does not have an abnormality, the battery monitoring circuit 100 performs a protection operation instead of the protection circuit 90 . This facilitates recovery from the state in which the protection operation has been performed.
  • the MCU 130 transitions the power supply unit 1 to the sleep state when the voltage of the battery BT becomes 2.8V or less.
  • the voltage of battery BT becomes equal to or less than 2.8V.
  • the monitoring condition set defined in column 508 turns off switches SC and SD when the voltage of battery BT drops below 2.5V.
  • the remaining amount of battery BT becomes equal to or less than the predetermined second lower limit
  • the voltage of battery BT becomes equal to or less than 2.5V.
  • the second lower limit is lower than the first lower limit.
  • the MCU 130 puts the power supply unit 1 into a failure state if a predetermined condition is satisfied. Transition.
  • the remaining amount of the battery BT becomes equal to or less than the predetermined third lower limit
  • the voltage of the battery BT becomes equal to or less than 1.5V
  • the ADCB+ voltage becomes equal to or less than 0.1V.
  • the third lower limit is lower than the second lower limit.
  • stepwise protective operation is performed according to the remaining amount of battery BT.
  • a state in which the remaining amount of the battery BT is equal to or less than the predetermined third lower limit indicates that the battery BT is in a deeply discharged state.
  • the protection circuit 90 turns off the switch SD to transition the power supply unit 1 to the connection standby state. If the remaining amount of the battery BT is greater than the above-described third lower limit value, the power supply unit 1 does not transition to the failure state. The progress of BT charging turns the switch SC back on. As a result, it is possible to prevent the battery BT from being continuously charged when the battery BT is in a deeply discharged state.
  • the set of conditions monitored by the protection circuit 90 defined in column 508 does not include conditions related to the temperature of the battery BT. Thus, by not monitoring the temperature, the size of the protection circuit 90 can be reduced. Since the temperature of battery BT is not monitored by protection circuit 90, another circuit (battery monitoring circuit 100) provides more rigorous protection. Specifically, the battery monitoring circuit 100 uses the condition regarding the high temperature of the battery BT as the condition for transitioning the power supply unit 1 to the failure state. This further improves the safety of the power supply unit 1 . The battery monitoring circuit 100 uses the condition that the temperature of the battery BT is low as the condition for transitioning the power supply unit 1 to the sleep state. Since the low temperature of the battery BT is expected to resolve itself, no user action is required to resolve the restriction on discharging or charging the battery BT. This enhances user convenience.
  • FIG. 11 is a diagram summarizing the temperature of the battery BT that the power supply unit 1 determines as an error.
  • the protection control unit 200 at least temporarily limits at least one of the charging of the battery BT and the power supply from the battery BT to the heater HT. do.
  • the normal temperature range of battery BT varies depending on the operating state of power supply unit 1, as will be described in detail below.
  • the lower limit of the normal temperature range of the battery BT differs depending on whether the battery BT is discharging or charging.
  • the lower limit of the normal temperature range of the battery BT is -5°C.
  • the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the sleep state accordingly.
  • the lower limit of the normal temperature range of battery BT is 0.degree.
  • the MCU 130 transitions the power supply unit 1 to the reset standby state.
  • the protection control unit 200 raises the lower limit of the normal temperature range of the battery BT from -5°C to 0°C when charging the battery BT is started. If the battery BT is at a low temperature during charging, electrodeposition is likely to occur. Electrodeposition is a phenomenon in which a metal oxide, which is an active material, is ionized by an oxidation-reduction reaction and deposits on the surface of a negative electrode to form a metal layer. By raising the lower limit of the normal range of the temperature of the battery BT when starting charging of the battery BT, it becomes easier to suppress the occurrence of electrodeposition.
  • the time when charging of the battery BT is started is an arbitrary time from when an external device is connected to the USB connector USBC of the power supply unit 1 via a USB plug until power is stably supplied to the battery BT. may
  • the lower limit of the normal temperature range of the battery BT reaches its maximum while the battery BT is being charged.
  • the upper limit of the normal temperature range of the battery BT varies depending on the operating state of the power supply unit 1.
  • the upper limit of the normal temperature range of the battery BT is 60.degree.
  • the battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions the power supply unit 1 to the reset standby state.
  • the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly.
  • the upper limit value of the normal temperature range of the battery BT is the same as when the power supply unit 1 is in the sleep state.
  • the upper limit of the normal temperature range of the battery BT is 51°C. be.
  • the MCU 130 transitions the power supply unit 1 to the sleep state.
  • battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions power supply unit 1 to the reset standby state.
  • the temperature of the battery BT reaches 85° C.
  • the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly. Even when the power supply unit 1 is transitioning from the heating standby state to the heating state, the upper limit value of the normal range of the temperature of the battery BT is the same as when the power supply unit 1 is transitioning from the sleep state to the heating standby state. is.
  • the upper limit of the normal temperature range of the battery BT is 55°C.
  • the MCU 130 transitions the power supply unit 1 to the reset standby state.
  • battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions power supply unit 1 to the reset standby state.
  • the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly.
  • the upper limit of the normal temperature range of the battery BT is 55°C.
  • the MCU 130 transitions the power supply unit 1 to the reset standby state. Furthermore, when the temperature of the battery BT reaches 85° C. or higher, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly.
  • the protection control unit 200 raises the upper limit of the normal range of the temperature of the battery BT from 51°C to 55°C when starting the heating of the heater HT.
  • heater HT that is, during supply of electric power from battery BT to heater HT
  • battery BT generates heat due to internal resistance of battery BT. Therefore, by setting the upper limit value of the normal range of the heater BT during heating transition to be lower than the upper limit value during heating, it becomes easier to suppress the temperature of the battery BT from exceeding the normal range during heating of the heater HT. In other words, when the temperature of battery BT is expected to exceed the normal range during heating of heater HT, heating of heater HT is not performed.
  • the timing of starting heating of the heater HT may be an arbitrary point of time from when the instruction to heat the heater HT is received until the heater HT reaches a heated state.
  • the upper limit of the normal range of the battery BT is the maximum (60°C) when the power supply unit 1 is in the sleep state and heating standby state (that is, when the heater HT is in a state other than heating).
  • the sleep state is a state in which the MCU 130 is waiting for a signal generated in response to the user's operation of the slider 13 .
  • the heating standby state is a state in which the MCU 130 is waiting for a signal generated in response to the user's operation of the switch SW.
  • the protection control unit 200 transitions the power supply unit 1 to the failure state when the temperature of the battery BT is higher than the temperature threshold (85°C) higher than the upper limit of the normal state. If the temperature of the battery BT continues to rise even after the error processing due to the battery BT exceeding the upper limit value of the normal state, it is considered that some kind of failure has occurred in the power supply unit 1 . Therefore, the safety of the power supply unit 1 can be improved by transitioning the power supply unit 1 to the failure state when the temperature of the battery BT exceeds the temperature threshold (85° C.) higher than the upper limit value of the normal state.

Abstract

This power supply unit for an aerosol generation device comprises: a power supply; a heater connector that is connected to a heater which consumes power fed from the power supply and heats an aerosol source; a control circuit that controls power feed from the power supply to the heater and monitors the state of the power supply; and a power supply monitoring circuit that monitors the state of the power supply. The power supply monitoring circuit feeds an error signal to the control circuit if the state of the power supply satisfies error notification conditions. The control circuit is capable of operating in a standby state of standing by until an error signal is fed from the power supply monitoring circuit, and in a monitoring state of monitoring the state of the power supply after transitioning according to the error signal having been fed from the power supply monitoring circuit during the operation in the standby state.

Description

エアロゾル生成装置の電源ユニットPower supply unit for aerosol generator
 本発明は、エアロゾル生成装置の電源ユニットに関する。 The present invention relates to a power supply unit for an aerosol generator.
 電子たばこ等のエアロゾル生成装置はエアロゾルを形成するための液体を加熱するための構成を有している。特許文献1に記載された電池式加熱デバイスは、様々な電池特性を監視する燃料ゲージ回路を搭載する。  Aerosol generating devices such as electronic cigarettes have a configuration for heating the liquid to form the aerosol. A battery-powered heating device described in US Pat.
特開2020-61361号公報Japanese Patent Application Laid-Open No. 2020-61361
 特許文献1では、電源の様々な特性を監視する電源監視回路を使用することによってエアロゾル生成装置の電源ユニットを保護するものの、この保護には改善の余地がある。本発明の一部の側面は、エアロゾル生成装置の電源ユニットの安全性を向上するための技術を提供することを目的とする。 Although Patent Document 1 protects the power supply unit of the aerosol generator by using a power supply monitoring circuit that monitors various characteristics of the power supply, there is room for improvement in this protection. An object of some aspects of the present invention is to provide a technique for improving the safety of the power supply unit of the aerosol generator.
 第1態様によれば、エアロゾル生成装置の電源ユニットであって、
 電源と、
 前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、
 前記電源から前記ヒータへの電力の供給の制御と、前記電源の状態の監視とを行う制御回路と、
 前記電源の状態を監視する電源監視回路と、を備え、
 前記電源監視回路は、前記電源の状態がエラー通知条件を満たす場合にエラー信号を前記制御回路に供給し、
 前記制御回路は、
  前記電源監視回路から前記エラー信号が供給されるのを待機する待機状態と、
  前記待機状態で動作中に前記電源監視回路から前記エラー信号が供給されたことに応じて遷移し、前記電源の状態を監視する監視状態と、で動作可能である、電源ユニットが提供される。
 この態様によれば、電源監視回路からエラー信号が供給されるまで制御回路は待機状態になるため、電源ユニットの消費電力を低減できる。併せて、電源監視回路からエラー信号が供給されると制御回路が電源の状態を監視するため、電源ユニットの安全性を向上できる。
 第2態様によれば、前記制御回路が前記待機状態で動作中に、前記電源監視回路は、前記電源の所定の物理量を第1周期で監視し、
 前記制御回路が前記監視状態で動作中に、前記制御回路は、前記電源の前記所定の物理量を第2周期で監視し、
 前記第1周期は前記第2周期よりも長い、第1態様に記載の電源ユニットが提供される。
 この態様によれば、制御回路が待機状態である間の消費電力を低減できる。併せて、制御回路が監視状態である間に取得される電源の所定の物理量の精度が向上する。
 第3態様によれば、前記制御回路は、前記監視状態で動作中に前記電源の状態が所定の条件を満たす場合に、前記電源の充電と、前記電源から前記ヒータへの電力の供給との少なくとも一方を、少なくとも一時的に制限する、第1態様又は第2態様に記載の電源ユニットが提供される。
 この態様によれば、電源の充電又は放電が制限されるため、電源ユニットの安全性が向上する。
 第4態様によれば、前記制御回路は、前記監視状態で動作中に、前記電源監視回路を通じて前記電源の状態を取得する、第1態様乃至第3態様の何れか1つに記載の電源ユニットが提供される。
 この態様によれば、制御回路は、電源の状態を測定するための独自の機能を必要としない又は当該機能を小規模なものにできるため、制御回路のサイズを低減できる。
 第5態様によれば、前記電源監視回路は、前記制御回路が前記待機状態で動作中に、前記電源がn回連続して所定の状態となった場合に、前記エラー信号を前記制御回路に供給し、
 前記制御回路は、前記監視状態で動作中に、前記電源がm回連続して所定の状態となった場合に、前記電源の充電と、前記電源から前記ヒータへの電力の供給との少なくとも一方を、少なくとも一時的に制限し、
 前記mは、前記nよりも大きい、第1態様乃至第4態様の何れか1つに記載の電源ユニットが提供される。
 この態様によれば、電源にエラーが生じていると疑われた場合に制御回路を監視状態へ迅速に移行させつつ、監視状態で動作中の制御回路は高精度でバッテリの状態を監視できる。これにより、電源ユニットを迅速かつ適切に保護できる。
 第6態様によれば、前記電源がm回連続して所定の状態となったと前記制御回路が判定するまでに要する時間は、前記電源がn回連続して所定の状態となったと前記電源監視回路が判定するまでに要する時間よりも短い、第5態様に記載の電源ユニットが提供される。
 この態様によれば、制御回路は短期間でバッテリの状態を高精度に監視できる。
 第7態様によれば、前記電源監視回路は、前記電源の状態が第1条件集合の何れかの条件を満たす場合に前記エラー信号を前記制御回路に供給し、
 前記制御回路は、前記エラー信号の受信後に新たに取得した前記電源の状態に基づいて、第2条件集合の何れかの条件を満たすかどうかを判定する、第1態様乃至第6態様の何れか1つに記載の電源ユニットが提供される。
 この態様によれば、制御回路による判定結果によって電源ユニット1を故障状態に遷移できるため、電源ユニットを適切に保護できる。
 第8態様によれば、前記第1条件集合は、前記第2条件集合で監視されない前記電源の物理量に関する条件を含む、第7態様に記載の電源ユニットが提供される。
 この態様によれば、一部の物理量について、電源監視回路による監視を行わないことによって、電源ユニットの消費電力を低減できる。
 第9態様によれば、前記制御回路は、前記第2条件集合の何れかの条件を満たす場合に、前記電源ユニットを前記電源の充放電を永久に禁止する故障状態に遷移する、第7態様又は第8態様に記載の電源ユニットが提供される。
 この態様によれば、制御回路により判定する重要性の高いエラーが発生した場合に電源ユニットを故障状態に遷移するため、電源ユニットの安全性がいっそう向上する。
 第10態様によれば、前記第2条件集合は、前記電源の温度が上限温度よりも高いことに関する条件を含む、第7態様乃至第9態様の何れか1つに記載の電源ユニットが提供される。
 この態様によれば、重要性の高い電源の高温状態について、別個の回路により判定するため、電源ユニットを適切に保護できる。
According to a first aspect, a power supply unit for an aerosol generator, comprising:
a power supply;
a heater connector connected to a heater that consumes power supplied from the power supply to heat the aerosol source;
a control circuit for controlling power supply from the power source to the heater and monitoring the state of the power source;
a power supply monitoring circuit that monitors the state of the power supply,
The power supply monitoring circuit supplies an error signal to the control circuit when the state of the power supply satisfies an error notification condition;
The control circuit is
a standby state waiting for the error signal to be supplied from the power supply monitoring circuit;
A power supply unit is provided that is operable in a monitoring state that transitions in response to the supply of the error signal from the power supply monitoring circuit during operation in the standby state and monitors the state of the power supply.
According to this aspect, since the control circuit is in a standby state until the error signal is supplied from the power supply monitoring circuit, the power consumption of the power supply unit can be reduced. In addition, since the control circuit monitors the state of the power supply when an error signal is supplied from the power supply monitoring circuit, the safety of the power supply unit can be improved.
According to the second aspect, while the control circuit is operating in the standby state, the power supply monitoring circuit monitors a predetermined physical quantity of the power supply in a first period,
While the control circuit is operating in the monitoring state, the control circuit monitors the predetermined physical quantity of the power supply in a second period;
A power supply unit according to a first aspect is provided, wherein the first period is longer than the second period.
According to this aspect, power consumption can be reduced while the control circuit is in the standby state. At the same time, the accuracy of the predetermined physical quantity of the power obtained while the control circuit is in the monitoring state is improved.
According to the third aspect, when the state of the power supply satisfies a predetermined condition during operation in the monitoring state, the control circuit performs charging of the power supply and supply of power from the power supply to the heater. A power supply unit according to the first aspect or the second aspect is provided, wherein at least one is at least temporarily limited.
According to this aspect, since the charging or discharging of the power supply is restricted, the safety of the power supply unit is improved.
According to a fourth aspect, the power supply unit according to any one of the first to third aspects, wherein the control circuit acquires the state of the power supply through the power supply monitoring circuit while operating in the monitoring state. is provided.
According to this aspect, the control circuit does not require a unique function for measuring the state of the power supply, or the function can be made small, so that the size of the control circuit can be reduced.
According to the fifth aspect, the power supply monitoring circuit outputs the error signal to the control circuit when the power supply enters a predetermined state continuously n times while the control circuit is operating in the standby state. supply and
The control circuit performs at least one of charging the power supply and supplying power from the power supply to the heater when the power supply enters a predetermined state m consecutive times during operation in the monitoring state. at least temporarily, and
There is provided the power supply unit according to any one of the first to fourth aspects, wherein said m is greater than said n.
According to this aspect, when an error in the power supply is suspected, the control circuit can quickly shift to the monitoring state, and the control circuit operating in the monitoring state can monitor the state of the battery with high accuracy. This allows the power supply unit to be quickly and adequately protected.
According to the sixth aspect, the time required for the control circuit to determine that the power source has entered the predetermined state m consecutive times is determined by the power supply monitor that the power source has entered the predetermined state n times consecutively. A power supply unit according to the fifth aspect is provided that takes less time than the circuit takes to determine.
According to this aspect, the control circuit can monitor the state of the battery with high accuracy in a short period of time.
According to the seventh aspect, the power supply monitoring circuit supplies the error signal to the control circuit when the state of the power supply satisfies any condition of the first condition set,
The control circuit determines whether any condition of a second condition set is satisfied based on the state of the power supply newly acquired after receiving the error signal. A power supply unit according to one is provided.
According to this aspect, the power supply unit 1 can transition to the failure state based on the determination result by the control circuit, so the power supply unit can be appropriately protected.
According to an eighth aspect, there is provided the power supply unit according to the seventh aspect, wherein the first condition set includes conditions regarding physical quantities of the power supply that are not monitored by the second condition set.
According to this aspect, the power consumption of the power supply unit can be reduced by not monitoring some of the physical quantities by the power supply monitoring circuit.
According to the ninth aspect, the control circuit transitions the power supply unit to a failure state in which charging and discharging of the power supply is permanently prohibited when any condition of the second condition set is satisfied. Alternatively, a power supply unit according to the eighth aspect is provided.
According to this aspect, since the power supply unit transitions to the failure state when an error of high importance determined by the control circuit occurs, the safety of the power supply unit is further improved.
According to a tenth aspect, there is provided the power supply unit according to any one of the seventh to ninth aspects, wherein the second condition set includes a condition that the temperature of the power supply is higher than the upper limit temperature. be.
According to this aspect, the high-temperature state of the power supply, which is of high importance, is determined by a separate circuit, so the power supply unit can be appropriately protected.
 第1形態によれば、エアロゾル生成装置の電源ユニットの安全性が向上する。 According to the first form, the safety of the power supply unit of the aerosol generator is improved.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar configurations are given the same reference numerals.
一部の実施形態のエアロゾル生成装置の電源ユニットの外観例を示す図。FIG. 4 is a diagram showing an appearance example of a power supply unit of an aerosol generating device according to some embodiments; 一部の実施形態の電源ユニットの内部構成例を示す斜視図。FIG. 2 is a perspective view showing an internal configuration example of a power supply unit according to some embodiments; 一部の実施形態の電源ユニットの全体的な回路構成例を示す図。The figure which shows the whole circuit structural example of the power supply unit of some embodiment. 一部の実施形態の保護制御部の構成例を説明する図。The figure explaining the structural example of the protection control part of some embodiment. 一部の実施形態のバッテリの監視条件集合の例を説明する図。FIG. 4 is a diagram illustrating an example of a battery monitoring condition set according to some embodiments; 一部の実施形態のMCUによるバッテリ監視動作の例を説明するフロー図。4 is a flow diagram illustrating an example battery monitoring operation by an MCU of some embodiments; FIG. 一部の実施形態のMCUによるバッテリ監視動作の例を説明するフロー図。4 is a flow diagram illustrating an example battery monitoring operation by an MCU of some embodiments; FIG. 一部の実施形態のバッテリ監視回路によるバッテリ監視動作の例を説明するフロー図。FIG. 4 is a flow diagram illustrating an example of battery monitoring operation by the battery monitoring circuit of some embodiments; 一部の実施形態のバッテリ監視回路によるバッテリ監視動作の例を説明するフロー図。FIG. 4 is a flow diagram illustrating an example of battery monitoring operation by the battery monitoring circuit of some embodiments; 一部の実施形態のMCUによる割り込み動作の例を説明するフロー図。4 is a flow diagram illustrating an example of interrupt operation by an MCU of some embodiments; FIG. 一部の実施形態の保護回路によるバッテリ監視動作の例を説明するフロー図。4 is a flow diagram illustrating an example of battery monitoring operation by a protection circuit of some embodiments; FIG. 一部の実施形態のバッテリの深放電判定動作の例を説明するフロー図。FIG. 4 is a flow diagram illustrating an example of a battery deep discharge determination operation according to some embodiments; 一部の実施形態のバッテリの温度の正常範囲の例を説明する図。FIG. 5 is a diagram illustrating an example of a normal temperature range of a battery according to some embodiments;
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.
 図1には、本発明の一実施形態に係るエアロゾル生成装置の電源ユニット1の構成例を模式的に示した外観斜視図である。電源ユニット1は、角が丸められた略直方体形状のケース2を有する。ケース2は、電源ユニット1の表面を構成する。ここでは便宜上、図1(a)に示す面を正面、図1(b)に示す面を背面とする。また、図1(c)に示す面を底面、図1(d)に示す面を天面とする。 FIG. 1 is an external perspective view schematically showing a configuration example of a power supply unit 1 of an aerosol generating device according to one embodiment of the present invention. The power supply unit 1 has a substantially rectangular parallelepiped case 2 with rounded corners. Case 2 constitutes the surface of power supply unit 1 . For the sake of convenience, the surface shown in FIG. 1(a) is the front surface, and the surface shown in FIG. 1(b) is the rear surface. The surface shown in FIG. 1(c) is the bottom surface, and the surface shown in FIG. 1(d) is the top surface.
 電源ユニット1は、ケース(筐体)2と、ケース2に着脱可能なフロントパネル11とを有する。図1(f)は、図1(a)の状態からフロントパネル11を外した状態を示している。また、図1(g)は、フロントパネル11を内側から見た状態を示している。フロントパネル11は、ケース2の正面カバーとして機能し、ユーザが自由に交換して外観をカスタマイズすることを可能にする。 The power supply unit 1 has a case (enclosure) 2 and a front panel 11 that can be attached to and detached from the case 2 . FIG. 1(f) shows a state in which the front panel 11 is removed from the state shown in FIG. 1(a). FIG. 1(g) shows the front panel 11 viewed from the inside. The front panel 11 functions as a front cover of the case 2 and allows the user to freely replace it to customize its appearance.
 フロントパネル11の内面と、ケース2の正面とのそれぞれには、対向する位置に2対のマグネット14A及び14Bと、マグネット15A及び15Bとが設けられている。マグネット14Aと15Aとが引き合い、マグネット14Bと15Bとが引き合うことにより、磁力によってフロントパネル11がケース2の正面に保持される。 Two pairs of magnets 14A and 14B and magnets 15A and 15B are provided at opposing positions on the inner surface of the front panel 11 and the front surface of the case 2, respectively. The magnets 14A and 15A attract each other, and the magnets 14B and 15B attract each other, so that the front panel 11 is held in front of the case 2 by magnetic force.
 また、ケース2の正面には押下可能なスイッチSWと、発光部NUとが設けられている。フロントパネル11の内面には、スイッチSWと対向する位置に凸部16が設けられている。フロントパネル11を装着した状態でフロントパネル11の中央付近12を押下することにより、凸部16を通じてスイッチSWを間接的に押下することができる。なお、フロントパネル11を外した状態でスイッチSWを直接的に押下することもできる。発光部NUには複数の発光素子(例えばLED)が一列に配置される。発光部NUの状態はフロントパネル11に設けられた窓19を通じて観察することができる。 In addition, a pushable switch SW and a light emitting unit NU are provided on the front of the case 2 . A protrusion 16 is provided on the inner surface of the front panel 11 at a position facing the switch SW. By pressing the central portion 12 of the front panel 11 while the front panel 11 is attached, the switch SW can be indirectly pressed through the convex portion 16 . Note that the switch SW can also be pressed directly with the front panel 11 removed. A plurality of light emitting elements (for example, LEDs) are arranged in a row in the light emitting unit NU. The state of the light emitting unit NU can be observed through a window 19 provided on the front panel 11. FIG.
 ケース2の天面には開閉可能なスライダ13が設けられている。スライダ13を矢印方向に移動させると、図1(e)に示すようにヒータチャンバ17が現れる。図1(e)では便宜上スライダ13を図示していない。ヒータチャンバ17は水平断面が楕円形(長丸長方形)を有する筒状の空間であり、ヒータチャンバ17に挿入されるスティック又はカートリッジを加熱する。スティックは円筒形状であり、水平断面の直径をヒータチャンバ17の水平断面の短径よりも大きくする。これにより、ヒータチャンバ17に挿入される際にスティックが径方向に圧縮されるため、スティックの外表面とヒータチャンバ17との接触性が高まる上、接触面積が増大する。したがって、スティックを効率良く加熱することができる。これにより、スティックから生成されるエアロゾルの量や香味を向上させることができる。 A slider 13 that can be opened and closed is provided on the top surface of the case 2 . When the slider 13 is moved in the direction of the arrow, the heater chamber 17 appears as shown in FIG. 1(e). The slider 13 is not shown in FIG. 1(e) for the sake of convenience. The heater chamber 17 is a cylindrical space having an elliptical (elliptical) horizontal cross section, and heats a stick or cartridge inserted into the heater chamber 17 . The stick is cylindrical and has a horizontal cross-sectional diameter larger than the minor axis of the horizontal cross-section of the heater chamber 17 . As a result, the stick is radially compressed when it is inserted into the heater chamber 17, so that the contact between the outer surface of the stick and the heater chamber 17 is enhanced and the contact area is increased. Therefore, the stick can be efficiently heated. This can improve the amount and flavor of the aerosol generated from the stick.
 電源ユニット1は、フロントパネル11が装着された状態でスライダ13がヒータチャンバ17を露出する位置に移動され、スイッチSWが所定時間(例えば数秒)連続して押下されたことが検出されると、加熱開始指示と見なして加熱動作を開始する。 When the slider 13 is moved to a position where the heater chamber 17 is exposed while the front panel 11 is attached to the power supply unit 1, and it is detected that the switch SW is continuously pressed for a predetermined time (for example, several seconds), Considering this as a heating start instruction, the heating operation is started.
 なお、ヒータチャンバ17によって加熱されるスティックは、エアロゾル源のみを含んでもよいし、エアロゾル源と香味物質とを含んでもよい。エアロゾル源は、例えば、グリセリン又はプロピレングリコール等の多価アルコール等の液体を含みうる。具体的一例として、エアロゾル源は、グリセリン及びプロピレングリコールの混合溶液を含みうる。あるいは、エアロゾル源は、薬剤や漢方を含んでもよい。あるいは、エアロゾル源は、メンソールなどの香料を含んでもよい。あるいは、エアロゾル源は、液相のニコチンを含んでもよい。エアロゾル源は、液体であってもよいし、固体であってもよいし、液体及び固体の混合物であってもよい。エアロゾル源に代えて、又はエアロゾル源に加えて、水等の蒸気源が用いられてもよい。スティックはエアロゾル源を担持させるための担持体を含んでもよい。この担持体自身が、固体のエアロゾル源であってもよい。この担持体は、タバコ葉由来の原料を成形したシートを含んでもよい。 The stick heated by the heater chamber 17 may contain only the aerosol source, or may contain the aerosol source and the flavoring substance. Aerosol sources can include liquids such as, for example, polyhydric alcohols such as glycerin or propylene glycol. As a specific example, the aerosol source may comprise a mixed solution of glycerin and propylene glycol. Alternatively, the aerosol source may include a drug or herbal medicine. Alternatively, the aerosol source may contain a flavoring agent such as menthol. Alternatively, the aerosol source may comprise liquid phase nicotine. The aerosol source can be liquid, solid, or a mixture of liquid and solid. A vapor source such as water may be used instead of or in addition to an aerosol source. The stick may include a carrier for carrying the aerosol source. The carrier itself may be a solid aerosol source. The carrier may include a sheet formed from raw materials derived from tobacco leaves.
 ケース2の底面には外部機器を接続するためのコネクタUSBCが設けられている。ここではコネクタUSBCがUSB Type-C規格に準拠したレセプタクルであるものとする。電源ユニット1を充電する場合、コネクタUSBCに例えばUSB PD規格に従って電力を供給可能な外部機器(USB充電器、モバイルバッテリ、パーソナルコンピュータなど)が接続される。なお、コネクタUSBCは、USB Type-C規格以外の規格に準拠してもよい。なお、コネクタUSBCに代えて、又はコネクタUSBCに加えて、非接触充電用の受電コイルを電源ユニット1に設けてもよい。 A connector USBC is provided on the bottom of the case 2 for connecting an external device. Assume here that the connector USBC is a receptacle conforming to the USB Type-C standard. When charging the power supply unit 1, an external device (USB charger, mobile battery, personal computer, etc.) capable of supplying power according to the USB PD standard is connected to the connector USBC. Note that the connector USBC may conform to standards other than the USB Type-C standard. In place of the connector USBC, or in addition to the connector USBC, the power supply unit 1 may be provided with a power receiving coil for non-contact charging.
 図2は、電源ユニット1からケース2を取り除いた状態を模式的に示す斜視図である。図1と同じ構成要素については同じ参照符号を付してある。ヒータユニットHT(以下、単にヒータHTという)は、ヒータチャンバ17の外周に設けられ、電源から供給される電力を消費してヒータチャンバ17を加熱することによってエアロゾル源を加熱する負荷である。図2では図示していないが、ヒータHTは断熱材で覆われている。ヒータHTの断熱材又はヒータHTそのものに取り付けられているヒータサーミスタTHは、ヒータHTの温度を間接的に計測する温度センサである。なお、ヒータHTを誘導加熱方式としてもよい。この場合、ヒータHTには電磁誘導用のコイルが少なくても含まれる。電磁誘導用のコイルから送られる磁場を受け取るサセプタ(金属片)は、ヒータHTに含まれていてもよいし、スティックに内蔵されていてもよい。 FIG. 2 is a perspective view schematically showing the power supply unit 1 with the case 2 removed. The same reference numerals are given to the same components as in FIG. The heater unit HT (hereinafter simply referred to as heater HT) is a load that is provided on the outer periphery of the heater chamber 17 and heats the heater chamber 17 by consuming power supplied from the power source, thereby heating the aerosol source. Although not shown in FIG. 2, the heater HT is covered with a heat insulating material. A heater thermistor TH attached to the heat insulating material of the heater HT or the heater HT itself is a temperature sensor that indirectly measures the temperature of the heater HT. Note that the heater HT may be of an induction heating type. In this case, the heater HT includes at least a coil for electromagnetic induction. A susceptor (metal piece) that receives the magnetic field sent from the electromagnetic induction coil may be included in the heater HT or may be built in the stick.
 パフサーミスタTPは、ヒータチャンバ17の上端部に配置された吸引センサである。エアロゾルが吸引されるとパフサーミスタTPで検出される温度が変動することを利用して、吸引を検出することができる。 The puff thermistor TP is a suction sensor arranged at the upper end of the heater chamber 17 . When the aerosol is inhaled, the temperature detected by the puff thermistor TP fluctuates, which can be used to detect the inhalation.
 ケースサーミスタTCは、ケース2の正面の内面近傍に設けられ、ケース温度を検出する。 The case thermistor TC is provided near the inner surface of the front of the case 2 and detects the case temperature.
 バッテリBTは充電可能であり、例えばリチウムイオン二次電池である。バッテリBTは電源ユニット1の基本的な電力を供給する電源である。バッテリBTは製造時に装着され、電源ユニット1はヒータやサーミスタなどを除く大部分の構成要素に電力が供給されている状態(スリープ状態)で出荷される。 The battery BT is rechargeable, for example a lithium-ion secondary battery. The battery BT is a power supply that supplies basic power for the power supply unit 1 . The battery BT is attached at the time of manufacture, and the power supply unit 1 is shipped in a state (sleep state) in which power is being supplied to most of the components except for the heater, thermistor, and the like.
 検出器170は、スライダ13の開閉を検知する開閉センサであり、ホール素子を用いた集積回路(ホールIC)であってよい。 The detector 170 is an open/close sensor that detects opening and closing of the slider 13, and may be an integrated circuit (Hall IC) using a Hall element.
 電源ユニット1の回路は、4つの回路基板PCB1~PCB4に分散配置されている。これにかえて、電源ユニット1の回路は、1つの回路基板に配置されてもよいし、2つ又は3つ以上の回路基板に分散配置されてもよい。 The circuits of the power supply unit 1 are distributed and arranged on four circuit boards PCB1 to PCB4. Alternatively, the circuits of the power supply unit 1 may be arranged on one circuit board, or may be distributed on two or three or more circuit boards.
 上述の構成では、電源ユニット1がヒータHTを有する。これに代えて、エアロゾル源を含むカートリッジがヒータを有してもよい。この場合に、電源ユニット1はヒータコネクタを有し、このヒータコネクタは、カートリッジが電源ユニット1に取り付けられることによってヒータ側のコネクタに接続される。電源ユニット1は、ヒータコネクタを通じてカートリッジ内のヒータに電力を供給する。 In the above configuration, the power supply unit 1 has the heater HT. Alternatively, the cartridge containing the aerosol source may have the heater. In this case, the power supply unit 1 has a heater connector, and this heater connector is connected to the connector on the heater side by attaching the cartridge to the power supply unit 1 . The power supply unit 1 supplies power to the heater inside the cartridge through the heater connector.
 図3を参照して、電源ユニット1を構成する各部品の動作について説明する。バッテリBTの正極は、第1電源コネクタBC+に電気的に接続され、バッテリBTの負極は、第2電源コネクタBC-に電気的に接続される。バッテリBTの正極の電位は、保護回路90のVBAT端子、バッテリ監視回路100のVBAT端子、変圧回路120のVIN端子、充電回路20のBAT端子、及び、スイッチ回路80の電位入力端子に供給されうる。 The operation of each component that configures the power supply unit 1 will be described with reference to FIG. A positive terminal of the battery BT is electrically connected to the first power connector BC+, and a negative terminal of the battery BT is electrically connected to the second power connector BC-. The potential of the positive electrode of the battery BT can be supplied to the VBAT terminal of the protection circuit 90, the VBAT terminal of the battery monitoring circuit 100, the VIN terminal of the transformer circuit 120, the BAT terminal of the charging circuit 20, and the potential input terminal of the switch circuit 80. .
 保護回路90は、バッテリBTから出力される電流が流れる経路に配置された抵抗R2を使って該経路を流れる電流を計測し、その電流に応じてバッテリBTを保護する。保護回路90は、VBAT端子への入力を使ってバッテリBTの出力電圧を計測し、計測された出力電圧に応じてバッテリBTを保護する。バッテリ監視回路100(電源監視回路ともいう)は、バッテリBTから出力される電流が流れる経路に配置された抵抗R1を使って、バッテリBTの状態を計測しうる。 The protection circuit 90 measures the current flowing through the path through which the current output from the battery BT flows using the resistor R2, and protects the battery BT according to the current. The protection circuit 90 measures the output voltage of the battery BT using the input to the VBAT terminal, and protects the battery BT according to the measured output voltage. A battery monitoring circuit 100 (also referred to as a power supply monitoring circuit) can measure the state of the battery BT using a resistor R1 arranged in a path through which current output from the battery BT flows.
 過電圧保護回路110は、給電コネクタとしてのコネクタUSBCから供給される電圧VBUSを受けてVUSBラインに電圧VUSBを出力する。過電圧保護回路110は、コネクタUSBCから供給される電圧VBUSが規定電圧値を超える電圧であっても、それを規定電圧値まで降下させて過電圧保護回路110の出力側に供給する保護回路として機能しうる。この規定電圧値は、OVLo端子へ入力される電圧値に基づいて設定されてもよい。 The overvoltage protection circuit 110 receives the voltage V BUS supplied from the connector USBC as a power supply connector and outputs the voltage V USB to the V USB line. The overvoltage protection circuit 110 functions as a protection circuit that, even if the voltage V BUS supplied from the connector USBC exceeds the specified voltage value, drops it to the specified voltage value and supplies it to the output side of the overvoltage protection circuit 110. I can. This specified voltage value may be set based on the voltage value input to the OVLo terminal.
 変圧回路120は、バッテリBTから供給される電源電圧VBATを変圧してヒータHTを駆動するためのヒータ電圧VBOOSTを生成するDC/DCコンバータである。変圧回路120は、昇圧回路、又は、昇降圧回路、又は、降圧回路でありうる。ヒータHTは、エアロゾル源を加熱するように配置される。ヒータHTの正側端子は、第1ヒータコネクタHC+に電気的に接続され、ヒータHTの負側端子は、第2ヒータコネクタHC-に電気的に接続されうる。 Transformation circuit 120 is a DC/DC converter that transforms power supply voltage V BAT supplied from battery BT to generate heater voltage V BOOST for driving heater HT. The transformer circuit 120 may be a step-up circuit, a step-up/step-down circuit, or a step-down circuit. A heater HT is arranged to heat the aerosol source. A positive terminal of the heater HT can be electrically connected to the first heater connector HC+ and a negative terminal of the heater HT can be electrically connected to the second heater connector HC-.
 ヒータHTは、電源ユニット1に対して、破壊しなければ取り外し外すことができない形態(例えば、半田付け)で取り付けられてもよいし、破壊しなくても取り外すことができる形態で取り付けられてもよい。なお、本明細書において、「コネクタ」による電気的接続は、特に断らない限り、破壊しなければ相互に分離することができない形態と、破壊しなくても相互に分離することができる形態とのいずれでもよいものとして説明される。 The heater HT may be attached to the power supply unit 1 in such a manner that it cannot be removed without being destroyed (for example, by soldering), or may be attached in such a manner that it can be removed without being destroyed. good. In this specification, unless otherwise specified, an electrical connection by a "connector" can be divided into a form in which it cannot be separated from each other without being broken, and a form in which it can be separated from each other without being broken. It will be described as any one.
 MCU(Micro Controller Unit)130は、プログラムを実行可能なプロセッサ、メモリ、インタフェースなどを備えたプロセッサベースの制御回路であり、電源ユニット1の動作を制御する。MCU130が実行するプログラムは、内蔵メモリ、不揮発性メモリ70、又はその両方に存在しうる。 The MCU (Micro Controller Unit) 130 is a processor-based control circuit equipped with a program-executable processor, memory, interface, etc., and controls the operation of the power supply unit 1 . Programs executed by MCU 130 may reside in internal memory, non-volatile memory 70, or both.
 MCU130は、バッテリBTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTへの電力の供給を制御する。他の観点において、MCU130は、バッテリBTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTの発熱を制御する。更に他の観点において、MCU130は、ヒータHTへの電力の供給及びバッテリBTの充電動作を制御する。 The MCU 130 controls power supply to the heater HT for heating the aerosol source using power supplied from the battery BT. From another point of view, the MCU 130 controls heat generation of the heater HT for heating the aerosol source using power supplied from the battery BT. In still another aspect, the MCU 130 controls power supply to the heater HT and charging operation of the battery BT.
 ヒータHTを発熱させるとき、MCU130はスイッチSH及びスイッチSSをオンし、スイッチSMをオフする。これにより、ヒータ電圧VBOOSTが変圧回路120からスイッチSHを通してヒータHTに供給されうる。また、ヒータHTの温度あるいは抵抗を計測するとき、MCU130はスイッチSHをオフし、スイッチSM及びスイッチSSをオンする。これにより、ヒータ電圧VBOOSTは、変圧回路120からスイッチSMを通してヒータHTに供給されうる。 When causing the heater HT to generate heat, the MCU 130 turns on the switches SH and SS and turns off the switch SM. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 to the heater HT through the switch SH. When measuring the temperature or resistance of the heater HT, the MCU 130 turns off the switch SH and turns on the switches SM and SS. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 through the switch SM to the heater HT.
 ヒータHTの温度あるいは抵抗値を計測するとき、オペアンプA1は、ヒータHTの正側端子と負側端子との間の電圧、換言すると、第1ヒータコネクタHC+と第2ヒータコネクタHC-との間の電圧に応じた出力をMCU130のPA7端子に供給する。オペアンプA1は、ヒータHTの抵抗値あるいは温度を計測する計測回路として理解されてもよい。 When measuring the temperature or resistance value of the heater HT, the operational amplifier A1 detects the voltage between the positive terminal and the negative terminal of the heater HT, in other words, the voltage between the first heater connector HC+ and the second heater connector HC-. to the PA7 terminal of the MCU 130. The operational amplifier A1 may be understood as a measurement circuit that measures the resistance value or temperature of the heater HT.
 スイッチSMと第1ヒータコネクタHC+とを電気的に接続する経路には、シャント抵抗RSが配置されうる。シャント抵抗RSの抵抗値は、ヒータHTを加熱する期間はスイッチSRがオンし、ヒータHTの温度あるいは抵抗値を計測する期間はスイッチSRがオフするように決定されうる。スイッチSRがNチャネル型のMOSFETで構成される場合、スイッチSRのドレイン端子はオペアンプA1の出力端子へ接続され、スイッチSRのゲート端子はシャント抵抗RSと第1ヒータコネクタHC+の間へ接続され、スイッチSRのソース端子はグランド電位へ接続される。スイッチSRのゲート端子には、ヒータ電圧VBOOSTを主にシャント抵抗RSとヒータHTで分圧した値の電圧が入力される。シャント抵抗RSの抵抗値は、この分圧した値がスイッチSRの閾値電圧以上になるように決定されうる。また、シャント抵抗RSにより、スイッチSHがオフし、且つスイッチSM及びスイッチSSがオンの場合にヒータHTを流れる電流は、スイッチSH及びスイッチSSがオンし、且つスイッチSMがオフの場合にヒータHTを流れる電流よりも小さくなる。これにより、ヒータHTの温度あるいは抵抗を計測するときにヒータHTを流れる電流によってヒータHTの温度が変化することを抑制できる。 A shunt resistor RS can be arranged in a path electrically connecting the switch SM and the first heater connector HC+. The resistance value of the shunt resistor RS can be determined so that the switch SR is turned on during the heating period of the heater HT and turned off during the period of measuring the temperature or resistance value of the heater HT. When the switch SR is composed of an N-channel MOSFET, the drain terminal of the switch SR is connected to the output terminal of the operational amplifier A1, the gate terminal of the switch SR is connected between the shunt resistor RS and the first heater connector HC+, The source terminal of switch SR is connected to ground potential. A voltage obtained by dividing the heater voltage V BOOST mainly by the shunt resistor RS and the heater HT is input to the gate terminal of the switch SR. The resistance value of the shunt resistor RS can be determined so that the divided value is greater than or equal to the threshold voltage of the switch SR. Also, the current flowing through the heater HT when the switch SH is turned off and the switches SM and the switches SS are turned on by the shunt resistor RS is the heater HT when the switches SH and the switches SS are turned on and the switch SM is turned off. is smaller than the current flowing through As a result, it is possible to prevent the temperature of the heater HT from changing due to the current flowing through the heater HT when measuring the temperature or resistance of the heater HT.
 ロードスイッチ10は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC5ラインに電圧VCC5を出力する。電圧VCC5の電圧値は、例えば5.0[V]である。VCC5ラインは、後述する充電回路20のVBUS端子及びVAC端子と、発光部NUとへ接続される。なお、ロードスイッチ10のON端子には、npn型のバイポーラトランジスタのコレクタ端子が接続される。このバイポーラトランジスタのエミッタ端子はグランド電位へ接続され、ベース端子はMCU130のPC9端子へ接続される。つまり、MCU130は、PC9端子の電位を調整することで、バイポーラトランジスタを介してロードスイッチ10の開閉を制御できる。 The load switch 10 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC5 from the VOUT terminal to the VCC5 line. The voltage value of the voltage VCC5 is, for example, 5.0 [V]. The VCC5 line is connected to the VBUS and VAC terminals of the charging circuit 20, which will be described later, and the light emitting unit NU. The ON terminal of the load switch 10 is connected to the collector terminal of an npn bipolar transistor. The emitter terminal of this bipolar transistor is connected to the ground potential and the base terminal is connected to the PC9 terminal of the MCU 130 . That is, the MCU 130 can control opening/closing of the load switch 10 through the bipolar transistor by adjusting the potential of the PC9 terminal.
 充電回路20は、充電モードを有する。充電モードにおいて充電回路20は、SYS端子とBAT端子とを内部で電気的に接続する。これにより、VCC5ラインを介してVBUS端子へ供給される電圧VCC5を使って、BAT端子から第1導電路PT1を介してバッテリBTに充電電圧を供給しうる。充電回路20は、電圧VCC5を降圧することで適切な充電電圧を生成することが好ましい。充電モードは、/CE端子にローレベルが供給されることによってイネーブルあるいは起動されうる。VCCラインは、後述する変圧回路30のVIN端子とEN端子へ接続される。 Charging circuit 20 has a charging mode. In the charging mode, the charging circuit 20 electrically connects the SYS terminal and the BAT terminal internally. Thus, the voltage VCC5 supplied to the VBUS terminal via the VCC5 line can be used to supply the charging voltage from the BAT terminal to the battery BT via the first conductive path PT1. Charging circuit 20 preferably generates a suitable charging voltage by stepping down voltage VCC5 . The charging mode can be enabled or activated by supplying a low level to the /CE terminal. The VCC line is connected to the VIN and EN terminals of transformer circuit 30, which will be described later.
 充電回路20は、パワーパス機能を有しうる。パワーパス機能が有効に設定されている場合、充電回路20は、VCC5ラインを介してVBUS端子に供給される電圧VCC5を使って、又は、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VCCラインに電圧VCCを供給する。具体的には、充電回路20は、電圧VUSBが利用可能な状態においてパワーパス機能が有効に設定されている場合、VBUS端子とSW端子とを内部で電気的に接続し、VCC5ラインを介して供給される電圧VCC5を使って、VCCラインに電圧VCCを供給する。また、充電回路20は、電圧VUSBが利用不能な状態においてパワーパス機能が有効に設定されている場合、BAT端子とSW端子とを内部で電気的に接続し、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VCCラインに電圧VCCを供給する。 The charging circuit 20 can have a power pass function. When the power path function is enabled, the charging circuit 20 uses the voltage VCC5 supplied to the VBUS terminal through the VCC5 line, or the BAT from the battery BT through the first conductive path PT1. A power supply voltage V BAT applied to a terminal is used to provide the voltage V CC on the V CC line. Specifically, when the power pass function is enabled in a state where the voltage VUSB is available, the charging circuit 20 electrically connects the VBUS terminal and the SW terminal internally, and supplies the VCC5 line. VCC5 is used to supply voltage VCC on the VCC line. Further, when the power pass function is enabled in a state in which the voltage VUSB cannot be used, the charging circuit 20 electrically connects the BAT terminal and the SW terminal internally, and the first conductive path from the battery BT. The power supply voltage V BAT supplied to the BAT terminal through PT1 is used to provide the voltage V CC on the V CC line.
 充電回路20は、OTG(On-The-GO)機能を有する。OTG機能が有効に設定されている場合、充電回路20は、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VBUS端子からVCC5ラインに電圧VCC5を供給する。電源電圧VBATから電圧VCC5を生成する場合、発光部NUへ供給される電圧が、電圧VUSBから電圧VCC5を生成する場合と同程度又は同じになるように、充電回路20は、電源電圧VBATを昇圧して電圧VCC5を供給することが好ましい。このような構成とすることで、発光部NUの動作が安定する。/CE端子にハイレベルが供給されると、充電回路20は、パワーパス機能及びOTG機能のうちデフォルトで設定されている機能、又は、MCU130によって有効に設定された一方の機能を用いて動作しうる。 The charging circuit 20 has an OTG (On-The-GO) function. When the OTG function is enabled, the charging circuit 20 uses the power supply voltage V BAT supplied from the battery BT to the BAT terminal through the first conductive path PT1 to apply the voltage V from the VBUS terminal to the V CC5 line. Feed CC5 . When generating the voltage V CC5 from the power supply voltage V BAT , the charging circuit 20 is configured so that the voltage supplied to the light emitting unit NU is about the same as when generating the voltage V CC5 from the voltage V USB . Preferably, voltage V BAT is boosted to provide voltage V CC5 . With such a configuration, the operation of the light emitting unit NU is stabilized. When a high level is supplied to the /CE terminal, the charging circuit 20 operates using either the power pass function or the OTG function set by default or one enabled by the MCU 130 . sell.
 変圧回路30は昇圧回路、又は、昇降圧回路、又は、降圧回路でありうるDC/DCコンバータであり、VCCラインに電圧VCCが供給されることによってイネーブルされる。具体的には、変圧回路30は、EN端子へハイレベルの信号が入力されることによってイネーブルされる。VIN端子及びEN端子はVCCラインへ接続されていることから、変圧回路30は、VCCラインに電圧VCCが供給されることによってイネーブルされる。変圧回路30は、VOUT端子からVCC33_0ラインに電圧VCC33_0を供給する。電圧VCC33_0の電圧値は、例えば、3.3[V]である。VCC33_0ラインは、後述するロードスイッチ40のVIN端子、後述するリブートコントローラ50のVIN端子及びRSTB端子、FF2のVCC端子及びD端子へ接続される。 Transformer circuit 30 is a DC/DC converter, which may be a boost circuit, a buck-boost circuit, or a buck circuit, and is enabled by applying voltage VCC to the VCC line. Specifically, the transformer circuit 30 is enabled by inputting a high-level signal to the EN terminal. Since the VIN and EN terminals are connected to the VCC line, transformer circuit 30 is enabled by applying voltage VCC to the VCC line. Transformer circuit 30 provides voltage V CC33_0 from the VOUT terminal to the V CC33_0 line. The voltage value of the voltage V CC33_0 is, for example, 3.3 [V]. The VCC33_0 line is connected to the VIN terminal of the load switch 40, which will be described later, the VIN terminal and RSTB terminal of the reboot controller 50, which will be described later, and the VCC terminal and D terminal of FF2.
 ロードスイッチ40は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を出力する。電圧VCC33の電圧値は、例えば、3.3[V]である。VCC33ラインは、後述するロードスイッチ60のVIN端子、不揮発性メモリ70のVCC端子、後述するバッテリ監視回路100のVDD端子及びCE端子、MCU130のVDD端子、後述する検出器140のVDD端子、後述するシュミットトリガ回路150のVCC端子、後述する通信インタフェース回路160のVCC_NRF端子、後述する検出器170のVDD端子、FF1のVCC端子及びD端子、オペアンプA1の正電源端子、後述するオペアンプA2の正電源端子、後述するオペアンプA3の正電源端子とへ接続される。ロードスイッチ40のVIN端子は、変圧回路30のVOUT端子に電気的に接続され、変圧回路30から電圧VCC33_0が供給される。電源ユニット1の回路基板を複雑にしないため、電圧VCC33_0の電圧値と電圧VCC33の電圧値は、略等しいことが好ましい。 The load switch 40 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33 from the VOUT terminal to the VCC33 line. The voltage value of the voltage VCC33 is, for example, 3.3 [V]. The VCC 33 line is connected to the VIN terminal of the load switch 60 described later, the VCC terminal of the nonvolatile memory 70, the VDD and CE terminals of the battery monitoring circuit 100 described later, the VDD terminal of the MCU 130, the VDD terminal of the detector 140 described later, and the VDD terminal of the detector 140 described later. a VCC_NRF terminal of the communication interface circuit 160, a VDD terminal of the detector 170, a VCC terminal and a D terminal of the FF1, a positive power supply terminal of the operational amplifier A1, and a positive power supply of the operational amplifier A2, which will be described later. terminal, and a positive power supply terminal of an operational amplifier A3, which will be described later. The VIN terminal of the load switch 40 is electrically connected to the VOUT terminal of the transformer circuit 30 and supplied with the voltage VCC33_0 from the transformer circuit 30 . In order not to complicate the circuit board of the power supply unit 1, it is preferable that the voltage value of the voltage VCC33_0 and the voltage value of the voltage VCC33 are substantially equal.
 リブートコントローラ50は、SW1端子及びSW2端子にローレベルが所定時間にわたって供給されたことに応じて、RSTB端子からローレベルを出力する。RSTB端子は、ロードスイッチ40のON端子に電気的に接続されている。したがって、リブートコントローラ50のSW1端子及びSW2端子にローレベルが所定時間にわたって供給されたことに応じて、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を停止する。ロードスイッチ40のVOUT端子からの電圧VCC33の出力が停止すると、MCU130のVDD端子(電源端子)に対する電圧VCC33の供給が絶たれるので、MCU130は、動作を停止する。 The reboot controller 50 outputs a low level from the RSTB terminal in response to the low level being supplied to the SW1 terminal and the SW2 terminal for a predetermined time. The RSTB terminal is electrically connected to the ON terminal of the load switch 40 . Accordingly, in response to the supply of the low level to the SW1 terminal and the SW2 terminal of the reboot controller 50 for a predetermined period of time, the load switch 40 stops outputting the voltage VCC33 from the VOUT terminal. When the output of the voltage VCC33 from the VOUT terminal of the load switch 40 stops, the supply of the voltage VCC33 to the VDD terminal (power supply terminal) of the MCU 130 is cut off, so the MCU 130 stops operating.
 ここで、フロントパネル11が電源ユニット1から取り外されると、検出器140からシュミットトリガ回路150を介してリブートコントローラ50のSW2端子にローレベルが供給される。また、スイッチSWが押下されると、リブートコントローラ50のSW1端子にローレベルが供給される。よって、フロントパネル11が電源ユニット1から取り外された状態(図1(f)の状態)でスイッチSWが押下されると、リブートコントローラ50のSW1端子及びSW2端子にローレベルが供給される。リブートコントローラ50は、SW1端子及びSW2端子にローレベルが所定時間(例えば数秒間)継続して供給されると、電源ユニット1に対するリセットあるいは再起動の指令が入力されたものと認識する。リブートコントローラ50は、RSTB端子からローレベルを出力した後に、RSTB端子からローレベルを出力しないようにすることが好ましい。リブートコントローラ50がRSTB端子からローレベルを出力すると、ロードスイッチ40のON端子にローレベルが入力され、ロードスイッチ40はVIN端子とVOUT端子とを電気的に切断し、VCC33ラインに電圧VCC33が出力されなくなる。これにより、MCU130は動作を停止する。その後、リブートコントローラ50がRSTB端子からローレベルを出力しないようになると、ハイレベルの電圧VCC33_0がロードスイッチ40のON端子へ入力されるため、ロードスイッチ40はVIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を再び出力する。これにより、動作を停止したMCU130が再起動できる。 Here, when the front panel 11 is removed from the power supply unit 1 , a low level is supplied from the detector 140 to the SW2 terminal of the reboot controller 50 via the Schmidt trigger circuit 150 . Also, when the switch SW is pressed, a low level is supplied to the SW1 terminal of the reboot controller 50 . Therefore, when the switch SW is pressed while the front panel 11 is removed from the power supply unit 1 (state shown in FIG. 1(f)), the SW1 terminal and the SW2 terminal of the reboot controller 50 are supplied with a low level. The reboot controller 50 recognizes that a command to reset or restart the power supply unit 1 has been input when a low level is continuously supplied to the SW1 terminal and the SW2 terminal for a predetermined time (for example, several seconds). It is preferable that the reboot controller 50 does not output a low level from the RSTB terminal after outputting a low level from the RSTB terminal. When the reboot controller 50 outputs a low level from the RSTB terminal, a low level is input to the ON terminal of the load switch 40, the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal, and the voltage VCC33 is applied to the VCC33 line. is no longer output. This causes the MCU 130 to stop operating. After that, when the reboot controller 50 stops outputting the low level from the RSTB terminal, the high level voltage VCC33_0 is input to the ON terminal of the load switch 40, so that the load switch 40 electrically connects the VIN terminal and the VOUT terminal. to output the voltage VCC33 again from the VOUT terminal to the VCC33 line. As a result, the MCU 130 that has stopped operating can be restarted.
 ロードスイッチ60は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33_SLPラインに電圧VCC33_SLPを出力する。電圧VCC33_SLPの電圧値は、例えば、3.3[V]である。VCC33_SLPラインは、後述するパフサーミスタTP、後述するヒータサーミスタTH、後述するケースサーミスタTCへ接続される。ロードスイッチ60のON端子は、MCU130のPC11端子に電気的に接続されている。MCU130は、電源ユニット1をスリープモードに移行する際にPC11端子の論理レベルをハイレベルからローレベルに遷移させ、電源ユニット1をスリープモードからアクティブモードに移行する際にPC11端子の論理レベルをローレベルからハイレベルに遷移させる。換言すれば、電圧VCC33_SLPはスリープモードでは利用できず、スリープモードからアクティブモードに移行する際に利用できるようになる。電源ユニット1の回路基板を複雑にしないため、電圧VCC33_SLPの電圧値と電圧VCC33の電圧値は、略等しいことが好ましい。 The load switch 60 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33_SLP from the VOUT terminal to the VCC33_SLP line. The voltage value of the voltage V CC33_SLP is, for example, 3.3 [V]. The VCC33_SLP line is connected to a puff thermistor TP, which will be described later, a heater thermistor TH, which will be described later, and a case thermistor TC, which will be described later. The ON terminal of the load switch 60 is electrically connected to the PC11 terminal of the MCU 130 . The MCU 130 transitions the logic level of the PC11 terminal from high level to low level when the power supply unit 1 shifts to the sleep mode, and transitions the logic level of the PC11 terminal to low level when the power supply unit 1 shifts from the sleep mode to the active mode. Make a transition from level to high level. In other words, voltage VCC33_SLP is not available in sleep mode and becomes available when transitioning from sleep mode to active mode. In order not to complicate the circuit board of the power supply unit 1, it is preferable that the voltage value of the voltage VCC33_SLP and the voltage value of the voltage VCC33 are substantially equal.
 電源ユニット1は、ユーザによるパフ(吸引)動作を検出するためのパフセンサを構成するパフサーミスタTP(例えば、NTCサーミスタ又はPTCサーミスタ)を備えることができる。パフサーミスタTPは、例えば、パフに伴う空気流路の温度変化を検出するように配置されうる。なお、パフサーミスタTPは、パフセンサの具体的一例に過ぎない点に留意されたい。パフサーミスタTPに代えて、マイクロフォンコンデンサ、圧力センサ、流量センサ、流速センサなどをパフセンサに用いてもよい。電源ユニット1は、バイブレータMを備えてもよい。バイブレータMは、例えば、スイッチSNをオンさせることによって起動されうる。スイッチSNは、トランジスタで構成されてよく、トランジスタのベース又はゲートには、MCU130のPH0端子から制御信号が供給されうる。なお、電源ユニット1は、バイブレータMを制御するためのドライバを有していてもよい。 The power supply unit 1 can include a puff thermistor TP (for example, an NTC thermistor or a PTC thermistor) that constitutes a puff sensor for detecting a puff (sucking) action by the user. The puff thermistor TP may be arranged, for example, to detect temperature changes in the airflow path associated with the puff. Note that the puff thermistor TP is only a specific example of the puff sensor. Instead of the puff thermistor TP, a microphone capacitor, a pressure sensor, a flow sensor, a flow velocity sensor, or the like may be used as the puff sensor. The power supply unit 1 may include a vibrator M. Vibrator M can be activated, for example, by turning on switch SN. The switch SN may be composed of a transistor, and a control signal may be supplied from the PH0 terminal of the MCU 130 to the base or gate of the transistor. The power supply unit 1 may have a driver for controlling the vibrator M.
 電源ユニット1は、ヒータHTの温度を検出するためのヒータサーミスタTH(例えば、NTCサーミスタ又はPTCサーミスタ)を備えうる。ヒータHTの温度は、ヒータHTの近傍の温度を検出することによって間接的に検出されてもよい。オペアンプA2は、サーミスタTHの抵抗値に応じた電圧、換言すると、ヒータHTの温度に応じた電圧を出力しうる。 The power supply unit 1 can include a heater thermistor TH (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the heater HT. The temperature of the heater HT may be detected indirectly by detecting the temperature in the vicinity of the heater HT. The operational amplifier A2 can output a voltage corresponding to the resistance value of the thermistor TH, in other words, a voltage corresponding to the temperature of the heater HT.
 電源ユニット1は、電源ユニットの筐体(ケース)2の温度を検出するためのケースサーミスタTC(例えば、NTCサーミスタ又はPTCサーミスタ)を備えうる。ケース2の温度は、ケース2近傍の温度を検出することによって間接的に検出されてもよい。オペアンプA3は、サーミスタTCの抵抗値に応じた電圧、換言すると、ケース2の温度に応じた電圧を出力する。 The power supply unit 1 may include a case thermistor TC (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the housing (case) 2 of the power supply unit. The temperature of case 2 may be detected indirectly by detecting the temperature in the vicinity of case 2 . The operational amplifier A3 outputs a voltage corresponding to the resistance value of the thermistor TC, in other words, a voltage corresponding to the temperature of the case 2.
 検出器140は、フロントパネル11が電源ユニット1から取り外されたことを検出するように構成されうる。検出器140の出力は、シュミットトリガ回路150を介してリブートコントローラ50のSW2端子及びMCU130のPD2端子に供給されうる。スイッチSWの一端は、VCC33ライン、リブートコントローラ50のSW1端子、及びMCU130のPC10端子へ接続されうる。スイッチSWの他端はグランド電位へ接続されうる。これにより、スイッチSWが押下されるとリブートコントローラ50のSW1端子及びMCU130のPC10端子にローレベルが供給され、スイッチSWが押下されないとリブートコントローラ50のSW1端子及びMCU130のPC10端子にハイレベルが供給されうる。 Detector 140 may be configured to detect that front panel 11 is removed from power supply unit 1 . The output of detector 140 may be supplied to the SW2 terminal of reboot controller 50 and the PD2 terminal of MCU 130 via Schmitt trigger circuit 150 . One end of the switch SW may be connected to the V CC 33 line, the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130 . The other end of the switch SW can be connected to ground potential. Accordingly, when the switch SW is pressed, a low level is supplied to the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130, and when the switch SW is not pressed, a high level is supplied to the SW1 terminal of the reboot controller 50 and the PC10 terminal of the MCU 130. can be
 検出器170は、スライダ13の開閉を検出するように構成されうる。検出器170の出力は、MCU130のPC13端子に供給されうる。検出器140及び170は、例えば、ホール素子を用いた集積回路(ホールIC)で構成されうる。 The detector 170 can be configured to detect opening and closing of the slider 13 . The output of detector 170 may be provided to the PC13 terminal of MCU 130 . The detectors 140 and 170 can be configured by integrated circuits (Hall ICs) using Hall elements, for example.
 通信インタフェース回路160は、スマートフォン、携帯電話、パーソナルコンピュータ等の外部機器と無線通信する機能をMCU130に提供する。通信インタフェース回路160は、例えば、Bluetooth(登録商標)など、任意の無線通信規格の1つ以上に準拠した通信インタフェース回路であってよい。 The communication interface circuit 160 provides the MCU 130 with a function of wirelessly communicating with external devices such as smartphones, mobile phones, and personal computers. Communication interface circuit 160 may be, for example, a communication interface circuit compliant with one or more of any wireless communication standards, such as Bluetooth (registered trademark).
 FF1及びFF2は、異常が検出されたか否かを示す1ビットの情報(0又は1)をローレベル又はハイレベルとして保持する保持回路である。FFは、フリップフロップの略語である。FF2は、保持している情報の値を反転した値を、/Q端子から出力する。また、FF1は、保持している情報の値を、Q端子から出力する。FF1及びFF2は、D型のフリップフロップICであることが好ましい。 FF1 and FF2 are holding circuits that hold 1-bit information (0 or 1) indicating whether an abnormality has been detected as a low level or a high level. FF is an abbreviation for flip-flop. FF2 outputs the value obtained by inverting the value of the information it holds from the /Q terminal. FF1 also outputs the value of the information it holds from the Q terminal. FF1 and FF2 are preferably D-type flip-flop ICs.
 FF1及びFF2は、/CLR端子を有し、/CLR端子の入力レベルがハイレベルからローレベルに変化すると、保持している情報の値を0(ローレベル)に初期化する。なお、/CLR端子の入力レベルのローレベルからハイレベルへの変化は、保持している情報の値に影響を与えない。  FF1 and FF2 have a /CLR terminal, and when the input level of the /CLR terminal changes from high level to low level, the value of the held information is initialized to 0 (low level). A change in the input level of the /CLR terminal from low level to high level does not affect the value of the held information.
 本実施形態において、FF1とFF2とには、異なる電源ラインによって電力が供給される。すなわち、FF1のVCC端子(電源端子)には電圧VCC33が供給され、FF2のVCC端子(電源端子)には電圧VCC33_0が供給される。MCU130の電源である電圧VCC33がリセット動作において一時的に供給されなくなる間も、電圧VCC33_0は継続して供給される。そのため、FF2が保持する情報(Q及び/Q端子の出力)は電源ユニット1のリセット動作が実行されても消えることなく保持される。一方、FF1にはMCU130に電力を供給する電源ラインによって電力が供給されるため、FF1が保持する情報はリセット動作時に消去される。 In this embodiment, power is supplied to FF1 and FF2 through different power supply lines. That is, the VCC terminal (power supply terminal) of FF1 is supplied with the voltage VCC33 , and the VCC terminal (power supply terminal) of FF2 is supplied with the voltage VCC33_0 . The voltage VCC33_0 is continuously supplied even while the voltage VCC33 , which is the power supply of the MCU 130, is temporarily stopped in the reset operation. Therefore, the information held by the FF 2 (the output of the Q and /Q terminals) is held without disappearing even if the reset operation of the power supply unit 1 is executed. On the other hand, since power is supplied to FF1 from the power supply line that supplies power to MCU 130, the information held by FF1 is erased during the reset operation.
 FF1及びFF2において、VCC端子への入力はD端子にも入力されている。そのため、FF1及びFF2が動作している間、D端子には常にハイレベルが入力されている。FF1及びFF2は図示しない同期端子を有し、同期端子の入力がローレベルからハイレベルに変化すると、D端子の入力レベルを保持する。電源ユニット1が正常に動作している場合、FF1及びFF2はハイレベルを保持する。 In FF1 and FF2, the input to the VCC terminal is also input to the D terminal. Therefore, while FF1 and FF2 are operating, a high level is always input to the D terminal. FF1 and FF2 have synchronization terminals (not shown), and when the input of the synchronization terminal changes from low level to high level, the input level of the D terminal is held. When the power supply unit 1 is operating normally, FF1 and FF2 keep high level.
 オペアンプA2の反転入力にはヒータサーミスタTHの抵抗値に応じて変化する電圧が供給され、非反転入力には基準電圧が供給される。この基準電圧は、ヒータHTが過加熱していない状態では非反転入力の電圧が反転入力の電圧よりも高くなり、ヒータHTが過加熱している状態では反転入力の電圧が非反転入力の電圧よりも高くなるように設計されている。したがって、オペアンプA2の出力は、ヒータHTが過加熱していない状態(正常状態)ではハイレベルとなり、ヒータHTが過加熱している状態(異常状態)ではローレベルとなる。 A voltage that varies according to the resistance value of the heater thermistor TH is supplied to the inverting input of the operational amplifier A2, and a reference voltage is supplied to the non-inverting input. This reference voltage is such that the voltage of the non-inverting input is higher than the voltage of the inverting input when the heater HT is not overheated, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the heater HT is overheated. designed to be higher than Therefore, the output of the operational amplifier A2 becomes high level when the heater HT is not overheated (normal state), and becomes low level when the heater HT is overheated (abnormal state).
 オペアンプA2の出力は、FF2の/CLR端子に接続されている。また、オペアンプA2の出力は、逆方向のダイオードを介してFF1のD端子及び/CLR端子にも接続されている。換言すれば、当該ダイオードのカソードへオペアンプA2の出力が接続され、当該ダイオードのアノードへFF1のD端子及び/CLR端子が接続されている。ヒータHTの温度が正常状態であれば、FF2の/CLR端子の入力はハイレベルとなる。/CLR端子の入力がハイレベルの場合、FF2のQ端子の出力は初期状態を維持する。つまり、DD2のQ端子は、ハイレベルを出力する。FF2のD端子には電圧VCC33_0が入力されており、起動時に異常がなければFF2は初期状態でD端子の入力レベルを保持する。したがって、ヒータHTの温度が正常状態であれば、FF2のQ端子出力はハイレベルであり、/Q端子出力はローレベルである。 The output of operational amplifier A2 is connected to the /CLR terminal of FF2. The output of operational amplifier A2 is also connected to the D terminal and /CLR terminal of FF1 via a reverse diode. In other words, the output of the operational amplifier A2 is connected to the cathode of the diode, and the D terminal and /CLR terminal of FF1 are connected to the anode of the diode. If the temperature of the heater HT is normal, the input to the /CLR terminal of FF2 becomes high level. When the input of the /CLR terminal is at high level, the output of the Q terminal of FF2 maintains the initial state. That is, the Q terminal of DD2 outputs a high level. A voltage VCC33_0 is input to the D terminal of FF2, and FF2 holds the input level of the D terminal in the initial state if there is no abnormality at startup. Therefore, when the temperature of the heater HT is normal, the Q terminal output of FF2 is at high level and the /Q terminal output is at low level.
 ヒータHTが過加熱の状態になると、オペアンプA2の出力がローレベルに変化する。これにより、FF2の/CLR端子の入力がローレベルに変化する。/CLR端子がローレベルになると、FF2は強制的に初期化され、Q端子の出力がローレベル、/Q端子の出力がハイレベルとなる。FF2の/Q端子の出力はMCU130のPB14端子に供給される。そのため、MCU130は、PB14端子に入力される信号がローレベルからハイレベルに切り替わったことに応じて、ヒータHTが過加熱の状態であることを検知できる。 When the heater HT is overheated, the output of the operational amplifier A2 changes to low level. As a result, the input of the /CLR terminal of FF2 changes to low level. When the /CLR terminal becomes low level, FF2 is forcibly initialized, the output of the Q terminal becomes low level, and the output of the /Q terminal becomes high level. The output of the /Q terminal of FF2 is supplied to the PB14 terminal of MCU130. Therefore, the MCU 130 can detect that the heater HT is in an overheating state in response to the signal input to the PB14 terminal switching from low level to high level.
 ケースサーミスタTCは、ケース2の内面に近接する位置に配置される。又は、ケースサーミスタTCは、ケース2の内面に接する位置に配置される。ケース2の実温度とケースサーミスタTCの抵抗値との関係を事前に計測しておくことにより、ケースサーミスタTCの抵抗値をケース2の温度として用いることができる。 The case thermistor TC is arranged at a position close to the inner surface of the case 2. Alternatively, the case thermistor TC is arranged at a position in contact with the inner surface of the case 2 . By measuring the relationship between the actual temperature of the case 2 and the resistance value of the case thermistor TC in advance, the resistance value of the case thermistor TC can be used as the temperature of the case 2 .
 オペアンプA3の反転入力には、ケースサーミスタTCの抵抗値に応じて変化する電圧が供給され、非反転入力には基準電圧が供給される。この基準電圧は、電源ユニット1のケース2が高温ではない状態では非反転入力の電圧が反転入力の電圧よりも高くなり、ケース2が高温である状態では反転入力の電圧が非反転入力の電圧よりも高くなるように設計されている。したがって、オペアンプA3の出力は、ケース2が高温ではない状態(正常状態)ではハイレベルとなり、ケース2が高温である状態(異常状態)ではローレベルとなる。 A voltage that varies according to the resistance value of the case thermistor TC is supplied to the inverting input of the operational amplifier A3, and a reference voltage is supplied to the non-inverting input. This reference voltage is such that the voltage of the non-inverting input is higher than the voltage of the inverting input when the case 2 of the power supply unit 1 is not at a high temperature, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the case 2 is at a high temperature. designed to be higher than Therefore, the output of the operational amplifier A3 is high level when the case 2 is not at a high temperature (normal state), and is low level when the case 2 is at a high temperature (abnormal state).
 オペアンプA3の出力は、FF1の/CLR端子及びD端子に接続されている。ケース2の温度が正常状態であれば、FF1の/CLR端子の入力はハイレベルとなる。/CLR端子の入力がハイレベルの場合、FF1のQ端子の出力は初期状態を維持する。FF1のD端子には電圧VCC33が入力されており、起動時に異常がなければFF1は初期状態でD端子の入力レベルを保持する。したがって、ケース2の温度が正常状態であれば、FF1のQ端子からの出力はハイレベルである。ケース2が高温になると、オペアンプA3の出力がローレベルに変化する。これにより、FF1の/CLR端子の入力がローレベルに変化する。/CLR端子がローレベルになると、FF1は強制的に初期化され、Q端子の出力がローレベルとなる。FF1のQ端子からの出力は、MCU130のPA10端子と、スイッチSLのベースとに供給される。そのため、MCU130は、PA10端子に入力される信号がハイレベルからローレベルに切り替わったことに応じて、ケース2が高温であることを検知できる。また、FF1のQ端子からの出力はハイレベルからローレベルに切り替わると、スイッチSLがオンする。スイッチSLのコレクタは充電回路20の/CE端子へ接続され、スイッチSLのエミッタはVCC33ラインへ接続されている。スイッチSLがオンすると、充電回路20の/CE端子には電圧VCC33が入力される。これによって、充電回路20の/CE端子に供給される信号がハイレベルに切り替わり、充電回路20は動作を停止する。 The output of operational amplifier A3 is connected to the /CLR terminal and D terminal of FF1. If the temperature of Case 2 is normal, the input to the /CLR terminal of FF1 becomes high level. When the input of the /CLR terminal is high level, the output of the Q terminal of FF1 maintains the initial state. A voltage VCC33 is input to the D terminal of FF1, and if there is no abnormality at startup, FF1 holds the input level of the D terminal in the initial state. Therefore, if the temperature of case 2 is normal, the output from the Q terminal of FF1 is at high level. When case 2 becomes hot, the output of operational amplifier A3 changes to low level. As a result, the input of the /CLR terminal of FF1 changes to low level. When the /CLR terminal becomes low level, FF1 is forcibly initialized and the output of the Q terminal becomes low level. The output from the Q terminal of FF1 is supplied to the PA10 terminal of MCU 130 and the base of switch SL. Therefore, the MCU 130 can detect that the case 2 is at a high temperature in response to the signal input to the PA10 terminal switching from high level to low level. Also, when the output from the Q terminal of FF1 switches from high level to low level, the switch SL is turned on. The collector of switch SL is connected to the /CE terminal of charging circuit 20, and the emitter of switch SL is connected to the VCC33 line. When switch SL is turned on, voltage VCC33 is input to the /CE terminal of charging circuit 20 . As a result, the signal supplied to the /CE terminal of charging circuit 20 switches to high level, and charging circuit 20 stops operating.
 図4は、図3を用いて説明した構成要素のうち、バッテリBTに関する情報に基づいて電源ユニット1を保護するための動作に係わる構成を抜き出して記載した回路図である。以下、電源ユニット1を保護するための動作を、単に保護動作と表す。保護動作は、例えばバッテリBTに流れる電流を停止するような直接的な動作と、他の回路に対してこのような直接的な動作を実行するように要求する信号を送信する間接的な動作との両方を含んでもよい。保護動作は、以下に詳細に説明するように、バッテリBTの充電と、バッテリBTからヒータHTへの電力供給との少なくとも一方を、少なくとも一時的に制限することを含んでもよい。これらのバッテリBTに関する動作の制限とは、この動作を完全に行えなくすること(例えば、充電量又は供給量をゼロにすること)を含んでもよく、この動作を部分的に行えなくすること(例えば、充電量又は供給量を減少すること)を含んでもよい。保護動作によって保護される電源ユニット1の構成要素は、バッテリBT、MCU130など、任意の構成要素であってもよい。以下に説明する実施形態では、MCU130、バッテリ監視回路100、保護回路90、FF1、及び充電回路20のそれぞれが個別の保護動作を実行する。これらの保護動作のための構成要素をまとめて、保護制御部200と表す。保護制御部200に含まれるMCU130、バッテリ監視回路100、保護回路90、FF1、及び充電回路20は、互いに別個の回路で構成される。 FIG. 4 is a circuit diagram extracting and describing the configuration related to the operation for protecting the power supply unit 1 based on the information regarding the battery BT among the components described using FIG. Hereinafter, the operation for protecting the power supply unit 1 is simply referred to as protection operation. The protection operation includes a direct operation such as stopping the current flowing to the battery BT, and an indirect operation such as sending a signal requesting other circuits to perform such a direct operation. may include both The protection operation may include, at least temporarily, limiting charging of the battery BT and/or power supply from the battery BT to the heater HT, as described in detail below. These restrictions on the operation of the battery BT may include completely disabling this operation (e.g. setting the charge or supply to zero) or partially disabling this operation ( For example, reducing the amount of charge or supply). Components of the power supply unit 1 protected by the protection operation may be arbitrary components such as the battery BT and the MCU 130 . In the embodiments described below, MCU 130, battery monitoring circuit 100, protection circuit 90, FF1, and charging circuit 20 each perform individual protection operations. Components for these protection operations are collectively referred to as a protection control unit 200 . The MCU 130, the battery monitoring circuit 100, the protection circuit 90, the FF1, and the charging circuit 20 included in the protection control unit 200 are configured as separate circuits.
 保護回路90は、バッテリBTに流れる電流と、バッテリBTの電圧とを測定する。具体的に、保護回路90のCS端子は抵抗R2の一端に接続されており、保護回路90のVSS端子は抵抗R2の他端に接続されている。抵抗R2の抵抗値は保護回路90に事前に記憶されている。保護回路90は、VSS端子とCS端子との間の電圧を抵抗R2の抵抗値で除算することによって、抵抗R2を流れる電流を測定する。抵抗R2は、バッテリBTの負極が接続される第2電源コネクタBC-に接続されている。そのため、抵抗R2を流れる電流は、バッテリBTを流れる電流に相関を有する。保護回路90は、VSS端子の電位とCS端子の電位との大小を比較することによって、抵抗R2を流れる電流の方向を判定できる。これによって、保護回路90は、バッテリBTが充電中であるか放電中であるかを判定できる。 The protection circuit 90 measures the current flowing through the battery BT and the voltage of the battery BT. Specifically, the CS terminal of the protection circuit 90 is connected to one end of the resistor R2, and the VSS terminal of the protection circuit 90 is connected to the other end of the resistor R2. The resistance value of the resistor R2 is stored in the protection circuit 90 in advance. Protection circuit 90 measures the current through resistor R2 by dividing the voltage between the VSS and CS terminals by the resistance of resistor R2. The resistor R2 is connected to a second power connector BC- to which the negative electrode of the battery BT is connected. Therefore, the current flowing through the resistor R2 is correlated with the current flowing through the battery BT. The protection circuit 90 can determine the direction of the current flowing through the resistor R2 by comparing the potential of the VSS terminal and the potential of the CS terminal. Thereby, the protection circuit 90 can determine whether the battery BT is being charged or discharged.
 保護回路90のVBAT端子は、バッテリBTの正極が接続される第1電源コネクタBC+に接続されており、保護回路90のVSS端子は、バッテリBTの負極が接続される第2電源コネクタBCーに接続されている。そのため、保護回路90のVBAT端子とVSS端子との間の電圧は、バッテリBTの電圧(電源電圧VBAT)に等しい。そこで、保護回路90は、VBAT端子の電圧を測定することによって、バッテリBTの電圧を測定可能である。 The VBAT terminal of the protection circuit 90 is connected to the first power connector BC+ to which the positive electrode of the battery BT is connected, and the VSS terminal of the protection circuit 90 is connected to the second power connector BC- to which the negative electrode of the battery BT is connected. It is connected. Therefore, the voltage between the VBAT terminal and the VSS terminal of the protection circuit 90 is equal to the voltage of the battery BT (power supply voltage V BAT ). Therefore, the protection circuit 90 can measure the voltage of the battery BT by measuring the voltage of the VBAT terminal.
 保護回路90は、DOUT端子からの出力をハイレベルからローレベルに切り替えることによって、スイッチSDをオフできる。スイッチSDのゲートは、保護回路のDOUT端子に電気的に接続されている。スイッチSDのゲートはスイッチSDの制御端子として機能する。スイッチSDは、ゲートへの入力に基づいて、自身の導通状態を切り替える。スイッチSDがオフになると、バッテリBTが放電するための電流経路が遮断されるため、バッテリBTからの放電が制限される。このように、スイッチSDは、放電遮断スイッチとして機能する。 The protection circuit 90 can turn off the switch SD by switching the output from the DOUT terminal from high level to low level. A gate of the switch SD is electrically connected to the DOUT terminal of the protection circuit. The gate of switch SD functions as the control terminal of switch SD. Switch SD switches its conduction state based on the input to the gate. When the switch SD is turned off, the current path for discharging the battery BT is cut off, thereby limiting the discharge from the battery BT. Thus, switch SD functions as a discharge cutoff switch.
 保護回路90は、COUT端子からの出力をハイレベルからローレベルに切り替えることによって、スイッチSCをオフできる。スイッチSCのゲートは、保護回路のCOUT端子に電気的に接続されている。スイッチSCのゲートはスイッチSCの制御端子として機能する。スイッチSCは、ゲートへの入力に基づいて、自身の導通状態を切り替える。スイッチSCがオフになると、バッテリBTを充電するための電流経路が遮断されるため、バッテリBTへの充電が制限される。このように、スイッチSCは、充電遮断スイッチとして機能する。保護回路90は、動作中に、DOUT端子からの出力及びCOUT端子からの出力をハイレベルに維持し、バッテリBTの状態が後述する所定の条件を満たした場合に、これらの出力からスイッチSC及びSDへ供給する制御信号をローレベルに切り替える。 The protection circuit 90 can turn off the switch SC by switching the output from the COUT terminal from high level to low level. A gate of the switch SC is electrically connected to the COUT terminal of the protection circuit. The gate of switch SC functions as the control terminal of switch SC. Switch SC switches its conduction state based on the input to the gate. When the switch SC is turned off, the current path for charging the battery BT is cut off, thereby limiting the charging of the battery BT. Thus, the switch SC functions as a charge cutoff switch. The protection circuit 90 maintains the output from the DOUT terminal and the output from the COUT terminal at a high level during operation, and when the state of the battery BT satisfies a predetermined condition described later, the switches SC and The control signal supplied to SD is switched to low level.
 充電回路20は、図3を参照して上述したように、バッテリBTを充電する機能を有する。充電回路20のBAT端子は、バッテリBTの正極が接続される第1電源コネクタBC+に接続されている。充電回路20は、BAT端子からバッテリBTへ電力を供給することによってバッテリBTを充電する。充電回路20は、BAT端子の電位を監視し、この電位が所定の条件を満たした場合に、バッテリBTへの電力の供給を制限する。 The charging circuit 20 has the function of charging the battery BT as described above with reference to FIG. A BAT terminal of the charging circuit 20 is connected to a first power connector BC+ to which the positive electrode of the battery BT is connected. Charging circuit 20 charges battery BT by supplying power from the BAT terminal to battery BT. Charging circuit 20 monitors the potential of the BAT terminal, and limits power supply to battery BT when this potential satisfies a predetermined condition.
 充電回路20のSCL端子はMCU130のPB8端子に接続されており、充電回路20のSDA端子はMCU130のPB9端子に接続されている。充電回路20は、SCL端子及びSDA端子を通じて、MCU130とIC通信を行う。具体的に、充電回路20のSCL端子を通じてクロックが通信され、充電回路20のSDA端子を通じてデータが通信される。データの送信はMCU130と充電回路20との双方が可能であるから、充電回路20とMCU130との間で、双方向にデータを通信可能である。 The SCL terminal of the charging circuit 20 is connected to the PB8 terminal of the MCU130, and the SDA terminal of the charging circuit 20 is connected to the PB9 terminal of the MCU130. The charging circuit 20 performs I2C communication with the MCU 130 through the SCL terminal and the SDA terminal. Specifically, the clock is communicated through the SCL terminal of the charging circuit 20 and the data is communicated through the SDA terminal of the charging circuit 20 . Since data can be transmitted by both the MCU 130 and the charging circuit 20 , data can be communicated bidirectionally between the charging circuit 20 and the MCU 130 .
 充電回路20の/CE端子には、イネーブル信号が供給される。充電回路20は、/CE端子にローレベルが供給されている場合に充電動作を行い、/CE端子にハイレベルが供給されている場合に充電動作を行わない。 An enable signal is supplied to the /CE terminal of the charging circuit 20 . The charging circuit 20 performs a charging operation when a low level is supplied to the /CE terminal, and does not perform a charging operation when a high level is supplied to the /CE terminal.
 バッテリ監視回路100は、バッテリBTの様々な物理量に関する状態を監視する。一部の実施形態で、バッテリ監視回路100は、バッテリBTの温度と、バッテリBTの電圧と、バッテリBTを流れる電流とを監視する。これにかえて、バッテリ監視回路100は、これらの物理量のうちの一部のみを監視してもよいし、他の物理量を監視してもよい。 The battery monitoring circuit 100 monitors various physical quantities of the battery BT. In some embodiments, battery monitoring circuit 100 monitors the temperature of battery BT, the voltage of battery BT, and the current through battery BT. Alternatively, battery monitoring circuit 100 may monitor only some of these physical quantities, or may monitor other physical quantities.
 バッテリ監視回路100のTREG端子と、バッテリBTとの負極が接続されるグランド電位との間に、抵抗R3とバッテリサーミスタTBとが直列に接続されている。さらに、バッテリ監視回路100のTHM端子は、抵抗R3とバッテリサーミスタTBとの間のノードに接続されている。バッテリサーミスタTBは、バッテリBTの温度を測定するためのサーミスタ(温度センサ)であり、バッテリBTの近傍に配置されている。バッテリサーミスタTBの抵抗値は、所定の温度特性に従って変化する。バッテリBTの実温度とバッテリサーミスタTBの抵抗値との関係は、事前に計測され、バッテリ監視回路100に事前に記憶されている。また、抵抗R3の抵抗値もバッテリ監視回路100に事前に記憶されている。バッテリ監視回路100は、TREG端子とTHM端子との間の電圧又はTHM端子とVSS端子との間電圧を測定することによって、バッテリBTの温度を測定可能である。 A resistor R3 and a battery thermistor TB are connected in series between the TREG terminal of the battery monitoring circuit 100 and the ground potential to which the negative electrode of the battery BT is connected. Furthermore, the THM terminal of the battery monitoring circuit 100 is connected to the node between the resistor R3 and the battery thermistor TB. Battery thermistor TB is a thermistor (temperature sensor) for measuring the temperature of battery BT, and is arranged near battery BT. The resistance value of battery thermistor TB changes according to a predetermined temperature characteristic. The relationship between the actual temperature of battery BT and the resistance value of battery thermistor TB is measured in advance and stored in battery monitoring circuit 100 in advance. Also, the resistance value of the resistor R3 is stored in the battery monitoring circuit 100 in advance. The battery monitoring circuit 100 can measure the temperature of the battery BT by measuring the voltage between the TREG terminal and the THM terminal or the voltage between the THM terminal and the VSS terminal.
 バッテリ監視回路100のVRSM端子は抵抗R1の一端に接続されており、バッテリ監視回路100のVRSP端子は抵抗R1の他端に接続されている。抵抗R1の抵抗値はバッテリ監視回路100に事前に記憶されている。バッテリ監視回路100は、VRSM端子とVRSP端子との間の電圧を抵抗R1の抵抗値で除算することによって、抵抗R1を流れる電流を測定する。抵抗R2は、バッテリBTの負極が接続される第2電源コネクタBC-に直列に接続されている。そのため、抵抗R2を流れる電流は、バッテリBTを流れる電流に相関を有する。バッテリ監視回路100は、VRSM端子の電位とVRSP端子の電位との大小を比較することによって、抵抗R1を流れる電流の方向を判定できる。これによって、バッテリ監視回路100は、バッテリBTが充電中であるか放電中であるかを判定できる。 The VRSM terminal of the battery monitoring circuit 100 is connected to one end of the resistor R1, and the VRSP terminal of the battery monitoring circuit 100 is connected to the other end of the resistor R1. The resistance value of resistor R1 is stored in battery monitoring circuit 100 in advance. Battery monitoring circuit 100 measures the current through resistor R1 by dividing the voltage between the VRSM and VRSP terminals by the resistance of resistor R1. The resistor R2 is connected in series with the second power connector BC- to which the negative electrode of the battery BT is connected. Therefore, the current flowing through the resistor R2 is correlated with the current flowing through the battery BT. The battery monitoring circuit 100 can determine the direction of the current flowing through the resistor R1 by comparing the potential of the VRSM terminal and the potential of the VRSP terminal. Thereby, the battery monitoring circuit 100 can determine whether the battery BT is being charged or discharged.
 バッテリ監視回路100のVBAT端子は、バッテリBTの正極が接続される第1電源コネクタBC+に接続されており、バッテリ監視回路100のVSS端子は、スイッチSD及びSCならびに抵抗R2を介して、第2電源コネクタBCーに接続されている。バッテリ監視回路100のVSS端子は、グランド電位にも接続されている。そのため、バッテリ監視回路100のVBAT端子とVSS端子との間の電圧は、バッテリBTの電圧に略等しい。そこで、バッテリ監視回路100は、VBAT端子の電圧を測定することによって、バッテリBTの電圧を測定可能である。 The VBAT terminal of the battery monitoring circuit 100 is connected to the first power connector BC+ to which the positive terminal of the battery BT is connected, and the VSS terminal of the battery monitoring circuit 100 is connected to the second power supply via the switches SD and SC and the resistor R2. It is connected to the power connector BC-. The VSS terminal of the battery monitoring circuit 100 is also connected to the ground potential. Therefore, the voltage between the VBAT terminal and the VSS terminal of battery monitoring circuit 100 is substantially equal to the voltage of battery BT. Therefore, the battery monitoring circuit 100 can measure the voltage of the battery BT by measuring the voltage of the VBAT terminal.
 バッテリ監視回路100のSCL端子はMCU130のPC0端子に接続されており、バッテリ監視回路100のSDA端子はMCU130のPC1端子に接続されている。バッテリ監視回路100は、SCL端子及びSDA端子を通じて、MCU130とIC通信を行う。具体的に、バッテリ監視回路100のSCL端子を通じてクロックが通信され、バッテリ監視回路100のSDA端子を通じてデータが通信される。データの送信はMCU130とバッテリ監視回路100との双方が可能であるから、バッテリ監視回路100とMCU130との間で、双方向にデータを通信可能である。 The SCL terminal of the battery monitoring circuit 100 is connected to the PC0 terminal of the MCU 130 , and the SDA terminal of the battery monitoring circuit 100 is connected to the PC1 terminal of the MCU 130 . The battery monitoring circuit 100 performs I2C communication with the MCU 130 through the SCL terminal and the SDA terminal. Specifically, the clock is communicated through the SCL terminal of the battery monitoring circuit 100 and the data is communicated through the SDA terminal of the battery monitoring circuit 100 . Since both the MCU 130 and the battery monitoring circuit 100 can transmit data, data can be communicated bidirectionally between the battery monitoring circuit 100 and the MCU 130 .
 バッテリ監視回路100のVDD端子及びCE端子はそれぞれVCC33ラインに接続されている。バッテリ監視回路100のVDD端子には、バッテリ監視回路100の動作電力が供給される。バッテリ監視回路100のCE端子には、イネーブル信号が供給される。バッテリ監視回路100は、CE端子にハイレベルが供給されている場合に動作を行い、CE端子にローレベルが供給されている場合に動作を行わない。そのため、バッテリ監視回路100は、VCC33ラインに電圧VCC33が供給されている間、動作を行う。 The VDD and CE terminals of the battery monitoring circuit 100 are each connected to the VCC33 line. The operating power of the battery monitoring circuit 100 is supplied to the VDD terminal of the battery monitoring circuit 100 . An enable signal is supplied to the CE terminal of the battery monitoring circuit 100 . The battery monitoring circuit 100 operates when a high level is supplied to the CE terminal, and does not operate when a low level is supplied to the CE terminal. Therefore, the battery monitoring circuit 100 operates while the voltage VCC33 is supplied to the VCC33 line.
 バッテリ監視回路100のIO5端子は、MCU130のPB12端子に接続されている。バッテリ監視回路100は、IO5端子を通じて、MCU130に、nGAUGE_INT2信号を出力する。この信号は、バッテリ監視回路100からMCU130へ一方向に通信される。バッテリ監視回路100は、バッテリBTに関する測定結果が正常である間に、nGAUGE_INT2信号をハイレベルに維持する。バッテリ監視回路100は、バッテリBTに異常が発生すると、nGAUGE_INT2信号をローレベルに切り替える。そのため、ローレベルのnGAUGE_INT2信号は、エラーを通知するエラー信号とみなされてもよい。バッテリ監視回路100がMCU130へエラー信号を送信するための具体的な条件については後述する。 The IO5 terminal of the battery monitoring circuit 100 is connected to the PB12 terminal of the MCU 130 . The battery monitoring circuit 100 outputs the nGAUGE_INT2 signal to the MCU 130 through the IO5 terminal. This signal is communicated uni-directionally from the battery monitoring circuit 100 to the MCU 130 . Battery monitoring circuit 100 maintains the nGAUGE_INT2 signal at a high level while the measurement result for battery BT is normal. The battery monitoring circuit 100 switches the nGAUGE_INT2 signal to low level when an abnormality occurs in the battery BT. Therefore, the low-level nGAUGE_INT2 signal may be regarded as an error signal that notifies an error. Specific conditions for battery monitoring circuit 100 to transmit an error signal to MCU 130 will be described later.
 バッテリ監視回路100のALERT端子は、逆方向のダイオードD1を介してFF1の/CLR端子及びD端子に接続されている。換言すれば、ダイオードD1のカソードはバッテリ監視回路100のALERT端子へ接続され、ダイオードD1のアノードはFF1の/CLR端子及びD端子へ接続されている。バッテリ監視回路100は、ALERT端子を通じて、FF1に、nGAUGE_INT1信号を出力する。この信号は、バッテリ監視回路100からFF1へ一方向に通信される。バッテリ監視回路100は、バッテリBTに関する測定結果が正常である間に、nGAUGE_INT1信号をハイレベルに維持する。バッテリ監視回路100は、バッテリBTに異常が発生すると、nGAUGE_INT1信号をローレベルに切り替える。そのため、ローレベルのnGAUGE_INT1信号は、エラーを通知するエラー信号とみなされてもよい。バッテリ監視回路100がFF1へエラー信号を送信するための具体的な条件については後述する。 The ALERT terminal of the battery monitoring circuit 100 is connected to the /CLR terminal and D terminal of FF1 via a reverse diode D1. In other words, the cathode of diode D1 is connected to the ALERT terminal of battery monitoring circuit 100, and the anode of diode D1 is connected to the /CLR and D terminals of FF1. The battery monitoring circuit 100 outputs the nGAUGE_INT1 signal to FF1 through the ALERT terminal. This signal is communicated uni-directionally from battery monitoring circuit 100 to FF1. The battery monitoring circuit 100 maintains the nGAUGE_INT1 signal at high level while the measurement result regarding the battery BT is normal. The battery monitoring circuit 100 switches the nGAUGE_INT1 signal to low level when an abnormality occurs in the battery BT. Therefore, the low-level nGAUGE_INT1 signal may be regarded as an error signal that notifies an error. A specific condition for the battery monitoring circuit 100 to transmit the error signal to FF1 will be described later.
 nGAUGE_INT1信号がハイレベルからローレベルに切り替わると、FF1の/CLR端子及びD端子の入力もローレベルとなる。これによって、上述のように、FF1のQ端子からの出力もローレベルとなる。 When the nGAUGE_INT1 signal switches from high level to low level, the inputs to the /CLR terminal and D terminal of FF1 also become low level. As a result, the output from the Q terminal of FF1 also becomes low level, as described above.
 FF1のQ端子は、逆方向のダイオードD2を介して、スイッチSSのゲートに接続されている。換言すれば、ダイオードD2のカソードはFF1のQ端子へ接続され、ダイオードD1のアノードはスイッチSSのゲートへ接続されている。FF1のQ端子からの出力がローレベルとなると、スイッチSSがオフする。スイッチSSがオフになると、ヒータHTのマイナス端子HC-がグランド電位から切り離されるため、ヒータHTへの通電が遮断される。 The Q terminal of FF1 is connected to the gate of switch SS via reverse diode D2. In other words, the cathode of diode D2 is connected to the Q terminal of FF1 and the anode of diode D1 is connected to the gate of switch SS. When the output from the Q terminal of FF1 becomes low level, the switch SS is turned off. When the switch SS is turned off, the minus terminal HC- of the heater HT is cut off from the ground potential, so that the supply of electricity to the heater HT is interrupted.
 FF1のQ端子は、スイッチSLのベースにも接続されている。FF1のQ端子からの出力がローレベルとなると、スイッチSLがオンする。スイッチSLがオンになると、抵抗R6が抵抗R7との電圧VCC33の分圧に寄与しなくなり、充電回路20の/CE端子の入力が電圧VCC33と同じハイレベルになるため充電が禁止される。このように、FF1の出力をローレベルとすることにより、MCU130を介さずにバッテリBTの充放電ならびにヒータHTへの通電を禁止し、回路を保護することができる。 The Q terminal of FF1 is also connected to the base of switch SL. When the output from the Q terminal of FF1 becomes low level, the switch SL is turned on. When the switch SL is turned on, the resistor R6 no longer contributes to the voltage division of the voltage VCC33 with the resistor R7, and charging is prohibited because the input to the /CE terminal of the charging circuit 20 becomes the same high level as the voltage VCC33 . . By setting the output of FF1 to a low level in this manner, the charging and discharging of the battery BT and the energization of the heater HT can be prohibited without going through the MCU 130, thereby protecting the circuit.
 FF1のQ端子は、MCU130のPA10端子にも接続されている。MCU130は、PA10端子の入力がハイレベルからローレベルに切り替わったことに応じて、FF1がエラーを通知したことを検知できる。これに応じて、MCU130は、発光部NUやバイブレータMによりユーザにリセット動作を行うように促してもよい。 The Q terminal of FF1 is also connected to the PA10 terminal of MCU130. The MCU 130 can detect that FF1 has notified an error in response to the input of the PA10 terminal switching from high level to low level. In response to this, the MCU 130 may prompt the user to perform a reset operation using the light emitting unit NU or the vibrator M.
 MCU130は、上述のように、IC通信によってバッテリ監視回路100と通信可能である。MCU130は、バッテリ監視回路100からバッテリBTに関する情報を取得し、この情報に基づいて保護動作を実行する。 MCU 130 can communicate with battery monitoring circuit 100 via I2C communication, as described above. The MCU 130 acquires information on the battery BT from the battery monitoring circuit 100, and performs protection operations based on this information.
 MCU130のPC2端子は、抵抗R4を介してスイッチ回路80に接続されている。スイッチ回路80は、MCU130のPB4端子からの入力がハイレベルとなると導通状態となり、MCU130のPC2端子とバッテリBTの正極との間が導通状態となる。これによって、MCU130のPC2端子に、抵抗R4及びR5によって分圧された電源電圧VBATが供給される。以降の説明では、抵抗R4及びR5によって分圧された電源電圧VBATを、電圧ADCB+とも記載する。したがって、MCU130は、PB4端子の出力をハイレベルに切り替えることによって、バッテリ監視回路100を介さずにバッテリBTの電圧を取得できる。 The PC2 terminal of MCU 130 is connected to switch circuit 80 via resistor R4. The switch circuit 80 becomes conductive when the input from the PB4 terminal of the MCU 130 becomes high level, and the PC2 terminal of the MCU 130 and the positive electrode of the battery BT become conductive. As a result, the PC2 terminal of the MCU 130 is supplied with the power supply voltage V BAT divided by the resistors R4 and R5. In the following description, the power supply voltage V BAT divided by resistors R4 and R5 is also referred to as voltage ADCB+. Therefore, the MCU 130 can acquire the voltage of the battery BT without going through the battery monitoring circuit 100 by switching the output of the PB4 terminal to high level.
 図5を参照して、保護制御部200が保護動作を開始するための条件について説明する。以下に説明するように、保護制御部200のそれぞれの構成要素、すなわちバッテリ監視回路100、保護回路90、及び充電回路20は、それぞれ個別の条件に従って個別の保護動作を実行する。 Conditions for the protection control unit 200 to start the protection operation will be described with reference to FIG. As described below, each component of protection control section 200, ie, battery monitoring circuit 100, protection circuit 90, and charging circuit 20, performs individual protection operations according to individual conditions.
 図5のカラム501は、保護制御部200によって監視されるバッテリBTの物理量を示す。保護制御部200は、バッテリBTの電流、温度、及び電圧を監視する。カラム502は、保護制御部200による監視内容を示す。保護制御部200は、バッテリBTの電流について、過電流を監視し、バッテリBTの温度について、過加熱及び低温を監視し、バッテリBTの電圧について、過充電、過放電及び深放電を監視する。深放電とは過放電よりもバッテリBTの放電が進行した状態を指すものとする。過放電とは、バッテリBTの出力電圧が放電終止電圧を下回った状態を指すものとする。 A column 501 in FIG. 5 indicates the physical quantity of the battery BT monitored by the protection control unit 200 . Protection control unit 200 monitors the current, temperature, and voltage of battery BT. A column 502 indicates the contents of monitoring by the protection control unit 200 . The protection control unit 200 monitors the current of the battery BT for overcurrent, the temperature of the battery BT for overheating and low temperature, and the voltage of the battery BT for overcharge, overdischarge and deep discharge. Deep discharge refers to a state in which battery BT is discharged more than overdischarge. Overdischarge refers to a state in which the output voltage of battery BT is lower than the final discharge voltage.
 図5のカラム503は、カラム501の物理量を監視するタイミングを示す。「充電」と記載されている行では、充電回路20によってバッテリBTの充電が行われている間のみ、バッテリBTの物理量が条件を満たすかどうかが判定される。「放電」と記載されている行では、充電回路20によってバッテリBTの充電が行われていない間のみ、バッテリBTの物理量が条件を満たすかどうかが判定される。特に、バッテリBTからヒータHTに電力が供給されている間(例えば、ヒータ電圧VBOOSTがヒータHTに印加されている間)に、条件を満たすかどうかが判定されてもよい。「常時」と記載されている行では、充電回路20によってバッテリBTの充電が行われているか否かによらず、バッテリBTの物理量が条件を満たすかどうかが判定される。 Column 503 in FIG. 5 indicates the timing of monitoring the physical quantity in column 501 . In the row described as “charging”, it is determined whether the physical quantity of the battery BT satisfies the condition only while the battery BT is being charged by the charging circuit 20 . In the row described as "discharging", it is determined whether the physical quantity of the battery BT satisfies the condition only while the charging circuit 20 is not charging the battery BT. In particular, it may be determined whether the condition is satisfied while power is being supplied from the battery BT to the heater HT (for example, while the heater voltage V BOOST is being applied to the heater HT). In the row described as "always", it is determined whether the physical quantity of the battery BT satisfies the condition regardless of whether the battery BT is being charged by the charging circuit 20 or not.
 カラム504は、MCU130がバッテリBTの物理量を周期的に監視し、この監視結果に基づいて保護動作を実行するための条件を表す。後述するように、MCU130は、IC通信を介してバッテリ監視回路100からバッテリBTの物理量を周期的に取得し、この取得したバッテリBTの物理量に基づいて保護動作を実行する。カラム505は、バッテリ監視回路100がバッテリBTの物理量を監視し、この監視結果に基づいてFF1に保護動作の実行を要求するための条件を表す。カラム506は、バッテリ監視回路100がバッテリBTの物理量を監視し、この監視結果に基づいてMCU130に保護動作の実行を要求するための条件を表す。後述するように、バッテリ監視回路100によるMCU130への保護動作の実行の要求は、割り込み信号によって行われる。割り込み信号を受信したMCU130は、バッテリBTの物理量の監視を開始する。カラム507は、充電回路20がバッテリBTの物理量を監視し、この監視結果に基づいて保護動作を実行するための条件を表す。カラム508は、保護回路90がバッテリBTの物理量を監視し、この監視結果に基づいて保護動作を実行するための条件を表す。 A column 504 represents conditions for MCU 130 to periodically monitor the physical quantity of battery BT and to perform protection operations based on the monitoring results. As will be described later, the MCU 130 periodically acquires the physical quantity of the battery BT from the battery monitoring circuit 100 via I 2 C communication, and executes protection operation based on the acquired physical quantity of the battery BT. A column 505 indicates conditions for the battery monitoring circuit 100 to monitor the physical quantity of the battery BT and to request FF1 to perform the protection operation based on the monitoring result. Column 506 represents conditions for battery monitoring circuit 100 to monitor the physical quantity of battery BT and to request MCU 130 to perform a protection operation based on this monitoring result. As will be described later, the battery monitoring circuit 100 requests the MCU 130 to execute a protection operation by means of an interrupt signal. Upon receiving the interrupt signal, MCU 130 starts monitoring the physical quantity of battery BT. Column 507 represents conditions for charging circuit 20 to monitor the physical quantity of battery BT and to perform protection operation based on the monitoring result. A column 508 represents conditions for the protection circuit 90 to monitor the physical quantity of the battery BT and perform protection operation based on the monitoring result.
 カラム503のタイミングと、カラム504~508のそれぞれの条件との組み合わせによって、保護動作を開始するための条件が規定される。例えば、カラム505の一番上の項目は、放電時にバッテリBTの電流が10[A]以上の場合に保護動作が開始されるという条件を規定する。図5には、保護制御部200が保護動作を開始するための複数の条件が記載されている。これらの条件で構成される集合を、以下では監視条件集合と表し、この集合の各要素を監視条件と表す。保護制御部200は、監視条件集合に含まれる何れかの監視条件が満たされた場合に、保護動作を実行する。実行される保護動作の内容は、どの監視条件が満たされるかによって異なる。図5に記載された各監視条件における数値が一例であり、他の数値が使用されてもよい。また、保護制御部200は、監視条件として、図5に示されるものの条件の一部を使用しなくてもよいし、図5に示されない条件を使用してもよい。 A combination of the timing in column 503 and the conditions in columns 504 to 508 defines the condition for starting the protection operation. For example, the top item in column 505 defines a condition that protection operation is started when the current of battery BT is 10 [A] or more during discharge. FIG. 5 describes a plurality of conditions for the protection control section 200 to start the protection operation. A set composed of these conditions is hereinafter referred to as a monitoring condition set, and each element of this set is referred to as a monitoring condition. The protection control unit 200 executes a protection operation when any monitoring condition included in the monitoring condition set is satisfied. The content of the protective action to be performed depends on which monitoring condition is satisfied. Numerical values for each monitoring condition described in FIG. 5 are an example, and other numerical values may be used. Moreover, the protection control unit 200 may not use some of the conditions shown in FIG. 5 as the monitoring conditions, or may use conditions not shown in FIG.
 図5における太線の枠は、保護制御部200が保護動作を実行することによる電源ユニット1の状態の遷移先を示す。実線の枠は、電源ユニット1を故障状態に遷移するための条件を示す。破線の枠は、電源ユニット1をリセット待機状態に遷移するための条件を示す。一点鎖線の枠は、電源ユニット1を接続待機状態に遷移するための条件を示す。  Bold-lined frames in FIG. 5 indicate transition destinations of the state of the power supply unit 1 when the protection control unit 200 executes the protection operation. A solid line frame indicates a condition for transitioning the power supply unit 1 to the failure state. A dashed frame indicates a condition for transitioning the power supply unit 1 to the reset standby state. The dashed-dotted frame indicates the conditions for transitioning the power supply unit 1 to the connection standby state.
 故障状態とは、電源ユニット1の動作によっても、電源ユニット1を搭載するエアロゾル生成装置のユーザ(以下、単にユーザと表す)による動作によっても、電源ユニット1を正常状態に遷移できない状態のことである。故障状態とは、バッテリBTの充放電を永久に禁止する状態のことでもある。正常状態とは、ユーザの動作によって、電源ユニット1によるヒータHTの加熱が可能な状態を指してもよい。故障状態は、例えば電源ユニット1を工場で修理することによって解消されうる。故障状態は、永久故障状態と呼ばれてもよい。リセット待機状態とは、ユーザによるリセット動作によって正常状態に遷移可能な状態のことである。リセット動作の具体例については後述する。接続待機状態とは、ユーザがコネクタUSBCにUSBプラグを介して外部機器を接続する動作によって正常状態に遷移可能な状態のことである。リセット待機状態及び接続待機状態は、ユーザによるエラー解消動作を必要とする状態である。そのため、リセット待機状態及び接続待機状態は、ユーザ動作待機状態と総称しうる。ユーザ動作待機状態とは、電源ユニット1の動作によっては正常状態に遷移できないが、ユーザによる動作によって正常状態に遷移可能な状態のことである。すなわち、ユーザ動作滝状態において制限されている電源の放電又は充電の制限を解除するためには、ユーザによる動作を必要とする。 The failure state is a state in which the power supply unit 1 cannot be changed to the normal state by the operation of the power supply unit 1 or by the operation of the user of the aerosol generation device equipped with the power supply unit 1 (hereinafter simply referred to as the user). be. A fault condition also means a condition that permanently inhibits charging and discharging of the battery BT. The normal state may refer to a state in which the heater HT can be heated by the power supply unit 1 by a user's operation. A fault condition can be resolved, for example, by repairing the power supply unit 1 at the factory. A failure condition may be referred to as a permanent failure condition. The reset waiting state is a state in which a reset operation by the user can transition to a normal state. A specific example of the reset operation will be described later. The connection standby state is a state in which a transition to a normal state can be made by a user connecting an external device to the connector USBC via a USB plug. The reset waiting state and the connection waiting state are states that require an error resolution action by the user. Therefore, the reset waiting state and the connection waiting state can be collectively referred to as the user action waiting state. The user operation standby state is a state in which transition to a normal state cannot be performed by an operation of the power supply unit 1, but transition to a normal state can be performed by an operation by the user. In other words, a user action is required to release the limited discharge or charge of the power source in the user action waterfall state.
 保護制御部200が電源ユニット1をリセット待機状態に遷移するための動作と、その解消方法について説明する。保護制御部200のうち、MCU130とFF1とがそれぞれ、電源ユニット1をリセット待機状態に遷移できる。また、保護制御部200の他の回路は、MCU130又はFF1に、リセット待機状態への遷移を要求してもよい。 The operation for the protection control unit 200 to transition the power supply unit 1 to the reset standby state and the method for resolving the state will be described. Among the protection control units 200, the MCU 130 and the FF1 can each transition the power supply unit 1 to the reset standby state. Other circuits in the protection control unit 200 may request the MCU 130 or FF1 to transition to the reset waiting state.
 MCU130が電源ユニット1をリセット待機状態に遷移するための動作について説明する。MCU130は、MCU130のPC12端子の出力をハイレベルからローレベルに切り替える。これによって、スイッチSSがオフし、ヒータHTのマイナス端子HC-がグランド電位から切り離される。MCU130のPC12端子は、変圧回路120のEN端子にも接続されている。そのため、MCU130のPC12端子の出力がハイレベルからローレベルに切り替わると、変圧回路120の動作を停止し、ヒータHTへのヒータ電圧VBOOSTの印加も禁止される。以上の動作によって、バッテリBTからヒータHTへの電力供給が制限される。さらに、MCU130は、MCU130のPB3端子の出力をローレベルからハイレベルに切り替える。これにより、充電回路20の/CE端子がハイレベルとなるため、充電回路20は充電を禁止する。 An operation for the MCU 130 to transition the power supply unit 1 to the reset standby state will be described. The MCU 130 switches the output of the PC12 terminal of the MCU 130 from high level to low level. This turns off the switch SS and disconnects the negative terminal HC- of the heater HT from the ground potential. The PC12 terminal of MCU 130 is also connected to the EN terminal of transformer circuit 120 . Therefore, when the output of the PC12 terminal of the MCU 130 switches from high level to low level, the operation of the transformer circuit 120 is stopped and the application of the heater voltage V BOOST to the heater HT is prohibited. By the operation described above, power supply from the battery BT to the heater HT is restricted. Furthermore, the MCU 130 switches the output of the PB3 terminal of the MCU 130 from low level to high level. As a result, the /CE terminal of the charging circuit 20 becomes high level, so that the charging circuit 20 prohibits charging.
 続いて、FF1が電源ユニット1をリセット待機状態に遷移するための動作について説明する。FF1は、FF1のQ端子の出力をハイレベルからローレベルに切り替える。これによって、スイッチSSがオフし、ヒータHTのマイナス端子HC-がグランド電位から切り離される。FF1のQ端子は、逆方向のダイオードD2を介して、変圧回路120のEN端子にも接続されている。そのため、FF1のD端子の出力がハイレベルからローレベルに切り替わると、変圧回路120の動作を停止し、ヒータHTへのヒータ電圧VBOOSTの印加も禁止される。以上の動作によって、バッテリBTからヒータHTへの電力供給が制限されるさらに、FF1のD端子の出力がハイレベルからローレベルに切り替わると、上述したように、充電回路20の/CE端子がハイレベルとなるため、充電回路20は充電を禁止する。
 充電回路20が電源ユニット1をリセット待機状態に遷移するための動作について説明する。充電回路20は、バッテリBTの電圧VBATが監視条件を満たした場合に、IC通信を通じて、MCU130に、電源ユニット1をリセット待機状態に遷移するように要求する。この要求に応じて、MCU130は、上述の動作を実行することによって、電源ユニット1をリセット待機状態に遷移する。
Next, the operation of FF 1 for transitioning the power supply unit 1 to the reset waiting state will be described. FF1 switches the output of the Q terminal of FF1 from high level to low level. This turns off the switch SS and disconnects the negative terminal HC- of the heater HT from the ground potential. The Q terminal of FF1 is also connected to the EN terminal of the transformer circuit 120 via a reverse diode D2. Therefore, when the output of the D terminal of FF1 switches from high level to low level, the operation of the transformer circuit 120 is stopped, and the application of the heater voltage V BOOST to the heater HT is also prohibited. By the operation described above, power supply from the battery BT to the heater HT is restricted . Further, when the output of the D terminal of FF1 is switched from high level to low level, the /CE terminal of charging circuit 20 becomes high level as described above, so that charging circuit 20 prohibits charging.
An operation for the charging circuit 20 to transition the power supply unit 1 to the reset standby state will be described. When the voltage V BAT of the battery BT satisfies the monitoring condition, the charging circuit 20 requests the MCU 130 to shift the power supply unit 1 to the reset standby state through I 2 C communication. In response to this request, the MCU 130 transitions the power supply unit 1 to the reset standby state by executing the above operation.
 続いて、リセット待機状態を解消するための方法について説明する。本実施形態の電源ユニット1は、(1)フロントパネル11が外されていること、(2)スイッチSWが、加熱開始指示より長い一定時間押下されること、の両方が検出された場合に、ユーザによるリセット動作が行われたものと認識する。 Next, the method for canceling the reset standby state will be explained. When both of (1) the front panel 11 is removed and (2) the switch SW is pressed for a certain period of time longer than the heating start instruction, the power supply unit 1 of the present embodiment detects: Recognize that the reset operation has been performed by the user.
 具体的には、これらの条件はリブートコントローラ50が検出する。リブートコントローラ50のSW1端子はスイッチSWに接続されており、SW2端子はフロントパネル11の着脱を示す信号を出力するシュミットトリガ回路150に接続されている。フロントパネル11が外された状態でスイッチSWが押下されると、SW1端子及びSW2端子の入力が両方ともローレベルになる。この状態が一定時間継続することにより、リブートコントローラ50は、リセット動作を開始する。 Specifically, the reboot controller 50 detects these conditions. The SW1 terminal of the reboot controller 50 is connected to the switch SW, and the SW2 terminal is connected to the Schmitt trigger circuit 150 that outputs a signal indicating attachment/detachment of the front panel 11 . When the switch SW is pressed with the front panel 11 removed, both the inputs of the SW1 terminal and the SW2 terminal become low level. When this state continues for a certain period of time, the reboot controller 50 starts a reset operation.
 リブートコントローラ50は、SW1端子及びSW2端子の両方がローレベルになった状態が、ユーザ設定可能なリブート遅延時間(例えば1~20秒)が経過するまで継続するか否かを監視する。リブート遅延時間の間に、MCU130は、発光部NUとバイブレータMを用いてリセットをユーザに報知する。 The reboot controller 50 monitors whether the state in which both the SW1 terminal and the SW2 terminal are at low level continues until a user-settable reboot delay time (for example, 1 to 20 seconds) elapses. During the reboot delay time, the MCU 130 uses the light emitting unit NU and the vibrator M to notify the user of the reset.
 リブートコントローラ50は、SW1端子及びSW2端子の両方がローレベルになった状態がリブート遅延時間だけ継続すると、RSTB端子の出力をローレベルにする。これにより、ロードスイッチ40のON端子がローレベルになり、ロードスイッチ40のVOUT端子からの電圧VCC33と、ロードスイッチ60のVOUT端子からの電圧VCC33_SLPの供給が停止する。これにより、MCU130への電力供給が断たれ、MCU130は動作を停止する。 The reboot controller 50 changes the output of the RSTB terminal to low level when the state in which both the SW1 terminal and the SW2 terminal are at low level continues for the reboot delay time. As a result, the ON terminal of the load switch 40 becomes low level, and the supply of the voltage VCC33 from the VOUT terminal of the load switch 40 and the voltage VCC33_SLP from the VOUT terminal of the load switch 60 are stopped. As a result, power supply to the MCU 130 is cut off, and the MCU 130 stops operating.
 リブートコントローラ50は、RSTB端子をローレベルにしてから所定時間(例えば0.4秒)経過すると、自動的にRSTB端子をローレベルにしなくなる。これにより、電圧VCC33_0が、VCC33_0ラインを介してロードスイッチ40のON端子へ入力される。ロードスイッチ40からの電圧VCC33の供給が再開され、MCU130が起動する。つまり、MCU130は、VDD端子へ電力が供給されない状態から供給される状態になると起動する。電源ユニット1は、MCU130が起動するとスリープ状態もしくは充電状態となる。この時点では電圧VCC33_SLPは供給されない。このようにMCU130が再起動すると、MCU130に生じていたフリーズなどの不具合が解消することがある。 The reboot controller 50 does not automatically set the RSTB terminal to low level after a predetermined time (for example, 0.4 seconds) has elapsed since the RSTB terminal was set to low level. As a result, the voltage VCC33_0 is input to the ON terminal of the load switch 40 via the VCC33_0 line. Supply of the voltage VCC33 from the load switch 40 is resumed, and the MCU 130 is activated. In other words, the MCU 130 is activated when the state in which power is not supplied to the VDD terminal changes to the state in which power is supplied. The power supply unit 1 enters a sleep state or a charging state when the MCU 130 is activated. Voltage VCC33_SLP is not provided at this time. When the MCU 130 is restarted in this way, problems such as freezing occurring in the MCU 130 may be resolved.
 保護制御部200が電源ユニット1を接続待機状態に遷移するための動作と、その解消方法について説明する。保護制御部200のうち、保護回路90が、電源ユニット1を接続待機状態に遷移できる。また、保護制御部200の他の回路は、保護回路90に、接続待機状態への遷移を要求してもよい。 An operation for the protection control unit 200 to transition the power supply unit 1 to the connection standby state and a method for canceling the state will be described. Of the protection control unit 200, the protection circuit 90 can transition the power supply unit 1 to the connection standby state. Further, another circuit of the protection control unit 200 may request the protection circuit 90 to transition to the connection standby state.
 保護回路90が電源ユニット1を接続待機状態に遷移するための動作について説明する。保護回路90は、電源ユニット1が正常状態である間、DOUT端子の出力及びCOUT端子の出力をハイレベルに維持する。保護回路90は、電源ユニット1を接続待機状態に遷移するために、DOUT端子の出力及びCOUT端子の出力をローレベルに切り替える。これによって、スイッチSD及びSCがオフするため、コネクタUSBCにUSBプラグを介して外部機器が接続されていない状態では、電源ユニット1のうち、保護回路90以外のすべての回路への電力供給が停止される。 The operation for the protection circuit 90 to transition the power supply unit 1 to the connection standby state will be described. The protection circuit 90 maintains the output of the DOUT terminal and the output of the COUT terminal at high level while the power supply unit 1 is in a normal state. The protection circuit 90 switches the output of the DOUT terminal and the output of the COUT terminal to low level in order to transition the power supply unit 1 to the connection standby state. As a result, the switches SD and SC are turned off, so that when an external device is not connected to the connector USBC via a USB plug, power supply to all circuits other than the protection circuit 90 in the power supply unit 1 is stopped. be done.
 続いて、接続待機状態を解消するための方法について説明する。コネクタUSBCにUSBプラグを介して外部機器が接続されると、過電圧保護回路110によって、電圧VUSBが生成される。これによって、ロードスイッチ10のON端子の電位がハイレベルとなり、ロードスイッチ10のVOUT端子からVCC5ラインに電圧VCC5が出力される。この時点で、充電回路20の/CE端子の入力はハイレベルであるので、充電回路20は、パワーパス機能によって、電圧VCCを生成する。その後、図3について上述したのと同様にして、電圧VCC33_0及び電圧VCC33が生成され、MCU130が起動する。MCU130は、起動後、後述する動作によって、バッテリBTが深充電しているかどうかを判定する。バッテリBTが深充電している場合に、電源ユニット1を故障状態に遷移する。それ以外の場合に、MCU130は、MCU130のPB3の出力をローレベルに維持する。これによって、充電回路20の/CE端子の入力がローレベルに維持され、充電回路20のBAT端子から保護回路90のVBAT端子に電力が供給される。バッテリBTの残量が回復すると、保護回路90はDOUT端子及びCOUT端子からの出力をハイレベルに切り替える。これによって、電源ユニット1は正常状態に遷移する。 Next, a method for canceling the connection standby state will be described. When an external device is connected to connector USBC via a USB plug, voltage V USB is generated by overvoltage protection circuit 110 . As a result, the potential of the ON terminal of the load switch 10 becomes high level, and the voltage VCC5 is output from the VOUT terminal of the load switch 10 to the VCC5 line. At this time, the input of the /CE terminal of charging circuit 20 is at a high level, so charging circuit 20 generates voltage VCC by the power pass function. Thereafter, voltages V CC33_0 and V CC33 are generated and MCU 130 is activated in the same manner as described above with respect to FIG. After being activated, MCU 130 determines whether battery BT is fully charged by an operation described later. When the battery BT is deeply charged, the power supply unit 1 transitions to the failure state. Otherwise, MCU 130 maintains the output of PB3 of MCU 130 at a low level. As a result, the input to the /CE terminal of charging circuit 20 is maintained at a low level, and power is supplied from the BAT terminal of charging circuit 20 to the VBAT terminal of protection circuit 90 . When the remaining amount of the battery BT recovers, the protection circuit 90 switches the output from the DOUT terminal and the COUT terminal to high level. As a result, the power supply unit 1 transitions to the normal state.
 上述の例では、保護回路90は、電源ユニット1を接続待機状態へ遷移するために、スイッチSCとスイッチSDとの両方をオフにした。これにかえて、保護回路90は、スイッチSCとスイッチSDとの一方のみをオフにしてもよい。例えば、保護回路90は、バッテリBTの過充電を検出した場合に、充電遮断スイッチとして機能するスイッチSCをオフにし、放電遮断スイッチとして機能するスイッチSDをオンのままにしてもよい。一方、保護回路90は、バッテリBTの過放電を検出した場合に、放電遮断スイッチとして機能するスイッチSDをオフにし、充電遮断スイッチとして機能するスイッチSCをオンのままにしてもよい。 In the above example, the protection circuit 90 turned off both the switch SC and the switch SD in order to transition the power supply unit 1 to the connection standby state. Alternatively, the protection circuit 90 may turn off only one of the switches SC and SD. For example, when overcharging of the battery BT is detected, the protection circuit 90 may turn off the switch SC functioning as a charge cutoff switch and leave the switch SD functioning as a discharge cutoff switch turned on. On the other hand, when overdischarge of the battery BT is detected, the protection circuit 90 may turn off the switch SD functioning as a discharge cutoff switch and leave the switch SC functioning as a charge cutoff switch turned on.
 続いて、保護制御部200が電源ユニット1を故障状態に遷移するための動作について説明する。MCU130は、充電回路20とのIC通信を通じて、充電回路20のパワーパス機能(VBUS端子及びBAT端子に入力される電力をSYS端子から出力する機能)を停止させる。これにより、充電回路20から電圧VCCが供給されなくなり、電圧VCCから派生する電圧VCC33_0、VCC33、VCC33_SLPの供給が停止する。したがって、MCU130を始めとしてほとんどの回路に電力が供給されず、電源ユニット1は実質的に動作を停止する。リブートコントローラ50への電力も供給されないため、リセット動作も受け付けなくなる。充電回路20のパワーパス機能を停止させることでバッテリBTからの放電及びバッテリBTの充電も実行できなくなる。また、コネクタUSBCにUSBプラグを介して外部機器を接続したとしても、電圧VCCが生成されないため、MCU130は起動しない。電源ユニット1の安全性をさらに向上させるため、充電回路20のパワーパス機能を停止させる前に、MCU130は、上述した方法によってバッテリBTからの放電及びバッテリBTの充電を禁止してもよい。 Next, an operation for the protection control unit 200 to transition the power supply unit 1 to the failure state will be described. The MCU 130 stops the power pass function of the charging circuit 20 (the function of outputting power input to the VBUS terminal and the BAT terminal from the SYS terminal) through I 2 C communication with the charging circuit 20 . As a result, the voltage VCC is no longer supplied from the charging circuit 20, and the supply of the voltages VCC33_0 , VCC33 , and VCC33_SLP derived from the voltage VCC is stopped. Therefore, power is not supplied to most of the circuits including the MCU 130, and the power supply unit 1 substantially stops operating. Since power is not supplied to the reboot controller 50, the reset operation is also not accepted. By stopping the power pass function of the charging circuit 20, it becomes impossible to discharge the battery BT and charge the battery BT. Also, even if an external device is connected to the connector USBC via a USB plug, the MCU 130 does not start up because the voltage VCC is not generated. In order to further improve the safety of the power supply unit 1, the MCU 130 may prohibit discharging and charging of the battery BT by the method described above before stopping the power pass function of the charging circuit 20.
 続いて、図5を参照して説明した監視条件について詳細に説明する。まず、図6A及び図6Bのフローチャートを参照して、図5のカラム504に規定される監視条件集合について説明する。この監視条件集合は、上述のように、MCU130がバッテリBTの物理量を周期的に監視し、この監視結果に基づいて保護動作を実行するための条件の集合である。図6A及び図6Bの動作の開始時点で、電源ユニット1はスリープ状態であるとする。スリープ状態とは、ユーザが電源ユニット1を使用可能な状態であり、かつユーザが電源ユニット1を使用していない(具体的に、スイッチSWが所定時間押下されておらず、コネクタUSBCにUSBプラグを介して外部機器が接続されていない)状態のことである。スリープ状態は、ユーザが電源ユニット1を使用していない時にバッテリBTの消費電力を削減する状態である。電源ユニット1がスリープ状態である間に、MCU130は、図3を参照して説明した電圧VCC33_SLPを生成しない(すなわち、PC11端子の出力をローレベルとする)。また、電源ユニット1がスリープ状態である間に、MCU130は、他の回路からの信号を監視する。例えば、MCU130は、スリープ状態である間に、スイッチSWの押下に応じて値が変化するPC10端子の入力、スライダ13が開いたことに応じて値が変化するPC13端子の入力、バッテリ監視回路のIO5端子からのnGAUGE_INT2信号が供給されるPB12端子の入力、FF1のQ端子からの信号が供給されるPA10端子からの入力、コネクタUSBCにUSBプラグを介して外部機器が接続されたことに応じて値が変化するPA9端子の入力などを監視する。 Next, the monitoring conditions explained with reference to FIG. 5 will be explained in detail. First, the monitoring condition set defined in column 504 of FIG. 5 will be described with reference to the flowcharts of FIGS. 6A and 6B. This monitoring condition set is, as described above, a set of conditions for MCU 130 to periodically monitor the physical quantity of battery BT and to perform protection operations based on the monitoring results. It is assumed that the power supply unit 1 is in a sleep state at the start of the operations in FIGS. 6A and 6B. The sleep state is a state in which the user can use the power supply unit 1 and the user is not using the power supply unit 1 (specifically, the switch SW has not been pressed for a predetermined time, and the connector USBC is connected to the USB plug). It is a state in which an external device is not connected via The sleep state is a state in which the power consumption of the battery BT is reduced when the power supply unit 1 is not used by the user. While the power supply unit 1 is in the sleep state, the MCU 130 does not generate the voltage VCC33_SLP described with reference to FIG. 3 (that is, sets the output of the PC11 terminal to low level). Also, while the power supply unit 1 is in the sleep state, the MCU 130 monitors signals from other circuits. For example, while the MCU 130 is in the sleep state, the input of the PC10 terminal whose value changes according to the depression of the switch SW, the input of the PC13 terminal whose value changes according to the opening of the slider 13, and the Input from the PB12 terminal to which the nGAUGE_INT2 signal is supplied from the IO5 terminal, input from the PA10 terminal to which the signal from the Q terminal of FF1 is supplied, and when an external device is connected to the connector USBC via a USB plug. Monitor the input of the PA9 terminal whose value changes.
 ステップS601で、MCU130は、スライダ13が開かれたかどうかを判定する。MCU130は、スライダ13が開かれた場合(ステップS601で「YES」)に処理をステップS602に遷移し、それ以外の場合(ステップS601で「NO」)に処理をステップS612に遷移する。スライダ13が開かれたことは、検出器170のOUT端子からMCU130のPC13端子に供給される信号がハイレベルに切り替わったことによって検出可能である。 At step S601, the MCU 130 determines whether the slider 13 has been opened. The MCU 130 shifts the process to step S602 when the slider 13 is opened ("YES" in step S601), and shifts the process to step S612 otherwise ("NO" in step S601). The opening of the slider 13 can be detected by the signal supplied from the OUT terminal of the detector 170 to the PC13 terminal of the MCU 130 switching to a high level.
 ステップS602で、MCU130は、バッテリBTの温度が51℃以上であるかどうかを判定する。MCU130は、バッテリBTの温度が51℃以上である場合(ステップS602で「YES」)に処理をステップS610に遷移し、それ以外の場合(ステップS602で「NO」)に処理をステップS603に遷移する。MCU130は、バッテリBTの温度を、バッテリ監視回路100からIC通信を通じて取得可能である。図6A及び図6Bの他のステップにおけるバッテリBTの温度の判定についても、MCU130は同様にバッテリBTの温度を取得可能である。ステップS602の判定では、条件が等式を満たす場合(バッテリBTの温度が51℃ちょうどである場合)にYESとしているが、この場合をNOとしてもよい。以下に説明する他の条件についても同様である。 In step S602, MCU 130 determines whether the temperature of battery BT is 51° C. or higher. MCU 130 shifts the process to step S610 if the temperature of battery BT is 51° C. or higher ("YES" in step S602), otherwise ("NO" in step S602) shifts the process to step S603. do. The MCU 130 can acquire the temperature of the battery BT from the battery monitoring circuit 100 through I2C communication. Regarding determination of the temperature of the battery BT in other steps in FIGS. 6A and 6B, the MCU 130 can similarly acquire the temperature of the battery BT. In the determination in step S602, YES is given when the condition satisfies the equation (when the temperature of the battery BT is exactly 51° C.), but NO may be given in this case. The same applies to other conditions described below.
 S602でNOと判定された場合(すなわち、バッテリBTの温度が51℃未満である場合)、MCU130は、バッテリBTが正常であると判定し、ステップS603で、電源ユニット1を加熱待機状態に遷移する。加熱待機状態とは、ユーザの指示に応じてエアロゾル源の加熱が可能な状態のことである。加熱待機状態に遷移するために、MCU130は、PC11端子の出力をハイレベルとすることによって、電圧VCC33_SLPを生成する。 If the determination in S602 is NO (that is, if the temperature of battery BT is less than 51° C.), MCU 130 determines that battery BT is normal, and in step S603, transitions power supply unit 1 to the heating standby state. do. The heating standby state is a state in which the aerosol source can be heated according to user instructions. In order to transition to the heating standby state, the MCU 130 generates the voltage VCC33_SLP by setting the output of the PC11 terminal to high level.
 一方、S602でYESと判定された場合(すなわち、バッテリBTの温度が51℃以上である場合)、MCU130は、バッテリBTの温度が加熱待機状態への遷移に適さないと判定する。この場合に、MCU130は、電源ユニット1をスリープ状態に維持したまま、ステップS610で、バッテリBTの温度が45℃以下になるまで待機する。具体的に、ステップS610で、MCU130は、バッテリBTの温度が45℃以下であるかどうかを判定する。MCU130は、バッテリBTの温度が45℃以下である場合(ステップS610で「YES」)に処理をステップS601に遷移し、それ以外の場合(ステップS610で「NO」)にステップS610を繰り返す。これによって、バッテリBTの温度が51℃以上であると判定された電源ユニット1は、バッテリBTの温度が45℃以下になったことに応じて、スリープ状態以外の状態に遷移可能になる。 On the other hand, if the determination in S602 is YES (that is, if the temperature of battery BT is 51° C. or higher), MCU 130 determines that the temperature of battery BT is not suitable for transition to the heating standby state. In this case, the MCU 130 waits until the temperature of the battery BT becomes 45° C. or less in step S610 while keeping the power supply unit 1 in the sleep state. Specifically, in step S610, MCU 130 determines whether the temperature of battery BT is 45° C. or lower. MCU 130 shifts the process to step S601 if the temperature of battery BT is 45° C. or less (“YES” in step S610), and repeats step S610 otherwise (“NO” in step S610). As a result, the power supply unit 1 in which the temperature of the battery BT is determined to be 51° C. or higher can transition to a state other than the sleep state when the temperature of the battery BT becomes 45° C. or lower.
 ステップS603で電源ユニット1を加熱待機状態に遷移した後、ステップS604で、MCU130は、ユーザにより加熱指示が行われたかどうかを判定する。MCU130は、ユーザにより加熱指示が行われた場合(ステップS604で「YES」)に処理をステップS605に遷移し、それ以外の場合(ステップS604で「NO」)にステップS604に遷移する。加熱指示は、スイッチSWが押下されたことによってMCU130のPC10端子の入力がローレベルに切り替わったことによって検出可能である。なお、加熱指示が所定時間行われない場合、MCU130は処理をステップS611に進めてもよい。 After transitioning the power supply unit 1 to the heating standby state in step S603, in step S604, the MCU 130 determines whether or not the user has issued a heating instruction. The MCU 130 shifts the process to step S605 if the user has issued a heating instruction ("YES" in step S604), otherwise ("NO" in step S604) to step S604. The heating instruction can be detected by switching the input of the PC10 terminal of the MCU 130 to low level by pressing the switch SW. Note that if the heating instruction is not issued for a predetermined period of time, the MCU 130 may advance the process to step S611.
 ステップS605で、MCU130は、バッテリBTの温度が51℃以上であるかどうかを判定する。MCU130は、バッテリBTの温度が51℃以上である場合(ステップS605で「YES」)に処理をステップS609に遷移し、それ以外の場合(ステップS605で「NO」)に処理をステップS606に遷移する。 At step S605, the MCU 130 determines whether the temperature of the battery BT is 51°C or higher. MCU 130 shifts the process to step S609 if the temperature of battery BT is 51° C. or higher ("YES" in step S605), otherwise ("NO" in step S605) shifts the process to step S606. do.
 S605でNOと判定された場合(すなわち、バッテリBTの温度が51℃未満である場合)、MCU130は、バッテリBTが正常であると判定し、ステップS606で、電源ユニット1を加熱状態に遷移する。加熱状態とは、エアロゾル源が加熱されている状態のことである。加熱状態に遷移するために、MCU130は、PC12端子の出力をハイレベルとすることによって、変圧回路120を起動し、且つスイッチSSをオンする。その後、MCU130は、PA2端子の出力をローレベルにすることによって、スイッチSHをオンする。これにより、バッテリBTとヒータHTの間に閉回路が形成される。さらに、MCU130は、電源ユニット1が加熱状態である間に、ヒータHTの温度制御を行ってもよい。ヒータHTの温度制御は、スイッチSSをオンしている間のオペアンプA1の出力や、ヒータサーミスタTHが接続されるPA6端子の入力に基づくフィードバック制御であってもよい。このフィードバック制御は、PID制御によって実現されてもよい。PID制御の少なくとも1つの成分のゲイン(利得)は、ゼロでもよい。PID制御の操作量として算出されるスイッチSHのデューティ比は、PWM制御で実現されてもよいし、PFM制御によって実現されてもよい。 If the determination in S605 is NO (that is, if the temperature of battery BT is less than 51° C.), MCU 130 determines that battery BT is normal, and in step S606, transitions power supply unit 1 to the heating state. . A heated state is a state in which the aerosol source is heated. To transition to the heating state, the MCU 130 activates the transformer circuit 120 and turns on the switch SS by setting the output of the PC12 terminal to high level. After that, the MCU 130 turns on the switch SH by setting the output of the PA2 terminal to low level. This forms a closed circuit between the battery BT and the heater HT. Furthermore, the MCU 130 may control the temperature of the heater HT while the power supply unit 1 is in the heating state. The temperature control of the heater HT may be feedback control based on the output of the operational amplifier A1 while the switch SS is on or the input of the PA6 terminal to which the heater thermistor TH is connected. This feedback control may be realized by PID control. The gain of at least one component of PID control may be zero. The duty ratio of the switch SH calculated as the manipulated variable of the PID control may be realized by PWM control or by PFM control.
 一方、S605でYESと判定された場合(すなわち、バッテリBTの温度が51℃以上である場合)、MCU130は、バッテリBTの温度が加熱状態への遷移に適さないと判定する。この場合に、MCU130は、ステップS609で電源ユニット1をスリープ状態に遷移し、ステップS610で、バッテリBTの温度が45℃以下になるまで待機する。 On the other hand, if the determination in S605 is YES (that is, if the temperature of battery BT is 51° C. or higher), MCU 130 determines that the temperature of battery BT is not suitable for transition to the heated state. In this case, the MCU 130 transitions the power supply unit 1 to the sleep state in step S609, and waits until the temperature of the battery BT becomes 45° C. or lower in step S610.
 電源ユニット1が加熱状態である間に、ステップS607で、MCU130は、バッテリBTの温度が55℃以上であるかどうかを判定する。MCU130は、バッテリBTの温度が55℃以上である場合(ステップS607で「YES」)に処理をステップS618に遷移し、それ以外の場合(ステップS607で「NO」)に処理をステップS608に遷移する。 While the power supply unit 1 is in the heating state, in step S607, the MCU 130 determines whether the temperature of the battery BT is 55°C or higher. MCU 130 shifts the process to step S618 if the temperature of battery BT is 55° C. or higher ("YES" in step S607), otherwise ("NO" in step S607) shifts the process to step S608. do.
 S607でNOと判定された場合(すなわち、バッテリBTの温度が55℃未満である場合)、MCU130は、バッテリBTが正常であると判定し、電源ユニット1を加熱状態に維持する。一方、S607でYESと判定された場合(すなわち、バッテリBTの温度が55℃以上である場合)、MCU130は、バッテリBTにエラーが発生したと判定し、ステップS618で、電源ユニット1をリセット待機状態に遷移する。 If the determination in S607 is NO (that is, if the temperature of the battery BT is less than 55°C), the MCU 130 determines that the battery BT is normal and keeps the power supply unit 1 in a heated state. On the other hand, if the determination in S607 is YES (that is, if the temperature of the battery BT is 55° C. or higher), the MCU 130 determines that an error has occurred in the battery BT, and waits for the power supply unit 1 to reset in step S618. state.
 ステップS608で、MCU130は、加熱状態を終了するかどうかを判定する。MCU130は、加熱状態を終了する場合(ステップS608で「YES」)に処理をステップS611に遷移し、それ以外の場合(ステップS608で「NO」)に処理をステップS607に遷移する。例えば、MCU130は、スライダ13が閉じられた場合、ユーザによるパフ回数が上限に到達した場合、加熱状態に遷移してから所定の時間が経過した場合などに、加熱状態を終了すると判定する。加熱状態を終了すると、ステップS611で、MCU130は、電源ユニット1をスリープ状態に遷移する。 At step S608, the MCU 130 determines whether to end the heating state. The MCU 130 shifts the process to step S611 when ending the heating state ("YES" in step S608), and shifts the process to step S607 in other cases ("NO" in step S608). For example, the MCU 130 determines to end the heating state when the slider 13 is closed, when the number of puffs by the user reaches the upper limit, or when a predetermined time has elapsed since transitioning to the heating state. After ending the heating state, the MCU 130 transitions the power supply unit 1 to the sleep state in step S611.
 ステップS601でスライダ13が開かれていないと判定した場合に、ステップS612で、MCU130は、コネクタUSBCにUSBプラグを介して外部機器が接続されたかどうかを判定する。MCU130は、コネクタUSBCにUSBプラグを介して外部機器が接続された場合(ステップS612で「YES」)に処理をステップS613に遷移し、それ以外の場合(ステップS612で「NO」)に処理をステップS601に遷移する。コネクタUSBCにUSBプラグを介して外部機器が接続されたことは、PA9端子がハイレベルに切り替わったことによって検出可能である。なお、MCU130は、ステップS602以降もステップS612の処理を実行し続け、「YES」と判断された場合には、ステップS602以降の処理を停止し、処理をステップS613に進めてもよい。 When it is determined in step S601 that the slider 13 is not opened, in step S612 the MCU 130 determines whether an external device is connected to the connector USBC via a USB plug. The MCU 130 shifts the process to step S613 when an external device is connected to the connector USBC via a USB plug ("YES" in step S612), otherwise ("NO" in step S612). The process transitions to step S601. The connection of an external device to the connector USBC via the USB plug can be detected by switching the PA9 terminal to high level. Note that the MCU 130 may continue to execute the process of step S612 even after step S602, and if determined to be "YES", stop the process of step S602 and thereafter, and proceed to step S613.
 ステップS613で、MCU130は、後述する深放電判定処理を実行することによって、バッテリBTが深放電状態でないかどうかを判定する。後述するように、バッテリBTが正常でない場合に、電源ユニット1はリセット待機状態又は故障状態に遷移し、処理が終了される。バッテリBTが正常である場合に、ステップS614で、MCU130は、バッテリBTへの普通充電を開始する。具体的に、MCU130は、PB3端子の出力をローレベルに維持することによって、充電回路20からバッテリBTへの給電を維持する。普通充電では、まずは2000mA程度の電流でバッテリBTの充電が開始される。具体的な電流値は、IC通信を通じてMCU130から充電回路20へ伝えられてもよい。 In step S613, MCU 130 determines whether battery BT is not in a deeply discharged state by executing a deeply discharged determination process, which will be described later. As will be described later, when the battery BT is not normal, the power supply unit 1 transitions to the reset standby state or failure state, and the process is terminated. If battery BT is normal, MCU 130 starts normal charging to battery BT in step S614. Specifically, MCU 130 maintains power supply from charging circuit 20 to battery BT by maintaining the output of PB3 terminal at a low level. In normal charging, charging of the battery BT is first started with a current of about 2000 mA. A specific current value may be transmitted from the MCU 130 to the charging circuit 20 through I2C communication.
 ステップS615で、MCU130は、バッテリBTに流れる電流が設定値の1.1倍以上であるかどうかを判定する。MCU130は、バッテリBTに流れる電流が設定値の1.1倍以上である場合(ステップS615で「YES」)に処理をステップS618に遷移し、それ以外の場合(ステップS615で「NO」)に処理をステップS616に遷移する。MCU130は、バッテリBTに流れる電流を、バッテリ監視回路100からIC通信を通じて取得可能である。設定値とは、充電回路20によって実行されるCCCV充電のうち、CC(Constant-Current、定電流)充電を行うために予め定められた電流値のことである。 In step S615, MCU 130 determines whether the current flowing through battery BT is 1.1 times or more the set value. MCU 130 shifts the process to step S618 if the current flowing through battery BT is 1.1 times or more the set value ("YES" in step S615), otherwise ("NO" in step S615). The process transitions to step S616. The MCU 130 can acquire the current flowing through the battery BT from the battery monitoring circuit 100 through I 2 C communication. The set value is a current value predetermined for CC (Constant-Current) charging among CCCV charging performed by the charging circuit 20 .
 S615でNOと判定された場合(すなわち、バッテリBTを流れる電流が設定値の1.1倍未満である場合)、MCU130は、バッテリBTが正常であると判定し、バッテリBTの充電を継続する。一方、S615でYESと判定された場合(すなわち、バッテリBTを流れる電流が設定値の1.1倍以上である場合)、MCU130は、バッテリBTにエラーが発生したと判定し、ステップS618で、電源ユニット1をリセット待機状態に遷移する。 If the determination in S615 is NO (that is, if the current flowing through the battery BT is less than 1.1 times the set value), the MCU 130 determines that the battery BT is normal and continues charging the battery BT. . On the other hand, if the determination in S615 is YES (that is, if the current flowing through the battery BT is 1.1 times or more of the set value), the MCU 130 determines that an error has occurred in the battery BT, and in step S618, Transition the power supply unit 1 to the reset standby state.
 ステップS616で、MCU130は、バッテリBTの温度が55℃以上又は0℃以下であるかどうかを判定する。MCU130は、バッテリBTの温度が55℃以上又は0℃以下である場合(ステップS616で「YES」)に処理をステップS618に遷移し、それ以外の場合(ステップS616で「NO」)に処理をステップS617に遷移する。 At step S616, the MCU 130 determines whether the temperature of the battery BT is 55°C or higher or 0°C or lower. If the temperature of the battery BT is 55° C. or higher or 0° C. or lower (“YES” in step S616), MCU 130 shifts the process to step S618, otherwise (“NO” in step S616). The process transitions to step S617.
 S616でNOと判定された場合(すなわち、バッテリBTの温度が0℃よりも高く55℃よりも低い場合)、MCU130は、バッテリBTが正常であると判定し、バッテリBTの充電を継続する。一方、S616でYESと判定された場合(すなわち、バッテリBTの温度が55℃以上又は0℃以下である場合)、MCU130は、バッテリBTにエラーが発生したと判定し、ステップS618で、電源ユニット1をリセット待機状態に遷移する。なお、ステップS615とS616の順序は、逆でもよい。また、MCU130は、ステップS615とS616を同時に行ってもよい。 If the determination in S616 is NO (that is, the temperature of battery BT is higher than 0°C and lower than 55°C), MCU 130 determines that battery BT is normal and continues charging battery BT. On the other hand, if the determination in S616 is YES (that is, if the temperature of the battery BT is 55° C. or higher or 0° C. or lower), the MCU 130 determines that an error has occurred in the battery BT. 1 to the reset waiting state. Note that the order of steps S615 and S616 may be reversed. Also, the MCU 130 may perform steps S615 and S616 at the same time.
 ステップS617で、MCU130は、充電を終了するかどうかを判定する。MCU130は、充電を終了する場合(ステップS617で「YES」)に処理をステップS611に遷移し、それ以外の場合(ステップS617で「NO」)に処理をステップS615に遷移する。例えば、MCU130は、USBプラグ及び外部機器がコネクタUSBCから抜かれた場合、バッテリBTの電圧が所定の電圧に到達した場合などに、充電を終了すると判定する。また、MCU130は、IC通信を通じて充電回路20から充電が終了した旨の通知を受け取ることで、充電を終了すると判定してもよい。充電を終了すると、ステップS611で、MCU130は、電源ユニット1をスリープ状態に遷移する。 In step S617, MCU 130 determines whether or not to end charging. The MCU 130 shifts the process to step S611 if charging is to be terminated ("YES" in step S617), and otherwise shifts the process to step S615 ("NO" in step S617). For example, the MCU 130 determines to end charging when the USB plug and the external device are removed from the connector USBC, when the voltage of the battery BT reaches a predetermined voltage, or the like. Alternatively, the MCU 130 may determine to end charging by receiving a notification that charging has ended from the charging circuit 20 through I2C communication. After completing the charging, in step S611, the MCU 130 transitions the power supply unit 1 to the sleep state.
 以上のように、MCU130は、バッテリの物理量について複数の監視条件(S602、S605、S607、S613、S615、S616)を含む監視条件集合の何れかの条件が満たされるかどうかを判定する。これらの監視条件のうち、一部の監視条件(S607、S615、S616)の何れかが満たされた場合に、MCU130は、電源ユニット1をリセット待機状態に遷移する。これらの監視条件のうち、他の一部の監視条件(S602、S605)の何れかが満たされた場合に、MCU130は、電源ユニット1をスリープ状態に維持又は遷移し、所定の条件(S610)を満たすまでスリープ状態を維持する。S614で実行される深放電判定処理の結果に応じて、後述するように、MCU130は、電源ユニット1をエラー状態又はリセット待機状態に遷移可能である。図6A及び図6Bの一部の条件(S605、S607、S610、S615、S616)は、繰り返し判定される。MCU130は、これらの条件を、所定の周期(例えば、1秒ごと)に判定してもよい。 As described above, the MCU 130 determines whether any of the monitoring condition sets including a plurality of monitoring conditions (S602, S605, S607, S613, S615, S616) are satisfied for the physical quantity of the battery. Among these monitoring conditions, when any one of the monitoring conditions (S607, S615, S616) is satisfied, the MCU 130 transitions the power supply unit 1 to the reset waiting state. Among these monitoring conditions, if any of the other monitoring conditions (S602, S605) are satisfied, the MCU 130 maintains or transitions the power supply unit 1 to the sleep state, and the predetermined condition (S610). remains asleep until Depending on the result of the deep discharge determination process executed in S614, the MCU 130 can transition the power supply unit 1 to an error state or a reset standby state, as will be described later. Some of the conditions in FIGS. 6A and 6B (S605, S607, S610, S615, S616) are repeatedly determined. The MCU 130 may determine these conditions at predetermined intervals (for example, every second).
 次に、図7A及び図7Bのフローチャートを参照して、図5のカラム505及び506に規定される監視条件集合について説明する。この監視条件集合は、上述のように、バッテリ監視回路100がバッテリBTの物理量を監視し、この監視結果に基づいてFF1又はMCU130が保護動作を実行するための条件の集合である。バッテリ監視回路100は、動作中に(すなわち、電圧VCC33が生成されている間に)、図7A及び図7Bの動作を繰り返す。バッテリ監視回路100は、以下に説明する条件を満たさない限り、nGAUGE_INT1信号及びnGAUGE_INT2信号をハイレベルに維持する。バッテリ監視回路100は、nGAUGE_INT1信号及びnGAUGE_INT2信号をローレベルに変更した後に、バッテリ監視回路100がリセットされるまでこれらの信号をローレベルに維持する。 Next, the monitoring condition sets defined in columns 505 and 506 of FIG. 5 will be described with reference to the flowcharts of FIGS. 7A and 7B. As described above, this monitoring condition set is a set of conditions for battery monitoring circuit 100 to monitor the physical quantity of battery BT and FF 1 or MCU 130 to perform a protection operation based on the monitoring results. Battery monitor circuit 100 repeats the operations of FIGS. 7A and 7B during operation (ie, while voltage VCC33 is being generated). The battery monitoring circuit 100 keeps the nGAUGE_INT1 signal and the nGAUGE_INT2 signal high unless the conditions described below are met. After changing the nGAUGE_INT1 signal and the nGAUGE_INT2 signal to low level, the battery monitoring circuit 100 maintains these signals at low level until the battery monitoring circuit 100 is reset.
 ステップS701で、バッテリ監視回路100は、バッテリBTの電圧が4.235V以上又は2.8V以下であるかどうかを判定する。バッテリ監視回路100は、バッテリBTの電圧が4.235V以上又は2.8V以下である場合(ステップS701で「YES」)に処理をステップS702に遷移し、それ以外の場合(ステップS701で「NO」)に処理をステップS703に遷移する。バッテリ監視回路100は、VBAT端子の入力をバッテリBTの電圧として取得可能である。図7A及び図7Bの他のステップのバッテリBTの電圧の取得についても同様である。バッテリ監視回路100は、バッテリBTの電圧が4.235V以上又は2.8V以下である場合に、バッテリBTが正常でないと判定し、ステップS702でnGAUGE_INT2信号をローレベルに切り替える。バッテリ監視回路100は、ステップS702を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 At step S701, the battery monitoring circuit 100 determines whether the voltage of the battery BT is 4.235V or more or 2.8V or less. The battery monitoring circuit 100 shifts the process to step S702 if the voltage of the battery BT is 4.235 V or more or 2.8 V or less (“YES” in step S701), otherwise (“NO” in step S701). ”), the process shifts to step S703. The battery monitoring circuit 100 can acquire the input of the VBAT terminal as the voltage of the battery BT. The same applies to obtaining the voltage of the battery BT in other steps in FIGS. 7A and 7B. The battery monitoring circuit 100 determines that the battery BT is not normal when the voltage of the battery BT is 4.235 V or more or 2.8 V or less, and switches the nGAUGE_INT2 signal to low level in step S702. After executing step S702, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
 ステップS703で、バッテリ監視回路100は、バッテリBTが放電中であるかどうかを判定する。バッテリ監視回路100は、バッテリBTが放電中である場合(ステップS703で「YES」)に処理をステップS704に遷移し、それ以外の場合(ステップS703で「NO」)に処理をステップS714に遷移する。バッテリ監視回路100は、抵抗R1を流れる電流の方向を測定することによって、バッテリBTが放電中であるかどうかを判定できる。バッテリ監視回路100は、バッテリBTからの放電中の一部の場合のみに、ステップS703でYESと判定してもよい。例えば、バッテリ監視回路100は、電源ユニット1が加熱状態である場合にのみ、ステップS703でYESと判定してもよい。バッテリ監視回路100は、電源ユニット1が加熱状態であるかどうかを、IC通信を通じてMCU130から提供される情報に基づいて判定してもよい。ステップS703でYESと判定された場合に、バッテリ監視回路100は、ステップS704~S713の処理を行う。 At step S703, the battery monitoring circuit 100 determines whether the battery BT is discharging. If the battery BT is being discharged ("YES" in step S703), the battery monitoring circuit 100 shifts the process to step S704; otherwise ("NO" in step S703), the process shifts to step S714. do. Battery monitoring circuit 100 can determine whether battery BT is discharging by measuring the direction of current through resistor R1. Battery monitoring circuit 100 may determine YES in step S703 only in some cases during discharging from battery BT. For example, the battery monitoring circuit 100 may determine YES in step S703 only when the power supply unit 1 is in a heating state. Battery monitoring circuit 100 may determine whether power supply unit 1 is in a heating state based on information provided from MCU 130 through I2C communication. If YES is determined in step S703, the battery monitoring circuit 100 performs the processes of steps S704 to S713.
 ステップS704で、バッテリ監視回路100は、バッテリBTを流れる電流(放電電流)が9.75A以上であるかどうかを判定する。バッテリ監視回路100は、バッテリBTを流れる電流が9.75A以上であるである場合(ステップS704で「YES」)に処理をステップS705に遷移し、それ以外の場合(ステップS704で「NO」)に処理をステップS708に遷移する。バッテリ監視回路100は、VRSM端子及びVRSP端子の入力からバッテリBTを流れる電流を取得可能である。図7A及び図7Bの他のステップのバッテリBTを流れる電流の取得についても同様である。バッテリ監視回路100は、バッテリBTを流れる電流が9.75A以上である場合に、バッテリBTが正常でないと判定し、ステップS705でnGAUGE_INT2信号をローレベルに切り替える。 At step S704, the battery monitoring circuit 100 determines whether the current (discharge current) flowing through the battery BT is 9.75 A or more. Battery monitoring circuit 100 shifts the process to step S705 if the current flowing through battery BT is 9.75 A or more ("YES" in step S704), otherwise ("NO" in step S704). Then, the process transitions to step S708. The battery monitoring circuit 100 can acquire the current flowing through the battery BT from the inputs of the VRSM terminal and the VRSP terminal. The same applies to obtaining the current flowing through the battery BT in the other steps of FIGS. 7A and 7B. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 9.75 A or more, and switches the nGAUGE_INT2 signal to low level in step S705.
 ステップS706で、バッテリ監視回路100は、バッテリBTを流れる電流が10A以上であるかどうかを判定する。バッテリ監視回路100は、バッテリBTを流れる電流が10A以上であるである場合(ステップS706で「YES」)に処理をステップS707に遷移し、それ以外の場合(ステップS706で「NO」)に処理をステップS708に遷移する。バッテリ監視回路100は、バッテリBTを流れる電流が10A以上である場合に、バッテリBTが正常でないと判定し、ステップS707でnGAUGE_INT1信号をローレベルに切り替える。バッテリ監視回路100は、ステップS707を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 At step S706, the battery monitoring circuit 100 determines whether the current flowing through the battery BT is 10A or more. Battery monitoring circuit 100 shifts the process to step S707 if the current flowing through battery BT is 10 A or more ("YES" in step S706), otherwise ("NO" in step S706). to step S708. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 10 A or more, and switches the nGAUGE_INT1 signal to low level in step S707. After executing step S707, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
 ステップS708で、バッテリ監視回路100は、バッテリBTの温度が60℃以上の状態が2秒上継続したかどうかを判定する。バッテリ監視回路100は、バッテリBTの温度が60℃以上の状態が2秒以上継続した場合(ステップS708で「YES」)に処理をステップS709に遷移し、それ以外の場合(ステップS708で「NO」)に処理をステップS712に遷移する。バッテリ監視回路100は、THM端子の入力に基づいてバッテリBTの温度を取得可能である。図7A及び図7Bの他のステップのバッテリBTの温度の取得についても同様である。バッテリ監視回路100は、バッテリBTの温度が60℃以上の状態が2分以上継続した場合に、バッテリBTが正常でないと判定し、ステップS709でnGAUGE_INT1信号をローレベルに切り替える。バッテリ監視回路100は、ステップS709を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 In step S708, the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained above 60°C for more than two seconds. The battery monitoring circuit 100 shifts the process to step S709 if the temperature of the battery BT is 60° C. or higher for two seconds or longer (“YES” in step S708), otherwise (“NO” in step S708). ”), the process transitions to step S712. The battery monitoring circuit 100 can acquire the temperature of the battery BT based on the input of the THM terminal. The same applies to obtaining the temperature of the battery BT in other steps in FIGS. 7A and 7B. The battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 60° C. or higher for two minutes or longer, and switches the nGAUGE_INT1 signal to low level in step S709. After executing step S709, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
 ステップS710で、バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続したかどうかを判定する。バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続した場合(ステップS710で「YES」)に処理をステップS711に遷移し、それ以外の場合(ステップS710で「NO」)に処理をステップS712に遷移する。バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続した場合に、バッテリBTが正常でないと判定し、ステップS711でnGAUGE_INT2信号をローレベルに切り替える。バッテリ監視回路100は、ステップS711を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 In step S710, the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained at 85°C or higher for two minutes or longer. The battery monitoring circuit 100 shifts the process to step S711 if the temperature of the battery BT has been 85° C. or higher for two minutes or more (“YES” in step S710), otherwise (“NO” in step S710). ”), the process transitions to step S712. The battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 85° C. or higher for two minutes or longer, and switches the nGAUGE_INT2 signal to low level in step S711. After executing step S711, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
 ステップS712で、バッテリ監視回路100は、バッテリBTの温度が-5℃以下の状態が5秒以上継続したかどうかを判定する。バッテリ監視回路100は、バッテリBTの温度が-5℃以下の状態が5秒以上継続したである場合(ステップS712で「YES」)に処理をステップS713に遷移し、それ以外の場合(ステップS712で「NO」)に処理をステップS701に遷移する。バッテリ監視回路100は、バッテリBTの温度が-5℃以下の状態が5秒以上継続した場合に、バッテリBTが正常でないと判定し、ステップS713でnGAUGE_INT2信号をローレベルに切り替える。バッテリ監視回路100は、ステップS713を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 In step S712, the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained below -5°C for five seconds or longer. The battery monitoring circuit 100 shifts the process to step S713 if the temperature of the battery BT has remained at −5° C. or lower for five seconds or longer (“YES” in step S712); otherwise (step S712 ("NO" in step S701). The battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is −5° C. or lower for five seconds or more, and switches the nGAUGE_INT2 signal to low level in step S713. After executing step S713, the battery monitoring circuit 100 does not have to execute subsequent processes in FIGS. 7A and 7B.
 ステップS714で、バッテリ監視回路100は、バッテリBTが充電中であるかどうかを判定する。バッテリ監視回路100は、バッテリBTが充電中である場合(ステップS714で「YES」)に処理をステップS715に遷移し、それ以外の場合(ステップS714で「NO」)に処理をステップS701に遷移する。バッテリ監視回路100は、抵抗R1を流れる電流の方向を測定することによって、バッテリBTが充電中であるかどうかを判定できる。バッテリ監視回路100は、バッテリBTへの充電中のみ(すなわち、充電回路のBAT端子からバッテリBTに電力が供給されている間のみ)に、ステップS714でYESと判定してもよい。これにかえて、バッテリ監視回路100は、コネクタUSBCにUSBプラグを介して外部機器が接続されている場合に、ステップS714でYESと判定してもよい。ステップS714でYESと判定された場合に、バッテリ監視回路100は、ステップS715~S720の処理を行う。 At step S714, the battery monitoring circuit 100 determines whether the battery BT is being charged. If the battery BT is being charged ("YES" in step S714), the battery monitoring circuit 100 shifts the process to step S715; otherwise ("NO" in step S714), the process shifts to step S701. do. Battery monitoring circuit 100 can determine whether battery BT is being charged by measuring the direction of current through resistor R1. Battery monitoring circuit 100 may determine YES in step S714 only while battery BT is being charged (that is, only while power is being supplied to battery BT from the BAT terminal of the charging circuit). Alternatively, battery monitoring circuit 100 may determine YES in step S714 when an external device is connected to connector USBC via a USB plug. If YES is determined in step S714, the battery monitoring circuit 100 performs the processes of steps S715 to S720.
 ステップS715で、バッテリ監視回路100は、バッテリBTを流れる電流(充電電流)が2.75A以上であるかどうかを判定する。バッテリ監視回路100は、バッテリBTを流れる電流が2.75A以上であるである場合(ステップS715で「YES」)に処理をステップS716に遷移し、それ以外の場合(ステップS715で「NO」)に処理をステップS719に遷移する。バッテリ監視回路100は、バッテリBTを流れる電流が2.75A以上である場合に、バッテリBTが正常でないと判定し、ステップS716でnGAUGE_INT2信号をローレベルに切り替える。 At step S715, the battery monitoring circuit 100 determines whether the current (charging current) flowing through the battery BT is 2.75 A or more. Battery monitoring circuit 100 shifts the process to step S716 if the current flowing through battery BT is 2.75 A or more ("YES" in step S715), otherwise ("NO" in step S715). Then, the process transitions to step S719. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 2.75 A or more, and switches the nGAUGE_INT2 signal to low level in step S716.
 ステップS716で、バッテリ監視回路100は、バッテリBTを流れる電流が3.0A以上であるかどうかを判定する。バッテリ監視回路100は、バッテリBTを流れる電流が3.0A以上であるである場合(ステップS717で「YES」)に処理をステップS718に遷移し、それ以外の場合(ステップS717で「NO」)に処理をステップS719に遷移する。バッテリ監視回路100は、バッテリBTを流れる電流が3.0A以上である場合に、バッテリBTが正常でないと判定し、ステップS718でnGAUGE_INT1信号をローレベルに切り替える。バッテリ監視回路100は、ステップS718を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 At step S716, the battery monitoring circuit 100 determines whether the current flowing through the battery BT is 3.0A or more. Battery monitoring circuit 100 shifts the process to step S718 if the current flowing through battery BT is 3.0 A or more ("YES" in step S717), otherwise ("NO" in step S717). Then, the process transitions to step S719. The battery monitoring circuit 100 determines that the battery BT is not normal when the current flowing through the battery BT is 3.0 A or more, and switches the nGAUGE_INT1 signal to low level in step S718. The battery monitoring circuit 100 does not have to perform subsequent processes in FIGS. 7A and 7B after performing step S718.
 ステップS719で、バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続したかどうかを判定する。バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続した場合(ステップS719で「YES」)に処理をステップS720に遷移し、それ以外の場合(ステップS719で「NO」)に処理をステップS701に遷移する。バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続した場合に、バッテリBTが正常でないと判定し、ステップS720でnGAUGE_INT2信号をローレベルに切り替える。バッテリ監視回路100は、ステップS720を実行した後に図7A及び図7Bにおける以降の処理を実行しなくてもよい。 In step S719, the battery monitoring circuit 100 determines whether the temperature of the battery BT has remained at 85°C or higher for two minutes or longer. Battery monitoring circuit 100 shifts the process to step S720 if the temperature of battery BT has remained at 85° C. or higher for two minutes or more (“YES” in step S719), otherwise (“NO” in step S719). ”), the process transitions to step S701. The battery monitoring circuit 100 determines that the battery BT is not normal when the temperature of the battery BT is 85° C. or higher for two minutes or longer, and switches the nGAUGE_INT2 signal to low level in step S720. The battery monitoring circuit 100 does not have to perform subsequent processes in FIGS. 7A and 7B after performing step S720.
 以上のように、バッテリ監視回路100は、バッテリの物理量について複数の監視条件(S701、S704、S706、S708、S710、S712、S715、S717、S719)を含む監視条件集合の何れかの条件が満たされるかどうかを判定する。バッテリ監視回路100は、監視条件集合の何れかの条件が満たされた場合に、保護動作として、nGAUGE_INT1信号又はnGAUGE_INT2信号をローレベルに切り替える動作を行う。nGAUGE_INT1信号はFF1に供給され、nGAUGE_INT1信号がローレベルに切り替わったことに応じて、FF1は、上述のように、電源ユニット1をリセット待機状態に遷移する。nGAUGE_INT2信号はMCU130に供給され、nGAUGE_INT2信号がローレベルに切り替わったことに応じて、MCU130は、後述する保護動作を実行する。 As described above, in the battery monitoring circuit 100, any condition of the monitoring condition set including a plurality of monitoring conditions (S701, S704, S706, S708, S710, S712, S715, S717, S719) is satisfied for the physical quantity of the battery. determine whether or not The battery monitoring circuit 100 switches the nGAUGE_INT1 signal or the nGAUGE_INT2 signal to low level as a protection operation when any condition of the monitoring condition set is satisfied. The nGAUGE_INT1 signal is supplied to FF1, and in response to the switching of the nGAUGE_INT1 signal to the low level, FF1 transitions the power supply unit 1 to the reset waiting state as described above. The nGAUGE_INT2 signal is supplied to the MCU 130, and in response to the nGAUGE_INT2 signal switching to a low level, the MCU 130 performs a protection operation, which will be described later.
 図7A及び図7Bの方法において、監視条件を判定する順番は、図7A及び図7Bとは異なっていてもよいし、並列に実行されてもよい。バッテリ監視回路100は、これらの条件を、所定の周期(例えば、1秒ごと)に判定してもよい。さらに、バッテリ監視回路100は、監視条件ごとに異なる周期で各監視条件を判定してもよい。例えば、バッテリ監視回路100は、ステップS710の監視条件(85℃以上が2分以上継続)を1分周期で判定してもよい。  In the methods of FIGS. 7A and 7B, the order of determining the monitoring conditions may be different from that of FIGS. 7A and 7B, or may be performed in parallel. The battery monitoring circuit 100 may determine these conditions at predetermined intervals (for example, every second). Furthermore, the battery monitoring circuit 100 may determine each monitoring condition with a different period for each monitoring condition. For example, the battery monitoring circuit 100 may determine the monitoring condition of step S710 (85° C. or higher continues for two minutes or longer) in a one-minute cycle.
 次に、図8のフローチャートを参照して、ローレベルのnGAUGE_INT2信号が供給された場合のMCU130の動作について説明する。MCU130は、電源ユニット1がどのような状態(例えば、スリープ状態、加熱待機状態、加熱状態など)であっても、動作可能であれば(すなわち、VDD端子に動作電力が供給されていれば)、図8の動作を実行してもよい。図8の動作を実行する場合に、MCU130は実行中の他の動作を中断してもよいし、並行して実行してもよい。このように、MCU130は、ローレベルのnGAUGE_INT2信号を、割り込み信号として処理する。 Next, the operation of the MCU 130 when a low-level nGAUGE_INT2 signal is supplied will be described with reference to the flowchart of FIG. The MCU 130 can operate regardless of the state of the power supply unit 1 (for example, sleep state, heating standby state, heating state, etc.) if it can operate (that is, if operating power is supplied to the VDD terminal). , may perform the operations of FIG. When executing the operations of FIG. 8, the MCU 130 may interrupt other operations being executed or may execute them in parallel. Thus, MCU 130 treats the low level nGAUGE_INT2 signal as an interrupt signal.
 ステップS801で、MCU130は、IC通信を通じて、バッテリ監視回路100から、nGAUGE_INT2信号をローレベルに切り替えた原因を取得する。バッテリ監視回路100は、nGAUGE_INT2信号をローレベルに切り替えた際に、その原因を内部に格納しておき、MCU130からの問い合わせに応じてこの原因を応答してもよい。このかわりに、MCU130は、バッテリ監視回路100からバッテリBTの情報を新たに取得して、どの監視条件を満たしているかを判定してもよい。 In step S801, the MCU 130 acquires the cause of switching the nGAUGE_INT2 signal to low level from the battery monitoring circuit 100 through I2C communication. When the nGAUGE_INT2 signal is switched to low level, the battery monitoring circuit 100 may internally store the cause, and respond to the inquiry from the MCU 130 with this cause. Alternatively, MCU 130 may newly acquire information on battery BT from battery monitoring circuit 100 and determine which monitoring condition is satisfied.
 ステップS802で、MCU130は、高温が原因だったか(すなわち、S710又はS719が原因だったか)どうかを判定する。MCU130は、高温が原因だった場合(ステップS802で「YES」)に処理をステップS803に遷移し、それ以外の場合(ステップS802で「NO」)に処理をステップS805に遷移する。 At step S802, the MCU 130 determines whether the high temperature was the cause (that is, whether S710 or S719 was the cause). If the cause is high temperature ("YES" in step S802), the MCU 130 shifts the process to step S803, otherwise ("NO" in step S802), shifts the process to step S805.
 ステップS803で、MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続したかどうかを判定する。MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続した場合(ステップS803で「YES」)に処理をステップS804に遷移し、それ以外の場合(ステップS803で「NO」)に処理をステップS806に遷移する。MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続した場合に、バッテリBTが正常でなく、リセットによって回復不能であると判定し、ステップS804で、電源ユニット1を故障状態に遷移する。MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続しなかった場合に、リセットによって回復可能であると判定し、ステップS806で、電源ユニット1をリセット待機状態に遷移する。 In step S803, the MCU 130 determines whether the temperature of the battery BT has remained at 85°C or higher for 5 seconds or longer. The MCU 130 shifts the process to step S804 if the temperature of the battery BT has remained at 85° C. or higher for five seconds or more (“YES” in step S803), otherwise (“NO” in step S803) The process transitions to step S806. When the temperature of the battery BT is 85° C. or higher for five seconds or longer, the MCU 130 determines that the battery BT is not normal and cannot be recovered by resetting, and puts the power supply unit 1 into a failure state in step S804. Transition. If the temperature of the battery BT has not remained above 85° C. for five seconds or more, the MCU 130 determines that recovery is possible by resetting, and transitions the power supply unit 1 to the reset standby state in step S806.
 高温以外が原因だった場合に、ステップS805で、MCU130は、リセット待機状態への遷移が必要な監視条件が満たされたかどうかを判定する。MCU130は、リセット待機状態への遷移が必要な監視条件が満たされた場合(ステップS805で「YES」)に処理をステップS806に遷移し、それ以外の場合(ステップS805で「NO」)に処理をステップS807に遷移する。リセット待機状態への遷移が必要な監視条件とは、図5のカラム506のうち破線で囲まれた監視条件のことであり、具体的に、S701の一部(過電圧)、S704、S715のことである。リセット待機状態への遷移が必要な条件とは、満たされた場合にMCU130が電源ユニット1をリセット待機状態へ遷移させる必要がある条件とも理解されうる。MCU130は、リセット待機状態への遷移が必要な監視条件が満たされた場合に、リセットによって回復可能であると判定し、ステップS806で、電源ユニット1をリセット待機状態に遷移する。 If the cause is other than high temperature, in step S805, the MCU 130 determines whether or not the monitoring condition requiring transition to the reset standby state is satisfied. The MCU 130 shifts the process to step S806 if the monitoring condition requiring transition to the reset standby state is satisfied ("YES" in step S805), otherwise ("NO" in step S805). to step S807. The monitoring conditions that require a transition to the reset standby state are the monitoring conditions surrounded by dashed lines in the column 506 of FIG. is. A condition that requires a transition to the reset standby state can also be understood as a condition that, when satisfied, requires the MCU 130 to transition the power supply unit 1 to the reset standby state. The MCU 130 determines that recovery by reset is possible when the monitoring condition requiring transition to the reset standby state is satisfied, and in step S806, transitions the power supply unit 1 to the reset standby state.
 リセット待機状態への遷移が必要な監視条件が満たされなかった場合(具体的に、S701の一部(過放電)、S712)に、ステップS807で、MCU130は、電源ユニット1がスリープ状態以外の状態であるかどうかを判定する。本実施形態において、リセット待機状態への遷移が必要な監視条件が満たされなかった場合とは、監視条件のうち、高温が原因である条件ではなく、リセット待機状態への遷移が必要な監視条件でもない条件が満たされた場合とも理解されうる。MCU130は、電源ユニット1がスリープ状態以外の状態である場合(ステップS807で「YES」)に処理をステップS808に遷移し、それ以外の場合(ステップS807で「NO」)に処理をステップS809に遷移する。ステップS808で、MCU130は、電源ユニット1をスリープ状態に遷移する。なお、MCU130は、処理をステップS808に進める前、又はステップS808において、発光部NUやバイブレータMを介してユーザにエラーを通知してもよい。 If the monitoring conditions requiring a transition to the reset standby state are not satisfied (specifically, a part of S701 (overdischarge), S712), in step S807, the MCU 130 determines that the power supply unit 1 is in a state other than the sleep state. Determine if the state is In the present embodiment, the case where the monitoring condition requiring a transition to the reset standby state is not satisfied is not the condition caused by a high temperature among the monitoring conditions, but the monitoring condition requiring a transition to the reset standby state. It can also be understood as a case where the condition is satisfied. If the power supply unit 1 is in a state other than the sleep state ("YES" in step S807), the MCU 130 shifts the process to step S808; otherwise ("NO" in step S807), the process shifts to step S809. Transition. In step S808, the MCU 130 transitions the power supply unit 1 to the sleep state. Note that the MCU 130 may notify the user of the error via the light emitting unit NU or the vibrator M before proceeding to step S808 or in step S808.
 ステップS809で、MCU130は、低温が原因だったか(すなわち、S712が原因だったか)どうかを判定する。MCU130は、低温が原因だった場合(ステップS809で「YES」)に処理をステップS810に遷移し、それ以外の場合(ステップS809で「NO」)に処理を終了する。低温が原因だった場合に、MCU130は、この状態でのバッテリBTの使用は適さないと判定し、電源ユニット1をスリープ状態に維持したまま、ステップS810で、バッテリBTの温度が0℃以上になるまで待機する。これは、後述する電析の進行を抑制するためである。具体的に、ステップS810で、MCU130は、バッテリBTの温度が0℃以上であるかどうかを判定する。MCU130は、バッテリBTの温度が0℃以上である場合(ステップS810で「YES」)に処理を終了し、それ以外の場合(ステップS810で「NO」)にステップS810を繰り返す。これによって、バッテリBTの温度が-5℃以下であると判定された電源ユニット1は、バッテリBTの温度が0℃以上になったことに応じて、スリープ状態以外の状態に遷移可能になる。換言すれば、バッテリBTの温度が0℃以上にならない限り(ステップS810で「YES」とならない限り)、電源ユニット1はスリープ状態に強制的に維持される。 In step S809, the MCU 130 determines whether the low temperature was the cause (that is, whether S712 was the cause). The MCU 130 shifts the process to step S810 if the low temperature is the cause ("YES" in step S809), otherwise ends the process ("NO" in step S809). If the cause is low temperature, the MCU 130 determines that the use of the battery BT in this state is not suitable, and keeps the power supply unit 1 in the sleep state. wait until This is for the purpose of suppressing the progress of electrodeposition, which will be described later. Specifically, in step S810, MCU 130 determines whether the temperature of battery BT is 0° C. or higher. MCU 130 ends the process if the temperature of battery BT is 0° C. or higher (“YES” in step S810), otherwise (“NO” in step S810), and repeats step S810. As a result, the power supply unit 1 in which the temperature of the battery BT is determined to be −5° C. or lower can transition to a state other than the sleep state in response to the temperature of the battery BT becoming 0° C. or higher. In other words, the power supply unit 1 is forcibly maintained in the sleep state unless the temperature of the battery BT reaches 0° C. or higher (unless "YES" is determined in step S810).
 図8の一部の条件(S803、S810)は、繰り返し判定される。MCU130は、これらの条件を、所定の周期(例えば、1秒ごと)に判定してもよい。 Some of the conditions (S803, S810) in FIG. 8 are determined repeatedly. The MCU 130 may determine these conditions at predetermined intervals (for example, every second).
 図9のフローチャートを参照して、図5のカラム508に規定される監視条件集合について説明する。この監視条件集合は、上述のように、保護回路90がバッテリBTの物理量を監視し、この監視結果に基づいて保護動作を実行するための条件の集合である。保護回路90は、動作中に(すなわち、電源電圧VBATが存在する間に)、図9の動作を繰り返す。保護回路90は、以下に説明する条件を満たさない限り、DOUT信号及びCOUT信号をハイレベルに維持する。 The set of monitoring conditions defined in column 508 of FIG. 5 will be described with reference to the flowchart of FIG. This monitoring condition set is a set of conditions for protection circuit 90 to monitor the physical quantity of battery BT and to perform a protection operation based on the monitoring results, as described above. Protection circuit 90 repeats the operations of FIG. 9 during operation (ie, while power supply voltage V BAT is present). The protection circuit 90 maintains the DOUT and COUT signals at high level unless the conditions described below are met.
 ステップS901で、保護回路90は、バッテリBTの電圧が4.28V以上又は2.5V以下であるかどうかを判定する。保護回路90は、バッテリBTの電圧が4.8V以上又は2.5V以下である場合(ステップS901で「YES」)に処理をステップS904に遷移し、それ以外の場合(ステップS901で「NO」)に処理をステップS902に遷移する。保護回路90は、VBAT端子の入力をバッテリBTの電圧として取得可能である。保護回路90は、バッテリBTの電圧が4.8V以上又は2.5V以下である場合に、バッテリBTが正常でないと判定し、ステップS904で、電源ユニット1を接続待機状態に遷移する。なお、保護回路90は、バッテリBTの電圧が4.28V以上であるためにステップS904に遷移した場合、DOUT信号及びCOUT信号のうちCOUT信号のみをハイレベルに遷移させてもよい。換言すれば、このような場合、保護回路90は、スイッチSCとスイッチSDとのうちスイッチSCのみオフにしてもよい。また、保護回路90は、バッテリBTの電圧が2.5V以下であるためにステップS904に遷移した場合、DOUT信号及びCOUT信号のうちDOUT信号のみをハイレベルに遷移させてもよい。換言すれば、このような場合、保護回路90は、スイッチSCとスイッチSDとのうちスイッチSDのみオフにしてもよい。 In step S901, the protection circuit 90 determines whether the voltage of the battery BT is 4.28V or more or 2.5V or less. The protection circuit 90 shifts the process to step S904 if the voltage of the battery BT is 4.8 V or more or 2.5 V or less ("YES" in step S901), otherwise ("NO" in step S901). ), the process transitions to step S902. The protection circuit 90 can acquire the input of the VBAT terminal as the voltage of the battery BT. The protection circuit 90 determines that the battery BT is not normal when the voltage of the battery BT is 4.8 V or more or 2.5 V or less, and transitions the power supply unit 1 to the connection standby state in step S904. Note that the protection circuit 90 may cause only the COUT signal of the DOUT signal and the COUT signal to transition to a high level when the process proceeds to step S904 because the voltage of the battery BT is 4.28V or higher. In other words, in such a case, the protection circuit 90 may turn off only the switch SC out of the switches SC and SD. Further, when the voltage of the battery BT is 2.5 V or less and the process proceeds to step S904, the protection circuit 90 may cause only the DOUT signal to transition to a high level among the DOUT signal and the COUT signal. In other words, in such a case, the protection circuit 90 may turn off only the switch SD out of the switches SC and SD.
 ステップS902で、保護回路90は、バッテリBTが放電中であるかどうかを判定する。保護回路90は、バッテリBTが放電中である場合(ステップS902で「YES」)に処理をステップS903に遷移し、それ以外の場合(ステップS902で「NO」)に処理をステップS901に遷移する。保護回路90は、抵抗R2を流れる電流の方向を測定することによって、バッテリBTが放電中であるかどうかを判定できる。 At step S902, the protection circuit 90 determines whether the battery BT is discharging. If the battery BT is being discharged ("YES" in step S902), the protection circuit 90 shifts the process to step S903, otherwise ("NO" in step S902), shifts the process to step S901. . Protection circuit 90 can determine whether battery BT is discharging by measuring the direction of current through resistor R2.
 ステップS903で、保護回路90は、バッテリBTを流れる電流(放電電流)が12.67A以上であるかどうかを判定する。保護回路90は、バッテリBTを流れる電流が12.67A以上であるである場合(ステップS903で「YES」)に処理をステップS904に遷移し、それ以外の場合(ステップS903で「NO」)に処理をステップS901に遷移する。保護回路90は、CS端子及びVSS端子の入力からバッテリBTを流れる電流を取得可能である。保護回路90は、バッテリBTを流れる電流が12.67A以上である場合に、バッテリBTが正常でないと判定し、ステップS904で、電源ユニット1を接続待機状態に遷移する。なお、保護回路90は、バッテリBTを流れる電流(放電電流)が12.67A以上であるためにステップS904に遷移した場合、DOUT信号及びCOUT信号のうちDOUT信号のみをハイレベルに遷移させてもよい。換言すれば、このような場合、保護回路90は、スイッチSCとスイッチSDとのうちスイッチSDのみオフにしてもよい。 In step S903, the protection circuit 90 determines whether the current (discharge current) flowing through the battery BT is 12.67 A or more. If the current flowing through battery BT is 12.67 A or more ("YES" in step S903), protection circuit 90 causes the process to proceed to step S904; The process transitions to step S901. The protection circuit 90 can acquire the current flowing through the battery BT from the inputs of the CS terminal and the VSS terminal. The protection circuit 90 determines that the battery BT is not normal when the current flowing through the battery BT is 12.67 A or more, and transitions the power supply unit 1 to the connection standby state in step S904. Note that when the current (discharge current) flowing through the battery BT is 12.67 A or more and the process proceeds to step S904, the protection circuit 90 may cause only the DOUT signal out of the DOUT signal and the COUT signal to transition to a high level. good. In other words, in such a case, the protection circuit 90 may turn off only the switch SD out of the switches SC and SD.
 上述の図7A、図7B及び図8で説明したように、バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続した場合に、エラー信号をMCU130へ送信する(ステップS710からステップS711)。MCU130は、エラー信号の受信後に、バッテリBTの温度を新たに取得し、この温度が85℃以上の状態が5秒以上継続した場合に、電源ユニット1を故障状態に遷移する(ステップS803からステップS804)。このように、別個の回路による判定結果によって電源ユニット1を故障状態に遷移できるため、電源ユニット1を適切に保護できる。換言すれば、電源ユニット1の故障状態への遷移は不可逆的な遷移であるため、当該遷移が誤って行われることを抑制できる。 As described above with reference to FIGS. 7A, 7B, and 8, the battery monitoring circuit 100 transmits an error signal to the MCU 130 when the temperature of the battery BT is 85° C. or higher for two minutes or longer (step S710 to step S711). After receiving the error signal, the MCU 130 newly acquires the temperature of the battery BT, and if this temperature continues to be 85° C. or higher for 5 seconds or longer, the power supply unit 1 transitions to the failure state (from step S803 to step S804). In this manner, the power supply unit 1 can be properly protected because the power supply unit 1 can transition to the failure state based on the determination result of a separate circuit. In other words, since the transition to the failure state of the power supply unit 1 is an irreversible transition, erroneous transition can be suppressed.
 バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続したかどうかを所定の周期で判定してもよい。例えば、バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態が2分以上継続したかどうかを、1分周期で判定してもよい。この場合に、バッテリ監視回路100は、バッテリBTの温度が85℃以上の状態に2回連続して検出された場合に、エラー信号をMCU130に供給してもよい。なお、バッテリ監視回路100がバッテリBTの温度を取得する周期は1分よりも短くてもよい。MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続したかどうかを所定の周期で判定してもよい。例えば、MCU130は、バッテリBTの温度が85℃以上の状態が5秒以上継続したかどうかを、1秒周期で判定してもよい。この場合に、MCU130は、バッテリBTの温度が85℃以上の状態に5回連続して検出された場合に、電源ユニット1を故障状態に遷移する。周期及び回数は、この例に限られない。一般に、バッテリ監視回路100は、バッテリBTの温度が85℃以上かどうかを第1周期(例えば、1分)で監視し、n回(例えば、2回)連続してこの状態となった場合に、エラー信号をMCU130に供給する。換言すれば、ローレベルのnGAUGE_INT2信号をMCU130へ供給する。MCU130は、バッテリBTの温度が85℃以上かどうかを第2周期(例えば、1秒)で監視し、m回(例えば、5回)連続してこの状態となった場合に、電源ユニット1を故障状態に遷移する。第1周期は第2周期よりも長く、mはnよりも大きい。第2周期×mの値は、第1周期×nの値よりも短い。つまり、MCU130が電源ユニット1を故障状態に遷移させるか否かの判断に要する時間は、バッテリ監視回路100がローレベルのnGAUGE_INT2信号をMCU130へ供給するか否かの判断に要する時間より短い。これによって、MCU130は、バッテリ監視回路100による高温の判定よりも短時間で高温を判定できる。 The battery monitoring circuit 100 may determine at a predetermined cycle whether the temperature of the battery BT has remained at 85° C. or higher for two minutes or longer. For example, the battery monitoring circuit 100 may determine whether the temperature of the battery BT has remained at 85° C. or higher for two minutes or longer at intervals of one minute. In this case, the battery monitoring circuit 100 may supply an error signal to the MCU 130 when the temperature of the battery BT is detected to be 85° C. or higher twice consecutively. Note that the period at which the battery monitoring circuit 100 obtains the temperature of the battery BT may be shorter than one minute. MCU 130 may determine at a predetermined cycle whether the temperature of battery BT has remained at 85° C. or higher for five seconds or longer. For example, the MCU 130 may determine whether the temperature of the battery BT is 85° C. or higher for five seconds or longer at intervals of one second. In this case, the MCU 130 transitions the power supply unit 1 to the failure state when the temperature of the battery BT is detected to be 85° C. or higher five times consecutively. The period and number of times are not limited to this example. In general, the battery monitoring circuit 100 monitors whether the temperature of the battery BT is 85° C. or higher in a first period (for example, 1 minute), and if this state occurs n times (for example, twice) consecutively, , provides an error signal to MCU 130 . In other words, a low level nGAUGE_INT2 signal is provided to MCU 130 . The MCU 130 monitors whether the temperature of the battery BT is 85° C. or higher in a second cycle (for example, 1 second), and when this state occurs m times (for example, 5 times) in succession, the power supply unit 1 is turned on. Transition to fault state. The first period is longer than the second period and m is greater than n. The value of the second period×m is shorter than the value of the first period×n. In other words, the time required for the MCU 130 to determine whether or not to transition the power supply unit 1 to the failure state is shorter than the time required for the battery monitoring circuit 100 to determine whether or not to supply the MCU 130 with the low-level nGAUGE_INT2 signal. Thereby, the MCU 130 can determine the high temperature in a shorter time than the high temperature determination by the battery monitoring circuit 100 .
 MCU130は、バッテリBTの温度(具体的には、その高温状態)に関する条件以外について、エラー信号の受信後に、バッテリBTの情報を新たに取得せずに、バッテリ監視回路100の判定結果に従って、保護動作を実行してもよい。これによって、電源ユニット1の消費電力を低減できる。 After receiving the error signal, the MCU 130 does not acquire new information on the battery BT except for the conditions related to the temperature of the battery BT (specifically, its high temperature state), and follows the determination result of the battery monitoring circuit 100 to protect the battery BT. Actions may be performed. Thereby, the power consumption of the power supply unit 1 can be reduced.
 図10を参照して、図6Bの深放電判定処理(S613)の具体例について説明する。図10は、深放電を判定するための処理の一例であり、他の処理によって深放電が判定されてもよい。図10の動作は、コネクタUSBCにUSBプラグを介して外部機器が接続された状態で実行される。 A specific example of the deep discharge determination process (S613) in FIG. 6B will be described with reference to FIG. FIG. 10 is an example of processing for determining deep discharge, and deep discharge may be determined by other processing. The operation of FIG. 10 is performed with an external device connected to the connector USBC via a USB plug.
 ステップS1001で、MCU130は、電圧ADCB+が0.1V以下又は電源電圧VBATが1.5V以下であるかどうかを判定する。MCU130は、電圧ADCB+が0.1V以下又は電源電圧VBATが1.5V以下である場合(ステップS1001で「YES」)に処理をステップS1002に遷移し、それ以外の場合(ステップS1001で「NO」)に処理をステップS1011に遷移する。電圧ADCB+は、スイッチ回路80がオンの状態でPC2端子に現れる電圧である。MCU130は、電源電圧VBATを、バッテリ監視回路100からIC通信を介して取得できる。この条件を満たさない場合に、MCU130は、ステップS1011で、バッテリBTが正常であると判定する。この条件を満たさない場合に、MCU130は、バッテリBTが深放電している可能性があると判定し、後続の処理を実行する。電圧ADCB+は、電源電圧VBATを抵抗R4及びR5によって分圧した電圧であり、分圧回路のうち低電位側の抵抗R5の一端は、グランド電位へ接続される。このため、スイッチ回路80をオンできないほどにバッテリBTの放電が進行した場合、電圧ADCB+は、グランド電位と略等しくなる。このため、ステップS1001において、電圧ADCB+に対する閾値は、0.1Vになっている。 In step S1001, MCU 130 determines whether voltage ADCB+ is 0.1V or less or power supply voltage V BAT is 1.5V or less. If the voltage ADCB+ is 0.1 V or less or the power supply voltage V BAT is 1.5 V or less ("YES" in step S1001), the MCU 130 shifts the process to step S1002; otherwise ("NO" in step S1001). ”), the process transitions to step S1011. Voltage ADCB+ is the voltage that appears at the PC2 terminal when switch circuit 80 is on. The MCU 130 can obtain the power supply voltage V BAT from the battery monitoring circuit 100 via I 2 C communication. If this condition is not satisfied, MCU 130 determines that battery BT is normal in step S1011. If this condition is not met, MCU 130 determines that battery BT may be deeply discharged, and executes subsequent processing. The voltage ADCB+ is a voltage obtained by dividing the power supply voltage V BAT by resistors R4 and R5, and one end of the resistor R5 on the low potential side of the voltage dividing circuit is connected to the ground potential. Therefore, when the battery BT discharges to the extent that the switch circuit 80 cannot be turned on, the voltage ADCB+ becomes substantially equal to the ground potential. Therefore, in step S1001, the threshold for the voltage ADCB+ is set to 0.1V.
 S1002で、MCU130は、540mAで充電を開始し、充電を継続した状態で1秒間待機した後、ステップS1003に遷移する。なお、本ステップにおける充電は深放電している可能性があるバッテリBTに対して行われるため、本ステップにおける充電電流の値は、前述したステップS614における充電電流の値よりも小さいことが好ましい。また、以降のステップS1003~S1011において、この充電は継続されている点に留意されたい。 In S1002, the MCU 130 starts charging at 540 mA, waits for 1 second while continuing charging, and then transitions to step S1003. Since the charging in this step is performed on the battery BT that may be deeply discharged, the value of the charging current in this step is preferably smaller than the value of the charging current in step S614 described above. Also, it should be noted that this charging is continued in subsequent steps S1003 to S1011.
 ステップS1003で、MCU130は、電圧ADCB+が3.5V以上であるかどうかを判定する。MCU130は、電圧ADCB+が3.5V以上である場合(ステップS1003で「YES」)に処理をステップS1004に遷移し、それ以外の場合(ステップS1003で「NO」)に処理をステップS1008遷移する。 At step S1003, the MCU 130 determines whether the voltage ADCB+ is 3.5V or higher. The MCU 130 shifts the process to step S1004 if the voltage ADCB+ is 3.5 V or higher ("YES" in step S1003), and otherwise shifts the process to step S1008 ("NO" in step S1003).
 ステップS1004で、MCU130は、電流IBATがー20mAより大きく20mA未満であるかどうかを判定する。MCU130は、電流IBATがー20mAより大きく20mA未満である場合(ステップS1004で「YES」)に処理をステップS1005に遷移し、それ以外の場合(ステップS1004で「NO」)に処理をステップS1007に遷移する。電流IBATは、バッテリBTに流れる電流であり、MCU130は、バッテリ監視回路100からIC通信を介して取得できる。なお、本ステップでは、+(プラス)の符号を持つ電流IBATは充電電流を意味し、-(マイナス)の符号を持つ電流IBATは放電電流を意味するものとする。この条件を満たさない場合に、MCU130は、バッテリBTが深放電状態ではないと判定し、電源ユニット1をスリープ状態に遷移する。 In step S1004, MCU 130 determines whether current I BAT is greater than -20 mA and less than 20 mA. If the current I BAT is greater than −20 mA and less than 20 mA ("YES" in step S1004), MCU 130 shifts the process to step S1005; transition to A current I BAT is a current flowing through the battery BT, and can be obtained by the MCU 130 from the battery monitoring circuit 100 via I 2 C communication. In this step, the current I BAT with a + (plus) sign means a charging current, and the current I BAT with a - (minus) sign means a discharging current. If this condition is not satisfied, the MCU 130 determines that the battery BT is not in the deep discharge state, and transitions the power supply unit 1 to the sleep state.
 ステップS1005で、MCU130は、S1003及びS1004を所定の回数繰り返したかどうかを判定する。MCU130は、S1003及びS1004を所定の回数繰り返した場合(ステップS1005で「YES」)に処理をステップS1006に遷移し、それ以外の場合(ステップS1005で「NO」)に処理をステップS1003に遷移する。所定の回数繰り返してもS1003及びS1004を満たす場合に、MCU130は、バッテリBTが深放電状態であると判定し、電源ユニット1を故障状態に遷移する。ステップS1005で「YES」と判定される場合は、540mAの充電電流で数秒ほどの短期間しかバッテリBTを充電していないにも関わらず、電圧ADCB+が大きな値を示している場合である。これは、バッテリBTが深放電することでその内部構造に不可逆的な変化が生じ、バッテリBTの内部抵抗(インピーダンス)が大幅に増加(悪化)しているためであると考えられる。なお、ステップS1004は、電圧ADCB+にバッテリBTの内部抵抗分の電圧降下が含まれているか否かを確認するためのものである。 In step S1005, the MCU 130 determines whether S1003 and S1004 have been repeated a predetermined number of times. If the MCU 130 repeats S1003 and S1004 a predetermined number of times ("YES" in step S1005), the MCU 130 shifts the process to step S1006; otherwise ("NO" in step S1005), the process shifts to step S1003. . If S1003 and S1004 are satisfied even after the predetermined number of repetitions, the MCU 130 determines that the battery BT is in a deeply discharged state, and transitions the power supply unit 1 to a failure state. If the determination is "YES" in step S1005, the voltage ADCB+ indicates a large value even though the battery BT has been charged with the charging current of 540 mA for only a short period of several seconds. This is probably because deep discharge of the battery BT causes an irreversible change in its internal structure, and the internal resistance (impedance) of the battery BT greatly increases (worsens). Note that step S1004 is for confirming whether or not the voltage ADCB+ includes a voltage drop corresponding to the internal resistance of the battery BT.
 ステップS1008で、MCU130は、電圧ADCB+が3.35V未満であるかどうかを判定する。MCU130は、電圧ADCB+が3.35V未満である場合(ステップS1008で「YES」)に処理をステップS1009に遷移し、それ以外の場合(ステップS1008で「NO」)に処理をステップS1011に遷移する。この条件を満たさない場合に、MCU130は、ステップS1011で、バッテリBTが正常であると判定する。 At step S1008, the MCU 130 determines whether the voltage ADCB+ is less than 3.35V. MCU 130 shifts the process to step S1009 if the voltage ADCB+ is less than 3.35 V ("YES" in step S1008), otherwise shifts the process to step S1011 ("NO" in step S1008). . If this condition is not satisfied, MCU 130 determines that battery BT is normal in step S1011.
 ステップS1009で、MCU130は、バッテリ監視回路100からIC通信を介して取得される電源電圧VBATが2.35V未満又は2.65Vよりも高いかどうかを判定する。MCU130は、電源電圧VBATが2.35V未満又は2.65Vよりも高い場合(ステップS1009で「YES」)に処理をステップS1010に遷移し、それ以外の場合(ステップS1009で「NO」)に処理をステップS1008に遷移する。 In step S1009, MCU 130 determines whether power supply voltage V BAT obtained from battery monitoring circuit 100 via I2C communication is less than 2.35V or higher than 2.65V. MCU 130 transitions the process to step S1010 if the power supply voltage V BAT is less than 2.35 V or higher than 2.65 V ("YES" in step S1009), otherwise ("NO" in step S1009) The process transitions to step S1008.
 ステップS1010で、MCU130は、ステップS1002で充電を開始してから所定の時間が経過したかどうかを判定する。MCU130は、ステップS1002で充電を開始してから所定の時間が経過した場合(ステップS1010で「YES」)に処理をステップS1007に遷移し、それ以外の場合(ステップS1010で「NO」)に処理をステップS1008に遷移する。所定の時間繰り返してもS1008及びS1009を満たす場合に、MCU130は、充電回路20によるバッテリBTの充電において何らかのエラーが生じたと判定し、ステップS1007で、電源ユニット1をスリープ状態に遷移する。 At step S1010, the MCU 130 determines whether a predetermined time has passed since charging was started at step S1002. The MCU 130 shifts the process to step S1007 if a predetermined time has elapsed since charging was started in step S1002 ("YES" in step S1010), otherwise ("NO" in step S1010). to step S1008. If S1008 and S1009 are satisfied even after repeating for a predetermined period of time, the MCU 130 determines that an error has occurred in the charging of the battery BT by the charging circuit 20, and transitions the power supply unit 1 to the sleep state in step S1007.
 S1001、S1003及びS1008において、MCU130は、ADCB+の値を条件とする。ADCB+に関する条件は、バッテリ監視回路100から取得される情報を使用せずに判定可能であるため、バッテリ監視回路100がバッテリBTの状態を正常に取得できない場合であっても、深放電を正しく判定できる。一般的に、バッテリ監視回路100は、バッテリBTの電圧が正常な状態において、バッテリBTの状態を正確に監視するために最適化されている。換言すれば、バッテリBTの電圧が正常ではない状態において、バッテリ監視回路100が取得するバッテリBTの状態には、誤差などが生じやすい。なお、ここでいうバッテリBTの電圧が正常な状態とは、電源電圧VBATがバッテリBTの満充電電圧以下且つ放電終止電圧以上の状態を指すものとする。 In S1001, S1003 and S1008, MCU 130 conditions the value of ADCB+. ADCB+ conditions can be determined without using information acquired from the battery monitoring circuit 100, so even if the battery monitoring circuit 100 cannot normally acquire the state of the battery BT, deep discharge can be determined correctly. can. Generally, battery monitoring circuit 100 is optimized to accurately monitor the state of battery BT when the voltage of battery BT is normal. In other words, when the voltage of battery BT is not normal, the state of battery BT acquired by battery monitoring circuit 100 is likely to have an error. Here, the state in which the voltage of the battery BT is normal refers to the state in which the power supply voltage V BAT is equal to or lower than the full charge voltage of the battery BT and equal to or higher than the final discharge voltage.
 再び図5を参照して、上述の監視条件の相互関係について説明する。バッテリ監視回路100は、カラム505に規定される監視条件集合の何れかの条件を満たす場合に、エラー信号(ローレベルのnGAUGE_INT1信号)をFF1に供給し、カラム506に規定される監視条件集合の何れかの条件を満たす場合に、別のエラー信号(ローレベルのnGAUGE_INT2信号)をMCU130に供給する。そのため、カラム505に規定される監視条件集合のそれぞれの条件及びカラム506に規定される監視条件集合のそれぞれの条件は、エラー信号を供給するためのエラー通知条件と呼ばれてもよい。FF1に供給されるエラー信号そのものは、MCU130には供給されない。MCU130に供給されるエラー信号は、FF1には供給されない。FF1にエラー信号が供給されると、FF1は、上述したように、ハードウェア的に保護動作を実行する。このように、FF1は、エラー処理回路として機能する。一方、MCU130にエラー信号が供給されると、MCU130は、上述したように、ソフトウェア的に保護動作を実行する。このように、バッテリ監視回路100からFF1とMCU130との両方に個別にエラー信号を供給することによって、FF1とMCU130との一方が正常に動作しなかった場合であっても、電源ユニット1が適切に保護される。  Referring to FIG. 5 again, the interrelationship of the above monitoring conditions will be described. The battery monitoring circuit 100 supplies an error signal (low-level nGAUGE_INT1 signal) to FF1 when any condition of the monitoring condition set defined in column 505 is satisfied, and If either condition is met, another error signal (low level nGAUGE_INT2 signal) is provided to MCU 130 . Therefore, each condition in the set of monitoring conditions defined in column 505 and each condition in the set of monitoring conditions defined in column 506 may be referred to as an error notification condition for providing an error signal. The error signal itself supplied to FF1 is not supplied to MCU130. The error signal supplied to MCU 130 is not supplied to FF1. When the error signal is supplied to FF1, FF1 executes the protection operation by hardware as described above. Thus, FF1 functions as an error processing circuit. On the other hand, when an error signal is supplied to the MCU 130, the MCU 130 executes the protection operation by software as described above. In this way, by individually supplying error signals to both FF1 and MCU 130 from battery monitoring circuit 100, even if one of FF1 and MCU 130 does not operate normally, power supply unit 1 can be operated properly. protected by
 さらに、カラム505に規定される監視条件集合の何れの監視条件も、電源ユニット1をリセット待機状態に遷移する。上述のように、リセット待機状態は、バッテリBTの放電又は充電の制限を解除するために、ユーザによる動作を必要とする状態である。そのため、バッテリBTの放電又は充電の制限を、ユーザの動作によらず、自動的に解除することによって、さらなるエラーが発生することを抑制できる。また、カラム505に規定される監視条件集合の何れかが満たされた場合に、FF1によってハードウェア的にバッテリBTの放電又は充電が制限される。この制限は、精度に優れるMCU130による判断を経ていないため、電源ユニット1を故障状態にはしない。それにより、ユーザの利便性が高まる。換言すれば、MCU130はFF1に比べて静電気などの外来ノイズやグリッチノイズなどの内部ノイズに対して強い耐性を有する。このため、MCU130による判断は、精度において優れる。 Furthermore, any monitoring condition in the set of monitoring conditions defined in column 505 causes the power supply unit 1 to transition to the reset standby state. As described above, the reset waiting state is a state that requires user action to release the restriction on discharging or charging of the battery BT. Therefore, by automatically canceling the restriction on discharging or charging the battery BT regardless of the user's operation, it is possible to suppress the occurrence of further errors. Also, when any of the monitoring condition sets defined in column 505 is satisfied, FF1 restricts the discharging or charging of battery BT by means of hardware. This restriction does not cause the power supply unit 1 to fail because it has not been determined by the MCU 130, which is highly accurate. This enhances user convenience. In other words, the MCU 130 is more resistant to external noise such as static electricity and internal noise such as glitch noise than FF1. Therefore, the determination by the MCU 130 is excellent in accuracy.
 一方、カラム506に規定される監視条件集合の一部の条件を満たす場合に、MCU130は、電源ユニット1を故障状態に遷移する。特定の条件を満たす場合に電源ユニット1を故障状態に遷移するため、電源ユニット1の安全性が一層向上する。また、MCU130による判断によって電源ユニット1を故障状態に遷移するため、精度よくこの遷移の可否を判定できる。 On the other hand, if a part of the monitoring condition set defined in column 506 is satisfied, the MCU 130 transitions the power supply unit 1 to the failure state. Since the power supply unit 1 transitions to the failure state when a specific condition is satisfied, the safety of the power supply unit 1 is further improved. In addition, since the power supply unit 1 transitions to the failure state based on the determination by the MCU 130, it is possible to accurately determine whether this transition is possible.
 カラム506に規定される監視条件集合に含まれる条件の個数は、カラム505に規定される監視条件集合に含まれる条件の個数よりも多い。これによって、重要度の高い一部の条件については、FF1によらず、MCU130によって処理されるので、電源ユニット1を一層適切に保護できる。例えば、カラム506に規定される監視条件集合で監視されるバッテリBTの物理量は、カラム505に規定される監視条件集合で監視されないバッテリBTの物理量を含む。具体的に、カラム506に規定される監視条件集合は、バッテリBTの電圧に関する条件を含むが、カラム505に規定される監視条件集合は、バッテリBTの電圧に関する条件を含まない。カラム506に規定される監視条件集合は、バッテリBTの温度の下限温度に関する条件を含むが、カラム505に規定される監視条件集合は、バッテリBTの温度の下限温度に関する条件を含まない。 The number of conditions included in the set of monitoring conditions defined in column 506 is greater than the number of conditions included in the set of monitoring conditions defined in column 505 . As a result, some conditions of high importance are processed by the MCU 130 regardless of the FF1, so the power supply unit 1 can be protected more appropriately. For example, the physical quantity of battery BT monitored by the monitoring condition set defined in column 506 includes the physical quantity of battery BT not monitored by the monitoring condition set defined in column 505 . Specifically, the monitoring condition set defined in column 506 includes a condition regarding the voltage of battery BT, but the monitoring condition set defined in column 505 does not include a condition regarding the voltage of battery BT. The monitoring condition set defined in column 506 includes a condition regarding the lower limit temperature of battery BT, but the monitoring condition set defined in column 505 does not include a condition regarding the lower limit temperature of battery BT.
 バッテリBTの過加熱に関する条件は、カラム505に規定される監視条件集合と、カラム506に規定される監視条件集合との両方に含まれる。電源の温度の上限温度について、制御回路による精度の高いエラー処理では電源ユニットを故障状態に遷移し、エラー処理回路によるハードウェア的なエラー処理では電源ユニットをリセット待機状態に遷移するため、電源ユニットを一層適切に保護できる。また、バッテリBTの過加熱に関する条件について、FF1とMCU130との両方で監視するため、どちらか一方が正常に動作しない場合であっても、電源ユニット1を保護できる。また、カラム505に規定される監視条件集合で監視される上限温度(60℃)は、カラム506に規定される監視条件集合で監視される上限温度(85℃)よりも低い。これによって、動作の速いFF1によって先に保護動作が行われるため、バッテリBTの高熱状態が維持し、バッテリBTの劣化が進行することを抑制できる。 Conditions related to overheating of battery BT are included in both the set of monitoring conditions defined in column 505 and the set of monitoring conditions defined in column 506 . Regarding the upper limit of the temperature of the power supply, the high-precision error processing by the control circuit causes the power supply unit to transition to the failure state, and the hardware error processing by the error processing circuit causes the power supply unit to transition to the reset waiting state. can be better protected. In addition, since both the FF 1 and the MCU 130 monitor conditions related to overheating of the battery BT, the power supply unit 1 can be protected even if one of them does not operate normally. Also, the upper limit temperature (60° C.) monitored by the set of monitoring conditions defined in column 505 is lower than the upper limit temperature (85° C.) monitored by the set of monitoring conditions defined in column 506 . As a result, the protection operation is performed first by FF1, which operates faster, so that the high temperature state of the battery BT can be maintained and progress of deterioration of the battery BT can be suppressed.
 バッテリBTの過電流に関する条件は、カラム505に規定される監視条件集合と、カラム506に規定される監視条件集合との両方に含まれる。バッテリBTの過電流に関する条件について、FF1とMCU130との両方で監視するため、どちらか一方が正常に動作しない場合であっても、電源ユニット1を保護できる。また、カラム505に規定される監視条件集合で監視される上限電流値(放電時に10A、充電時に3.0A)は、カラム505に規定される監視条件集合で監視される上限電流値(放電時に9.75A、充電時に2.75A)よりも大きい。これによって、MCU130によって先に保護動作が行われるため、バッテリBTの高熱状態が維持し、バッテリBTの劣化が進行することを抑制できる。併せて、MCU130にフリーズなどの障害が生じている場合でも、FF1によって保護動作が行われる。 The condition regarding the overcurrent of the battery BT is included in both the monitoring condition set defined in column 505 and the monitoring condition set defined in column 506. Since both FF 1 and MCU 130 monitor conditions related to overcurrent of battery BT, power supply unit 1 can be protected even if one of them does not operate normally. Further, the upper limit current value (10 A during discharging, 3.0 A during charging) monitored by the monitoring condition set defined in column 505 is the upper limit current value monitored by the monitoring condition set defined in column 505 ( 9.75A, 2.75A when charging). As a result, since the MCU 130 performs the protective operation first, the high temperature state of the battery BT can be maintained, and progress of deterioration of the battery BT can be suppressed. At the same time, even if the MCU 130 has a failure such as freezing, the FF1 performs a protection operation.
 カラム508に規定される保護回路90による監視条件集合は、バッテリBTを流れる電流(具体的に、放電時の過電流)に関する条件と、バッテリBTの電圧(具体的に、過充電及び過放電)に関する条件とを含む。電流及び電圧についてはバッテリ監視回路100によっても監視されるため、バッテリ監視回路100と保護回路90との一方が正常に動作しない場合であっても、電源ユニット1を保護できる。 The set of conditions monitored by the protection circuit 90 defined in column 508 includes conditions related to the current flowing through the battery BT (specifically, overcurrent during discharge) and the voltage of the battery BT (specifically, overcharge and overdischarge). including conditions relating to Since the current and voltage are also monitored by the battery monitoring circuit 100, the power supply unit 1 can be protected even if one of the battery monitoring circuit 100 and the protection circuit 90 does not operate normally.
 放電中にバッテリBTを流れる電流について、nGAUGE_INT2信号を切り替えるための監視条件(9.75A以上)は、nGAUGE_INT1信号を切り替えるための監視条件(10A以上)よりも厳しい条件となっている。言い換えると、放電中にバッテリBTを流れる電流が増加し続けると、nGAUGE_INT2信号を切り替えるための監視条件(S704)が先に満たされ、その後に、nGAUGE_INT1信号を切り替えるための監視条件(S706)が満たされる。条件Aが条件Bよりも厳しいとは、条件Aが条件Bの必要条件であるが十分条件ではないことを意味してもよい。その逆に、条件Aが条件Bよりも緩いとは、条件Aが条件Bの十分条件であるが必要条件ではないことを意味してもよい。同様に、充電中にバッテリBTを流れる電流について、nGAUGE_INT2信号を切り替えるための監視条件(2.75A以上)は、nGAUGE_INT1信号を切り替えるための監視条件(3.0A以上)よりも厳しい条件となっている。言い換えると、充電中にバッテリBTを流れる電流が増加し続けると、nGAUGE_INT2信号を切り替えるための監視条件(S715)が先に満たされ、その後に、nGAUGE_INT1信号を切り替えるための監視条件(S717)が満たされる。バッテリBTの過加熱について、nGAUGE_INT2信号を切り替えるための監視条件(85℃以上が2分継続)は、nGAUGE_INT1信号を切り替えるための監視条件(60℃以上が2秒継続)よりも緩い条件となっている。言い換えると、バッテリBTの温度が上昇し続けると、nGAUGE_INT1信号を切り替えるための監視条件(S709)が先に満たされ、その後に、nGAUGE_INT2信号を切り替えるための監視条件(S711)が満たされる。 Regarding the current flowing through the battery BT during discharging, the monitoring condition (9.75 A or more) for switching the nGAUGE_INT2 signal is stricter than the monitoring condition (10 A or more) for switching the nGAUGE_INT1 signal. In other words, as the current through battery BT continues to increase during discharge, the monitoring condition for switching the nGAUGE_INT2 signal (S704) is met first, followed by the monitoring condition for switching the nGAUGE_INT1 signal (S706). be That condition A is more stringent than condition B may mean that condition A is a necessary but not sufficient condition of condition B. Conversely, condition A is less stringent than condition B, which may mean that condition A is a sufficient but not a necessary condition for condition B. Similarly, regarding the current flowing through the battery BT during charging, the monitoring condition (2.75 A or higher) for switching the nGAUGE_INT2 signal is stricter than the monitoring condition (3.0 A or higher) for switching the nGAUGE_INT1 signal. there is In other words, as the current through battery BT continues to increase during charging, the monitoring condition for switching the nGAUGE_INT2 signal (S715) is met first, followed by the monitoring condition for switching the nGAUGE_INT1 signal (S717). be Regarding the overheating of the battery BT, the monitoring condition for switching the nGAUGE_INT2 signal (85°C or higher continues for 2 minutes) is looser than the monitoring condition for switching the nGAUGE_INT1 signal (60°C or higher continues for 2 seconds). there is In other words, when the temperature of the battery BT continues to rise, the monitoring condition for switching the nGAUGE_INT1 signal (S709) is met first, and then the monitoring condition for switching the nGAUGE_INT2 signal (S711) is met.
 放電中にバッテリBTを流れる電流について、バッテリ監視回路100がエラー信号を生成するための監視条件(10A以上又は9.75A以上)は、保護回路90がバッテリBTの放電又は充電を制限するための監視条件(12.67A以上)よりも厳しい条件となっている。言い換えると、放電中にバッテリBTを流れる電流が増加し続けると、バッテリ監視回路100がエラー信号を生成するための監視条件が先に満たされ、その後に、保護回路90がバッテリBTの放電又は充電を制限するための監視条件が満たされる。また、バッテリBTの電圧について、バッテリ監視回路100がエラー信号を生成するための監視条件(4.235V以上又は2.8V以下)は、保護回路90がバッテリBTの放電又は充電を制限するための監視条件(4.28V以上又は2.5V以下)よりも厳しい条件となっている。言い換えると、バッテリBTの電圧が増加又は減少し続けると、バッテリ監視回路100がエラー信号を生成するための監視条件が先に満たされ、その後に、保護回路90がバッテリBTの放電又は充電を制限するための監視条件が満たされる。保護回路90による保護動作の解消は、USBプラグを介した外部機器の接続が必要であるため、バッテリ監視回路100による保護動作よりも解消に手間がかかる。バッテリ監視回路100による保護動作を先に動作することによって、ユーザの利便性が向上する。 The monitoring condition (10 A or more or 9.75 A or more) for the battery monitoring circuit 100 to generate an error signal for the current flowing through the battery BT during discharging is the condition for the protection circuit 90 to limit the discharging or charging of the battery BT. The conditions are stricter than the monitoring conditions (12.67 A or more). In other words, if the current through battery BT continues to increase during discharging, the monitoring conditions for battery monitoring circuit 100 to generate an error signal are met first, and then protection circuit 90 discharges or charges battery BT. is satisfied. Also, regarding the voltage of the battery BT, the monitoring condition (4.235 V or more or 2.8 V or less) for the battery monitoring circuit 100 to generate an error signal is the condition for the protection circuit 90 to limit discharging or charging of the battery BT. The conditions are stricter than the monitoring conditions (4.28 V or more or 2.5 V or less). In other words, if the voltage of battery BT continues to increase or decrease, the monitoring conditions for battery monitoring circuit 100 to generate an error signal are met first, and then protection circuit 90 limits the discharging or charging of battery BT. The monitoring conditions for Releasing the protection operation by the protection circuit 90 requires connection of an external device via a USB plug, and therefore takes more time and effort than the protection operation by the battery monitoring circuit 100 . User convenience is improved by performing the protection operation by the battery monitoring circuit 100 first.
 バッテリ監視回路100がエラー信号を生成するための監視条件集合は、バッテリBTを流れる電流が10A以上であるという条件と、これが9.75A以上であるという条件とを含む。これらの閾値の差は、0.25Aである。これらの条件の閾値(10A及び9.75A)と、保護回路90がバッテリBTの放電又は充電を制限するための条件の閾値(12.67A)との差は、それぞれ2.67A及び2.92Aである。これらはいずれも、0.25Aよりも大きい。これによって、バッテリ監視回路100による保護動作と、保護回路90による保護動作とが同時に機能することを抑制しやすくなる。また、保護回路90による保護動作の前に、バッテリ監視回路100による保護動作を実現できる。すなわち、バッテリ監視回路100に異常が生じていなければ、保護回路90ではなくバッテリ監視回路100による保護動作が行われる。これにより、保護動作が行われた状態からの復旧を容易にできる。 A monitoring condition set for the battery monitoring circuit 100 to generate an error signal includes the condition that the current flowing through the battery BT is 10A or more and the condition that it is 9.75A or more. The difference between these thresholds is 0.25A. The difference between the thresholds of these conditions (10 A and 9.75 A) and the threshold of the condition for the protection circuit 90 to limit the discharge or charge of the battery BT (12.67 A) is 2.67 A and 2.92 A respectively. is. Both of these are greater than 0.25A. This makes it easier to prevent the protection operation by the battery monitoring circuit 100 and the protection operation by the protection circuit 90 from functioning at the same time. Moreover, the protection operation by the battery monitoring circuit 100 can be realized before the protection operation by the protection circuit 90 . That is, if the battery monitoring circuit 100 does not have an abnormality, the battery monitoring circuit 100 performs a protection operation instead of the protection circuit 90 . This facilitates recovery from the state in which the protection operation has been performed.
 カラム506に規定される監視条件集合は、バッテリBTの電圧が2.8V以下になった場合に、MCU130は、電源ユニット1をスリープ状態に遷移する。バッテリBTの残量が所定の第1下限値以下となると、バッテリBTの電圧が2.8V以下となる。さらに、カラム508に規定される監視条件集合は、バッテリBTの電圧が2.5V以下になった場合に、スイッチSC及びSDをオフにする。バッテリBTの残量が所定の第2下限値以下となると、バッテリBTの電圧が2.5V以下となる。第2下限値は、第1下限値よりも低い。さらに、図10に示すように、バッテリBTの電圧が1.5V以下になるか、ADCB+電圧が0.1V以下になるとMCU130は、さらに所定の条件を満たす場合に、電源ユニット1を故障状態に遷移する。バッテリBTの残量が所定の第3下限値以下となると、バッテリBTの電圧が1.5V以下となるか、ADCB+電圧が0.1V以下となる。第3下限値は、第2下限値よりも低い。このように、一部の実施形態では、バッテリBTの残量に応じた段階的な保護動作が実行される。バッテリBTの残量が所定の第3下限値以下になった状態は、バッテリBTが深放電状態であることを示している。 In the set of monitoring conditions defined in column 506, the MCU 130 transitions the power supply unit 1 to the sleep state when the voltage of the battery BT becomes 2.8V or less. When the remaining amount of battery BT becomes equal to or less than a predetermined first lower limit, the voltage of battery BT becomes equal to or less than 2.8V. Further, the monitoring condition set defined in column 508 turns off switches SC and SD when the voltage of battery BT drops below 2.5V. When the remaining amount of battery BT becomes equal to or less than the predetermined second lower limit, the voltage of battery BT becomes equal to or less than 2.5V. The second lower limit is lower than the first lower limit. Furthermore, as shown in FIG. 10, when the voltage of the battery BT becomes 1.5 V or less or the ADCB+ voltage becomes 0.1 V or less, the MCU 130 puts the power supply unit 1 into a failure state if a predetermined condition is satisfied. Transition. When the remaining amount of the battery BT becomes equal to or less than the predetermined third lower limit, the voltage of the battery BT becomes equal to or less than 1.5V, or the ADCB+ voltage becomes equal to or less than 0.1V. The third lower limit is lower than the second lower limit. Thus, in some embodiments, stepwise protective operation is performed according to the remaining amount of battery BT. A state in which the remaining amount of the battery BT is equal to or less than the predetermined third lower limit indicates that the battery BT is in a deeply discharged state.
 バッテリBTの電圧が2.8V以下になった場合に、保護回路90は、スイッチSDをオフにすることによって、電源ユニット1を接続待機状態に遷移する。バッテリBTの残量が上述の第3下限値よりも大きければ、電源ユニット1が故障状態に遷移しないため、保護回路90は、USBコネクタUSBCにUSBプラグを介して外部機器が接続され、その後バッテリBTの充電が進行することによって、スイッチSCをオンに戻す。これによって、バッテリBTが深放電状態である場合にバッテリBTへの充電が継続されることを抑制できる。 When the voltage of the battery BT becomes 2.8 V or less, the protection circuit 90 turns off the switch SD to transition the power supply unit 1 to the connection standby state. If the remaining amount of the battery BT is greater than the above-described third lower limit value, the power supply unit 1 does not transition to the failure state. The progress of BT charging turns the switch SC back on. As a result, it is possible to prevent the battery BT from being continuously charged when the battery BT is in a deeply discharged state.
 カラム508に規定される保護回路90による監視条件集合は、バッテリBTの温度に関する条件を含まない。このように、温度を監視しないことによって、保護回路90のサイズを低減できる。バッテリBTの温度は保護回路90によって監視されないため、他の回路(バッテリ監視回路100)では、より厳密な保護を行う。具体的に、バッテリ監視回路100は、バッテリBTの温度が高温であることに関する条件を、電源ユニット1を故障状態に遷移するための条件としている。これによって、電源ユニット1の安全性がいっそう向上する。バッテリ監視回路100は、バッテリBTの温度が低温であることに関する条件を、電源ユニット1をスリープ状態に遷移するための条件としている。バッテリBTの温度が低温であることは、自然に解消されることが見込まれるため、バッテリBTの放電又は充電の制限を解消するためにユーザによる動作を必要としない。これによって、ユーザの利便性が高まる。 The set of conditions monitored by the protection circuit 90 defined in column 508 does not include conditions related to the temperature of the battery BT. Thus, by not monitoring the temperature, the size of the protection circuit 90 can be reduced. Since the temperature of battery BT is not monitored by protection circuit 90, another circuit (battery monitoring circuit 100) provides more rigorous protection. Specifically, the battery monitoring circuit 100 uses the condition regarding the high temperature of the battery BT as the condition for transitioning the power supply unit 1 to the failure state. This further improves the safety of the power supply unit 1 . The battery monitoring circuit 100 uses the condition that the temperature of the battery BT is low as the condition for transitioning the power supply unit 1 to the sleep state. Since the low temperature of the battery BT is expected to resolve itself, no user action is required to resolve the restriction on discharging or charging the battery BT. This enhances user convenience.
 図11は、電源ユニット1がエラーと判定するバッテリBTの温度について整理した図である。上述のように、保護制御部200は、バッテリBTの温度が正常範囲外にある場合に、バッテリBTの充電と、バッテリBTからヒータHTへの電力供給との少なくとも一方を、少なくとも一時的に制限する。バッテリBTの温度の正常範囲は、以下に詳細に説明するように、電源ユニット1の動作状態によって異なる。 FIG. 11 is a diagram summarizing the temperature of the battery BT that the power supply unit 1 determines as an error. As described above, when the temperature of the battery BT is outside the normal range, the protection control unit 200 at least temporarily limits at least one of the charging of the battery BT and the power supply from the battery BT to the heater HT. do. The normal temperature range of battery BT varies depending on the operating state of power supply unit 1, as will be described in detail below.
 バッテリBTの温度の正常範囲の下限値は、バッテリBTが放電中であるか充電中であるかによって異なる。バッテリBTが放電中である場合に、バッテリBTの温度の正常範囲の下限値はー5℃である。バッテリBTの温度がー5℃以下になると、バッテリ監視回路100がエラー信号をMCU130に供給し、これに応じてMCU130が電源ユニット1をスリープ状態に遷移する。一方、バッテリBTが充電中である場合に、バッテリBTの温度の正常範囲の下限値は0℃である。バッテリBTの温度が0℃以下になると、MCU130が電源ユニット1をリセット待機状態に遷移する。コネクタUSBCにUSBプラグを介して外部機器が接続されているが、バッテリBTへの充電が行われていない間も、バッテリBTの温度の正常範囲の上限値及び下限値は、充電中と同じであってもよい。 The lower limit of the normal temperature range of the battery BT differs depending on whether the battery BT is discharging or charging. When the battery BT is discharging, the lower limit of the normal temperature range of the battery BT is -5°C. When the temperature of the battery BT becomes −5° C. or lower, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the sleep state accordingly. On the other hand, when battery BT is being charged, the lower limit of the normal temperature range of battery BT is 0.degree. When the temperature of the battery BT becomes 0° C. or lower, the MCU 130 transitions the power supply unit 1 to the reset standby state. Although an external device is connected to the connector USBC via a USB plug, even while the battery BT is not being charged, the upper and lower limits of the normal temperature range of the battery BT are the same as during charging. There may be.
 このように、保護制御部200は、バッテリBTの充電を開始する際に、バッテリBTの温度の正常範囲の下限値を-5℃から0℃に上昇する。バッテリBTの充電時にバッテリBTが低温であると、電析が生じやすくなる。電析とは、酸化還元反応によって活物質である金属酸化物が金属イオン化したものが、負極表面に堆積し、金属層を形成する現象である。バッテリBTの充電を開始する際にバッテリBTの温度の正常範囲の下限値を上昇することによって、電析の発生を抑制しやすくなる。バッテリBTの充電を開始する際とは、電源ユニット1のUSBコネクタUSBCにUSBプラグを介して外部機器が接続されてから、バッテリBTへ電力が安定的に供給されるまでの任意の時点であってもよい。 Thus, the protection control unit 200 raises the lower limit of the normal temperature range of the battery BT from -5°C to 0°C when charging the battery BT is started. If the battery BT is at a low temperature during charging, electrodeposition is likely to occur. Electrodeposition is a phenomenon in which a metal oxide, which is an active material, is ionized by an oxidation-reduction reaction and deposits on the surface of a negative electrode to form a metal layer. By raising the lower limit of the normal range of the temperature of the battery BT when starting charging of the battery BT, it becomes easier to suppress the occurrence of electrodeposition. The time when charging of the battery BT is started is an arbitrary time from when an external device is connected to the USB connector USBC of the power supply unit 1 via a USB plug until power is stably supplied to the battery BT. may
 バッテリBTの温度の正常範囲の下限値は、バッテリBTの充電中に最大となる。このように、バッテリBTの放電中にバッテリBTの温度の正常範囲の下限値を低くすることによって、放電中にバッテリBTの温度が正常状態から過度に外れることを抑制できる。 The lower limit of the normal temperature range of the battery BT reaches its maximum while the battery BT is being charged. Thus, by lowering the lower limit of the normal range of the temperature of the battery BT during discharging of the battery BT, it is possible to prevent the temperature of the battery BT from excessively deviating from the normal state during discharging.
 バッテリBTの温度の正常範囲の上限値は、電源ユニット1の動作状態によって様々に異なる。電源ユニット1がスリープ状態である場合に、バッテリBTの温度の正常範囲の上限値は60℃である。バッテリBTの温度が60℃以上になると、バッテリ監視回路100がエラー信号をFF1に供給し、これに応じてFF1が電源ユニット1をリセット待機状態に遷移する。さらに、バッテリBTの温度が85℃以上になると、バッテリ監視回路100がエラー信号をMCU130に供給し、これに応じてMCU130が電源ユニット1を故障状態に遷移する。電源ユニット1が加熱待機状態である場合も、バッテリBTの温度の正常範囲の上限値は、電源ユニット1がスリープ状態である場合と同様である。 The upper limit of the normal temperature range of the battery BT varies depending on the operating state of the power supply unit 1. When the power supply unit 1 is in the sleep state, the upper limit of the normal temperature range of the battery BT is 60.degree. When the temperature of the battery BT reaches 60° C. or higher, the battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions the power supply unit 1 to the reset standby state. Furthermore, when the temperature of the battery BT reaches 85° C. or higher, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly. When the power supply unit 1 is in the heating standby state, the upper limit value of the normal temperature range of the battery BT is the same as when the power supply unit 1 is in the sleep state.
 電源ユニット1の起動時、すなわち電源ユニット1がスリープ状態から加熱待機状態への移行中である場合(図6AのステップS601~S603)に、バッテリBTの温度の正常範囲の上限値は51℃である。バッテリBTの温度が51℃以上になると、MCU130が電源ユニット1をスリープ状態に遷移する。さらに、バッテリBTの温度が60℃以上になると、バッテリ監視回路100がエラー信号をFF1に供給し、これに応じてFF1が電源ユニット1をリセット待機状態に遷移する。さらに、バッテリBTの温度が85℃以上になると、バッテリ監視回路100がエラー信号をMCU130に供給し、これに応じてMCU130が電源ユニット1を故障状態に遷移する。電源ユニット1が加熱待機状態から加熱状態への移行中である場合も、バッテリBTの温度の正常範囲の上限値は、電源ユニット1がスリープ状態から加熱待機状態への移行中である場合と同様である。 When the power supply unit 1 is activated, that is, when the power supply unit 1 is transitioning from the sleep state to the heating standby state (steps S601 to S603 in FIG. 6A), the upper limit of the normal temperature range of the battery BT is 51°C. be. When the temperature of the battery BT reaches 51° C. or higher, the MCU 130 transitions the power supply unit 1 to the sleep state. Furthermore, when the temperature of battery BT reaches 60° C. or higher, battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions power supply unit 1 to the reset standby state. Furthermore, when the temperature of the battery BT reaches 85° C. or higher, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly. Even when the power supply unit 1 is transitioning from the heating standby state to the heating state, the upper limit value of the normal range of the temperature of the battery BT is the same as when the power supply unit 1 is transitioning from the sleep state to the heating standby state. is.
 電源ユニット1が加熱状態である場合に、バッテリBTの温度の正常範囲の上限値は55℃である。バッテリBTの温度が55℃以上になると、MCU130が電源ユニット1をリセット待機状態に遷移する。さらに、バッテリBTの温度が60℃以上になると、バッテリ監視回路100がエラー信号をFF1に供給し、これに応じてFF1が電源ユニット1をリセット待機状態に遷移する。さらに、バッテリBTの温度が85℃以上になると、バッテリ監視回路100がエラー信号をMCU130に供給し、これに応じてMCU130が電源ユニット1を故障状態に遷移する。 When the power supply unit 1 is in a heated state, the upper limit of the normal temperature range of the battery BT is 55°C. When the temperature of the battery BT reaches 55° C. or higher, the MCU 130 transitions the power supply unit 1 to the reset standby state. Furthermore, when the temperature of battery BT reaches 60° C. or higher, battery monitoring circuit 100 supplies an error signal to FF1, and FF1 accordingly transitions power supply unit 1 to the reset standby state. Furthermore, when the temperature of the battery BT reaches 85° C. or higher, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly.
 電源ユニット1が充電中である場合に、バッテリBTの温度の正常範囲の上限値は55℃である。バッテリBTの温度が55℃以上になると、MCU130が電源ユニット1をリセット待機状態に遷移する。さらに、バッテリBTの温度が85℃以上になると、バッテリ監視回路100がエラー信号をMCU130に供給し、これに応じてMCU130が電源ユニット1を故障状態に遷移する。 When the power supply unit 1 is charging, the upper limit of the normal temperature range of the battery BT is 55°C. When the temperature of the battery BT reaches 55° C. or higher, the MCU 130 transitions the power supply unit 1 to the reset standby state. Furthermore, when the temperature of the battery BT reaches 85° C. or higher, the battery monitoring circuit 100 supplies an error signal to the MCU 130, and the MCU 130 transitions the power supply unit 1 to the failure state accordingly.
 このように、保護制御部200は、ヒータHTの加熱を開始する際に、バッテリBTの温度の正常範囲の上限値を、51℃から55℃に上昇する。ヒータHTの加熱中、すなわちバッテリBTからヒータHTへの電力の供給中は、バッテリBTの内部抵抗によってバッテリBTが発熱する。そのため、ヒータBTの加熱移行時の正常範囲の上限値を加熱中の上限値よりも低くすることによって、ヒータHTの加熱中にバッテリBTの温度が正常範囲を上回ることを抑制しやすくなる。換言すれば、ヒータHTの加熱中にバッテリBTの温度が正常範囲を上回ることが予期される場合は、ヒータHTの加熱を行わない。ヒータHTの加熱を開始する際とは、ヒータHTの加熱の指示を受けてから、ヒータHTが加熱された状態になるまでの任意の時点であってもよい。 Thus, the protection control unit 200 raises the upper limit of the normal range of the temperature of the battery BT from 51°C to 55°C when starting the heating of the heater HT. During heating of heater HT, that is, during supply of electric power from battery BT to heater HT, battery BT generates heat due to internal resistance of battery BT. Therefore, by setting the upper limit value of the normal range of the heater BT during heating transition to be lower than the upper limit value during heating, it becomes easier to suppress the temperature of the battery BT from exceeding the normal range during heating of the heater HT. In other words, when the temperature of battery BT is expected to exceed the normal range during heating of heater HT, heating of heater HT is not performed. The timing of starting heating of the heater HT may be an arbitrary point of time from when the instruction to heat the heater HT is received until the heater HT reaches a heated state.
 バッテリBTの正常範囲の上限値は、電源ユニット1がスリープ状態及び加熱待機状態である場合(すなわち、ヒータHTの加熱中以外の状態である場合)に最大(60℃)となる。上述のように、スリープ状態とは、ユーザがスライダ13を操作することに応じて発生する信号をMCU130が待機中である状態である。加熱待機状態とは、ユーザがスイッチSWを操作することに応じて発生する信号をMCU130が待機中である状態である。電源ユニット1がこれらの状態である場合に、バッテリBTの消費電力は少なく、バッテリBTの発熱量も小さい。そのため、これらの場合にバッテリBTの正常範囲の上限を加熱中と比較して高くすることによって、バッテリBTの温度に関する保護が過度に行われることを抑制できる。 The upper limit of the normal range of the battery BT is the maximum (60°C) when the power supply unit 1 is in the sleep state and heating standby state (that is, when the heater HT is in a state other than heating). As described above, the sleep state is a state in which the MCU 130 is waiting for a signal generated in response to the user's operation of the slider 13 . The heating standby state is a state in which the MCU 130 is waiting for a signal generated in response to the user's operation of the switch SW. When the power supply unit 1 is in these states, the power consumption of the battery BT is small and the amount of heat generated by the battery BT is also small. Therefore, by increasing the upper limit of the normal range of battery BT in these cases as compared to during heating, it is possible to suppress excessive protection regarding the temperature of battery BT.
 バッテリBTの充電を開始する際のバッテリBTの温度の正常範囲の下限値の上昇幅(すなわち、0℃ー(-5℃)=5℃)は、ヒータHTへの電力の供給を開始する際のバッテリBTの温度の正常範囲の上限値の上昇幅(すなわち、55℃ー51℃=4℃)よりも大きい。このように、充電時のバッテリBTの正常範囲の下限温度を厳しく設定することによって、電源ユニット1の安全性がいっそう向上する。 The amount of increase in the lower limit value of the normal temperature range of the battery BT when charging of the battery BT is started (that is, 0° C.-(-5° C.)=5° C.) of the upper limit of the normal temperature range of the battery BT (that is, 55° C.-51° C.=4° C.). Thus, by setting the lower limit temperature of the normal range of the battery BT during charging strictly, the safety of the power supply unit 1 is further improved.
 保護制御部200は、バッテリBTの温度が、正常状態の上限値よりも高い温度閾値(85℃)よりも高い場合に、電源ユニット1を故障状態に遷移する。バッテリBTが正常状態の上限値を超えたことによるエラー処理によってもバッテリBTの温度が上昇し続ける場合には、電源ユニット1に何らかの故障が発生したと考えらえる。そのため、バッテリBTの温度が、正常状態の上限値よりも高い温度閾値(85℃)を超えた場合に電源ユニット1を故障状態に遷移することによって、電源ユニット1の安全性を向上できる。 The protection control unit 200 transitions the power supply unit 1 to the failure state when the temperature of the battery BT is higher than the temperature threshold (85°C) higher than the upper limit of the normal state. If the temperature of the battery BT continues to rise even after the error processing due to the battery BT exceeding the upper limit value of the normal state, it is considered that some kind of failure has occurred in the power supply unit 1 . Therefore, the safety of the power supply unit 1 can be improved by transitioning the power supply unit 1 to the failure state when the temperature of the battery BT exceeds the temperature threshold (85° C.) higher than the upper limit value of the normal state.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the invention.
 本願は、2021年5月10提出の日本国特許出願特願2021-079743を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-079743 filed on May 10, 2021, and the entire contents thereof are incorporated herein.

Claims (10)

  1.  エアロゾル生成装置の電源ユニットであって、
     電源と、
     前記電源から供給される電力を消費してエアロゾル源を加熱するヒータが接続されるヒータコネクタと、
     前記電源から前記ヒータへの電力の供給の制御と、前記電源の状態の監視とを行う制御回路と、
     前記電源の状態を監視する電源監視回路と、を備え、
     前記電源監視回路は、前記電源の状態がエラー通知条件を満たす場合にエラー信号を前記制御回路に供給し、
     前記制御回路は、
      前記電源監視回路から前記エラー信号が供給されるのを待機する待機状態と、
      前記待機状態で動作中に前記電源監視回路から前記エラー信号が供給されたことに応じて遷移し、前記電源の状態を監視する監視状態と、で動作可能である、電源ユニット。
    A power supply unit for an aerosol generator,
    a power supply;
    a heater connector connected to a heater that consumes power supplied from the power supply to heat the aerosol source;
    a control circuit for controlling power supply from the power source to the heater and monitoring the state of the power source;
    a power supply monitoring circuit that monitors the state of the power supply,
    The power supply monitoring circuit supplies an error signal to the control circuit when the state of the power supply satisfies an error notification condition;
    The control circuit is
    a standby state waiting for the error signal to be supplied from the power supply monitoring circuit;
    A power supply unit that is operable in a monitoring state that transitions in response to the supply of the error signal from the power supply monitoring circuit during operation in the standby state and monitors the state of the power supply.
  2.  前記制御回路が前記待機状態で動作中に、前記電源監視回路は、前記電源の所定の物理量を第1周期で監視し、
     前記制御回路が前記監視状態で動作中に、前記制御回路は、前記電源の前記所定の物理量を第2周期で監視し、
     前記第1周期は前記第2周期よりも長い、請求項1に記載の電源ユニット。
    While the control circuit is operating in the standby state, the power supply monitoring circuit monitors a predetermined physical quantity of the power supply in a first cycle,
    While the control circuit is operating in the monitoring state, the control circuit monitors the predetermined physical quantity of the power supply in a second period;
    2. The power supply unit according to claim 1, wherein said first period is longer than said second period.
  3.  前記制御回路は、前記監視状態で動作中に前記電源の状態が所定の条件を満たす場合に、前記電源の充電と、前記電源から前記ヒータへの電力の供給との少なくとも一方を、少なくとも一時的に制限する、請求項1又は2に記載の電源ユニット。 The control circuit at least temporarily causes at least one of charging the power supply and supplying power from the power supply to the heater when the state of the power supply satisfies a predetermined condition during operation in the monitoring state. 3. The power supply unit of claim 1 or 2, wherein the power supply unit is limited to
  4.  前記制御回路は、前記監視状態で動作中に、前記電源監視回路を通じて前記電源の状態を取得する、請求項1乃至3の何れか1項に記載の電源ユニット。 The power supply unit according to any one of claims 1 to 3, wherein the control circuit acquires the state of the power supply through the power supply monitoring circuit while operating in the monitoring state.
  5.  前記電源監視回路は、前記制御回路が前記待機状態で動作中に、前記電源がn回連続して所定の状態となった場合に、前記エラー信号を前記制御回路に供給し、
     前記制御回路は、前記監視状態で動作中に、前記電源がm回連続して所定の状態となった場合に、前記電源の充電と、前記電源から前記ヒータへの電力の供給との少なくとも一方を、少なくとも一時的に制限し、
     前記mは、前記nよりも大きい、請求項1乃至4の何れか1項に記載の電源ユニット。
    The power supply monitoring circuit supplies the error signal to the control circuit when the power supply enters a predetermined state continuously n times while the control circuit is operating in the standby state,
    The control circuit performs at least one of charging the power supply and supplying power from the power supply to the heater when the power supply enters a predetermined state m consecutive times during operation in the monitoring state. at least temporarily, and
    5. The power supply unit according to any one of claims 1 to 4, wherein said m is greater than said n.
  6.  前記電源がm回連続して所定の状態となったと前記制御回路が判定するまでに要する時間は、前記電源がn回連続して所定の状態となったと前記電源監視回路が判定するまでに要する時間よりも短い、請求項5に記載の電源ユニット。 The time required for the control circuit to determine that the power supply has entered the predetermined state m consecutive times is the time required for the power supply monitoring circuit to determine that the power supply has entered the predetermined state for n consecutive times. 6. The power supply unit of claim 5, shorter than an hour.
  7.  前記電源監視回路は、前記電源の状態が第1条件集合の何れかの条件を満たす場合に前記エラー信号を前記制御回路に供給し、
     前記制御回路は、前記エラー信号の受信後に新たに取得した前記電源の状態に基づいて、第2条件集合の何れかの条件を満たすかどうかを判定する、請求項1乃至6の何れか1項に記載の電源ユニット。
    The power supply monitoring circuit supplies the error signal to the control circuit when the state of the power supply satisfies any condition of a first condition set;
    7. The control circuit according to any one of claims 1 to 6, wherein, based on the state of the power supply newly acquired after receiving the error signal, the control circuit determines whether or not any condition of the second condition set is satisfied. power supply unit described in .
  8.  前記第1条件集合は、前記第2条件集合で監視されない前記電源の物理量に関する条件を含む、請求項7に記載の電源ユニット。 8. The power supply unit according to claim 7, wherein said first condition set includes conditions relating to physical quantities of said power supply that are not monitored by said second condition set.
  9.  前記制御回路は、前記第2条件集合の何れかの条件を満たす場合に、前記電源ユニットを前記電源の充放電を永久に禁止する故障状態に遷移する、請求項7又は8に記載の電源ユニット。 9. The power supply unit according to claim 7, wherein said control circuit transitions said power supply unit to a failure state that permanently prohibits charging and discharging of said power supply when any condition of said second set of conditions is satisfied. .
  10.  前記第2条件集合は、前記電源の温度が上限温度よりも高いことに関する条件を含む、請求項7乃至9の何れか1項に記載の電源ユニット。 The power supply unit according to any one of claims 7 to 9, wherein the second condition set includes a condition regarding that the temperature of the power supply is higher than the upper limit temperature.
PCT/JP2021/043912 2021-05-10 2021-11-30 Power supply unit for aerosol generation device WO2022239280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079743 2021-05-10
JP2021-079743 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239280A1 true WO2022239280A1 (en) 2022-11-17

Family

ID=84028080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043912 WO2022239280A1 (en) 2021-05-10 2021-11-30 Power supply unit for aerosol generation device

Country Status (1)

Country Link
WO (1) WO2022239280A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082608A1 (en) * 2009-01-14 2010-07-22 ミツミ電機株式会社 Protecting monitor circuit, battery pack, secondary battery monitor circuit and protecting circuit
WO2012026537A1 (en) * 2010-08-27 2012-03-01 三洋電機株式会社 Power supply device
JP2013149606A (en) * 2011-12-19 2013-08-01 Dexerials Corp Protective element, protective element fabrication method, and battery module equipped with protective element
JP2016214258A (en) * 2010-04-30 2016-12-22 ローイック、インク. Electronic smoking tool
WO2019077709A1 (en) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 Inhalation component generation device, method for controlling inhalation component generation device, inhalation component generation system, and program
WO2019229955A1 (en) * 2018-05-31 2019-12-05 日本たばこ産業株式会社 Flavor generation device, method of controlling flavor generation device, and program
JP6865879B1 (en) * 2020-09-07 2021-04-28 日本たばこ産業株式会社 Aerosol generation system, aspirator controller, and power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082608A1 (en) * 2009-01-14 2010-07-22 ミツミ電機株式会社 Protecting monitor circuit, battery pack, secondary battery monitor circuit and protecting circuit
JP2016214258A (en) * 2010-04-30 2016-12-22 ローイック、インク. Electronic smoking tool
WO2012026537A1 (en) * 2010-08-27 2012-03-01 三洋電機株式会社 Power supply device
JP2013149606A (en) * 2011-12-19 2013-08-01 Dexerials Corp Protective element, protective element fabrication method, and battery module equipped with protective element
WO2019077709A1 (en) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 Inhalation component generation device, method for controlling inhalation component generation device, inhalation component generation system, and program
WO2019229955A1 (en) * 2018-05-31 2019-12-05 日本たばこ産業株式会社 Flavor generation device, method of controlling flavor generation device, and program
JP6865879B1 (en) * 2020-09-07 2021-04-28 日本たばこ産業株式会社 Aerosol generation system, aspirator controller, and power supply

Similar Documents

Publication Publication Date Title
US20240079893A1 (en) Power supply unit for aerosol generation device
WO2022239280A1 (en) Power supply unit for aerosol generation device
WO2022239279A1 (en) Power supply unit for aerosol generation device
WO2022239475A1 (en) Power source unit for aerosol generation device
WO2022239378A1 (en) Power supply unit for aerosol generation device
WO2022239472A1 (en) Power supply unit for aerosol generation device
WO2022239474A1 (en) Power supply unit for aerosol generation device
WO2022239473A1 (en) Power supply unit for aerosol generation device
WO2022239511A1 (en) Power supply unit for aerosol generation device
WO2022239510A1 (en) Power supply unit for aerosol generation device
WO2022239514A1 (en) Power supply unit of aerosol generation device
WO2022239065A1 (en) Power supply unit for aerosol generation device, and method therefor
WO2022239513A1 (en) Power supply unit for aerosol generation device
WO2022239509A1 (en) Power supply unit for aerosol generation device
WO2022239512A1 (en) Power supply unit for aerosol production device
EP4340163A1 (en) Power supply unit for aerosol generation device
WO2022239515A1 (en) Power supply unit for aerosol generation device
EP4340162A1 (en) Power supply unit for aerosol generation device
JP7104868B1 (en) Aerosol generator
EP4338626A1 (en) Power supply unit for aerosol generation device
JP7104262B1 (en) Power supply unit for aerosol generator
WO2022239409A1 (en) Power supply unit for aerosol generation apparatus
RU2774106C1 (en) Power supply unit for aerosol generating device
WO2022239372A1 (en) Power supply unit for aerosol generation device
RU2774104C1 (en) Power supply unit for aerosol generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE