WO2022239157A1 - Learning control device for rolling process - Google Patents

Learning control device for rolling process Download PDF

Info

Publication number
WO2022239157A1
WO2022239157A1 PCT/JP2021/018091 JP2021018091W WO2022239157A1 WO 2022239157 A1 WO2022239157 A1 WO 2022239157A1 JP 2021018091 W JP2021018091 W JP 2021018091W WO 2022239157 A1 WO2022239157 A1 WO 2022239157A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning coefficient
learning
rolling
sudden change
value
Prior art date
Application number
PCT/JP2021/018091
Other languages
French (fr)
Japanese (ja)
Inventor
真康 関本
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2022504721A priority Critical patent/JP7323051B2/en
Priority to CN202180035460.6A priority patent/CN115623864A/en
Priority to PCT/JP2021/018091 priority patent/WO2022239157A1/en
Publication of WO2022239157A1 publication Critical patent/WO2022239157A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a learning control device for rolling processes.
  • rolling mill for example, steel materials, aluminum, copper and other non-ferrous materials are rolled to produce metal strips used in the manufacture of automobiles and electrical products.
  • rolling mills rolling processes
  • hot thin plate rolling mills thick plate rolling mills
  • cold rolling mills cold rolling mills
  • rolling mills for rolling wire rods there are various types of rolling mills (rolling processes) such as hot thin plate rolling mills, thick plate rolling mills, cold rolling mills, and rolling mills for rolling wire rods.
  • control is performed so that the product after the completion of manufacturing matches the target values such as the desired dimensions, shape, and temperature that affect the mechanical properties.
  • control of the rolling process includes setting control and dynamic control.
  • the setting control using a mathematical model that reproduces the phenomena during the rolling process, the speed of the rolling mill, the flow rate of the cooling water, the gap between the rolling rolls, and other equipment are adjusted so that the material to be rolled has the desired dimensions and temperature.
  • a set value has been determined.
  • the mathematical model is often simplified from the viewpoint of reducing the computational load.
  • a learning coefficient is provided in the mathematical model, and by adjusting the learning coefficient based on the deviation between the predicted value and the actual value, the accuracy of prediction by the mathematical model is improved and stabilized.
  • the learning coefficient is determined by comparing the predicted value of the prediction target obtained from the actual value and the actual value of the prediction target.
  • the learning coefficient obtained here is the learning coefficient for the material to be rolled, that is, the instantaneous value.
  • the instantaneous value of the learning coefficient varies greatly due to factors omitted due to the simplification of the mathematical model, measurement errors of measuring instruments, and various disturbances in the rolling process. Therefore, the instantaneous value of the learning coefficient is applied as an update value after being smoothed.
  • the updated value of the learning coefficient is generally determined based on the rolling conditions, which are processing conditions such as product target thickness and width, temperature, material composition, rolling reduction, and number of processing passes. , which are called “cells”).
  • the learning control device for the rolling process can acquire appropriate learning coefficients corresponding to the rolling conditions by using a table classified according to the rolling conditions. In this way, the rolling process learning control device uses an appropriate learning coefficient to improve the prediction accuracy of the rolling phenomenon by the mathematical model and to ensure rolling stability.
  • learning control using a table classified by rolling conditions has the problem that it is difficult to follow chronological changes in the rolling process. For example, even if the learning coefficient in the table that can be handled in terms of operation is sufficiently updated, if there is a cell that has not been rolled under the relevant rolling conditions for a while, if the rolling process changes, the learning coefficient will not be appropriate. Therefore, there is a possibility that the prediction accuracy may be remarkably lowered under the rolling conditions.
  • Patent Document 2 For this problem, for example, a method disclosed in Patent Document 2 has been proposed.
  • a time-series learning coefficient that compensates for an error caused by a time-series change included in the deviation between a predicted value and an actual value by a mathematical model is separated from a learning coefficient corresponding to the rolling conditions.
  • the time-series change here means a behavior that changes linearly, such as the influence of reduction in roll diameter due to wear caused by rolling friction of rolling rolls. According to this method, it is possible to appropriately obtain the learning coefficient for each rolling condition excluding such chronological changes in the rolling process.
  • Prediction errors in setting calculations which are one of the causes of hot rolling quality defects, include factors such as mechanical errors and measurement errors, in addition to prediction errors in mathematical models that represent rolling material deformation characteristics.
  • mechanical errors and measurement errors may occur suddenly due to equipment failure, roll change, repair/replacement, poor calibration, operator's erroneous operation, or change in weather conditions.
  • the present invention has been made to solve the above problems, and provides a learning control device for a rolling process that can correct subsequent learning even if an error factor occurs due to sudden fluctuations. for the purpose.
  • a learning control device for a rolling process updates learning coefficients of a mathematical model used to calculate set values for a rolling process, using a learning coefficient table configured by a plurality of cells classified according to rolling conditions.
  • a prediction value calculation unit for calculating a prediction value based on actual values measured in the rolling process; and a prediction value calculated by the prediction value calculation unit.
  • an instantaneous value calculating unit for calculating an instantaneous value of the learning coefficient based on the difference from the actual value of the rolling process; the instantaneous value of the learning coefficient calculated by the instantaneous value calculating unit; an updating unit for calculating an updated value of the learning coefficient based on the previous value of the corresponding cell and updating the learning coefficient of the cell to which the rolling condition of the learning coefficient table corresponds; and the learning coefficient calculated by the instantaneous value calculating unit.
  • the point of occurrence of the sudden change in the learning coefficient is specified, and the time before and after the occurrence of the sudden change of the learning coefficient is determined.
  • a sudden change detection unit that detects a deviation in the level of the instantaneous value of the learning coefficient in the rolling information database as a sudden change component of the learning coefficient; and a re-updating unit for re-updating the learning coefficient of the learning coefficient table by correction based on the sudden change component of the learning coefficient.
  • the learning control device for a rolling process further includes a notification unit that notifies the necessity of maintenance as an event when the sudden change detection unit identifies the point in time when the sudden change in the learning coefficient occurs. .
  • the re-updating unit performs maintenance that becomes an event in the rolling information database after the sudden change detection unit identifies the point in time when the sudden change in the learning coefficient occurs. If there is no date and time history, based on the instantaneous value of the learning coefficient in rolling after the occurrence of the sudden change in the learning coefficient, the sudden change component of the learning coefficient, and the previous value of the learning coefficient of the cell based on the rolling conditions of the learning coefficient table, Re-update the learning coefficients in the learning coefficient table.
  • FIG. 4 is a diagram exemplifying data stored in a rolling information database
  • FIG. FIG. 4 is a diagram illustrating data stored in a learning coefficient table and an event-by-event learning coefficient table
  • 6 is a flowchart illustrating processing performed by a sudden change detection unit
  • FIG. 10 is a diagram exemplifying a result of specifying and detecting a sudden change in a learning coefficient by a sudden change detection unit
  • (a) is a diagram exemplifying a result of change point detection based on a change in an instantaneous value of a learning coefficient.
  • FIG. 7 is a diagram illustrating the configuration of a rolling process learning control device according to a second embodiment
  • FIG. 1 is a diagram illustrating the configuration of a rolling process learning control device 1 according to the first embodiment.
  • the learning control device 1 has a function as a computer equipped with a CPU and a memory (not shown). It is a device that controls the rolling process.
  • the learning control device 1 updates and saves the learning coefficients of the mathematical model used for calculating the set values for the rolling process, using a learning coefficient table composed of a plurality of cells classified according to the rolling conditions, and performs the rolling process.
  • the learning control device 1 has a storage unit 2, a learning unit 3, a setting calculation unit 4, and a learning coefficient re-updating unit 5, for example.
  • the storage unit 2 is a device that stores, for example, a rolling information database (DB) 20, a learning coefficient table 22, and an event-by-event learning coefficient table 24.
  • DB rolling information database
  • the rolling information database 20 stores, for each rolled material, the manufacturing number, manufacturing date and time, and rolling conditions, as well as the instantaneous value and previous value of the learning coefficient of the cell to be updated, the updated value, and , is a database that stores coordinate information of cells based on the rolling conditions of the learning coefficient table.
  • the rolling information database 20 includes production date information (or the production number of the rolled material) that identifies the rolled material, a history of event occurrence dates such as maintenance, periodic inspection, or equipment replacement for the rolling process, and target rolling phenomena. You may save the actual value etc. in the rolling process used at the time of prediction.
  • the learning coefficient table 22 is composed of a plurality of cells divided by rolling conditions, and is a table that records (saves) learning coefficients in cells corresponding to the rolling conditions.
  • the updated value of the learning coefficient is obtained using the smoothed instantaneous value of the learning coefficient.
  • the updated value of the learning coefficient is calculated by the following formula (1).
  • the coordinates of the cell in the learning coefficient table 22 are described as two variables here, the number of variables does not depend on this. That is, for example, when steel grades are used as classifications in addition to classifications of product strip target width values and product strip thickness target values, the coordinates of the cell are determined by three variables.
  • the obtained update value of the learning coefficient is recorded so as to update the learning coefficient of the update target cell in the learning coefficient table 22 .
  • the rolling information database 20 records the cell coordinate information for the rolling conditions in the learning coefficient table 22 , the previous value of the learning coefficient, and the actual value used when calculating the predicted value of the prediction target.
  • multiple cells adjacent to the cell to be updated may be updated at the same time to promote updating of the learning coefficient table 22 as a whole.
  • the learning coefficients of adjacent cells may be updated as shown in Equation (2) below.
  • the learning coefficients recorded in the learning coefficient table 22 are copied to the event-by-event learning coefficient table 24 for each event such as maintenance such as regular inspection of equipment and equipment replacement. That is, the configuration of the event-by-event learning coefficient table 24 is the same as the configuration of the learning coefficient table 22 shown in FIG.
  • the learning unit 3 (FIG. 1) is a device having a predicted value calculating unit 30, an instantaneous value calculating unit 32, and an updating unit 34.
  • the predicted value calculation unit 30 calculates a predicted value to be predicted based on the actual values measured in the rolling process for the mathematical model used for the setting calculation, and outputs the calculated value to the instantaneous value calculation unit 32 .
  • the instantaneous value calculation unit 32 calculates the instantaneous value of the learning coefficient based on the actual value to be predicted, outputs the calculated instantaneous value to the updating unit 34, and stores the instantaneous value together with the rolling conditions in the rolling information database 20. Save to For example, the instantaneous value calculator 32 calculates the instantaneous value of the learning coefficient based on the difference between the predicted value calculated by the predicted value calculator 30 and the actual value of the rolling process.
  • the updating unit 34 calculates updated values of the learning coefficients based on the instantaneous values calculated by the instantaneous value calculating unit 32, and outputs the calculated updated values to the rolling information database 20 and the learning coefficient table 22. For example, the updating unit 34 updates the learning coefficient based on the instantaneous value of the learning coefficient calculated by the instantaneous value calculating unit 32 and the learning coefficient (previous value) of the update target cell to which the rolling condition in the learning coefficient table 22 corresponds. A value is calculated, and the learning coefficient of the cell corresponding to the rolling condition in the learning coefficient table 22 is updated.
  • the setting calculation unit 4 has a learning coefficient reading unit 40 and a setting calculation unit 42, and is a device that determines setting values for each piece of equipment using a mathematical model that reproduces the phenomenon of the rolling process.
  • the learning coefficient reading unit 40 reads the learning coefficient of the cell corresponding to the rolling condition in the learning coefficient table 22 and outputs it to the setting calculation unit 42 in order to improve the prediction accuracy.
  • the setting calculation unit 42 corrects the setting value for each piece of equipment using the learning coefficient output by the learning coefficient reading unit 40, and outputs the corrected setting value to each piece of equipment.
  • the learning coefficient re-updating unit 5 includes a sudden change detection unit 50, a determination unit 52, and a re-updating unit 54, detects a sudden change in the learning coefficient, specifies the time of occurrence, calculates the sudden change component, After the sudden change of the learning coefficient occurs, the learning coefficient stored in the learning coefficient table 22 is corrected using the sudden change component (learning coefficient sudden change component).
  • the sudden change detection unit 50 has a change point detection function for detecting a sudden change in the learning coefficient based on the instantaneous value of the learning coefficient stored in the rolling information database 20.
  • the point of occurrence of the sudden change is identified, and the deviation of the level of the instantaneous value of the learning coefficient before and after the point of occurrence of the sudden change is calculated as the sudden change component of the learning coefficient.
  • FIG. 4 is a flowchart illustrating processing performed by the sudden change detection unit 50.
  • the sudden change detection unit 50 acquires the instantaneous values of the learning coefficients corresponding to the rolling conditions I and J from the rolling information database 20 (S100).
  • the sudden change detection unit 50 determines whether or not the number of acquired instantaneous value data has reached N (S102). is reached (S102: Yes), the process proceeds to S104.
  • the sudden change detection unit 50 acquires the instantaneous values of the learning coefficients for the rolling number N from the rolling information database 20 over the past. At this time, the sudden change detection unit 50 may acquire the instantaneous values of the learning coefficients not only for one section corresponding to the rolling condition, but also for adjacent sections.
  • the condition for acquiring the instantaneous value of the learning coefficient is expressed as the following formula (3).
  • the rolling number N from which the sudden change detection unit 50 acquires the instantaneous value of the learning coefficient includes about several hundred rolling rolls past the event occurrence point nE .
  • the acquisition conditions are the relevant rolling conditions and their adjacent divisions. This is for time-series analysis of the learning coefficients of the same level when the learning coefficients of the sections that are not adjacent to the rolling conditions are completely different values. If the learning coefficients are at the same level regardless of the rolling conditions, the sudden change detection unit 50 may acquire all the learning coefficients in chronological order.
  • the sudden change detection unit 50 Based on the instantaneous value of the learning coefficient thus obtained, the sudden change detection unit 50 detects a sudden change in the learning coefficient.
  • the sudden change detection unit 50 uses a general change point detection method to identify the presence or absence of a sudden change in the learning coefficient and the point in time when it occurs.
  • Methods of detecting change points include, for example, a method using maximum likelihood and least squares method, a method using cumulative sum, and the like.
  • the change point detection method using the maximum likelihood and the least squares method is that when the transition of the instantaneous value of the learning coefficient of the rolling condition and its adjacent conditions is divided into ⁇ th intervals, the likelihood in the interval before and after ⁇ is This is a method of finding the maximum or minimum point in time.
  • ⁇ 1, ⁇ 2, and ⁇ are determined so as to minimize the likelihood U by the method of least squares as follows. Although the residual sum of squares is used as the likelihood here, it is not limited to this. Note that yk indicates the k -th ZCURRENT.
  • the change point detection method using the cumulative sum accumulates the degree of change between numerical values along time or along the data group arranged in chronological order, and determines an abnormality when the cumulative sum exceeds the threshold. method.
  • the degree of change Sc is calculated by the following formula (10).
  • the time of change is the time when the absolute value of Sc(n) is maximum, as shown in the following equation (11).
  • the learning coefficient sudden change component (difference) in this method is calculated as shown in the following formula (12).
  • the sudden change detection unit 50 acquires the point of change of the learning coefficient and the deviation of the average value of the learning coefficients before and after the point of change (S104: FIG. 4).
  • FIG. 6 is a diagram illustrating the results of change point detection using the data of the hot rolling plant according to the method described above.
  • FIG. 6(a) is a diagram illustrating the result of performing change point detection based on changes in the instantaneous value (average value) of the learning coefficient.
  • FIG. 6B is a diagram exemplifying a likelihood trend in a change point detection method using maximum likelihood and least squares method.
  • FIG. 6C is a diagram exemplifying the trend of the absolute value of the degree of change in change point detection using the cumulative sum. Note that the object of change point detection is the instantaneous value of the learning coefficient in the mathematical model for product width prediction.
  • FIG. 6(a) about 10,000 learning coefficients, including not only one section corresponding to arbitrary rolling conditions but also adjacent sections, are acquired and the trend is shown. In other words, FIG. 6(a) shows that the learning coefficient suddenly fluctuates near the center of the trend.
  • the minimum likelihood value in the change point detection method using the maximum likelihood and the least squares method and the change in change point detection using the cumulative sum The maximum absolute value of the degree appears at the same time point. They coincide with the times when sudden fluctuations in the learning coefficient appear, and appropriately capture the sudden change times.
  • the sudden change detection unit 50 identifies the time point at which the sudden change in the learning coefficient occurs based on the instantaneous value of the learning coefficient stored in the rolling information database 20, and performs learning before and after the time point at which the sudden change in the learning coefficient occurs.
  • the deviation of the level of the instantaneous value of the coefficient is detected as the sudden change component of the learning coefficient.
  • the determination unit 52 determines whether or not the sudden change component of the learning coefficient at the change point detected by the sudden change detection unit 50 is greater than or equal to the sudden change determination threshold value ⁇ .
  • the re-updating unit 54 re-updates the learning coefficients in the learning coefficient table 22 when the determining unit 52 determines that the sudden change component of the learning coefficient is equal to or greater than the sudden change determination threshold value ⁇ . For example, the re-update unit 54 re-updates the learning coefficient after the sudden change time based on the change time detected by the sudden change detection unit 50 and the sudden change component of the learning coefficient. At this time, the re-updating unit 54 separately stores the sudden change component of the learning coefficient.
  • FIG. 7 is a flowchart showing a specific example of processing performed by the re-update unit 54.
  • the re-update unit 54 acquires the learning coefficient table 22 from the storage unit 2 (S200).
  • the re-update unit 54 acquires the instantaneous value of the learning coefficient and the cell coordinate information for the rolling conditions in the learning coefficient table 22 from the rolling information database 20 (S202).
  • the re-update unit 54 determines whether or not the instantaneous value of the learning coefficient is the instantaneous value after the sudden change based on the event occurrence date and time history (S204). If the instantaneous value is after the sudden change (S204: Yes), the re-update unit 54 proceeds to the process of S206, and if the instantaneous value is not after the sudden change (S204: No), proceeds to the process of S208.
  • the re-updating unit 54 corrects the instantaneous value of the learning coefficient by adding the sudden change component of the learning coefficient, and calculates the updated value.
  • the re-updating unit 54 calculates an updated value using the instantaneous value of the learning coefficient.
  • the re-update unit 54 re-updates the corresponding cell of the learning coefficient table 22 using the learning coefficient stored in the event-by-event learning coefficient table 24 as the previous value (S210).
  • the update procedure performed by the re-update unit 54 satisfies the conditions shown in the following formula (13).
  • the re-updating unit 54 updates the learning coefficient by correction based on the instantaneous value of the learning coefficient stored in the rolling information database 20 after the occurrence of the sudden change in the learning coefficient specified by the sudden change detection unit 50 and the sudden change component of the learning coefficient. Re-update the learning coefficients in Table 22.
  • the learning coefficient re-updating unit 5 overwrites the learning coefficient table 22 with the re-updated learning coefficient of the event-by-event learning coefficient table 24 to correct the sudden change component of the learning coefficient.
  • FIG. 8 is a diagram illustrating the configuration of a rolling process learning control device 1a according to the second embodiment.
  • the learning control device 1a has a storage unit 2, a learning unit 3, a setting calculation unit 4, and a learning coefficient re-updating unit 5a.
  • the same reference numerals are given to the substantially same configuration as the learning control device 1 shown in FIG.
  • the learning control device 1a detects a sudden change in the learning coefficient, and when the learning coefficient is re-updated, notifies the operator of it and prompts maintenance. In addition, the learning control device 1a corrects the learning coefficient until the next event such as maintenance occurs when the maintenance is not carried out despite the fact that the maintenance is being urged.
  • the learning control device 1a also has a function of separately storing a history TN of the date and time when a sudden change in the learning coefficient was detected.
  • the learning coefficient re-update unit 5a includes a sudden change detection unit 50, a determination unit 52, a re-update unit 54, and a notification unit 56, detects a sudden change in the learning coefficient, identifies the time of occurrence, and detects the sudden change component. is calculated, and the sudden change component is corrected for the learning coefficient stored in the learning coefficient table 22 when maintenance is not performed after the occurrence of the sudden change of the learning coefficient.
  • the notification unit 56 has a function of notifying the operator of a sudden change in the learning coefficient detected by the sudden change detection unit 50. For example, when the learning coefficient suddenly fluctuates, the notification unit 56 outputs to a human-machine interface (not shown) for operation that maintenance such as equipment inspection and replacement is required. In addition, the notification unit 56 may make an alarm sound using an alarm sound generating device, or may make an announcement to the operator by another method that is easy for the operator to notice.
  • the notification unit 56 notifies the operator of the need for maintenance such as inspection and replacement of the equipment that will be the event when the sudden change detection unit 50 identifies the point in time when the sudden change in the learning coefficient occurs.
  • the learning control device 1a detects a sudden change in the learning coefficient in the calculation of the updated value of the learning coefficient after the next rolled material, determines whether or not maintenance has been performed since then, and determines whether or not the maintenance has been performed. If not, the instantaneous value of the learning coefficient is corrected based on the sudden change component of the learning coefficient, and the updated value of the learning coefficient is obtained as follows.
  • the re-updating unit 54 detects the sudden change in the learning coefficient.
  • the learning coefficient in the learning coefficient table 22 is re-updated based on the instantaneous value of the learning coefficient in rolling after the occurrence of , the sudden change component of the learning coefficient, and the previous value of the learning coefficient of the cell based on the rolling conditions in the learning coefficient table 22. .
  • the learning control device 1a updates the learning coefficient table 22 based on the updated value of the learning coefficient. As a result, the learning control device 1a subsequently performs setting calculations using the learning coefficients of the same level.
  • the present invention even if an error factor occurs due to sudden fluctuations, subsequent learning can be corrected. For example, according to the present invention, even if an abnormality due to a mechanical factor such as equipment calibration failure in maintenance such as periodic inspection of equipment or equipment replacement, or continuous measurement abnormality due to instrument abnormality occurs, before the abnormality occurs Based on the saved learning factors, the learning factors can be modified. By minimizing the influence of the abnormality, the present invention reduces continuous deterioration of product accuracy and enables stable rolling.
  • the learning control devices 1 and 1a periodically analyze the data of a large number of rolled coils, detect sudden changes in prediction errors (learning values) due to mechanical factors and measurement abnormalities, and specify the points in time. Then, the learning control devices 1 and 1a restore the values stored immediately before the sudden change in the learning table based on the separately stored learning table for each event such as periodic repair or roll change, and Using the learning value difference as an offset, the learning values from the sudden change to the current rolled material are updated again.
  • learning values prediction errors
  • Each function provided in the learning control devices 1 and 1a may be partially or wholly configured by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Feedback Control In General (AREA)

Abstract

The learning control device according to an embodiment of the present invention calculates a predicted value on the basis of an actual value measured in a rolling process, calculates an instantaneous value of a learning rate on the basis of the difference between the calculated predicted value and the actual value of the rolling process, calculates an updated value of the learning rate on the basis of the instantaneous value of the learning rate and a previous value of a cell having corresponding rolling conditions in a learning rate table, updates the learning rate of the cell having the corresponding rolling conditions in the learning rate table, identifies an occurrence time of a sudden change in the learning rate on the basis of the instantaneous value of the learning rate stored in a rolling information database, detects a deviation from a standard of the instantaneous value of the learning rate before and after the occurrence time of the sudden change in the learning rate as a learning rate sudden change component, and re-updates the learning rate in the learning table by a correction based on the instantaneous value of the learning rate stored in the rolling information database at and after the identified occurrence time of the sudden change of the learning rate and on the learning rate sudden change component.

Description

圧延プロセスの学習制御装置Learning controller for rolling process
 本発明は、圧延プロセスの学習制御装置に関する。 The present invention relates to a learning control device for rolling processes.
 圧延工場では、例えば鉄鋼材料、アルミニウム、銅などの非鉄材料を圧延加工し、自動車や電機製品等の製造に使用される金属帯を生産している。また、圧延加工を行う工程(圧延プロセス)には、熱間薄板圧延機、厚板圧延機、冷間圧延機、又は線材を圧延する圧延機などの様々なタイプのものがある。 At the rolling mill, for example, steel materials, aluminum, copper and other non-ferrous materials are rolled to produce metal strips used in the manufacture of automobiles and electrical products. In addition, there are various types of rolling mills (rolling processes) such as hot thin plate rolling mills, thick plate rolling mills, cold rolling mills, and rolling mills for rolling wire rods.
 そして、いずれの圧延プロセスにおいても、製造完了後の製品を、所望の寸法や形状、及び機械的特性を左右する温度等の目標値に一致させるように制御が行われている。一般的に、圧延プロセスの制御には、設定制御とダイナミック制御がある。 In any rolling process, control is performed so that the product after the completion of manufacturing matches the target values such as the desired dimensions, shape, and temperature that affect the mechanical properties. Generally, the control of the rolling process includes setting control and dynamic control.
 設定制御では、圧延プロセス間の現象を再現した数式モデルを用いて、被圧延材が所望の寸法や温度となるように、圧延機の速度や、冷却水の流量、圧延ロール間隙など各設備の設定値が決定されている。ここでは、計算負荷軽減の観点から、数式モデルは簡素化されていることが多い。 In the setting control, using a mathematical model that reproduces the phenomena during the rolling process, the speed of the rolling mill, the flow rate of the cooling water, the gap between the rolling rolls, and other equipment are adjusted so that the material to be rolled has the desired dimensions and temperature. A set value has been determined. Here, the mathematical model is often simplified from the viewpoint of reducing the computational load.
 そのため、数式モデルにより計算された対象とする圧延現象の予測値と、設備内に備え付けられた計測器により測定された実績値との間で偏差が生じることがある。予測値と実績値の偏差は、製品目標寸法及び温度の誤差として現れるため、製品が品質保証の許容範囲外の不良品になる原因となる。 Therefore, there may be a deviation between the predicted value of the target rolling phenomenon calculated by the mathematical model and the actual value measured by the measuring instrument installed in the facility. The deviation between the predicted value and the actual value appears as an error in the product target size and temperature, which causes the product to become a defective product outside the allowable range of quality assurance.
 さらに、近年の、製品仕様への要求の高度化、多様化もあり、製品品質保証に厳しい管理が求められているため、数式モデルの予測精度の向上と安定化が求められている。 Furthermore, in recent years, the demands for product specifications have become more sophisticated and diversified, and strict control is required for product quality assurance.
 また、圧延プロセス制御では、数式モデルに学習係数を設け、予測値と実績値の偏差に基づいて学習係数を調整することにより、数式モデルによる予測の精度を向上させ、安定化させている。 In addition, in rolling process control, a learning coefficient is provided in the mathematical model, and by adjusting the learning coefficient based on the deviation between the predicted value and the actual value, the accuracy of prediction by the mathematical model is improved and stabilized.
 一般的に、数式モデルにおける変数には、実績値から得られる予測対象の予測値と、予測対象の実績値との比較により、学習係数が決定される。ここで得られた学習係数は、当該被圧延材に対する学習係数、すなわち、瞬時値である。 In general, for the variables in the mathematical model, the learning coefficient is determined by comparing the predicted value of the prediction target obtained from the actual value and the actual value of the prediction target. The learning coefficient obtained here is the learning coefficient for the material to be rolled, that is, the instantaneous value.
 また、数式モデルの簡素化により省かれた要因、計測器の計測誤差、及び圧延プロセス内の種々の外乱等により、学習係数の瞬時値は、ばらつきが大きくなっている。そのため、学習係数の瞬時値を平滑化した後に更新値として適用することが行われている。 In addition, the instantaneous value of the learning coefficient varies greatly due to factors omitted due to the simplification of the mathematical model, measurement errors of measuring instruments, and various disturbances in the rolling process. Therefore, the instantaneous value of the learning coefficient is applied as an update value after being smoothed.
 学習係数の更新値は、一般的に、製品目標厚や幅、温度、材料の組成、圧下率及び加工パス数などの加工条件である圧延条件に基づいて分けられた学習テーブルにおける該当区分(以下、これを「セル」と呼ぶ)に記録される。 The updated value of the learning coefficient is generally determined based on the rolling conditions, which are processing conditions such as product target thickness and width, temperature, material composition, rolling reduction, and number of processing passes. , which are called “cells”).
 つまり、圧延プロセスの学習制御装置は、圧延条件により区分されたテーブルを用いることによって、圧延条件に対応する適切な学習係数を取得することができる。このように、圧延プロセスの学習制御装置は、適切な学習係数を使用することにより、数式モデルによる圧延現象の予測精度を向上させるとともに、圧延の安定性を確保している。 In other words, the learning control device for the rolling process can acquire appropriate learning coefficients corresponding to the rolling conditions by using a table classified according to the rolling conditions. In this way, the rolling process learning control device uses an appropriate learning coefficient to improve the prediction accuracy of the rolling phenomenon by the mathematical model and to ensure rolling stability.
 また、単純に圧延条件に対して該当するテーブル内のセル1つの学習係数を更新する場合であっても、操業上対応し得るテーブル内のセルすべての学習係数を十分に更新して収束させるためには多量の圧延実績が必要となる。 In addition, even when simply updating the learning coefficient of one cell in the table corresponding to the rolling conditions, in order to sufficiently update and converge the learning coefficients of all the cells in the table that can be handled in terms of operation. requires a large amount of rolling experience.
 対策として、例えば特許文献1に記載されたように、圧延条件に対して該当するテーブル内のセル1つの学習係数を更新するときに、圧延条件が似たセルの学習係数も同時に更新するという方法が知られている。ここでは、該当するセルに隣接する複数のセルを更新する。 As a countermeasure, for example, as described in Patent Document 1, when updating the learning coefficient of one cell in the table corresponding to the rolling condition, the learning coefficient of the cell with similar rolling conditions is also updated at the same time. It has been known. Here, multiple cells adjacent to the relevant cell are updated.
 この方法によれば、より少ない圧延実績により、十分に学習係数を更新することができるため、未だ圧延実績のない圧延条件であっても、予測精度の急低下を防止し、圧延性の安定を確保することができる。 According to this method, it is possible to sufficiently update the learning coefficient with a smaller number of rolling records. can be secured.
 一方、係る圧延条件により区分されたテーブルを用いた学習制御では、圧延プロセスの時系列的変化に追従しにくいという問題がある。例えば、操業上対応し得るテーブル内の学習係数を十分に更新したとしても、しばらくの間該当の圧延条件における圧延実績がなかったセルがあった場合、圧延プロセスが変化すると、学習係数が適切でないため、当該圧延条件で予測精度が著しく低下する恐れがある。 On the other hand, learning control using a table classified by rolling conditions has the problem that it is difficult to follow chronological changes in the rolling process. For example, even if the learning coefficient in the table that can be handled in terms of operation is sufficiently updated, if there is a cell that has not been rolled under the relevant rolling conditions for a while, if the rolling process changes, the learning coefficient will not be appropriate. Therefore, there is a possibility that the prediction accuracy may be remarkably lowered under the rolling conditions.
 この問題に対して、例えば、特許文献2に開示されている方法による対応が提案されている。例えば、特許文献2には、数式モデルによる予測値と実績値との偏差に含まれる時系列的な変化により生ずる誤差を補償する時系列学習係数と、当該圧延条件に対応する学習係数とを分離し、これら2種類の学習係数に基づいて予測値を修正することが提案されている。 For this problem, for example, a method disclosed in Patent Document 2 has been proposed. For example, in Patent Document 2, a time-series learning coefficient that compensates for an error caused by a time-series change included in the deviation between a predicted value and an actual value by a mathematical model is separated from a learning coefficient corresponding to the rolling conditions. However, it is proposed to modify the predicted value based on these two types of learning coefficients.
 ここでいう時系列的な変化とは、例えば、圧延ロールの圧延摩擦で生じる摩耗によるロール径の減少の影響など、線形的に変化する挙動を意味する。この方法によれば、係る時系列的な圧延プロセスの変化を除いた圧延条件毎の学習係数を、適切に得ることができる。 The time-series change here means a behavior that changes linearly, such as the influence of reduction in roll diameter due to wear caused by rolling friction of rolling rolls. According to this method, it is possible to appropriately obtain the learning coefficient for each rolling condition excluding such chronological changes in the rolling process.
日本特開平6-259107号公報Japanese Patent Laid-Open No. 6-259107 日本特開平4-367901号公報Japanese Patent Laid-Open No. 4-367901
 熱延品質不良の一因である設定計算の予測誤差には、圧延材変形特性を表わす数式モデルの予測誤差の他、機械的誤差、計測誤差などの要因がある。このうち、機械的誤差、計測誤差については、機器故障、ロール替え、修理交換、校正不良、作業者の誤操作、又は気象条件の変化などに起因して、突発的に発生する場合がある。 Prediction errors in setting calculations, which are one of the causes of hot rolling quality defects, include factors such as mechanical errors and measurement errors, in addition to prediction errors in mathematical models that represent rolling material deformation characteristics. Of these, mechanical errors and measurement errors may occur suddenly due to equipment failure, roll change, repair/replacement, poor calibration, operator's erroneous operation, or change in weather conditions.
 しかし、圧延ライン上のセンサー等により測定された情報から、これらの突発的な誤差の要因を即座に判別することは極めて困難であり、誤差要因が生じてから数コイル~数十コイル程度を生産した後に誤差要因が特定される場合も多い。 However, it is extremely difficult to immediately determine the cause of these sudden errors from the information measured by the sensors on the rolling line, and several to several dozen coils are produced after the cause of the error occurs. In many cases, the error factors are identified after
 この場合、これら誤差要因が生じたときから特定されて適切な対処がなされるまでの間に、圧延ライン上のセンサー等により検出された設定計算の予測誤差は、数式モデルの予測誤差によるものとして学習される。 In this case, the prediction errors in the setting calculations detected by sensors, etc. on the rolling line between the time these error factors occur and the time they are identified and appropriate countermeasures are taken are assumed to be due to the prediction errors in the mathematical model. be learned.
 従来の1コイル毎の学習方法、及び、過去の時系列的な変化に基づく学習法においては、これらの異なる要因の誤差を数式モデルの予測誤差とみなして学習すると、本来の対象事象への数式モデル誤差の学習に対する外乱となり、学習係数が不正確に更新され、設定計算の予測精度が低下する可能性があった。 In the conventional learning method for each coil and the learning method based on past chronological changes, if the errors of these different factors are regarded as the prediction errors of the formula model and learned, the formula for the original target event There is a possibility that the model error becomes a disturbance to the learning, the learning coefficient is updated incorrectly, and the prediction accuracy of the setting calculation decreases.
 さらに、その間の不正確な学習結果は、圧延条件により区分された学習テーブルに逐次書き込まれるため、その影響は更新頻度の違いにより学習区分毎に異なり、ある程度学習が進んだ後に、誤差要因と、その影響が特定できたとしても、学習テーブルを修復することは困難である。つまり、不正確な学習結果が引き続き使用され、品質不良が生じる可能性があるという問題点があった。 Furthermore, since the inaccurate learning results during that time are sequentially written in the learning table classified by the rolling conditions, the influence differs for each learning division due to the difference in update frequency. Even if the effect could be identified, it would be difficult to repair the learning table. In other words, there is a problem that inaccurate learning results are continuously used, resulting in poor quality.
 本発明は、上記のような課題を解決するためになされたものであり、突発的な変動による誤差要因が生じても、その後の学習を修正することができる圧延プロセスの学習制御装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a learning control device for a rolling process that can correct subsequent learning even if an error factor occurs due to sudden fluctuations. for the purpose.
 本発明の一態様にかかる圧延プロセスの学習制御装置は、圧延条件により区分された複数のセルによって構成された学習係数テーブルにより、圧延プロセスに対する設定値の計算に用いる数式モデルの学習係数を更新しつつ保存し、圧延プロセスを制御する圧延プロセスの学習制御装置において、圧延プロセスにおける計測された実績値に基づいて予測値を算出する予測値算出部と、前記予測値算出部が算出した予測値と、圧延プロセスの実績値との差分に基づいて、学習係数の瞬時値を算出する瞬時値算出部と、前記瞬時値算出部が算出した学習係数の瞬時値と、前記学習係数テーブルの圧延条件が該当するセルの前回値とに基づいて学習係数の更新値を算出し、前記学習係数テーブルの圧延条件が該当するセルの学習係数を更新する更新部と、前記瞬時値算出部が算出した学習係数の瞬時値、学習係数の前回値、学習係数の更新値、圧延材を特定する日時情報、圧延条件、前記学習係数テーブルの圧延条件に基づくセルの座標、圧延プロセスにおける実績値、及び圧延プロセスに対するイベントの日時履歴を保存する圧延情報データベースと、前記圧延情報データベースが保存している学習係数の瞬時値に基づいて、学習係数の急変の発生時点を特定し、学習係数の急変の発生時点の前後における学習係数の瞬時値の水準の偏差を学習係数急変成分として検知する急変検知部と、前記急変検知部が特定した学習係数の急変の発生時点以降に前記圧延情報データベースが保存した学習係数の瞬時値と、前記学習係数急変成分とに基づく補正により、前記学習係数テーブルの学習係数を再更新する再更新部とを有することを特徴とする。 A learning control device for a rolling process according to an aspect of the present invention updates learning coefficients of a mathematical model used to calculate set values for a rolling process, using a learning coefficient table configured by a plurality of cells classified according to rolling conditions. a prediction value calculation unit for calculating a prediction value based on actual values measured in the rolling process; and a prediction value calculated by the prediction value calculation unit. , an instantaneous value calculating unit for calculating an instantaneous value of the learning coefficient based on the difference from the actual value of the rolling process; the instantaneous value of the learning coefficient calculated by the instantaneous value calculating unit; an updating unit for calculating an updated value of the learning coefficient based on the previous value of the corresponding cell and updating the learning coefficient of the cell to which the rolling condition of the learning coefficient table corresponds; and the learning coefficient calculated by the instantaneous value calculating unit. instantaneous value of , previous value of learning coefficient, updated value of learning coefficient, date and time information identifying rolling material, rolling conditions, cell coordinates based on rolling conditions in the learning coefficient table, actual values in rolling process, and rolling process Based on the rolling information database that stores the date and time history of events and the instantaneous value of the learning coefficient stored in the rolling information database, the point of occurrence of the sudden change in the learning coefficient is specified, and the time before and after the occurrence of the sudden change of the learning coefficient is determined. a sudden change detection unit that detects a deviation in the level of the instantaneous value of the learning coefficient in the rolling information database as a sudden change component of the learning coefficient; and a re-updating unit for re-updating the learning coefficient of the learning coefficient table by correction based on the sudden change component of the learning coefficient.
 また、本発明の一態様にかかる圧延プロセスの学習制御装置は、前記急変検知部が学習係数の急変の発生時点を特定したときに、イベントとなるメンテナンスの必要性を通知する通知部をさらに有する。 Further, the learning control device for a rolling process according to an aspect of the present invention further includes a notification unit that notifies the necessity of maintenance as an event when the sudden change detection unit identifies the point in time when the sudden change in the learning coefficient occurs. .
  また、本発明の一態様にかかる圧延プロセスの学習制御装置は、再更新部が、前記急変検知部が学習係数の急変の発生時点を特定したとき以降に、圧延情報データベースにイベントとなるメンテナンスの日時履歴がない場合、学習係数の急変の発生時点以降の圧延における学習係数の瞬時値、前記学習係数急変成分、及び前記学習係数テーブルの圧延条件に基づくセルの学習係数の前回値に基づいて、前記学習係数テーブルの学習係数を再更新する。 Further, in the rolling process learning control device according to an aspect of the present invention, the re-updating unit performs maintenance that becomes an event in the rolling information database after the sudden change detection unit identifies the point in time when the sudden change in the learning coefficient occurs. If there is no date and time history, based on the instantaneous value of the learning coefficient in rolling after the occurrence of the sudden change in the learning coefficient, the sudden change component of the learning coefficient, and the previous value of the learning coefficient of the cell based on the rolling conditions of the learning coefficient table, Re-update the learning coefficients in the learning coefficient table.
 本発明によれば、突発的な変動による誤差要因が生じても、その後の学習を修正することができる。 According to the present invention, subsequent learning can be corrected even if an error factor occurs due to sudden fluctuations.
第1実施形態にかかる圧延プロセスの学習制御装置の構成を例示する図である。It is a figure which illustrates the structure of the learning control apparatus of the rolling process concerning 1st Embodiment. 圧延情報データベースが保存するデータを例示する図である。4 is a diagram exemplifying data stored in a rolling information database; FIG. 学習係数テーブル及びイベント毎学習係数テーブルが保存するデータを例示する図である。FIG. 4 is a diagram illustrating data stored in a learning coefficient table and an event-by-event learning coefficient table; 急変検知部が行う処理を例示するフローチャートである。6 is a flowchart illustrating processing performed by a sudden change detection unit; 急変検知部が学習係数の急変を特定して検知した結果を例示する図である。FIG. 10 is a diagram exemplifying a result of specifying and detecting a sudden change in a learning coefficient by a sudden change detection unit; (a)は、学習係数の瞬時値の変化によって変化点検知を行った結果を例示する図である。(b)は、最尤度と最小二乗法を用いた変化点検知手法における尤度のトレンドを例示する図である。(c)は、累積和を用いた変化点検知における変化の度合いの絶対値のトレンドを例示する図である。(a) is a diagram exemplifying a result of change point detection based on a change in an instantaneous value of a learning coefficient. (b) is a diagram illustrating likelihood trends in a change point detection method using the maximum likelihood and the least squares method. (c) is a diagram exemplifying the trend of the absolute value of the degree of change in change point detection using the cumulative sum. 再更新部が行う処理の具体例を示すフローチャートである。9 is a flow chart showing a specific example of processing performed by a re-updating unit; 第2実施形態にかかる圧延プロセスの学習制御装置の構成を例示する図である。FIG. 7 is a diagram illustrating the configuration of a rolling process learning control device according to a second embodiment;
 以下に、図面を用いて圧延プロセスの学習制御装置の実施形態について説明する。図1は、第1実施形態にかかる圧延プロセスの学習制御装置1の構成を例示する図である。 An embodiment of a rolling process learning control device will be described below with reference to the drawings. FIG. 1 is a diagram illustrating the configuration of a rolling process learning control device 1 according to the first embodiment.
 学習制御装置1は、図示しないCPU及びメモリ等を備えたコンピュータとしての機能を有し、例えば鉄鋼材料、アルミニウム、銅などの非鉄材料を圧延加工する圧延機(設備)に対して、学習しつつ圧延プロセスを制御する装置である。 The learning control device 1 has a function as a computer equipped with a CPU and a memory (not shown). It is a device that controls the rolling process.
 そして、学習制御装置1は、圧延条件により区分された複数のセルによって構成された学習係数テーブルにより、圧延プロセスに対する設定値の計算に用いる数式モデルの学習係数を更新しつつ保存し、圧延プロセスを制御する。具体的には、学習制御装置1は、例えば記憶部2、学習部3、設定計算部4、及び学習係数再更新部5を有する。 Then, the learning control device 1 updates and saves the learning coefficients of the mathematical model used for calculating the set values for the rolling process, using a learning coefficient table composed of a plurality of cells classified according to the rolling conditions, and performs the rolling process. Control. Specifically, the learning control device 1 has a storage unit 2, a learning unit 3, a setting calculation unit 4, and a learning coefficient re-updating unit 5, for example.
 記憶部2は、例えば圧延情報データベース(DB)20、学習係数テーブル22、イベント毎学習係数テーブル24を記憶する装置である。 The storage unit 2 is a device that stores, for example, a rolling information database (DB) 20, a learning coefficient table 22, and an event-by-event learning coefficient table 24.
 圧延情報データベース20は、例えば図2に示したように、圧延材毎に、製造番号、製造日時、及び圧延条件とともに、更新対象となるセルの学習係数の瞬時値及び前回値、更新値、並びに、学習係数テーブルの圧延条件に基づくセルの座標情報を保存するデータベースである。 For example, as shown in FIG. 2, the rolling information database 20 stores, for each rolled material, the manufacturing number, manufacturing date and time, and rolling conditions, as well as the instantaneous value and previous value of the learning coefficient of the cell to be updated, the updated value, and , is a database that stores coordinate information of cells based on the rolling conditions of the learning coefficient table.
 また、圧延情報データベース20は、圧延材を特定する製造日時情報(又は圧延材の製造番号)、圧延プロセスに対するメンテナンス、定期点検又は機器交換などのイベント発生日時の履歴、及び、対象の圧延現象を予測するときに使用する圧延プロセスにおける実績値などを保存してもよい。 In addition, the rolling information database 20 includes production date information (or the production number of the rolled material) that identifies the rolled material, a history of event occurrence dates such as maintenance, periodic inspection, or equipment replacement for the rolling process, and target rolling phenomena. You may save the actual value etc. in the rolling process used at the time of prediction.
 学習係数テーブル22は、図3に示したように、圧延条件によって区分された複数のセルにより構成されており、圧延条件が該当するセルに学習係数を記録(保存)するテーブルである。 As shown in FIG. 3, the learning coefficient table 22 is composed of a plurality of cells divided by rolling conditions, and is a table that records (saves) learning coefficients in cells corresponding to the rolling conditions.
 上述したように、学習係数の瞬時値は、種々の外乱等により、ばらつきが大きい。よって、平滑化した学習係数の瞬時値を以て、学習係数の更新値を得ることとする。例えば、学習係数の更新値は、下式(1)によって計算される。 As described above, the instantaneous value of the learning coefficient varies greatly due to various disturbances. Therefore, the updated value of the learning coefficient is obtained using the smoothed instantaneous value of the learning coefficient. For example, the updated value of the learning coefficient is calculated by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、学習係数テーブル22内の当該セルの座標は、ここでは2変数として記述しているが、変数の数はこれに依らない。つまり、例えば、製品板幅目標値、製品板厚目標値の区分に加えて、鋼種を区分とする場合、3変数により当該セルの座標が決定される。 Although the coordinates of the cell in the learning coefficient table 22 are described as two variables here, the number of variables does not depend on this. That is, for example, when steel grades are used as classifications in addition to classifications of product strip target width values and product strip thickness target values, the coordinates of the cell are determined by three variables.
 得られた学習係数の更新値は、学習係数テーブル22内の更新対象のセルの学習係数を更新するように記録される。さらに、学習係数テーブル22の圧延条件に対するセルの座標情報や、学習係数の前回値、予測対象の予測値を計算するときに使用する実績値は、圧延情報データベース20に記録される。 The obtained update value of the learning coefficient is recorded so as to update the learning coefficient of the update target cell in the learning coefficient table 22 . Further, the rolling information database 20 records the cell coordinate information for the rolling conditions in the learning coefficient table 22 , the previous value of the learning coefficient, and the actual value used when calculating the predicted value of the prediction target.
 学習係数を更新する処理では、更新対象のセルに隣接する複数のセルを同時に更新し、学習係数テーブル22全体の更新を促進させてもよい。例えば、下式(2)に示したように、隣接するセルの学習係数を更新してもよい。 In the process of updating the learning coefficient, multiple cells adjacent to the cell to be updated may be updated at the same time to promote updating of the learning coefficient table 22 as a whole. For example, the learning coefficients of adjacent cells may be updated as shown in Equation (2) below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、学習係数テーブル22に記録された学習係数は、設備の定期点検及び機器交換などのメンテンナンス等のイベント毎に、イベント毎学習係数テーブル24へコピーされる。つまり、イベント毎学習係数テーブル24の構成は、図3に示した学習係数テーブル22の構成と同様である。 Also, the learning coefficients recorded in the learning coefficient table 22 are copied to the event-by-event learning coefficient table 24 for each event such as maintenance such as regular inspection of equipment and equipment replacement. That is, the configuration of the event-by-event learning coefficient table 24 is the same as the configuration of the learning coefficient table 22 shown in FIG.
 学習部3(図1)は、予測値算出部30、瞬時値算出部32、及び更新部34を有する装置である。 The learning unit 3 (FIG. 1) is a device having a predicted value calculating unit 30, an instantaneous value calculating unit 32, and an updating unit 34.
 予測値算出部30は、設定計算に使用する数式モデルに対し、圧延プロセスにおける計測された実績値に基づく予測対象の予測値を算出し、瞬時値算出部32に対して出力する。 The predicted value calculation unit 30 calculates a predicted value to be predicted based on the actual values measured in the rolling process for the mathematical model used for the setting calculation, and outputs the calculated value to the instantaneous value calculation unit 32 .
 瞬時値算出部32は、予測対象の実績値に基づいて、学習係数の瞬時値を算出し、算出した瞬時値を更新部34に対して出力するとともに、瞬時値を圧延条件とともに圧延情報データベース20に保存する。例えば、瞬時値算出部32は、予測値算出部30が算出した予測値と、圧延プロセスの実績値との差分に基づいて、学習係数の瞬時値を算出する。 The instantaneous value calculation unit 32 calculates the instantaneous value of the learning coefficient based on the actual value to be predicted, outputs the calculated instantaneous value to the updating unit 34, and stores the instantaneous value together with the rolling conditions in the rolling information database 20. Save to For example, the instantaneous value calculator 32 calculates the instantaneous value of the learning coefficient based on the difference between the predicted value calculated by the predicted value calculator 30 and the actual value of the rolling process.
 更新部34は、瞬時値算出部32が算出した瞬時値に基づいて学習係数の更新値を算出し、算出した更新値を圧延情報データベース20及び学習係数テーブル22に対して出力する。例えば、更新部34は、瞬時値算出部32が算出した学習係数の瞬時値と、学習係数テーブル22の圧延条件が該当する更新対象のセルの学習係数(前回値)に基づいて学習係数の更新値を算出し、学習係数テーブル22の圧延条件が該当するセルの学習係数を更新する。 The updating unit 34 calculates updated values of the learning coefficients based on the instantaneous values calculated by the instantaneous value calculating unit 32, and outputs the calculated updated values to the rolling information database 20 and the learning coefficient table 22. For example, the updating unit 34 updates the learning coefficient based on the instantaneous value of the learning coefficient calculated by the instantaneous value calculating unit 32 and the learning coefficient (previous value) of the update target cell to which the rolling condition in the learning coefficient table 22 corresponds. A value is calculated, and the learning coefficient of the cell corresponding to the rolling condition in the learning coefficient table 22 is updated.
 設定計算部4は、学習係数読取部40及び設定算出部42を有し、圧延プロセスの現象を再現した数式モデルを用いて各設備の設定値を決定する装置である。 The setting calculation unit 4 has a learning coefficient reading unit 40 and a setting calculation unit 42, and is a device that determines setting values for each piece of equipment using a mathematical model that reproduces the phenomenon of the rolling process.
 学習係数読取部40は、予測精度を向上させるために、学習係数テーブル22内の当該圧延条件に該当するセルの学習係数を読取り、設定算出部42に対して出力する。 The learning coefficient reading unit 40 reads the learning coefficient of the cell corresponding to the rolling condition in the learning coefficient table 22 and outputs it to the setting calculation unit 42 in order to improve the prediction accuracy.
 設定算出部42は、学習係数読取部40が出力した学習係数を用いて各設備に対する設定値を補正し、補正した設定値を各設備に対して出力する。 The setting calculation unit 42 corrects the setting value for each piece of equipment using the learning coefficient output by the learning coefficient reading unit 40, and outputs the corrected setting value to each piece of equipment.
 学習係数再更新部5は、急変検知部50、判定部52、及び再更新部54を備え、学習係数の突発的な変動を検知し、その発生時点を特定するとともに、急変成分を計算し、学習係数の急変発生時点以降に、学習係数テーブル22に保存されている学習係数に対して、急変成分(学習係数急変成分)を用いて補正する。 The learning coefficient re-updating unit 5 includes a sudden change detection unit 50, a determination unit 52, and a re-updating unit 54, detects a sudden change in the learning coefficient, specifies the time of occurrence, calculates the sudden change component, After the sudden change of the learning coefficient occurs, the learning coefficient stored in the learning coefficient table 22 is corrected using the sudden change component (learning coefficient sudden change component).
 例えば、急変検知部50は、圧延情報データベース20に保存された学習係数の瞬時値に基づいて、学習係数の急変を検知する変化点検知機能を備え、学習係数の突発的な変動(急変)を検知し、その急変の発生時点の特定と、急変の発生時点の前後における学習係数の瞬時値の水準の偏差を学習係数急変成分として算出する。 For example, the sudden change detection unit 50 has a change point detection function for detecting a sudden change in the learning coefficient based on the instantaneous value of the learning coefficient stored in the rolling information database 20. The point of occurrence of the sudden change is identified, and the deviation of the level of the instantaneous value of the learning coefficient before and after the point of occurrence of the sudden change is calculated as the sudden change component of the learning coefficient.
 図4は、急変検知部50が行う処理を例示するフローチャートである。まず、急変検知部50は、被圧延材の圧延が終了した後に、当該圧延条件I,Jに該当する学習係数の瞬時値を圧延情報データベース20から取得する(S100)。 FIG. 4 is a flowchart illustrating processing performed by the sudden change detection unit 50. FIG. First, after the rolling of the material to be rolled is finished, the sudden change detection unit 50 acquires the instantaneous values of the learning coefficients corresponding to the rolling conditions I and J from the rolling information database 20 (S100).
 そして、急変検知部50は、取得した瞬時値のデータ数がNに達したか否かを判定し(S102)、Nに達していない場合(S102:No)にはS100の処理に戻り、Nに達した場合(S102:Yes)にはS104の処理に進む。 Then, the sudden change detection unit 50 determines whether or not the number of acquired instantaneous value data has reached N (S102). is reached (S102: Yes), the process proceeds to S104.
 つまり、急変検知部50は、過去にわたって圧延本数N本分の学習係数の瞬時値を圧延情報データベース20から取得する。この時、急変検知部50は、当該圧延条件に該当する1区分のみならず、隣接する区分も含めて学習係数の瞬時値を取得してもよい。 That is, the sudden change detection unit 50 acquires the instantaneous values of the learning coefficients for the rolling number N from the rolling information database 20 over the past. At this time, the sudden change detection unit 50 may acquire the instantaneous values of the learning coefficients not only for one section corresponding to the rolling condition, but also for adjacent sections.
 この場合、学習係数の瞬時値取得条件は、下式(3)のように示される。 In this case, the condition for acquiring the instantaneous value of the learning coefficient is expressed as the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 急変検知部50が学習係数の瞬時値を取得する圧延本数Nは、イベント発生時点nより過去数百本程度の圧延を含むことが望ましい。ここでは、取得条件を、当該圧延条件及びその隣接する区分としている。これは、当該圧延条件に隣接しない区分の学習係数が全く異なる数値となっている場合に、同水準の学習係数を時系列的に分析するためである。学習係数が圧延条件によらず同水準である場合は、急変検知部50は、時系列に沿った全ての学習係数を取得してもよい。 It is desirable that the rolling number N from which the sudden change detection unit 50 acquires the instantaneous value of the learning coefficient includes about several hundred rolling rolls past the event occurrence point nE . Here, the acquisition conditions are the relevant rolling conditions and their adjacent divisions. This is for time-series analysis of the learning coefficients of the same level when the learning coefficients of the sections that are not adjacent to the rolling conditions are completely different values. If the learning coefficients are at the same level regardless of the rolling conditions, the sudden change detection unit 50 may acquire all the learning coefficients in chronological order.
 こうして得られた学習係数の瞬時値により、急変検知部50は、学習係数の突発的な変動を検知する。また、急変検知部50は、学習係数の急変の有無及びその発生時点を特定するために、一般的な変化点検知手法を用いる。変化点検知の手法には、例えば、最尤度と最小二乗法を用いた手法や、累積和を用いた手法などがある。ここでは、上述した2手法について説明する。 Based on the instantaneous value of the learning coefficient thus obtained, the sudden change detection unit 50 detects a sudden change in the learning coefficient. In addition, the sudden change detection unit 50 uses a general change point detection method to identify the presence or absence of a sudden change in the learning coefficient and the point in time when it occurs. Methods of detecting change points include, for example, a method using maximum likelihood and least squares method, a method using cumulative sum, and the like. Here, the two methods described above will be described.
 最尤度と最小二乗法を用いた変化点検知の手法は、当該圧延条件とその隣接する条件の学習係数の瞬時値の推移をτ番目に区切ったときに、τ前後の区間における尤度が最大、又は最小となる時点を見出すという手法である。 The change point detection method using the maximum likelihood and the least squares method is that when the transition of the instantaneous value of the learning coefficient of the rolling condition and its adjacent conditions is divided into τth intervals, the likelihood in the interval before and after τ is This is a method of finding the maximum or minimum point in time.
 以下に具体的な内容を示す。ここでは、変化点τと、当該圧延条件とその隣接する条件の学習係数の瞬時値の推移を下式(4)のように定義する。 The specific contents are shown below. Here, the change point τ and the transition of the instantaneous value of the learning coefficient of the rolling condition and its adjacent conditions are defined as in the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このとき、以下のように、最小二乗法により尤度Uを最小とするようμ1、μ2、τが決定される。ここでは、尤度として、残差平方和を用いているが、これに限らない。なお、yは、k番目のZCURRENTを示すこととする。 At this time, μ1, μ2, and τ are determined so as to minimize the likelihood U by the method of least squares as follows. Although the residual sum of squares is used as the likelihood here, it is not limited to this. Note that yk indicates the k -th ZCURRENT.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、累積和を用いた変化点検知の手法は、数値間の変化の度合いを時間や時系列に並べたデータ群に沿って累積し、その累積和が閾値を超えたときに異常と判定する手法である。変化の度合いScは、下式(10)のように算出する。 In addition, the change point detection method using the cumulative sum accumulates the degree of change between numerical values along time or along the data group arranged in chronological order, and determines an abnormality when the cumulative sum exceeds the threshold. method. The degree of change Sc is calculated by the following formula (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このとき、変化時点は、下式(11)に示したように、Sc(n)の絶対値が最大の時点となる。 At this time, the time of change is the time when the absolute value of Sc(n) is maximum, as shown in the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 さらに、この手法における学習係数急変成分(差分)は、下式(12)に示したように算出される。 Furthermore, the learning coefficient sudden change component (difference) in this method is calculated as shown in the following formula (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、変化点前後の学習係数の平均値の偏差は、図5に示したように、学習係数の瞬時値が急変したときに検知される。 Also, the deviation of the average value of the learning coefficients before and after the change point is detected when the instantaneous value of the learning coefficient changes suddenly, as shown in FIG.
 このように、急変検知部50は、学習係数の変化時点及び変化点前後の学習係数の平均値の偏差を取得する(S104:図4)。 In this way, the sudden change detection unit 50 acquires the point of change of the learning coefficient and the deviation of the average value of the learning coefficients before and after the point of change (S104: FIG. 4).
 図6は、上述した手法により、熱間圧延プラントのデータを用いて変化点検知を行った結果を例示する図である。図6(a)は、学習係数の瞬時値(平均値)の変化によって変化点検知を行った結果を例示する図である。図6(b)は、最尤度と最小二乗法を用いた変化点検知手法における尤度のトレンドを例示する図である。図6(c)は、累積和を用いた変化点検知における変化の度合いの絶対値のトレンドを例示する図である。なお、変化点検知の対象は、製品幅予測の数式モデルにおける学習係数の瞬時値である。 FIG. 6 is a diagram illustrating the results of change point detection using the data of the hot rolling plant according to the method described above. FIG. 6(a) is a diagram illustrating the result of performing change point detection based on changes in the instantaneous value (average value) of the learning coefficient. FIG. 6B is a diagram exemplifying a likelihood trend in a change point detection method using maximum likelihood and least squares method. FIG. 6C is a diagram exemplifying the trend of the absolute value of the degree of change in change point detection using the cumulative sum. Note that the object of change point detection is the instantaneous value of the learning coefficient in the mathematical model for product width prediction.
 図6(a)においては、任意の圧延条件に該当する1区分のみならず、隣接する区分も含めた学習係数約10000本分を取得し、そのトレンドを示している。つまり、図6(a)は、トレンドの中央付近において、学習係数の突発的な変動が起こっていることを示している。 In FIG. 6(a), about 10,000 learning coefficients, including not only one section corresponding to arbitrary rolling conditions but also adjacent sections, are acquired and the trend is shown. In other words, FIG. 6(a) shows that the learning coefficient suddenly fluctuates near the center of the trend.
 また、図6(b),(c)に示したように、最尤度と最小二乗法を用いた変化点検知手法における尤度の最小値と、累積和を用いた変化点検知における変化の度合いの絶対値の最大値が同時点に表れている。それらは、学習係数の突発的な変動が表れている時点と一致しており、急変時点を適切に捉えている。 Further, as shown in FIGS. 6B and 6C, the minimum likelihood value in the change point detection method using the maximum likelihood and the least squares method and the change in change point detection using the cumulative sum The maximum absolute value of the degree appears at the same time point. They coincide with the times when sudden fluctuations in the learning coefficient appear, and appropriately capture the sudden change times.
 なお、ここで説明した変化点検知手法は、一例であり、本発明に適用することができる変化点検知の手法はこれに限定されるものではない。 Note that the change point detection method described here is just an example, and the change point detection method that can be applied to the present invention is not limited to this.
 このように、急変検知部50は、圧延情報データベース20が保存している学習係数の瞬時値に基づいて、学習係数の急変の発生時点を特定し、学習係数の急変の発生時点の前後における学習係数の瞬時値の水準の偏差を学習係数急変成分として検知する。 In this way, the sudden change detection unit 50 identifies the time point at which the sudden change in the learning coefficient occurs based on the instantaneous value of the learning coefficient stored in the rolling information database 20, and performs learning before and after the time point at which the sudden change in the learning coefficient occurs. The deviation of the level of the instantaneous value of the coefficient is detected as the sudden change component of the learning coefficient.
 判定部52(図1)は、急変検知部50が検知した変化点における学習係数急変成分が急変判定閾値ε以上であるか否かを判定する。 The determination unit 52 (FIG. 1) determines whether or not the sudden change component of the learning coefficient at the change point detected by the sudden change detection unit 50 is greater than or equal to the sudden change determination threshold value ε.
 再更新部54は、学習係数急変成分が急変判定閾値ε以上であると判定部52が判定した場合に、学習係数テーブル22に対する学習係数の再更新を行う。例えば、再更新部54は、急変検知部50が検知した変化時点、及び、学習係数急変成分に基づいて、急変時点以降の学習係数を再更新する。このとき、再更新部54は、学習係数急変成分を別途に保存しておく。 The re-updating unit 54 re-updates the learning coefficients in the learning coefficient table 22 when the determining unit 52 determines that the sudden change component of the learning coefficient is equal to or greater than the sudden change determination threshold value ε. For example, the re-update unit 54 re-updates the learning coefficient after the sudden change time based on the change time detected by the sudden change detection unit 50 and the sudden change component of the learning coefficient. At this time, the re-updating unit 54 separately stores the sudden change component of the learning coefficient.
 図7は、再更新部54が行う処理の具体例を示すフローチャートである。まず、再更新部54は、学習係数テーブル22を記憶部2から取得する(S200)。 FIG. 7 is a flowchart showing a specific example of processing performed by the re-update unit 54. FIG. First, the re-update unit 54 acquires the learning coefficient table 22 from the storage unit 2 (S200).
 次に、再更新部54は、学習係数の瞬時値及び学習係数テーブル22の圧延条件に対するセルの座標情報を、圧延情報データベース20から取得する(S202)。 Next, the re-update unit 54 acquires the instantaneous value of the learning coefficient and the cell coordinate information for the rolling conditions in the learning coefficient table 22 from the rolling information database 20 (S202).
 そして、再更新部54は、イベント発生日時の履歴に基づいて、学習係数の瞬時値が急変時点以降の瞬時値であるか否かを判定する(S204)。再更新部54は、急変時点以降の瞬時値である場合(S204:Yes)にはS206の処理に進み、急変時点以降の瞬時値でない場合(S204:No)にはS208の処理に進む。 Then, the re-update unit 54 determines whether or not the instantaneous value of the learning coefficient is the instantaneous value after the sudden change based on the event occurrence date and time history (S204). If the instantaneous value is after the sudden change (S204: Yes), the re-update unit 54 proceeds to the process of S206, and if the instantaneous value is not after the sudden change (S204: No), proceeds to the process of S208.
 S206において、再更新部54は、学習係数の瞬時値に学習係数急変成分を付加する補正を行い、更新値を計算する。 In S206, the re-updating unit 54 corrects the instantaneous value of the learning coefficient by adding the sudden change component of the learning coefficient, and calculates the updated value.
 また、S208において、再更新部54は、学習係数の瞬時値で更新値を計算する。 Also, in S208, the re-updating unit 54 calculates an updated value using the instantaneous value of the learning coefficient.
 そして、再更新部54は、イベント毎学習係数テーブル24に保存されている学習係数を前回値として、学習係数テーブル22の該当セルを再更新する(S210)。 Then, the re-update unit 54 re-updates the corresponding cell of the learning coefficient table 22 using the learning coefficient stored in the event-by-event learning coefficient table 24 as the previous value (S210).
 再更新部54が行う更新手順は下式(13)に示す条件となる。 The update procedure performed by the re-update unit 54 satisfies the conditions shown in the following formula (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 学習係数テーブル22における学習係数の更新において、隣接する複数のセルを同時に更新している場合には、下式(14)に示すように、同様の手順により、隣接する複数のセルを更新する。 In updating the learning coefficients in the learning coefficient table 22, if multiple adjacent cells are updated at the same time, the multiple adjacent cells are updated by the same procedure as shown in the following formula (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 つまり、再更新部54は、急変検知部50が特定した学習係数の急変の発生時点以降に圧延情報データベース20が保存した学習係数の瞬時値と、学習係数急変成分とに基づく補正により、学習係数テーブル22の学習係数を再更新する。 That is, the re-updating unit 54 updates the learning coefficient by correction based on the instantaneous value of the learning coefficient stored in the rolling information database 20 after the occurrence of the sudden change in the learning coefficient specified by the sudden change detection unit 50 and the sudden change component of the learning coefficient. Re-update the learning coefficients in Table 22.
 このように、学習係数再更新部5は、再更新したイベント毎学習係数テーブル24の学習係数を学習係数テーブル22へ上書きし、学習係数急変成分を是正する。 In this way, the learning coefficient re-updating unit 5 overwrites the learning coefficient table 22 with the re-updated learning coefficient of the event-by-event learning coefficient table 24 to correct the sudden change component of the learning coefficient.
 次に、圧延プロセスの学習制御装置の第2実施形態について説明する。図8は、第2実施形態にかかる圧延プロセスの学習制御装置1aの構成を例示する図である。 Next, a second embodiment of the rolling process learning control device will be described. FIG. 8 is a diagram illustrating the configuration of a rolling process learning control device 1a according to the second embodiment.
 例えば、学習制御装置1aは、記憶部2、学習部3、設定計算部4、及び学習係数再更新部5aを有する。なお、図8に示した学習制御装置1aにおいて、図1に示した学習制御装置1の構成と実質的に同一の構成には同一の符号が付してある。 For example, the learning control device 1a has a storage unit 2, a learning unit 3, a setting calculation unit 4, and a learning coefficient re-updating unit 5a. In the learning control device 1a shown in FIG. 8, the same reference numerals are given to the substantially same configuration as the learning control device 1 shown in FIG.
 学習制御装置1aは、学習係数の急変を検知し、学習係数が再更新された場合に、それを操業者へ通知して、メンテナンスを促す。また、学習制御装置1aは、メンテナンスを催促しているにも関わらず、メンテナンスがなされない場合に、メンテナンス等の次イベントが発生するまでの間、学習係数を補正する。また、学習制御装置1aは、学習係数の急変を検知した日時の履歴Tを別途に保存する機能を備える。 The learning control device 1a detects a sudden change in the learning coefficient, and when the learning coefficient is re-updated, notifies the operator of it and prompts maintenance. In addition, the learning control device 1a corrects the learning coefficient until the next event such as maintenance occurs when the maintenance is not carried out despite the fact that the maintenance is being urged. The learning control device 1a also has a function of separately storing a history TN of the date and time when a sudden change in the learning coefficient was detected.
 学習係数再更新部5aは、急変検知部50、判定部52、再更新部54、及び通知部56を備え、学習係数の突発的な変動を検知し、その発生時点を特定するとともに、急変成分を計算し、学習係数の急変発生時点以降に、メンテナンスがなされない場合に、学習係数テーブル22に保存されている学習係数に対して、急変成分を補正する。 The learning coefficient re-update unit 5a includes a sudden change detection unit 50, a determination unit 52, a re-update unit 54, and a notification unit 56, detects a sudden change in the learning coefficient, identifies the time of occurrence, and detects the sudden change component. is calculated, and the sudden change component is corrected for the learning coefficient stored in the learning coefficient table 22 when maintenance is not performed after the occurrence of the sudden change of the learning coefficient.
 通知部56は、急変検知部50が検知した学習係数の急変を操業者へ通知する機能を有する。例えば、通知部56は、学習係数に突発的な変動が見られた場合、機器点検や交換などのメンテナンスが必要な旨を図示しない操業用のヒューマンマシンインターフェースなどに出力する。また、通知部56は、アラーム音発生機器によって発音させたり、操業者が気付きやすい他の方法で操業者へアナウンスを行ってもよい。 The notification unit 56 has a function of notifying the operator of a sudden change in the learning coefficient detected by the sudden change detection unit 50. For example, when the learning coefficient suddenly fluctuates, the notification unit 56 outputs to a human-machine interface (not shown) for operation that maintenance such as equipment inspection and replacement is required. In addition, the notification unit 56 may make an alarm sound using an alarm sound generating device, or may make an announcement to the operator by another method that is easy for the operator to notice.
 つまり、通知部56は、急変検知部50が学習係数の急変の発生時点を特定したときに、イベントとなる機器の点検や交換などのメンテナンスの必要性を操業者へ通知する。 In other words, the notification unit 56 notifies the operator of the need for maintenance such as inspection and replacement of the equipment that will be the event when the sudden change detection unit 50 identifies the point in time when the sudden change in the learning coefficient occurs.
 このように、学習制御装置1aは、次圧延材以降の学習係数の更新値の計算に対して、学習係数の急変を検知し、それ以降にメンテナンスがされたか否かを判断し、メンテナンスがされていない場合、学習係数の瞬時値に対して、学習係数急変成分に基づいて補正を加え、以下のように学習係数の更新値を得る。 In this way, the learning control device 1a detects a sudden change in the learning coefficient in the calculation of the updated value of the learning coefficient after the next rolled material, determines whether or not maintenance has been performed since then, and determines whether or not the maintenance has been performed. If not, the instantaneous value of the learning coefficient is corrected based on the sudden change component of the learning coefficient, and the updated value of the learning coefficient is obtained as follows.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 具体的には、再更新部54は、急変検知部50が学習係数の急変の発生時点を特定したとき以降に、圧延情報データベース20にイベントとなるメンテナンスの日時履歴がない場合、学習係数の急変の発生時点以降の圧延における学習係数の瞬時値、学習係数急変成分、及び学習係数テーブル22の圧延条件に基づくセルの学習係数の前回値に基づいて、学習係数テーブル22の学習係数を再更新する。 Specifically, if the rolling information database 20 does not have a date and time history of maintenance that becomes an event after the sudden change detection unit 50 specified the point in time when the sudden change in the learning coefficient occurred, the re-updating unit 54 detects the sudden change in the learning coefficient. The learning coefficient in the learning coefficient table 22 is re-updated based on the instantaneous value of the learning coefficient in rolling after the occurrence of , the sudden change component of the learning coefficient, and the previous value of the learning coefficient of the cell based on the rolling conditions in the learning coefficient table 22. .
 そして、学習制御装置1aは、学習係数の更新値に基づいて、学習係数テーブル22を更新する。これにより、学習制御装置1aは、以降、同水準の学習係数を用いて設定計算を行う。 Then, the learning control device 1a updates the learning coefficient table 22 based on the updated value of the learning coefficient. As a result, the learning control device 1a subsequently performs setting calculations using the learning coefficients of the same level.
 以上説明したように、本発明によれば、突発的な変動による誤差要因が生じても、その後の学習を修正することができる。例えば、本発明によれば、設備の定期点検や機器交換などのメンテナンスにおける機器校正不良などといった機械的要因による異常や、計器異常による継続的な計測異常が生じた場合にも、異常発生前に保存した学習係数に基づき、その学習係数を修正することができる。そして、本発明は、異常による影響を最小限に抑えることにより、製品精度の継続的な低下を低減させるとともに、安定的な圧延を可能にする。 As explained above, according to the present invention, even if an error factor occurs due to sudden fluctuations, subsequent learning can be corrected. For example, according to the present invention, even if an abnormality due to a mechanical factor such as equipment calibration failure in maintenance such as periodic inspection of equipment or equipment replacement, or continuous measurement abnormality due to instrument abnormality occurs, before the abnormality occurs Based on the saved learning factors, the learning factors can be modified. By minimizing the influence of the abnormality, the present invention reduces continuous deterioration of product accuracy and enables stable rolling.
 学習制御装置1,1aは、定期的に多数の圧延されたコイルのデータを分析し、機械的要因や計測異常による予測誤差(学習値)の急変を検知し、その時点を特定する。そして、学習制御装置1,1aは、定期的な修理やロール替えなどのイベント毎に予め別途保存した学習テーブルに基づいて、学習テーブルを急変時点の直前に保存した値に戻し、急変した要因による学習値差をオフセットとして、急変時点から現圧延材までの学習値を更新し直す。 The learning control devices 1 and 1a periodically analyze the data of a large number of rolled coils, detect sudden changes in prediction errors (learning values) due to mechanical factors and measurement abnormalities, and specify the points in time. Then, the learning control devices 1 and 1a restore the values stored immediately before the sudden change in the learning table based on the separately stored learning table for each event such as periodic repair or roll change, and Using the learning value difference as an offset, the learning values from the sudden change to the current rolled material are updated again.
 なお、学習制御装置1,1aが備える各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 Each function provided in the learning control devices 1 and 1a may be partially or wholly configured by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or a processor such as a CPU. may be configured as a program executed by
 1,1a・・・学習制御装置、2・・・記憶部、3・・・学習部、4・・・設定計算部、5,5a・・・学習係数再更新部、20・・・圧延情報データベース、22・・・学習係数テーブル、24・・・イベント毎学習係数テーブル、30・・・予測値算出部、32・・・瞬時値算出部、34・・・更新部、40・・・学習係数読取部、42・・・設定算出部、50・・・急変検知部、52・・・判定部、54・・・再更新部、56・・・通知部 1, 1a... Learning control device, 2... Storage unit, 3... Learning unit, 4... Setting calculation unit, 5, 5a... Learning coefficient re-updating unit, 20... Rolling information Database 22 Learning coefficient table 24 Learning coefficient table for each event 30 Predicted value calculator 32 Instantaneous value calculator 34 Update unit 40 Learning Coefficient reading unit 42 Setting calculation unit 50 Sudden change detection unit 52 Judgment unit 54 Re-update unit 56 Notification unit

Claims (3)

  1.  圧延条件により区分された複数のセルによって構成された学習係数テーブルにより、圧延プロセスに対する設定値の計算に用いる数式モデルの学習係数を更新しつつ保存し、圧延プロセスを制御する圧延プロセスの学習制御装置において、
     圧延プロセスにおける計測された実績値に基づいて予測値を算出する予測値算出部と、
     前記予測値算出部が算出した予測値と、圧延プロセスの実績値との差分に基づいて、学習係数の瞬時値を算出する瞬時値算出部と、
     前記瞬時値算出部が算出した学習係数の瞬時値と、前記学習係数テーブルの圧延条件が該当するセルの前回値とに基づいて学習係数の更新値を算出し、前記学習係数テーブルの圧延条件が該当するセルの学習係数を更新する更新部と、
     前記瞬時値算出部が算出した学習係数の瞬時値、学習係数の前回値、学習係数の更新値、圧延材を特定する日時情報、圧延条件、前記学習係数テーブルの圧延条件に基づくセルの座標、圧延プロセスにおける実績値、及び圧延プロセスに対するイベントの日時履歴を保存する圧延情報データベースと、
     前記圧延情報データベースが保存している学習係数の瞬時値に基づいて、学習係数の急変の発生時点を特定し、学習係数の急変の発生時点の前後における学習係数の瞬時値の水準の偏差を学習係数急変成分として検知する急変検知部と、
     前記急変検知部が特定した学習係数の急変の発生時点以降に前記圧延情報データベースが保存した学習係数の瞬時値と、前記学習係数急変成分とに基づく補正により、前記学習係数テーブルの学習係数を再更新する再更新部と
     を有することを特徴とする圧延プロセスの学習制御装置。
    A learning control device for a rolling process that controls the rolling process by updating and storing the learning coefficients of the mathematical model used to calculate the set values for the rolling process using a learning coefficient table composed of a plurality of cells classified according to the rolling conditions. in
    a predicted value calculation unit that calculates a predicted value based on actual values measured in the rolling process;
    an instantaneous value calculator that calculates an instantaneous value of the learning coefficient based on the difference between the predicted value calculated by the predicted value calculator and the actual value of the rolling process;
    An updated value of the learning coefficient is calculated based on the instantaneous value of the learning coefficient calculated by the instantaneous value calculation unit and the previous value of the cell to which the rolling condition of the learning coefficient table corresponds, and the rolling condition of the learning coefficient table is an updating unit that updates the learning coefficient of the corresponding cell;
    the instantaneous value of the learning coefficient calculated by the instantaneous value calculating unit, the previous value of the learning coefficient, the updated value of the learning coefficient, date and time information specifying the rolled material, rolling conditions, cell coordinates based on the rolling conditions of the learning coefficient table, a rolling information database that stores actual values in the rolling process and the date and time history of events for the rolling process;
    Based on the instantaneous value of the learning coefficient stored in the rolling information database, the point of occurrence of the sudden change of the learning coefficient is specified, and the deviation of the level of the instantaneous value of the learning coefficient before and after the occurrence of the sudden change of the learning coefficient is learned. a sudden change detection unit that detects as a sudden change component of the coefficient;
    The learning coefficient in the learning coefficient table is re-set by correction based on the instantaneous value of the learning coefficient stored in the rolling information database after the occurrence of the sudden change in the learning coefficient specified by the sudden change detection unit and the sudden change component of the learning coefficient. A learning control device for a rolling process, comprising: a re-updating unit for updating;
  2.  前記急変検知部が学習係数の急変の発生時点を特定したときに、イベントとなるメンテナンスの必要性を通知する通知部をさらに有すること
     を特徴とする請求項1に記載の圧延プロセスの学習制御装置。
    2. The learning control device for a rolling process according to claim 1, further comprising a notification unit that notifies the necessity of maintenance as an event when the sudden change detection unit specifies the point in time when the sudden change in the learning coefficient occurs. .
  3.  前記再更新部は、
     前記急変検知部が学習係数の急変の発生時点を特定したとき以降に、圧延情報データベースにイベントとなるメンテナンスの日時履歴がない場合、学習係数の急変の発生時点以降の圧延における学習係数の瞬時値、前記学習係数急変成分、及び前記学習係数テーブルの圧延条件に基づくセルの学習係数の前回値に基づいて、前記学習係数テーブルの学習係数を再更新すること
     を特徴とする請求項2に記載の圧延プロセスの学習制御装置。
    The re-updating unit
    If the rolling information database does not have a date and time history of maintenance that becomes an event after the sudden change detection unit specified the time point of occurrence of the sudden change in the learning coefficient, the instantaneous value of the learning coefficient in rolling after the time point of occurrence of the sudden change in the learning coefficient 3. The learning coefficient of the learning coefficient table is re-updated based on the previous value of the learning coefficient of the cell based on the rolling condition of the rolling condition of the learning coefficient sudden change component and the learning coefficient table. Learning controller for rolling process.
PCT/JP2021/018091 2021-05-12 2021-05-12 Learning control device for rolling process WO2022239157A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022504721A JP7323051B2 (en) 2021-05-12 2021-05-12 Learning controller for rolling process
CN202180035460.6A CN115623864A (en) 2021-05-12 2021-05-12 Learning control device for rolling process
PCT/JP2021/018091 WO2022239157A1 (en) 2021-05-12 2021-05-12 Learning control device for rolling process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018091 WO2022239157A1 (en) 2021-05-12 2021-05-12 Learning control device for rolling process

Publications (1)

Publication Number Publication Date
WO2022239157A1 true WO2022239157A1 (en) 2022-11-17

Family

ID=84028037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018091 WO2022239157A1 (en) 2021-05-12 2021-05-12 Learning control device for rolling process

Country Status (3)

Country Link
JP (1) JP7323051B2 (en)
CN (1) CN115623864A (en)
WO (1) WO2022239157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JPH1031505A (en) * 1996-07-16 1998-02-03 Mitsubishi Electric Corp Learning control method for process line
JP2009116759A (en) * 2007-11-09 2009-05-28 Jfe Steel Corp Method and device for learning control model in process line, and production method of steel plate
WO2015122010A1 (en) * 2014-02-17 2015-08-20 東芝三菱電機産業システム株式会社 Rolling process learning control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200005A (en) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp Learning control method
JPH1031505A (en) * 1996-07-16 1998-02-03 Mitsubishi Electric Corp Learning control method for process line
JP2009116759A (en) * 2007-11-09 2009-05-28 Jfe Steel Corp Method and device for learning control model in process line, and production method of steel plate
WO2015122010A1 (en) * 2014-02-17 2015-08-20 東芝三菱電機産業システム株式会社 Rolling process learning control device

Also Published As

Publication number Publication date
CN115623864A (en) 2023-01-17
JPWO2022239157A1 (en) 2022-11-17
JP7323051B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP5169096B2 (en) Quality prediction apparatus, quality prediction method, and product manufacturing method
KR101617375B1 (en) Feedforward thickness control method for performance of cold rolling mill
WO2018096682A1 (en) Method and device for diagnosing abnormality in rolling equipment
JP6233423B2 (en) Learning control device for rolling process
JP2019087152A (en) Manufacturing process state prediction device, method, and program, and manufacturing process control system
JP2021536063A (en) Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and equipment
JP5817450B2 (en) Thick plate width control method
US20220276619A1 (en) Manufacturing support system for predicting property of alloy material, method for generating prediction model, and computer program
CN113198853B (en) Method and device for detecting profile defects of steel plate
JP7248188B2 (en) Abnormality diagnosis model construction method, abnormality diagnosis method, abnormality diagnosis model construction device, and abnormality diagnosis device
EP3838432B1 (en) System for predicting contraction
WO2022239157A1 (en) Learning control device for rolling process
JP2008177534A (en) Managing method of semiconductor manufacturing equipment, and management system of semiconductor manufacturing equipment
CN115828055B (en) Method and device for monitoring sampling data, computer equipment and storage medium
CN113834828A (en) Product quality analysis support system
CN112588836A (en) Automatic roller eccentricity identification method and system based on hot rolled strip steel rolling force
CN113780852B (en) Diagnosis method for quality defects in plate and strip rolling process
WO2019102614A1 (en) Steel plant maintenance assistance device
JP2011221645A (en) Quality prediction device, quality prediction method, computer program, and computer readable recording medium
JPH05253797A (en) Judging system for abnormality on line
CN112862284A (en) Method and system for evaluating rigidity precision of hot-rolled strip mill
JP4109527B2 (en) Control model learning method, control model learning apparatus, computer program, and computer-readable storage medium
JPH06110504A (en) Method and device for estimating characteristic of process, method for monitoring process by using the estimating method and method for controlling process
CN111266405B (en) Plate and strip hot rolling process control method and control device
WO2024033983A1 (en) Plate thickness control method for rolling mill and rigidity monitoring method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022504721

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941891

Country of ref document: EP

Kind code of ref document: A1