WO2022239072A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2022239072A1
WO2022239072A1 PCT/JP2021/017742 JP2021017742W WO2022239072A1 WO 2022239072 A1 WO2022239072 A1 WO 2022239072A1 JP 2021017742 W JP2021017742 W JP 2021017742W WO 2022239072 A1 WO2022239072 A1 WO 2022239072A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
outdoor unit
unit
refrigerant path
Prior art date
Application number
PCT/JP2021/017742
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 橋川
康敬 落合
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP21941806.8A priority Critical patent/EP4339527A4/en
Priority to PCT/JP2021/017742 priority patent/WO2022239072A1/en
Priority to JP2023520591A priority patent/JPWO2022239072A1/ja
Priority to CN202180097525.XA priority patent/CN117203474A/en
Publication of WO2022239072A1 publication Critical patent/WO2022239072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Definitions

  • the present disclosure relates to technology for inspecting whether or not a valve arranged in a refrigerant path of an air conditioner is closed.
  • a liquid pipe valve and a gas pipe valve are arranged at the entrance and exit of a refrigerant path (hereinafter referred to as a first refrigerant path) for circulating the refrigerant between the outdoor units of the air conditioner.
  • a first refrigerant path for circulating the refrigerant between the outdoor units of the air conditioner.
  • the liquid pipe valve and the gas pipe valve are collectively referred to as the first valve.
  • the air conditioner is operated by protective control to protect the air conditioner. may stop.
  • the air conditioner is necessary for the operator to consider the cause of the stop.
  • the operation of the air conditioner continues regardless of the protection control, it is necessary to prevent the operator from overlooking the closed state of the first valve. As described above, it is required to detect the closed state of the first valve and to let the operator recognize that the first valve is closed, especially during trial operation after installation of the air conditioner.
  • Patent Document 1 discloses a technique for detecting whether or not the first valve is closed.
  • Patent Document 1 has a problem that it is erroneously determined that the first valve is open even though the first valve is closed.
  • the main purpose of this disclosure is to solve such problems. More specifically, the main purpose of the present disclosure is to correctly determine whether or not the first valve is closed even when an outdoor unit having a second refrigerant path is used. do.
  • the inspection device is The circulation of the refrigerant in the first refrigerant path for circulating the refrigerant between the indoor unit and the outdoor unit of the air conditioner is blocked by closing the first valve arranged in the first refrigerant path.
  • the outdoor unit has a second refrigerant path capable of circulating the refrigerant in the outdoor unit
  • the second refrigerant path arranged in the second refrigerant path is closed.
  • a signal transmission unit configured to transmit an instruction signal to the outdoor unit to instruct the outdoor unit to close a second valve that blocks circulation of the refrigerant; and a determination unit that determines whether or not the first valve is closed after the instruction signal is transmitted to the outdoor unit by the signal transmission unit.
  • FIG. 1 is a diagram showing a configuration example of an anomaly detection system according to Embodiment 1;
  • FIG. 1 is a diagram showing a configuration example of an air conditioner according to Embodiment 1;
  • FIG. 2 is a diagram showing a first refrigerant path according to Embodiment 1;
  • FIG. 4 is a diagram showing a second refrigerant path according to Embodiment 1;
  • FIG. 4 is a flowchart showing an operation example of the abnormality determination device according to Embodiment 1;
  • FIG. 5 is a diagram showing a configuration example of an air conditioner according to Embodiment 2; The figure which shows the 1st refrigerant
  • FIG. 8 is a diagram showing a second refrigerant path according to Embodiment 2; The figure which shows the structural example of the air conditioner which concerns on Embodiment 3.
  • FIG. The figure which shows the 1st refrigerant
  • FIG. The figure which shows the 2nd refrigerant
  • FIG. 8 is a diagram showing a second refrigerant path according to Embodiment 2; The figure which shows the structural example of the air conditioner which concerns on Embodiment 3.
  • FIG. The figure which shows the 1st refrigerant
  • FIG. The figure which shows the 2nd refrigerant
  • FIG. 1 shows a configuration example of an anomaly detection system according to this embodiment.
  • the abnormality detection system is composed of an air conditioner 1 , an indicator 2 , a display 3 and an abnormality determination device 4 .
  • the air conditioner 1 , the indicator 2 and the indicator 3 are connected to an abnormality determination device 4 .
  • the indicator 2 instructs the air conditioner 1 to start trial operation.
  • the indicator 2 is, for example, a remote controller of the air conditioner 1 or a PC (Personal Computer) connected to the air conditioner 1 .
  • PC Personal Computer
  • the indicator 3 When the closed state of the liquid tube valve 15 and/or the gas tube valve 16, which will be described later, is detected, the indicator 3 displays a message notifying that the liquid tube valve 15 and/or the gas tube valve 16 is in the closed state. indicate. A worker who installs the air conditioner 1 can recognize that the liquid tube valve 15 and/or the gas tube valve 16 is in a closed state from the display of the message on the display device 3 .
  • the display device 3 is, for example, a remote controller of the air conditioner 1 or a PC connected to the air conditioner 1 .
  • the indicator 2 and the indicator 3 may be realized by the same device.
  • the abnormality determination device 4 is a computer. If the indicator 2 and/or the indicator 3 are implemented by a PC, the abnormality determination device 4 may be implemented by the same PC as the indicator 2 and/or the indicator 3 .
  • the abnormality determination device 4 is composed of a communication device 110 and a processor 120 . Although not shown, the abnormality determination device 4 is assumed to include storage devices such as RAM (Random Access Memory) and HDD (Hard Disk Drive).
  • the communication device 110 communicates with the air conditioner 1 , the indicator 2 and the display device 3 .
  • the processor 120 executes a program that implements the functions of the signal transmission unit 121 , the driving data acquisition unit 122 , the determination unit 123 and the notification unit 124 .
  • the processor 120 executes programs and functions as a signal transmission unit 121 , a driving data acquisition unit 122 , a determination unit 123 and a notification unit 124 . Details of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 will be described later.
  • the abnormality determination device 4 corresponds to an inspection device. Further, the operation procedure of the abnormality determination device 4 corresponds to an inspection method.
  • FIG. 2 shows a configuration example of the air conditioner 1 .
  • the air conditioner 1 includes an outdoor unit 10 , an indoor unit 20 , and a connection pipe 30 connecting the outdoor unit 10 and the indoor unit 20 .
  • FIG. 2 shows a configuration in which a plurality of indoor units 20 are connected to one outdoor unit 10. As shown in FIG.
  • the air conditioner 1 may be configured such that one indoor unit 20 is connected to one outdoor unit 10 .
  • the air conditioner 1 may include a plurality of outdoor units 10 .
  • the outdoor unit 10 includes a compressor 11 , a four-way valve 12 , an outdoor heat exchanger 13 , an outdoor unit fan 14 , a liquid tube valve 15 , a gas tube valve 16 , a subcooling coil 17 and an expansion valve 18 for the subcooling coil.
  • the indoor unit 20 includes an expansion valve 21 , an indoor heat exchanger 22 and an indoor unit fan 23 .
  • a refrigerating cycle is configured by annularly connecting the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the expansion valve 21, and the indoor heat exchanger 22 by refrigerant pipes.
  • the outdoor unit 10 has a communication device that receives an instruction signal from the abnormality determination device 4 .
  • the outdoor unit 10 also has a valve control mechanism that closes the sub-cooling coil expansion valve 18 based on an instruction signal.
  • the instruction signal is a signal that the abnormality determination device 4 instructs the outdoor unit 10 to close the subcooling coil expansion valve 18 .
  • the compressor 11 compresses a low-temperature, low-pressure refrigerant and converts the low-temperature, low-pressure refrigerant into a high-temperature, high-pressure refrigerant.
  • the compressor 11 is driven by, for example, an inverter, and its capacity (amount of refrigerant discharged per unit time) is controlled.
  • the four-way valve 12 switches the refrigerant flow according to the operation mode of the air conditioner 1, for example, cooling operation or heating operation.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant flowing through the refrigeration cycle and the outdoor air.
  • An outdoor unit fan 14 is adjacent to the outdoor heat exchanger 13 .
  • the outdoor unit fan 14 blows air to the outdoor heat exchanger 13 . By controlling the number of revolutions of the outdoor unit fan 14, the amount of air blown can be adjusted.
  • the expansion valve 21 is a valve whose opening can be variably controlled, for example, an electronic expansion valve. By controlling the degree of opening of the expansion valve 21, the amount of pressure reduction of the refrigerant is controlled.
  • the indoor heat exchanger 22 exchanges heat between the refrigerant flowing through the refrigeration cycle and the indoor air.
  • An indoor unit fan 23 is adjacent to the indoor heat exchanger 22 .
  • the indoor unit fan 23 blows air to the indoor heat exchanger 22 . By controlling the number of rotations of the indoor unit fan 23, the amount of air blown can be adjusted.
  • a high pressure sensor 41 and a low pressure sensor 42 are installed before and after the compressor 11 of the outdoor unit 10 .
  • the high pressure sensor 41 measures the high pressure value (discharge pressure value) of the refrigerant in the compressor 11 .
  • the low pressure sensor 42 measures the low pressure value (suction pressure value) of the refrigerant in the compressor 11 .
  • the high pressure sensor 41 and the low pressure sensor 42 are used when performing control to bring the high pressure and the low pressure closer to target values. Also, the high pressure sensor 41 and the low pressure sensor 42 are used for protective control to avoid damage to the outdoor unit 10 due to an increase in the high pressure and a decrease in the low pressure.
  • the liquid pipe valve 15 and the gas pipe valve 16 are provided at the connecting portion between the outdoor unit 10 and the connecting pipe 30 .
  • a worker who performs installation work installs the air conditioner 1 by connecting the outdoor unit 10, the indoor unit 20, and the connecting pipe 30 at the installation location.
  • the liquid pipe valve 15 and the gas pipe valve 16 are closed during shipment and transfer.
  • the operator opens the liquid pipe valve 15 and the gas pipe valve 16.
  • FIG. When the liquid tube valve 15 and the gas tube valve 16 are opened, circulation of the refrigerant becomes possible.
  • the liquid pipe valve 15 and the gas pipe valve 16 correspond to the first valve.
  • part of the high-pressure refrigerant that has exited the outdoor heat exchanger 13 is decompressed by the subcool coil expansion valve 18, and heat exchange between the decompressed refrigerant and the pre-branched refrigerant is performed by the subcool coil 17. can increase the degree of supercooling.
  • the refrigerant after decompression is returned to the compressor 11 .
  • the subcool coil expansion valve 18 corresponds to a second valve.
  • FIG. 3 and 4 show two refrigerant paths existing in the outdoor unit 10.
  • FIG. FIG. 3 shows the first coolant path
  • FIG. 4 shows the second coolant path.
  • the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the compressor 11, the high pressure sensor 41, the outdoor heat exchanger 13, the subcool coil 17 and the liquid pipe valve. 15 and returned to the indoor unit 20.
  • Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
  • the second refrigerant path is a path passing through the outdoor heat exchanger 13 , the subcooling coil 17 , the subcooling coil expansion valve 18 , the low pressure sensor 42 , the compressor 11 and the high pressure sensor 41 .
  • both valves are normally open when the compressor 11 is operated.
  • the high-low pressure difference becomes larger than in the case. If the high-low pressure difference exceeds a preset threshold value, it can be determined that the liquid tube valve 15 and/or the gas tube valve 16 may be closed.
  • the expansion valve 18 for the subcooling coil is open even when the circulation of the refrigerant in the first refrigerant path is cut off by closing the liquid tube valve 15 and the gas tube valve 16. , the refrigerant can circulate through the second refrigerant path.
  • the abnormality determination device 4 is designed to prevent the liquid pipe valve 15 and/or the gas pipe valve 16 from being closed even when the second refrigerant path exists in the outdoor unit 10. It has a configuration that can correctly determine whether or not The configuration of the abnormality determination device 4 according to this embodiment will be described below.
  • the signal transmission unit 121 transmits an instruction signal to the outdoor unit 10 during the test run of the air conditioner 1 .
  • the instruction signal is a signal instructing to close the subcooling coil expansion valve 18 .
  • the outdoor unit 10 that has received the instruction signal closes the sub-cool coil expansion valve 18 if the sub-cool coil expansion valve 18 is open. Closing the sub-cooling coil expansion valve 18 cuts off circulation of the refrigerant in the second refrigerant circuit. By shutting off the circulation of the refrigerant in the second refrigerant circuit by closing the sub-cooling coil expansion valve 18, the later-described determination unit 123 can accurately determine the state of the liquid pipe valve 15 and/or the gas pipe valve 16. .
  • the operating data acquisition unit 122 acquires operating data of the air conditioner 1 .
  • the operating data are, for example, sensor values obtained by sensors installed in the air conditioner 1 . Further, the operating data are control values of the air conditioner 1 .
  • the sensor values include the high pressure value measured by the high pressure sensor 41 and the low pressure value measured by the low pressure sensor 42 .
  • the control values include numerical values such as the frequency of the compressor 11, the rotation speed of the outdoor unit fan 14, and the valve opening degree of the expansion valve 21.
  • the operation data acquisition unit 122 acquires the high pressure value measured by the high pressure sensor 41 and the low pressure value measured by the low pressure sensor 42 after the signal transmission unit 121 has transmitted the instruction signal.
  • the determination unit 123 determines whether or not the liquid tube valve 15 and/or the gas tube valve 16 is closed based on the high pressure value and the low pressure value acquired as the operation data by the operation data acquisition unit 122 . As described above, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 is closed when the high-low pressure difference, which is the pressure difference between the high pressure value and the low pressure value, exceeds a threshold value. do. Alternatively, the determination unit 123 may determine that the liquid tube valve 15 and/or the gas tube valve 16 are closed when the high pressure exceeds a preset threshold value. Further, the determination unit 123 may determine that the liquid pipe valve 15 and/or the gas pipe valve 16 are closed when the low pressure is below a preset threshold value.
  • the determination unit 123 determines whether the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. It may be determined that there is
  • the notification unit 124 When the determination unit 123 determines that the liquid pipe valve 15 and/or the gas pipe valve 16 is in the closed state, the notification unit 124 notifies that the liquid pipe valve 15 and/or the gas pipe valve 16 is in the closed state. Notify workers. Specifically, the notification unit 124 outputs a message to the display device 3 notifying that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed.
  • FIG. 5 shows an operation example of the abnormality determination device 4 according to this embodiment.
  • the operation of the abnormality determination device 4 according to the first embodiment will be described below with reference to the flow of FIG.
  • the trial operation of the air conditioner 1 is started.
  • the operation data acquisition unit 122 acquires the control value as the operation data and recognizes the start of the test operation of the air conditioner 1 .
  • the signal transmission section 121 transmits an instruction signal to the outdoor unit 10.
  • the outdoor unit 10 closes the subcool coil expansion valve 18 based on the instruction signal.
  • step ST02 the operating data acquisition unit 122 acquires the high pressure value from the high pressure sensor 41. Further, the operating data acquisition unit 122 acquires the low pressure value from the low pressure sensor 42 . Further, the determination unit 123 calculates a high-low pressure difference ⁇ P (high-pressure value ⁇ low-pressure value), which is the difference between the high-pressure value and the low-pressure value.
  • ⁇ P high-low pressure difference
  • step ST03 the determination unit 123 determines whether or not the high-low pressure difference ⁇ P exceeds a preset threshold value. If the high-low pressure difference ⁇ P exceeds the threshold, the process proceeds to step ST04. On the other hand, if the high-low pressure difference ⁇ P is equal to or less than the threshold, the process ends.
  • step ST04 the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. Then, the notification unit 124 outputs to the display device 3 a message notifying that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. The display 3 displays a message notifying that the liquid tube valve 15 and/or the gas tube valve 16 are closed. The operator who saw the message displayed by the display 3 checks the liquid tube valve 15 and the gas tube valve 16, and if the liquid tube valve 15 and/or the gas tube valve 16 is closed, the liquid tube valve 15 and/or perform an operation to open the gas pipe valve 16 .
  • the determination unit 123 may compare the high pressure value and the threshold instead of comparing the high and low pressure difference ⁇ P and the threshold as described above. Then, when the high-pressure value exceeds the threshold value, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. In this case, in step ST02, the operation data acquisition unit 122 only needs to acquire the high pressure value, and the determination unit 123 does not need to calculate the high-low pressure difference ⁇ P.
  • the determination unit 123 may compare the low pressure value and the threshold instead of comparing the high and low pressure difference ⁇ P and the threshold as described above. Then, when the low-pressure value is below the threshold value, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. In this case, in step ST02, the operation data acquisition unit 122 only needs to acquire the low pressure value, and the determination unit 123 does not need to calculate the high-low pressure difference ⁇ P.
  • the determination unit 123 causes the air conditioner 1 to operate by activating the protection function due to the increase in the high pressure or the decrease in the low pressure instead of comparing the high and low pressure difference ⁇ P with the threshold as described above. You may judge whether it stopped. Then, when the operation of the air conditioner 1 stops due to activation of the protection function due to an increase in the high pressure or a decrease in the low pressure, the determination unit 123 determines that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be determined. In this case, in step ST02, the operating data acquisition unit 122 acquires a control value indicating that the operation of the air conditioner 1 should be stopped as the operating data. Then, the determination unit 123 analyzes the control value and recognizes that the operation of the air conditioner 1 has stopped due to activation of the protection function due to an increase in the high pressure or a decrease in the low pressure.
  • the threshold value to be compared with the high-low pressure difference ⁇ P may be a fixed value or a variable value.
  • the determination unit 123 changes the threshold according to the operating state of the air conditioner 1, such as the frequency of the compressor 11 and the degree of opening of the expansion valve 21 of the indoor unit 20. .
  • the threshold according to the operating state by the determination unit 123 detection accuracy can be improved when the liquid tube valve 15 and/or the gas tube valve 16 is not fully closed.
  • the determination unit 123 uses a variable threshold that changes according to the operating state of the air conditioner 1 as the threshold to be compared with the high pressure value. good too.
  • the determination unit 123 uses a variable threshold that changes according to the operating state of the air conditioner 1 as the threshold to be compared with the low pressure value.
  • the abnormality determination device 4 instructs the outdoor unit 10 to open the liquid tube valve 15 and/or the gas tube valve 16, and automatically opens the liquid tube valve 15 and/or the gas tube valve 16.
  • the outdoor unit 10 includes a valve control mechanism for controlling the opening and closing of the liquid tube valve 15 and the gas tube valve 16 (not shown in FIG. 2).
  • the signal transmission unit 121 opens the liquid tube valve 15 and/or the gas tube valve 16.
  • An instruction signal instructing to do is transmitted to the outdoor unit 10 .
  • the outdoor unit 10 that has received the instruction signal controls the valve control mechanism to open the liquid pipe valve 15 and/or the gas pipe valve 16 .
  • the valve control mechanism controls the valve control mechanism to open the liquid pipe valve 15 and/or the gas pipe valve 16 .
  • the work load on the operator can be reduced.
  • the output of the message to the display device 3 by the notification unit 124 may be omitted.
  • the abnormality determination device 4 transmits to the outdoor unit 10 an instruction signal instructing the closing of the subcooling coil expansion valve 18, and the outdoor unit 10 closes the subcooling coil expansion valve 18. . Therefore, according to the present embodiment, even if the second refrigerant path exists in the outdoor unit 10, the abnormality determination device 4 determines whether the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be determined correctly. As a result, even if the operator forgets to open the liquid pipe valve 15 and/or the gas pipe valve 16 during the installation work, the operator will be notified during the trial operation that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be notified. Even if an abnormal stop occurs during trial operation, the operator can recognize that the cause of the abnormal stop is the closing of the liquid pipe valve 15 and/or the gas pipe valve 16, which leads to a reduction in working time.
  • Embodiment 2 the outdoor unit 10 having the configuration shown in FIG. 2, that is, the outdoor unit 10 including the sub-cooling coil 17 and the sub-cooling coil expansion valve 18 and the second refrigerant path shown in FIG. 4 has been described.
  • an outdoor unit 10 having another configuration will be described.
  • differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • FIG. 6 shows a configuration example of the air conditioner 1 according to this embodiment.
  • the indoor unit 20 and the connection pipe 30 are the same as those shown in FIG. 2, the description thereof is omitted.
  • the four-way valve 12, the outdoor heat exchanger 13, the outdoor unit fan 14, the liquid pipe valve 15, the gas pipe valve 16, the high pressure sensor 41 and the low pressure sensor 41 are those shown in FIG. is the same as , so the description is omitted.
  • an injection compressor 111 is arranged instead of the compressor 11 shown in FIG.
  • the injection compressor 111 has a connection port for intermediate pressure in addition to a connection port for discharge pressure and a connection port for suction pressure.
  • an injection expansion valve 118 is arranged instead of the subcool coil expansion valve 18 shown in FIG.
  • the injection expansion valve 118 adjusts the amount of injection injected from the injection pipe 119 to the intermediate pressure of the injection compressor 111 .
  • the injection expansion valve 118 corresponds to a second valve.
  • an economizer 117 is arranged instead of the subcooling coil 17 shown in FIG.
  • the economizer 117 recovers the heat of the liquid refrigerant that has flowed out of the outdoor heat exchanger 13 with intermediate-pressure refrigerant.
  • part of the liquid refrigerant that has flowed out of the outdoor heat exchanger 13 during cooling operation is branched and injected into the intermediate pressure of the injection compressor 111, thereby improving the refrigeration cycle efficiency.
  • the outdoor unit 10 has a valve control mechanism (not shown in FIG. 6) that closes the injection expansion valve 118 based on an instruction signal.
  • FIG. 7 shows a first refrigerant path according to this embodiment
  • FIG. 8 shows a second refrigerant path according to this embodiment.
  • the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the injection compressor 111, the high pressure sensor 41, the outdoor heat exchanger 13, the economizer 117 and the liquid pipe valve. 15 and returned to the indoor unit 20.
  • Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
  • the second refrigerant path is a path through which the refrigerant circulates inside the outdoor unit 10 .
  • the second refrigerant path passes through the outdoor heat exchanger 13, the economizer 117, the injection expansion valve 118, the injection pipe 119, the injection compressor 111, and the high pressure sensor 41. is the route.
  • the injection expansion valve 118 is open even if the circulation of the refrigerant in the first refrigerant path is blocked by closing the liquid pipe valve 15 and the gas pipe valve 16, The coolant can circulate through the second coolant path. Even if the liquid pipe valve 15 and the gas pipe valve 16 are closed, the high-low pressure difference does not increase beyond the threshold when the refrigerant circulates through the second refrigerant path. Therefore, when the injection expansion valve 118 is open, there is a problem that the state of the liquid tube valve 15 and/or the gas tube valve 16 cannot be accurately determined.
  • the signal transmission unit 121 transmits to the outdoor unit 10 an instruction signal instructing the injection expansion valve 118 to close.
  • the outdoor unit 10 that has received the instruction signal closes the injection expansion valve 118 if the injection expansion valve 118 is open. Closing the injection expansion valve 118 cuts off the recirculation of the refrigerant in the second refrigerant circuit.
  • the determination unit 123 can accurately determine the state of the liquid pipe valve 15 and/or the gas pipe valve 16 by blocking the circulation of the refrigerant in the second refrigerant circuit by closing the injection expansion valve 118. can do.
  • An operation example of the abnormality determination device 4 according to the present embodiment is as shown in FIG. Therefore, detailed description of the operation of the abnormality determination device 4 according to the present embodiment will be omitted.
  • Embodiment 3 an outdoor unit 10 having a configuration different from that of the first and second embodiments will be described. In this embodiment, differences from the first embodiment will be mainly described. Matters not described below are the same as those in the first embodiment.
  • FIG. 9 shows a configuration example of the air conditioner 1 according to this embodiment.
  • the indoor unit 20 and the connection pipe 30 are the same as those shown in FIG. 2, the description thereof is omitted. Further, in the outdoor unit 10, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor unit fan 14, the liquid pipe valve 15, the gas pipe valve 16, the high pressure sensor 41 and the low pressure sensor 42 are arranged as shown in FIG. Since it is the same as that shown in , the description is omitted.
  • the outdoor unit 10 is provided with an oil separator 51 , a capillary tube 52 and an oil return valve 53 .
  • the oil separator 51 separates refrigerating machine oil contained in the refrigerant discharged from the compressor 11 .
  • the capillary tube 52 functions as a flow resistance that appropriately adjusts the flow rate of the refrigerating machine oil and refrigerant returned from the oil separator 51 to the suction side of the compressor 11 .
  • the oil return valve 53 is opened while the compressor 11 is running.
  • the oil return valve 53 corresponds to a second valve. Refrigerating machine oil discharged from the compressor 11 is quickly recovered to the compressor 11 by an oil return path composed of the oil separator 51 , the capillary tube 52 and the oil return valve 53 .
  • the outdoor unit 10 has a valve control mechanism (not shown in FIG. 9) that closes the oil return valve 53 based on an instruction signal.
  • FIG. 10 shows a first refrigerant path according to this embodiment
  • FIG. 11 shows a second refrigerant path according to this embodiment.
  • the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the compressor 11, the high pressure sensor 41, the oil separator 51, the outdoor heat exchanger 13 and the liquid pipe. It is returned to the indoor unit 20 via the valve 15 .
  • Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
  • the second refrigerant path is a path through which the refrigerant circulates inside the outdoor unit 10 .
  • the second refrigerant path is a path passing through the compressor 11, the high pressure sensor 41, the oil separator 51, the capillary tube 52, the oil return valve 53, and the low pressure sensor 42. is.
  • the outdoor unit 10 even if the circulation of the refrigerant in the first refrigerant path is blocked by closing the liquid tube valve 15 and the gas tube valve 16, if the oil return valve 53 is open, the refrigerant can circulate through the second refrigerant path. Even if the liquid pipe valve 15 and the gas pipe valve 16 are closed, the high-low pressure difference does not increase beyond the threshold when the refrigerant circulates through the second refrigerant path. Therefore, when the oil return valve 53 is open, there is a problem that the states of the liquid tube valve 15 and/or the gas tube valve 16 cannot be accurately determined.
  • the signal transmission section 121 transmits an instruction signal to the outdoor unit 10 to instruct the oil return valve 53 to be closed.
  • the outdoor unit 10 that has received the instruction signal closes the oil return valve 53 if the oil return valve 53 is open.
  • the determining unit 123 can accurately determine the state of the liquid tube valve 15 and/or the gas tube valve 16 by blocking the circulation of the refrigerant in the second refrigerant circuit by closing the oil return valve 53. be able to.
  • An operation example of the abnormality determination device 4 according to the present embodiment is as shown in FIG. Therefore, detailed description of the operation of the abnormality determination device 4 according to the present embodiment will be omitted.
  • the processor 120 shown in FIG. 1 is an IC (Integrated Circuit) that performs processing.
  • the processor 120 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
  • the communication device 110 shown in FIG. 1 is an electronic circuit that performs data communication processing.
  • the communication device 110 is, for example, a communication chip or a NIC (Network Interface Card).
  • a storage device (not shown in FIG. 1) also stores an OS (Operating System). At least part of the OS is executed by the processor 120 . While executing at least part of the OS, the processor 120 executes a program that implements the functions of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124. Task management, memory management, file management, communication control, etc. are performed by the processor 120 executing the OS. In addition, at least one of information, data, signal values, and variable values indicating the processing results of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 is stored in a storage device, a register in the processor 120, and Stored in at least one of the cache memories.
  • OS Operating System
  • a program that realizes the functions of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 is compatible with magnetic discs, flexible discs, optical discs, compact discs, Blu-ray (registered trademark) discs, DVDs, and the like. It may be stored in a transport recording medium. Then, a portable recording medium storing a program for realizing the functions of the signal transmission unit 121, the operation data acquisition unit 122, the determination unit 123, and the notification unit 124 may be distributed.
  • the “units” of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 may be read as “circuit”, “process”, “procedure”, “processing”, or “circuitry”. good.
  • the abnormality determination device 4 may be realized by a processing circuit.
  • the processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
  • the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 are each realized as part of the processing circuit.
  • the general concept of processors and processing circuits is referred to as "processing circuitry.”
  • processors and processing circuitry are each examples of "processing circuitry.”
  • first to third embodiments have been described above, two or more of these embodiments may be combined for implementation. Alternatively, one of these embodiments may be partially implemented. Alternatively, two or more of these embodiments may be partially combined for implementation. Also, the configurations and procedures described in these embodiments may be changed as necessary.
  • 1 air conditioner, 2 indicator, 3 indicator, 4 abnormality determination device 10 outdoor unit, 11 compressor, 12 four-way valve, 13 outdoor heat exchanger, 14 outdoor unit fan, 15 liquid pipe valve, 16 gas pipe valve , 17 subcool coil, 18 subcool coil expansion valve, 20 indoor unit, 21 expansion valve, 22 indoor heat exchanger, 23 indoor unit fan, 30 connection pipe, 41 high pressure sensor, 42 low pressure sensor, 51 oil separator, 52 capillary tube, 53 oil return valve, 110 communication device, 111 injection compressor, 117 economizer, 118 injection expansion valve, 119 injection pipe, 120 processor, 121 signal transmitter, 122 operation data acquisition unit, 123 determination unit, 124 Notification department.

Abstract

In the present invention, if an outdoor unit of an air conditioner (1) includes a second refrigerant path, which is capable of circulating a refrigerant within the outdoor unit even if the refrigerant circulation in a first refrigerant path for circulating the refrigerant between an indoor unit and the outdoor unit is blocked by the closing of a first valve disposed in the first refrigerant path, a signal transmission unit (121) transmits, to the outdoor unit, an instruction signal instructing the outdoor unit to close a second valve which, upon closing, blocks the refrigerant circulation in the second refrigerant path. A determination unit (123) determines whether the first valve is closed after the instruction signal has been transmitted from the signal transmission unit (121) to the outdoor unit.

Description

検査装置及び検査方法Inspection device and inspection method
 本開示は、空気調和機の冷媒経路に配置されているバルブが閉止されているか否かを検査する技術に関する。 The present disclosure relates to technology for inspecting whether or not a valve arranged in a refrigerant path of an air conditioner is closed.
 空気調和機の室外機と室外機との間で冷媒を環流させるための冷媒経路(以下、第1の冷媒経路という)の出入口部分には、液管バルブ及びガス管バルブが配置されている。以下、液管バルブ及びガス管バルブをまとめて第1のバルブともいう。
 空気調和機の施工時には、空気調和機の試運転が行われ、施工作業における不備がないことの確認が行われることが一般的である。
 第1のバルブは、空気調和機の施工時に作業者により開状態にすることが必要である。第1のバルブが閉止状態にある場合、あるいは、第1のバルブが全開となっていない場合は、第1の冷媒経路がふさがれ、冷媒が環流しない。このため、期待する空気調和能力が発揮されないことが想定される。あるいは、圧力損失の増大により消費電力が増大することが想定される。
 また、第1のバルブが閉止状態であるときには、低圧圧力(吸入圧力)と高圧圧力(吐出圧力)との間の圧力差が開き、空気調和機を保護するための保護制御により空気調和機が停止することがある。このような空気調和機の停止時には、作業者が停止の要因を検討する必要がある。また、保護制御に関わらず空気調和機の運転が継続する場合は、第1のバルブが閉止状態であることを作業者が見逃すことを回避する必要がある。
 このように、特に空気調和機の設置後の試運転時において、第1のバルブの閉止状態を検出し、第1のバルブが閉止状態であることを作業者に認知させることが求められる。
A liquid pipe valve and a gas pipe valve are arranged at the entrance and exit of a refrigerant path (hereinafter referred to as a first refrigerant path) for circulating the refrigerant between the outdoor units of the air conditioner. Hereinafter, the liquid pipe valve and the gas pipe valve are collectively referred to as the first valve.
When constructing an air conditioner, it is common to perform a test run of the air conditioner to confirm that there are no defects in the construction work.
The first valve must be opened by an operator when installing the air conditioner. When the first valve is closed, or when the first valve is not fully open, the first refrigerant path is blocked and the refrigerant does not circulate. For this reason, it is assumed that the expected air conditioning performance will not be exhibited. Alternatively, it is assumed that power consumption increases due to an increase in pressure loss.
Further, when the first valve is closed, the pressure difference between the low pressure (intake pressure) and the high pressure (discharge pressure) opens, and the air conditioner is operated by protective control to protect the air conditioner. may stop. When stopping such an air conditioner, it is necessary for the operator to consider the cause of the stop. Moreover, when the operation of the air conditioner continues regardless of the protection control, it is necessary to prevent the operator from overlooking the closed state of the first valve.
As described above, it is required to detect the closed state of the first valve and to let the operator recognize that the first valve is closed, especially during trial operation after installation of the air conditioner.
 このような観点から、特許文献1には、第1のバルブが閉止状態にあるか否かを検出する技術が開示されている。 From this point of view, Patent Document 1 discloses a technique for detecting whether or not the first valve is closed.
特開2007-107820号公報Japanese Patent Application Laid-Open No. 2007-107820
 室外機によっては、第1のバルブの閉止により第1の冷媒経路における冷媒の環流が遮断されていても室外機内で冷媒を環流させることが可能な第2の冷媒経路が存在することある。このような室外機では、第1のバルブが閉止されていても第2の冷媒経路によって冷媒が環流するため、低圧圧力と高圧圧力との間の圧力差が開かない。このため、特許文献1の技術では、第1のバルブが閉止されているにも関わらず、第1のバルブが開いていると誤って判定してしまうという課題がある。 Depending on the outdoor unit, there may be a second refrigerant path that allows the refrigerant to circulate inside the outdoor unit even if the circulation of the refrigerant in the first refrigerant path is blocked by closing the first valve. In such an outdoor unit, the refrigerant circulates through the second refrigerant path even when the first valve is closed, so the pressure difference between the low pressure and the high pressure does not open. For this reason, the technique of Patent Document 1 has a problem that it is erroneously determined that the first valve is open even though the first valve is closed.
 本開示は、このような課題を解決することを主な目的とする。より具体的には、本開示は、第2の冷媒経路が存在する室外機が用いられる場合でも、第1のバルブが閉止されているか否かを正しく判定できるようにすることを主な目的とする。 The main purpose of this disclosure is to solve such problems. More specifically, the main purpose of the present disclosure is to correctly determine whether or not the first valve is closed even when an outdoor unit having a second refrigerant path is used. do.
 本開示に係る検査装置は、
 空気調和機の室内機と室外機との間で冷媒を環流させる第1の冷媒経路における前記冷媒の環流が前記第1の冷媒経路に配置されている第1のバルブの閉止により遮断されていても前記室外機内で前記冷媒を環流させることが可能な第2の冷媒経路が前記室外機に存在する場合に、前記第2の冷媒経路に配置されている、閉止により前記第2の冷媒経路における前記冷媒の環流を遮断させる第2のバルブを閉止するよう前記室外機に指示する指示信号を前記室外機に送信する信号送信部と、
 前記信号送信部により前記指示信号が前記室外機に送信された後に、前記第1のバルブが閉止されているか否かを判定する判定部とを有する。
The inspection device according to the present disclosure is
The circulation of the refrigerant in the first refrigerant path for circulating the refrigerant between the indoor unit and the outdoor unit of the air conditioner is blocked by closing the first valve arranged in the first refrigerant path. When the outdoor unit has a second refrigerant path capable of circulating the refrigerant in the outdoor unit, the second refrigerant path arranged in the second refrigerant path is closed. a signal transmission unit configured to transmit an instruction signal to the outdoor unit to instruct the outdoor unit to close a second valve that blocks circulation of the refrigerant;
and a determination unit that determines whether or not the first valve is closed after the instruction signal is transmitted to the outdoor unit by the signal transmission unit.
 本開示によれば、第2の冷媒経路が存在する室外機が用いられる場合でも、第1のバルブが閉止されているか否かを正しく判定することができる。 According to the present disclosure, even when an outdoor unit having a second refrigerant path is used, it is possible to correctly determine whether the first valve is closed.
実施の形態1に係る異常検知システムの構成例を示す図。1 is a diagram showing a configuration example of an anomaly detection system according to Embodiment 1; FIG. 実施の形態1に係る空気調和機の構成例を示す図。1 is a diagram showing a configuration example of an air conditioner according to Embodiment 1; FIG. 実施の形態1に係る第1の冷媒経路を示す図。FIG. 2 is a diagram showing a first refrigerant path according to Embodiment 1; FIG. 実施の形態1に係る第2の冷媒経路を示す図。4 is a diagram showing a second refrigerant path according to Embodiment 1; FIG. 実施の形態1に係る異常判定装置の動作例を示すフローチャート。4 is a flowchart showing an operation example of the abnormality determination device according to Embodiment 1; 実施の形態2に係る空気調和機の構成例を示す図。FIG. 5 is a diagram showing a configuration example of an air conditioner according to Embodiment 2; 実施の形態2に係る第1の冷媒経路を示す図。The figure which shows the 1st refrigerant|coolant path|route which concerns on Embodiment 2. FIG. 実施の形態2に係る第2の冷媒経路を示す図。FIG. 8 is a diagram showing a second refrigerant path according to Embodiment 2; 実施の形態3に係る空気調和機の構成例を示す図。The figure which shows the structural example of the air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る第1の冷媒経路を示す図。The figure which shows the 1st refrigerant|coolant path|route which concerns on Embodiment 3. FIG. 実施の形態3に係る第2の冷媒経路を示す図。The figure which shows the 2nd refrigerant|coolant path|route which concerns on Embodiment 3. FIG.
 以下、実施の形態を図を用いて説明する。以下の実施の形態の説明及び図面において、同一の符号を付したものは、同一の部分又は相当する部分を示す。 An embodiment will be described below with reference to the drawings. In the following description and drawings of the embodiments, the same reference numerals denote the same or corresponding parts.
 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る異常検知システムの構成例を示す。
 異常検知システムは、空気調和機1、指示器2、表示器3及び異常判定装置4で構成される。
 空気調和機1、指示器2及び表示器3は異常判定装置4に接続される。
Embodiment 1.
*** Configuration description ***
FIG. 1 shows a configuration example of an anomaly detection system according to this embodiment.
The abnormality detection system is composed of an air conditioner 1 , an indicator 2 , a display 3 and an abnormality determination device 4 .
The air conditioner 1 , the indicator 2 and the indicator 3 are connected to an abnormality determination device 4 .
 指示器2は、試運転の開始を空気調和機1に指示する。指示器2は、例えば、空気調和機1のリモートコントローラ、空気調和機1に接続されたPC(Personal Computer)である。 The indicator 2 instructs the air conditioner 1 to start trial operation. The indicator 2 is, for example, a remote controller of the air conditioner 1 or a PC (Personal Computer) connected to the air conditioner 1 .
 表示器3は、後述する液管バルブ15及び/又はガス管バルブ16の閉止状態が検出された際に、液管バルブ15及び/又はガス管バルブ16が閉止状態にあることを通知するメッセージを表示する。空気調和機1の設置作業を行う作業者は表示器3によるメッセージの表示により液管バルブ15及び/又はガス管バルブ16が閉止状態にあることを認識することができる。
 表示器3は、例えば、空気調和機1のリモートコントローラ、空気調和機1に接続されたPCである。
 指示器2と表示器3が同じ機器で実現されていてもよい。
When the closed state of the liquid tube valve 15 and/or the gas tube valve 16, which will be described later, is detected, the indicator 3 displays a message notifying that the liquid tube valve 15 and/or the gas tube valve 16 is in the closed state. indicate. A worker who installs the air conditioner 1 can recognize that the liquid tube valve 15 and/or the gas tube valve 16 is in a closed state from the display of the message on the display device 3 .
The display device 3 is, for example, a remote controller of the air conditioner 1 or a PC connected to the air conditioner 1 .
The indicator 2 and the indicator 3 may be realized by the same device.
 異常判定装置4は、コンピュータである。指示器2及び/又は表示器3がPCで実現されている場合は、異常判定装置4は、指示器2及び/又は表示器3と同じPCで実現されてもよい。
 異常判定装置4は、通信機110とプロセッサ120で構成される。また、図示していないが、異常判定装置4にRAM(Random Access Memory)、HDD(Hard Disk Drive)等の記憶装置が含まれているものとする。
 通信機110は、空気調和機1、指示器2及び表示器3と通信を行う。
 プロセッサ120は、信号送信部121、運転データ取得部122、判定部123及び報知部124の機能を実現するプログラムを実行する。プロセッサ120は、プログラムを実行して、信号送信部121、運転データ取得部122、判定部123及び報知部124として機能する。信号送信部121、運転データ取得部122、判定部123及び報知部124の詳細は後述する。
 なお、異常判定装置4は検査装置に相当する。また、異常判定装置4の動作手順は検査方法に相当する。
The abnormality determination device 4 is a computer. If the indicator 2 and/or the indicator 3 are implemented by a PC, the abnormality determination device 4 may be implemented by the same PC as the indicator 2 and/or the indicator 3 .
The abnormality determination device 4 is composed of a communication device 110 and a processor 120 . Although not shown, the abnormality determination device 4 is assumed to include storage devices such as RAM (Random Access Memory) and HDD (Hard Disk Drive).
The communication device 110 communicates with the air conditioner 1 , the indicator 2 and the display device 3 .
The processor 120 executes a program that implements the functions of the signal transmission unit 121 , the driving data acquisition unit 122 , the determination unit 123 and the notification unit 124 . The processor 120 executes programs and functions as a signal transmission unit 121 , a driving data acquisition unit 122 , a determination unit 123 and a notification unit 124 . Details of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 will be described later.
The abnormality determination device 4 corresponds to an inspection device. Further, the operation procedure of the abnormality determination device 4 corresponds to an inspection method.
 図2は、空気調和機1の構成例を示す。
 空気調和機1は、室外機10と室内機20と、室外機10と室内機20とを接続する接続配管30とから構成される。
 図2は1台の室外機10に複数台の室内機20が接続される構成を示している。しかしながら、空気調和機1の構成は、図2に示すものに限定されない。空気調和機1は、1台の室外機10に1台の室内機20が接続される構成でもよい。また、空気調和機1に複数台の室外機10が含まれていてもよい。
FIG. 2 shows a configuration example of the air conditioner 1 .
The air conditioner 1 includes an outdoor unit 10 , an indoor unit 20 , and a connection pipe 30 connecting the outdoor unit 10 and the indoor unit 20 .
FIG. 2 shows a configuration in which a plurality of indoor units 20 are connected to one outdoor unit 10. As shown in FIG. However, the configuration of the air conditioner 1 is not limited to that shown in FIG. The air conditioner 1 may be configured such that one indoor unit 20 is connected to one outdoor unit 10 . Also, the air conditioner 1 may include a plurality of outdoor units 10 .
 室外機10は、圧縮機11、四方弁12、室外熱交換器13、室外機ファン14、液管バルブ15、ガス管バルブ16、サブクールコイル17及びサブクールコイル用膨張弁18で構成される。
 室内機20は、膨張弁21、室内熱交換器22及び室内機ファン23で構成される。
 圧縮機11、四方弁12、室外熱交換器13、膨張弁21、室内熱交換器22が冷媒配管により環状に接続されることで冷凍サイクルが構成される。
 なお、図2では図示していないが、室外機10は、異常判定装置4からの指示信号を受信する通信機を有する。また、室外機10は、指示信号に基づいてサブクールコイル用膨張弁18を閉止する弁制御機構を有する。指示信号は、異常判定装置4が室外機10にサブクールコイル用膨張弁18を閉止するよう指示する信号である。
The outdoor unit 10 includes a compressor 11 , a four-way valve 12 , an outdoor heat exchanger 13 , an outdoor unit fan 14 , a liquid tube valve 15 , a gas tube valve 16 , a subcooling coil 17 and an expansion valve 18 for the subcooling coil.
The indoor unit 20 includes an expansion valve 21 , an indoor heat exchanger 22 and an indoor unit fan 23 .
A refrigerating cycle is configured by annularly connecting the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the expansion valve 21, and the indoor heat exchanger 22 by refrigerant pipes.
Although not shown in FIG. 2 , the outdoor unit 10 has a communication device that receives an instruction signal from the abnormality determination device 4 . The outdoor unit 10 also has a valve control mechanism that closes the sub-cooling coil expansion valve 18 based on an instruction signal. The instruction signal is a signal that the abnormality determination device 4 instructs the outdoor unit 10 to close the subcooling coil expansion valve 18 .
 圧縮機11は、低温かつ低圧の冷媒を圧縮し、低温かつ低圧の冷媒を高温かつ高圧の冷媒に変換する。圧縮機11は、例えばインバータで駆動され、容量(単位時間当たりに吐出する冷媒の量)が制御される。 The compressor 11 compresses a low-temperature, low-pressure refrigerant and converts the low-temperature, low-pressure refrigerant into a high-temperature, high-pressure refrigerant. The compressor 11 is driven by, for example, an inverter, and its capacity (amount of refrigerant discharged per unit time) is controlled.
 四方弁12は、空気調和機1の運転モード、例えば、冷房運転又は暖房運転に応じて冷媒の流れを切り替える。 The four-way valve 12 switches the refrigerant flow according to the operation mode of the air conditioner 1, for example, cooling operation or heating operation.
 室外熱交換器13は、冷凍サイクルを流れる冷媒と、室外空気との間で熱交換を行う。室外熱交換器13には室外機ファン14が隣接される。
 室外機ファン14は、室外熱交換器13への送風を行う。室外機ファン14の回転数を制御することにより、送風量を調整することができる。
The outdoor heat exchanger 13 exchanges heat between the refrigerant flowing through the refrigeration cycle and the outdoor air. An outdoor unit fan 14 is adjacent to the outdoor heat exchanger 13 .
The outdoor unit fan 14 blows air to the outdoor heat exchanger 13 . By controlling the number of revolutions of the outdoor unit fan 14, the amount of air blown can be adjusted.
 膨張弁21は、開度が可変に制御可能な弁、例えば、電子式膨張弁で構成される。膨張弁21の開度が制御されることで、冷媒の減圧量が制御される。 The expansion valve 21 is a valve whose opening can be variably controlled, for example, an electronic expansion valve. By controlling the degree of opening of the expansion valve 21, the amount of pressure reduction of the refrigerant is controlled.
 室内熱交換器22は、冷凍サイクルを流れる冷媒と、室内空気との間で熱交換を行う。室内熱交換器22には室内機ファン23が隣接される。
 室内機ファン23は、室内熱交換器22への送風を行う。室内機ファン23の回転数を制御することにより、送風量を調整することができる。
The indoor heat exchanger 22 exchanges heat between the refrigerant flowing through the refrigeration cycle and the indoor air. An indoor unit fan 23 is adjacent to the indoor heat exchanger 22 .
The indoor unit fan 23 blows air to the indoor heat exchanger 22 . By controlling the number of rotations of the indoor unit fan 23, the amount of air blown can be adjusted.
 室外機10の圧縮機11の前後に、高圧圧力センサ41及び低圧圧力センサ42が設置される。高圧圧力センサ41は圧縮機11での冷媒の高圧圧力値(吐出圧力値)を計測する。低圧圧力センサ42は圧縮機11での冷媒の低圧圧力値(吸入圧力値)を計測する。
 高圧圧力センサ41及び低圧圧力センサ42は、高圧圧力及び低圧圧力を目標値に近づけるための制御を行う際に使用される。また、高圧圧力センサ41及び低圧圧力センサ42は、高圧圧力の上昇、低圧圧力の低下により室外機10が損傷することを避けるための保護制御に使用される。
A high pressure sensor 41 and a low pressure sensor 42 are installed before and after the compressor 11 of the outdoor unit 10 . The high pressure sensor 41 measures the high pressure value (discharge pressure value) of the refrigerant in the compressor 11 . The low pressure sensor 42 measures the low pressure value (suction pressure value) of the refrigerant in the compressor 11 .
The high pressure sensor 41 and the low pressure sensor 42 are used when performing control to bring the high pressure and the low pressure closer to target values. Also, the high pressure sensor 41 and the low pressure sensor 42 are used for protective control to avoid damage to the outdoor unit 10 due to an increase in the high pressure and a decrease in the low pressure.
 液管バルブ15及びガス管バルブ16は、室外機10と接続配管30との接続部分に設けられる。
 設置作業を行う作業員は、室外機10、室内機20及び接続配管30を設置場所にて接続して空気調和機1の設置を行う。出荷時及び移送時には、液管バルブ15及びガス管バルブ16は閉止されている。設置場所で室外機10、室内機20及び接続配管30を接続した後、作業員が液管バルブ15及びガス管バルブ16を開く。液管バルブ15及びガス管バルブ16が開かれると冷媒の環流が可能になる。
 液管バルブ15及びガス管バルブ16は、第1のバルブに相当する。
The liquid pipe valve 15 and the gas pipe valve 16 are provided at the connecting portion between the outdoor unit 10 and the connecting pipe 30 .
A worker who performs installation work installs the air conditioner 1 by connecting the outdoor unit 10, the indoor unit 20, and the connecting pipe 30 at the installation location. The liquid pipe valve 15 and the gas pipe valve 16 are closed during shipment and transfer. After connecting the outdoor unit 10, the indoor unit 20 and the connecting pipe 30 at the installation site, the operator opens the liquid pipe valve 15 and the gas pipe valve 16. FIG. When the liquid tube valve 15 and the gas tube valve 16 are opened, circulation of the refrigerant becomes possible.
The liquid pipe valve 15 and the gas pipe valve 16 correspond to the first valve.
 冷房運転時に、室外熱交換器13を出た高圧の冷媒の一部をサブクールコイル用膨張弁18で減圧し、減圧後の冷媒と分岐前の冷媒との熱交換をサブクールコイル17で行わせることで過冷却度を増加させることができる。減圧後の冷媒は圧縮機11に返される。
 サブクールコイル用膨張弁18は、第2のバルブに相当する。
During cooling operation, part of the high-pressure refrigerant that has exited the outdoor heat exchanger 13 is decompressed by the subcool coil expansion valve 18, and heat exchange between the decompressed refrigerant and the pre-branched refrigerant is performed by the subcool coil 17. can increase the degree of supercooling. The refrigerant after decompression is returned to the compressor 11 .
The subcool coil expansion valve 18 corresponds to a second valve.
 図2に示す室外機10では、冷媒を環流させる冷媒経路が2つ存在する。
 図3及び図4は、室外機10に存在する2つの冷媒経路を示す。
 図3は第1の冷媒経路を示し、図4は第2の冷媒経路を示す。
 図3の第1の冷媒経路では、室内機20から流入した冷媒はガス管バルブ16、低圧圧力センサ42、圧縮機11、高圧圧力センサ41、室外熱交換器13、サブクールコイル17及び液管バルブ15を経て室内機20に戻される。第1の冷媒経路により、室外機10と室内機20の間で冷媒が環流する。
 図4の第2の冷媒経路は、室外機10内で冷媒を環流させる経路である。つまり、第2の冷媒経路は、室外熱交換器13、サブクールコイル17、サブクールコイル用膨張弁18、低圧圧力センサ42、圧縮機11及び高圧圧力センサ41を通る経路である。
In the outdoor unit 10 shown in FIG. 2, there are two refrigerant paths for circulating the refrigerant.
3 and 4 show two refrigerant paths existing in the outdoor unit 10. FIG.
FIG. 3 shows the first coolant path and FIG. 4 shows the second coolant path.
In the first refrigerant path in FIG. 3, the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the compressor 11, the high pressure sensor 41, the outdoor heat exchanger 13, the subcool coil 17 and the liquid pipe valve. 15 and returned to the indoor unit 20. Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
A second refrigerant path in FIG. 4 is a path for recirculating the refrigerant in the outdoor unit 10 . That is, the second refrigerant path is a path passing through the outdoor heat exchanger 13 , the subcooling coil 17 , the subcooling coil expansion valve 18 , the low pressure sensor 42 , the compressor 11 and the high pressure sensor 41 .
 第2の冷媒経路が存在しない構成であれば、液管バルブ15及びガス管バルブ16の一方もしくは両方が閉じている場合は、圧縮機11が稼働した際に、正常に両バルブが開いている場合と比較して、高低圧差が大きくなる。高低圧差が予め設定する閾値を上回る場合は、液管バルブ15及び/又はガス管バルブ16が閉止状態である可能性があると判定することができる。
 しかし、第2の冷媒経路が存在する構成では、液管バルブ15及びガス管バルブ16の閉止により第1の冷媒経路における冷媒の環流が遮断されていてもサブクールコイル用膨張弁18が開いていると、冷媒は第2の冷媒経路を環流することが可能である。液管バルブ15及びガス管バルブ16が閉止されていても冷媒が第2の冷媒経路を環流する場合には、高低圧差が閾値以上に広がらない。このため、サブクールコイル用膨張弁18が開いている場合は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができないという課題がある。
If there is no second refrigerant path, if one or both of the liquid pipe valve 15 and the gas pipe valve 16 are closed, both valves are normally open when the compressor 11 is operated. The high-low pressure difference becomes larger than in the case. If the high-low pressure difference exceeds a preset threshold value, it can be determined that the liquid tube valve 15 and/or the gas tube valve 16 may be closed.
However, in the configuration in which the second refrigerant path exists, the expansion valve 18 for the subcooling coil is open even when the circulation of the refrigerant in the first refrigerant path is cut off by closing the liquid tube valve 15 and the gas tube valve 16. , the refrigerant can circulate through the second refrigerant path. Even if the liquid pipe valve 15 and the gas pipe valve 16 are closed, the high-low pressure difference does not increase beyond the threshold when the refrigerant circulates through the second refrigerant path. Therefore, when the sub-cooling coil expansion valve 18 is open, there is a problem that the state of the liquid pipe valve 15 and/or the gas pipe valve 16 cannot be accurately determined.
 このような課題に対して、本実施の形態に係る異常判定装置4は、室外機10に第2の冷媒経路が存在していても、液管バルブ15及び/又はガス管バルブ16が閉止されているか否かを正しく判定できる構成を有する。
 以下にて、本実施の形態に係る異常判定装置4の構成を説明する。
In order to solve such a problem, the abnormality determination device 4 according to the present embodiment is designed to prevent the liquid pipe valve 15 and/or the gas pipe valve 16 from being closed even when the second refrigerant path exists in the outdoor unit 10. It has a configuration that can correctly determine whether or not
The configuration of the abnormality determination device 4 according to this embodiment will be described below.
 信号送信部121は、空気調和機1の試運転字に、指示信号を室外機10に送信する。指示信号は、サブクールコイル用膨張弁18を閉止するよう指示する信号である。
 指示信号を受信した室外機10は、サブクールコイル用膨張弁18が開いていればサブクールコイル用膨張弁18を閉止する。サブクールコイル用膨張弁18が閉止されることで、第2の冷媒回路における冷媒の環流は遮断される。
 サブクールコイル用膨張弁18の閉止による第2の冷媒回路における冷媒の環流の遮断によって、後述の判定部123は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができる。
The signal transmission unit 121 transmits an instruction signal to the outdoor unit 10 during the test run of the air conditioner 1 . The instruction signal is a signal instructing to close the subcooling coil expansion valve 18 .
The outdoor unit 10 that has received the instruction signal closes the sub-cool coil expansion valve 18 if the sub-cool coil expansion valve 18 is open. Closing the sub-cooling coil expansion valve 18 cuts off circulation of the refrigerant in the second refrigerant circuit.
By shutting off the circulation of the refrigerant in the second refrigerant circuit by closing the sub-cooling coil expansion valve 18, the later-described determination unit 123 can accurately determine the state of the liquid pipe valve 15 and/or the gas pipe valve 16. .
 運転データ取得部122は、空気調和機1の運転データを取得する。運転データは、例えば、空気調和機1に設置されたセンサで得られたセンサ値である。また、運転データは、空気調和機1の制御値である。センサ値には、高圧圧力センサ41により計測された高圧圧力値及び低圧圧力センサ42により計測された低圧圧力値が含まれる。制御値には、圧縮機11の周波数、室外機ファン14の回転数、膨張弁21の弁開度といった数値が含まれる。
 運転データ取得部122は、信号送信部121により指示信号が送信された後に高圧圧力センサ41により計測された高圧圧力値及び低圧圧力センサ42により計測された低圧圧力値を取得する。
The operating data acquisition unit 122 acquires operating data of the air conditioner 1 . The operating data are, for example, sensor values obtained by sensors installed in the air conditioner 1 . Further, the operating data are control values of the air conditioner 1 . The sensor values include the high pressure value measured by the high pressure sensor 41 and the low pressure value measured by the low pressure sensor 42 . The control values include numerical values such as the frequency of the compressor 11, the rotation speed of the outdoor unit fan 14, and the valve opening degree of the expansion valve 21. FIG.
The operation data acquisition unit 122 acquires the high pressure value measured by the high pressure sensor 41 and the low pressure value measured by the low pressure sensor 42 after the signal transmission unit 121 has transmitted the instruction signal.
 判定部123は、運転データ取得部122により運転データとして取得された高圧圧力値及び低圧圧力値に基づき、液管バルブ15及び/又はガス管バルブ16が閉止状態であるか否かを判定する。前述のように、判定部123は、高圧圧力値との低圧圧力値の圧力差である高低圧差が閾値を上回る場合に、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定する。
 これに代えて、判定部123は、高圧圧力が予め設定された閾値を上回る場合に、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定してもよい。また、判定部123は、低圧圧力が予め設定された閾値を下回る場合に、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定してもよい。
 また、判定部123は、高圧圧力の上昇又は低圧圧力の低下によって保護機能が発動されて空気調和機1が運転を停止した場合に、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定してもよい。
The determination unit 123 determines whether or not the liquid tube valve 15 and/or the gas tube valve 16 is closed based on the high pressure value and the low pressure value acquired as the operation data by the operation data acquisition unit 122 . As described above, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 is closed when the high-low pressure difference, which is the pressure difference between the high pressure value and the low pressure value, exceeds a threshold value. do.
Alternatively, the determination unit 123 may determine that the liquid tube valve 15 and/or the gas tube valve 16 are closed when the high pressure exceeds a preset threshold value. Further, the determination unit 123 may determine that the liquid pipe valve 15 and/or the gas pipe valve 16 are closed when the low pressure is below a preset threshold value.
Further, when the air conditioner 1 stops operating due to the activation of the protection function due to an increase in the high pressure or a decrease in the low pressure, the determination unit 123 determines whether the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. It may be determined that there is
 報知部124は、判定部123により液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定された場合に、液管バルブ15及び/又はガス管バルブ16が閉止状態であることを作業者に報知する。具体的には、報知部124は、液管バルブ15及び/又はガス管バルブ16が閉止状態であることを通知するメッセージを表示器3に出力する。 When the determination unit 123 determines that the liquid pipe valve 15 and/or the gas pipe valve 16 is in the closed state, the notification unit 124 notifies that the liquid pipe valve 15 and/or the gas pipe valve 16 is in the closed state. Notify workers. Specifically, the notification unit 124 outputs a message to the display device 3 notifying that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed.
***動作の説明*** ***Description of operation***
 図5は、本実施の形態に係る異常判定装置4の動作例を示す。以下では、図5のフローを参照して、本実施の形態1に係る異常判定装置4の動作を説明する。 FIG. 5 shows an operation example of the abnormality determination device 4 according to this embodiment. The operation of the abnormality determination device 4 according to the first embodiment will be described below with reference to the flow of FIG.
 指示器2により空気調和機1の試運転の開始が指示されると、空気調和機1の試運転が開始する。空気調和機1の試運転が開始すると、運転データ取得部122は、運転データとして制御値を取得し、空気調和機1の試運転の開始を認識する。
 そして、ステップST01において、信号送信部121が室外機10に指示信号を送信する。指示信号を受信した室外機10は、指示信号に基づいて、サブクールコイル用膨張弁18を閉止する。
When the instruction to start the trial operation of the air conditioner 1 is given by the indicator 2, the trial operation of the air conditioner 1 is started. When the test operation of the air conditioner 1 starts, the operation data acquisition unit 122 acquires the control value as the operation data and recognizes the start of the test operation of the air conditioner 1 .
Then, in step ST01, the signal transmission section 121 transmits an instruction signal to the outdoor unit 10. FIG. Upon receiving the instruction signal, the outdoor unit 10 closes the subcool coil expansion valve 18 based on the instruction signal.
 ステップST02では、運転データ取得部122が、高圧圧力センサ41から高圧圧力値を取得する。また、運転データ取得部122は、低圧圧力センサ42より低圧圧力値を取得する。更に、判定部123が、高圧圧力値と低圧圧力値との差分である高低圧差ΔP(高圧圧力値-低圧圧力値)を算出する。 In step ST02, the operating data acquisition unit 122 acquires the high pressure value from the high pressure sensor 41. Further, the operating data acquisition unit 122 acquires the low pressure value from the low pressure sensor 42 . Further, the determination unit 123 calculates a high-low pressure difference ΔP (high-pressure value−low-pressure value), which is the difference between the high-pressure value and the low-pressure value.
 次に、ステップST03において、判定部123が、高低圧差ΔPが予め設定された閾値を上回るか否かを判定する。
 高低圧差ΔPが閾値を上回る場合は、処理がステップST04に進む。一方、高低圧差ΔPが閾値以下の場合は、処理が終了する。
Next, in step ST03, the determination unit 123 determines whether or not the high-low pressure difference ΔP exceeds a preset threshold value.
If the high-low pressure difference ΔP exceeds the threshold, the process proceeds to step ST04. On the other hand, if the high-low pressure difference ΔP is equal to or less than the threshold, the process ends.
 ステップST04では、判定部123が、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定する。そして、報知部124が、液管バルブ15及び/又はガス管バルブ16が閉止状態であることを通知するメッセージを表示器3に出力する。表示器3は、液管バルブ15及び/又はガス管バルブ16が閉止状態であることを通知するメッセージを表示する。
 表示器3により表示されたメッセージを見た作業者は、液管バルブ15及びガス管バルブ16を確認し、液管バルブ15及び/又はガス管バルブ16が閉止状態であれば、液管バルブ15及び/又はガス管バルブ16の開作業を行う。
In step ST04, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. Then, the notification unit 124 outputs to the display device 3 a message notifying that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. The display 3 displays a message notifying that the liquid tube valve 15 and/or the gas tube valve 16 are closed.
The operator who saw the message displayed by the display 3 checks the liquid tube valve 15 and the gas tube valve 16, and if the liquid tube valve 15 and/or the gas tube valve 16 is closed, the liquid tube valve 15 and/or perform an operation to open the gas pipe valve 16 .
 なお、ステップST03について、判定部123は、前述したように、高低圧差ΔPと閾値との比較に代えて、高圧圧力値と閾値との比較を行ってもよい。そして、高圧圧力値が閾値を上回る場合に、判定部123は、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定する。この場合は、ステップST02では、運転データ取得部122は高圧圧力値を取得するのみでよく、判定部123は高低圧差ΔPを算出する必要がない。 Note that in step ST03, the determination unit 123 may compare the high pressure value and the threshold instead of comparing the high and low pressure difference ΔP and the threshold as described above. Then, when the high-pressure value exceeds the threshold value, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. In this case, in step ST02, the operation data acquisition unit 122 only needs to acquire the high pressure value, and the determination unit 123 does not need to calculate the high-low pressure difference ΔP.
 また、ステップST03について、判定部123は、前述したように、高低圧差ΔPと閾値との比較に代えて、低圧圧力値と閾値との比較を行ってもよい。そして、低圧圧力値が閾値を下回る場合に、判定部123は、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定する。この場合は、ステップST02では、運転データ取得部122は低圧圧力値を取得するのみでよく、判定部123は高低圧差ΔPを算出する必要がない。 Also, regarding step ST03, the determination unit 123 may compare the low pressure value and the threshold instead of comparing the high and low pressure difference ΔP and the threshold as described above. Then, when the low-pressure value is below the threshold value, the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 are closed. In this case, in step ST02, the operation data acquisition unit 122 only needs to acquire the low pressure value, and the determination unit 123 does not need to calculate the high-low pressure difference ΔP.
 また、ステップST03について、判定部123は、前述したように、高低圧差ΔPと閾値との比較に代えて、高圧圧力の上昇又は低圧圧力の低下による保護機能の発動によって空気調和機1が運転を停止したか否かを判定してもよい。そして、高圧圧力の上昇又は低圧圧力の低下による保護機能の発動によって空気調和機1が運転を停止した場合に、判定部123は、液管バルブ15及び/又はガス管バルブ16が閉止状態であると判定してもよい。この場合は、ステップST02では、運転データ取得部122は運転データとして、空気調和機1の運転停止が示される制御値を取得する。そして、判定部123は、制御値を解析して、高圧圧力の上昇又は低圧圧力の低下による保護機能の発動によって空気調和機1が運転を停止したことを認識する。 Further, in step ST03, the determination unit 123 causes the air conditioner 1 to operate by activating the protection function due to the increase in the high pressure or the decrease in the low pressure instead of comparing the high and low pressure difference ΔP with the threshold as described above. You may judge whether it stopped. Then, when the operation of the air conditioner 1 stops due to activation of the protection function due to an increase in the high pressure or a decrease in the low pressure, the determination unit 123 determines that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be determined. In this case, in step ST02, the operating data acquisition unit 122 acquires a control value indicating that the operation of the air conditioner 1 should be stopped as the operating data. Then, the determination unit 123 analyzes the control value and recognizes that the operation of the air conditioner 1 has stopped due to activation of the protection function due to an increase in the high pressure or a decrease in the low pressure.
 また、高低圧差ΔPと比較する閾値は、固定値でもよいし、可変値でもよい。可変閾値が用いられる場合は、判定部123が、例えば圧縮機11の周波数、室内機20の膨張弁21の開度などの空気調和機1の運転状態に応じて閾値を変化させることが考えられる。判定部123が運転状態に応じて閾値を変化させることで、液管バルブ15及び/又はガス管バルブ16が全閉でない場合の検出精度を向上させることができる。 Also, the threshold value to be compared with the high-low pressure difference ΔP may be a fixed value or a variable value. When a variable threshold is used, it is conceivable that the determination unit 123 changes the threshold according to the operating state of the air conditioner 1, such as the frequency of the compressor 11 and the degree of opening of the expansion valve 21 of the indoor unit 20. . By changing the threshold according to the operating state by the determination unit 123, detection accuracy can be improved when the liquid tube valve 15 and/or the gas tube valve 16 is not fully closed.
 また、高低圧差ΔPに代えて高圧圧力値を閾値と比較する場合に、判定部123は、高圧圧力値と比較する閾値として、空気調和機1の運転状態に応じて変化する可変閾値を用いてもよい。
 同様に、高低圧差ΔPに代えて低圧圧力値を閾値と比較する場合に、判定部123は、低圧圧力値と比較する閾値として、空気調和機1の運転状態に応じて変化する可変閾値を用いてもよい。
Further, when the high pressure value is compared with the threshold instead of the high-low pressure difference ΔP, the determination unit 123 uses a variable threshold that changes according to the operating state of the air conditioner 1 as the threshold to be compared with the high pressure value. good too.
Similarly, when the low pressure value is compared with the threshold instead of the high-low pressure difference ΔP, the determination unit 123 uses a variable threshold that changes according to the operating state of the air conditioner 1 as the threshold to be compared with the low pressure value. may
 また、以上の説明では、表示器3により表示されたメッセージを見た作業者が液管バルブ15及び/又はガス管バルブ16の開作業を行うことを前提としていた。
 これに代えて、異常判定装置4が液管バルブ15及び/又はガス管バルブ16の開放を室外機10に指示して自動的に液管バルブ15及び/又はガス管バルブ16の開放を行うようにしてもよい。この場合には、室外機10には、図2に図示していない液管バルブ15及びガス管バルブ16の開閉を制御する弁制御機構が含まれているものとする。
 具体的には、判定部123により液管バルブ15及び/又はガス管バルブ16が閉止されていると判定された場合に、信号送信部121が液管バルブ15及び/又はガス管バルブ16を開放するよう指示する指示信号を室外機10に送信する。指示信号を受信した室外機10は、弁制御機構を制御して液管バルブ15及び/又はガス管バルブ16を開放する。
 このように自動で液管バルブ15及び/又はガス管バルブ16の開放を行うことで、作業者の作業負担を軽減することができる。なお、この場合には、報知部124による表示器3へのメッセージの出力は省略してもよい。
Further, in the above description, it is assumed that the operator who sees the message displayed by the display 3 performs the operation of opening the liquid tube valve 15 and/or the gas tube valve 16 .
Instead of this, the abnormality determination device 4 instructs the outdoor unit 10 to open the liquid tube valve 15 and/or the gas tube valve 16, and automatically opens the liquid tube valve 15 and/or the gas tube valve 16. can be In this case, it is assumed that the outdoor unit 10 includes a valve control mechanism for controlling the opening and closing of the liquid tube valve 15 and the gas tube valve 16 (not shown in FIG. 2).
Specifically, when the determination unit 123 determines that the liquid tube valve 15 and/or the gas tube valve 16 is closed, the signal transmission unit 121 opens the liquid tube valve 15 and/or the gas tube valve 16. An instruction signal instructing to do is transmitted to the outdoor unit 10 . The outdoor unit 10 that has received the instruction signal controls the valve control mechanism to open the liquid pipe valve 15 and/or the gas pipe valve 16 .
By automatically opening the liquid tube valve 15 and/or the gas tube valve 16 in this manner, the work load on the operator can be reduced. In this case, the output of the message to the display device 3 by the notification unit 124 may be omitted.
***実施の形態の効果の説明***
 以上のように、本実施の形態では、サブクールコイル用膨張弁18の閉止を指示する指示信号を異常判定装置4が室外機10に送信し、室外機10がサブクールコイル用膨張弁18を閉止する。このため、本実施の形態によれば、室外機10に第2の冷媒経路が存在していても、異常判定装置4は、液管バルブ15及び/又はガス管バルブ16が閉止されているか否かを正しく判定することができる。この結果、設置作業時に作業者が液管バルブ15及び/又はガス管バルブ16を開くことを忘れた場合でも、試運転時に作業者に液管バルブ15及び/又はガス管バルブ16が閉止状態であることを通知することができる。そして、試運転時に異常停止が発生した場合でも、作業者は異常停止の原因が液管バルブ15及び/又はガス管バルブ16の閉止であると認識できるため、作業時間の短縮につながる。
***Description of the effect of the embodiment***
As described above, in the present embodiment, the abnormality determination device 4 transmits to the outdoor unit 10 an instruction signal instructing the closing of the subcooling coil expansion valve 18, and the outdoor unit 10 closes the subcooling coil expansion valve 18. . Therefore, according to the present embodiment, even if the second refrigerant path exists in the outdoor unit 10, the abnormality determination device 4 determines whether the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be determined correctly. As a result, even if the operator forgets to open the liquid pipe valve 15 and/or the gas pipe valve 16 during the installation work, the operator will be notified during the trial operation that the liquid pipe valve 15 and/or the gas pipe valve 16 is closed. can be notified. Even if an abnormal stop occurs during trial operation, the operator can recognize that the cause of the abnormal stop is the closing of the liquid pipe valve 15 and/or the gas pipe valve 16, which leads to a reduction in working time.
実施の形態2.
 実施の形態1では、図2に示す構成の室外機10、つまり、サブクールコイル17とサブクールコイル用膨張弁18を含み、図4に示す第2の冷媒経路を含む室外機10を説明した。
 本実施の形態では、他の構成の室外機10を説明する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 2.
In Embodiment 1, the outdoor unit 10 having the configuration shown in FIG. 2, that is, the outdoor unit 10 including the sub-cooling coil 17 and the sub-cooling coil expansion valve 18 and the second refrigerant path shown in FIG. 4 has been described.
In this embodiment, an outdoor unit 10 having another configuration will be described.
In this embodiment, differences from the first embodiment will be mainly described.
Matters not described below are the same as those in the first embodiment.
 図6は、本実施の形態に係る空気調和機1の構成例を示す。 FIG. 6 shows a configuration example of the air conditioner 1 according to this embodiment.
 室内機20及び接続配管30は、図2に示したものと同じであるため、説明を省略する。
 また、室外機10内において、四方弁12、室外熱交換器13、室外機ファン14、液管バルブ15、ガス管バルブ16、高圧圧力センサ41及び低圧圧力センサ41は、図2に示したものと同じであるため、説明を省略する。
Since the indoor unit 20 and the connection pipe 30 are the same as those shown in FIG. 2, the description thereof is omitted.
In the outdoor unit 10, the four-way valve 12, the outdoor heat exchanger 13, the outdoor unit fan 14, the liquid pipe valve 15, the gas pipe valve 16, the high pressure sensor 41 and the low pressure sensor 41 are those shown in FIG. is the same as , so the description is omitted.
 図6に示す室外機10では、図2に示す圧縮機11に代えてインジェクション圧縮機111が配置されている。インジェクション圧縮機111は、吐出圧の接続口と吸入圧の接続口に加えて、中間圧にも接続口を有する。
 また、図6に示す室外機10では、図2に示すサブクールコイル用膨張弁18に代えてインジェクション用膨張弁118が配置されている。インジェクション用膨張弁118は、インジェクション管119からインジェクション圧縮機111の中間圧に注入されるインジェクション量を調整する。インジェクション用膨張弁118は、第2のバルブに相当する。
 また、図6に示す室外機10では、図2に示すサブクールコイル17に代えてエコノマイザ117が配置されている。エコノマイザ117は、室外熱交換器13から流出した液冷媒の熱を中間圧の冷媒で回収する。
 図6に示す室外機10では、冷房運転時に室外熱交換器13から流出した液冷媒の一部を分岐してインジェクション圧縮機111の中間圧に注入することで冷凍サイクル効率を向上させることができる。
 なお、室外機10は、図6に図示していない、指示信号に基づいてインジェクション用膨張弁118を閉止する弁制御機構を有するものとする。
In the outdoor unit 10 shown in FIG. 6, an injection compressor 111 is arranged instead of the compressor 11 shown in FIG. The injection compressor 111 has a connection port for intermediate pressure in addition to a connection port for discharge pressure and a connection port for suction pressure.
In the outdoor unit 10 shown in FIG. 6, an injection expansion valve 118 is arranged instead of the subcool coil expansion valve 18 shown in FIG. The injection expansion valve 118 adjusts the amount of injection injected from the injection pipe 119 to the intermediate pressure of the injection compressor 111 . The injection expansion valve 118 corresponds to a second valve.
Also, in the outdoor unit 10 shown in FIG. 6, an economizer 117 is arranged instead of the subcooling coil 17 shown in FIG. The economizer 117 recovers the heat of the liquid refrigerant that has flowed out of the outdoor heat exchanger 13 with intermediate-pressure refrigerant.
In the outdoor unit 10 shown in FIG. 6, part of the liquid refrigerant that has flowed out of the outdoor heat exchanger 13 during cooling operation is branched and injected into the intermediate pressure of the injection compressor 111, thereby improving the refrigeration cycle efficiency. .
It is assumed that the outdoor unit 10 has a valve control mechanism (not shown in FIG. 6) that closes the injection expansion valve 118 based on an instruction signal.
 本実施の形態に係る室外機10においても、第1の冷媒経路と第2の冷媒経路が存在する。
 図7は本実施の形態に係る第1の冷媒経路を示し、図8は本実施の形態に係る第2の冷媒経路を示す。
 図7の第1の冷媒経路では、室内機20から流入した冷媒はガス管バルブ16、低圧圧力センサ42、インジェクション圧縮機111、高圧圧力センサ41、室外熱交換器13、エコノマイザ117及び液管バルブ15を経て室内機20に戻される。第1の冷媒経路により、室外機10と室内機20の間で冷媒が環流する。
 本実施の形態においても、第2の冷媒経路は、室外機10内で冷媒を環流させる経路である。本実施の形態では、図8に示すように、第2の冷媒経路は、室外熱交換器13、エコノマイザ117、インジェクション用膨張弁118、インジェクション管119、インジェクション圧縮機111、高圧圧力センサ41を通る経路である。
Also in the outdoor unit 10 according to the present embodiment, there are the first refrigerant path and the second refrigerant path.
FIG. 7 shows a first refrigerant path according to this embodiment, and FIG. 8 shows a second refrigerant path according to this embodiment.
In the first refrigerant path in FIG. 7, the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the injection compressor 111, the high pressure sensor 41, the outdoor heat exchanger 13, the economizer 117 and the liquid pipe valve. 15 and returned to the indoor unit 20. Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
Also in the present embodiment, the second refrigerant path is a path through which the refrigerant circulates inside the outdoor unit 10 . In this embodiment, as shown in FIG. 8, the second refrigerant path passes through the outdoor heat exchanger 13, the economizer 117, the injection expansion valve 118, the injection pipe 119, the injection compressor 111, and the high pressure sensor 41. is the route.
 本実施の形態に係る室外機10においても、液管バルブ15及びガス管バルブ16の閉止により第1の冷媒経路における冷媒の環流が遮断されていてもインジェクション用膨張弁118が開いていると、冷媒は第2の冷媒経路を環流することが可能である。液管バルブ15及びガス管バルブ16が閉止されていても冷媒が第2の冷媒経路を環流する場合には、高低圧差が閾値以上に広がらない。このため、インジェクション用膨張弁118が開いている場合は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができないという課題がある。 In the outdoor unit 10 according to the present embodiment as well, if the injection expansion valve 118 is open even if the circulation of the refrigerant in the first refrigerant path is blocked by closing the liquid pipe valve 15 and the gas pipe valve 16, The coolant can circulate through the second coolant path. Even if the liquid pipe valve 15 and the gas pipe valve 16 are closed, the high-low pressure difference does not increase beyond the threshold when the refrigerant circulates through the second refrigerant path. Therefore, when the injection expansion valve 118 is open, there is a problem that the state of the liquid tube valve 15 and/or the gas tube valve 16 cannot be accurately determined.
 本実施の形態に係る異常判定装置4の構成は、図1に示す通りである。
 本実施の形態においても、上記の課題を解決するために、信号送信部121が、インジェクション用膨張弁118を閉止するよう指示する指示信号を室外機10に送信する。
 指示信号を受信した室外機10は、インジェクション用膨張弁118が開いていればインジェクション用膨張弁118を閉止する。インジェクション用膨張弁118が閉止されることで、第2の冷媒回路における冷媒の環流は遮断される。
 インジェクション用膨張弁118の閉止による第2の冷媒回路における冷媒の環流の遮断によって、本実施の形態においても、判定部123は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができる。
The configuration of the abnormality determination device 4 according to this embodiment is as shown in FIG.
Also in the present embodiment, in order to solve the above problem, the signal transmission unit 121 transmits to the outdoor unit 10 an instruction signal instructing the injection expansion valve 118 to close.
The outdoor unit 10 that has received the instruction signal closes the injection expansion valve 118 if the injection expansion valve 118 is open. Closing the injection expansion valve 118 cuts off the recirculation of the refrigerant in the second refrigerant circuit.
Also in the present embodiment, the determination unit 123 can accurately determine the state of the liquid pipe valve 15 and/or the gas pipe valve 16 by blocking the circulation of the refrigerant in the second refrigerant circuit by closing the injection expansion valve 118. can do.
 本実施の形態に係る異常判定装置4の動作例は図5に示す通りである。このため、本実施の形態に係る異常判定装置4の動作の詳細は説明を省略する。 An operation example of the abnormality determination device 4 according to the present embodiment is as shown in FIG. Therefore, detailed description of the operation of the abnormality determination device 4 according to the present embodiment will be omitted.
 このように、室外機10に図8に示す構成の第2の冷媒経路が含まれる場合でも、異常判定装置4は、液管バルブ15及び/又はガス管バルブ16が閉止されているか否かを正しく判定することができる。 Thus, even when the outdoor unit 10 includes the second refrigerant path having the configuration shown in FIG. can be judged correctly.
実施の形態3.
 本実施の形態では、実施の形態1及び実施の形態2とは異なる構成の室外機10を説明する。
 本実施の形態では、主に実施の形態1との差異を説明する。
 なお、以下で説明していない事項は、実施の形態1と同様である。
Embodiment 3.
In this embodiment, an outdoor unit 10 having a configuration different from that of the first and second embodiments will be described.
In this embodiment, differences from the first embodiment will be mainly described.
Matters not described below are the same as those in the first embodiment.
 図9は、本実施の形態に係る空気調和機1の構成例を示す。 FIG. 9 shows a configuration example of the air conditioner 1 according to this embodiment.
 室内機20及び接続配管30は、図2に示したものと同じであるため、説明を省略する。
 また、室外機10内において、圧縮機11、四方弁12、室外熱交換器13、室外機ファン14、液管バルブ15、ガス管バルブ16、高圧圧力センサ41及び低圧圧力センサ42は、図2に示したものと同じであるため、説明を省略する。
Since the indoor unit 20 and the connection pipe 30 are the same as those shown in FIG. 2, the description thereof is omitted.
Further, in the outdoor unit 10, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor unit fan 14, the liquid pipe valve 15, the gas pipe valve 16, the high pressure sensor 41 and the low pressure sensor 42 are arranged as shown in FIG. Since it is the same as that shown in , the description is omitted.
 本実施の形態に係る室外機10では、油分離器51、キャピラリチューブ52及び油戻しバルブ53が設けられている。
 油分離器51は、圧縮機11から吐出される冷媒に含まれる冷凍機油を分離する。
 キャピラリチューブ52は、油分離器51から圧縮機11の吸入側に戻される冷凍機油及び冷媒の流量を適正に調整する流路抵抗として機能する。
 油戻しバルブ53は、圧縮機11の運転中に開放される。油戻しバルブ53は第2のバルブに相当する。
 油分離器51、キャピラリチューブ52及び油戻しバルブ53で構成される油戻し経路により、圧縮機11から吐出された冷凍機油が速やかに圧縮機11に回収される。これにより、冷凍機油が室外機10を流出して冷媒経路の全体に分布してしまい、圧縮機11が潤滑不良になることを防止することができる。この結果、信頼性の高い冷凍サイクルを実現することができる。
 なお、室外機10は、図9に図示していない、指示信号に基づいて油戻しバルブ53を閉止する弁制御機構を有するものとする。
The outdoor unit 10 according to this embodiment is provided with an oil separator 51 , a capillary tube 52 and an oil return valve 53 .
The oil separator 51 separates refrigerating machine oil contained in the refrigerant discharged from the compressor 11 .
The capillary tube 52 functions as a flow resistance that appropriately adjusts the flow rate of the refrigerating machine oil and refrigerant returned from the oil separator 51 to the suction side of the compressor 11 .
The oil return valve 53 is opened while the compressor 11 is running. The oil return valve 53 corresponds to a second valve.
Refrigerating machine oil discharged from the compressor 11 is quickly recovered to the compressor 11 by an oil return path composed of the oil separator 51 , the capillary tube 52 and the oil return valve 53 . As a result, it is possible to prevent refrigerating machine oil from flowing out of the outdoor unit 10 and being distributed throughout the refrigerant path, thereby preventing lubrication failure of the compressor 11 . As a result, a highly reliable refrigeration cycle can be realized.
It is assumed that the outdoor unit 10 has a valve control mechanism (not shown in FIG. 9) that closes the oil return valve 53 based on an instruction signal.
 本実施の形態に係る室外機10においても、第1の冷媒経路と第2の冷媒経路が存在する。
 図10は本実施の形態に係る第1の冷媒経路を示し、図11は本実施の形態に係る第2の冷媒経路を示す。
 図10の第1の冷媒経路では、室内機20から流入した冷媒はガス管バルブ16、低圧圧力センサ42、圧縮機11、高圧圧力センサ41、油分離器51、室外熱交換器13及び液管バルブ15を経て室内機20に戻される。第1の冷媒経路により、室外機10と室内機20の間で冷媒が環流する。
 本実施の形態においても、第2の冷媒経路は、室外機10内で冷媒を環流させる経路である。本実施の形態では、図11に示すように、第2の冷媒経路は、圧縮機11、高圧圧力センサ41、油分離器51、キャピラリチューブ52、油戻しバルブ53、低圧圧力センサ42を通る経路である。
Also in the outdoor unit 10 according to the present embodiment, there are the first refrigerant path and the second refrigerant path.
FIG. 10 shows a first refrigerant path according to this embodiment, and FIG. 11 shows a second refrigerant path according to this embodiment.
10, the refrigerant flowing from the indoor unit 20 passes through the gas pipe valve 16, the low pressure sensor 42, the compressor 11, the high pressure sensor 41, the oil separator 51, the outdoor heat exchanger 13 and the liquid pipe. It is returned to the indoor unit 20 via the valve 15 . Refrigerant circulates between the outdoor unit 10 and the indoor unit 20 through the first refrigerant path.
Also in the present embodiment, the second refrigerant path is a path through which the refrigerant circulates inside the outdoor unit 10 . In this embodiment, as shown in FIG. 11, the second refrigerant path is a path passing through the compressor 11, the high pressure sensor 41, the oil separator 51, the capillary tube 52, the oil return valve 53, and the low pressure sensor 42. is.
 本実施の形態に係る室外機10においても、液管バルブ15及びガス管バルブ16の閉止により第1の冷媒経路における冷媒の環流が遮断されていても油戻しバルブ53が開いていると、冷媒は第2の冷媒経路を環流することが可能である。液管バルブ15及びガス管バルブ16が閉止されていても冷媒が第2の冷媒経路を環流する場合には、高低圧差が閾値以上に広がらない。このため、油戻しバルブ53が開いている場合は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができないという課題がある。 Also in the outdoor unit 10 according to the present embodiment, even if the circulation of the refrigerant in the first refrigerant path is blocked by closing the liquid tube valve 15 and the gas tube valve 16, if the oil return valve 53 is open, the refrigerant can circulate through the second refrigerant path. Even if the liquid pipe valve 15 and the gas pipe valve 16 are closed, the high-low pressure difference does not increase beyond the threshold when the refrigerant circulates through the second refrigerant path. Therefore, when the oil return valve 53 is open, there is a problem that the states of the liquid tube valve 15 and/or the gas tube valve 16 cannot be accurately determined.
 本実施の形態に係る異常判定装置4の構成は、図1に示す通りである。
 本実施の形態においても、上記の課題を解決するために、信号送信部121が、油戻しバルブ53を閉止するよう指示する指示信号を室外機10に送信する。
 指示信号を受信した室外機10は、油戻しバルブ53が開いていれば油戻しバルブ53を閉止する。油戻しバルブ53が閉止されることで、第2の冷媒回路における冷媒の環流は遮断される。
 油戻しバルブ53の閉止による第2の冷媒回路における冷媒の環流の遮断によって、本実施の形態においても、判定部123は、液管バルブ15及び/又はガス管バルブ16の状態を正確に判定することができる。
The configuration of the abnormality determination device 4 according to this embodiment is as shown in FIG.
Also in the present embodiment, in order to solve the above problem, the signal transmission section 121 transmits an instruction signal to the outdoor unit 10 to instruct the oil return valve 53 to be closed.
The outdoor unit 10 that has received the instruction signal closes the oil return valve 53 if the oil return valve 53 is open. By closing the oil return valve 53, circulation of the refrigerant in the second refrigerant circuit is interrupted.
Also in the present embodiment, the determining unit 123 can accurately determine the state of the liquid tube valve 15 and/or the gas tube valve 16 by blocking the circulation of the refrigerant in the second refrigerant circuit by closing the oil return valve 53. be able to.
 本実施の形態に係る異常判定装置4の動作例は図5に示す通りである。このため、本実施の形態に係る異常判定装置4の動作の詳細は説明を省略する。 An operation example of the abnormality determination device 4 according to the present embodiment is as shown in FIG. Therefore, detailed description of the operation of the abnormality determination device 4 according to the present embodiment will be omitted.
 このように、室外機10に図11に示す構成の第2の冷媒経路が含まれる場合でも、異常判定装置4は、液管バルブ15及び/又はガス管バルブ16が閉止されているか否かを正しく判定することができる。 Thus, even when the outdoor unit 10 includes the second refrigerant path having the configuration shown in FIG. can be judged correctly.
***ハードウェア構成の補足説明***
 最後に、異常判定装置4のハードウェア構成の補足説明を行う。
 図1に示すプロセッサ120は、プロセッシングを行うIC(Integrated Circuit)である。
 プロセッサ120は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)等である。
 図1に示す通信機110は、データの通信処理を実行する電子回路である。
 通信機110は、例えば、通信チップ又はNIC(Network Interface Card)である。
*** Supplementary explanation of hardware configuration ***
Finally, a supplementary description of the hardware configuration of the abnormality determination device 4 will be given.
The processor 120 shown in FIG. 1 is an IC (Integrated Circuit) that performs processing.
The processor 120 is a CPU (Central Processing Unit), a DSP (Digital Signal Processor), or the like.
The communication device 110 shown in FIG. 1 is an electronic circuit that performs data communication processing.
The communication device 110 is, for example, a communication chip or a NIC (Network Interface Card).
 また、図1に図示していない記憶装置には、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ120により実行される。
 プロセッサ120はOSの少なくとも一部を実行しながら、信号送信部121、運転データ取得部122、判定部123及び報知部124の機能を実現するプログラムを実行する。
 プロセッサ120がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、信号送信部121、運転データ取得部122、判定部123及び報知部124の処理の結果を示す情報、データ、信号値及び変数値の少なくともいずれかが、記憶装置、プロセッサ120内のレジスタ及びキャッシュメモリの少なくともいずれかに記憶される。
 また、信号送信部121、運転データ取得部122、判定部123及び報知部124の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記録媒体に格納されていてもよい。そして、信号送信部121、運転データ取得部122、判定部123及び報知部124の機能を実現するプログラムが格納された可搬記録媒体を流通させてもよい。
A storage device (not shown in FIG. 1) also stores an OS (Operating System).
At least part of the OS is executed by the processor 120 .
While executing at least part of the OS, the processor 120 executes a program that implements the functions of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124.
Task management, memory management, file management, communication control, etc. are performed by the processor 120 executing the OS.
In addition, at least one of information, data, signal values, and variable values indicating the processing results of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 is stored in a storage device, a register in the processor 120, and Stored in at least one of the cache memories.
A program that realizes the functions of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 is compatible with magnetic discs, flexible discs, optical discs, compact discs, Blu-ray (registered trademark) discs, DVDs, and the like. It may be stored in a transport recording medium. Then, a portable recording medium storing a program for realizing the functions of the signal transmission unit 121, the operation data acquisition unit 122, the determination unit 123, and the notification unit 124 may be distributed.
 また、信号送信部121、運転データ取得部122、判定部123及び報知部124の「部」を、「回路」又は「工程」又は「手順」又は「処理」又は「サーキットリー」に読み替えてもよい。
 また、異常判定装置4は、処理回路により実現されてもよい。処理回路は、例えば、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)である。
 この場合は、信号送信部121、運転データ取得部122、判定部123及び報知部124は、それぞれ処理回路の一部として実現される。
 なお、本明細書では、プロセッサと処理回路との上位概念を、「プロセッシングサーキットリー」という。
 つまり、プロセッサと処理回路とは、それぞれ「プロセッシングサーキットリー」の具体例である。
Further, the “units” of the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 may be read as “circuit”, “process”, “procedure”, “processing”, or “circuitry”. good.
Further, the abnormality determination device 4 may be realized by a processing circuit. The processing circuits are, for example, logic ICs (Integrated Circuits), GAs (Gate Arrays), ASICs (Application Specific Integrated Circuits), and FPGAs (Field-Programmable Gate Arrays).
In this case, the signal transmission unit 121, the driving data acquisition unit 122, the determination unit 123, and the notification unit 124 are each realized as part of the processing circuit.
In this specification, the general concept of processors and processing circuits is referred to as "processing circuitry."
Thus, processors and processing circuitry are each examples of "processing circuitry."
 以上、実施の形態1~3を説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 また、これらの実施の形態に記載された構成及び手順を必要に応じて変更してもよい。
Although the first to third embodiments have been described above, two or more of these embodiments may be combined for implementation.
Alternatively, one of these embodiments may be partially implemented.
Alternatively, two or more of these embodiments may be partially combined for implementation.
Also, the configurations and procedures described in these embodiments may be changed as necessary.
 1 空気調和機、2 指示器、3 表示器、4 異常判定装置、10 室外機、11 圧縮機、12 四方弁、13 室外熱交換器、14 室外機ファン、15 液管バルブ、16 ガス管バルブ、17 サブクールコイル、18 サブクールコイル用膨張弁、20 室内機、21 膨張弁、22 室内熱交換器、23 室内機ファン、30 接続配管、41 高圧圧力センサ、42 低圧圧力センサ、51 油分離器、52 キャピラリチューブ、53 油戻しバルブ、110 通信機、111 インジェクション圧縮機、117 エコノマイザ、118 インジェクション用膨張弁、119 インジェクション管、120 プロセッサ、121 信号送信部、122 運転データ取得部、123 判定部、124 報知部。 1 air conditioner, 2 indicator, 3 indicator, 4 abnormality determination device, 10 outdoor unit, 11 compressor, 12 four-way valve, 13 outdoor heat exchanger, 14 outdoor unit fan, 15 liquid pipe valve, 16 gas pipe valve , 17 subcool coil, 18 subcool coil expansion valve, 20 indoor unit, 21 expansion valve, 22 indoor heat exchanger, 23 indoor unit fan, 30 connection pipe, 41 high pressure sensor, 42 low pressure sensor, 51 oil separator, 52 capillary tube, 53 oil return valve, 110 communication device, 111 injection compressor, 117 economizer, 118 injection expansion valve, 119 injection pipe, 120 processor, 121 signal transmitter, 122 operation data acquisition unit, 123 determination unit, 124 Notification department.

Claims (8)

  1.  空気調和機の室内機と室外機との間で冷媒を環流させる第1の冷媒経路における前記冷媒の環流が前記第1の冷媒経路に配置されている第1のバルブの閉止により遮断されていても前記室外機内で前記冷媒を環流させることが可能な第2の冷媒経路が前記室外機に存在する場合に、前記第2の冷媒経路に配置されている、閉止により前記第2の冷媒経路における前記冷媒の環流を遮断させる第2のバルブを閉止するよう前記室外機に指示する指示信号を前記室外機に送信する信号送信部と、
     前記信号送信部により前記指示信号が前記室外機に送信された後に、前記第1のバルブが閉止されているか否かを判定する判定部とを有する検査装置。
    The circulation of the refrigerant in the first refrigerant path for circulating the refrigerant between the indoor unit and the outdoor unit of the air conditioner is blocked by closing the first valve arranged in the first refrigerant path. When the outdoor unit has a second refrigerant path capable of circulating the refrigerant in the outdoor unit, the second refrigerant path arranged in the second refrigerant path is closed. a signal transmission unit configured to transmit an instruction signal to the outdoor unit to instruct the outdoor unit to close a second valve that blocks circulation of the refrigerant;
    and a determination unit that determines whether or not the first valve is closed after the instruction signal is transmitted to the outdoor unit by the signal transmission unit.
  2.  前記判定部は、
     前記室外機に含まれる圧縮機での前記冷媒の高圧圧力値及び低圧圧力値の少なくともいずれかを用いて前記第1のバルブが閉止されているか否かを判定する請求項1に記載の検査装置。
    The determination unit is
    2. The inspection device according to claim 1, wherein whether or not the first valve is closed is determined using at least one of a high pressure value and a low pressure value of the refrigerant in a compressor included in the outdoor unit. .
  3.  前記判定部は、
     前記高圧圧力値、前記低圧圧力値、及び前記高圧圧力値と前記低圧圧力値との圧力差のうちのいずれかを、前記空気調和機の運転状態に応じて値が変化する可変閾値と比較して、前記第1のバルブが閉止されているか否かを判定する請求項2に記載の検査装置。
    The determination unit is
    Any one of the high pressure value, the low pressure value, and the pressure difference between the high pressure value and the low pressure value is compared with a variable threshold whose value changes according to the operating state of the air conditioner. 3. The inspection apparatus according to claim 2, wherein the first valve is closed.
  4.  前記信号送信部は、
     前記判定部により前記第1のバルブが閉止されていると判定された場合に、前記室外機に前記第1のバルブを開放するよう指示する指示信号を送信する請求項1に記載の検査装置。
    The signal transmission unit is
    2. The inspection device according to claim 1, wherein an instruction signal instructing the outdoor unit to open the first valve is transmitted when the determination unit determines that the first valve is closed.
  5.  前記第2の冷媒経路は、サブクールコイルが含まれ、前記第2のバルブとしてサブクールコイル用膨張バルブが配置されている冷媒経路である請求項1に記載の検査装置。 The inspection device according to claim 1, wherein the second refrigerant path includes a subcooling coil, and is a refrigerant path in which an expansion valve for the subcooling coil is arranged as the second valve.
  6.  前記第2の冷媒経路は、エコノマイザが含まれ、前記室外機に含まれるインジェクション圧縮機に注入されるインジェクション量を調整するインジェクション用膨張バルブが前記第2のバルブとして配置されている冷媒回路である請求項1に記載の検査装置。 The second refrigerant path is a refrigerant circuit that includes an economizer and an injection expansion valve that adjusts the amount of injection injected into the injection compressor included in the outdoor unit. The inspection device according to claim 1.
  7.  前記第2の冷媒経路は、前記室外機に含まれる圧縮機から吐出される前記冷媒に含まれる冷凍機油を分離する油分離器と、前記油分離器から前記圧縮機に戻される冷凍機油及び前記冷媒の流量を調整するキャピラリチューブとを含み、前記第2のバルブとして前記冷凍機油と前記冷媒を前記圧縮機に戻す油戻しバルブが配置されている冷媒回路である請求項1に記載の検査装置。 The second refrigerant path includes an oil separator for separating refrigerating machine oil contained in the refrigerant discharged from the compressor included in the outdoor unit; 2. The inspection apparatus according to claim 1, wherein the refrigerant circuit includes a capillary tube for adjusting the flow rate of refrigerant, and an oil return valve for returning the refrigerant oil and the refrigerant to the compressor as the second valve. .
  8.  空気調和機の室内機と室外機との間で冷媒を環流させる第1の冷媒経路における前記冷媒の環流が前記第1の冷媒経路に配置されている第1のバルブの閉止により遮断されていても前記室外機内で前記冷媒を環流させることが可能な第2の冷媒経路が前記室外機に存在する場合に、前記第2の冷媒経路に配置されている、閉止により前記第2の冷媒経路における前記冷媒の環流を遮断させる第2のバルブを閉止するよう前記室外機に指示する指示信号を、コンピュータが前記室外機に送信し、
     前記指示信号が前記室外機に送信された後に、前記コンピュータが、前記第1のバルブが閉止されているか否かを判定する検査方法。
    The circulation of the refrigerant in the first refrigerant path for circulating the refrigerant between the indoor unit and the outdoor unit of the air conditioner is blocked by closing the first valve arranged in the first refrigerant path. When the outdoor unit has a second refrigerant path capable of circulating the refrigerant in the outdoor unit, the second refrigerant path arranged in the second refrigerant path is closed. A computer sends an instruction signal to the outdoor unit to instruct the outdoor unit to close a second valve that blocks circulation of the refrigerant;
    The inspection method, wherein the computer determines whether or not the first valve is closed after the instruction signal is transmitted to the outdoor unit.
PCT/JP2021/017742 2021-05-10 2021-05-10 Inspection device and inspection method WO2022239072A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21941806.8A EP4339527A4 (en) 2021-05-10 2021-05-10 Inspection device and inspection method
PCT/JP2021/017742 WO2022239072A1 (en) 2021-05-10 2021-05-10 Inspection device and inspection method
JP2023520591A JPWO2022239072A1 (en) 2021-05-10 2021-05-10
CN202180097525.XA CN117203474A (en) 2021-05-10 2021-05-10 Inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017742 WO2022239072A1 (en) 2021-05-10 2021-05-10 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2022239072A1 true WO2022239072A1 (en) 2022-11-17

Family

ID=84028465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017742 WO2022239072A1 (en) 2021-05-10 2021-05-10 Inspection device and inspection method

Country Status (4)

Country Link
EP (1) EP4339527A4 (en)
JP (1) JPWO2022239072A1 (en)
CN (1) CN117203474A (en)
WO (1) WO2022239072A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280716A (en) * 2000-03-30 2001-10-10 Daikin Ind Ltd Air conditioner
JP2002107015A (en) * 2000-09-29 2002-04-10 Daikin Ind Ltd Air conditioner
JP2007107820A (en) 2005-10-14 2007-04-26 Daikin Ind Ltd Air conditioner and air conditioner heat source unit used therefor
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2020245918A1 (en) * 2019-06-04 2020-12-10 三菱電機株式会社 Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280716A (en) * 2000-03-30 2001-10-10 Daikin Ind Ltd Air conditioner
JP2002107015A (en) * 2000-09-29 2002-04-10 Daikin Ind Ltd Air conditioner
JP2007107820A (en) 2005-10-14 2007-04-26 Daikin Ind Ltd Air conditioner and air conditioner heat source unit used therefor
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
WO2020245918A1 (en) * 2019-06-04 2020-12-10 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
EP4339527A4 (en) 2024-05-01
CN117203474A (en) 2023-12-08
EP4339527A1 (en) 2024-03-20
JPWO2022239072A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US9829230B2 (en) Air conditioning apparatus
KR100432224B1 (en) Refrigerant leakage detecting method for air conditioner
US11015828B2 (en) Refrigeration system with utilization unit leak detection
US11231199B2 (en) Air-conditioning apparatus with leak detection control
JP6156528B1 (en) Refrigeration equipment
JP5517789B2 (en) Air conditioner
JP5405161B2 (en) Air conditioner and energy equipment
EP3279580B1 (en) Air-conditioning device
EP3499153B1 (en) Cooling system
CN113124541B (en) Judgment method and device for reverse connection of expansion valve, controller and air conditioner
WO2022239072A1 (en) Inspection device and inspection method
GB2564367A (en) Air-conditioning device
CN112097364B (en) Air conditioner and electronic expansion valve fault detection method thereof
KR20100081620A (en) Air conditioner and method for detecting error of air conditioner
KR20000073043A (en) Fan trouble sensing method for air conditioner
JPWO2022239072A5 (en)
JP6621275B2 (en) Refrigeration equipment
JPH07174386A (en) Separate type air-conditioning machine
JP7218380B2 (en) Air conditioner and control method
KR101584530B1 (en) Air conditioner and method for method for testing drive of air conditioner
KR102105655B1 (en) An air conditioner and a control method the same
JP2022179216A (en) Refrigerant leakage detection system
JPH03102139A (en) Cooling bypassing air conditioner
JPS62166268A (en) Abnormality detector for refrigerator
KR20110005159A (en) Air conditioner and method for detecting error of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520591

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18550024

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021941806

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021941806

Country of ref document: EP

Effective date: 20231211