WO2022239050A1 - Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program - Google Patents

Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program Download PDF

Info

Publication number
WO2022239050A1
WO2022239050A1 PCT/JP2021/017636 JP2021017636W WO2022239050A1 WO 2022239050 A1 WO2022239050 A1 WO 2022239050A1 JP 2021017636 W JP2021017636 W JP 2021017636W WO 2022239050 A1 WO2022239050 A1 WO 2022239050A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
amount
unit
time
time period
Prior art date
Application number
PCT/JP2021/017636
Other languages
French (fr)
Japanese (ja)
Inventor
昇 和田
智昭 竹田
芳明 有馬
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/017636 priority Critical patent/WO2022239050A1/en
Priority to CN202180097781.9A priority patent/CN117295683A/en
Priority to JP2021563726A priority patent/JP7128974B1/en
Priority to TW111113580A priority patent/TW202243730A/en
Publication of WO2022239050A1 publication Critical patent/WO2022239050A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes

Definitions

  • the present disclosure relates to a control device, an ozone generation system, an ozone storage device, an ozone generation device, a water treatment system, an ozone injection control method, and a computer program.
  • Patent Literature 1 discloses a technique for reducing operating costs by operating and storing ozone generators at night when electricity rates are low and using the stored ozone during the day.
  • the present disclosure has been made in view of the above, and aims to obtain a control device capable of reducing operating costs.
  • a control device that controls an ozone generation unit that can store generated ozone and injects ozone into an ozone injection target. Then, the ozone generation unit is caused to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price of electricity is the first value. and causing the ozone generator to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in a first time period, and to store ozone that is not injected into the injection target among the generated ozone. , in a second time period that is at least a part of the time period in which the unit price of electricity is a second value equal to or greater than the first value, the ozone generator is caused to release the stored ozone and inject it into the injection target.
  • the control device according to the present disclosure has the effect of reducing operating costs.
  • FIG. 1 is a diagram showing a configuration example of a water treatment system including an ozone generation system according to Embodiment 1.
  • FIG. 4 is a diagram showing a configuration example of a control unit according to Embodiment 1;
  • FIG. 1 is a diagram showing an example of a computer system that implements the control device of Embodiment 1;
  • FIG. 4 is a flow chart showing an example of a processing procedure in the control unit according to the first embodiment;
  • FIG. 10 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a second embodiment; A diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a third embodiment.
  • FIG. 10 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a second embodiment; A diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a third embodiment.
  • FIG. 11 is a diagram showing a configuration example of a control unit according to Embodiment 3; Flowchart showing an example of a plan creation procedure when operating costs are formulated in the third embodiment
  • Flowchart showing an example of the operation of the model generation unit of the third embodiment Flowchart showing an example of the operation of the prediction unit of Embodiment 3 Schematic diagram showing an example of a neural network
  • control device ozone generation system, ozone storage device, ozone generation device, water treatment system, ozone injection control method, and computer program according to the embodiments will be described below in detail with reference to the drawings.
  • FIG. 1 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to Embodiment 1.
  • the water treatment system of the present embodiment includes an ozone generation system 1, a water treatment process 6 for treating water using ozone supplied from the ozone generation system 1, and and an exhaust ozone processing unit 7 that performs processing for reducing the concentration of discharged exhaust ozone to a permissible value or less.
  • the water treatment system of the present embodiment is basically operated 24 hours a day, and the ozone generation system 1 supplies a substantially constant amount of ozone to the water treatment process 6 day and night.
  • the required specifications for the ozone generation system 1 are determined in consideration of the margin of performance to ensure reliable treatment. For this reason, the design value of the amount of generated ozone often has a margin with respect to the actually injected amount of ozone, that is, the amount of ozone used. For example, there are cases where an appropriate amount of injection is determined after the start of operation of the water treatment system, resulting in a margin, and there are cases where a margin is provided for redundancy. In addition, with the promotion of energy saving in recent years, there are cases where the amount of ozone injected is kept as low as possible. Due to these factors, the difference between the design value of the amount of ozone generated and the amount of injected ozone, that is, surplus capacity occurs.
  • ozone generators are usually designed so that operation at the design value is the most efficient, so if ozone is generated with an injection amount less than the design value, power loss will occur and efficiency will decrease. If ozone is generated at a design value in order to operate with high efficiency, ozone that is not used will be wasted.
  • the ozone generation system 1 includes a control device 2, an ozone generation section 3 and an ozone injection section 5.
  • the ozone generator 3 is capable of generating ozone and storing ozone, and injects at least one of the generated ozone and the stored ozone into the ozone injection unit 5 based on instructions from the control device 2. do.
  • the control device 2 controls the amount of ozone generated in the ozone generator 3, the amount of ozone stored, the amount of stored ozone taken out, and the like.
  • the ozone injection unit 5 injects the ozone supplied from the ozone generation unit 3 into the water treatment process 6 so that the ozone injection amount injected into the water treatment process 6 maintains a target value.
  • the water treatment process 6 is an example of an ozone injection target of the ozone generator 3 , and the injection target is not limited to the water treatment process 6 .
  • the ozone generation unit 3 includes a source gas supply unit 31, an ozone generator 32, an ozone storage unit 33, and switching valves 34,35.
  • the raw material gas supply unit 31 supplies the raw material gas, which is gas containing oxygen, to the ozone generator 32 .
  • the ozone generator 32 uses the raw material gas supplied from the raw material gas supply unit 31 to generate ozone.
  • the ozone storage unit 33 stores ozone generated by the ozone generator 32 .
  • the ozone storage unit 33 also takes out the stored ozone and supplies it to the ozone injection unit 5 .
  • the ozone generated in the ozone generator 32 is transported through the ozone transport path 36 connected to the ozone injection unit 5 via the switching valve 34, the switching valve 35 and the ozone storage unit 33. It is possible to transport by two routes, namely, the ozone transport route 37 connected to the ozone injection unit 5 via the ozone transport route 37 . Which of these two transportation routes ozone is transported is controlled by opening and closing switching valves 34 and 35 . For example, if the switching valve 34 is closed and the switching valve 35 is opened, the ozone generated in the ozone generator 32 is stored in the ozone storage section 33 via the ozone transport path 37 .
  • the switching valve 35 When the switching valve 35 is closed and the switching valve 34 is opened, the ozone generated in the ozone generator 32 is supplied to the ozone injection section 5 via the ozone transport path 36 . Further, when both the switching valves 34 and 35 are opened, the ozone generated in the ozone generator 32 is transported through both the ozone transport path 36 and the ozone transport path 37, whereby the ozone is supplied to the ozone injection section 5. and stored in the ozone storage unit 33 . When ozone is transported through these two transportation routes, the remainder of the ozone generated by the ozone generator 32 that has been injected into the water treatment process 6 by the ozone injection unit 5 is transported through the ozone transportation route 37 and stored in ozone. Stored in section 33 . Control of opening and closing of the switching valves 34 and 35 may be performed directly by the control device 2 or may be performed by a control section (not shown) in the ozone generating section 3 based on instructions from the control device 2 .
  • the ozone storage unit 33 includes an adsorption cylinder filled with an adsorbent such as silica gel. By controlling the pressure, the difference in adsorption and desorption properties of ozone and oxygen on the adsorbent is used to separate ozone and oxygen from a gas mixture containing ozone and oxygen.
  • the ozone storage unit 33 selectively adsorbs and stores ozone with an adsorbent maintained at a low temperature, while supplying the separated oxygen to the ozone generator 32 via an oxygen recycling path 38 .
  • the oxygen thus separated is reused as a raw material gas. As a result, a significant reduction in raw material gas costs is realized.
  • the ozone generated in the ozone storage unit 33 can be temporarily stored, taken out from the ozone storage unit 33 in an arbitrary amount at an arbitrary timing, and supplied to the ozone injection unit 5 via the ozone transport path 37 .
  • the control device 2 includes a data input/output unit 21 and a control unit 22 .
  • the data input/output unit 21 receives input from the user and presents various information to the user.
  • the data input/output unit 21 displays, for example, the amount of reduction in operating costs, the amount of ozone generated, the operating state of the ozone generation unit 3, and the like.
  • the control unit 22 uses the design value of the ozone generation amount in the ozone generation unit 3 and the necessary ozone injection amount to create a plan for generating, storing, and taking out the stored ozone so as to suppress the operation cost. Then, based on the created plan, the amount of ozone generated in the ozone generator 3, the amount of stored ozone, the amount of stored ozone taken out, and the like are controlled.
  • FIG. 2 is a diagram showing a configuration example of the control unit 22 of this embodiment.
  • the control unit 22 includes a plan creating unit 221, an electricity unit price storage unit 222, an injection amount information storage unit 223, a plan storage unit 224, and an instruction unit 225, as shown in FIG.
  • the power unit price storage unit 222 stores the power unit price, which is the unit price of electricity, for each time period.
  • the injection amount information storage unit 223 stores the target value of the ozone injection amount to be injected into the water treatment process 6, and also stores the design value of the ozone injection amount, that is, the maximum amount of ozone generated by the ozone generator 32 of the ozone generation unit 3.
  • the unit price of electricity for each time period, the design value of the ozone injection amount, and the target value of the ozone injection amount may be input by the user via the data input/output unit 21, or received by the control device 2 from another device (not shown). You may Also, these values can be changed via the data input/output unit 21 .
  • the plan creation unit 221 stores the power unit price for each time period stored in the power unit price storage unit 222, the design value of the ozone injection amount and the target value of the ozone injection amount stored in the injection amount information storage unit 223. It is used to plan ozone generation, storage, and removal of stored ozone in a manner that controls operating costs.
  • the plan creating unit 221 also generates information indicating the power reduction effect based on the created plan, and outputs the created information, the created plan, and the like to the data input/output unit 21 .
  • plans for generating, storing, and removing stored ozone are simply referred to as plans or ozone production plans.
  • the plan creation unit 221 stores the created plan in the plan storage unit 224 .
  • the instructing unit 225 instructs the ozone generating unit 3 on the amount of ozone generated, the amount of stored ozone, the amount of stored ozone to be taken out, and the like in the ozone generating unit 3 according to the plan stored in the plan storage unit 224 .
  • FIG. 3 is a diagram showing an example of a computer system that implements the control device 2 of this embodiment.
  • the computer system shown in FIG. 3 includes a processor 101 , memory 102 , communication circuit 103 , display section 104 and input section 105 .
  • the processor 101 which is an arithmetic device, is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • the memory 102 which is a storage unit, includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Such as semiconductor memory, magnetic disk, flexible disk, and the like.
  • the communication circuit 103 is a transceiver capable of communication.
  • the display unit 104 is a display, monitor, etc.
  • the input unit 105 is a button, switch, keyboard, mouse, etc.
  • a touch panel in which the display unit 104 and the input unit 105 are integrated may be used.
  • the control device 2 is implemented by executing a program that describes the processing to be executed by the control device 2. Specifically, a program is installed in memory 102 . Then, when the program is executed, the program read from the memory 102 is stored in the primary storage area of the memory 102 . In this state, processor 101 executes processing as control device 2 of the present embodiment according to the program stored in memory 102 .
  • the program may be provided by a recording medium, or may be provided by a transmission medium via the communication circuit 103 .
  • the control unit 22 shown in FIG. 1 is implemented by the processor 101 executing a program stored in the memory 102 shown in FIG. A memory 102 is also used to implement the controller 22 .
  • Data input/output unit 21 shown in FIG. 1 is implemented by display unit 104 and input unit 105 shown in FIG.
  • the design value of the ozone injection amount is larger than the ozone injection amount actually injected into the water treatment process 6 . Therefore, assuming that the design value of the ozone injection amount is X mg/L and the target value of the ozone injection amount injected into the water treatment process 6 is Y mg/L, X is larger than Y. Note that X and Y are real numbers. In the present embodiment, the ozone injection amount is assumed to be constant at all times. remembered.
  • FIG. 4 is a flow chart showing an example of a processing procedure in the control unit 22 of this embodiment.
  • the control unit 22 determines whether or not the electricity unit price varies depending on the time period (step S1). Specifically, the plan creation unit 221 reads out the power unit price for each time slot from the power unit price storage unit 222 and determines whether the read power unit price varies depending on the time slot.
  • the control unit 22 stores ozone to be used during the time period when the electricity unit price is the highest, by generating ozone at the maximum capacity in other time periods.
  • Create an ozone generation plan (step S2). Although there are no particular restrictions on the period for which the ozone generation plan is to be created, one day is set as the period for which the plan is to be created. Since the unit price of electricity is often set for each time period of a day, the period for which the plan is created is set to one day here, but plans are created in units of one week, one year, etc. good too.
  • step S2 the plan creation unit 221 uses the unit price of electricity read out in step S1 to obtain the time slot with the highest unit price of electricity, and stores the target value of the injection amount in the obtained time slot in the injection amount information storage unit. 223 to calculate the amount of ozone required for injection during the time period when the unit price of electricity is the highest as the required storage amount. Then, the plan creating unit 221 creates a plan to generate and store the calculated amount of required storage by generating ozone at the design value X mg/L of the injection amount in a time slot other than the time slot with the highest unit price of electricity.
  • the plan creating unit 221 creates a plan to generate and store the calculated required storage amount by generating ozone at a design value of X mg/L of injection amount in a time period when the unit price of electricity is low. At this time, if it is necessary to inject ozone even during times when the unit price of electricity is low, the plan creation unit 221 generates the target value Y mg/L of the amount of ozone to be injected during the time period and also generates ozone for storage. Create an ozone generation plan as follows. That is, the excess capacity is utilized to store ozone.
  • the plan creation unit 221 When the amount of ozone that can be stored in the time period when the unit price of electricity is low is less than the required storage amount, the plan creation unit 221 further sets the design value X mg of the ozone injection amount in the time period when the unit price of electricity is the second lowest. Create a plan to generate and store at /L. By repeating this, the plan creating unit 221 can create an ozone generation plan for storing ozone used in the time zone with the highest electricity unit price in other time zones. As a result, operating costs can be reduced compared to the case where the target value of the ozone injection amount is generated without storing.
  • step S2 the control unit 22 stores the plan, that is, the ozone generation plan (step S4), and ends the process. Specifically, in step S ⁇ b>4 , the plan creation unit 221 stores the ozone generation plan in the plan storage unit 224 .
  • step S1 No If the unit price of electricity does not differ depending on the time period (step S1 No), the control unit 22 determines the time period in which ozone is to be generated at maximum capacity, and creates an ozone generation plan based on the determined time period (step S3). , the process proceeds to step S4.
  • step S3 the plan creation unit 221 determines the time period for generating ozone at the maximum capacity, that is, at the design injection amount X mg/L. If No in step S1, the unit price of electricity is constant irrespective of the time period, so the time period for generating ozone at the design injection amount of X mg/L can be set arbitrarily.
  • the plan creation unit 221 creates an ozone generation plan so that ozone stored by generating ozone at a design value of injection amount X mg/L is used in an arbitrary time zone other than the relevant time zone.
  • the ozone generator 32 is designed to be most efficient when generating ozone at its maximum capacity.
  • the efficiency is higher in this time period than in other time periods. Therefore, the power required to generate a certain amount of ozone can be reduced, and the operating cost can be reduced. For example, in general, if the efficiency for generating ozone at a design injection amount of X mg/L is 90%, the efficiency for generating the actually required injection amount of ozone is about 70 to 80%. often become. Therefore, by generating ozone at the design injection amount of X mg/L, power loss can be reduced, and operating costs can be reduced.
  • step S3 In the case of No in step S1, the processing of step S3 is performed in consideration of efficiency, but the processing of step S3 is not performed, and the required amount of ozone is generated without storing.
  • An ozone generation plan may be developed.
  • the instruction unit 225 controls the ozone generation unit 3 according to the created plan. This makes it possible to utilize excess capacity and reduce operating costs.
  • the amount of treated water in the water treatment process 6 is assumed to be 150,000 tons/day. Electricity charges are divided into three time periods: peak hours (8 hours), normal hours (8 hours), and night hours (8 hours). It is assumed that the normal time zone is high and the night time zone is the lowest.
  • the ozone generator 32 is operated to generate the ozone supply amount of 25 kg required for these eight hours, and the peak hour is the time when the unit price of electricity is the highest.
  • the excess capacity of the ozone generation system 1 is 2.0 mg/L, which is 2.5 mg/L minus 0.5 mg/L. Since it is possible, it is sufficient to cover the amount of 25 kg used during peak hours.
  • the ozone generator 32 may be operated at the designed ozone injection amount of 2.5 mg/L for about two hours during the night time period.
  • a plan for a longer period of time such as operating for 8 hours at the design value of 2.5 mg/L of ozone injection and storing the required amount for 4 days of peak hours.
  • You may The ozone separated during storage is reused by supplying it to the ozone generator 32 via the oxygen reuse path 38 .
  • the ozone generator 32 is operated to generate the required ozone supply amount of 25 kg during this time period. That is, ozone is generated at a target ozone injection amount of 0.5 mg/L.
  • control device 2 of the present embodiment creates a plan as described above and instructs the ozone generator 3 so that the unit price of electricity is at least part of the time period of the first value.
  • Ozone is generated by the ozone generator 3 in a certain first time zone so that the amount of ozone generated per unit time becomes the first amount.
  • the time zone in which the power unit price is the first value is, for example, the above-described night time zone.
  • the control device 2 causes the ozone generator 3 to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in the first time period, and, of the generated ozone, the injection target store ozone that is not injected into the Further, the control device 2 causes the ozone generator 3 to supply the stored ozone to the ozone generator 3 during a second time period that is at least part of the time period in which the unit price of electricity is a second value equal to or greater than the first value. Let it be released and injected into the injection target.
  • the time period when the power unit price is the second value is, for example, the above-described peak time period.
  • the first amount is the amount corresponding to the aforementioned capacity of X mg/L
  • the second amount is the amount corresponding to the aforementioned capacity of Y mg/L. That is, the first amount is, for example, the maximum amount that can be generated in the ozone generator 3 per unit time.
  • the ozone generator 3 was caused to release the stored ozone and inject the second amount per unit time into the injection target. Stored and released ozone may be used for some time periods instead of time periods. Further, in the above example, ozone is generated at the maximum capacity during the night time zone, but this is not limited to this. reduction effect is obtained.
  • the program for controlling the control device 2 of the present embodiment is capable of storing the generated ozone, and the computer system that controls the ozone generation unit 3 that injects ozone into an ozone injection target is supplied with electric power. a step of causing the ozone generator 3 to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price is the first value; to run. Further, the program causes the computer system to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in the first time zone, and the amount of generated ozone. a step of storing ozone that is not injected into the injection target; and causing the stored ozone to be released and injected into the injection subject.
  • FIG. 5 is a diagram showing an example of the ozone supply amount according to this embodiment.
  • the power unit price differs in three time zones, peak time zone, normal time zone, and night time zone, and the ozone generation system 1 supplies a constant amount of ozone to the water treatment process 6 for 24 hours. It shows the amount of ozone supplied when injecting.
  • the ozonator 32 which is the main source of power consumption, is not operated.
  • the ozone storage unit 33 releases the ozone stored during the nighttime and supplies the ozone to the ozone injection unit 5 .
  • the comparative example shown in FIG. 5 is an example in which a constant amount of ozone is generated for 24 hours without storing ozone.
  • FIG. 6 is a diagram showing an example of the operating cost reduction effect of this embodiment.
  • the comparative example shown in FIG. 6 is an example in which a constant amount of ozone is generated for 24 hours without storing ozone, like the comparative example in FIG.
  • the amount of ozone generated is constant regardless of the time of day, the operating cost for each time zone differs according to the level of the electricity unit price. be the highest.
  • ozone is not generated during the peak hours, so there is no operating cost for generating ozone during the peak hours, and ozone is generated during the hours when the unit price of electricity is low. are causing it.
  • the operating cost per day can be reduced compared to the comparative example.
  • the first embodiment not only the difference in the unit price of electric power, but also the effect of reducing the raw material cost by reusing the oxygen generated during storage can be obtained.
  • the data input/output unit 21 can present the reduction amount of the operating cost to the user by displaying the effect of reducing the operating cost as shown in FIG.
  • the data input/output unit 21 may display the amount of generated ozone in chronological order, or may display the operating state of the ozone generator 32 in chronological order.
  • the amount of ozone generated and the operating state may be planned values, or data may be acquired from the ozone generator 32 and actual values may be displayed.
  • the data input/output unit 21 displays, for example, a screen showing the amount of reduction in electricity usage charges compared to when ozone is not stored, and the amount of generated ozone and the amount of stored ozone for each time period. At least one of the screen and the operational status of the ozone generator 32 is displayed.
  • the ozone used during the peak hours was stored during the night hours. 32 may be limited to nighttime hours.
  • FIG. 7 is a flow chart showing an example of a processing procedure in the control unit 22 according to the modified example of the present embodiment. Steps S1, S3 and S4 shown in FIG. 7 are the same as the example shown in FIG.
  • the control unit 22 selects the time slot with the highest electricity unit price among the unselected time slots (step S5). Specifically, the plan creating unit 221 selects the time slot with the highest electricity unit price from among the unselected time slots, using the electricity unit price read in step S1.
  • control unit 22 determines whether or not there is a time slot in which additional ozone can be generated among the time slots in which the power unit price is lower than the power unit price of the selected time slot (step S6).
  • plan creation unit 221 uses the power unit price read out in step S1 and the temporarily held plan to generate ozone during the time slot when the power unit price is lower than the power unit price of the selected time slot. Determine whether or not there is a time slot that can be additionally generated.
  • the plan that is temporarily held is a plan that was created in step S7 to be described later and has not been finalized.
  • step S6 No If there is no time slot in which additional ozone can be generated among the time slots in which the power unit price is lower than the power unit price in the selected time slot (step S6 No), the control unit 22 advances the process to step S4.
  • step S6 If there is a time slot in which the unit price of electricity is lower than the unit price of electricity in the selected time slot, and there is a time slot in which additional ozone can be generated (Yes in step S6), the control unit 22 maximizes the ozone used in the selected time slot.
  • a plan is created to generate ozone in the time slot with the lowest electricity unit price, excluding the time slots already planned to generate ozone at capacity (step S7).
  • the plan creating unit 221 refers to the temporarily held plan, and extracts the time zone excluding the time zone already planned to generate ozone at the maximum capacity. , create a plan for generating ozone to be used in the time period selected in step S5 in the extracted time period.
  • step S7 for the first time there is no temporarily held plan, and in step S5, the time zone with the highest electricity unit price is selected, so the process of step S2 in FIG.
  • a plan is created to calculate the required storage amount during the time period when the unit price of electricity is the highest, and to generate and store the required storage amount during the time period when the unit price of electricity is the lowest.
  • the plan creating unit 221 temporarily holds the created plan.
  • step S7 of the second time since the time slot for storing the required storage amount in the time slot with the highest unit price of electricity has already been determined, the maximum capacity is already set to cover the required storage amount in the time slot with the highest unit price of electricity. There is a time zone when it is decided to operate in Therefore, the control unit 22 generates ozone to be used in the selected time slot during the time slot with the lowest electricity unit price, excluding the time slot already planned to generate ozone at the maximum capacity. Create a plan to do so and keep the plan you create. The same processing is performed in step S7 for the third time or more.
  • step S8 the plan creation unit 221 of the control unit 22 determines whether or not to end the plan creation (step S8), and if it ends the plan creation (step S8 Yes), the process proceeds to step S4.
  • step S8 for example, when step S7 is executed a predetermined number of times, it is determined that the plan creation is finished.
  • the determined number of times is, for example, the number of power unit price categories minus one. For example, when the power unit price is determined for the three segments of the peak time period, the normal time period, and the night time period, the determined number of times is two.
  • step S8 No the control unit 22 repeats the process from step S5.
  • step S5 By performing such a process, it is possible to create a plan to use stored ozone not only in the time zone with the highest unit price of electricity, but also in other time zones with the lowest unit price of electricity.
  • the design value of the ozone injection amount described above is 2.5 mg/L, and ozone is added to the water treatment process 6 that is constantly operated for 24 hours after operation at a constant injection amount of the target ozone injection amount of 0.5 mg/L.
  • the required storage amount for peak hours can be stored during night hours.
  • the required storage amount during normal hours is 25 kg, and this amount can also be stored during night hours. Therefore, in this case, the ozone generation system 1 injects ozone into the water treatment process 6 at a target ozone injection amount of 0.5 mg/L during the nighttime, while the design value of the ozone injection amount is 2. 50 kg of ozone is stored by generating ozone at .5 mg/L. Then, the ozone generation system 1 releases the stored ozone and injects the ozone into the water treatment process 6 during peak hours and normal hours.
  • control device 2 controls the ozone generating unit 3 during the third time period, which is at least part of the time period in which the power unit price is the third value higher than the first value and lower than the second value.
  • the stored ozone may be released and injected into the injection target.
  • the time period in which the power unit price is the third value is, for example, the normal time period described above.
  • FIG. 8 is a diagram showing an example of an ozone supply amount according to a modification of the present embodiment.
  • the modification shown in FIG. 8 shows an example in which it is possible to store the ozone used in the peak time zone and the normal time zone during the night time zone. In this case, there is no need to generate ozone during peak hours and normal hours.
  • FIG. 9 is a diagram showing an example of the operating cost reduction effect in the modified example of the present embodiment.
  • FIG. 9 shows the operation cost of a modification in the case where it is possible to store the ozone used in the peak time zone and the normal time zone during the night time zone.
  • a comparative example is an example in which a constant amount of ozone is generated for 24 hours without storing ozone.
  • the operating cost can be further reduced than in the example shown in FIG.
  • At least the ozone that is used during the time period when the electricity unit price is the highest is stored by utilizing the surplus capacity during the time period when the electricity price is the lowest.
  • the operating cost can be reduced compared to the case where no storage is performed.
  • Operational costs can be reduced by leveraging capacity to store ozone.
  • FIG. 10 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a second embodiment.
  • the water treatment system of the present embodiment is the same as the water treatment system of the first embodiment except that an ozone generation system 1a is provided instead of the ozone generation system 1 of the first embodiment.
  • Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
  • the ozone generating system 1a of the present embodiment is the same as the ozone generating system 1 of the first embodiment except that an ozone generating section 3a is provided instead of the ozone generating section 3 of the first embodiment.
  • the ozone generator 3a of the present embodiment is the same as that of Embodiment 1 except that ozone generators 32-1 and 32-2 and a preliminary generator 39 are provided instead of the ozone generator 32 of Embodiment 1. be.
  • Ozone generators 32-1, 32-2 and preliminary generator 39 are the same as ozone generator 32 of the first embodiment.
  • Three ozone generators, ozone generators 32-1 and 32-2 and a standby generator 39, were delivered as the ozone generation system 1a. Suppose one pre-generator 39 is reserved.
  • the backup generator 39 is also operated during times when the unit price of electricity is low, thereby reducing operating costs. That is, in the present embodiment, the total design value of the ozone injection amount of the three ozone generators 32-1, 32-2 and the preliminary generator 39 is treated as the design value of the ozone injection amount of the first embodiment. , as in the first embodiment, ozone is stored during a time period when the unit price of electric power is low.
  • the power unit price is determined in three categories: peak time zone, normal time zone, and night time zone.
  • /L is the target value for injection into the water treatment process 6 .
  • the control unit 22 sets the total of the design values of the ozone injection amounts of the three ozone generators 32-1, 32-2 and the preliminary generator 39 to the design value of the ozone injection amount of the first embodiment.
  • X mg/L an ozone generation plan is created in the same manner as in the first embodiment.
  • the ozone used during the peak and normal time periods is stored, and the stored ozone is stored during the peak and normal time periods. may be used.
  • the reserve generator 39 is also used to store ozone during times when the unit price of electricity is low, so that the operating cost can be reduced and the reserve generator 39 can be effectively used. can.
  • FIG. 11 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to Embodiment 3.
  • the water treatment system shown in FIG. 11 is a water treatment system that purifies water to be treated by the membrane separation activated sludge method.
  • the water treatment system of the present embodiment includes a membrane bioreactor (MBR) system 9 including membrane bioreactor (MBR) devices 91-1 and 91-2, and an MBR device 91-1 , and an ozone generation system 1b for supplying ozone water for cleaning the membrane units 92-1 and 92-2 provided in the respective membrane units 91-2.
  • MLR membrane bioreactor
  • MBR membrane bioreactor
  • the water to be treated is biodegraded with activated sludge in a treatment tank (not shown), and then in membrane units 92-1 and 92-2 having filtration membranes, from the primary side of the separation membrane to the secondary side. It is filtered and discharged through a pipe (not shown).
  • Contaminants including sludge, suspended solids, microorganisms, metabolites of microorganisms, etc. adhere or adhere to the surface and inside of the filtration membranes of the membrane units 92-1 and 92-2.
  • the membrane permeation differential pressure which is the difference between the pressure on the secondary side of the membrane during membrane filtration and the atmospheric pressure, increases, and the filtration performance decreases, such as the flux, which is the amount of filtered water per unit time and per unit membrane filtration area. Degradation occurs over time. Therefore, in order to maintain the filtration performance of the separation membrane, it is necessary to wash and remove contaminants from the interior and surface of the separation membrane.
  • ozone water produced by the ozone generation system 1b is used as the cleaning liquid in membrane cleaning.
  • the ozone generation system 1b is the same as the ozone generation system 1 of Embodiment 1 except that it includes a control device 2a and an ozone water production unit 8 instead of the control device 2 and the ozone injection unit 5. .
  • Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
  • the ozonized water producing unit 8 like the ozone injection unit 5 of the first embodiment, contains both the ozone generated in the ozone generator 32 and the ozone released from the ozone storage unit 33. or one supplied.
  • the ozone water production unit 8 is an injection unit that produces ozone water using supplied ozone and injects the produced ozone water into the membrane units 92-1 and 92-2.
  • the ozonized water producing unit 8, which is the injection unit is arranged outside the MBR system 9, but the ozonized water producing unit 8 may be arranged near the membrane units 92-1 and 92-2. good.
  • Membrane unit cleaning is appropriately carried out according to changes in the membrane performance of the membrane units 92-1 and 92-2 over time. The timing of the membrane unit cleaning is instructed from the MBR system 9 to the control device 2a (not shown).
  • the design value of the ozone injection amount after the water treatment system is put into operation, a necessary target value that is lower than the design value is determined. Also in this embodiment, it is assumed that the design value of the ozone injection amount is X mg/L and the target value of the ozone injection amount is Y mg/L. In cleaning the membrane units in the MBR apparatuses 91-1 and 91-2, the timing and frequency of cleaning change depending on the condition of the inflow water. For this reason, rather than generating ozone and consuming electricity each time cleaning is performed, it is necessary to generate ozone at a design value of Xmg/L and store ozone during times when the unit price of electricity is low.
  • the cleaning timing may be the same for the MBR devices 91-1 and 91-2, and may be different for the MBR devices 91-1 and 91-2. Also, the frequency of washing varies, such as once/day, six times/day, and once/week.
  • control device 2a includes a data input/output unit 21 similar to that of the first embodiment, and a control unit 22a.
  • the control unit 22a controls the night time of a certain day.
  • a plan is created so that ozone is generated at the design value of the ozone injection amount and stored in the ozone storage section 33 up to the maximum amount that can be stored, and the ozone generation section 3 is controlled based on the plan.
  • the control unit 22a may predict the number of washings within a certain period of time, and determine the amount of stored ozone using the predicted number of washings.
  • FIG. 12 is a diagram showing a configuration example of the control unit 22a of this embodiment.
  • the control unit 22a has an injection amount performance storage unit 226 and an injection amount prediction unit 227 added to the control unit 22 of the first embodiment, and plans instead of the plan creation unit 221 of the first embodiment.
  • a creation unit 221a is provided.
  • the actual injection amount storage unit 226 acquires and stores actual values of the injection amounts of ozone into the membrane units 92-1 and 92-2.
  • the actual values of the injection amounts of ozone into the membrane units 92-1 and 92-2 may be received by the data input/output unit 21 from the ozone water production unit 8 or the MBR system 9 and stored in the injection amount actual storage unit 226.
  • the user may input, via the data input/output unit 21, an approximate actual value of the cleaning frequency, such as how many times the cleaning was performed per month.
  • the injection amount prediction unit 227 predicts the ozone injection amount required for cleaning the membrane unit for a certain period of time using the actual values stored in the injection amount actual storage unit 226, and outputs the prediction result to the plan creation unit 221a. .
  • an ozone injection amount used for one cleaning is assumed, and the injection amount prediction unit 227 predicts the number of membrane unit cleanings in a certain period based on the actual values stored in the injection amount performance storage unit 226.
  • the ozone injection amount for a certain period of time is predicted. For example, it is possible to divide the past actual values into fixed periods, calculate the number of membrane unit cleanings in each fixed period, and use the average value of the calculated number of times as the predicted value of the number of membrane unit cleanings.
  • the planning unit 221a uses the prediction result received from the injection amount prediction unit 227 to create a plan so that the ozone injection amount required for cleaning the membrane unit for a certain period of time is stored in a time period when the unit price of electricity is low.
  • the injection amount prediction unit 227 may create a plan to generate and store more ozone than the prediction result. In this case, in actual operation, even if the stored ozone remains, it can be used for cleaning for the next fixed period. Further, when the actual number of times of cleaning is larger than the predicted result, cleaning is performed by generating ozone. Even in this case, operating costs can be reduced compared to the case where storage is not performed.
  • the plan creating unit 221a creates a plan to generate and store ozone enough to cover at least three cleaning times during the nighttime period at the start of one week.
  • plan creation unit 221a formulates the operating cost as an evaluation function, defines constraints, and solves an optimization problem to minimize the operating cost under the constraints, thereby obtaining a plan within a certain period of time. may be defined.
  • FIG. 13 is a flow chart showing an example of a plan creation procedure when operating costs are formulated in this embodiment. Steps S1, S3, and S4 are the same as the example shown in FIG. 4 of the first embodiment.
  • the injection amount prediction unit 227 predicts the amount of ozone used within a certain period of time, that is, the injection amount of ozone (step S11). It is assumed that the prediction result is the predicted value of the injection amount for each time period within a certain period. At this time, there is no particular restriction on the time interval of each time period, and it may be in units of 30 minutes, may be in units of one hour, or may be other than these.
  • the plan creating unit 221a sets the amount of ozone to be generated for each time period within a certain period using the predicted usage amount, which is the result of the prediction by the injection amount predicting unit 227 (step S12).
  • step S12 not only the amount of generated ozone but also the amount of generated ozone that is used and stored is set.
  • the initial values of these quantities to be set are set to arbitrary values within the range that satisfies the constraint conditions.
  • Constraint conditions are, for example, conditions represented by the following formulas (1) to (6). Constraints other than these may be defined.
  • time t is an integer indicating the time when the start time of the fixed period is 0
  • y(t) is the predicted value of the amount of ozone used at time t
  • G(t) is time t. , that is, the amount of ozone generated by the ozone generator 32 at time t
  • X max is the maximum ozone generation amount per unit time (corresponding to the design value).
  • the upper limit of the ozone storage amount and X max are determined in advance.
  • y(t) is input as the prediction result.
  • the plan creation unit 221a appropriately sets the above G(t), A(t), B(t), and S(t) within the range that satisfies the above constraint conditions.
  • the plan creation unit 221a calculates the operation cost within a certain period (step S13). For example, the plan creation unit 221a calculates ⁇ , which is the amount of power used in the operation cost, by using the following formula (7).
  • is the amount of power used in the operation cost
  • the amount of electricity used is considered as the operation cost, but the raw material gas cost may be added to the operation cost.
  • C(t) be the power unit price at time t
  • P(t) be the power required to generate a unit amount of ozone
  • ⁇ (t) be the efficiency expressed as a percentage.
  • P(t) is predetermined. Note that ⁇ (t) is maximized at the design value as described above, and decreases when ozone is generated at a value smaller than the design value.
  • the plan creating unit 221a predetermines ⁇ (t) as a function of G(t), or holds the correspondence between ⁇ (t) and G(t) in a table.
  • the planning unit 221a determines whether the search has ended (step S14).
  • the plan creation unit 221a determines Yes in step S14 when the conditions for ending the search are satisfied.
  • the condition for terminating the search may be determined, for example, according to the search algorithm for the optimization problem.
  • step S15 the set ozone generation amount is changed (step S15), and the plan creation unit 221a repeats the process from step S13.
  • step S15 G(t), A(t), B(t), and S(t) described above are changed within a range that satisfies the above constraint conditions.
  • a method for changing these values is determined according to the search algorithm for the optimization problem.
  • the plan creating unit 221a creates a plan based on the set values that minimize the operation cost (step S16), and advances the process to step S4. Specifically, the plan creating unit 221a holds the operation cost calculated in step S13 and the corresponding set values, that is, G(t), A(t), B(t), and S(t), and Now, create a plan based on the set value that minimizes the operating cost among these.
  • the processing shown in FIG. 13 can be applied not only to membrane unit cleaning but also to any system using ozone.
  • the processing shown in FIG. 13 can also be applied to the system for constantly supplying a constant amount, for example, as described in the first embodiment.
  • the predicted value of the injection amount within a certain period may be a constant value based on time t.
  • the injection amount prediction unit 227 may acquire data indicating the states of the membrane units 92-1 and 92-2 and use the data to predict the amount of ozone used within a certain period of time.
  • the control unit 22a receives from the MBR system 9 the difference between the secondary side pressure of the membrane units 92-1 and 92-2 and the atmospheric pressure, the unit time of the membrane units 92-1 and 92-2, and the unit membrane filtration area. Data obtained by measuring the flux, which is the amount of filtered water per unit, may be acquired, and the acquired data may be used to predict the timing of membrane unit cleaning or the number of times of membrane unit cleaning within a certain period by machine learning.
  • FIG. 14 is a diagram showing a configuration example of the injection amount prediction unit 227 of the present embodiment when prediction is performed by machine learning.
  • the injection amount prediction unit 227 includes a model generation unit 231 , a learned model storage unit 232 and a prediction unit 233 .
  • FIG. 15 is a flowchart showing an example of the operation of the model generation unit 231 of this embodiment.
  • the model generator 231 acquires teacher data including measurement data and correct answer data (step S31). Specifically, the model generator 231 acquires measurement data indicating the states of the membrane units 92-1 and 92-2 and corresponding correct data from the MBR system 9 via the data input/output unit 21, for example. do.
  • the model generation unit 231 acquires the measurement data of the processing target period as time-series data, and acquires the time when the membrane unit cleaning was performed in a certain period after the period as the correct data. A plurality of sets of the measurement data and the corresponding correct data are acquired.
  • the model generation unit 231 generates a learned model (step S32). Specifically, the model generation unit 231 generates a trained model by supervised machine learning using the acquired multiple sets of data as teacher data.
  • the model generation unit 231 stores the learned model (step S33), and ends the process. Specifically, in step S ⁇ b>33 , the model generation unit 231 stores the learned model in the learned model storage unit 232 .
  • the learned model may be generated for each of the membrane units 92-1 and 92-2, or a common learned model may be used for the membrane units 92-1 and 92-2.
  • FIG. 16 is a flow chart showing an example of the operation of the prediction unit 233 of this embodiment.
  • the prediction unit 233 acquires measurement data (step S41). Specifically, the prediction unit 233 indicates the states of the membrane units 92-1 and 92-2 from the MBR system 9 when predicting the number of membrane unit cleanings performed in a certain period after the period. Measurement data is acquired via the data input/output unit 21, for example. This measurement data is time-series data for a period having the same length as the processing target period used for model generation.
  • the prediction unit 233 inputs the measurement data to the learned model, predicts the cleaning timing within a certain period of time (step S42), and ends the process. Specifically, the prediction unit 233 uses the output of the learned model obtained by inputting the measurement data from the learned model storage unit 232 to the learned model as the predicted value of the cleaning timing within a certain period.
  • a neural network (including deep learning) can be used, but not limited to this, a decision tree, multiple regression, random forest, etc., can be used. may be used.
  • a neural network consists of an input layer made up of multiple neurons, an intermediate layer (hidden layer) made up of multiple neurons, and an output layer made up of multiple neurons.
  • the intermediate layer may be one layer, or two or more layers.
  • FIG. 17 is a schematic diagram showing an example of a neural network.
  • a three-layer neural network as shown in FIG. 17, when multiple inputs are input to the input layer (X1-X3), the value is multiplied by the weight W1 (w11-w16) and the intermediate layer ( Y1-Y2), and the result is multiplied by weight W2 (w21-w26) and output from the output layer (Z1-Z3).
  • This output result changes depending on the values of weight W1 and weight W2.
  • the weight W1 and the weight W2 are adjusted so that the output from the output layer approaches the correct data when the measurement data, which is the feature amount of the teacher data described above, is input to the input layer. , the relationship between the feature amount and the correct data is learned.
  • the injection amount prediction unit 227 generated the learned model, but this is not the only option, and the learned model may be generated by a learning device (not shown).
  • the measurement data of the membrane units 92-1 and 92-2 which are examples of the ozone injection target, are used. Any state data indicating the state of Therefore, the injection amount prediction unit 227 uses a learned model for predicting the injection amount at each time to the injection target within a certain period from the state data indicating the state of the injection target, and the acquired state data, It is only necessary to predict the amount of injection at each time to the injection target within a certain period of time.
  • control unit 22a predicts the amount of injection to the injection target at each time within a certain period of time, and uses the prediction result and the unit price of electricity for each time period to determine the amount of ozone required to generate ozone within a certain period of time.
  • the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generator 3 at each time are determined so that the power usage fee is reduced compared to when the power is not stored, and the determined result is used. can be used to control the ozone generator 3 .
  • ozone is stored during times when the unit price of electricity is low, and the membrane units 92-1 and 92-2 in the MBR system 9 are cleaned using the stored ozone.
  • operating costs can be reduced compared to the case where storage is not performed.
  • the operation cost can be reduced regardless of the usage method.
  • FIG. 18 is a diagram showing a configuration example of an ozone generation system according to a fourth embodiment.
  • the ozone generation system of this embodiment can be applied to a water treatment system as in the first embodiment.
  • the ozone injection unit 5 injects ozone into the water treatment process 6 in the same manner as in the first embodiment.
  • the ozone generation system 1 similar to that of the first embodiment is realized by adding a function to the water treatment system in which the ozone generator 32 is already provided.
  • Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
  • the existing ozone generator is used as it is as the ozone generator 32 of Embodiment 1, and the ozone storage device 200 indicated by the dashed line is added.
  • the control device 2 may be newly provided, or may be the control device 2 by modifying an existing control device.
  • the ozone storage device 200 is obtained by removing the ozone generator 32 and the switching valve 34 from the control device 2 and the ozone generator 3 described in the first embodiment.
  • the switching valve 34 since it is assumed that there is some kind of valve in the existing system, an example of using this valve is shown, but the switching valve 34 may also be included in the ozone storage device 200 .
  • the existing ozonizer is designed for dry air, it can be changed to the ozonizer 32 using oxygen as a raw material by adjusting the power supply.
  • oxygen is used as the raw material gas
  • the cost of the raw material gas increases compared to when air is used as the raw material. Therefore, the cost increase due to the change of the source gas type is small.
  • the ozone generation efficiency can be greatly improved as compared with the case of using dry air, and high-concentration ozone can be obtained.
  • an ozone generation system can be realized by adding the ozone storage device 200 to the existing system. .
  • the generation system 1 can be realized.
  • FIG. 19 is a diagram illustrating a configuration example of an ozone generation system according to a fifth embodiment;
  • the ozone generation system 1c of the present embodiment can be applied to a water treatment system as in the first embodiment.
  • the ozone injection unit 5 of the ozone generation system 1c injects ozone into the water treatment process 6 as in the first embodiment.
  • Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
  • the ozone generator 3b which is an ozone generator, also functions as the control device 2.
  • a controller for controlling each part is generally provided in the ozone generator 3 .
  • a control unit 22b having both functions of this control unit and the control unit 22 of the first embodiment is provided, and the control unit 22b performs the same operation as the control unit 22 of the first embodiment. At the same time, it controls the ozone generator 32, switching valves 34 and 35, etc. in the ozone generator 3b.
  • the one in the ozone generating unit 3b may be used, or it may be newly provided.
  • the ozone generation system 1c when diverting the existing ozone storage unit, by adding an ozone generator excluding the ozone storage unit 33 from the ozone generation unit 3b shown in Fig. 19, the ozone generation system 1c may be implemented.
  • control section 22b in the ozone generation section 3b which is an ozone generation device, may perform the same operation as in the first embodiment.
  • the ozone generator 3b is used and the controller 22b in the ozone generator 3b performs the same operation as in the third embodiment.

Abstract

A control apparatus (2) controls an ozone generation unit (3) capable of storing generated ozone and injecting the ozone into a water treatment process (6). The control apparatus (2) controls the ozone generation unit (3) to generate the ozone at a first time period, which is at least a part of time periods where an electric power unit price is a first value, such that an ozone generation amount per unit time becomes a first amount, controls the ozone generation section (3) to inject a second amount of ozone smaller than the first amount per unit time in the water treatment process (6) at the first time period and to store ozone not injected into an injection target among the generated ozone, and controls the ozone generation section (3) to release the stored ozone at a second time period, which is at least a part of the time periods where the electric power unit price is a second value equal to or larger than the first value, and to inject the stored ozone in the water treatment process (6).

Description

制御装置、オゾン発生システム、オゾン貯蔵装置、オゾン発生装置、水処理システム、オゾン注入制御方法およびコンピュータプログラムControl device, ozone generation system, ozone storage device, ozone generator, water treatment system, ozone injection control method and computer program
 本開示は、制御装置、オゾン発生システム、オゾン貯蔵装置、オゾン発生装置、水処理システム、オゾン注入制御方法およびコンピュータプログラムに関する。 The present disclosure relates to a control device, an ozone generation system, an ozone storage device, an ozone generation device, a water treatment system, an ozone injection control method, and a computer program.
 オゾンを用いた除菌、洗浄は近年広く用いられている。一般的なオゾン発生装置は、オゾンの供給が必要なときにオゾンを発生させている。特許文献1には、電気料金の安価な夜間にオゾン発生装置を稼働させて貯蔵し、昼間に貯蔵されたオゾンを使用することで運用コストを削減する技術が開示されている。 Disinfection and cleaning using ozone have been widely used in recent years. A typical ozone generator generates ozone when it needs to be supplied. Patent Literature 1 discloses a technique for reducing operating costs by operating and storing ozone generators at night when electricity rates are low and using the stored ozone during the day.
特開平11-292512号公報JP-A-11-292512
 オゾンの適用されるシステムによっては、昼間などのように電気料金が高い時間帯に限り使用されるとは限らない。例えば、上下水処理などでは、昼夜を問わずオゾンの供給は必要であり、膜分離活性汚泥法による水処理において分離膜の洗浄にオゾン水を使用する場合も、分離膜の洗浄が行われるのは昼間に限らない。しかしながら、特許文献1に記載の技術では、夜間は貯蔵だけが行われ、昼間はオゾンの使用だけが行われており、オゾンの使用時にはオゾン発生装置を停止させている。このため、特許文献1に記載の技術の適用は、電気料金の高い時間帯にだけオゾンが使用されるという特定の使用形態のシステムに限られる。すなわち、特許文献1に記載の技術では、例えば昼夜を問わずオゾンの使用が行われる使用形態などにおいては適用できず運用コストを削減することはできず運用コストの削減が不十分である。  Depending on the system to which ozone is applied, it may not be used only during times when electricity rates are high, such as during the daytime. For example, in water and sewage treatment, it is necessary to supply ozone day and night. is not limited to daytime. However, in the technique described in Patent Document 1, only storage is performed at night, only ozone is used during the day, and the ozone generator is stopped when ozone is used. For this reason, application of the technique described in Patent Document 1 is limited to a system with a specific usage pattern in which ozone is used only during times when electricity rates are high. That is, the technique described in Patent Document 1 cannot be applied to, for example, a usage pattern in which ozone is used regardless of whether it is day or night, and the operation cost cannot be reduced.
 本開示は、上記に鑑みてなされたものであって、運用コストを削減することができる制御装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain a control device capable of reducing operating costs.
 上述した課題を解決し、目的を達成するために、本開示にかかる制御装置は、発生させたオゾンを貯蔵可能でありオゾンの注入対象にオゾンを注入するオゾン発生部を制御する制御装置であって、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯でオゾン発生部に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、第1の時間帯で、オゾン発生部に、単位時間あたり第1の量より少ない第2の量のオゾンを注入対象に注入させるとともに発生させたオゾンのうち注入対象に注入されないオゾンを貯蔵させ、電力単価が第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、オゾン発生部に、貯蔵されたオゾンを放出させて注入対象に注入させる。 In order to solve the above-described problems and achieve the object, a control device according to the present disclosure is a control device that controls an ozone generation unit that can store generated ozone and injects ozone into an ozone injection target. Then, the ozone generation unit is caused to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price of electricity is the first value. and causing the ozone generator to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in a first time period, and to store ozone that is not injected into the injection target among the generated ozone. , in a second time period that is at least a part of the time period in which the unit price of electricity is a second value equal to or greater than the first value, the ozone generator is caused to release the stored ozone and inject it into the injection target. Let
 本開示にかかる制御装置は、運用コストを削減することができるという効果を奏する。 The control device according to the present disclosure has the effect of reducing operating costs.
実施の形態1にかかるオゾン発生システムを備える水処理システムの構成例を示す図1 is a diagram showing a configuration example of a water treatment system including an ozone generation system according to Embodiment 1. FIG. 実施の形態1の制御部の構成例を示す図4 is a diagram showing a configuration example of a control unit according to Embodiment 1; FIG. 実施の形態1の制御装置を実現するコンピュータシステムの一例を示す図1 is a diagram showing an example of a computer system that implements the control device of Embodiment 1; FIG. 実施の形態1の制御部における処理手順の一例を示すフローチャート4 is a flow chart showing an example of a processing procedure in the control unit according to the first embodiment; 実施の形態1にかかるオゾン供給量の一例を示す図A diagram showing an example of an ozone supply amount according to the first embodiment. 実施の形態1の運用コスト削減効果の一例を示す図Diagram showing an example of operation cost reduction effect of Embodiment 1 実施の形態1の変形例にかかる制御部における処理手順の一例を示すフローチャート3 is a flowchart showing an example of a processing procedure in a control unit according to a modification of the first embodiment; 実施の形態1の変形例にかかるオゾン供給量の一例を示す図A diagram showing an example of an ozone supply amount according to a modification of the first embodiment 実施の形態1の変形例における運用コスト削減効果の一例を示す図A diagram showing an example of an operation cost reduction effect in the modified example of the first embodiment 実施の形態2にかかるオゾン発生システムを備える水処理システムの構成例を示す図FIG. 10 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a second embodiment; 実施の形態3にかかるオゾン発生システムを備える水処理システムの構成例を示す図A diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a third embodiment. 実施の形態3の制御部の構成例を示す図FIG. 11 is a diagram showing a configuration example of a control unit according to Embodiment 3; 実施の形態3における運用コストを定式化した場合の計画作成手順の一例を示すフローチャートFlowchart showing an example of a plan creation procedure when operating costs are formulated in the third embodiment 機械学習により予測を行う場合の実施の形態3の注入量予測部の構成例を示す図A diagram showing a configuration example of an injection amount prediction unit according to Embodiment 3 when prediction is performed by machine learning 実施の形態3のモデル生成部における動作の一例を示すフローチャートFlowchart showing an example of the operation of the model generation unit of the third embodiment 実施の形態3の予測部における動作の一例を示すフローチャートFlowchart showing an example of the operation of the prediction unit of Embodiment 3 ニューラルネットワークの一例を示す模式図Schematic diagram showing an example of a neural network 実施の形態4にかかるオゾン発生システムの構成例を示す図The figure which shows the structural example of the ozone generation system concerning Embodiment 4. 実施の形態5にかかるオゾン発生システムの構成例を示す図The figure which shows the structural example of the ozone generation system concerning Embodiment 5.
 以下に、実施の形態にかかる制御装置、オゾン発生システム、オゾン貯蔵装置、オゾン発生装置、水処理システム、オゾン注入制御方法およびコンピュータプログラムを図面に基づいて詳細に説明する。 The control device, ozone generation system, ozone storage device, ozone generation device, water treatment system, ozone injection control method, and computer program according to the embodiments will be described below in detail with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかるオゾン発生システムを備える水処理システムの構成例を示す図である。図1に示すように、本実施の形態の水処理システムは、オゾン発生システム1と、オゾン発生システム1から供給されるオゾンを用いて水処理を行う水処理プロセス6と、水処理プロセス6から排出される排オゾン濃度を許容値以下とする処理を行う排オゾン処理部7と、を備える。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to Embodiment 1. FIG. As shown in FIG. 1, the water treatment system of the present embodiment includes an ozone generation system 1, a water treatment process 6 for treating water using ozone supplied from the ozone generation system 1, and and an exhaust ozone processing unit 7 that performs processing for reducing the concentration of discharged exhaust ozone to a permissible value or less.
 本実施の形態の水処理システムは、基本的に、24時間常時運用され、オゾン発生システム1は、昼夜を問わず概ね一定量のオゾンを水処理プロセス6へ供給する。 The water treatment system of the present embodiment is basically operated 24 hours a day, and the ozone generation system 1 supplies a substantially constant amount of ozone to the water treatment process 6 day and night.
 上下水処理など高い信頼性、持続性および連続性が必要とされるプロセスでは、オゾン発生システム1への要求仕様は、確実な処理を実行するための性能余裕が考慮されて決定される。このため、オゾンの発生量の設計値は、実際に注入されるオゾンの注入量すなわちオゾンの使用量に対して余裕がある場合が多い。例えば、水処理システムの運用開始後に適正な注入量が確定し、結果的に余裕が生じる場合もあり、また、冗長化のために余裕が設けられている場合もある。また、近年の省エネルギー化の促進に伴い、オゾンの注入量を極力抑える運用とされるケースもある。これらの要因により、オゾンの発生量の設計値とオゾンの注入量との差、すなわち余剰能力が発生する。 In processes that require high reliability, sustainability, and continuity, such as water and sewage treatment, the required specifications for the ozone generation system 1 are determined in consideration of the margin of performance to ensure reliable treatment. For this reason, the design value of the amount of generated ozone often has a margin with respect to the actually injected amount of ozone, that is, the amount of ozone used. For example, there are cases where an appropriate amount of injection is determined after the start of operation of the water treatment system, resulting in a margin, and there are cases where a margin is provided for redundancy. In addition, with the promotion of energy saving in recent years, there are cases where the amount of ozone injected is kept as low as possible. Due to these factors, the difference between the design value of the amount of ozone generated and the amount of injected ozone, that is, surplus capacity occurs.
 一方、通常、オゾン発生装置は、設計値での運用が最も高効率になるよう設計されるため、設計値より少ない注入量でオゾンを発生させると、電力ロスが生じ効率が低下する。高効率で運転させるために、設計値でオゾンを発生させると、使用されないオゾンは無駄になってしまう。 On the other hand, ozone generators are usually designed so that operation at the design value is the most efficient, so if ozone is generated with an injection amount less than the design value, power loss will occur and efficiency will decrease. If ozone is generated at a design value in order to operate with high efficiency, ozone that is not used will be wasted.
 本実施の形態では、24時間常時運用されるシステムにおいて、上述した余剰能力を有効活用することで、運用コストを削減する。ここでは、24時間常時一定量のオゾンを使用するシステムに適用する例を説明するが、本実施の形態の余剰能力を有効活用した運用コストの削減を適用可能なオゾンの使用形態は、これに限らず、どのような使用形態に適用してもよい。 In this embodiment, in a system that operates 24 hours a day, operating costs are reduced by effectively utilizing the surplus capacity described above. Here, an example of application to a system that uses a constant amount of ozone 24 hours a day will be described. It can be applied to any type of usage.
 図1に示すように、オゾン発生システム1は、制御装置2、オゾン発生部3およびオゾン注入部5を備える。オゾン発生部3は、オゾンを発生させるとともにオゾンを貯蔵することが可能であり、制御装置2からの指示に基づいて、発生させたオゾンおよび貯蔵したオゾンのうち少なくとも一方をオゾン注入部5に注入する。制御装置2は、オゾン発生部3におけるオゾンの発生量、貯蔵量、貯蔵されたオゾンの取り出し量などを制御する。オゾン注入部5は、オゾン発生部3から供給されたオゾンを、水処理プロセス6への注入されるオゾン注入量が目標値を維持するように水処理プロセス6へ注入する。水処理プロセス6は、オゾン発生部3のオゾンの注入対象の一例であり、注入対象は水処理プロセス6に限定されない。 As shown in FIG. 1, the ozone generation system 1 includes a control device 2, an ozone generation section 3 and an ozone injection section 5. The ozone generator 3 is capable of generating ozone and storing ozone, and injects at least one of the generated ozone and the stored ozone into the ozone injection unit 5 based on instructions from the control device 2. do. The control device 2 controls the amount of ozone generated in the ozone generator 3, the amount of ozone stored, the amount of stored ozone taken out, and the like. The ozone injection unit 5 injects the ozone supplied from the ozone generation unit 3 into the water treatment process 6 so that the ozone injection amount injected into the water treatment process 6 maintains a target value. The water treatment process 6 is an example of an ozone injection target of the ozone generator 3 , and the injection target is not limited to the water treatment process 6 .
 オゾン発生部3は、原料ガス供給部31、オゾン発生器32、オゾン貯蔵部33および切替バルブ34,35を備える。原料ガス供給部31は、酸素を含むガスである原料ガスをオゾン発生器32へ供給する。オゾン発生器32は、原料ガス供給部31から供給された原料ガスを用いてオゾンを発生させる。オゾン貯蔵部33は、オゾン発生器32において発生したオゾンを貯蔵する。また、オゾン貯蔵部33は、貯蔵したオゾンを取り出してオゾン注入部5に供給する。 The ozone generation unit 3 includes a source gas supply unit 31, an ozone generator 32, an ozone storage unit 33, and switching valves 34,35. The raw material gas supply unit 31 supplies the raw material gas, which is gas containing oxygen, to the ozone generator 32 . The ozone generator 32 uses the raw material gas supplied from the raw material gas supply unit 31 to generate ozone. The ozone storage unit 33 stores ozone generated by the ozone generator 32 . The ozone storage unit 33 also takes out the stored ozone and supplies it to the ozone injection unit 5 .
 本実施の形態のオゾン発生システム1では、オゾン発生器32において発生したオゾンを、切替バルブ34を介してオゾン注入部5に接続されるオゾン輸送経路36と、切替バルブ35およびオゾン貯蔵部33を介してオゾン注入部5に接続されるオゾン輸送経路37との2つの経路により輸送することが可能である。これらの2つの輸送経路のどちらでオゾンが輸送されるかは、切替バルブ34および切替バルブ35の開閉により制御される。例えば、切替バルブ34を閉じ、切替バルブ35を開とすれば、オゾン発生器32において発生したオゾンはオゾン輸送経路37を介してオゾン貯蔵部33に貯蔵される。また、切替バルブ35を閉じ、切替バルブ34を開とすれば、オゾン発生器32において発生したオゾンはオゾン輸送経路36を介してオゾン注入部5に供給される。また、切替バルブ34,35の両方を開とすれば、オゾン発生器32において発生したオゾンはオゾン輸送経路36およびオゾン輸送経路37の両方で輸送され、これにより、オゾンはオゾン注入部5に供給されるとともにオゾン貯蔵部33に貯蔵される。これらの2つの輸送経路によりオゾンが輸送される場合、オゾン発生器32により発生したオゾンのうち、オゾン注入部5により水処理プロセス6に注入された残りがオゾン輸送経路37によって輸送されてオゾン貯蔵部33に貯蔵される。切替バルブ34,35の開閉の制御は、制御装置2が直接行ってもよいし、オゾン発生部3内の図示しない制御部が制御装置2からの指示に基づいて行ってもよい。 In the ozone generating system 1 of the present embodiment, the ozone generated in the ozone generator 32 is transported through the ozone transport path 36 connected to the ozone injection unit 5 via the switching valve 34, the switching valve 35 and the ozone storage unit 33. It is possible to transport by two routes, namely, the ozone transport route 37 connected to the ozone injection unit 5 via the ozone transport route 37 . Which of these two transportation routes ozone is transported is controlled by opening and closing switching valves 34 and 35 . For example, if the switching valve 34 is closed and the switching valve 35 is opened, the ozone generated in the ozone generator 32 is stored in the ozone storage section 33 via the ozone transport path 37 . When the switching valve 35 is closed and the switching valve 34 is opened, the ozone generated in the ozone generator 32 is supplied to the ozone injection section 5 via the ozone transport path 36 . Further, when both the switching valves 34 and 35 are opened, the ozone generated in the ozone generator 32 is transported through both the ozone transport path 36 and the ozone transport path 37, whereby the ozone is supplied to the ozone injection section 5. and stored in the ozone storage unit 33 . When ozone is transported through these two transportation routes, the remainder of the ozone generated by the ozone generator 32 that has been injected into the water treatment process 6 by the ozone injection unit 5 is transported through the ozone transportation route 37 and stored in ozone. Stored in section 33 . Control of opening and closing of the switching valves 34 and 35 may be performed directly by the control device 2 or may be performed by a control section (not shown) in the ozone generating section 3 based on instructions from the control device 2 .
 オゾン貯蔵部33におけるオゾンの貯蔵方法はどのような方法が用いられてもよいが、オゾン貯蔵部33は、例えば、シリカゲルなどの吸着剤が充填された吸着筒を備え、吸着筒では、温度と圧力が制御されることにより、吸着剤に対するオゾンと酸素の吸着および脱着特性の差異を利用し、オゾンと酸素を含んだ混合ガスからオゾンと酸素を分離する。オゾン貯蔵部33は、低温に維持された吸着剤によりオゾンを選択的に吸着させて貯蔵するとともに、一方で、分離された酸素を、酸素再利用経路38を介してオゾン発生器32へ供給することにより分離された酸素を再び原料ガスとして再利用する。これにより、原料ガスコストの大幅低減を実現する。 Although any method may be used for storing ozone in the ozone storage unit 33, the ozone storage unit 33 includes an adsorption cylinder filled with an adsorbent such as silica gel. By controlling the pressure, the difference in adsorption and desorption properties of ozone and oxygen on the adsorbent is used to separate ozone and oxygen from a gas mixture containing ozone and oxygen. The ozone storage unit 33 selectively adsorbs and stores ozone with an adsorbent maintained at a low temperature, while supplying the separated oxygen to the ozone generator 32 via an oxygen recycling path 38 . The oxygen thus separated is reused as a raw material gas. As a result, a significant reduction in raw material gas costs is realized.
 オゾンは短寿命であるため貯蔵が困難であるが、上記のように、低温に維持した吸着剤に対する圧力スイングに伴う吸脱着現象を用いるオゾン貯蔵部33を採用することでオゾンの長期間貯蔵が可能となる。すなわち、オゾン貯蔵部33で生成したオゾンを一旦貯蔵し、任意のタイミングで任意の量のオゾン貯蔵部33から取り出し、オゾン輸送経路37を介してオゾン注入部5へ供給することができる。 Since ozone has a short life, it is difficult to store it. It becomes possible. That is, the ozone generated in the ozone storage unit 33 can be temporarily stored, taken out from the ozone storage unit 33 in an arbitrary amount at an arbitrary timing, and supplied to the ozone injection unit 5 via the ozone transport path 37 .
 制御装置2は、データ入出力部21および制御部22を備える。データ入出力部21は、ユーザからの入力を受け付けるとともに、ユーザへ各種情報を提示する。データ入出力部21は、例えば、運用コストの削減量、オゾンの発生量、オゾン発生部3の稼働状態などを表示する。制御部22は、オゾン発生部3におけるオゾン発生量の設計値と必要なオゾン注入量とを用いて、運用コストを抑制するようにオゾンの発生、貯蔵、貯蔵されたオゾンの取り出しに関する計画を作成し、作成した計画に基づいてオゾン発生部3におけるオゾンの発生量、貯蔵量、貯蔵されたオゾンの取り出し量などを制御する。 The control device 2 includes a data input/output unit 21 and a control unit 22 . The data input/output unit 21 receives input from the user and presents various information to the user. The data input/output unit 21 displays, for example, the amount of reduction in operating costs, the amount of ozone generated, the operating state of the ozone generation unit 3, and the like. The control unit 22 uses the design value of the ozone generation amount in the ozone generation unit 3 and the necessary ozone injection amount to create a plan for generating, storing, and taking out the stored ozone so as to suppress the operation cost. Then, based on the created plan, the amount of ozone generated in the ozone generator 3, the amount of stored ozone, the amount of stored ozone taken out, and the like are controlled.
 図2は、本実施の形態の制御部22の構成例を示す図である。制御部22は、図2に示すように、計画作成部221、電力単価記憶部222、注入量情報記憶部223、計画記憶部224および指示部225を備える。 FIG. 2 is a diagram showing a configuration example of the control unit 22 of this embodiment. The control unit 22 includes a plan creating unit 221, an electricity unit price storage unit 222, an injection amount information storage unit 223, a plan storage unit 224, and an instruction unit 225, as shown in FIG.
 電力単価記憶部222は、電気料金の単価である電力単価を時間帯ごとに記憶する。注入量情報記憶部223は、水処理プロセス6へ注入するオゾン注入量の目標値を記憶するとともに、オゾン注入量の設計値すなわちオゾン発生部3のオゾン発生器32によって発生するオゾンの最大量を記憶する。時間帯ごとの電力単価、オゾン注入量の設計値およびオゾン注入量の目標値は、データ入出力部21を介してユーザによって入力されてもよいし、図示しない他の装置から制御装置2が受信してもよい。また、これらの値は、データ入出力部21を介して変更可能である。 The power unit price storage unit 222 stores the power unit price, which is the unit price of electricity, for each time period. The injection amount information storage unit 223 stores the target value of the ozone injection amount to be injected into the water treatment process 6, and also stores the design value of the ozone injection amount, that is, the maximum amount of ozone generated by the ozone generator 32 of the ozone generation unit 3. Remember. The unit price of electricity for each time period, the design value of the ozone injection amount, and the target value of the ozone injection amount may be input by the user via the data input/output unit 21, or received by the control device 2 from another device (not shown). You may Also, these values can be changed via the data input/output unit 21 .
 計画作成部221は、電力単価記憶部222に記憶されている時間帯ごとの電力単価と、注入量情報記憶部223に記憶されているオゾン注入量の設計値およびオゾン注入量の目標値とを用いて、運用コストを抑制するようにオゾンの発生、貯蔵、貯蔵されたオゾンの取り出しに関する計画を作成する。また、計画作成部221は、作成した計画に基づいて電力の削減効果を示す情報を生成し、生成した情報、作成した計画などをデータ入出力部21へ出力する。以下、オゾンの発生、貯蔵、貯蔵されたオゾンの取り出しに関する計画を単に計画またはオゾン生成計画と呼ぶ。計画作成部221は、作成した計画を計画記憶部224に格納する。指示部225は、計画記憶部224に格納された計画にしたがって、オゾン発生部3におけるオゾンの発生量、貯蔵量、貯蔵されたオゾンの取り出し量などをオゾン発生部3へ指示する。 The plan creation unit 221 stores the power unit price for each time period stored in the power unit price storage unit 222, the design value of the ozone injection amount and the target value of the ozone injection amount stored in the injection amount information storage unit 223. It is used to plan ozone generation, storage, and removal of stored ozone in a manner that controls operating costs. The plan creating unit 221 also generates information indicating the power reduction effect based on the created plan, and outputs the created information, the created plan, and the like to the data input/output unit 21 . In the following, plans for generating, storing, and removing stored ozone are simply referred to as plans or ozone production plans. The plan creation unit 221 stores the created plan in the plan storage unit 224 . The instructing unit 225 instructs the ozone generating unit 3 on the amount of ozone generated, the amount of stored ozone, the amount of stored ozone to be taken out, and the like in the ozone generating unit 3 according to the plan stored in the plan storage unit 224 .
 ここで、本実施の形態の制御装置2のハードウェア構成について説明する。制御装置2は、コンピュータシステムにより実現される。図3は、本実施の形態の制御装置2を実現するコンピュータシステムの一例を示す図である。図3に示したコンピュータシステムは、プロセッサ101、メモリ102、通信回路103、表示部104および入力部105を備える。 Here, the hardware configuration of the control device 2 of this embodiment will be described. The control device 2 is implemented by a computer system. FIG. 3 is a diagram showing an example of a computer system that implements the control device 2 of this embodiment. The computer system shown in FIG. 3 includes a processor 101 , memory 102 , communication circuit 103 , display section 104 and input section 105 .
 演算装置であるプロセッサ101は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ、またはDSP(Digital Signal Processor)などである。記憶部であるメモリ102は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)などの半導体メモリ、磁気ディスク、フレキシブルディスク、などが該当する。通信回路103は、通信を行うことが可能な送受信機である。 The processor 101, which is an arithmetic device, is, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor). The memory 102, which is a storage unit, includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Such as semiconductor memory, magnetic disk, flexible disk, and the like. The communication circuit 103 is a transceiver capable of communication.
 表示部104は、ディスプレイ、モニタなどであり、入力部105はボタン、スイッチ、キーボード、マウスなどである。表示部104および入力部105が一体化されたタッチパネルが用いられてもよい。 The display unit 104 is a display, monitor, etc., and the input unit 105 is a button, switch, keyboard, mouse, etc. A touch panel in which the display unit 104 and the input unit 105 are integrated may be used.
 制御装置2は、制御装置2が実行する処理が記述されたプログラムが実行されることにより実現される。具体的には、プログラムがメモリ102にインストールされる。そして、プログラムの実行時に、メモリ102から読み出されたプログラムがメモリ102の一次記憶領域に格納される。この状態で、プロセッサ101は、メモリ102に格納されたプログラムに従って、本実施の形態の制御装置2としての処理を実行する。なお、上記プログラムは記録媒体により提供されてもよいし、通信回路103を経由して伝送媒体により提供されてもよい。 The control device 2 is implemented by executing a program that describes the processing to be executed by the control device 2. Specifically, a program is installed in memory 102 . Then, when the program is executed, the program read from the memory 102 is stored in the primary storage area of the memory 102 . In this state, processor 101 executes processing as control device 2 of the present embodiment according to the program stored in memory 102 . Note that the program may be provided by a recording medium, or may be provided by a transmission medium via the communication circuit 103 .
 図1に示した制御部22は、図3に示したメモリ102に記憶されたプログラムがプロセッサ101により実行されることにより実現される。また、制御部22の実現にはメモリ102も用いられる。図1に示したデータ入出力部21は、図3に示した表示部104および入力部105により実現される。 The control unit 22 shown in FIG. 1 is implemented by the processor 101 executing a program stored in the memory 102 shown in FIG. A memory 102 is also used to implement the controller 22 . Data input/output unit 21 shown in FIG. 1 is implemented by display unit 104 and input unit 105 shown in FIG.
 次に、本実施の形態の動作について説明する。上述したように、オゾン注入量の設計値は、実際に水処理プロセス6へ注入するオゾン注入量より多い。したがって、オゾン注入量の設計値をXmg/Lであるとし、水処理プロセス6へ注入するオゾン注入量の目標値をYmg/Lとすると、XはYより大きい。なお、X,Yは実数である。なお、本実施の形態では、オゾン注入量は常時一定量であるとするが、時間帯によってオゾン注入量の目標値が異なる場合には、時間帯ごとの目標量が注入量情報記憶部223に記憶される。 Next, the operation of this embodiment will be described. As described above, the design value of the ozone injection amount is larger than the ozone injection amount actually injected into the water treatment process 6 . Therefore, assuming that the design value of the ozone injection amount is X mg/L and the target value of the ozone injection amount injected into the water treatment process 6 is Y mg/L, X is larger than Y. Note that X and Y are real numbers. In the present embodiment, the ozone injection amount is assumed to be constant at all times. remembered.
 本実施の形態では、XとYとの差である余剰能力を活用して運用コストを削減する。図4は、本実施の形態の制御部22における処理手順の一例を示すフローチャートである。制御部22は、時間帯により電力単価が異なるか否かを判断する(ステップS1)。詳細には、計画作成部221は、電力単価記憶部222から時間帯ごとの電力単価を読み出し、読み出した電力単価が時間帯によって異なるか否かを判断する。 In the present embodiment, the surplus capacity, which is the difference between X and Y, is used to reduce operating costs. FIG. 4 is a flow chart showing an example of a processing procedure in the control unit 22 of this embodiment. The control unit 22 determines whether or not the electricity unit price varies depending on the time period (step S1). Specifically, the plan creation unit 221 reads out the power unit price for each time slot from the power unit price storage unit 222 and determines whether the read power unit price varies depending on the time slot.
 時間帯によって電力単価が異なる場合(ステップS1 Yes)、制御部22は、電力単価の最も高い時間帯で使用するオゾンを、他の時間帯において最大能力でオゾンを生成することで貯蔵するようにオゾン生成計画を作成する(ステップS2)。オゾン生成計画の作成対象の期間に特に制約はないが、1日を計画の作成対象期間とする。なお、電力単価は1日のうちの時間帯ごとに定められていることが多いため、ここでは計画作成対象期間を1日としているが、1週間、1年などを単位として計画を作成してもよい。 If the electricity unit price differs depending on the time period (step S1 Yes), the control unit 22 stores ozone to be used during the time period when the electricity unit price is the highest, by generating ozone at the maximum capacity in other time periods. Create an ozone generation plan (step S2). Although there are no particular restrictions on the period for which the ozone generation plan is to be created, one day is set as the period for which the plan is to be created. Since the unit price of electricity is often set for each time period of a day, the period for which the plan is created is set to one day here, but plans are created in units of one week, one year, etc. good too.
 ステップS2では、詳細には、計画作成部221は、ステップS1で読み出した電力単価を用いて最も電力単価の高い時間帯を求め、求めた時間帯の注入量の目標値を注入量情報記憶部223から読み出し、最も電力単価の高い時間帯の注入に必要なオゾンの量を貯蔵必要量として算出する。そして、計画作成部221は、算出した貯蔵必要量を、最も電力単価の高い時間帯以外の時間帯でオゾンを注入量の設計値Xmg/Lで発生させて貯蔵するように計画を作成する。例えば、計画作成部221は、算出した貯蔵必要量を、電力単価の低い時間帯でオゾンを注入量の設計値Xmg/Lで発生させて貯蔵するように計画を作成する。このとき、電力単価の低い時間帯でもオゾンを注入する必要がある場合、計画作成部221は、当該時間帯のオゾン注入量の目標値Ymg/Lを生成しつつ貯蔵するためのオゾンも発生させるようにオゾン生成計画を作成する。すなわち、余剰能力を活用してオゾンを貯蔵することになる。計画作成部221は、電力単価の低い時間帯で貯蔵できるオゾンの量が、貯蔵必要量に満たない場合には、さらに、2番目に電力単価の低い時間帯でオゾンを注入量の設計値Xmg/Lで発生させて貯蔵するように計画を作成する。これを繰り返すことで、計画作成部221は、最も電力単価の高い時間帯で使用されるオゾンを他の時間帯で貯蔵するオゾン生成計画を作成することができる。これにより、貯蔵せずにオゾン注入量の目標値を発生させる場合に比べて運用コストを削減することができる。 Specifically, in step S2, the plan creation unit 221 uses the unit price of electricity read out in step S1 to obtain the time slot with the highest unit price of electricity, and stores the target value of the injection amount in the obtained time slot in the injection amount information storage unit. 223 to calculate the amount of ozone required for injection during the time period when the unit price of electricity is the highest as the required storage amount. Then, the plan creating unit 221 creates a plan to generate and store the calculated amount of required storage by generating ozone at the design value X mg/L of the injection amount in a time slot other than the time slot with the highest unit price of electricity. For example, the plan creating unit 221 creates a plan to generate and store the calculated required storage amount by generating ozone at a design value of X mg/L of injection amount in a time period when the unit price of electricity is low. At this time, if it is necessary to inject ozone even during times when the unit price of electricity is low, the plan creation unit 221 generates the target value Y mg/L of the amount of ozone to be injected during the time period and also generates ozone for storage. Create an ozone generation plan as follows. That is, the excess capacity is utilized to store ozone. When the amount of ozone that can be stored in the time period when the unit price of electricity is low is less than the required storage amount, the plan creation unit 221 further sets the design value X mg of the ozone injection amount in the time period when the unit price of electricity is the second lowest. Create a plan to generate and store at /L. By repeating this, the plan creating unit 221 can create an ozone generation plan for storing ozone used in the time zone with the highest electricity unit price in other time zones. As a result, operating costs can be reduced compared to the case where the target value of the ozone injection amount is generated without storing.
 ステップS2の後、制御部22は、計画すなわちオゾン生成計画を記憶し(ステップS4)、処理を終了する。ステップS4では、詳細には、計画作成部221が、オゾン生成計画を計画記憶部224に格納する。 After step S2, the control unit 22 stores the plan, that is, the ozone generation plan (step S4), and ends the process. Specifically, in step S<b>4 , the plan creation unit 221 stores the ozone generation plan in the plan storage unit 224 .
 時間帯によって電力単価が異ならない場合(ステップS1 No)、制御部22は、最大能力でオゾンを生成する時間帯を決定し、決定した時間帯に基づいてオゾン生成計画を作成し(ステップS3)、処理をステップS4へ進める。 If the unit price of electricity does not differ depending on the time period (step S1 No), the control unit 22 determines the time period in which ozone is to be generated at maximum capacity, and creates an ozone generation plan based on the determined time period (step S3). , the process proceeds to step S4.
 ステップS3では、計画作成部221が、最大能力でオゾンを生成するすなわち注入量の設計値Xmg/Lでオゾンを発生させる時間帯を決定する。なお、ステップS1でNoの場合には、時間帯によらず電力単価が一定であるため、注入量の設計値Xmg/Lでオゾンを発生させる時間帯は任意に設定することができる。また、計画作成部221は、注入量の設計値Xmg/Lでオゾンを発生させることで貯蔵されたオゾンを、当該時間帯以外の任意の時間帯で使用するようにオゾン生成計画を作成する。上述したように、オゾン発生器32は最大能力でオゾンを発生させたときに最も効率がよくなるように設計されるため、電力単価が時間帯によって変わらない場合でも、注入量の設計値Xmg/Lでオゾンを発生させる時間帯を設けることで、この時間帯では他の時間帯より効率が良くなる。このため、一定量のオゾンの発生に要する電力を削減することができ、運用コストを削減することができる。例えば、一般的には、注入量の設計値Xmg/Lでオゾンを発生させる場合の効率を90%とすると、実際に必要な注入量のオゾンを発生させる場合の効率は70~80%程度となることが多い。このため、注入量の設計値Xmg/Lでオゾンを発生させることで電力ロスを低減することができ、運用コストを削減することができる。 In step S3, the plan creation unit 221 determines the time period for generating ozone at the maximum capacity, that is, at the design injection amount X mg/L. If No in step S1, the unit price of electricity is constant irrespective of the time period, so the time period for generating ozone at the design injection amount of X mg/L can be set arbitrarily. In addition, the plan creation unit 221 creates an ozone generation plan so that ozone stored by generating ozone at a design value of injection amount X mg/L is used in an arbitrary time zone other than the relevant time zone. As described above, the ozone generator 32 is designed to be most efficient when generating ozone at its maximum capacity. By providing a time period during which ozone is generated at , the efficiency is higher in this time period than in other time periods. Therefore, the power required to generate a certain amount of ozone can be reduced, and the operating cost can be reduced. For example, in general, if the efficiency for generating ozone at a design injection amount of X mg/L is 90%, the efficiency for generating the actually required injection amount of ozone is about 70 to 80%. often become. Therefore, by generating ozone at the design injection amount of X mg/L, power loss can be reduced, and operating costs can be reduced.
 なお、ここでは、ステップS1でNoの場合に効率を考慮してステップS3の処理を行ったが、ステップS3の処理は実施せずに、貯蔵せずに必要な量のオゾンを発生させるようにオゾン生成計画を作成してもよい。 Here, in the case of No in step S1, the processing of step S3 is performed in consideration of efficiency, but the processing of step S3 is not performed, and the required amount of ozone is generated without storing. An ozone generation plan may be developed.
 指示部225は、作成された計画にしたがって、オゾン発生部3を制御する。これにより、余剰能力を活用して運用コストを削減することができる。一例として、X=2.5、Y=0.5の場合、すなわちオゾン注入量の設計値が2.5mg/Lであり、稼働後にオゾン注入量の目標値0.5mg/Lの一定注入量で24時間常時運用される水処理プロセス6にオゾンを注入する場合について説明する。また、水処理プロセス6の処理水量を15万トン/日とする。電力料金は、ピーク時間帯(8時間)、通常時間帯(8時間)、および夜間時間帯(8時間)の3つの時間帯に区分され、電力単価は、ピーク時間帯が最も高く、次に通常時間帯が高く、夜間時間帯が最も低いとする。 The instruction unit 225 controls the ozone generation unit 3 according to the created plan. This makes it possible to utilize excess capacity and reduce operating costs. As an example, when X = 2.5 and Y = 0.5, that is, the design value of the ozone injection amount is 2.5 mg/L, and the target ozone injection amount after operation is a constant injection amount of 0.5 mg/L. A case of injecting ozone into the water treatment process 6 which is always operated 24 hours a day will be described. Also, the amount of treated water in the water treatment process 6 is assumed to be 150,000 tons/day. Electricity charges are divided into three time periods: peak hours (8 hours), normal hours (8 hours), and night hours (8 hours). It is assumed that the normal time zone is high and the night time zone is the lowest.
 この場合、電力単価が最も低い夜間時間帯では、この8時間で必要となるオゾン供給量25kgを、オゾン発生器32を稼働させて発生させるとともに、電力単価が最も高い時間帯であるピーク時間帯で使用される量25kgを貯蔵する。オゾン発生システム1の余剰能力は、2.5mg/Lから0.5mg/Lを減じた2.0mg/Lであり、8時間オゾン注入量の設計値で稼働させると、100kgのオゾンの貯蔵が可能となることから、ピーク時間帯で使用される量25kgを十分賄うことができる。例えば、夜間時間帯のうち2時間程度、オゾン注入量の設計値2.5mg/Lでオゾン発生器32を稼働させればよい。なお、これに限らず、オゾン注入量の設計値2.5mg/Lで8時間稼働させて、4日分のピーク時間帯の必要量を貯蔵するといったように、より長期の単位で計画を作成してもよい。貯蔵時に分離されたオゾンは酸素再利用経路38を介してオゾン発生器32へ供給することにより再利用される。 In this case, during the nighttime hours when the unit price of electricity is the lowest, the ozone generator 32 is operated to generate the ozone supply amount of 25 kg required for these eight hours, and the peak hour is the time when the unit price of electricity is the highest. Store 25 kg of the amount used in The excess capacity of the ozone generation system 1 is 2.0 mg/L, which is 2.5 mg/L minus 0.5 mg/L. Since it is possible, it is sufficient to cover the amount of 25 kg used during peak hours. For example, the ozone generator 32 may be operated at the designed ozone injection amount of 2.5 mg/L for about two hours during the night time period. However, not limited to this, create a plan for a longer period of time, such as operating for 8 hours at the design value of 2.5 mg/L of ozone injection and storing the required amount for 4 days of peak hours. You may The ozone separated during storage is reused by supplying it to the ozone generator 32 via the oxygen reuse path 38 .
 通常時間帯では、この時間帯に必要となるオゾン供給量25kgを、オゾン発生器32を稼働させて発生させる。すなわち、オゾン注入量の目標値0.5mg/Lでオゾンを発生させる。 During the normal time period, the ozone generator 32 is operated to generate the required ozone supply amount of 25 kg during this time period. That is, ozone is generated at a target ozone injection amount of 0.5 mg/L.
 このように、本実施の形態の制御装置2は、上述したように計画を作成してオゾン発生部3へ指示することで、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯でオゾン発生部3に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させる。電力単価が第1の値の時間帯は、例えば、上述した夜間時間帯である。そして、制御装置2は、第1の時間帯で、オゾン発生部3に、単位時間あたり第1の量より少ない第2の量のオゾンを注入対象に注入させるとともに発生させたオゾンのうち注入対象に注入されないオゾンを貯蔵させる。さらに、制御装置2は、電力単価が第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、オゾン発生部3に、貯蔵されたオゾンを放出させて注入対象に注入させる。電力単価が第2の値の時間帯は、例えば、上述したピーク時間帯である。例えば、第1の量は、上述したXmg/Lの能力に対応する量であり、第2の量は、上述したYmg/Lの能力に対応する量である。すなわち、第1の量は、例えば、オゾン発生部3において単位時間あたりに発生させることが可能な最大量である。上記の例では、ピーク時間帯の全時間帯において、オゾン発生部3に、貯蔵されたオゾンを放出させて単位時間あたり第2の量で注入対象に注入させたが、ピーク時間帯の全時間帯ではなく一部の時間帯で、貯蔵されて放出されたオゾンを用いてもよい。また、上述した例では、夜間時間帯において最大能力でオゾンを発生させたが、これに限らず、Ymg/Lより高い能力でオゾンを発生させて貯蔵すれば、余剰能力を活用して運用コストの削減効果は得られる。 As described above, the control device 2 of the present embodiment creates a plan as described above and instructs the ozone generator 3 so that the unit price of electricity is at least part of the time period of the first value. Ozone is generated by the ozone generator 3 in a certain first time zone so that the amount of ozone generated per unit time becomes the first amount. The time zone in which the power unit price is the first value is, for example, the above-described night time zone. Then, the control device 2 causes the ozone generator 3 to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in the first time period, and, of the generated ozone, the injection target store ozone that is not injected into the Further, the control device 2 causes the ozone generator 3 to supply the stored ozone to the ozone generator 3 during a second time period that is at least part of the time period in which the unit price of electricity is a second value equal to or greater than the first value. Let it be released and injected into the injection target. The time period when the power unit price is the second value is, for example, the above-described peak time period. For example, the first amount is the amount corresponding to the aforementioned capacity of X mg/L, and the second amount is the amount corresponding to the aforementioned capacity of Y mg/L. That is, the first amount is, for example, the maximum amount that can be generated in the ozone generator 3 per unit time. In the above example, during the entire peak time period, the ozone generator 3 was caused to release the stored ozone and inject the second amount per unit time into the injection target. Stored and released ozone may be used for some time periods instead of time periods. Further, in the above example, ozone is generated at the maximum capacity during the night time zone, but this is not limited to this. reduction effect is obtained.
 また、本実施の形態の制御装置2を制御するためのプログラムは、例えば、発生させたオゾンを貯蔵可能でありオゾンの注入対象にオゾンを注入するオゾン発生部3を制御するコンピュータシステムに、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯でオゾン発生部3に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させるステップ、を実行させる。また、このプログラムは、コンピュータシステムに、第1の時間帯で、オゾン発生部3に、単位時間あたり第1の量より少ない第2の量のオゾンを注入対象に注入させるとともに発生させたオゾンのうち注入対象に注入されないオゾンを貯蔵させるステップと、電力単価が第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、オゾン発生部3に、貯蔵されたオゾンを放出させて注入対象に注入させるステップと、を実行させる。 Further, the program for controlling the control device 2 of the present embodiment, for example, is capable of storing the generated ozone, and the computer system that controls the ozone generation unit 3 that injects ozone into an ozone injection target is supplied with electric power. a step of causing the ozone generator 3 to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price is the first value; to run. Further, the program causes the computer system to inject a second amount of ozone, which is less than the first amount per unit time, into the injection target in the first time zone, and the amount of generated ozone. a step of storing ozone that is not injected into the injection target; and causing the stored ozone to be released and injected into the injection subject.
 図5は、本実施の形態にかかるオゾン供給量の一例を示す図である。図5では、上記で例示したように、電力単価がピーク時間帯、通常時間帯および夜間時間帯の3つの時間帯で異なり、オゾン発生システム1が24時間一定量でオゾンを水処理プロセス6へ注入する場合のオゾン供給量を示している。図5に示すように、ピーク時間帯では、主要な電力消費源であるオゾン発生器32は稼働せずに停止させておく。そして、夜間時間帯に貯蔵されたオゾンをオゾン貯蔵部33が放出してオゾン注入部5へオゾンを供給する。図5に示した比較例は、オゾンを貯蔵せずに24時間一定量でオゾンを発生させる例である。 FIG. 5 is a diagram showing an example of the ozone supply amount according to this embodiment. In FIG. 5, as exemplified above, the power unit price differs in three time zones, peak time zone, normal time zone, and night time zone, and the ozone generation system 1 supplies a constant amount of ozone to the water treatment process 6 for 24 hours. It shows the amount of ozone supplied when injecting. As shown in FIG. 5, during peak hours, the ozonator 32, which is the main source of power consumption, is not operated. Then, the ozone storage unit 33 releases the ozone stored during the nighttime and supplies the ozone to the ozone injection unit 5 . The comparative example shown in FIG. 5 is an example in which a constant amount of ozone is generated for 24 hours without storing ozone.
 図6は、本実施の形態の運用コスト削減効果の一例を示す図である。図6に示した比較例は、図5の比較例と同様にオゾンを貯蔵せずに24時間一定量でオゾンを発生させる例である。図6に示すように、比較例では、時間帯にかかわらずオゾン発生量が一定であるため、電力単価の高低に応じて各時間帯の運用コストが異なっており、ピーク時間帯で運用コストが最も高くなる。これに対し、本実施の形態では、ピーク時間帯ではオゾンを発生させていないため、ピーク時間帯ではオゾン発生のための運用コストがかからず、電力単価の低い時間帯でこの分のオゾンを発生させている。この結果、右端に示すように、本実施の形態では、一日あたりの運用コストを比較例に比べて削減することができる。なお、本実施の形態1では、電力単価の差だけでなく、貯蔵時に発生する酸素を再利用することで原料コストを低減させる効果も得られる。 FIG. 6 is a diagram showing an example of the operating cost reduction effect of this embodiment. The comparative example shown in FIG. 6 is an example in which a constant amount of ozone is generated for 24 hours without storing ozone, like the comparative example in FIG. As shown in FIG. 6, in the comparative example, since the amount of ozone generated is constant regardless of the time of day, the operating cost for each time zone differs according to the level of the electricity unit price. be the highest. On the other hand, in the present embodiment, ozone is not generated during the peak hours, so there is no operating cost for generating ozone during the peak hours, and ozone is generated during the hours when the unit price of electricity is low. are causing it. As a result, as shown on the right end, in this embodiment, the operating cost per day can be reduced compared to the comparative example. In addition, in the first embodiment, not only the difference in the unit price of electric power, but also the effect of reducing the raw material cost by reusing the oxygen generated during storage can be obtained.
 また、データ入出力部21は、図6に示したような運用コストの削減効果を表示することで、ユーザに運用コストの低減量を提示することができる。また、データ入出力部21は、オゾン発生量を時系列に表示してもよいし、オゾン発生器32の稼働状態を時系列に表示してもよい。オゾン発生量および稼働状態は、計画値であってもよいし、オゾン発生器32からデータを取得して実績値を表示してもよい。このように、データ入出力部21は、例えば、オゾンの貯蔵を行わない場合と比較した電力の使用料金の削減量を示す画面と、時間帯ごとのオゾンの発生量およびオゾンの貯蔵量を示す画面と、オゾン発生器32の稼働状態と、のうち少なくとも1つを表示する。 In addition, the data input/output unit 21 can present the reduction amount of the operating cost to the user by displaying the effect of reducing the operating cost as shown in FIG. The data input/output unit 21 may display the amount of generated ozone in chronological order, or may display the operating state of the ozone generator 32 in chronological order. The amount of ozone generated and the operating state may be planned values, or data may be acquired from the ozone generator 32 and actual values may be displayed. In this manner, the data input/output unit 21 displays, for example, a screen showing the amount of reduction in electricity usage charges compared to when ozone is not stored, and the amount of generated ozone and the amount of stored ozone for each time period. At least one of the screen and the operational status of the ozone generator 32 is displayed.
<変形例>
 以上述べた例では、ピーク時間帯で使用するオゾンを夜間時間帯に貯蔵するようにしたが、夜間時間帯に、ピーク時間帯だけでなく通常時間帯に必要なオゾンも貯蔵し、オゾン発生器32の稼働を夜間時間帯に限定してもよい。
<Modification>
In the example described above, the ozone used during the peak hours was stored during the night hours. 32 may be limited to nighttime hours.
 図7は、本実施の形態の変形例にかかる制御部22における処理手順の一例を示すフローチャートである。図7に示すステップS1,S3,S4は図4に示した例と同様である。ステップS1でYesの場合、制御部22は、未選択の時間帯のうち最も電力単価の高い時間帯を選択する(ステップS5)。詳細には、計画作成部221が、ステップS1で読み出した電力単価を用いて、未選択の時間帯のうち最も電力単価の高い時間帯を選択する。 FIG. 7 is a flow chart showing an example of a processing procedure in the control unit 22 according to the modified example of the present embodiment. Steps S1, S3 and S4 shown in FIG. 7 are the same as the example shown in FIG. In the case of Yes in step S1, the control unit 22 selects the time slot with the highest electricity unit price among the unselected time slots (step S5). Specifically, the plan creating unit 221 selects the time slot with the highest electricity unit price from among the unselected time slots, using the electricity unit price read in step S1.
 次に、制御部22は、選択された時間帯の電力単価より電力単価が低い時間帯のうちオゾンを追加生成可能な時間帯があるか否かを判断する(ステップS6)。詳細には、計画作成部221が、ステップS1で読み出した電力単価と一時的に保持している計画とを用いて、選択された時間帯の電力単価より電力単価が低い時間帯のうちオゾンを追加生成可能な時間帯あるか否かを判断する。一時的に保持している計画は、後述するステップS7で作成されて確定されていない計画である。 Next, the control unit 22 determines whether or not there is a time slot in which additional ozone can be generated among the time slots in which the power unit price is lower than the power unit price of the selected time slot (step S6). Specifically, the plan creation unit 221 uses the power unit price read out in step S1 and the temporarily held plan to generate ozone during the time slot when the power unit price is lower than the power unit price of the selected time slot. Determine whether or not there is a time slot that can be additionally generated. The plan that is temporarily held is a plan that was created in step S7 to be described later and has not been finalized.
 選択された時間帯の電力単価より電力単価が低い時間帯のうちオゾンを追加生成可能な時間帯がない場合(ステップS6 No)、制御部22は処理をステップS4へ進める。 If there is no time slot in which additional ozone can be generated among the time slots in which the power unit price is lower than the power unit price in the selected time slot (step S6 No), the control unit 22 advances the process to step S4.
 選択された時間帯の電力単価より電力単価が低い時間帯のうちオゾンを追加生成可能な時間帯がある場合(ステップS6 Yes)、制御部22は、選択した時間帯で使用するオゾンを、最大能力でオゾンを生成するように既に計画されている時間帯を除いた時間帯のうち、電力単価の最も低い時間帯で生成する計画を作成する(ステップS7)。 If there is a time slot in which the unit price of electricity is lower than the unit price of electricity in the selected time slot, and there is a time slot in which additional ozone can be generated (Yes in step S6), the control unit 22 maximizes the ozone used in the selected time slot. A plan is created to generate ozone in the time slot with the lowest electricity unit price, excluding the time slots already planned to generate ozone at capacity (step S7).
 詳細には、ステップS7では、計画作成部221が、一時的に保持している計画を参照し、最大能力でオゾンを生成するように既に計画されている時間帯を除いた時間帯を抽出し、ステップS5で選択した時間帯で使用するオゾンを、抽出した時間帯で生成する計画を作成する。初回のステップS7では、一時的に保持している計画は存在しておらず、また、ステップS5では最も電力単価の高い時間帯が選択されるため、図4のステップS2の処理が行われ、例えば、最も電力単価の高い時間帯の必要貯蔵量を算出し、必要貯蔵量を最も電力単価の低い時間帯で発生させて貯蔵するように計画を作成する。計画作成部221は、作成した計画を一時的に保持する。2回目のステップS7では、最も電力単価の高い時間帯の必要貯蔵量の貯蔵を行う時間帯が既に決定されているため、最も電力単価の高い時間帯の必要貯蔵量を賄うために既に最大能力で稼働することが決まっている時間帯がある。したがって、制御部22は、選択した時間帯で使用するオゾンを、最大能力でオゾンを生成するように既に計画されている時間帯を除いた時間帯のうち、電力単価の最も低い時間帯で生成するように計画を作成し、作成した計画を保持する。3回目以上のステップS7においても同様に処理が行われる。 Specifically, in step S7, the plan creating unit 221 refers to the temporarily held plan, and extracts the time zone excluding the time zone already planned to generate ozone at the maximum capacity. , create a plan for generating ozone to be used in the time period selected in step S5 in the extracted time period. In step S7 for the first time, there is no temporarily held plan, and in step S5, the time zone with the highest electricity unit price is selected, so the process of step S2 in FIG. For example, a plan is created to calculate the required storage amount during the time period when the unit price of electricity is the highest, and to generate and store the required storage amount during the time period when the unit price of electricity is the lowest. The plan creating unit 221 temporarily holds the created plan. In step S7 of the second time, since the time slot for storing the required storage amount in the time slot with the highest unit price of electricity has already been determined, the maximum capacity is already set to cover the required storage amount in the time slot with the highest unit price of electricity. There is a time zone when it is decided to operate in Therefore, the control unit 22 generates ozone to be used in the selected time slot during the time slot with the lowest electricity unit price, excluding the time slot already planned to generate ozone at the maximum capacity. Create a plan to do so and keep the plan you create. The same processing is performed in step S7 for the third time or more.
 ステップS7の後、制御部22の計画作成部221は、計画作成を終了するか否かを判断し(ステップS8)、計画作成を終了する場合(ステップS8 Yes)、処理をステップS4へ進める。ステップS8では、例えば、ステップS7が定められた回数実行された場合に計画作成を終了すると判断する。定められた回数は、例えば、電力単価の区分の個数から1減じた回数である。例えば、上述したピーク時間帯、通常時間帯、夜間時間帯の3つの区分の電力単価が定められている場合には、定められた回数は2回である。 After step S7, the plan creation unit 221 of the control unit 22 determines whether or not to end the plan creation (step S8), and if it ends the plan creation (step S8 Yes), the process proceeds to step S4. In step S8, for example, when step S7 is executed a predetermined number of times, it is determined that the plan creation is finished. The determined number of times is, for example, the number of power unit price categories minus one. For example, when the power unit price is determined for the three segments of the peak time period, the normal time period, and the night time period, the determined number of times is two.
 計画作成を終了しない場合(ステップS8 No)、制御部22は、ステップS5からの処理を繰り返す。このような処理を行うことで、最も電力単価の高い時間帯だけでなく、他の時間帯に関しても、より電力単価の低い時間帯で貯蔵されたオゾンを使用する計画を作成することができる。 If the planning is not to be completed (step S8 No), the control unit 22 repeats the process from step S5. By performing such a process, it is possible to create a plan to use stored ozone not only in the time zone with the highest unit price of electricity, but also in other time zones with the lowest unit price of electricity.
 例えば、上述したオゾン注入量の設計値が2.5mg/Lであり、稼働後にオゾン注入量の目標値0.5mg/Lの一定注入量で24時間常時運用される水処理プロセス6にオゾンを注入し、水処理プロセス6の処理水量を15万トン/日とした例では、夜間時間帯に、ピーク時間帯の必要貯蔵量を貯蔵することができる。さらに、通常時間帯の必要貯蔵量も25kgであり、この分についても、夜間時間帯に貯蔵することができる。したがって、この場合には、オゾン発生システム1は、夜間時間帯には、オゾン注入量の目標値0.5mg/Lで水処理プロセス6へオゾンを注入しつつ、オゾン注入量の設計値が2.5mg/Lでオゾンを発生させることで50kgのオゾンを貯蔵する。そして、オゾン発生システム1は、ピーク時間帯および通常時間帯では、貯蔵したオゾンを放出させて水処理プロセス6へオゾンを注入することになる。 For example, the design value of the ozone injection amount described above is 2.5 mg/L, and ozone is added to the water treatment process 6 that is constantly operated for 24 hours after operation at a constant injection amount of the target ozone injection amount of 0.5 mg/L. In an example in which water is injected and the amount of treated water in the water treatment process 6 is set at 150,000 tons/day, the required storage amount for peak hours can be stored during night hours. Furthermore, the required storage amount during normal hours is 25 kg, and this amount can also be stored during night hours. Therefore, in this case, the ozone generation system 1 injects ozone into the water treatment process 6 at a target ozone injection amount of 0.5 mg/L during the nighttime, while the design value of the ozone injection amount is 2. 50 kg of ozone is stored by generating ozone at .5 mg/L. Then, the ozone generation system 1 releases the stored ozone and injects the ozone into the water treatment process 6 during peak hours and normal hours.
 このように、制御装置2は、電力単価が第1の値より高く第2の値より低い第3の値である時間帯のうち少なくとも一部である第3の時間帯で、オゾン発生部3に、貯蔵されたオゾンを放出させて注入対象に注入させてもよい。電力単価が第3の値である時間帯は、例えば上述した通常時間帯である。 In this way, the control device 2 controls the ozone generating unit 3 during the third time period, which is at least part of the time period in which the power unit price is the third value higher than the first value and lower than the second value. Alternatively, the stored ozone may be released and injected into the injection target. The time period in which the power unit price is the third value is, for example, the normal time period described above.
 図8は、本実施の形態の変形例にかかるオゾン供給量の一例を示す図である。図8に示す変形例では、夜間時間帯において、ピーク時間帯および通常時間帯で用いられるオゾンを貯蔵することが可能な例を示している。この場合、ピーク時間帯および通常時間帯ではオゾンを発生させる必要がない。 FIG. 8 is a diagram showing an example of an ozone supply amount according to a modification of the present embodiment. The modification shown in FIG. 8 shows an example in which it is possible to store the ozone used in the peak time zone and the normal time zone during the night time zone. In this case, there is no need to generate ozone during peak hours and normal hours.
 図9は、本実施の形態の変形例における運用コスト削減効果の一例を示す図である。図9では、図8に示したように、夜間時間帯において、ピーク時間帯および通常時間帯で用いられるオゾンを貯蔵することが可能な場合の運用コストを変形例の運用コストとして示している。比較例は、オゾンを貯蔵せずに24時間一定量でオゾンを発生させる例である。このように、変形例では、図6に示した例よりさらに運用コストを削減することができる。 FIG. 9 is a diagram showing an example of the operating cost reduction effect in the modified example of the present embodiment. As shown in FIG. 8, FIG. 9 shows the operation cost of a modification in the case where it is possible to store the ozone used in the peak time zone and the normal time zone during the night time zone. A comparative example is an example in which a constant amount of ozone is generated for 24 hours without storing ozone. Thus, in the modified example, the operating cost can be further reduced than in the example shown in FIG.
 以上のように、本実施の形態では、少なくとも電力単価の最も高い時間帯で使用するオゾンを電力単価の最も低い時間帯で余剰能力を活用することで貯蔵するようにした。これにより、24時間オゾンを注入するシステムにおいても、貯蔵を行わない場合に比べて運用コストを削減することができる。また、24時間オゾンを注入するシステムに限らず、昼間だけオゾンを使用する場合、または時間帯ごとにオゾンの使用量が異なる場合であっても、同様に、電力単価の最も低い時間帯で余剰能力を活用してオゾンを貯蔵することで運用コストを削減することができる。 As described above, in the present embodiment, at least the ozone that is used during the time period when the electricity unit price is the highest is stored by utilizing the surplus capacity during the time period when the electricity price is the lowest. As a result, even in a system that injects ozone for 24 hours, the operating cost can be reduced compared to the case where no storage is performed. In addition, not only in systems that inject ozone for 24 hours, but also in cases where ozone is used only in the daytime, or in cases where the amount of ozone used differs from time to time, there is a surplus during the time when the unit price of electricity is the lowest. Operational costs can be reduced by leveraging capacity to store ozone.
実施の形態2.
 図10は、実施の形態2にかかるオゾン発生システムを備える水処理システムの構成例を示す図である。図10に示すように、本実施の形態の水処理システムは、実施の形態1のオゾン発生システム1の代わりにオゾン発生システム1aを備える以外は実施の形態1の水処理システムと同様である。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を主に説明する。
Embodiment 2.
FIG. 10 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to a second embodiment. As shown in FIG. 10, the water treatment system of the present embodiment is the same as the water treatment system of the first embodiment except that an ozone generation system 1a is provided instead of the ozone generation system 1 of the first embodiment. Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
 本実施の形態のオゾン発生システム1aは、実施の形態1のオゾン発生部3の代わりにオゾン発生部3aを備える以外は実施の形態1のオゾン発生システム1と同様である。本実施の形態のオゾン発生部3aは、実施の形態1のオゾン発生器32の代わりに、オゾン発生器32-1,32-2および予備発生器39を備える以外は実施の形態1と同様である。オゾン発生器32-1,32-2および予備発生器39は、それぞれ実施の形態1のオゾン発生器32と同様である。オゾン発生器32-1,32-2および予備発生器39の3台のオゾン発生器がオゾン発生システム1aとして納入され、このうちオゾン発生器32-1,32-2の2台が常時稼働、1台の予備発生器39が予備とされているとする。 The ozone generating system 1a of the present embodiment is the same as the ozone generating system 1 of the first embodiment except that an ozone generating section 3a is provided instead of the ozone generating section 3 of the first embodiment. The ozone generator 3a of the present embodiment is the same as that of Embodiment 1 except that ozone generators 32-1 and 32-2 and a preliminary generator 39 are provided instead of the ozone generator 32 of Embodiment 1. be. Ozone generators 32-1, 32-2 and preliminary generator 39 are the same as ozone generator 32 of the first embodiment. Three ozone generators, ozone generators 32-1 and 32-2 and a standby generator 39, were delivered as the ozone generation system 1a. Suppose one pre-generator 39 is reserved.
 このように、予備発生器39が設けられているオゾン発生システム1aにおいて、本実施の形態では、予備発生器39についても電力単価が低い時間帯に稼働させることで、運用コストを削減する。すなわち、本実施の形態では、オゾン発生器32-1,32-2および予備発生器39の3台のオゾン注入量の設計値の合計を実施の形態1のオゾン注入量の設計値として扱って、実施の形態1と同様に、電力単価の低い時間帯でオゾンを貯蔵する。 In this way, in the ozone generation system 1a provided with the backup generator 39, in the present embodiment, the backup generator 39 is also operated during times when the unit price of electricity is low, thereby reducing operating costs. That is, in the present embodiment, the total design value of the ozone injection amount of the three ozone generators 32-1, 32-2 and the preliminary generator 39 is treated as the design value of the ozone injection amount of the first embodiment. , as in the first embodiment, ozone is stored during a time period when the unit price of electric power is low.
 例えば、実施の形態1で述べた例と同様に、ピーク時間帯、通常時間帯、夜間時間帯の3つの区分で電力単価が定められており、オゾン発生システム1aは、24時間一定量のYmg/Lを目標値として水処理プロセス6へ注入を行うとする。 For example, as in the example described in Embodiment 1, the power unit price is determined in three categories: peak time zone, normal time zone, and night time zone. /L is the target value for injection into the water treatment process 6 .
 本実施の形態では、制御部22は、オゾン発生器32-1,32-2および予備発生器39の3台のオゾン注入量の設計値の合計を実施の形態1のオゾン注入量の設計値Xmg/Lとして、実施の形態1と同様に、オゾン生成計画を作成する。これにより、電力単価の低い夜間時間帯で、ピーク時間帯で使用されるオゾンを貯蔵し、ピーク時間帯では貯蔵されたオゾンを使用することができる。または、実施の形態1の変形例と同様に、電力単価の低い夜間時間帯で、ピーク時間帯および通常時間帯で使用されるオゾンを貯蔵し、ピーク時間帯および通常時間帯では貯蔵されたオゾンを使用してもよい。 In the present embodiment, the control unit 22 sets the total of the design values of the ozone injection amounts of the three ozone generators 32-1, 32-2 and the preliminary generator 39 to the design value of the ozone injection amount of the first embodiment. As X mg/L, an ozone generation plan is created in the same manner as in the first embodiment. As a result, it is possible to store ozone to be used during peak hours and use the stored ozone during nighttime hours when the unit price of electricity is low. Alternatively, as in the modification of the first embodiment, during nighttime hours when the unit price of electricity is low, the ozone used during the peak and normal time periods is stored, and the stored ozone is stored during the peak and normal time periods. may be used.
 このように、本実施の形態では、電力単価の低い時間帯で予備発生器39も用いてオゾンを貯蔵することで、運用コストを削減することができ、予備発生器39を有効活用することができる。 As described above, in the present embodiment, the reserve generator 39 is also used to store ozone during times when the unit price of electricity is low, so that the operating cost can be reduced and the reserve generator 39 can be effectively used. can.
実施の形態3.
 図11は、実施の形態3にかかるオゾン発生システムを備える水処理システムの構成例を示す図である。図11に示した水処理システムは、膜分離活性汚泥法により被処理水を浄化する水処理システムである。図11に示すように、本実施の形態の水処理システムは、膜分離バイオリアクタ(MBR)装置91-1,91-2を備える膜分離バイオリアクタ(MBR)システム9と、MBR装置91-1,91-2がそれぞれ備える膜ユニット92-1,92-2を洗浄するためのオゾン水を供給するオゾン発生システム1bとを備える。
Embodiment 3.
FIG. 11 is a diagram showing a configuration example of a water treatment system provided with an ozone generation system according to Embodiment 3. FIG. The water treatment system shown in FIG. 11 is a water treatment system that purifies water to be treated by the membrane separation activated sludge method. As shown in FIG. 11, the water treatment system of the present embodiment includes a membrane bioreactor (MBR) system 9 including membrane bioreactor (MBR) devices 91-1 and 91-2, and an MBR device 91-1 , and an ozone generation system 1b for supplying ozone water for cleaning the membrane units 92-1 and 92-2 provided in the respective membrane units 91-2.
 MBRシステム9では、被処理水は図示しない処理槽にて活性汚泥により生物分解処理された後、ろ過膜を有する膜ユニット92-1,92-2において、分離膜の一次側から二次側へろ過処理され図示しない配管を介して放流される。 In the MBR system 9, the water to be treated is biodegraded with activated sludge in a treatment tank (not shown), and then in membrane units 92-1 and 92-2 having filtration membranes, from the primary side of the separation membrane to the secondary side. It is filtered and discharged through a pipe (not shown).
 膜ユニット92-1,92-2のろ過膜の表面および膜内部には、汚泥、浮遊性固形物、微生物、微生物の代謝物などを含む汚濁物質が付着または固着する。これにより、膜ろ過処理時の膜の二次側圧力と大気圧との差である膜透過差圧が上昇し、単位時間および単位膜ろ過面積あたりのろ過水量であるフラックスの低下といったろ過性能の経時劣化が発生する。したがって、分離膜のろ過性能を維持するために、分離膜内部および表面から汚濁物質を洗浄除去する膜ユニット洗浄を実施する必要がある。本実施の形態では、膜洗浄において、洗浄液としてオゾン発生システム1bによって製造されたオゾン水を用いる。 Contaminants including sludge, suspended solids, microorganisms, metabolites of microorganisms, etc. adhere or adhere to the surface and inside of the filtration membranes of the membrane units 92-1 and 92-2. As a result, the membrane permeation differential pressure, which is the difference between the pressure on the secondary side of the membrane during membrane filtration and the atmospheric pressure, increases, and the filtration performance decreases, such as the flux, which is the amount of filtered water per unit time and per unit membrane filtration area. Degradation occurs over time. Therefore, in order to maintain the filtration performance of the separation membrane, it is necessary to wash and remove contaminants from the interior and surface of the separation membrane. In this embodiment, ozone water produced by the ozone generation system 1b is used as the cleaning liquid in membrane cleaning.
 図11に示すようにオゾン発生システム1bは、制御装置2、オゾン注入部5の代わりに、制御装置2a、オゾン水製造部8を備える以外は実施の形態1のオゾン発生システム1と同様である。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を主に説明する。 As shown in FIG. 11, the ozone generation system 1b is the same as the ozone generation system 1 of Embodiment 1 except that it includes a control device 2a and an ozone water production unit 8 instead of the control device 2 and the ozone injection unit 5. . Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
 本実施の形態では、オゾン水製造部8には、実施の形態1のオゾン注入部5と同様に、オゾン発生器32において発生したオゾンと、オゾン貯蔵部33から放出されたオゾンとのうち両方または一方が供給される。オゾン水製造部8は、供給されたオゾンを用いてオゾン水を生成し、生成したオゾン水を膜ユニット92-1,92-2に注入する注入部である。なお、図11では、注入部であるオゾン水製造部8がMBRシステム9外に配置されているが、膜ユニット92-1,92-2の近傍にそれぞれオゾン水製造部8を配置してもよい。膜ユニット洗浄は、膜ユニット92-1,92-2の膜性能の経時変化に応じて適宜実施される。膜ユニット洗浄のタイミングは、図示を省略するがMBRシステム9から制御装置2aへ指示される。 In the present embodiment, the ozonized water producing unit 8, like the ozone injection unit 5 of the first embodiment, contains both the ozone generated in the ozone generator 32 and the ozone released from the ozone storage unit 33. or one supplied. The ozone water production unit 8 is an injection unit that produces ozone water using supplied ozone and injects the produced ozone water into the membrane units 92-1 and 92-2. In FIG. 11, the ozonized water producing unit 8, which is the injection unit, is arranged outside the MBR system 9, but the ozonized water producing unit 8 may be arranged near the membrane units 92-1 and 92-2. good. Membrane unit cleaning is appropriately carried out according to changes in the membrane performance of the membrane units 92-1 and 92-2 over time. The timing of the membrane unit cleaning is instructed from the MBR system 9 to the control device 2a (not shown).
 本実施の形態においても、オゾン注入量の設計値に対して、水処理システムの運用後に、設計値より低減された必要な目標値が決定されているとする。本実施の形態においてもオゾン注入量の設計値をXmg/Lとし、オゾン注入量の目標値をYmg/Lであるとする。MBR装置91-1,91-2における膜ユニット洗浄においては、流入水の状態などにより、洗浄のタイミングおよび頻度は変化する。このため、洗浄の都度オゾンを発生させて電力を消費するよりも、電力単価の低い時間帯にオゾン注入量の設計値をXmg/Lでオゾンを発生させてオゾンを貯蔵し、洗浄が必要になったときに放出する方が省エネルギー化を実現でき、運用コストを低減できる。洗浄タイミングは、MBR装置91-1,91-2で同時の場合もあれば、MBR装置91-1,91-2で異なる場合もある。また、洗浄頻度は1回/日、6回/日、1回/週など様々である。 Also in this embodiment, for the design value of the ozone injection amount, after the water treatment system is put into operation, a necessary target value that is lower than the design value is determined. Also in this embodiment, it is assumed that the design value of the ozone injection amount is X mg/L and the target value of the ozone injection amount is Y mg/L. In cleaning the membrane units in the MBR apparatuses 91-1 and 91-2, the timing and frequency of cleaning change depending on the condition of the inflow water. For this reason, rather than generating ozone and consuming electricity each time cleaning is performed, it is necessary to generate ozone at a design value of Xmg/L and store ozone during times when the unit price of electricity is low. It is possible to save energy and reduce operating costs by releasing the gas when it becomes low. The cleaning timing may be the same for the MBR devices 91-1 and 91-2, and may be different for the MBR devices 91-1 and 91-2. Also, the frequency of washing varies, such as once/day, six times/day, and once/week.
 図11に示すように、制御装置2aは、実施の形態1と同様のデータ入出力部21と、制御部22aを備える。 As shown in FIG. 11, the control device 2a includes a data input/output unit 21 similar to that of the first embodiment, and a control unit 22a.
 例えば、実施の形態1で述べた例と同様に、ピーク時間帯、通常時間帯、夜間時間帯の3つの区分の電力単価が設定されているとすると、制御部22aは、ある日の夜間時間帯において、オゾン注入量の設計値でオゾンを発生させてオゾン貯蔵部33に貯蔵可能な最大量まで貯蔵しておくように計画を作成し、計画に基づいてオゾン発生部3を制御する。または、制御部22aは、一定期間内の洗浄回数を予測し、予測した洗浄回数を用いてオゾンの貯蔵量を決定してもよい。 For example, as in the example described in Embodiment 1, assuming that the power unit price is set in three categories of peak time zone, normal time zone, and night time zone, the control unit 22a controls the night time of a certain day. A plan is created so that ozone is generated at the design value of the ozone injection amount and stored in the ozone storage section 33 up to the maximum amount that can be stored, and the ozone generation section 3 is controlled based on the plan. Alternatively, the control unit 22a may predict the number of washings within a certain period of time, and determine the amount of stored ozone using the predicted number of washings.
 図12は、本実施の形態の制御部22aの構成例を示す図である。図12に示すように、制御部22aは、実施の形態1の制御部22に注入量実績記憶部226および注入量予測部227が追加され、実施の形態1の計画作成部221の代わりに計画作成部221aを備えている。注入量実績記憶部226は、膜ユニット92-1,92-2へのオゾンの注入量の実績値を取得し記憶する。膜ユニット92-1,92-2へのオゾンの注入量の実績値は、データ入出力部21がオゾン水製造部8またはMBRシステム9から受信して注入量実績記憶部226へ格納してもよいし、例えば、1か月あたり何回行われたといった洗浄の頻度のおおよその実績値をユーザがデータ入出力部21を介して入力したものであってもよい。 FIG. 12 is a diagram showing a configuration example of the control unit 22a of this embodiment. As shown in FIG. 12, the control unit 22a has an injection amount performance storage unit 226 and an injection amount prediction unit 227 added to the control unit 22 of the first embodiment, and plans instead of the plan creation unit 221 of the first embodiment. A creation unit 221a is provided. The actual injection amount storage unit 226 acquires and stores actual values of the injection amounts of ozone into the membrane units 92-1 and 92-2. The actual values of the injection amounts of ozone into the membrane units 92-1 and 92-2 may be received by the data input/output unit 21 from the ozone water production unit 8 or the MBR system 9 and stored in the injection amount actual storage unit 226. Alternatively, for example, the user may input, via the data input/output unit 21, an approximate actual value of the cleaning frequency, such as how many times the cleaning was performed per month.
 注入量予測部227は、注入量実績記憶部226に記憶されている実績値を用いて、一定期間における膜ユニット洗浄に必要なオゾン注入量を予測し、予測結果を計画作成部221aへ出力する。例えば、1回の洗浄で用いられるオゾン注入量を仮定しておき、注入量予測部227は、注入量実績記憶部226に記憶されている実績値に基づいて、一定期間における膜ユニット洗浄回数を予測し、予測した膜ユニット洗浄回数を1回の洗浄で用いられるオゾン注入量に乗算することで、一定期間におけるオゾン注入量を予測する。例えば、過去の実績値を一定期間ごとに区切り、一定期間内の膜ユニット洗浄の回数をそれぞれ算出し、算出した回数の平均値を膜ユニット洗浄回数の予測値とすることができる。 The injection amount prediction unit 227 predicts the ozone injection amount required for cleaning the membrane unit for a certain period of time using the actual values stored in the injection amount actual storage unit 226, and outputs the prediction result to the plan creation unit 221a. . For example, an ozone injection amount used for one cleaning is assumed, and the injection amount prediction unit 227 predicts the number of membrane unit cleanings in a certain period based on the actual values stored in the injection amount performance storage unit 226. By multiplying the estimated membrane unit cleaning frequency by the ozone injection amount used for one cleaning, the ozone injection amount for a certain period of time is predicted. For example, it is possible to divide the past actual values into fixed periods, calculate the number of membrane unit cleanings in each fixed period, and use the average value of the calculated number of times as the predicted value of the number of membrane unit cleanings.
 計画作成部221aは、注入量予測部227から受け取った予測結果を用いて一定期間における膜ユニット洗浄に必要なオゾン注入量を電力単価の低い時間帯で貯蔵するように計画を作成する。このとき、注入量予測部227は、予測結果より多くのオゾンを発生させて貯蔵するように計画を作成してもよい。この場合、実運用において、貯蔵されたオゾンが余ったとしても、次の一定期間の洗浄に用いることができる。また、予測結果より実際の洗浄回数が多かった場合には、オゾンを発生させて洗浄を行う。この場合でも、貯蔵を行わない場合に比べて運用コストを削減することができる。 The planning unit 221a uses the prediction result received from the injection amount prediction unit 227 to create a plan so that the ozone injection amount required for cleaning the membrane unit for a certain period of time is stored in a time period when the unit price of electricity is low. At this time, the injection amount prediction unit 227 may create a plan to generate and store more ozone than the prediction result. In this case, in actual operation, even if the stored ozone remains, it can be used for cleaning for the next fixed period. Further, when the actual number of times of cleaning is larger than the predicted result, cleaning is performed by generating ozone. Even in this case, operating costs can be reduced compared to the case where storage is not performed.
 例えば、ピーク時間帯、通常時間帯、夜間時間帯の3つの区分の電力単価が設定されており、一定期間が1週間であり、1週間における洗浄回数が3回であると予測された場合、計画作成部221aは、1週間の開始時の夜間時間帯において、最低3回の洗浄回数を賄えるオゾンを発生させて貯蔵する計画を作成する。 For example, if the power unit price is set in three categories: peak time zone, normal time zone, and night time zone, the fixed period is one week, and the number of washings per week is predicted to be three times, The plan creating unit 221a creates a plan to generate and store ozone enough to cover at least three cleaning times during the nighttime period at the start of one week.
 また、以上述べた例では、電力単価の最も低い時間帯において一定期間内で使用されるオゾンの注入量を全て賄える前提であったが、一定期間の長さ、および使用量によっては電力単価の最も低い時間帯において一定期間内で使用されるオゾンの注入量を全て賄えない可能性もある。また、今後、電力単価の区分がより細分化されたり、電力単価の変動が生じたりすることも考えられる。 In addition, in the example described above, it was assumed that the amount of ozone injection used within a certain period of time could be covered during the time period when the electricity unit price was lowest. It is also possible that the lowest hour of the day may not be able to cover all of the ozone injection that is used within a certain period of time. Further, in the future, it is conceivable that the division of the power unit price will be further subdivided, or that the power unit price will fluctuate.
 このため、計画作成部221aは、運用コストを評価関数として定式化し、制約条件を定めて、制約条件の元で運用コストを最小化するように最適化問題を解くことで、一定期間内の計画を定めてもよい。 For this reason, the plan creation unit 221a formulates the operating cost as an evaluation function, defines constraints, and solves an optimization problem to minimize the operating cost under the constraints, thereby obtaining a plan within a certain period of time. may be defined.
 図13は、本実施の形態における運用コストを定式化した場合の計画作成手順の一例を示すフローチャートである。ステップS1,S3,S4は、実施の形態1の図4に示した例と同様である。 FIG. 13 is a flow chart showing an example of a plan creation procedure when operating costs are formulated in this embodiment. Steps S1, S3, and S4 are the same as the example shown in FIG. 4 of the first embodiment.
 ステップS1でYesの場合、注入量予測部227は、一定期間内のオゾンの使用量すなわちオゾンの注入量を予測する(ステップS11)。予測結果は、一定期間内の各時間帯の注入量の予測値であるとする。このときの各時間帯の時間刻みは特に制約はなく、30分単位であってもよいし、1時間単位であってもよいし、これら以外であってもよい。次に、計画作成部221aは、注入量予測部227による予測結果である使用量の予測値を用いて、一定期間内の各時間帯のオゾン生成量を設定する(ステップS12)。なお、ステップS12では、オゾン生成量だけでなく、生成されたオゾンのうち使用される量、貯蔵される量についても設定される。設定されるこれらの量の初期値は、制約条件を満たす範囲で任意の値に設定される。制約条件は、例えば、以下の式(1)~式(6)で示される条件である。これら以外の制約条件が定められてもよい。 In the case of Yes in step S1, the injection amount prediction unit 227 predicts the amount of ozone used within a certain period of time, that is, the injection amount of ozone (step S11). It is assumed that the prediction result is the predicted value of the injection amount for each time period within a certain period. At this time, there is no particular restriction on the time interval of each time period, and it may be in units of 30 minutes, may be in units of one hour, or may be other than these. Next, the plan creating unit 221a sets the amount of ozone to be generated for each time period within a certain period using the predicted usage amount, which is the result of the prediction by the injection amount predicting unit 227 (step S12). In step S12, not only the amount of generated ozone but also the amount of generated ozone that is used and stored is set. The initial values of these quantities to be set are set to arbitrary values within the range that satisfies the constraint conditions. Constraint conditions are, for example, conditions represented by the following formulas (1) to (6). Constraints other than these may be defined.
 y(t)=A(t)+B(t)    ・・・(1)
 時刻0からtまでのS(t)の総和-時刻0から時刻t-1までのB(t)の総和
 ≧B(t)  ・・・(2)
 時刻0からtまでのS(t)の総和-時刻0から時刻tまでのB(t)の総和
 ≦オゾンの貯蔵量の上限値    ・・・(3)
 G(t)≦Xmax  ・・・(4)
 S(t)≦Xmax  ・・・(5)
 G(t)=S(t)+A(t)   ・・・(6)
y(t)=A(t)+B(t) (1)
Sum of S(t) from time 0 to t−Sum of B(t) from time 0 to time t−1 ≧B(t) (2)
Sum of S(t) from time 0 to time t−Sum of B(t) from time 0 to time t≦Upper limit of ozone storage amount (3)
G(t)≦X max (4)
S(t)≦X max (5)
G(t)=S(t)+A(t) (6)
 なお、時刻tは一定期間の開始時刻を0としたときの時刻を示す整数であるとし、y(t)を時刻tで使用されるオゾンの量の予測値とし、G(t)を時刻tにおけるオゾン生成量すなわち時刻tにおいてオゾン発生器32が発生させるオゾンの量とし、Xmaxを単位時間あたりの最大のオゾン生成量(設計値に相当)とする。また、A(t)をG(t)のうち時刻tにおいて使用される量すなわち時刻tにおける注入量とし、S(t)をG(t)のうち時刻tにおいて貯蔵される量とし、B(t)を時刻tにおける貯蔵されているオゾンの放出量とする。 Note that time t is an integer indicating the time when the start time of the fixed period is 0, y(t) is the predicted value of the amount of ozone used at time t, and G(t) is time t. , that is, the amount of ozone generated by the ozone generator 32 at time t, and X max is the maximum ozone generation amount per unit time (corresponding to the design value). Let A(t) be the amount of G(t) used at time t, i.e., the amount injected at time t, S(t) be the amount of G(t) stored at time t, and B( Let t) be the stored ozone release at time t.
 上記の式のうち、オゾンの貯蔵量の上限値およびXmaxは、あらかじめ定められる。y(t)は予測結果として入力される。このため、計画作成部221aは、上記のG(t)、A(t)、B(t)、S(t)を上記の制約条件を満たす範囲で、適宜設定する。 In the above formula, the upper limit of the ozone storage amount and X max are determined in advance. y(t) is input as the prediction result. For this reason, the plan creation unit 221a appropriately sets the above G(t), A(t), B(t), and S(t) within the range that satisfies the above constraint conditions.
 次に、計画作成部221aは、一定期間内の運用コストを算出する(ステップS13)。例えば、計画作成部221aは、下記式(7)により運用コストのうち電力の使用量であるθを算出する。ここでは、運用コストとして電力の使用量を考慮するが、運用コストにさらに原料ガスコストを加えてもよい。なお、C(t)は時刻tにおける電力単価とし、P(t)はオゾンの単位量を生成するために必要な電力であり、η(t)は百分率で示した効率であるとする。P(t)はあらかじめ定められる。なお、η(t)は上述したように設計値で最大となり、設計値より小さい値でオゾン発生が行われると低下する。このため、計画作成部221aは、η(t)をG(t)の関数としてあらかじめ定めておくか、またはη(t)とG(t)との対応をテーブルで保持しておくことで、G(t)を用いてη(t)を算出する。
  θ=Σ{C(t)・G(t)・P(t)・100/η(t)} ・・・(7)
Next, the plan creation unit 221a calculates the operation cost within a certain period (step S13). For example, the plan creation unit 221a calculates θ, which is the amount of power used in the operation cost, by using the following formula (7). Here, the amount of electricity used is considered as the operation cost, but the raw material gas cost may be added to the operation cost. Let C(t) be the power unit price at time t, P(t) be the power required to generate a unit amount of ozone, and η(t) be the efficiency expressed as a percentage. P(t) is predetermined. Note that η(t) is maximized at the design value as described above, and decreases when ozone is generated at a value smaller than the design value. For this reason, the plan creating unit 221a predetermines η(t) as a function of G(t), or holds the correspondence between η(t) and G(t) in a table. η(t) is calculated using G(t).
θ=Σ{C(t)·G(t)·P(t)·100/η(t)} (7)
 次に、計画作成部221aは、探索を終了したかを判断する(ステップS14)。計画作成部221aは、探索を終了する条件を満たすとステップS14でYesと判断する。探索を終了する条件は、例えば、最適化問題の探索アルゴリズムに応じて定められればよいが、例えば定められた回数以上探索を行ったなどの条件である。 Next, the planning unit 221a determines whether the search has ended (step S14). The plan creation unit 221a determines Yes in step S14 when the conditions for ending the search are satisfied. The condition for terminating the search may be determined, for example, according to the search algorithm for the optimization problem.
 探索を終了しない場合(ステップS14 No)、設定するオゾンの生成量を変更し(ステップS15)、計画作成部221aは、ステップS13からの処理を繰り返す。ステップS15では、上述したG(t)、A(t)、B(t)、S(t)を上記の制約条件を満たす範囲で変更する。これらの値の変更方法は最適化問題の探索アルゴリズムに応じて定められる。 If the search is not to be ended (step S14 No), the set ozone generation amount is changed (step S15), and the plan creation unit 221a repeats the process from step S13. In step S15, G(t), A(t), B(t), and S(t) described above are changed within a range that satisfies the above constraint conditions. A method for changing these values is determined according to the search algorithm for the optimization problem.
 探索を終了する場合(ステップS14 Yes)、計画作成部221aは、運用コストが最小となる設定値に基づいて計画を作成し(ステップS16)、処理をステップS4へ進める。詳細には、計画作成部221aは、ステップS13で算出した運用コストと対応する設定値すなわちG(t)、A(t)、B(t)、S(t)を保持しておき、ステップS16では、これらのうち運用コストが最小となる設定値に基づいて計画を作成する。 If the search is to end (step S14 Yes), the plan creating unit 221a creates a plan based on the set values that minimize the operation cost (step S16), and advances the process to step S4. Specifically, the plan creating unit 221a holds the operation cost calculated in step S13 and the corresponding set values, that is, G(t), A(t), B(t), and S(t), and Now, create a plan based on the set value that minimizes the operating cost among these.
 以上の処理により、一定期間内における運用コストを最小化するように、オゾン生成計画を作成することができる。なお、図13に示した処理は、膜ユニット洗浄に限らず、オゾンを使用する任意のシステムに適用することができる。図13に示した処理は、例えば、実施の形態1で述べた一定量を常時供給するシステムも適用することができる。この場合、一定期間内における注入量の予測値は、時刻tによらす一定値とすればよい。 Through the above process, it is possible to create an ozone generation plan that minimizes operating costs within a certain period of time. The processing shown in FIG. 13 can be applied not only to membrane unit cleaning but also to any system using ozone. The processing shown in FIG. 13 can also be applied to the system for constantly supplying a constant amount, for example, as described in the first embodiment. In this case, the predicted value of the injection amount within a certain period may be a constant value based on time t.
 また、注入量予測部227は、膜ユニット92-1,92-2の状態を示すデータを取得し、当該データを用いて一定期間内のオゾンの使用量を予測してもよい。例えば、制御部22aが、MBRシステム9から、膜ユニット92-1,92-2の二次側圧力と大気圧との差、膜ユニット92-1,92-2の単位時間および単位膜ろ過面積あたりのろ過水量であるフラックスを計測したデータを取得し、取得したデータを用いて機械学習によって膜ユニット洗浄のタイミング、または一定期間内の膜ユニット洗浄の回数を予測してもよい。 In addition, the injection amount prediction unit 227 may acquire data indicating the states of the membrane units 92-1 and 92-2 and use the data to predict the amount of ozone used within a certain period of time. For example, the control unit 22a receives from the MBR system 9 the difference between the secondary side pressure of the membrane units 92-1 and 92-2 and the atmospheric pressure, the unit time of the membrane units 92-1 and 92-2, and the unit membrane filtration area. Data obtained by measuring the flux, which is the amount of filtered water per unit, may be acquired, and the acquired data may be used to predict the timing of membrane unit cleaning or the number of times of membrane unit cleaning within a certain period by machine learning.
 図14は、機械学習により予測を行う場合の本実施の形態の注入量予測部227の構成例を示す図である。図14に示した例では、注入量予測部227は、モデル生成部231、学習済モデル記憶部232および予測部233を備える。 FIG. 14 is a diagram showing a configuration example of the injection amount prediction unit 227 of the present embodiment when prediction is performed by machine learning. In the example shown in FIG. 14 , the injection amount prediction unit 227 includes a model generation unit 231 , a learned model storage unit 232 and a prediction unit 233 .
 図15は、本実施の形態のモデル生成部231における動作の一例を示すフローチャートである。なお、図15では、教師あり機械学習を用いる例を説明するが、適用する機械学習のアルゴリズムに制約はなく、強化学習などが用いられてもよい。モデル生成部231は、計測データと正解データとを含む教師データを取得する(ステップS31)。詳細には、モデル生成部231は、MBRシステム9から、膜ユニット92-1,92-2の状態を示す計測データと、対応する正解データとを、例えば、データ入出力部21を介して取得する。例えば、モデル生成部231は、処理対象期間の計測データを時系列データとして取得し、当該期間の後の一定期間において膜ユニット洗浄が行われた時刻を正解データとして取得する。この計測データと対応する正解データとの組を複数組取得する。 FIG. 15 is a flowchart showing an example of the operation of the model generation unit 231 of this embodiment. Although FIG. 15 illustrates an example using supervised machine learning, there are no restrictions on the machine learning algorithm to be applied, and reinforcement learning or the like may be used. The model generator 231 acquires teacher data including measurement data and correct answer data (step S31). Specifically, the model generator 231 acquires measurement data indicating the states of the membrane units 92-1 and 92-2 and corresponding correct data from the MBR system 9 via the data input/output unit 21, for example. do. For example, the model generation unit 231 acquires the measurement data of the processing target period as time-series data, and acquires the time when the membrane unit cleaning was performed in a certain period after the period as the correct data. A plurality of sets of the measurement data and the corresponding correct data are acquired.
 次に、モデル生成部231は、学習済モデルを生成する(ステップS32)。詳細には、モデル生成部231は、取得した複数組のデータを教師データとして用いて、教師あり機械学習により学習済モデルを生成する。 Next, the model generation unit 231 generates a learned model (step S32). Specifically, the model generation unit 231 generates a trained model by supervised machine learning using the acquired multiple sets of data as teacher data.
 次に、モデル生成部231は、学習済モデルを記憶させ(ステップS33)、処理を終了する。詳細には、ステップS33では、モデル生成部231は、学習済モデルを学習済モデル記憶部232に格納する。なお、学習済モデルは、膜ユニット92-1,92-2ごとに生成されてもよいし、膜ユニット92-1,92-2で共通の学習済モデルが用いられてもよい。 Next, the model generation unit 231 stores the learned model (step S33), and ends the process. Specifically, in step S<b>33 , the model generation unit 231 stores the learned model in the learned model storage unit 232 . The learned model may be generated for each of the membrane units 92-1 and 92-2, or a common learned model may be used for the membrane units 92-1 and 92-2.
 図16は、本実施の形態の予測部233における動作の一例を示すフローチャートである。図16に示すように、予測部233は、計測データを取得する(ステップS41)。詳細には、予測部233は、当該期間より後の一定期間において行われた膜ユニット洗浄の回数を予測する場合には、MBRシステム9から、膜ユニット92-1,92-2の状態を示す計測データを、例えば、データ入出力部21を介して取得する。この計測データはモデル生成に用いられた処理対象期間と同じ長さの期間分の時系列データである。 FIG. 16 is a flow chart showing an example of the operation of the prediction unit 233 of this embodiment. As shown in FIG. 16, the prediction unit 233 acquires measurement data (step S41). Specifically, the prediction unit 233 indicates the states of the membrane units 92-1 and 92-2 from the MBR system 9 when predicting the number of membrane unit cleanings performed in a certain period after the period. Measurement data is acquired via the data input/output unit 21, for example. This measurement data is time-series data for a period having the same length as the processing target period used for model generation.
 次に、予測部233は、計測データを学習済モデルへ入力して一定期間内の洗浄タイミングを予測し(ステップS42)、処理を終了する。詳細には、予測部233は、学習済モデル記憶部232から学習済モデルへ計測データを入力して得られる学習済モデルの出力を一定期間内の洗浄タイミングの予測値とする。 Next, the prediction unit 233 inputs the measurement data to the learned model, predicts the cleaning timing within a certain period of time (step S42), and ends the process. Specifically, the prediction unit 233 uses the output of the learned model obtained by inputting the measurement data from the learned model storage unit 232 to the learned model as the predicted value of the cleaning timing within a certain period.
 上述した教師あり学習のアルゴリズムとしては、例えば、ニューラルネットワーク(深層学習を含む)を用いることができるが、これに限らず、決定木、重回帰、ランダムフォレスト、などでもよく、どのようなものを用いてもよい。ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および複数のニューロンからなる出力層で構成される。中間層は、1層、又は2層以上でもよい。 As the supervised learning algorithm described above, for example, a neural network (including deep learning) can be used, but not limited to this, a decision tree, multiple regression, random forest, etc., can be used. may be used. A neural network consists of an input layer made up of multiple neurons, an intermediate layer (hidden layer) made up of multiple neurons, and an output layer made up of multiple neurons. The intermediate layer may be one layer, or two or more layers.
 図17は、ニューラルネットワークの一例を示す模式図である。例えば、図17に示すような3層のニューラルネットワークであれば、複数の入力が入力層(X1-X3)に入力されると、その値に重みW1(w11-w16)を掛けて中間層(Y1-Y2)に入力され、その結果にさらに重みW2(w21-w26)を掛けて出力層(Z1-Z3)から出力される。この出力結果は、重みW1と重みW2の値によって変わる。 FIG. 17 is a schematic diagram showing an example of a neural network. For example, in a three-layer neural network as shown in FIG. 17, when multiple inputs are input to the input layer (X1-X3), the value is multiplied by the weight W1 (w11-w16) and the intermediate layer ( Y1-Y2), and the result is multiplied by weight W2 (w21-w26) and output from the output layer (Z1-Z3). This output result changes depending on the values of weight W1 and weight W2.
 本実施の形態においては、入力層に上述した教師データの特徴量である計測データが入力されたときの出力層からの出力が正解データに近づくように、重みW1と重みW2を調整することで、特徴量と正解データとの関係が学習される。 In the present embodiment, the weight W1 and the weight W2 are adjusted so that the output from the output layer approaches the correct data when the measurement data, which is the feature amount of the teacher data described above, is input to the input layer. , the relationship between the feature amount and the correct data is learned.
 なお、上述した例では注入量予測部227が学習済モデルを生成したが、これに限らず、学習済モデルは図示しない学習装置によって行われてもよい。また、上記の例では、オゾンの注入対象の一例である膜ユニット92-1,92-2における計測データを用いたが、学習済モデルにおける入力となる特徴量は計測データに限定されず注入対象の状態を示す状態データであればよい。したがって、注入量予測部227は、注入対象の状態を示す状態データから一定期間内における注入対象への各時刻の注入量を予測するための学習済モデルと、取得した状態データとを用いて、一定期間内における注入対象への各時刻の注入量を予測すればよい。 In the example described above, the injection amount prediction unit 227 generated the learned model, but this is not the only option, and the learned model may be generated by a learning device (not shown). In the above example, the measurement data of the membrane units 92-1 and 92-2, which are examples of the ozone injection target, are used. Any state data indicating the state of Therefore, the injection amount prediction unit 227 uses a learned model for predicting the injection amount at each time to the injection target within a certain period from the state data indicating the state of the injection target, and the acquired state data, It is only necessary to predict the amount of injection at each time to the injection target within a certain period of time.
 なお、以上述べた例では、運用コストとして電力の使用料金を算出する際に効率を考慮したが、効率を考慮せずに電力の使用料金を求めて、電力の使用料金を最小化するように計画を作成してもよい。また、上記の例では、電力の使用料金を最小化するように計画を作成したが、オゾンを貯蔵しない場合と比べて運用コストを削減できればよいため、オゾンを貯蔵しない場合と比べて運用コストより低減された場合に探索を終了して計画を作成してもよい。すなわち、制御部22aは、一定期間内における注入対象への各時刻の注入量を予測し、予測した結果と、時間帯ごとの電力単価と、を用いて、一定期間内のオゾンの発生に要する電力の使用料金が貯蔵を行わない場合より低減されるように、各時刻のオゾン発生部3におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、決定した結果を用いてオゾン発生部3を制御することができる。 In the example described above, efficiency was taken into account when calculating the power usage fee as an operating cost. You can make a plan. Also, in the above example, the plan was created to minimize the electricity usage fee, but since it is only necessary to reduce operating costs compared to the case where ozone is not stored, If so, the search may end and a plan may be created. That is, the control unit 22a predicts the amount of injection to the injection target at each time within a certain period of time, and uses the prediction result and the unit price of electricity for each time period to determine the amount of ozone required to generate ozone within a certain period of time. The amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generator 3 at each time are determined so that the power usage fee is reduced compared to when the power is not stored, and the determined result is used. can be used to control the ozone generator 3 .
 以上のように、本実施の形態では、電力単価の低い時間帯でオゾンを貯蔵し、貯蔵したオゾンを用いてMBRシステム9における膜ユニット92-1,92-2の洗浄を行うようにした。これにより、貯蔵を行わない場合に比べて運用コストを削減することができる。また、オゾンの使用量を予測し運用コストを算出して、運用コストを最小化するように、発生させるオゾンの量を求めることで、使用方法によらず、運用コストを低減させることができる。 As described above, in the present embodiment, ozone is stored during times when the unit price of electricity is low, and the membrane units 92-1 and 92-2 in the MBR system 9 are cleaned using the stored ozone. As a result, operating costs can be reduced compared to the case where storage is not performed. In addition, by predicting the amount of ozone used, calculating the operation cost, and obtaining the amount of ozone to be generated so as to minimize the operation cost, the operation cost can be reduced regardless of the usage method.
実施の形態4.
 図18は、実施の形態4にかかるオゾン発生システムの構成例を示す図である。本実施の形態のオゾン発生システムは、実施の形態1と同様に水処理システムに適用可能である。なお、図示を省略しているがオゾン注入部5は、実施の形態1と同様に水処理プロセス6へオゾンを注入する。本実施の形態では、オゾン発生器32が既に設けられている水処理システムに、機能を追加することで実施の形態1と同様のオゾン発生システム1を実現する。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を主に説明する。
Embodiment 4.
FIG. 18 is a diagram showing a configuration example of an ozone generation system according to a fourth embodiment. The ozone generation system of this embodiment can be applied to a water treatment system as in the first embodiment. Although not shown, the ozone injection unit 5 injects ozone into the water treatment process 6 in the same manner as in the first embodiment. In the present embodiment, the ozone generation system 1 similar to that of the first embodiment is realized by adding a function to the water treatment system in which the ozone generator 32 is already provided. Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
 例えば、空気を原料としてオゾン発生器が既に設置され、当該オゾン発生器から実施の形態1と同様の水処理プロセス6へオゾンが注入されていたとする。このような水処理システムにおいて、既設のオゾン発生器はそのまま実施の形態1のオゾン発生器32として用い、一点鎖線で示したオゾン貯蔵装置200を追加する。これにより、実施の形態1と同様のオゾン発生システム1を実現することができる。なお、制御装置2については、新たに設けられてもよいし、既存の制御装置を改変することで制御装置2としてもよい。オゾン貯蔵装置200は、実施の形態1で述べた制御装置2と、オゾン発生部3からオゾン発生器32および切替バルブ34を除いたものである。なお、切替バルブ34については、既設のシステムにおいてもなんらかのバルブがあると想定されるため、このバルブを流用する例を示しているが、切替バルブ34もオゾン貯蔵装置200に含めてもよい。 For example, assume that an ozone generator has already been installed using air as a raw material, and ozone has been injected from the ozone generator into the water treatment process 6 similar to that of the first embodiment. In such a water treatment system, the existing ozone generator is used as it is as the ozone generator 32 of Embodiment 1, and the ozone storage device 200 indicated by the dashed line is added. Thereby, the ozone generation system 1 similar to that of the first embodiment can be realized. Note that the control device 2 may be newly provided, or may be the control device 2 by modifying an existing control device. The ozone storage device 200 is obtained by removing the ozone generator 32 and the switching valve 34 from the control device 2 and the ozone generator 3 described in the first embodiment. As for the switching valve 34 , since it is assumed that there is some kind of valve in the existing system, an example of using this valve is shown, but the switching valve 34 may also be included in the ozone storage device 200 .
 なお、既存のオゾン発生器が乾燥空気用として設計された装置であったとしても、電力供給の調整を行う程度で、酸素を原料とするオゾン発生器32に変更することができる。酸素を原料ガスとすると空気を原料とする場合に比べて、原料ガスコストは増加するが、実施の形態1で述べたように、オゾン貯蔵部33を備えることにより、酸素は再利用することができるため、原料ガス種の変更に伴うコスト増加は小さい。また、原料ガスを酸素に変更することにより、オゾン発生効率は乾燥空気を使用する場合に比して、大きく向上し、かつ高濃度のオゾンを得ることができる。 Even if the existing ozonizer is designed for dry air, it can be changed to the ozonizer 32 using oxygen as a raw material by adjusting the power supply. When oxygen is used as the raw material gas, the cost of the raw material gas increases compared to when air is used as the raw material. Therefore, the cost increase due to the change of the source gas type is small. Also, by changing the raw material gas to oxygen, the ozone generation efficiency can be greatly improved as compared with the case of using dry air, and high-concentration ozone can be obtained.
 なお、実施の形態3で述べたMBRシステム9へオゾン水を注入する場合にも、同様に、既設のシステムに、オゾン貯蔵装置200を追加することができることでオゾン発生システムを実現することができる。 In the case of injecting ozone water into the MBR system 9 described in Embodiment 3, similarly, an ozone generation system can be realized by adding the ozone storage device 200 to the existing system. .
 以上のように、既設の空気を原料とするオゾン発生システムに対して図18に示したオゾン貯蔵装置200を追加し一部の変更を行うことで、容易に、より高効率および低コストのオゾン発生システム1を実現できる。 As described above, by adding the ozone storage device 200 shown in FIG. 18 to the existing ozone generation system using air as a raw material and making some changes, it is possible to easily produce ozone with higher efficiency and lower cost. The generation system 1 can be realized.
実施の形態5.
 図19は、実施の形態5にかかるオゾン発生システムの構成例を示す図である。本実施の形態のオゾン発生システム1cは、実施の形態1と同様に水処理システムに適用可能である。なお、図示を省略しているがオゾン発生システム1cのオゾン注入部5は、実施の形態1と同様に水処理プロセス6へオゾンを注入する。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる点を主に説明する。
Embodiment 5.
FIG. 19 is a diagram illustrating a configuration example of an ozone generation system according to a fifth embodiment; The ozone generation system 1c of the present embodiment can be applied to a water treatment system as in the first embodiment. Although not shown, the ozone injection unit 5 of the ozone generation system 1c injects ozone into the water treatment process 6 as in the first embodiment. Components having functions similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. Differences from the first embodiment will be mainly described below.
 図19に示したオゾン発生システム1cはオゾン発生装置であるオゾン発生部3bが制御装置2としての機能も有する。実施の形態1の図1では図示を省略しているが、オゾン発生部3内には各部を制御する制御部が一般に設けられる。図19に示した例では、この制御部と実施の形態1の制御部22との両方の機能を有する制御部22bを設け、制御部22bが実施の形態1の制御部22と同様の動作を行うとともに、オゾン発生部3b内のオゾン発生器32、切替バルブ34,35などを制御する。データ入出力部21については、オゾン発生部3b内にもともと設けられている場合にはオゾン発生部3b内のものを流用してもよいし、新規に設けてもよい。なお、既設の水処理システムにおいて、既設のオゾン貯蔵部を流用する場合には、図19に示したオゾン発生部3bからオゾン貯蔵部33を除いたオゾン発生装置を追加することで、オゾン発生システム1cを実現してもよい。 In the ozone generating system 1c shown in FIG. 19, the ozone generator 3b, which is an ozone generator, also functions as the control device 2. Although not shown in FIG. 1 of Embodiment 1, a controller for controlling each part is generally provided in the ozone generator 3 . In the example shown in FIG. 19, a control unit 22b having both functions of this control unit and the control unit 22 of the first embodiment is provided, and the control unit 22b performs the same operation as the control unit 22 of the first embodiment. At the same time, it controls the ozone generator 32, switching valves 34 and 35, etc. in the ozone generator 3b. As for the data input/output unit 21, when it is originally provided in the ozone generating unit 3b, the one in the ozone generating unit 3b may be used, or it may be newly provided. In addition, in the existing water treatment system, when diverting the existing ozone storage unit, by adding an ozone generator excluding the ozone storage unit 33 from the ozone generation unit 3b shown in Fig. 19, the ozone generation system 1c may be implemented.
 このように、オゾン発生装置であるオゾン発生部3b内の制御部22bが実施の形態1と同様の動作を実施してもよい。また、実施の形態3で述べたMBRシステム9へ適用する場合にも、同様に、オゾン発生部3bを用いてオゾン発生部3b内の制御部22bが実施の形態3と同様の動作を実施してもよい。 In this way, the control section 22b in the ozone generation section 3b, which is an ozone generation device, may perform the same operation as in the first embodiment. Also, when applied to the MBR system 9 described in the third embodiment, similarly, the ozone generator 3b is used and the controller 22b in the ozone generator 3b performs the same operation as in the third embodiment. may
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments are only examples, and can be combined with other known techniques, or can be combined with other embodiments, without departing from the scope of the invention. It is also possible to omit or change part of the configuration.
 1,1a,1b,1c オゾン発生システム、2,2a 制御装置、3,3a,3b オゾン発生部、5 オゾン注入部、6 水処理プロセス、7 排オゾン処理部、8 オゾン水製造部、9 MBRシステム、21 データ入出力部、22,22a,22b 制御部、31 原料ガス供給部、32,32-1,32-2 オゾン発生器、33 オゾン貯蔵部、34,35 切替バルブ、36,37 オゾン輸送経路、38 酸素再利用経路、39 予備発生器、91-1,91-2 MBR装置、92-1,92-2 膜ユニット、200 オゾン貯蔵装置、221,221a 計画作成部、222 電力単価記憶部、223 注入量情報記憶部、224 計画記憶部、225 指示部、226 注入量実績記憶部、227 注入量予測部、231 モデル生成部、232 学習済モデル記憶部、233 予測部。 1, 1a, 1b, 1c Ozone generation system, 2, 2a Control device, 3, 3a, 3b Ozone generation unit, 5 Ozone injection unit, 6 Water treatment process, 7 Exhaust ozone treatment unit, 8 Ozonated water production unit, 9 MBR System, 21 data input/output unit, 22, 22a, 22b control unit, 31 source gas supply unit, 32, 32-1, 32-2 ozone generator, 33 ozone storage unit, 34, 35 switching valve, 36, 37 ozone Transportation route, 38 Oxygen reuse route, 39 Reserve generator, 91-1, 91-2 MBR device, 92-1, 92-2 Membrane unit, 200 Ozone storage device, 221, 221a Planning unit, 222 Electric power unit price storage 223 injection amount information storage unit 224 plan storage unit 225 instruction unit 226 injection amount performance storage unit 227 injection amount prediction unit 231 model generation unit 232 learned model storage unit 233 prediction unit.

Claims (19)

  1.  発生させたオゾンを貯蔵可能でありオゾンの注入対象にオゾンを注入するオゾン発生部を制御する制御装置であって、
     電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で前記オゾン発生部に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、前記第1の時間帯で、前記オゾン発生部に、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入させるとともに発生させたオゾンのうち前記注入対象に注入されないオゾンを貯蔵させ、電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、前記オゾン発生部に、貯蔵されたオゾンを放出させて前記注入対象に注入させることを特徴とする制御装置。
    A control device for controlling an ozone generating unit capable of storing generated ozone and injecting ozone into an ozone injection target,
    causing the ozone generator to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price of electricity is the first value; In the first time period, the ozone generator is caused to inject a second amount of ozone smaller than the first amount per unit time into the injection target, and the generated ozone is not injected into the injection target. Ozone is stored, and the stored ozone is released to the ozone generator during a second time period that is at least part of the time period in which the unit price of electricity is a second value equal to or greater than the first value. and injecting into the injection target.
  2.  前記オゾン発生部に、時間帯によらず一定量として単位時間あたり前記第2の量のオゾンを注入対象に注入させることを特徴とする請求項1に記載の制御装置。 The control device according to claim 1, characterized in that the ozone generator injects the second amount of ozone per unit time into the injection target as a constant amount regardless of the time zone.
  3.  電力単価が第2の値の全時間帯において、前記オゾン発生部に、貯蔵されて放出されたオゾンを単位時間あたり前記第2の量で前記注入対象に注入させることを特徴とする請求項2に記載の制御装置。 2. The ozone generator is caused to inject the stored and released ozone into the injection target in the second amount per unit time in all the time zones in which the power unit price is the second value. The control device according to .
  4.  電力単価が第1の値より高く前記第2の値より低い第3の値である時間帯のうち少なくとも一部である第3の時間帯で、前記オゾン発生部に、貯蔵されたオゾンを放出させて前記注入対象に注入させることを特徴とする請求項3に記載の制御装置。 During a third time period, which is at least part of the time period in which the unit price of electricity is a third value higher than the first value and lower than the second value, the ozone generator releases stored ozone. 4. The control device according to claim 3, wherein the injection target is caused to inject the injection target.
  5.  一定期間内における前記注入対象への各時刻の注入量を予測し、予測した結果と、時間帯ごとの電力単価と、を用いて、前記一定期間内のオゾンの発生に要する電力の使用料金が貯蔵を行わない場合より低減されるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、決定した結果を用いて前記オゾン発生部を制御することを特徴とする請求項1に記載の制御装置。 Predicting the injection amount at each time to the injection target within a certain period of time, and using the result of the prediction and the unit price of electricity for each time period, the electricity usage fee required for generating ozone within the certain period of time is calculated. The amount of ozone generated, the amount of stored ozone, and the amount of discharged stored ozone in the ozone generation unit at each time are determined so that the ozone generation amount, the stored amount of ozone, and the stored ozone release amount are reduced so as to be reduced compared to when storage is not performed, and the determined result is used by the ozone generation unit. The control device according to claim 1, characterized in that it controls the
  6.  さらに、単位時間あたりのオゾンの発生量に依存する効率、を用いて、前記一定期間内のオゾンの発生に要する電力の使用料金が、オゾンの貯蔵を行わない場合より低減されるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、
     前記第1の量は、前記オゾン発生部において単位時間あたりに発生させることが可能な最大量であり、前記効率は単位時間あたりのオゾンの発生量が第1の量であるときに最大となることを特徴とする請求項5に記載の制御装置。
    Furthermore, by using the efficiency that depends on the amount of ozone generated per unit time, each Determining the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generation unit at the time,
    The first amount is the maximum amount that can be generated per unit time in the ozone generator, and the efficiency is maximized when the amount of ozone generated per unit time is the first amount. 6. The control device according to claim 5, characterized in that:
  7.  前記一定期間内のオゾンの発生に要する電力の使用料金が最小となるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定することを特徴とする請求項5または6に記載の制御装置。 Determining the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generation unit at each time so that the charge for electricity required to generate ozone within the predetermined period is minimized. 7. Control device according to claim 5 or 6.
  8.  オゾンの貯蔵を行わない場合と比較した電力の使用料金の削減量を示す画面と、時間帯ごとのオゾンの発生量およびオゾンの貯蔵量を示す画面と、オゾン発生器の稼働状態と、のうち少なくとも1つを表示するデータ入出力部、
     を備えることを特徴とする請求項1から7のいずれか1つに記載の制御装置。
    A screen showing the amount of reduction in electricity usage charges compared to when ozone is not stored, a screen showing the amount of ozone generated and stored for each time period, and the operating state of the ozone generator. a data input/output unit displaying at least one;
    8. A control device according to any one of claims 1 to 7, characterized in that it comprises:
  9.  発生させたオゾンを貯蔵可能でありオゾンの注入対象にオゾンを注入するオゾン発生部を制御する制御装置であって、
     一定期間内における前記注入対象への各時刻の注入量を予測し、予測した結果と、時間帯ごとの電力単価と、を用いて、前記一定期間内のオゾンの発生に要する電力の使用料金が、オゾンの貯蔵を行わない場合より低減されるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、決定した結果を用いて前記オゾン発生部を制御することを特徴とする制御装置。
    A control device for controlling an ozone generating unit capable of storing generated ozone and injecting ozone into an ozone injection target,
    Predicting the injection amount at each time to the injection target within a certain period of time, and using the result of the prediction and the unit price of electricity for each time period, the electricity usage fee required for generating ozone within the certain period of time is calculated. , the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generation unit at each time are determined so that the amount of ozone is reduced compared to when ozone is not stored; A control device for controlling an ozone generator.
  10.  さらに、単位時間あたりのオゾンの発生量に依存する効率、を用いて、前記一定期間内のオゾンの発生に要する電力の使用料金が貯蔵を行わない場合より低減されるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、
     前記第1の量は、前記オゾン発生部において単位時間あたりに発生させることが可能な最大量であり、前記効率は単位時間あたりのオゾンの発生量が第1の量であるときに最大となることを特徴とする請求項8に記載の制御装置。
    Furthermore, by using the efficiency that depends on the amount of ozone generated per unit time, the above-mentioned at each time so that the usage fee for the electricity required to generate ozone within the above-mentioned fixed period is reduced compared to the case where no storage is performed. Determining the amount of ozone generated, the amount of stored ozone and the amount of released stored ozone in the ozone generator,
    The first amount is the maximum amount that can be generated per unit time in the ozone generator, and the efficiency is maximized when the amount of ozone generated per unit time is the first amount. 9. The control device according to claim 8, characterized in that:
  11.  前記一定期間内のオゾンの発生に要する電力の使用料金が最小となるように、各時刻の前記オゾン発生部におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定することを特徴とする請求項8または9に記載の制御装置。 Determining the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generation unit at each time so that the charge for electricity required to generate ozone within the predetermined period is minimized. 10. Control device according to claim 8 or 9.
  12.  過去の注入量の実績を用いて前記一定期間内における前記注入対象への各時刻の注入量を予測することを特徴とする請求項8から10のいずれか1つに記載の制御装置。 11. The control device according to any one of claims 8 to 10, wherein the amount of injection to the injection target at each time within the fixed period is predicted using past injection amounts.
  13.  前記注入対象の状態を示す状態データを取得し、前記状態データから前記一定期間内における前記注入対象への各時刻の注入量を予測するための学習済モデルと、取得した前記状態データとを用いて、前記一定期間内における前記注入対象への各時刻の注入量を予測することを特徴とする請求項8から10のいずれか1つに記載の制御装置。 Acquiring state data indicating the state of the injection target, using a trained model for predicting the injection amount at each time to the injection target within the certain period from the state data, and using the acquired state data 11. The control device according to any one of claims 8 to 10, wherein the amount of injection to the injection target at each time within the fixed period is predicted.
  14.  オゾンを発生させるオゾン発生器と、
     前記オゾン発生器が発生させたオゾンを貯蔵するオゾン貯蔵部と、
     オゾンの注入対象に、前記オゾン発生器が発生させたオゾンと、前記オゾン貯蔵部から放出されたオゾンとのうち少なくとも一方のオゾンを注入する注入部と、
     を備え、
     前記オゾン発生器は、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で前記オゾン発生器に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、
     前記注入部は、前記第1の時間帯で、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入し、
     前記オゾン貯蔵部は、前記第1の時間帯で、前記オゾン発生器によって発生されたオゾンのうち前記注入対象に注入されないオゾンを貯蔵し、電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、貯蔵したオゾンを放出させ、
     前記注入部は、前記第2の時間帯で、前記オゾン貯蔵部から放出されたオゾンを前記注入対象に注入することを特徴とするオゾン発生システム。
    an ozone generator for generating ozone;
    an ozone storage unit for storing ozone generated by the ozone generator;
    an injection unit for injecting at least one of ozone generated by the ozone generator and ozone released from the ozone storage unit into an ozone injection target;
    with
    The ozone generator is configured to generate a first amount of ozone per unit time in a first time period that is at least part of the time period in which the unit price of electricity has a first value. generate ozone in
    The injection unit injects a second amount of ozone smaller than the first amount per unit time into the injection target in the first time period,
    The ozone storage unit stores ozone that is not injected into the injection target among the ozone generated by the ozone generator during the first time period, and has a power unit price of a second value that is equal to or greater than the first value. releasing the stored ozone during a second time period that is at least part of the time period that is
    The ozone generating system, wherein the injection unit injects the ozone released from the ozone storage unit into the injection target during the second time period.
  15.  オゾンを発生させるオゾン発生器が発生させたオゾンを、貯蔵するオゾン貯蔵装置であって、
     前記オゾン発生器が発生させたオゾンを貯蔵するオゾン貯蔵部と、
     前記オゾン発生器と、前記オゾン貯蔵装置と、オゾンの注入対象にオゾンを注入する注入部と、を制御する制御装置と、
     を備え、
     前記制御装置は、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で前記オゾン発生器に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、前記第1の時間帯で、前記オゾン発生器に、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入させるとともに、発生させたオゾンのうち前記注入対象に注入されないオゾンを前記オゾン貯蔵部に貯蔵させ、電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、前記オゾン貯蔵部に、貯蔵されたオゾンを放出させるとともに、前記注入部に、前記オゾン貯蔵部から放出されたオゾンを前記注入対象に注入させることを特徴とするオゾン貯蔵装置。
    An ozone storage device that stores ozone generated by an ozone generator that generates ozone,
    an ozone storage unit for storing ozone generated by the ozone generator;
    a control device that controls the ozone generator, the ozone storage device, and an injection unit that injects ozone into an ozone injection target;
    with
    The control device causes the ozone generator to generate a first amount of ozone per unit time in a first time period that is at least part of a time period in which the unit price of electricity has a first value. generating ozone, causing the ozone generator to inject a second amount of ozone less than the first amount per unit time into the injection target in the first time period, and out of the generated ozone Ozone that is not injected into the injection target is stored in the ozone storage unit, and in a second time period that is at least part of a time period in which the unit price of electricity is a second value equal to or greater than the first value, An ozone storage device, comprising: an ozone storage unit for releasing stored ozone; and an injection unit for injecting the ozone released from the ozone storage unit into the injection target.
  16.  オゾンを発生させ、発生させたオゾンを、オゾンを貯蔵するオゾン貯蔵部と、オゾンの注入対象にオゾンを注入する注入部とのうち少なくとも一方に供給可能なオゾン発生装置であって、
     オゾンを発生させ、発生させたオゾンを、前記オゾン貯蔵部と、前記注入部とのうち少なくとも一方に供給可能なオゾン発生器と、
     前記オゾン発生器と、前記オゾン貯蔵部と、前記注入部と、を制御する制御装置と、
     を備え、
     前記制御装置は、電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で前記オゾン発生器に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、前記第1の時間帯で、前記オゾン発生器に、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入させるとともに、発生させたオゾンのうち前記注入対象に注入されないオゾンを前記オゾン貯蔵部に貯蔵させ、電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、前記オゾン貯蔵部に、貯蔵されたオゾンを放出させるとともに、前記注入部に、前記オゾン貯蔵部から放出されたオゾンを前記注入対象に注入させることを特徴とするオゾン発生装置。
    An ozone generator capable of generating ozone and supplying the generated ozone to at least one of an ozone storage unit for storing ozone and an injection unit for injecting ozone into an ozone injection target,
    an ozone generator capable of generating ozone and supplying the generated ozone to at least one of the ozone storage unit and the injection unit;
    a control device that controls the ozone generator, the ozone storage unit, and the injection unit;
    with
    The control device causes the ozone generator to generate a first amount of ozone per unit time in a first time period that is at least part of a time period in which the unit price of electricity has a first value. generating ozone, causing the ozone generator to inject a second amount of ozone less than the first amount per unit time into the injection target in the first time period, and out of the generated ozone Ozone that is not injected into the injection target is stored in the ozone storage unit, and in a second time period that is at least part of a time period in which the unit price of electricity is a second value equal to or greater than the first value, An ozone generator, comprising: an ozone storage unit for releasing stored ozone; and an injection unit for injecting the ozone released from the ozone storage unit into the injection target.
  17.  膜ユニットを備え、膜分離活性汚泥法により被処理水を浄化する水処理装置と、
     前記膜ユニットを洗浄に用いられるオゾン水を前記膜ユニットに注入するオゾン発生システムと、
     を備え、
     前記オゾン発生システムは、
     オゾンを発生させるオゾン発生器と、
     前記オゾン発生器が発生させたオゾンを貯蔵するオゾン貯蔵部と、
     オゾンの注入対象に、前記オゾン発生器が発生させたオゾンと、前記オゾン貯蔵部から放出されたオゾンとのうち少なくとも一方のオゾンを用いてオゾン水を生成し、生成したオゾン水を前記膜ユニットへ注入するオゾン水製造部と、
     一定期間内における前記膜ユニットへの各時刻の注入量を予測し、予測した結果と、時間帯ごとの電力単価と、を用いて、前記一定期間内のオゾンの発生に要する電力の使用料金が、オゾンの貯蔵を行わない場合より低減されるように、各時刻の前記オゾン発生器におけるオゾンの発生量、オゾンの貯蔵量および貯蔵したオゾンの放出量を決定し、決定した結果を用いて前記オゾン発生器および前記オゾン貯蔵部を制御する制御部と、
     を備えることを特徴とする水処理システム。
    A water treatment device that includes a membrane unit and purifies water to be treated by a membrane separation activated sludge method;
    an ozone generation system for injecting ozone water used for cleaning the membrane unit into the membrane unit;
    with
    The ozone generation system comprises:
    an ozone generator for generating ozone;
    an ozone storage unit for storing ozone generated by the ozone generator;
    Ozone water is generated by using at least one of ozone generated by the ozone generator and ozone released from the ozone storage unit, and the generated ozone water is supplied to the membrane unit. an ozonated water production unit that injects into
    Predicting the amount of injection into the membrane unit at each time within a certain period of time, and using the result of the prediction and the unit price of electricity for each time period, the charge for the electricity required to generate ozone within the certain period of time is determined. , determining the amount of ozone generated, the amount of stored ozone, and the amount of released stored ozone in the ozone generator at each time so that the amount of ozone is reduced compared to when ozone is not stored, and using the determined results, a controller that controls the ozone generator and the ozone storage;
    A water treatment system comprising:
  18.  オゾンの注入対象にオゾンを注入するオゾン発生システムにおけるオゾン注入制御方法であって、
     電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させ、
     前記第1の時間帯で、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入し、
     前記第1の時間帯で、発生されたオゾンのうち前記注入対象に注入されないオゾンを貯蔵し、
     電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、貯蔵したオゾンを放出させ、
     前記第2の時間帯で、放出されたオゾンを前記注入対象に注入することを特徴とするオゾン注入制御方法。
    An ozone injection control method in an ozone generation system for injecting ozone into an ozone injection target, comprising:
    generating ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price of electricity is the first value;
    injecting a second amount of ozone smaller than the first amount per unit time into the injection target in the first time period;
    storing ozone that is not injected into the injection target among the generated ozone during the first time period;
    releasing the stored ozone in a second time period that is at least part of the time period in which the unit price of electricity is a second value equal to or greater than the first value;
    An ozone injection control method, comprising injecting released ozone into the injection target during the second time period.
  19.  発生させたオゾンを貯蔵可能でありオゾンの注入対象にオゾンを注入するオゾン発生部を制御するコンピュータシステムに、
     電力単価が第1の値の時間帯のうちの少なくとも一部である第1の時間帯で前記オゾン発生部に単位時間あたりのオゾン発生量が第1の量となるようにオゾンを発生させるステップと、
     前記第1の時間帯で、前記オゾン発生部に、単位時間あたり前記第1の量より少ない第2の量のオゾンを前記注入対象に注入させるとともに発生させたオゾンのうち前記注入対象に注入されないオゾンを貯蔵させるステップと、
     電力単価が前記第1の値以上の第2の値である時間帯のうちの少なくとも一部である第2の時間帯で、前記オゾン発生部に、貯蔵されたオゾンを放出させて前記注入対象に注入させるステップと、
     を実行させることを特徴とするコンピュータプログラム。
    A computer system that controls an ozone generator that can store the generated ozone and injects ozone into an object to be injected with ozone,
    The step of causing the ozone generator to generate ozone so that the amount of ozone generated per unit time is the first amount in a first time period that is at least part of the time period in which the unit price of electricity is the first value. When,
    In the first time period, the ozone generator is caused to inject a second amount of ozone smaller than the first amount per unit time into the injection target, and the generated ozone is not injected into the injection target. storing ozone;
    During a second time period, which is at least part of the time period in which the unit price of electricity is a second value equal to or greater than the first value, the ozone generator is caused to release stored ozone to the injection target. injecting into the
    A computer program characterized by causing the execution of
PCT/JP2021/017636 2021-05-10 2021-05-10 Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program WO2022239050A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/017636 WO2022239050A1 (en) 2021-05-10 2021-05-10 Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program
CN202180097781.9A CN117295683A (en) 2021-05-10 2021-05-10 Control device, ozone generation system, ozone storage device, ozone generation device, water treatment system, ozone injection control method, and computer program
JP2021563726A JP7128974B1 (en) 2021-05-10 2021-05-10 Control device, ozone generation system, ozone storage device, ozone generator, water treatment system, ozone injection control method and computer program
TW111113580A TW202243730A (en) 2021-05-10 2022-04-11 Control device, ozone generation system, ozone storage device, ozone generator, water treatment system, ozone injection control method and computer program recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017636 WO2022239050A1 (en) 2021-05-10 2021-05-10 Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program

Publications (1)

Publication Number Publication Date
WO2022239050A1 true WO2022239050A1 (en) 2022-11-17

Family

ID=83112438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017636 WO2022239050A1 (en) 2021-05-10 2021-05-10 Control apparatus, ozone generation system, ozone storage apparatus, ozone generation apparatus, water treatment system, ozone injection control method, and computer program

Country Status (4)

Country Link
JP (1) JP7128974B1 (en)
CN (1) CN117295683A (en)
TW (1) TW202243730A (en)
WO (1) WO2022239050A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292512A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Storing method of ozone and its device
JP2000290004A (en) * 1999-04-07 2000-10-17 Nippon Sanso Corp Device and method for supplying ozone
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
WO2015083786A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Billing device for circulated water utilization system, and circulated water utilization system
JP6607337B1 (en) * 2019-06-03 2019-11-20 三菱電機株式会社 Ozone supply device and ozone supply method
JP2020081964A (en) * 2018-11-26 2020-06-04 株式会社Ihiプラント Hydrate production device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292512A (en) * 1998-04-03 1999-10-26 Mitsubishi Heavy Ind Ltd Storing method of ozone and its device
JP2000290004A (en) * 1999-04-07 2000-10-17 Nippon Sanso Corp Device and method for supplying ozone
JP2005278335A (en) * 2004-03-25 2005-10-06 Toshiba Corp Support system for creating operation program of power consignment and support program for creating operation program of power consignment
WO2015083786A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Billing device for circulated water utilization system, and circulated water utilization system
JP2020081964A (en) * 2018-11-26 2020-06-04 株式会社Ihiプラント Hydrate production device and method
JP6607337B1 (en) * 2019-06-03 2019-11-20 三菱電機株式会社 Ozone supply device and ozone supply method

Also Published As

Publication number Publication date
TW202243730A (en) 2022-11-16
CN117295683A (en) 2023-12-26
JP7128974B1 (en) 2022-08-31
JPWO2022239050A1 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Kyung et al. Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant
Barbu et al. On the evaluation of the global impact of control strategies applied to wastewater treatment plants
Karuppiah et al. Global optimization for the synthesis of integrated water systems in chemical processes
Radini et al. Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations
CN100537444C (en) Water-treating method of twater-treating equipment, and water-treating equipment
KR101236175B1 (en) A sewage disposal system using constructed wetlands with repurification function
Solís et al. A plant-wide model describing GHG emissions and nutrient recovery options for water resource recovery facilities
CN111950982B (en) Method, system, equipment and storage medium for constructing cascade hydropower water balance model
JP7128974B1 (en) Control device, ozone generation system, ozone storage device, ozone generator, water treatment system, ozone injection control method and computer program
Fan et al. A new design method for water-using networks of multiple contaminants with the concentration potential concepts
JP4188200B2 (en) Plant-wide optimum process controller
Hong et al. A precision pump schedule optimization for the water supply networks with small buffers
JP5981156B2 (en) Operation control device and operation control method for load equipment installed in water treatment plant
JP5855964B2 (en) Optimal control method and optimal control device for plant equipment
Liu et al. Design of distributed wastewater treatment networks by combining total mixing influence potential indicator with heuristic rules
Crisan et al. Hierarchical control system for energy savings in wastewater treatment plant
Ma et al. A rule-based design methodology for water networks with internal water mains
JP4327013B2 (en) Plant-wide optimum process controller
JP2009108593A (en) Apparatus for exchange and effective use of water
JP2006095440A (en) Operation management system in sewage treatment plant
Luca et al. Optimization of the wastewater treatment processes based on the relaxation method
Uraikul et al. A mixed-integer optimization model for compressor selection in natural gas pipeline network system operations
JP6226381B2 (en) Reduced driving support device and reduced driving support method
Alex et al. Predictive control of nitrogen removal in WWTPs using parsimonious models
JP6603156B2 (en) Sewerage facility operation support apparatus, system and method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021563726

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE