WO2022238085A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2022238085A1
WO2022238085A1 PCT/EP2022/060359 EP2022060359W WO2022238085A1 WO 2022238085 A1 WO2022238085 A1 WO 2022238085A1 EP 2022060359 W EP2022060359 W EP 2022060359W WO 2022238085 A1 WO2022238085 A1 WO 2022238085A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
deflection
segments
cooling
area
Prior art date
Application number
PCT/EP2022/060359
Other languages
German (de)
French (fr)
Inventor
Marco Lorenz
Yannick Fabian FREY
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP22724008.2A priority Critical patent/EP4337905A1/en
Priority to CN202280034190.1A priority patent/CN117280174A/en
Publication of WO2022238085A1 publication Critical patent/WO2022238085A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Definitions

  • the present invention relates to a cooling device for cooling components and an electronic arrangement.
  • Power semiconductors in power electronics usually carry high currents, which can lead to high heat losses. Such power semiconductors often need to be cooled, for example to prevent damage from overheating.
  • a cooling device designed as a pulsating heat pipe includes a cooling channel in the cooling device, which is designed in a meandering shape and is filled with a working medium that is present in the cooling channel in gaseous and liquid form at the same time. In the cooling device, heat is transferred to the cooling channel in a base region, so that the working medium in the cooling channel locally evaporates. This creates pressure gradients that transport the working medium through the cooling channel.
  • the vapor bubbles also migrate into a condenser part of the cooling channel and condense there. As a result, the heat is dissipated to the environment via the walls of the condenser and, for example, also via ribbing. Overall, therefore, the heat that is introduced into the cooling device in the base area is distributed over the entire cooling device.
  • a cooling device designed as a pulsating heat pipe thus serves as a heat-spreading design element. Meandering pulsating heat pipes are known from the prior art.
  • a cooling device for cooling components.
  • the cooling device comprises a cooling channel formed in the cooling device, which has a number of central segments and a number of deflection segments, the cooling channel being filled with a working medium which is present in the cooling channel in gaseous and liquid form at the same time.
  • the cooling device comprises a base area of the cooling device, which can be thermally conductively connected to a component to be cooled, a deflection area of the cooling device and an intermediate area between the base area and the deflection area, with the middle segments each extending from the base area to the deflection area, with the deflection segments each form a reversal of direction within the base area and within the deflection area and connect two middle segments with each other.
  • a first deflection segment in the base area connects two first center segments with one another, with at least two second center segments being arranged between the two first center segments, with the two second center segments being connected with one another in the base area by means of a second deflection segment.
  • the cooling device has a geometry of the cooling channel that allows multidimensional heat spreading with the aid of the cooling channel.
  • the heat is not only from - 3
  • the heat is thus spread, for example, parallel to the support surface on which the component to be cooled rests on the base area of the heat sink.
  • the cooling channel which is filled with the working medium, always alternately runs through a hot and a cold area. In this way, the pressure gradients in the cooling channel that drive the pulsating heat pipe and are necessary for operating the heat sink as a pulsating heat pipe can be maintained.
  • Heat can thus advantageously be conducted in an additional spatial direction (x-direction) not by means of thermal conduction in the solid body, as in the prior art, but by means of pulsating heat pipes. Because the heat in the cooling device is spread in another spatial direction (x-direction) using the pulsating heat pipe, the overall thermal resistance of the cooling device is reduced, since a very small temperature difference can transport a quantity of heat over greater distances. The amount of heat is distributed over a large area, which results in an advantageously simple dissipation of the heat in the case of small temperature differences.
  • a cooling channel functioning as a pulsating heat pipe is used for spreading the heat in the x-direction.
  • the cooling channel which functions as a pulsating heat pipe, then bends in the y-direction and thus spreads the heat both in the x-direction and in the y-direction.
  • the entire spreading takes place by means of a pulsating heat pipe and not via heat conduction. This results in a very small temperature difference.
  • the material of the channel walls only plays a subordinate role. So it is also conceivable to implement corresponding cooling devices with materials that have a comparatively poor thermal conductivity, such as steel. In addition, relatively little raw material is required for the cooling device, since a solid base plate is not required for heat spreading in the x-direction, but rather the heat spreading in the x-direction takes place through the cooling channel itself. With that can 4 the material costs for the cooling device and the weight of the cooling device can be significantly reduced.
  • a further advantage of the cooling device according to the invention lies in the overall asymmetrical geometry of the cooling channel in the cooling device due to the deflection segments in the deflection area.
  • This asymmetrical geometry of the cooling channel favors the start-up of the pulsating heat pipe in the cooling device.
  • the introduction of heat into the cooling channel of the cooling device is initially very limited locally, so that high pressure gradients in the working medium of the pulsating heat pipe are favored and, as a result, better start-up behavior of the pulsating heat pipe can be achieved.
  • first center segments and the second center segments run in a common plane.
  • first deflection segment and the second deflection segment run in a common plane.
  • the first deflection segment has a first intermediate section in which the deflection segment extends straight between two first deflection sections, the second deflection segment having a second intermediate section in which the second deflection segment extends straight between two second deflection sections.
  • the working medium can advantageously be guided well along the base area in the x-direction.
  • the cooling device can have a flat support surface for the component to be cooled in the area. The cooling channel then extends in the intermediate section, for example parallel to the planar contact surface, so that the heat can be dissipated evenly from the component.
  • the first intermediate section runs parallel to the second intermediate region. In this way, an advantageously good and uniform dissipation of the heat can be achieved by the cooling device.
  • the at least one cooling channel is formed in a curved cooling element, in particular in a curved tube.
  • the cooling device can advantageously be manufactured in a simple manner and can advantageously be of stable design.
  • a flat bearing surface is formed on the cooling device in the base region of the cooling device, on which the component can be placed.
  • the heat of the component to be cooled can be transferred to the cooling element and to the working medium in the cooling element via the bearing surface.
  • further pairs of central segments are arranged between the two second central segments, which are each connected to one another by means of a further deflection segment in the base area.
  • a particularly advantageous geometry of the cooling channel is thus achieved, through which heat can be conducted by means of a pulsating heat pipe both along the base area (x-direction) and away from the base area in the direction of the deflection area (y-direction).
  • a plurality of channels are formed in the cooling device, which are fluidically separated from one another and which run parallel to one another.
  • the cooling device can be further improved by a plurality of channels running in parallel, and a larger area is provided at which heat can be dissipated from the component.
  • the invention leads to an electronics arrangement which includes the described cooling device.
  • the electronics arrangement includes a component to be cooled, which is in particular a semiconductor component, for example of a motor vehicle.
  • the component to be cooled is with the 6
  • the cooling device enables particularly effective and reliable cooling of the component in order to prevent the component from overheating.
  • FIG. 1 shows a schematic representation of an exemplary embodiment of the cooling device according to the invention
  • Fig. 2 shows an embodiment of a cooling element from which the
  • Cooling device can be made.
  • the cooling device 1 shows an exemplary embodiment of an electronics arrangement 100 with a cooling device 1.
  • the cooling device 1 can be used to cool electronics or other hotspots of all kinds, for example to cool power electronics in electric vehicles, passive battery cooling, cooling of engine control units, charging stations or drive units used in eBikes.
  • the electronics arrangement 100 shown in FIG. 1 comprises a component 101, for example with power electronics, for example a semiconductor component and a cooling device 1.
  • the cooling device 1 is designed to cool the component 101.
  • a base area 2 of the cooling device 1 is connected to the component 101 in a thermally conductive manner.
  • the component 101 rests, for example, directly or indirectly on the base area 2 of the cooling device 1 .
  • a flat support surface 9 is formed on the cooling device 1 in the base area 2, on which the component 101 rests.
  • cooling channel 1 is formed, for example, in a curved cooling element 8, for example in a curved tube, then an outer side - 7 - of the curved cooling element 8, for example the curved tube, be flattened so that a flat bearing surface 9 is formed.
  • the cooling device 1 comprises a cooling channel 5.
  • the cooling channel 5 is preferably of tubular design.
  • the cooling channel 5 can be formed, for example, in a curved cooling element 8, in particular in a curved tube.
  • the cooling channel 5 can also run, for example, in solid metal parts, for example in the form of a cooling channel 5 milled into a plate or as a cooling channel 5 between metal sheets.
  • the cooling channel 5 can run through a number of parts of the cooling device 1, for example a number of tube sections, which are connected to one another, for example by brazing connections.
  • the cooling channel 5 can have, for example, a circular, an elliptical or a rectangular cross section.
  • the cooling channel 5 can have a diameter of approximately 0.5 to 2 mm, for example.
  • the cooling device 1 can, for example, also comprise a plurality of cooling channels 5 .
  • the cooling channels can, for example, run parallel to one another and are fluidically separated from one another, for example.
  • the cooling device 1 comprises a plurality of cooling channels 1
  • the cooling device 1 can be designed, for example, as a bent, flat tube, also known as a multiport tube, with a number of cooling channels 5 running parallel to one another.
  • An exemplary embodiment of such a cooling element 8 designed as a flat tube is shown in FIG.
  • the cooling element 8 shown in FIG. 2 can be bent, for example, in accordance with the course of the cooling channel 5 shown in FIG.
  • the cooling channel 5 comprises a plurality of central segments 51 and a plurality of deflection segments 52.
  • the central segments 51 and the deflection segments 52 represent sections of the cooling channel 5.
  • the cooling device 1 also has a deflection area 3.
  • the cooling device 1 also has an intermediate area 4, which is arranged between the base area 2 and the deflection area 3 .
  • the central segments 51 of the cooling channel 5 extend from the base area 2 via the intermediate area 4 to the deflection area 3.
  • Each deflection segment 52 of the cooling channel 5 is arranged either in the base area 2 of the cooling device 1 or in the deflection area 3 of the cooling device 1.
  • the deflection segments 52 each form inside 8 of the base area 2 and within the deflection area 3 a reversal of direction.
  • the deflection segments 52 connect two middle segments 51 to each other.
  • the cooling channel 5 extends from the base area 2 of the cooling device 1 through an intermediate area 4 to a deflection area 3.
  • the middle segments 51 each extend from the base area 2 to the deflection area 3, i.e. through the intermediate area 4 . All center segments 51 are straight and arranged parallel to one another.
  • the middle segments 51 are all arranged in a common plane in the cooling device 1 .
  • the deflection segments 52 are each arranged at the ends of the central segments 51 within the deflection area 3 and within the base plate 2 and each form a direction reversal.
  • a deflection segment 52 connects two central segments 51 to one another.
  • the cooling channel 5 is preferably of closed design.
  • the cooling channel 5 preferably has a connecting area 58 which is preferably located within the deflection area 3 and which forms a closed circuit of the cooling channel 5 .
  • the cooling channel 5 has a valve, not shown in the figures, in order, for example, to enable the cooling channel 5 to be evacuated and the cooling channel 5 to be filled with the working medium 6 .
  • the cooling device 1 comprises several pairs of center segments 51.
  • the two center segments 51 of a pair of center segments 51 are each connected to one another with a deflection segment 52 in the base region 2 of the cooling device 1.
  • the cooling device 1 comprises six pairs of center segments 51 and correspondingly six deflection segments 52 in the base area 2 of the cooling device 1.
  • Each of the deflection segments 52 in the base area 2 of the cooling device 1 connects the two center segments 51 of a pair of center segments 51 to one another.
  • two first center segments 51a form a first pair of center segments 51, the two first center segments 51a being connected to one another by a first deflection segment 52a in the base region 2 of the cooling device 1.
  • two second center segments 51b form a second pair of center segments 51, the two second center segments 51b being connected to one another by a second deflection segment 52b in the base region 2 of the cooling device 1.
  • two third center segments 51c form a third pair of center segments 51, the two third center segments 51c being connected to one another by a third deflection segment 52c in the base region 2 of the cooling device 1.
  • the cooling device 1 in this exemplary embodiment also comprises a fourth pair of two fourth center segments 51d, which are connected to one another by a fourth deflection segment 52d in the base area 2, a fifth pair of two fifth center segments 51e, which are connected by a fifth deflection segment 52e in the base area 2 are connected to each other and a sixth pair of two sixth center segments 51 f, which are connected to each other by a sixth deflection segment 52f in the base area 2.
  • the cooling device 1 can also comprise more or fewer pairs of middle segments 51 .
  • the middle segments 51 extend in a y-direction from the base area 2 of the cooling device 1 to the deflection area 3 of the cooling device 1 .
  • the y-direction thus runs from the base region 2 of the cooling device 1 to the deflection region 3 of the cooling device 1. If, for example, a bearing surface 9 is formed on the cooling device 1, the y-direction can run perpendicular to the bearing surface 9, for example.
  • the y-direction is perpendicular to an x-direction.
  • the middle segments 51 run parallel to one another.
  • the middle segments 51 are arranged next to one another with respect to the x-direction.
  • the middle segments 51 run in a common plane.
  • the common plane in which the middle segments 51 run is spanned by the x direction and the y direction. As shown in FIG. 1, the deflection segments 52 also run in this common plane.
  • the two second center segments 51b are arranged between the two first center segments 51a. Furthermore, in this exemplary embodiment, the two third center segments 51c are arranged between the two second center segments 51b. Furthermore, as in this exemplary embodiment, the two fourth center segments 51d can be arranged between the two third center segments 51c, the two fifth center segments 51e can be arranged between the two fourth center segments 51d and/or the two sixth center segments 51f can be arranged between the two fifth Be arranged middle segments 51 e. 10
  • Each of the deflection segments 51 in the base region 2 of the cooling device 1 has an intermediate section 56 and two deflection sections 57 each.
  • the intermediate section 56 of a deflection segment 51 extends between the deflection sections 57 of this deflection segment 51.
  • the intermediate section 56 of the deflection segment 51 extends in the x-direction, for example.
  • the intermediate section 56 of the deflection segment 51 extends, for example, parallel to the bearing surface 9 of the base region 2 of the cooling device 1.
  • the intermediate section 56 of the deflection segment 51 runs straight between the two deflection sections 57 of the deflection segment 51.
  • the cooling channel 5 runs straight at the intermediate sections 56 of the deflection segments 51, for example in the x-direction.
  • the cooling channel 5 bends from the y-direction into the x-direction or from the x-direction into the y-direction.
  • the intermediate sections 56 of the deflection segments 51 run parallel to one another in this exemplary embodiment.
  • the first intermediate section 56a of the first deflection segment 51a runs parallel to the second intermediate section 56b of the second deflection segment 51b.
  • the intermediate sections 56 of all deflection segments 51 run parallel to one another.
  • the cooling channel 5 is formed in a cooling element 8 designed as a bent tube, the parts of the tube in which the intermediate sections 56 of the cooling channel 5 are formed can run parallel to one another and/or rest on one another. In this way, advantageously good heat conduction is achieved in the base area 2 of the cooling device 1 between the intermediate sections 56 of the individual deflection segments 51 . The heat is spread in the x-direction via the intermediate sections 56 running in the base area 2 of the cooling device 1 .
  • the principle of the exemplary embodiment of the cooling device 1 illustrated in FIG. 1 can also be applied to the third spatial direction, ie in a z-direction perpendicular to the x-direction and perpendicular to the y-direction.
  • the deflection segments 52 of the cooling channel 5 shown in Fig. 1 and running parallel in the x-direction in the base area 2 of the cooling device 1 would run, for example crosswise in the x-direction and in the z-direction, so that the heat in the Base area 2 of the cooling device 1 takes place in the x-direction and z-direction. That's how she can 11
  • Heat spreading advantageously takes place in all three spatial directions predominantly through the cooling channel 5 operated as a pulsating heat pipe.
  • the cooling channel 5 there is a working medium 6 which is simultaneously in the liquid and in the gaseous state.
  • the working medium 6 is present in the cooling channel 5 in gaseous and liquid form at the same time, in other words partly gaseous and partly liquid.
  • gas bubbles and liquid columns are simultaneously present within the cooling channel 5 .
  • the gas bubbles and the liquid columns preferably occupy a similarly large volume.
  • the gaseous portion of the working medium 6 particularly preferably occupies 30% to 70% of an internal volume of the cooling channel 5 at the nominal temperature, with the remaining internal volume being occupied by the liquid portion of the working medium 6 .
  • the volume ratio changes as a result of evaporation or condensation of the working medium 6.
  • the cooling channel 5 in the cooling device 1 can thus be operated as a pulsating heat pipe.
  • the working medium 6 particularly preferably has a critical temperature which is greater than a maximum operating temperature.
  • the working medium 6 preferably has a critical temperature of at least 233 K, preferably at least 273 K, particularly preferably at least 373 K, and in particular at most 533 K.
  • a temperature of a substance at the critical point is regarded as the critical temperature.
  • the working medium 6 is preferably an organic refrigerant, which is used for example in vehicle air conditioning systems, such as in particular 2,3,3,3-tetrafluoropropene, also referred to as R1234yf, R1233zd(E) etc., in particular
  • the working medium 6 preferably has a melting point which is at most 273K, preferably at most 233K, particularly preferably at most 213K.
  • vehicle air conditioning systems such as in particular 2,3,3,3-tetrafluoropropene, also referred to as R1234yf, R1233zd(E) etc.
  • the working medium 6 preferably has a melting point which is at most 273K, preferably at most 233K, particularly preferably at most 213K.
  • further exemplary embodiments and mixed forms of the exemplary embodiments shown are also possible.

Abstract

The invention relates to a cooling device for cooling components (101), comprising: - a cooling conduit (5) which is formed in the cooling device (1) and has a plurality of central segments (51) and a plurality of diverting segments (52), said cooling conduit (5) being filled with a working medium (6) which is present simultaneously in gaseous and liquid form in the cooling conduit (5); - a bottom region (2) of the cooling device (1), which can be thermally conductively connected to a component (101) to be cooled; - a diverting region (3) of the cooling device (1); - an intermediate region (4) between the bottom region (2) and the diverting region (3), each of the central segments (51) extending from the bottom region (2) to the diverting region (3), and each of the diverting segments (52) forming a reversal of direction within the bottom region (2) and within the diverting region (3) and in each case connecting two central segments (51) to one another, wherein a first diverting segment (52a) in the bottom region (2) connects two first central segments (51a) to one another, at least two second central segments (51b) being located between the two first central segments (51a), and the two second central segments (51b) being connected to one another in the bottom region (2) by means of a second diverting segment (52b).

Description

Beschreibung description
Titel title
Kühlvorrichtung cooler
Stand der Technik State of the art
Die vorliegende Erfindung betrifft eine Kühlvorrichtung zum Kühlen von Bauteilen und eine Elektronikanordnung. The present invention relates to a cooling device for cooling components and an electronic arrangement.
Üblicherweise führen Leistungshalbleiter in der Leistungselektronik hohe Ströme, welche zu einer hohen Verlustwärme führen können. Häufig ist eine Kühlung solcher Leistungshalbleiter erforderlich, beispielsweise zur Vermeidung von Schäden durch Überhitzen. Power semiconductors in power electronics usually carry high currents, which can lead to high heat losses. Such power semiconductors often need to be cooled, for example to prevent damage from overheating.
Zur Kühlung kann beispielsweise eine Flüssigkeitskühlung oder eine Luftkühlung verwendet werden. Weiterhin können zur Kühlung sogenannte Pulsating Heatpipe-Strukturen als Kühlvorrichtungen verwendet werden. Diese eignen sich besonders für die direkte Integration in bestehende Komponenten mit dem Ziel, effizient Wärme von thermischen Hotspots zu Wärmesenken abzuführen. Dabei wird die Wärme vom Ort der Wärmeeinbringung in der Regel zunächst mittels Wärmeleitung gespreizt. Eine als Pulsating Heatpipe ausgebildete Kühlvorrichtung umfasst einen Kühlkanal in der Kühlvorrichtung, welcher mäanderförmig ausgebildet ist und der mit einem Arbeitsmittel gefüllt ist, welches gleichzeitig gasförmig und flüssig in dem Kühlkanal vorliegt. In der Kühlvorrichtung wird in einem Grundbereich Wärme an den Kühlkanal übertragen, so dass das Arbeitsmittel in dem Kühlkanal lokal verdampft. Dabei entstehen Druckgradienten, die das Arbeitsmittel durch den Kühlkanal befördern. 2 For example, liquid cooling or air cooling can be used for cooling. Furthermore, so-called pulsating heat pipe structures can be used as cooling devices for cooling. These are particularly suitable for direct integration into existing components with the aim of efficiently dissipating heat from thermal hotspots to heat sinks. In this case, the heat is usually first spread from the place where the heat is introduced by means of heat conduction. A cooling device designed as a pulsating heat pipe includes a cooling channel in the cooling device, which is designed in a meandering shape and is filled with a working medium that is present in the cooling channel in gaseous and liquid form at the same time. In the cooling device, heat is transferred to the cooling channel in a base region, so that the working medium in the cooling channel locally evaporates. This creates pressure gradients that transport the working medium through the cooling channel. 2
Dabei wandern die Dampfblasen auch in einen Kondensatorteil des Kühlkanals und kondensieren dort. Die Wärme wird dadurch über die Wände des Kondensators und beispielsweise auch über Verrippungen an die Umgebung abgegeben. Insgesamt wird also die Wärme, die im Grundbereich in die Kühlvorrichtung eingebracht wird, auf die gesamte Kühlvorrichtung verteilt. Eine als Pulsating Heat Pipe ausgebildete Kühlvorrichtung dient somit als Wärmespreiz-Designelement. Aus dem Stand der Technik sind mäanderförmig verlaufende Pulsating Heat Pipes bekannt. The vapor bubbles also migrate into a condenser part of the cooling channel and condense there. As a result, the heat is dissipated to the environment via the walls of the condenser and, for example, also via ribbing. Overall, therefore, the heat that is introduced into the cooling device in the base area is distributed over the entire cooling device. A cooling device designed as a pulsating heat pipe thus serves as a heat-spreading design element. Meandering pulsating heat pipes are known from the prior art.
Offenbarung der Erfindung Disclosure of Invention
Erfindungsgemäß wird eine Kühlvorrichtung, zum Kühlen von Bauteilen vorgeschlagen. Die Kühlvorrichtung umfasst einen in der Kühlvorrichtung ausgebildeten Kühlkanal, welcher mehrere Mittelsegmente und mehrere Umlenksegmente aufweist, wobei der Kühlkanal mit einem Arbeitsmittel gefüllt ist, welches gleichzeitig gasförmig und flüssig in dem Kühlkanal vorliegt. Weiterhin umfasst die Kühlvorrichtung einen Grundbereich der Kühlvorrichtung, welcher wärmeleitend mit einem zu kühlenden Bauteil verbindbar ist, einen Umlenkbereich der Kühlvorrichtung und einen Zwischenbereich zwischen dem Grundbereich und dem Umlenkbereich, wobei sich die Mittelsegmente jeweils von dem Grundbereich zu dem Umlenkbereich erstrecken, wobei die Umlenksegmente jeweils innerhalb des Grundbereichs und innerhalb des Umlenkbereichs eine Richtungsumkehr bilden und jeweils zwei Mittelsegmente miteinander verbinden. Erfindungsgemäß verbindet ein erstes Umlenksegment in dem Grundbereich zwei erste Mittelsegmente miteinander, wobei zwischen den zwei ersten Mittelsegmenten wenigstens zwei zweite Mittelsegmente angeordnet sind, wobei die zwei zweiten Mittelsegmente in dem Grundbereich mittels eines zweiten Umlenksegments miteinander verbunden sind. According to the invention, a cooling device is proposed for cooling components. The cooling device comprises a cooling channel formed in the cooling device, which has a number of central segments and a number of deflection segments, the cooling channel being filled with a working medium which is present in the cooling channel in gaseous and liquid form at the same time. Furthermore, the cooling device comprises a base area of the cooling device, which can be thermally conductively connected to a component to be cooled, a deflection area of the cooling device and an intermediate area between the base area and the deflection area, with the middle segments each extending from the base area to the deflection area, with the deflection segments each form a reversal of direction within the base area and within the deflection area and connect two middle segments with each other. According to the invention, a first deflection segment in the base area connects two first center segments with one another, with at least two second center segments being arranged between the two first center segments, with the two second center segments being connected with one another in the base area by means of a second deflection segment.
Vorteile der Erfindung Advantages of the Invention
Gegenüber dem Stand der Technik weist die Kühlvorrichtung eine Geometrie des Kühlkanals auf, durch die eine mehrdimensionale Wärmespreizung mithilfe des Kühlkanals realisiert werden kann. Dabei wird die Wärme nicht nur vom - 3 Compared to the prior art, the cooling device has a geometry of the cooling channel that allows multidimensional heat spreading with the aid of the cooling channel. The heat is not only from - 3
Grundbereich der Kühlvorrichtung, an dem das zu kühlende Bauteil anliegt, zu den Mittelsegmenten und dem Umlenkbereich hin wegtransportiert (y-Richtung), sondern die Wärme wird auch entlang des Grundbereichs (x-Richtung) transportiert. So wird die Wärme also beispielsweise parallel zur Auflagefläche, auf der das zu kühlende Bauteil auf dem Grundbereich des Kühlkörpers aufliegt, gespreizt. Dabei durchläuft der Kühlkanal, der mit dem Arbeitsmittel gefüllt ist, stets abwechselnd einen heißen und einen kalten Bereich. So können die Druckgradienten in dem Kühlkanal, die die Pulsating Heat Pipe antrieben und zum Betrieb des Kühlkörpers als Pulsating Heat Pipe notwendig sind, aufrechterhalten werden. Somit kann Wärme vorteilhaft in einer zusätzlichen Raumrichtung (x-Richtung) nicht wie im Stand der Technik mittels Wärmeleitung im Festkörper, sondern mittels Pulsating Heat Pipes geleitet werden. Dadurch, dass in der Kühlvorrichtung die Wärme in einer weiteren Raumrichtung (x- Richtung) mithilfe der Pulsating Heat Pipe gespreizt wird, reduziert sich der gesamte thermische Widerstand der Kühlvorrichtung, da mit einer sehr kleinen Temperaturdifferenz eine Wärmemenge über größere Strecken transportiert werden kann. Dabei wird die Wärmemenge auf eine große Fläche verteilt, was eine vorteilhaft einfache Abfuhr der Wärme bei kleinen Temperaturdifferenzen zur Folge hat. Base area of the cooling device, on which the component to be cooled is applied, transported away to the middle segments and the deflection area (y-direction), but the heat is also transported along the base area (x-direction). The heat is thus spread, for example, parallel to the support surface on which the component to be cooled rests on the base area of the heat sink. The cooling channel, which is filled with the working medium, always alternately runs through a hot and a cold area. In this way, the pressure gradients in the cooling channel that drive the pulsating heat pipe and are necessary for operating the heat sink as a pulsating heat pipe can be maintained. Heat can thus advantageously be conducted in an additional spatial direction (x-direction) not by means of thermal conduction in the solid body, as in the prior art, but by means of pulsating heat pipes. Because the heat in the cooling device is spread in another spatial direction (x-direction) using the pulsating heat pipe, the overall thermal resistance of the cooling device is reduced, since a very small temperature difference can transport a quantity of heat over greater distances. The amount of heat is distributed over a large area, which results in an advantageously simple dissipation of the heat in the case of small temperature differences.
Somit wird in der erfindungsgemäßen Kühlvorrichtung ein als Pulsating Heat Pipe funktionierender Kühlkanal für die Spreizung der Wärme in x-Richtung verwendet. Der als Pulsating Heat Pipe funktionierende Kühlkanal biegt im weiteren Verlauf in y-Richtung ab und führt so zu einer Spreizung der Wärme sowohl in x-Richtung als auch in y-Richtung. Dabei findet die gesamte Spreizung mittels Pulsating Heat Pipe statt und nicht über Wärmeleitung. Dies hat eine sehr geringe Temperaturdifferenz zur Folge. Thus, in the cooling device according to the invention, a cooling channel functioning as a pulsating heat pipe is used for spreading the heat in the x-direction. The cooling channel, which functions as a pulsating heat pipe, then bends in the y-direction and thus spreads the heat both in the x-direction and in the y-direction. The entire spreading takes place by means of a pulsating heat pipe and not via heat conduction. This results in a very small temperature difference.
Durch die verbesserte Wärmespreizung und Wärmeleitung durch die Pulsating Heat Pipe spielt hierbei das Material der Kanalwände nur noch eine untergeordnete Rolle. So ist es auch denkbar entsprechende Kühlvorrichtungen mit Materialien umzusetzen, die eine vergleichsweise schlechtere Wärmeleitfähigkeit aufweisen, wie beispielsweise Stahl. Zudem wird für die Kühlvorrichtung verhältnismäßig wenig Rohmaterial benötigt, da zur Wärmespreizung in x-Richtung keine massive Grundplatte nötig ist, sondern die Wärmespreizung in x-Richtung durch den Kühlkanal selbst erfolgt. Damit können 4 die Materialkosten für die Kühlvorrichtung und das Gewicht der Kühlvorrichtung deutlich gesenkt werden. Due to the improved heat spread and heat conduction through the pulsating heat pipe, the material of the channel walls only plays a subordinate role. So it is also conceivable to implement corresponding cooling devices with materials that have a comparatively poor thermal conductivity, such as steel. In addition, relatively little raw material is required for the cooling device, since a solid base plate is not required for heat spreading in the x-direction, but rather the heat spreading in the x-direction takes place through the cooling channel itself. With that can 4 the material costs for the cooling device and the weight of the cooling device can be significantly reduced.
Ein weiterer Vorteil der erfindungsgemäßen Kühlvorrichtung liegt in der insgesamt asymmetrischen Geometrie des Kühlkanals in der Kühlvorrichtung durch die Umlenksegmente im Umlenkbereich. Diese asymmetrische Geometrie des Kühlkanals begünstigt das Anlaufen der Pulsating Heat Pipe in der Kühlvorrichtung. Zudem erfolgt die Wärmeeinbringung in den Kühlkanal der Kühlvorrichtung zu Beginn lokal sehr begrenzt, so dass hohe Druckgradienten im Arbeitsmittel der Pulsating Heat Pipe begünstigt werden und hierdurch ein besseres Anlaufverhalten der Pulsating Heat Pipe erzielt werden kann. A further advantage of the cooling device according to the invention lies in the overall asymmetrical geometry of the cooling channel in the cooling device due to the deflection segments in the deflection area. This asymmetrical geometry of the cooling channel favors the start-up of the pulsating heat pipe in the cooling device. In addition, the introduction of heat into the cooling channel of the cooling device is initially very limited locally, so that high pressure gradients in the working medium of the pulsating heat pipe are favored and, as a result, better start-up behavior of the pulsating heat pipe can be achieved.
Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindungen werden durch die in den Unteransprüchen angegebenen Merkmale ermöglicht. Further advantageous refinements and developments of the invention are made possible by the features specified in the dependent claims.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass die ersten Mittelsegmente und die zweiten Mittelsegmente in einer gemeinsamen Ebene verlaufen. According to an advantageous exemplary embodiment, it is provided that the first center segments and the second center segments run in a common plane.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass das erste Umlenksegment und das zweite Umlenksegment in einer gemeinsamen Ebene verlaufen. According to an advantageous exemplary embodiment, it is provided that the first deflection segment and the second deflection segment run in a common plane.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass das erste Umlenksegment einen ersten Zwischenabschnitt aufweist, in dem sich das Umlenksegment gerade zwischen zwei ersten Umlenkabschnitten erstreckt, wobei das zweite Umlenksegment einen zweiten Zwischenabschnitt aufweist, in dem sich das zweite Umlenksegment gerade zwischen zwei zweiten Umlenkabschnitten erstreckt. In den sich gerade erstreckenden Zwischenabschnitten kann das Arbeitsmittel vorteilhaft gut entlang des Grundbereichs in x-Richtung geleitet werden. Erstreckt sich der Zwischenabschnitt gerade, so kann die Kühlvorrichtung in dem Bereich eine ebene Auflagefläche für das zu kühlende Bauteil aufweisen. Der Kühlkanal erstreckt sich dann in dem Zwischenabschnitt beispielsweise parallel zu der ebenen Anlagefläche, so dass die Wärme gleichmäßig von dem Bauteil abgeleitet werden kann. - 5 According to an advantageous embodiment, it is provided that the first deflection segment has a first intermediate section in which the deflection segment extends straight between two first deflection sections, the second deflection segment having a second intermediate section in which the second deflection segment extends straight between two second deflection sections. In the intermediate sections that extend in a straight line, the working medium can advantageously be guided well along the base area in the x-direction. If the intermediate section extends straight, the cooling device can have a flat support surface for the component to be cooled in the area. The cooling channel then extends in the intermediate section, for example parallel to the planar contact surface, so that the heat can be dissipated evenly from the component. - 5
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass der erste Zwischenabschnitt parallel zu dem zweiten Zwischenbereich verläuft. So kann eine vorteilhaft gute und gleichmäßige Ableitung der Wärme durch die Kühlvorrichtung erreicht werden. According to an advantageous exemplary embodiment, it is provided that the first intermediate section runs parallel to the second intermediate region. In this way, an advantageously good and uniform dissipation of the heat can be achieved by the cooling device.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass der wenigstens eine Kühlkanal in einem gebogenen Kühlelement, insbesondere in einem gebogenen Rohr, ausgebildet ist. So kann die Kühlvorrichtung vorteilhaft einfach gefertigt werden und vorteilhaft stabil ausgebildet sein. According to an advantageous exemplary embodiment, it is provided that the at least one cooling channel is formed in a curved cooling element, in particular in a curved tube. In this way, the cooling device can advantageously be manufactured in a simple manner and can advantageously be of stable design.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass an der Kühlvorrichtung in dem Grundbereich der Kühlvorrichtung eine ebene Auflagefläche ausgebildet ist, an der das Bauteil anlegbar ist. Über die Auflagefläche kann die Wärme des zu kühlenden Bauteils an das Kühlelement und an das Arbeitsmittel in dem Kühlelement übertragen werden. According to an advantageous exemplary embodiment, it is provided that a flat bearing surface is formed on the cooling device in the base region of the cooling device, on which the component can be placed. The heat of the component to be cooled can be transferred to the cooling element and to the working medium in the cooling element via the bearing surface.
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass zwischen den zwei zweiten Mittelsegmenten weitere Paare aus Mittelsegmenten angeordnet sind, die jeweils mittels eines weiteren Umlenksegments in dem Grundbereich miteinander verbunden sind. So wird eine besonders vorteilhafte Geometrie des Kühlkanals erreicht, durch die Wärme mittels Pulsating Heat Pipe sowohl entlang des Grundbereichs (x-Richtung) als auch von dem Grundbereich weg in Richtung Umlenkbereich (y-Richtung) geleitet werden kann. According to an advantageous exemplary embodiment, it is provided that further pairs of central segments are arranged between the two second central segments, which are each connected to one another by means of a further deflection segment in the base area. A particularly advantageous geometry of the cooling channel is thus achieved, through which heat can be conducted by means of a pulsating heat pipe both along the base area (x-direction) and away from the base area in the direction of the deflection area (y-direction).
Gemäß einem vorteilhaften Ausführungsbeispiel ist vorgesehen, dass in der Kühlvorrichtung mehrere Kanäle ausgebildet sind, die fluidisch voneinander getrennt sind und die parallel zueinander verlaufen. Durch mehrere parallel verlaufende Kanäle kann die Kühlvorrichtung weiter verbessert werden und eine größere Fläche, an der Wärme von dem Bauteil abgeleitet werden kann, wird bereitgestellt. According to an advantageous exemplary embodiment, it is provided that a plurality of channels are formed in the cooling device, which are fluidically separated from one another and which run parallel to one another. The cooling device can be further improved by a plurality of channels running in parallel, and a larger area is provided at which heat can be dissipated from the component.
Weiterhin führt die Erfindung zu einer Elektronikanordnung, welche die beschriebene Kühlvorrichtung umfasst. Ferner umfasst die Elektronikanordnung ein zu kühlendes Bauteil, welches insbesondere ein Halbleiterbauteil, beispielsweise eines Kraftfahrzeugs, ist. Das zu kühlende Bauteil ist mit dem 6 Furthermore, the invention leads to an electronics arrangement which includes the described cooling device. Furthermore, the electronics arrangement includes a component to be cooled, which is in particular a semiconductor component, for example of a motor vehicle. The component to be cooled is with the 6
Grundbereich der Kühlvorrichtung wärmeleitend verbunden. Die Kühlvorrichtung ermöglicht dabei eine besonders effektive und zuverlässige Kühlung des Bauteils, um eine Überhitzung des Bauteils zu vermeiden. Base area of the cooling device connected in a thermally conductive manner. The cooling device enables particularly effective and reliable cooling of the component in order to prevent the component from overheating.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigt An embodiment of the invention is shown in the drawing and is explained in more detail in the following description. It shows
Fig. 1 eine schematische Darstellung eines Ausführungsbeispiels der erfindungsgemäßen Kühlvorrichtung, 1 shows a schematic representation of an exemplary embodiment of the cooling device according to the invention,
Fig. 2 ein Ausführungsbeispiel eines Kühlelements, aus dem dieFig. 2 shows an embodiment of a cooling element from which the
Kühlvorrichtung hergestellt sein kann. Cooling device can be made.
Ausführungsformen der Erfindung Embodiments of the invention
Die Figur 1 zeigt ein Ausführungsbeispiel einer Elektronikanordnung 100 mit einer Kühlvorrichtung 1. Die Kühlvorrichtung 1 kann zur Kühlung von Elektronik oder anderen Hotspots aller Art, beispielsweise zur Kühlung von Leistungselektronik in E-Fahrzeugen, passiver Batteriekühlung, Kühlung von Motorsteuergeräten, Ladestationen oder Drive-Units in eBikes verwendet werden. 1 shows an exemplary embodiment of an electronics arrangement 100 with a cooling device 1. The cooling device 1 can be used to cool electronics or other hotspots of all kinds, for example to cool power electronics in electric vehicles, passive battery cooling, cooling of engine control units, charging stations or drive units used in eBikes.
Die in Fig. 1 dargestellte Elektronikanordnung 100 umfasst ein Bauteil 101, beispielsweise mit einer Leistungselektronik, beispielsweise ein Halbleiterbauteil und eine Kühlvorrichtung 1. Die Kühlvorrichtung 1 ist dabei ausgebildet, um das Bauteil 101 zu kühlen. Hierfür ist ein Grundbereich 2 der Kühlvorrichtung 1 wärmeleitend mit dem Bauteil 101 verbunden. Das Bauteil 101 liegt dazu beispielsweise mittelbar oder unmittelbar auf dem Grundbereich 2 der Kühlvorrichtung 1 auf. Dazu ist an der Kühlvorrichtung 1 in dem Grundbereich 2 beispielsweise eine ebene Auflagefläche 9 ausgebildet, an der das Bauteil 101 anliegt. Ist der Kühlkanal 1 beispielsweise in einem gebogenen Kühlelement 8, beispielsweise in einem gebogenen Rohr, ausgebildet, so kann eine Außenseite - 7 - des gebogenen Kühlelements 8, beispielsweise des gebogenen Rohrs, abgeflacht sein, so dass eine ebene Auflagefläche 9 entsteht. The electronics arrangement 100 shown in FIG. 1 comprises a component 101, for example with power electronics, for example a semiconductor component and a cooling device 1. The cooling device 1 is designed to cool the component 101. For this purpose, a base area 2 of the cooling device 1 is connected to the component 101 in a thermally conductive manner. For this purpose, the component 101 rests, for example, directly or indirectly on the base area 2 of the cooling device 1 . For this purpose, for example, a flat support surface 9 is formed on the cooling device 1 in the base area 2, on which the component 101 rests. If the cooling channel 1 is formed, for example, in a curved cooling element 8, for example in a curved tube, then an outer side - 7 - of the curved cooling element 8, for example the curved tube, be flattened so that a flat bearing surface 9 is formed.
Die Kühlvorrichtung 1 umfasst einen Kühlkanal 5. Der Kühlkanal 5 ist vorzugsweise rohrförmig ausgebildet. Der Kühlkanal 5 kann beispielsweise in einem gebogenen Kühlelement 8, insbesondere in einem gebogenen Rohr, ausgebildet sein. Der Kühlkanal 5 kann aber beispielsweise auch in massiven Metallteilen, beispielsweise in Form eines in eine Platte eingefrästen Kühlkanals 5 oder als Kühlkanal 5 zwischen Blechen verlaufen. Der Kühlkanal 5 kann durch mehrere Teile der Kühlvorrichtung 1, beispielsweise mehrere Rohrabschnitte, verlaufen, die miteinander, beispielsweise durch Hartlotverbindungen, verbunden sind. Der Kühlkanal 5 kann beispielsweise einen kreisförmigen, einen elliptischen oder einen rechteckförmigen Querschnitt aufweisen. Der Kühlkanal 5 kann beispielsweise einen Durchmesser von etwa 0,5 bis 2 mm aufweisen. Die Kühlvorrichtung 1 kann beispielsweise auch mehrere Kühlkanäle 5 umfassen.The cooling device 1 comprises a cooling channel 5. The cooling channel 5 is preferably of tubular design. The cooling channel 5 can be formed, for example, in a curved cooling element 8, in particular in a curved tube. However, the cooling channel 5 can also run, for example, in solid metal parts, for example in the form of a cooling channel 5 milled into a plate or as a cooling channel 5 between metal sheets. The cooling channel 5 can run through a number of parts of the cooling device 1, for example a number of tube sections, which are connected to one another, for example by brazing connections. The cooling channel 5 can have, for example, a circular, an elliptical or a rectangular cross section. The cooling channel 5 can have a diameter of approximately 0.5 to 2 mm, for example. The cooling device 1 can, for example, also comprise a plurality of cooling channels 5 .
Die Kühlkanäle können beispielsweise parallel zueinander verlaufen und sind beispielsweise fluidisch voneinander getrennt. Umfasst die Kühlvorrichtung 1 mehrere Kühlkanäle 1, so kann die Kühlvorrichtung 1 beispielsweise als gebogenes, flaches Rohr, auch Multiport-Tube genannt, mit mehreren zueinander parallel verlaufenden Kühlkanälen 5 ausgebildet sein. Ein Ausführungsbeispiel solch eines als flaches Rohr ausgebildeten Kühlelements 8 ist in Fig. 2 dargestellt. Das in Fig. 2 dargestellte Kühlelement 8 kann beispielsweise entsprechend des in Fig.1 dargestellten Verlauf des Kühlkanals 5 gebogen werden und dann den Körper der Kühlvorrichtung 1 bilden. The cooling channels can, for example, run parallel to one another and are fluidically separated from one another, for example. If the cooling device 1 comprises a plurality of cooling channels 1, the cooling device 1 can be designed, for example, as a bent, flat tube, also known as a multiport tube, with a number of cooling channels 5 running parallel to one another. An exemplary embodiment of such a cooling element 8 designed as a flat tube is shown in FIG. The cooling element 8 shown in FIG. 2 can be bent, for example, in accordance with the course of the cooling channel 5 shown in FIG.
Ein Ausführungsbeispiel des Verlaufs des Kühlkanals 5 ist in Fig. 1 dargestellt. Der Kühlkanal 5 umfasst mehrere Mittelsegmente 51 und mehrere Umlenksegmente 52. Die Mittelsegmente 51 und die Umlenksegmente 52 stellen dabei Abschnitte des Kühlkanals 5 dar. Neben dem Grundbereich 2 umfasst die Kühlvorrichtung 1 weiterhin einen Umlenkbereich 3. Weiterhin umfasst die Kühlvorrichtung 1 einen Zwischenbereich 4, der zwischen dem Grundbereich 2 und dem Umlenkbereich 3 angeordnet ist. Die Mittelsegmente 51 des Kühlkanals 5 erstrecken sich von dem Grundbereich 2 über den Zwischenbereich 4 zu dem Umlenkbereich 3. Jedes Umlenksegment 52 des Kühlkanals 5 ist jeweils entweder im Grundbereich 2 der Kühlvorrichtung 1 oder im Umlenkbereich 3 der Kühlvorrichtung 1 angeordnet. Die Umlenksegmente 52 bilden jeweils innerhalb 8 des Grundbereichs 2 und innerhalb des Umlenkbereichs 3 eine Richtungsumkehr. Die Umlenksegmente 52 verbinden je zwei Mittelsegmente 51 miteinander. Wie in Figur 1 zu erkennen, erstreckt sich der Kühlkanal 5 von dem Grundbereich 2 der Kühlvorrichtung 1 durch einen Zwischenbereich 4 bis hin zu einem Umlenkbereich 3. Die Mittelsegmente 51 erstrecken sich jeweils von dem Grundbereich 2 zum Umlenkbereich 3, also durch den Zwischenbereich 4 hindurch. Dabei sind alle Mittelsegmente 51 gerade ausgebildet und parallel zueinander angeordnet. Die Mittelsegmente 51 sind alle in einer gemeinsamen Ebene in der Kühlvorrichtung 1 angeordnet. Die Umlenksegmente 52 sind jeweils an den Enden der Mittelsegmente 51 innerhalb des Umlenkbereichs 3 sowie innerhalb der Grundplatte 2 angeordnet und bilden jeweils eine Richtungsumkehr. Dabei verbindet jeweils ein Umlenksegment 52 zwei Mittelsegmente 51 miteinander. Bevorzugt ist der Kühlkanal 5 geschlossen ausgebildet. Hierfür weist der Kühlkanal 5 vorzugsweise einen Verbindungsbereich 58 auf, welcher sich vorzugsweise innerhalb des Umlenkbereichs 3 befindet, und welcher einen geschlossenen Kreislauf des Kühlkanals 5 bildet. Weiter bevorzugt weist der Kühlkanal 5 ein in den Figuren nicht dargestelltes Ventil auf, um beispielsweise eine Evakuierung des Kühlkanals 5 und eine Befüllung des Kühlkanals 5 mit dem Arbeitsmittel 6 zu ermöglichen. An exemplary embodiment of the course of the cooling channel 5 is shown in FIG. The cooling channel 5 comprises a plurality of central segments 51 and a plurality of deflection segments 52. The central segments 51 and the deflection segments 52 represent sections of the cooling channel 5. In addition to the base area 2, the cooling device 1 also has a deflection area 3. The cooling device 1 also has an intermediate area 4, which is arranged between the base area 2 and the deflection area 3 . The central segments 51 of the cooling channel 5 extend from the base area 2 via the intermediate area 4 to the deflection area 3. Each deflection segment 52 of the cooling channel 5 is arranged either in the base area 2 of the cooling device 1 or in the deflection area 3 of the cooling device 1. The deflection segments 52 each form inside 8 of the base area 2 and within the deflection area 3 a reversal of direction. The deflection segments 52 connect two middle segments 51 to each other. As can be seen in Figure 1, the cooling channel 5 extends from the base area 2 of the cooling device 1 through an intermediate area 4 to a deflection area 3. The middle segments 51 each extend from the base area 2 to the deflection area 3, i.e. through the intermediate area 4 . All center segments 51 are straight and arranged parallel to one another. The middle segments 51 are all arranged in a common plane in the cooling device 1 . The deflection segments 52 are each arranged at the ends of the central segments 51 within the deflection area 3 and within the base plate 2 and each form a direction reversal. A deflection segment 52 connects two central segments 51 to one another. The cooling channel 5 is preferably of closed design. For this purpose, the cooling channel 5 preferably has a connecting area 58 which is preferably located within the deflection area 3 and which forms a closed circuit of the cooling channel 5 . More preferably, the cooling channel 5 has a valve, not shown in the figures, in order, for example, to enable the cooling channel 5 to be evacuated and the cooling channel 5 to be filled with the working medium 6 .
Wie in Fig. 1 dargestellt, umfasst die Kühlvorrichtung 1 mehrere Paare von Mittelsegmenten 51. Die beiden Mittelsegmente 51 eines Paares von Mittelsegmenten 51 sind mit jeweils einem Umlenksegment 52 in dem Grundbereich 2 der Kühlvorrichtung 1 miteinander verbunden. In diesem Ausführungsbeispiel umfasst die Kühlvorrichtung 1 sechs Paare von Mittelsegmenten 51 und entsprechend sechs Umlenksegmente 52 im Grundbereich 2 der Kühlvorrichtung 1. Jedes der Umlenksegmente 52 im Grundbereich 2 der Kühlvorrichtung 1 verbindet die zwei Mittelsegmente 51 eines Paares an Mittelsegmenten 51 miteinander. Wie in Fig. 1 dargestellt, bilden zwei erste Mittelsegmente 51a ein erstes Paar aus Mittelsegmenten 51, wobei die zwei ersten Mittelsegmente 51a durch ein erstes Umlenksegment 52a im Grundbereich 2 der Kühlvorrichtung 1 miteinander verbunden sind. Weiterhin bilden zwei zweite Mittelsegmente 51b ein zweites Paar aus Mittelsegmenten 51, wobei die zwei zweiten Mittelsegmente 51b durch ein zweites Umlenksegment 52b im Grundbereich 2 der Kühlvorrichtung 1 miteinander verbunden sind. - 9 - As shown in FIG. 1, the cooling device 1 comprises several pairs of center segments 51. The two center segments 51 of a pair of center segments 51 are each connected to one another with a deflection segment 52 in the base region 2 of the cooling device 1. In this exemplary embodiment, the cooling device 1 comprises six pairs of center segments 51 and correspondingly six deflection segments 52 in the base area 2 of the cooling device 1. Each of the deflection segments 52 in the base area 2 of the cooling device 1 connects the two center segments 51 of a pair of center segments 51 to one another. As shown in FIG. 1, two first center segments 51a form a first pair of center segments 51, the two first center segments 51a being connected to one another by a first deflection segment 52a in the base region 2 of the cooling device 1. Furthermore, two second center segments 51b form a second pair of center segments 51, the two second center segments 51b being connected to one another by a second deflection segment 52b in the base region 2 of the cooling device 1. - 9 -
Weiterhin bilden zwei dritte Mittelsegmente 51c ein drittes Paar aus Mittelsegmenten 51, wobei die zwei dritten Mittelsegmente 51c durch ein drittes Umlenksegment 52c im Grundbereich 2 der Kühlvorrichtung 1 miteinander verbunden sind. Weiterhin umfasst die Kühlvorrichtung 1 in diesem Ausführungsbeispiel weiterhin ein viertes Paar aus zwei vierten Mittelsegmenten 51 d, die durch ein viertes Umlenksegment 52d im Grundbereich 2 miteinander verbunden sind, ein fünftes Paar aus zwei fünften Mittelsegmenten 51 e, die durch ein fünftes Umlenksegment 52e im Grundbereich 2 miteinander verbunden sind und ein sechstes Paar aus zwei sechsten Mittelsegmenten 51 f, die durch ein sechstes Umlenksegment 52f im Grundbereich 2 miteinander verbunden sind.Furthermore, two third center segments 51c form a third pair of center segments 51, the two third center segments 51c being connected to one another by a third deflection segment 52c in the base region 2 of the cooling device 1. Furthermore, the cooling device 1 in this exemplary embodiment also comprises a fourth pair of two fourth center segments 51d, which are connected to one another by a fourth deflection segment 52d in the base area 2, a fifth pair of two fifth center segments 51e, which are connected by a fifth deflection segment 52e in the base area 2 are connected to each other and a sixth pair of two sixth center segments 51 f, which are connected to each other by a sixth deflection segment 52f in the base area 2.
Die Kühlvorrichtung 1 kann aber auch mehr oder weniger Paare an Mittelsegmenten 51 umfassen. However, the cooling device 1 can also comprise more or fewer pairs of middle segments 51 .
Die Mittelsegmente 51 erstrecken sich in einer y-Richtung von dem Grundbereich 2 der Kühlvorrichtung 1 zu dem Umlenkbereich 3 der Kühlvorrichtung 1 hin. Die y-Richtung verläuft somit vom Grundbereich 2 der Kühlvorrichtung 1 zum Umlenkbereich 3 der Kühlvorrichtung 1. Ist an der Kühlvorrichtung 1 beispielsweise eine Auflagefläche 9 ausgebildet, so kann die y-Richtung beispielsweise senkrecht zur Auflagefläche 9 verlaufen. Die y-Richtung steht senkrecht zu einer x-Richtung. Die Mittelsegmente 51 verlaufen parallel zueinander. Die Mittelsegmente 51 sind bezüglich der x-Richtung nebeneinander angeordnet. Die Mittelsegmente 51 verlaufen in einer gemeinsamen Ebene. Die gemeinsame Ebene, in der die Mittelsegmente 51 verlaufen, wird durch die x- Richtung und die y-Richtung aufgespannt. Wie in Fig. 1 dargestellt, verlaufen auch die Umlenksegmente 52 in dieser gemeinsamen Ebene. The middle segments 51 extend in a y-direction from the base area 2 of the cooling device 1 to the deflection area 3 of the cooling device 1 . The y-direction thus runs from the base region 2 of the cooling device 1 to the deflection region 3 of the cooling device 1. If, for example, a bearing surface 9 is formed on the cooling device 1, the y-direction can run perpendicular to the bearing surface 9, for example. The y-direction is perpendicular to an x-direction. The middle segments 51 run parallel to one another. The middle segments 51 are arranged next to one another with respect to the x-direction. The middle segments 51 run in a common plane. The common plane in which the middle segments 51 run is spanned by the x direction and the y direction. As shown in FIG. 1, the deflection segments 52 also run in this common plane.
Die zwei zweiten Mittelsegmente 51b sind zwischen den zwei ersten Mittelsegmenten 51a angeordnet. Weiterhin sind in diesem Ausführungsbeispiel die zwei dritten Mittelsegmente 51c zwischen den zwei zweiten Mittelsegmenten 51b abgeordnet. Weiterhin können, wie in diesem Ausführungsbeispiel, die zwei vierten Mittelsegmente 51 d zwischen den zwei dritten Mittelsegmenten 51c abgeordnet sein, die zwei fünften Mittelsegmente 51e zwischen den zwei vierten Mittelsegmenten 51 d abgeordnet sein und/oder die zwei sechsten Mittelsegmente 51 f zwischen den zwei fünften Mittelsegmenten 51 e angeordnet sein. 10 The two second center segments 51b are arranged between the two first center segments 51a. Furthermore, in this exemplary embodiment, the two third center segments 51c are arranged between the two second center segments 51b. Furthermore, as in this exemplary embodiment, the two fourth center segments 51d can be arranged between the two third center segments 51c, the two fifth center segments 51e can be arranged between the two fourth center segments 51d and/or the two sixth center segments 51f can be arranged between the two fifth Be arranged middle segments 51 e. 10
Jedes der Umlenksegmente 51 in dem Grundbereich 2 der Kühlvorrichtung 1 weist je einen Zwischenabschnitt 56 und je zwei Umlenkabschnitte 57 auf. Der Zwischenabschnitt 56 eines Umlenksegments 51 erstreckt sich dabei zwischen den Umlenkabschnitten 57 diese Umlenksegments 51. Der Zwischenabschnitt 56 des Umlenksegments 51 erstreckt sich beispielsweise in x-Richtung. Der Zwischenabschnitt 56 des Umlenksegments 51 erstreckt sich beispielsweise parallel zur Auflagefläche 9 des Grundbereichs 2 der Kühlvorrichtung 1. Der Zwischenabschnitt 56 des Umlenksegments 51 verläuft gerade zwischen den beiden Umlenkabschnitten 57 des Umlenksegment 51. An den Zwischenabschnitten 56 der Umlenksegmente 51 verläuft der Kühlkanal 5 gerade, beispielsweise in x-Richtung. An den Umlenkabschnitten 57 des Umlenksegments 51 biegt der Kühlkanal 5 von der y-Richtung in die x-Richtung oder von der x-Richtung in die y-Richtung ab. Wie in Fig. 1 dargestellt, verlaufen die Zwischenabschnitte 56 der Umlenksegmente 51 in diesem Ausführungsbeispiel parallel zueinander. Beispielsweise verläuft der erste Zwischenabschnitt 56a des ersten Umlenksegments 51a parallel zu dem zweiten Zwischenabschnitt 56b des zweiten Umlenksegments 51b. In dem in Fig. 1 dargestellten Ausführungsbeispiel verlaufen die Zwischenabschnitte 56 aller Umlenksegmente 51 parallel zueinander. Ist der Kühlkanal 5 in einem als gebogenes Rohr ausgebildeten Kühlelement 8 ausgebildet, so können die Teile des Rohres, in denen die Zwischenabschnitte 56 des Kühlkanals 5 ausgebildet sind, parallel zueinander verlaufen und/oder aufeinander aufliegen. So wird eine vorteilhaft gute Wärmeleitung im Grundbereich 2 der Kühlvorrichtung 1 zwischen den Zwischenabschnitten 56 der einzelnen Umlenksegmente 51 erreicht. Über die in dem Grundbereich 2 der Kühlvorrichtung 1 verlaufenden Zwischenabschnitte 56 wird die Spreizung der Wärme in x-Richtung erreicht. Each of the deflection segments 51 in the base region 2 of the cooling device 1 has an intermediate section 56 and two deflection sections 57 each. The intermediate section 56 of a deflection segment 51 extends between the deflection sections 57 of this deflection segment 51. The intermediate section 56 of the deflection segment 51 extends in the x-direction, for example. The intermediate section 56 of the deflection segment 51 extends, for example, parallel to the bearing surface 9 of the base region 2 of the cooling device 1. The intermediate section 56 of the deflection segment 51 runs straight between the two deflection sections 57 of the deflection segment 51. The cooling channel 5 runs straight at the intermediate sections 56 of the deflection segments 51, for example in the x-direction. At the deflection sections 57 of the deflection segment 51, the cooling channel 5 bends from the y-direction into the x-direction or from the x-direction into the y-direction. As shown in FIG. 1, the intermediate sections 56 of the deflection segments 51 run parallel to one another in this exemplary embodiment. For example, the first intermediate section 56a of the first deflection segment 51a runs parallel to the second intermediate section 56b of the second deflection segment 51b. In the exemplary embodiment illustrated in FIG. 1, the intermediate sections 56 of all deflection segments 51 run parallel to one another. If the cooling channel 5 is formed in a cooling element 8 designed as a bent tube, the parts of the tube in which the intermediate sections 56 of the cooling channel 5 are formed can run parallel to one another and/or rest on one another. In this way, advantageously good heat conduction is achieved in the base area 2 of the cooling device 1 between the intermediate sections 56 of the individual deflection segments 51 . The heat is spread in the x-direction via the intermediate sections 56 running in the base area 2 of the cooling device 1 .
Das Prinzip der anhand der in Fig. 1 dargestellten Ausführungsbeispiels der Kühlvorrichtung 1 lässt sich zudem auch auf die dritte Raumrichtung, also in eine senkrecht zur x-Richtung und senkrecht zur y-Richtung stehende z-Richtung, anwenden. In diesem Fall würden die in Fig. 1 gezeigten, im Grundbereich 2 der Kühlvorrichtung 1 parallel in x-Richtung verlaufenden Umlenksegmente 52 des Kühlkanals 5, beispielsweise über Kreuz in x- Richtung und in z-Richtung verlaufen, sodass eine Spreizung der Wärme in dem Grundbereich 2 der Kühlvorrichtung 1 in x-Richtung und z-Richtung erfolgt. So kann die 11 The principle of the exemplary embodiment of the cooling device 1 illustrated in FIG. 1 can also be applied to the third spatial direction, ie in a z-direction perpendicular to the x-direction and perpendicular to the y-direction. In this case, the deflection segments 52 of the cooling channel 5 shown in Fig. 1 and running parallel in the x-direction in the base area 2 of the cooling device 1 would run, for example crosswise in the x-direction and in the z-direction, so that the heat in the Base area 2 of the cooling device 1 takes place in the x-direction and z-direction. That's how she can 11
Wärmespreizung vorteilhaft in alle drei Raumrichtungen überwiegend durch den als Pulsating Heat Pipe betriebenen Kühlkanal 5 erfolgen. Heat spreading advantageously takes place in all three spatial directions predominantly through the cooling channel 5 operated as a pulsating heat pipe.
Innerhalb des Kühlkanals 5 befindet sich ein Arbeitsmittel 6, welches gleichzeitig in flüssigen und in gasförmigen Zustand vorliegt. Das Arbeitsmittel 6 liegt in dem Kühlkanal 5 gleichzeitig gasförmig und flüssig vor, mit anderen Worten teils gasförmig und teils flüssig. Das heißt, das Arbeitsmittel 6 liegt im Kühlkanal 5 zweiphasig vor. Insbesondere liegen dabei innerhalb des Kühlkanals 5 Gasblasen sowie Flüssigkeitssäulen gleichzeitig vor. Vorzugsweise nehmen bei einer Nenntemperatur die Gasblasen sowie die Flüssigkeitssäulen ein ähnlich großes Volumen ein. Besonders bevorzugt nimmt der gasförmige Anteil des Arbeitsmittels 6 bei der Nenntemperatur 30 % bis 70 % eines Innenvolumens des Kühlkanals 5 ein, wobei das restliche Innenvolumen durch den flüssigen Anteil des Arbeitsmittels 6 eingenommen wird. In Abhängigkeit einer Temperatur der Kühlvorrichtung 1 ändert sich dabei das Volumenverhältnis durch Verdampfen oder Kondensieren des Arbeitsmittels 6. So kann der Kühlkanal 5 in der Kühlvorrichtung 1 als Pulsating Heat Pipe betrieben werden. Within the cooling channel 5 there is a working medium 6 which is simultaneously in the liquid and in the gaseous state. The working medium 6 is present in the cooling channel 5 in gaseous and liquid form at the same time, in other words partly gaseous and partly liquid. This means that the working medium 6 is present in two phases in the cooling channel 5 . In particular, gas bubbles and liquid columns are simultaneously present within the cooling channel 5 . At a nominal temperature, the gas bubbles and the liquid columns preferably occupy a similarly large volume. The gaseous portion of the working medium 6 particularly preferably occupies 30% to 70% of an internal volume of the cooling channel 5 at the nominal temperature, with the remaining internal volume being occupied by the liquid portion of the working medium 6 . Depending on the temperature of the cooling device 1, the volume ratio changes as a result of evaporation or condensation of the working medium 6. The cooling channel 5 in the cooling device 1 can thus be operated as a pulsating heat pipe.
Bei einer Erwärmung des Grundbereichs 2 der Kühlvorrichtung 1 durch das Bauteil 101 erfolgt eine Erwärmung des Kühlkanals 5 sowie des darin befindlichen Arbeitsmittels 6. Durch eine Kombination aus Verdampfung, Kondensation, konvektivem Wärmetransport und Wärmeleitung erfolgt ein Abtransport der Wärme von dem Grundbereich 2 der Kühlvorrichtung 1 und somit eine Kühlung des Halbleiterbauteils 101. Besonders bevorzugt weist das Arbeitsmittel 6 eine kritische Temperatur auf, die größer als eine maximale Betriebstemperatur ist. Vorzugsweise weist das Arbeitsmittel 6 eine kritische Temperatur von mindestens 233 K, vorzugsweise mindestens 273 K besonders vorzugsweise mindestens 373 K, und insbesondere maximal 533 K, auf. Als kritische Temperatur wird dabei eine Temperatur eines Stoffes am kritischen Punkt angesehen. Dadurch wird sichergestellt, dass das Arbeitsmittel 6 in einem bevorzugten Betriebsbereich, in welchem das Arbeitsmittel 6 insbesondere bei Temperaturen von 222 K bis 473k, insbesondere von 273 K bis 373 K, vorliegt, zweiphasig innerhalb des Kühlkanals 5 vorliegen kann. Vorzugsweise ist das Arbeitsmittel 6 ein organisches Kältemittel, welches beispielsweise in Fahrzeugklimaanlagen eingesetzt wird, wie insbesondere 2, 3,3,3- Tetrafluorpropen, auch als R1234yf bezeichnet, R1233zd(E) usw. Besonders - 12 bevorzugt weist das Arbeitsmittel 6 einen Schmelzpunkt auf, welcher maximal 273 K, vorzugsweise maximal 233K, besonders bevorzugt maximal 213 K, beträgt. Selbstverständlich sind auch weitere Ausführungsbeispiele und Mischformen der dargestellten Ausführungsbeispiele möglich. When the base area 2 of the cooling device 1 is heated by the component 101, the cooling channel 5 and the working medium 6 located therein are heated. A combination of evaporation, condensation, convective heat transport and heat conduction results in the heat being transported away from the base area 2 of the cooling device 1 and thus a cooling of the semiconductor component 101. The working medium 6 particularly preferably has a critical temperature which is greater than a maximum operating temperature. The working medium 6 preferably has a critical temperature of at least 233 K, preferably at least 273 K, particularly preferably at least 373 K, and in particular at most 533 K. A temperature of a substance at the critical point is regarded as the critical temperature. This ensures that the working medium 6 can be present in two phases within the cooling channel 5 in a preferred operating range in which the working medium 6 is present in particular at temperatures from 222 K to 473 K, in particular from 273 K to 373 K. The working medium 6 is preferably an organic refrigerant, which is used for example in vehicle air conditioning systems, such as in particular 2,3,3,3-tetrafluoropropene, also referred to as R1234yf, R1233zd(E) etc., in particular The working medium 6 preferably has a melting point which is at most 273K, preferably at most 233K, particularly preferably at most 213K. Of course, further exemplary embodiments and mixed forms of the exemplary embodiments shown are also possible.

Claims

- 13 - Ansprüche - 13 - Claims
1. Kühlvorrichtung, zum Kühlen von Bauteilen (101) umfassend: 1. Cooling device for cooling components (101) comprising:
- einen in der Kühlvorrichtung (1) ausgebildeten Kühlkanal (5), welcher mehrere Mittelsegmente (51) und mehrere Umlenksegmente (52) aufweist, wobei der Kühlkanal (5) mit einem Arbeitsmittel (6) gefüllt ist, welches gleichzeitig gasförmig und flüssig in dem Kühlkanal (5) vorliegt, - A cooling channel (5) formed in the cooling device (1) and having a number of central segments (51) and a number of deflection segments (52), the cooling channel (5) being filled with a working medium (6) which is gaseous and liquid at the same time in the cooling channel (5) is present,
- einen Grundbereich (2) der Kühlvorrichtung (1), welcher wärmeleitend mit einem zu kühlenden Bauteil (101) verbindbar ist, - a base area (2) of the cooling device (1), which can be thermally conductively connected to a component (101) to be cooled,
- einen Umlenkbereich (3) der Kühlvorrichtung (1), - a deflection area (3) of the cooling device (1),
- einen Zwischenbereich (4) zwischen dem Grundbereich (2) und dem Umlenkbereich (3), wobei sich die Mittelsegmente (51) jeweils von dem Grundbereich (2) zu dem Umlenkbereich (3) erstrecken, wobei die Umlenksegmente (52) jeweils innerhalb des Grundbereichs (2) und innerhalb des Umlenkbereichs (3) eine Richtungsumkehr bilden und jeweils zwei Mittelsegmente (51) miteinander verbinden, dadurch gekennzeichnet, dass ein erstes Umlenksegment (52a) in dem Grundbereich (2) zwei erste Mittelsegmente (51a) miteinander verbindet, wobei zwischen den zwei ersten Mittelsegmenten (51a) wenigstens zwei zweite Mittelsegmente (51b) angeordnet sind, wobei die zwei zweiten Mittelsegmente (51b) in dem Grundbereich (2) mittels eines zweiten Umlenksegments (52b) miteinander verbunden sind. - an intermediate area (4) between the base area (2) and the deflection area (3), the middle segments (51) each extending from the base area (2) to the deflection area (3), the deflection segments (52) each being within the Base area (2) and within the deflection area (3) form a direction reversal and connect two middle segments (51) to each other, characterized in that a first deflection segment (52a) in the base area (2) connects two first middle segments (51a) to each other, whereby at least two second center segments (51b) are arranged between the two first center segments (51a), the two second center segments (51b) being connected to one another in the base area (2) by means of a second deflection segment (52b).
2. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Mittelsegmente (51a) und die zweiten Mittelsegmente (51b) in einer gemeinsamen Ebene verlaufen. 2. Cooling device according to one of the preceding claims, characterized in that the first middle segments (51a) and the second middle segments (51b) extend in a common plane.
3. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Umlenksegment (52a) und das zweite Umlenksegment (52b) in einer gemeinsamen Ebene verlaufen. 3. Cooling device according to one of the preceding claims, characterized in that the first deflection segment (52a) and the second deflection segment (52b) extend in a common plane.
4. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Umlenksegment (52a) einen ersten Zwischenabschnitt (56a) aufweist, in dem sich das Umlenksegment (52a) gerade - In zwischen zwei ersten Umlenkabschnitten (57a) erstreckt, wobei das zweite Umlenksegment (52b) einen zweiten Zwischenabschnitt (56b) aufweist, in dem sich das zweite Umlenksegment (52b) gerade zwischen zwei zweiten Umlenkabschnitten (57b) erstreckt. 4. Cooling device according to one of the preceding claims, characterized in that the first deflection segment (52a) has a first intermediate section (56a) in which the deflection segment (52a) is straight - In between two first deflection sections (57a), wherein the second deflection segment (52b) has a second intermediate section (56b) in which the second deflection segment (52b) extends straight between two second deflection sections (57b).
5. Kühlvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der erste Zwischenabschnitt (56a) parallel zu dem zweiten Zwischenabschnitt (56b) verläuft. 5. Cooling device according to claim 4, characterized in that the first intermediate section (56a) runs parallel to the second intermediate section (56b).
6. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der wenigstens eine Kühlkanal (5) in einem gebogenen Kühlelement (8), insbesondere in einem gebogenen Rohr, ausgebildet ist. 6. Cooling device according to one of the preceding claims, characterized in that the at least one cooling channel (5) is formed in a curved cooling element (8), in particular in a curved tube.
7. Kühlvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass an der Kühlvorrichtung (1) in dem Grundbereich (2) der Kühlvorrichtung (1) eine ebene Auflagefläche (9) ausgebildet ist, an der das Bauteil (101) anlegbar ist. 7. Cooling device according to claim 6, characterized in that on the cooling device (1) in the base region (2) of the cooling device (1) a flat bearing surface (9) is formed, on which the component (101) can be placed.
8. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den zwei zweiten Mittelsegmenten (51b) weitere Paare aus Mittelsegmenten (51c, 51 d, 51e, 51f) angeordnet sind, die jeweils mittels eines weiteren Umlenksegments (52c, 52d, 52e, 52f) in dem Grundbereich (2) miteinander verbunden sind. 8. Cooling device according to one of the preceding claims, characterized in that further pairs of central segments (51c, 51d, 51e, 51f) are arranged between the two second central segments (51b), which are each connected by means of a further deflection segment (52c, 52d, 52e , 52f) are connected to each other in the base area (2).
9. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Kühlvorrichtung (1) mehrere Kanäle (5) ausgebildet sind, die fluidisch voneinander getrennt sind und die parallel zueinander verlaufen. 9. Cooling device according to one of the preceding claims, characterized in that in the cooling device (1) a plurality of channels (5) are formed which are fluidically separated from one another and which run parallel to one another.
10. Elektronikanordnung, umfassend: 10. Electronics assembly comprising:
- ein Bauteil (101), insbesondere ein Halbleiterbauteil, und - a component (101), in particular a semiconductor component, and
- eine Kühlvorrichtung (1) nach einem der vorhergehenden Ansprüche, - A cooling device (1) according to any one of the preceding claims,
- wobei das Bauteil (101) mit dem Grundbereich (2) der Kühlvorrichtung (1), insbesondere mit wenigstens einem Umlenksegment (52) der Kühlvorrichtung (1) wärmeleitend verbunden ist. - The component (101) being thermally conductively connected to the base region (2) of the cooling device (1), in particular to at least one deflection segment (52) of the cooling device (1).
PCT/EP2022/060359 2021-05-11 2022-04-20 Cooling device WO2022238085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22724008.2A EP4337905A1 (en) 2021-05-11 2022-04-20 Cooling device
CN202280034190.1A CN117280174A (en) 2021-05-11 2022-04-20 Cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021204756.4 2021-05-11
DE102021204756.4A DE102021204756A1 (en) 2021-05-11 2021-05-11 cooler

Publications (1)

Publication Number Publication Date
WO2022238085A1 true WO2022238085A1 (en) 2022-11-17

Family

ID=81748357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/060359 WO2022238085A1 (en) 2021-05-11 2022-04-20 Cooling device

Country Status (4)

Country Link
EP (1) EP4337905A1 (en)
CN (1) CN117280174A (en)
DE (1) DE102021204756A1 (en)
WO (1) WO2022238085A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes
JP2001272188A (en) * 2000-12-20 2001-10-05 Actronics Co Ltd Thin diameter tunnel plate heat pipe
US20080087406A1 (en) * 2006-10-13 2008-04-17 The Boeing Company Cooling system and associated method for planar pulsating heat pipe
US7547124B2 (en) * 2006-11-17 2009-06-16 Foxconn Technology Co., Ltd. LED lamp cooling apparatus with pulsating heat pipe
US20100212865A1 (en) * 2007-10-08 2010-08-26 Lee Sangcheol Heat dissipating device using heat pipe
KR101023823B1 (en) * 2008-11-20 2011-03-22 이상철 Heat pipe type dissipating device
EP2858464A1 (en) * 2013-10-03 2015-04-08 ABB Oy Electric apparatus
US9909817B2 (en) * 2014-08-19 2018-03-06 Abb Technology Oy Cooling element
US20200309466A1 (en) * 2019-03-26 2020-10-01 Raytheon Company Oscillating heat pipe using ultrasonic additive manufacturing
US20210136954A1 (en) * 2019-10-31 2021-05-06 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026890A (en) * 1995-06-29 2000-02-22 Actronics Kabushiki Kaisha Heat transfer device having metal band formed with longitudinal holes
JP2001272188A (en) * 2000-12-20 2001-10-05 Actronics Co Ltd Thin diameter tunnel plate heat pipe
US20080087406A1 (en) * 2006-10-13 2008-04-17 The Boeing Company Cooling system and associated method for planar pulsating heat pipe
US7547124B2 (en) * 2006-11-17 2009-06-16 Foxconn Technology Co., Ltd. LED lamp cooling apparatus with pulsating heat pipe
US20100212865A1 (en) * 2007-10-08 2010-08-26 Lee Sangcheol Heat dissipating device using heat pipe
KR101023823B1 (en) * 2008-11-20 2011-03-22 이상철 Heat pipe type dissipating device
EP2858464A1 (en) * 2013-10-03 2015-04-08 ABB Oy Electric apparatus
US9909817B2 (en) * 2014-08-19 2018-03-06 Abb Technology Oy Cooling element
US20200309466A1 (en) * 2019-03-26 2020-10-01 Raytheon Company Oscillating heat pipe using ultrasonic additive manufacturing
US20210136954A1 (en) * 2019-10-31 2021-05-06 Hamilton Sundstrand Corporation Oscillating heat pipe integrated thermal management system for power electronics

Also Published As

Publication number Publication date
DE102021204756A1 (en) 2022-11-17
CN117280174A (en) 2023-12-22
EP4337905A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
WO2010012772A1 (en) Device for cooling a heat source of a motor vehicle
DE102014106954A1 (en) Device for heating and cooling a battery pack
DE102008060777A1 (en) Method and arrangement for cooling heat-generating computer components
DE102018203231A1 (en) HEAT EXCHANGERS FOR COOLING SEVERAL LAYERS OF ELECTRONIC MODULES
EP3323156B1 (en) Thermoelectric heat exchanger
EP2305016B1 (en) Aircraft signal computer system having a plurality of modular signal computer units
EP2573831B1 (en) Segmented flat tube of a thermoelectric heat pump and thermoelectric heat transfer unit
WO2022238085A1 (en) Cooling device
WO2022238086A1 (en) Cooling device
DE102018211666A1 (en) cooling arrangement
EP4338200A1 (en) Cooling device
DE102010013467A1 (en) Tempering element for use in tempering device for e.g. hybrid car, has heat conductive layers arranged between Peltier element layers, where electric current causes tempering of conductive layers based on Peltier effect
DE202010011784U1 (en) Slope-shaped low pressure thermosyphon cooler driven by pressure gradient
EP2930782B1 (en) Cooling element and battery system
DE102018216397A1 (en) Power electronics for an electrically drivable vehicle, electrically drivable vehicle
DE102021213315A1 (en) cooler
WO2011128202A1 (en) Electrically insulated heating pipe having sub-regions regions made of glass
DE102021214936A1 (en) cooler
EP2469213B1 (en) Thermo-electric heat exchange
EP1598866B1 (en) Cooling device
DE102020200107A1 (en) Cooling device
DE102005013457B4 (en) Electronic device, for example computer with a cooling system
EP4088316A1 (en) Cooling device
DE202020004672U1 (en) Cooling device electrically and thermally decoupled
WO2022258326A1 (en) Assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22724008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/013303

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022724008

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022724008

Country of ref document: EP

Effective date: 20231211