WO2022237557A1 - 一种非侵入式的轴向柱塞泵缸体动态特性测量方法 - Google Patents

一种非侵入式的轴向柱塞泵缸体动态特性测量方法 Download PDF

Info

Publication number
WO2022237557A1
WO2022237557A1 PCT/CN2022/089845 CN2022089845W WO2022237557A1 WO 2022237557 A1 WO2022237557 A1 WO 2022237557A1 CN 2022089845 W CN2022089845 W CN 2022089845W WO 2022237557 A1 WO2022237557 A1 WO 2022237557A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cylinder
cylinder body
pump
radial displacement
Prior art date
Application number
PCT/CN2022/089845
Other languages
English (en)
French (fr)
Inventor
张军辉
徐兵
赵旗
许浩功
黄伟迪
吕飞
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022237557A1 publication Critical patent/WO2022237557A1/zh
Priority to US18/508,268 priority Critical patent/US20240077072A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/02Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by magnetic means, e.g. reluctance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0802Vibration

Definitions

  • the invention belongs to the field of state monitoring and fault diagnosis, in particular to dynamic characteristic measurement, working condition health monitoring and fault diagnosis of a rotary cylinder.
  • it relates to a method for measuring the dynamic characteristics of a non-invasive axial piston pump cylinder body.
  • axial piston pumps In order to meet the needs of intelligent hydraulic systems and components, axial piston pumps require self-information awareness to monitor the health status in operation. On the other hand, fault diagnosis is also an important research field for axial piston pumps.
  • Previous studies on condition monitoring and fault detection of axial piston pumps mainly relied on vibration signals of the casing, supplemented by pressure signals and leakage flow signals.
  • the vibration signal of the housing is also affected by other factors.
  • the fault signal can only be measured if it is transmitted to the housing through a different transmission path, which weakens the fault signal. Therefore, the weak changes in vibration signals caused by faults are submerged in the background noise, which brings great challenges to the condition monitoring and fault detection of axial piston pumps.
  • the purpose of the present invention is to invent a new non-contact measurement and monitoring method for the deficiencies of the prior art. This method requires less changes to the pump. Through the signal extraction method, the cylinder of the test pump under real working conditions can be accurately obtained. Body translation and tilt motion signals.
  • a non-invasive method for measuring the dynamic characteristics of an axial piston pump cylinder which specifically includes the following steps:
  • the throttle valve control in the road uses the speed sensor to measure the speed pulse of the test pump synchronously, and uses two sets of eddy current sensors to separately collect the radial displacement signals along the X-axis and Y-axis on the two sections of the test pump cylinder surface, specifically: According to the rotational speed pulse signal, it is converted into the rotation angle signal of the spindle.
  • the rotation angle signal and the displacement signal are divided into several segments according to the rotation cycle, and then the signals of each segment are interpolated to ensure that they have the same data length.
  • the displacement data of each data segment is averaged according to the data points, and then the relationship between the displacement and the rotation angle is obtained according to the rotation angle signal, and the radial displacement signal of one rotation of the cylinder can be obtained.
  • the encoder measures the speed pulse of the test pump, which is used to accurately test the rotation period of the pump cylinder, the encoder has a zero signal, which can mark the start of the cylinder measurement profile Position, the cylinder displacement signal is collected by two sets of eddy current sensors, and the decelerated plunger pump cylinder will not produce obvious overturning. At this time, the radial displacement signal can be regarded as the contour signal of the cylinder. According to the encoder measurement pulse, the contour signal collected by the eddy current sensor is resampled in each rotation cycle, so that the data length of the contour signal is consistent with the data length of the radial displacement signal collected in step (1) in each cycle .
  • the delay between the radial displacement signal and the contour signal is calculated by the cross-correlation method based on the characteristic extremum, and the alignment between the radial displacement signal and the contour signal is realized by moving the contour signal.
  • the displacement of the center of the two measuring sections of the cylinder is obtained by the difference between the aligned radial displacement signal and the contour signal.
  • the radial vibration and overturning characteristics of the cylinder are calculated according to the displacement of the centers of the two measuring sections of the cylinder.
  • test pump casing for installing eddy current sensors, and every two eddy current sensors are used as a group, and the eddy current sensors are fixed with double nuts to prevent loosening during operation.
  • the non-contact measurement method reduces the impact of the test equipment on the cylinder movement, ensures the real movement conditions, and can be used for measurement and monitoring of actual conditions.
  • the real displacement signal of the cylinder is accurately stripped to ensure the accuracy of the transient analysis results, and the test accuracy is improved.
  • the motion measurement of the cylinder body under different failure modes can be further studied, and online fault detection can be carried out based on the motion signal of the cylinder body.
  • Figure 1 is a schematic diagram of the dynamic characteristics of the test pump cylinder
  • Fig. 2 is a schematic diagram of the testing principle of the inventive method
  • Fig. 3 is a schematic diagram of cylinder movement
  • Fig. 4 is a schematic diagram of measurement signal and profile signal
  • Figure 5 is a schematic diagram of test results
  • Fig. 6 is a schematic diagram of the cylinder motion trajectory
  • Fig. 7 is a schematic diagram of the overturning movement of the cylinder.
  • the test pump is shown in Figure 1, and the schematic diagram of the hydraulic test circuit used is shown in Figure 2.
  • the motor 1, torque meter 2, shaft coupling 3, and test pump 4 are connected in sequence, and the test pump 4 passes through the
  • the second flowmeter 9 and the filter 10 are connected with the fuel tank 12. Meanwhile, the test pump 4 is also connected with the fuel tank 12 through the control valve 6, the first flowmeter 8, and the second filter 11.
  • the pressure sensor 5 collects the test pump 4 signal.
  • the temperature regulator 7 and the fuel tank 12 form a circuit, and the control system collects signals from the torque meter 2, the pressure sensor 5, the first flow meter 8, and the second flow meter 9 to control the motor 1, the control valve 6 and the temperature regulator 7.
  • the signal acquisition system collects sensor signals on the test pump 4 .
  • the test bench is mainly composed of a motor, a test pump, a speed sensor, a throttle valve, and the motor is connected to a double-shaft reducer, and the reducer is respectively connected to the test pump and the encoder.
  • the global Cartesian coordinate system X-Y-Z is adopted, and its origin is located at the sub-center of the spline.
  • the Z axis coincides with the axis center line and points to the rear end cover, and the Y axis points from the bottom dead center of the valve plate to the top dead center.
  • the axis rotates counterclockwise around the Z axis.
  • the method of the invention adopts two sets of eddy current sensors (S1 and S2, S3 and S4) to measure the radial displacement along the X axis and the Y axis on the two sections of the cylinder surface.
  • Four eddy current sensors are installed on the housing, four threaded holes are made, and double nuts are used to fix them to prevent the eddy current sensors from loosening during operation.
  • the displacement data of each data segment is averaged according to the data points, and then the relationship between the displacement and the rotation angle is obtained according to the rotation angle signal, and a group of radial displacement signals of one cylinder rotation can be obtained.
  • the remaining three sets of data are processed in the same way, and a total of four sets of cylinder radial displacement signals are obtained, as shown in Figure 4.
  • the solid line is a set of cylinder radial displacement signals.
  • the contour signal of the cylinder block of the axial piston pump is collected at low speed and low pressure. Accurate contour signals are obtained by contour signal calibration method.
  • the test pump is driven by a motor through a reducer.
  • the reducer is a double-shaft reducer, which is connected to the test pump and the encoder respectively.
  • the encoder measures the speed pulse signal of the test pump, and collects two sections of the cylinder surface through two sets of eddy current sensors. The last four groups of radial displacement signals. Due to the low speed and low pressure, the load on the piston pump cylinder is very small, and no obvious overturning will occur. At this time, the radial displacement signal can be regarded as the contour signal of the cylinder. With the data processing process of collecting radial displacement signals, a total of four groups of cylinder contour signals are obtained. As shown in Figure 4, the dotted line is a group of cylinder contour signals.
  • the encoder Since the encoder has a zero signal but the speed sensor has no zero signal, it is necessary to align the radial displacement signal with the contour signal, and calculate the relationship between the radial displacement signal and the contour signal through the cross-correlation method based on the characteristic extremum. Delay amount, and achieve alignment between the radial displacement signal and the contour signal by moving the radial displacement signal.
  • the displacement of the center of the two measuring sections of the cylinder is obtained by the difference between the aligned radial displacement signal and the contour signal.
  • the contour signal is removed from the measured radial displacement signal to obtain the actual motion characteristics of the test section centers o1 and o2 of the cylinder.
  • Figure 5 shows the actual motion characteristics of the test section center of the cylinder.
  • the movement of the cylinder is divided into a translational motion and a tilting motion around the center of the spline coupling.
  • the motion of the cylinder is described by two section centers. o10 and o20 represent the initial positions of o1 and o2 respectively. Then the translational displacement of the spline sub-center can be expressed as
  • the inclination azimuth of the cylinder block represents the position of the minimum oil film thickness of the valve pair.
  • the tilt angle and tilt azimuth can be expressed as
  • the radial vibration and overturning characteristics of the spline sub-center can be converted.
  • the schematic diagram of the movement trajectory of the spline sub-center is shown in Figure 6, and the schematic diagram of the tilt angle and tilt azimuth of the overturning characteristics is shown in Figure 7.

Abstract

一种非侵入式的轴向柱塞泵缸体动态特性测量方法属于状态监测与故障检测领域。缸体是轴向柱塞泵的主要旋转部件,其动态特性比外部特性更能反映泵的健康状况。为了准确地获得缸体的动态特性,提出了一种非接触式测量方案,以减小检测设备对缸体运动的影响。通过测量不同工况下缸体表面两个截面沿相互垂直方向的径向位移,得到缸体轮廓信号和径向位移信号,然后从径向位移信号中精确去除缸体轮廓信号,获取缸体的平移和倾斜运动特性。本测量方法具有测试精度高、操作简单、成本低、可用于实际工况的优点,对监控泵的健康状况以及故障诊断具有重要意义。

Description

一种非侵入式的轴向柱塞泵缸体动态特性测量方法 技术领域
本发明属于状态监测以及故障诊断领域,尤其是旋转类缸体的动态特性测量、工况健康监测以及故障诊断。具体涉及一种非侵入式的轴向柱塞泵缸体动态特性测量方法。
背景技术
为了满足智能化液压系统和元件的需求,轴向柱塞泵要求具有自我信息感知能力,以监测运行中的健康状况。另一方面,故障诊断也是轴向柱塞泵的一个重要研究领域。以往对轴向柱塞泵状态监测和故障检测的研究主要依靠壳体的振动信号,辅以压力信号和泄漏流量信号。然而,壳体的振动信号也会受到其他因素的影响。另外,故障信号只有通过不同的传输路径传输到壳体上才能被测量到,这就削弱了故障信号。因此,由故障引起的振动信号的微弱变化淹没在背景噪声中,给轴向柱塞泵的状态监测和故障检测带来了很大的挑战。由于故障信号传输路径短,且旋转组件相对于壳体的运动几乎不受外界环境的影响,所以旋转组件的运动行为能够更直接地反映泵的健康状况。因此,在实际系统中,对旋转组件的动态特性进行测量,是进行状态监测和故障检测的必要条件。
在前人研究中,在实际工作条件下,对缸体的动态特性进行了测量,对轴向柱塞泵的壳体甚至旋转部件进行了修改,以获得足够的信息。旋转部件的修改对缸体的动态特性有一定的影响。此外,利用测量点的平均油膜厚度研究了缸体的倾斜行为,但对其瞬态特性的研究还不够重视。
发明内容
本发明的目的是针对现有技术的不足,发明一种新的非接触的测量监控方法,这种方法对泵的改动较少,通过信号提取方法,能够准确获得真实工况下测试泵的缸体平移以及倾斜运动信号。
本发明的目的是通过以下技术方案实现的:一种非侵入式的轴向柱塞泵缸体动态特性测量方法,具体包括如下步骤:
(1)采集轴向柱塞泵缸体的径向位移信号;轴向柱塞泵作为测试泵,将测试泵连接第一电机,由第一电机通过联轴器驱动,压力由测试泵出口管路中的节流阀控制,使用转速传感器同步测量测试泵的转速脉冲,采用两组涡流传感器分别采集测试泵缸体表面两个截面上沿X轴和Y轴的径向位移信号,具体为:依据转速脉冲信号换算为主轴的转角信号,依据主轴转角将转角信号以及位移信号按旋转周期拆分为若干个片段,然后每个片段的信号进行插值保证具有相同的数据长度。各个数据片段的位移数据按数据点进行平均,然后依据转角信号得到位移随旋转角度的变化关系,即可得到缸体旋转一周的径向位移信号。
(2)采集轴向柱塞泵缸体的轮廓信号;将测试泵连接第二电机,由第二电机通过减速器驱动,所述减速器为双出轴减速器,分别连接测试泵和编码器,避免测量测试泵转角时安装传感器产生的额外加工,编码器测量测试泵的转速脉冲,用于精确测试泵缸体的旋转周期,编码器具有零位信号,可以标记缸体测量轮廓的起始位置,通过两组涡流传感器采集缸体位移信号,减速后的柱塞泵缸体不会产生明显的倾覆,此时径向位移信号可视为缸体的轮廓信号。根据编码器测量脉冲,对涡流传感器采集得到的轮廓信号在每个旋转周期内重采样,使轮廓信号的数据长度与步骤(1)采集的径向位移信号的数据长度在每个周期内保持一致。
(3)通过基于特征极值的互相关方法计算得到径向位移信号与轮廓信号之间的延迟量,并通过移动轮廓信号实现径向位移信号与轮廓信号之间对齐。通过对齐后的径向位移信号与轮廓信号之间的差值得到缸体两个测量截面中心的位移。依据缸体两个测量截面中心的位移计算得到缸体的径向振动与倾覆特征。
进一步地,在测试泵壳体上加工四个螺纹孔用于安装涡流传感器,每两个涡流传感器作为一组,涡流传感器采用双螺母固定,防止在运行过程中松动。
本发明的有益结果是:
1、非接触的测量方法,减少试验设备对缸体运动的影响,保证真实的运动工况,可以用于实际工况的测量与监测。
2、通过信号提取方法,缸体真实位移信号精确剥离保证瞬态分析结果的准确性,测试准确性得到提高。
3、少量加工,直接在工作机上测试,使得测试简单,测试成本低。
4、利用该测量装置,可以进一步研究缸体在不同故障模式下的运动测量,并基于缸体运动信号进行在线故障检测。
附图说明
图1为测试泵缸体动态特性示意图;
图2为本发明方法测试原理示意图;
图3为缸体运动示意图;
图4为测量信号与轮廓信号示意图;
图5为测试结果示意图;
图6为缸体运动轨迹示意图;
图7为缸体的倾覆运动示意图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
测试泵如图1所示,采用的液压测试回路的示意图如图2所示,图2中,电机1、扭矩计2、联轴器3、测试泵4依次连接,所述测试泵4分别通过第二流量计9和过滤器10与油箱12连接,同时,测试泵4还通过控制阀6、第一流量计8、第二过滤器11与油箱12连接,压力传感器5采集测试泵4信号。温度调节器7与油箱12构成回路,控制系统采集扭矩计2、压力传感器5、第一流量计8、第二流量计9的信号对电机1、控制阀6和温度调节器7进行控制。信号采集系统采集测试泵4上的传感器信号。试验台主要由电机、测试泵、转速传感器、节流阀、电机连接双出轴减速器组成,减速器分别连接接测试泵和编码器。
具体测试步骤如下:
如图1所示,采用全局笛卡尔坐标系X-Y-Z,其原点位于花键副中心。Z轴与轴中心线重合,指向后端盖,Y轴从配流盘下止点指向上止点。轴绕Z轴逆时针旋转。本发明方法采用两组涡流传感器(S1和S2、S3和S4)测量缸体表面两个截面上沿X轴和Y轴的径向位移。四个涡流传感器安装在外壳上,制造了四个螺纹孔,并使用了双螺母固定,以防止涡流传感器在运行过程中松动。
采集轴向柱塞泵高速时缸体的径向位移信号。测试泵由电机通过联轴器驱动,压力由测试泵出口管路的节流阀控制,油液温度通过散热器进行控制,使用转速传感器测量转速脉冲,采用两组涡流传感器采集缸体表面两个截面上四组径向位移信号。对四组位移信号进行信号处理,以一组为例,首先依据转速脉冲信号换 算为主轴的转角信号,依据主轴转角将转角信号以及位移信号按旋转周期拆分为若干个片段,然后每个片段的信号进行插值保证具有相同的数据长度。各个数据片段的位移数据按数据点进行平均,然后依据转角信号得到位移随旋转角度的变化关系,即可得到一组缸体旋转一周的径向位移信号。同理对其余三组数据进行处理,共得到四组缸体径向位移信号如图4所示,实线为一组缸体径向位移信号。
采集轴向柱塞泵低速低压时缸体的轮廓信号。通过轮廓信号标定方法得到精确的轮廓信号。测试泵由电机通过减速器驱动,所述减速器为双出轴减速器,分别连接测试泵和编码器,编码器测量测试泵的转速脉冲信号,通过两组涡流传感器采集缸体表面两个截面上四组径向位移信号。由于低速低压时,柱塞泵缸体承受的负载很小,不会产生明显的倾覆,此时径向位移信号可视为缸体的轮廓信号。同采集径向位移信号数据处理过程,共得到四组缸体轮廓信号。如图4所示,虚线为一组缸体轮廓信号。
由于编码器带有零位信号而转速传感器无零位信号,因此要对径向位移信号与轮廓信号进行对齐,通过基于特征极值的互相关方法计算得到径向位移信号与轮廓信号之间的延迟量,并通过移动径向位移信号实现径向位移信号与轮廓信号之间对齐。通过对齐后的径向位移信号与轮廓信号之间的差值得到缸体两个测量截面中心的位移。从测量的径向位移信号中去除轮廓信号得到缸体的测试截面中心o1、o2的实际运动特性,图5显示了缸体的测试截面中心的实际运动特性。
由于缸体与轴之间通过花键连接,缸体的运动分为围绕花键联轴器中心的平移运动和倾斜运动。如图3所示,缸体的运动由两个截面中心来描述。o10和o20分别代表o1、o2的初始位置。则花键副中心的平移位移可表示为
Figure PCTCN2022089845-appb-000001
Figure PCTCN2022089845-appb-000002
式中,x 1-截面1沿x方向位移,y 1-截面1沿y方向位移,z 1-截面1沿z方向位移,x 2-截面2沿x方向位移,y 2-截面2沿y方向位移,z 2-截面2沿z方向位移,x s-花键副中心沿x方向位移,y s-花键副中心沿y方向位移。
缸体的倾斜方位角代表了配流副最小油膜厚度的位置。倾斜角和倾斜方位角可以表示为
Figure PCTCN2022089845-appb-000003
Figure PCTCN2022089845-appb-000004
式中,γ-倾斜角α-倾斜方位角。
根据得到的测量截面中心的位移,同时根据公式(1)(2)和(3)(4),可以换算出花键副中心的径向振动与倾覆特征。花键副中心运动轨迹示意图如图6所示,倾覆特性倾斜角和倾斜方位角示意图如图7所示。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (2)

  1. 一种非侵入式的轴向柱塞泵缸体动态特性测量方法,其特征在于,具体包括如下步骤:
    (1)采集轴向柱塞泵缸体的径向位移信号;轴向柱塞泵作为测试泵,将测试泵连接第一电机,由第一电机通过联轴器驱动,压力由测试泵出口管路中的节流阀控制,使用转速传感器同步测量测试泵的转速脉冲,采用两组涡流传感器分别采集测试泵缸体表面两个截面上沿X轴和Y轴的径向位移信号,具体为:依据转速脉冲信号换算为主轴的转角信号,依据主轴转角将转角信号以及位移信号按旋转周期拆分为若干个片段,然后每个片段的信号进行插值保证具有相同的数据长度。各个数据片段的位移数据按数据点进行平均,然后依据转角信号得到位移随旋转角度的变化关系,即可得到缸体旋转一周的径向位移信号。
    (2)采集轴向柱塞泵缸体的轮廓信号;将测试泵连接第二电机,由第二电机通过减速器驱动,所述减速器为双出轴减速器,分别连接测试泵和编码器,避免测量测试泵转角时安装传感器产生的额外加工,编码器测量测试泵的转速脉冲,用于精确测试泵缸体的旋转周期,编码器具有零位信号,可以标记缸体测量轮廓的起始位置,通过两组涡流传感器采集缸体位移信号,减速后的柱塞泵缸体不会产生明显的倾覆,此时径向位移信号可视为缸体的轮廓信号。根据编码器测量脉冲,对涡流传感器采集得到的轮廓信号在每个旋转周期内重采样,使轮廓信号的数据长度与步骤(1)采集的径向位移信号的数据长度在每个周期内保持一致。
    (3)通过基于特征极值的互相关方法计算得到径向位移信号与轮廓信号之间的延迟量,并通过移动轮廓信号实现径向位移信号与轮廓信号之间对齐。通过对齐后的径向位移信号与轮廓信号之间的差值得到缸体两个测量截面中心的位移。依据缸体两个测量截面中心的位移计算得到缸体的径向振动与倾覆特征。
  2. 根据权利要求1所述的一种非侵入式的轴向柱塞泵缸体动态特性测量方法,其特征在于,在测试泵壳体上加工四个螺纹孔用于安装涡流传感器,每两个涡流传感器作为一组,涡流传感器采用双螺母固定,防止在运行过程中松动。
PCT/CN2022/089845 2021-05-14 2022-04-28 一种非侵入式的轴向柱塞泵缸体动态特性测量方法 WO2022237557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/508,268 US20240077072A1 (en) 2021-05-14 2023-11-14 Non-intrusive measurement method for dynamic characteristic of cylinder block in axial piston pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110528760.XA CN113107834B (zh) 2021-05-14 2021-05-14 一种非侵入式的轴向柱塞泵缸体动态特性测量方法
CN202110528760.X 2021-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/508,268 Continuation US20240077072A1 (en) 2021-05-14 2023-11-14 Non-intrusive measurement method for dynamic characteristic of cylinder block in axial piston pump

Publications (1)

Publication Number Publication Date
WO2022237557A1 true WO2022237557A1 (zh) 2022-11-17

Family

ID=76722364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089845 WO2022237557A1 (zh) 2021-05-14 2022-04-28 一种非侵入式的轴向柱塞泵缸体动态特性测量方法

Country Status (3)

Country Link
US (1) US20240077072A1 (zh)
CN (1) CN113107834B (zh)
WO (1) WO2022237557A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113107834B (zh) * 2021-05-14 2022-04-29 浙江大学 一种非侵入式的轴向柱塞泵缸体动态特性测量方法
CN114776575B (zh) * 2022-05-26 2023-08-18 厦门大学 一种轴向柱塞泵配流副油膜厚度间接测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043317A (zh) * 2015-05-29 2015-11-11 中国工程物理研究院总体工程研究所 成套回转装备主轴动态回转误差的测量装置与测量方法
CN106595462A (zh) * 2016-12-29 2017-04-26 北京理工大学 一种轴向柱塞泵配流副试验油膜厚度测试系统
DE102016112965A1 (de) * 2016-07-14 2018-01-18 Jungheinrich Aktiengesellschaft Verfahren und Anordnung zur Messung der Auslenkung eines Hubmastes eines Hochhubflurförderzeugs
CN113107834A (zh) * 2021-05-14 2021-07-13 浙江大学 一种非侵入式的轴向柱塞泵缸体动态特性测量方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400560B (zh) * 2014-11-07 2016-11-23 西安交通大学 一种数控机床切削工况下主轴轴心轨迹在线测量方法
US9869311B2 (en) * 2015-05-19 2018-01-16 Caterpillar Inc. System for estimating a displacement of a pump
CN105782049B (zh) * 2016-04-14 2018-01-12 五邑大学 一种旋转压缩机摩擦特性的共轭测量系统及测量方法
CN108266361B (zh) * 2017-12-01 2023-09-26 北京理工大学 一种研究用多功能轴向柱塞泵测试样机及测试系统
CN110057580B (zh) * 2019-04-17 2020-09-01 中国矿业大学 一种提升机主轴动态响应特性测试装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043317A (zh) * 2015-05-29 2015-11-11 中国工程物理研究院总体工程研究所 成套回转装备主轴动态回转误差的测量装置与测量方法
DE102016112965A1 (de) * 2016-07-14 2018-01-18 Jungheinrich Aktiengesellschaft Verfahren und Anordnung zur Messung der Auslenkung eines Hubmastes eines Hochhubflurförderzeugs
CN106595462A (zh) * 2016-12-29 2017-04-26 北京理工大学 一种轴向柱塞泵配流副试验油膜厚度测试系统
CN113107834A (zh) * 2021-05-14 2021-07-13 浙江大学 一种非侵入式的轴向柱塞泵缸体动态特性测量方法

Also Published As

Publication number Publication date
US20240077072A1 (en) 2024-03-07
CN113107834A (zh) 2021-07-13
CN113107834B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2022237557A1 (zh) 一种非侵入式的轴向柱塞泵缸体动态特性测量方法
CN107976223B (zh) 一种高精度泄漏量检测装置
CN102865271A (zh) 一种液压阀内泄漏的检测方法及其装置
CN2890855Y (zh) 零平衡法活塞式流量校准器
CN108015797B (zh) 一种rv减速机传动误差在线监测方法
WO2021208171A1 (zh) 一种海水淡化泵能量回收一体机试验检测装置及试验方法
CN2906135Y (zh) 一种车用容积式空气压缩机检测装置
CN216206874U (zh) 四阀门活塞式动态流量计量标准装置
CN103090934A (zh) 多活塞阵列式气体流量标准装置
CN114776575B (zh) 一种轴向柱塞泵配流副油膜厚度间接测量方法
CN201100852Y (zh) 一种便携式液压故障诊断仪
EP0399634A2 (en) Viscometer
CN108645458B (zh) 一种高精度液压油流量检测仪及其测量方法
CN110686890A (zh) 在线柴油机气阀状态检测方法
CN114320827B (zh) 一种液驱活塞压缩机示功图无损监测装置及方法
CN203011497U (zh) 一种多活塞阵列式气体流量标准装置
CN109373852B (zh) 一种测量往复压缩机活塞行程的装置、方法及其应用
CN110686830B (zh) 在线柴油机活塞环状态检测方法
CN1056234C (zh) 一种流体检测计量装置
CN208420637U (zh) 一种汽车电子助力转向器的热腐蚀试验装置
CN208420068U (zh) 一种高精度液压油流量检测仪
CN219956881U (zh) 一种离心水泵、阀门性能测试的联合试验装置
CN115898851B (zh) 一种柱塞泵球面配流副油膜厚度分布测量方法
CN109632314B (zh) 一种发动机扭矩测量装置及测量方法
CN110686879B (zh) 在线柴油机气缸套状态检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE