WO2022237476A1 - 电池脉冲充放电最大电流的获取方法、装置、设备及介质 - Google Patents

电池脉冲充放电最大电流的获取方法、装置、设备及介质 Download PDF

Info

Publication number
WO2022237476A1
WO2022237476A1 PCT/CN2022/087834 CN2022087834W WO2022237476A1 WO 2022237476 A1 WO2022237476 A1 WO 2022237476A1 CN 2022087834 W CN2022087834 W CN 2022087834W WO 2022237476 A1 WO2022237476 A1 WO 2022237476A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrochemical
pulse
heat transfer
charge
Prior art date
Application number
PCT/CN2022/087834
Other languages
English (en)
French (fr)
Inventor
王连旭
李峰宇
何见超
陈思
于奥
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Publication of WO2022237476A1 publication Critical patent/WO2022237476A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, for example, to a method, device, equipment and medium for obtaining the maximum current of battery pulse charging and discharging.
  • Embodiments of the present application provide a method, device, device, and medium for obtaining the maximum current of battery pulse charge and discharge, so as to accurately predict the maximum current of battery charge and discharge and improve the safety performance of the battery.
  • the embodiment of the present application provides a method for obtaining the maximum current of battery pulse charging and discharging, including:
  • the maximum current of pulse charging and discharging is predicted based on the pulse model.
  • the embodiment of the present application also provides a device for obtaining the maximum current of battery pulse charging and discharging, including:
  • the coupling model establishment unit is configured to establish an electrochemical and solid heat transfer coupling model of the battery cell, and calibrate the electrochemical and solid heat transfer coupling model according to the measured charge and discharge data of the battery cell at different rates;
  • the pulse model building unit is configured to build a pulse model based on the electrochemical and solid heat transfer coupling model, and calibrate the pulse model according to the measured pulse charge and discharge data;
  • the estimated current unit is configured to predict the maximum pulse charging and discharging current based on the pulse model.
  • the embodiment of the present application also provides a device for obtaining the maximum current of battery pulse charging and discharging, including:
  • storage means configured to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor is enabled to implement the method for obtaining the maximum pulse charging and discharging current of the battery provided in any embodiment of the present application.
  • the embodiment of the present application also provides a medium containing computer-executable instructions, and the computer-executable instructions are used to execute the battery pulse charging and discharging maximum current provided by any embodiment of the present application when executed by a computer processor. method of obtaining .
  • Fig. 1 is a schematic flow chart of a method for obtaining the maximum current of pulse charging and discharging of a battery provided in an embodiment of the present application;
  • Fig. 2 is a schematic flow chart of establishing a coupling model of electrochemical and solid heat transfer provided by the embodiment of the present application;
  • Fig. 3 is a schematic structural diagram of a one-dimensional electrochemical field provided in an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a solid heat transfer field provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the coupling relationship between an electrochemical field and a solid heat generation field provided by an embodiment of the present application
  • Fig. 6 is a schematic flowchart of another method for obtaining the maximum current of battery pulse charging and discharging provided by the embodiment of the present application;
  • Fig. 7 is a comparison chart of a discharge voltage-time simulation curve of different rates at a set temperature and a measured curve provided in the embodiment of the present application;
  • Fig. 8 is a comparison diagram between the temperature rise-time simulation curve and the measured curve under different rate discharge temperature rise-time curves provided by the embodiment of the present application;
  • Fig. 9 is a comparison diagram between the discharge voltage-time simulation curve and the actual measured curve under different temperature discharge voltage-time curves provided by the embodiment of the present application;
  • Fig. 10 is a comparison diagram between the discharge temperature rise-time simulation curve and the actual measured curve under different temperature discharge temperature rise-time provided by the embodiment of the present application;
  • Fig. 11 is a schematic flowchart of another method for obtaining the maximum current of battery pulse charging and discharging provided by the embodiment of the present application;
  • Fig. 12 is a schematic structural diagram of a device for obtaining the maximum pulse charge and discharge current of a battery provided in an embodiment of the present application;
  • Fig. 13 is a schematic structural diagram of a device for obtaining the maximum current of pulse charging and discharging of a battery provided in an embodiment of the present application.
  • the first one is to analyze the maximum pulse charge and discharge current of a similarly designed battery cell in different rate states through the database of existing cell measurement data;
  • the second is to manufacture batteries according to the design information, and then measure the maximum current of the pulse charge and discharge of the batteries in different rate states.
  • the first method roughly predicts the maximum current of pulse charge and discharge of batteries in different rate states based on experience and data, and the analysis made by experience in the estimation process has a large error;
  • the second method China Cell is divided into different stages from design to mass production. If a certain number of parallel samples are selected for testing in each stage, it will not only increase the product cost, but also increase the consumption of manpower and material resources.
  • the inventor built a pulse charge and discharge model to simulate a more realistic pulse charge and discharge process of the battery cell, and predicted the maximum current of the battery cell through the pulse charge and discharge model, which not only ensures the measurement accuracy, but also avoids product waste .
  • the embodiment of the present application provides a method for obtaining the maximum pulse charging and discharging current of a battery, as shown in FIG. 1 , which is a schematic flowchart of a method for obtaining the maximum pulse charging and discharging current of a battery provided in an embodiment of the present application.
  • the steps include :
  • this embodiment can provide a scheme of using comsol multiphysics software to predict the maximum current of pulse charging and discharging when the battery is in different states of charge (State of Charge, SOC), and quantitatively predict the pulse charging and discharging when the battery is in different SOC
  • SOC states of charge
  • the battery has irreversible damage detection.
  • a coupled model of electrochemical and solid heat transfer is built, and a pulse model is formed on this basis to simulate the charging and discharging process close to the real situation. , can effectively avoid the test cost caused by the damage detection of the battery, and avoid the dismantling of the battery cell, and there is no potential safety hazard caused by the dismantling of the battery cell.
  • the electrochemical and solid heat transfer coupling model of the battery is established, and the charging and discharging data of various rates are measured by the battery, such as voltage and temperature data, and the electrochemical and solid heat transfer coupling model is calibrated , so that the simulation data of the electrochemical and solid heat transfer coupling model matches the actual constant current charge and discharge data, and based on the electrochemical and solid heat transfer coupling model, the pulse charge and discharge simulation is performed to form a pulse model, and the pulse charge and discharge according to the actual measurement
  • the data calibrates the pulse model, so that the simulation data of the pulse model matches the actual pulse charge and discharge data, and compared with the electrochemical and solid heat transfer coupling model, it has higher simulation accuracy for the pulse charging process and is more suitable for step rate or For parameter prediction of other transient charge and discharge states, this embodiment uses the pulse model to predict the maximum current during the pulse charge and discharge process. Because of the high simulation accuracy of the pulse model, the embodiment of this application can accurately predict the maximum current of battery charge and discharge. , to improve the safety of
  • the electrochemical and solid heat transfer coupling model may include the coupled electrochemical field and solid heat transfer field, as shown in Figure 2, Figure 2 is an established electrochemical field provided by the embodiment of the present application.
  • the process of establishing the electrochemical and solid heat transfer coupled model of the battery may include the following steps:
  • the multiple material domains include a negative current collector, a negative porous electrode, a separator, a positive porous electrode, and a positive current collector arranged in sequence.
  • FIG. 3 is a structural schematic diagram of a one-dimensional electrochemical field provided in the embodiment of the application, and the electrochemical field includes a one-dimensional Five layers of material domains arranged in sequence: negative current collector, negative porous electrode, separator, positive porous electrode, and positive current collector.
  • S220 Define the basic material parameters of each material domain of the electrochemical field; set the electrical grounding position to the left end of the negative electrode current collector, set the electrode current density acquisition position to the right end of the positive electrode current collector, and define the initial battery charge distribution; and automatically Variables in the electrochemical field are defined; the variables in the electrochemical field include at least the battery voltage, the state of charge of the negative electrode material, the state of charge of the positive electrode material, and temperature.
  • the material properties in the material domain can be defined.
  • the properties of positive and negative active materials include: the intrinsic open circuit voltage (Open Circuit Voltage, OCV), solid diffusion coefficient (solid diffusion coefficient, Ds) of positive and negative materials, and the positive and negative materials. Solid phase conductivity.
  • the shapes of graphite material particles are various, even for graphitized mesocarbon microbeads (Mesocarbon microbeads, MCMB) will not have a perfect spherical shape either.
  • the specific surface area determined by the BET specific surface area test method is generally used to calculate the lithium ion diffusion coefficient.
  • the lithium ion diffusion coefficient can be calculated from the real specific surface area S (cm 2 /g) of the material measured by electrochemical methods, and a more reliable value can be obtained, which can be calculated by the following formula: Among them, ⁇ is the density (g/cm 3 ), ⁇ Q is the electric quantity (mAh) flowing in the step interval, m is the slope of the linear relationship between the corresponding current i and t -1/2 (mA*s 1/2 ); t is Time (s); the solid-phase conductivity of the positive and negative electrode materials can be the default property in the material library.
  • Electrolyte properties can include liquid phase diffusion coefficient, liquid phase lithium ion conductivity, lithium ion migration number, and electrolyte thermodynamic relative activity coefficient, etc., respectively measured by experiments, literature values and default values of material library; electrode properties include conductivity.
  • the definition of the material basic parameters of each material domain of the electrochemical field may include: defining the positive/negative electrode domain: the material in the domain is linked to the properties of the positive/negative active material, and the particle size, electrode The exchange current density in the chemical reaction, the volume fraction of positive/negative active materials, and the diffusion coefficient and ionic conductivity of the electrolyte in the porous electrode; define the diaphragm domain: link the material in the domain to the electrolyte material property, and set the diaphragm domain. Electrolyte Conductivity and Diffusion Coefficient; Defining Positive/Negative Foil Material Domain: Copper/Al foil material properties linking materials in the domain to electrode properties.
  • the electrical grounding position 111 is set at the left end of the negative electrode collector
  • the electrode current density acquisition position 112 is set at the right end of the positive current collector.
  • defining the initial battery charge distribution may at least include: initial voltage, battery capacity, battery cyclic material loss fraction and negative electrode servo capacity excess fraction.
  • the initial battery charge distribution needs to set the initial voltage (or initial battery charge point state), battery capacity, and set the recyclable material loss fraction after battery assembly according to the actual design of the battery cell.
  • the recyclable material loss fraction can take a value from 0 to 0.1, set Negative servo capacity excess fraction, that is, the ratio of negative electrode capacity to positive electrode capacity in cell design (Negative/Positive, NP ratio).
  • the NP ratio can be 1 to 1.2.
  • the variables in the defined electrochemical field can at least include: the battery voltage is taken as the battery voltage at the right end of the positive electrode collector; The ratio of the average concentration of lithium ions on the surface of the positive porous electrode particles to the maximum lithium ion concentration of the positive electrode is the state of charge of the positive electrode material; define the temperature T, which comes from the solid heat transfer field, and assign the variable T to multiple material domains for realizing Coupling of solid heat transfer models with electrochemical models.
  • This embodiment can also add a global variable probe, so that the variable can be checked during the calculation process.
  • the probe variable is defined as Ecell, the change of the battery voltage can be seen during the calculation process; if the probe variable is defined as T, during the calculation process The change of the cell temperature can be seen; the probe variable is defined as SOC_neg, and the change of the state of charge of the negative electrode material can be seen during the calculation process.
  • This probe can be used as a calibration parameter in the model calibration.
  • the solid heat transfer field is a three-dimensional geometric model whose size is consistent with that of the electric core.
  • Figure 4 is a schematic structural diagram of a solid heat transfer field provided by the embodiment of the present application. According to the convergence of the solid heat transfer field and the calculated time cost, the solid heat transfer field is simplified into a size and direction The cuboid that is consistent with the battery core does not consider the structural part because the structural part is a good conductor and has a small resistance, so it is ignored.
  • the thermal parameters of the solid heat transfer field include the equivalent specific heat capacity of the electric core, the spread thermal conductivity and the radial thermal conductivity; the heat source defining the solid heat transfer field is the average heat production power of the electrochemical body in the electrochemical field Variables; set the convective heat flux and initial external temperature of the six boundary surfaces of the solid heat transfer field; assign the temperature of the battery core in the solid heat transfer field to multiple material domains of the electrochemical field.
  • the heat source the structural parts of the battery cell are good conductors, and the heat generation is small and neglected.
  • the heat generation of the battery cell mainly comes from the electrochemical heat generation, so the heat generation power variable Qh calculated in the electrochemical field is calculated (W/m3) can be filled in.
  • the boundary heat flux select all the six boundary surfaces of the minimalist geometric model of the cell in Figure 4, set the convective heat flux to 10-20 (W/m 2 K), and set the external temperature to the initial external environment The temperature is enough.
  • the variables of the solid heat transfer field include the heat production power variable; the heat production power variable is derived from the electrochemical field.
  • Fig. 5 is a schematic diagram of the coupling relationship between the electrochemical field and the solid heat generation field provided by the embodiment of the present application. It can be seen that the one-dimensional electrochemical field (1D Electro) and the three-dimensional solid heat transfer field (3D Heat) The coupling relationship is shown in Figure 5.
  • the heat generation power of the electrochemical field acts on the cell (solid heat transfer field) to make the cell have a temperature distribution.
  • the temperature change of the battery will affect the performance of the battery, that is, the electrochemical field It is bidirectionally coupled with the solid heat transfer field.
  • Figure 6 is a schematic flow chart of another method for obtaining the maximum current of the battery pulse charge and discharge provided in the embodiment of the present application.
  • the calibration process of the solid heat transfer coupling model is described in detail.
  • the steps of the method for obtaining the maximum current of the battery pulse charge and discharge are as follows:
  • the electrochemical and solid heat transfer coupling model After the establishment of the electrochemical and solid heat transfer coupling model of the battery cell is completed, the electrochemical and solid heat transfer coupling model needs to be calibrated.
  • this embodiment uses the measured values during the charging and discharging process of the battery, for example, Voltage, current, etc., are compared with the simulation data of the electrochemical and solid heat transfer coupling model, and by continuously adjusting the parameters in the electrochemical and solid heat transfer coupling model, the simulation data of the electrochemical and solid heat transfer coupling model is consistent with the actual battery The data at work are the same or close.
  • the first stop condition includes that the charging voltage exceeds the upper limit of the charging voltage, and the discharging voltage is lower than the lower limit of the discharging voltage.
  • the first stop condition includes exceeding the upper limit of the charging voltage.
  • the upper limit of the charging voltage is related to the battery material system, which can be defined according to the actual design.
  • the first stop condition includes that the discharge voltage is less than the discharge voltage. Voltage lower limit.
  • steps S320-S340 is the process of "calibrating the coupling model of electrochemical and solid heat transfer according to the measured charge and discharge data of different rates of the battery", that is, the coupling model of electrochemical and solid heat transfer is used for different rates and different temperatures.
  • the charging and discharging voltage simulation curve and temperature simulation curve are corrected to make the simulation data of the electrochemical and solid heat transfer coupling model closer to the measured data.
  • the simulation of the constant current charging and discharging process is performed on the coupled model of electrochemical and solid heat transfer.
  • the simulated data of the coupled model of electrochemical and solid heat transfer is the same or relatively close to the measured data high.
  • the charging and discharging process at different rates at a set temperature can be simulated, so that the charging and discharging voltage-time simulation curve and the temperature rise-time simulation curve are closer to the measured curves.
  • this embodiment also takes into account the influence of temperature on the battery core.
  • This embodiment can also simulate the charging and discharging process at different temperatures at a set rate, so that the charging and discharging voltage-time simulation curve and temperature rise-time simulation The curve is the same or has a high degree of similarity with the measured curve.
  • this embodiment shows the correction results of the voltage-time simulation curve and the temperature rise-time simulation curve of the battery discharge process
  • Figure 7 is a The comparison chart of the discharge voltage-time simulation curve of different rates at the set temperature and the measured curve
  • Fig. 8 is a comparison chart of the discharge temperature rise-time simulation curve of different rates at the set temperature - time simulation curve and the measured curve provided by the embodiment of the present application
  • Fig. 9 It is a comparison chart of the discharge voltage-time simulation curve at different temperatures under the set rate and the measured curve provided by the embodiment of the present application.
  • Figure 10 is a discharge temperature rise-time simulation at different temperatures under the set rate provided by the embodiment of the present application. Comparison chart of the curve and the measured curve.
  • this implementation corrects the discharge voltage-time simulation curves and temperature rise-time simulation curves of different rates of 1C, 5C, 10C, 15C, 20C, etc. at the same temperature, so that the simulation curve and the measured curve Matching, the above-mentioned same temperature can be selected as normal temperature 25°C, and the discharge voltage-time simulation of different temperatures of -30°C, -20°C, -10°C, 0°C, 10°C, 45°C, and 55°C under the same magnification
  • the curve and the temperature rise-time simulation curve are corrected so that the simulation curve matches the measured curve, and the above-mentioned same magnification can be 1C.
  • the charging process is similar to this, and the simulation situation in the battery charging process will not be repeated here.
  • the above simulation process completes the calibration of the coupled model of electrochemical and solid heat transfer. At this time, it can be considered that the constant current charge and discharge simulation process of the coupled model of electrochemical and solid heat transfer matches the actual charge and discharge process of the battery.
  • This embodiment provides a calibration method for the coupling model of electrochemical and solid heat transfer, that is, to correct the simulation curves of charging and discharging at different rates at the same temperature to match the measured curves, and at the same time take into account the influence of temperature on the battery cell.
  • the impact of the charging and discharging simulation curves at different temperatures at the same rate is corrected to match the measured curves, thereby completing the calibration of the coupled model of electrochemical and solid heat transfer.
  • the electrochemical and solid The parameters of the heat transfer coupling model are in line with the actual situation, which improves the simulation accuracy of the electrochemical and solid heat transfer coupling model.
  • Figure 11 is a schematic flowchart of another method for obtaining the maximum current of the battery pulse charging and discharging provided in the embodiment of the present application.
  • the establishment and calibration process of the battery are described in detail.
  • the steps of the method for obtaining the maximum current of the battery pulse charge and discharge are as follows:
  • SOC is the state of charge of the battery during pulse charge and discharge
  • E a1 is the activation energy of electrochemical reaction, the unit is J/mol
  • R is the molar gas constant, the unit is J*mol -1 *K -1
  • T ref is Reference temperature in K.
  • Step S410 calibrates the coupled model of electrochemical and solid heat transfer for constant current charge and discharge.
  • this embodiment further calibrates the coupled model of electrochemical and solid heat transfer, so that the coupled model of electrochemical and solid heat transfer can simulate the process of pulse charging and discharging, and enhance the performance of pulse charging and discharging. Simulation accuracy.
  • the inventors found that among the parameters of the coupling model of electrochemistry and solid heat transfer, the exchange current density i 0 and the solid phase diffusion coefficient Ds can affect the simulation accuracy of pulse charge and discharge.
  • the exchange current density i 0 and the solid-phase diffusion coefficient Ds are established to be more in line with the pulse charge and discharge function, so as to establish the pulse model.
  • E a2 is the activation energy of solid phase diffusion of lithium ions.
  • step S420-S430 is the specific content of "establishing a pulse model based on the coupled model of electrochemical and solid heat transfer" in step S120.
  • Ds1(SOC_neg,T) Ds1(SOC_neg)*exp(-E a2 / R*(1/T-1/T ref ));
  • Ds2(SOC_pos,T) Ds2( SOC_pos)*exp(-E a2 /R*(1/T-1/T ref )).
  • Step S440 is the specific content of "calibrating the pulse model based on the measured pulse charge and discharge data" in step S120.
  • the pulse model needs to be calibrated according to the measured data.
  • the measured data can be compared with the simulated data (simulated voltage value, simulated temperature value) , so as to adjust the exchange current density and solid-phase diffusion coefficient, so that the charge and discharge voltage-time simulation curve under different rates matches the voltage-time measured curve, and the temperature rise-time simulation curve matches the temperature rise-time measured curve.
  • the calibrated pulse module can accurately simulate the pulse charging and discharging process, and obtain a more accurate maximum current in the pulse charging and discharging process.
  • Table 1 is a simulation table of the maximum current of the cell pulse discharge for 10s at different temperatures. Table 1 predicts the maximum current value I/A at 30%, 50%, 70%, 80%, and 90% SOC of the battery, respectively.
  • Table 1 The simulation table of the maximum current of the cell pulse charging and discharging for 10s at different temperatures
  • S450 Set the battery state of charge and pulse charge and discharge time of the battery cell, and set the second stop condition; during the charging process, the second stop condition includes: the charging voltage exceeds the upper limit of the charging voltage; the solid state at the interface between the negative porous electrode and the diaphragm The phase potential is less than the liquid phase potential; the cell temperature is greater than the temperature upper limit; during the discharge process, the second stop condition includes: the discharge voltage is less than the discharge voltage lower limit; the cell temperature is greater than the temperature upper limit.
  • step S450-S460 is the specific content of "predicting the maximum pulse charging and discharging current based on the pulse model" in step S130.
  • this embodiment screens by setting the second stop condition.
  • the second stop condition includes charging voltage exceeding the upper limit of charging voltage and discharging current less than the discharging voltage.
  • the lower limit it is also provided that the solid phase potential at the interface between the negative electrode porous electrode and the separator is lower than the liquid phase potential, and the temperature of the battery core is greater than the upper temperature limit.
  • the second stop condition is that the charging voltage exceeds the upper limit of the charging voltage, the solid phase potential at the interface between the negative electrode porous electrode and the separator is lower than the liquid phase potential, and the temperature of the cell is greater than the upper temperature limit; during the discharge process , the second stop condition is that the discharge voltage is less than the discharge voltage lower limit and the cell temperature is greater than the temperature upper limit.
  • This embodiment takes into account the upper limit of the temperature of the battery cell, and also considers whether the battery cell is decomposing lithium.
  • the boundary value of the discharge current or the charge current can be screened out through the above-mentioned second stop condition, so that the boundary value is the maximum current.
  • the process of screening the maximum current it is necessary to give the initial value of the estimated current, and continuously adjust the estimated current according to the measured voltage value and measured temperature value during the pulse charging and discharging process until the estimated current meets the second stop condition, then this The estimated current at that time is the estimated maximum current in this embodiment.
  • the pulse model-based prediction of the maximum pulse charge and discharge current can also be obtained through other solutions, for example, the "optimization" module can be used to find the maximum current that meets the conditions by using the least square method; You can use MATLAB software to realize the combination of COMSOL and MATLAB, and use the optimization function to find the maximum current that meets the conditions. In this embodiment, there is no special limitation on the way of finding the maximum current.
  • This application can be realized through the coupling model of electrochemistry and solid heat transfer in the COMSOL Mutiphysics software.
  • the core of this model is that the model can predict the pulse charging of the battery for a certain period of time at a certain external ambient temperature and different battery charge states, and in When the battery does not appear lithium and the temperature of the battery is less than or equal to the upper limit, the maximum charging current of the battery, and the amplified voltage during pulse discharge is greater than or equal to the lower limit and the temperature of the battery is less than or equal to the temperature upper limit, the maximum discharge of the battery current.
  • This embodiment uses the measured data of the battery cell in the experimental stage to directly predict the maximum pulse charging and discharging current of the battery cell, that is, the power and fast charging performance of the battery cell can be known during the cell research and development stage, which speeds up the research and development process.
  • the R&D cycle is shortened, labor cost, time cost and cell production cost are reduced, and rapid product iteration of cell design is realized.
  • the embodiment of the present application also provides a device for obtaining the maximum pulse charge and discharge current of the battery.
  • the device for obtaining the maximum pulse charging and discharging current of the battery provided in this embodiment is suitable for predicting the maximum pulse charging and discharging current of the battery, especially suitable for predicting the maximum pulse charging and discharging current of the lithium-ion battery.
  • Fig. 12 is a schematic structural diagram of a device for obtaining the maximum pulse charge and discharge current of a battery provided in an embodiment of the present application. As shown in Fig. 12, the device for obtaining the maximum pulse charge and discharge current of the battery includes:
  • the coupling model establishment unit 51 is configured to establish an electrochemical and solid heat transfer coupling model of the battery cell, and calibrate the electrochemical and solid heat transfer coupling model according to the measured charge and discharge data of the battery cell at different magnifications;
  • the pulse model establishing unit 52 is configured to establish a pulse model based on the coupling model of electrochemistry and solid heat transfer, and calibrate the pulse model according to the measured pulse charge and discharge data;
  • the estimated current unit 53 is configured to predict the maximum pulse charging and discharging current based on the pulse model.
  • the device for obtaining the maximum pulse charge and discharge current of the battery provided in the embodiments of the present disclosure can execute the method for obtaining the maximum pulse charge and discharge current of the battery provided in any embodiment of the present disclosure, and has corresponding functional modules for executing the method.
  • the acquisition device 600 for the maximum pulse charge and discharge current of the battery can be a terminal device or a server.
  • the terminal equipment in the embodiment of the present disclosure may include but not limited to such as mobile phone, notebook computer, digital broadcast receiver, personal digital assistant (Personal Digital Assistant, PDA), PAD (tablet computer), portable multimedia player (Portable Media Player) , PMP), mobile terminals such as vehicle-mounted terminals (such as vehicle-mounted navigation terminals), and fixed terminals such as digital televisions (Television, TV), desktop computers, and the like.
  • PDA Personal Digital Assistant
  • PAD tablet computer
  • PMP portable multimedia player
  • mobile terminals such as vehicle-mounted terminals (such as vehicle-mounted navigation terminals)
  • fixed terminals such as digital televisions (Television, TV), desktop computers, and the like.
  • the device shown in FIG. 13 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the acquisition device 600 of the battery pulse charge and discharge maximum current may include a processing device 601 (such as a central processing unit, a graphics processing unit, etc.), which may be stored in a read-only memory (Read-Only Memory, ROM) 602 Various appropriate actions and processes are executed by a program in the RAM or a program loaded from the storage device 608 into the random access memory (Random Access Memory, RAM) 603.
  • ROM Read-Only Memory
  • RAM random access memory
  • various programs and data necessary for the operation of the acquisition device 600 for obtaining the maximum current of the battery pulse charging and discharging are also stored.
  • the processing device 601 , ROM 602 and RAM 603 are connected to each other through a bus 604 .
  • An input/output (Input/Output, I/O) interface 605 is also connected to the bus 604 .
  • an input device 606 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; including, for example, a liquid crystal display (Liquid Crystal Display, LCD) , an output device 607 such as a speaker, a vibrator, etc.; a storage device 608 including, for example, a magnetic tape, a hard disk, etc.; and a communication device 609.
  • the communication means 609 may allow the device 600 for obtaining the maximum pulse charging and discharging current of the battery to perform wireless or wired communication with other devices to exchange data.
  • FIG. 13 shows the device 600 for obtaining the maximum current of battery pulse charge and discharge with various means, it should be understood that it is not required to implement or have all the means shown. More or fewer means may alternatively be implemented or provided.
  • embodiments of the present disclosure include a computer program product, which includes a computer program carried on a non-transitory computer readable medium, where the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from a network via communication means 609 , or from storage means 608 , or from ROM 602 .
  • the processing device 601 When the computer program is executed by the processing device 601 , the above-mentioned functions defined in the method for obtaining the maximum pulse charging and discharging current of the battery in the embodiment of the present disclosure are executed.
  • the device provided by the embodiment of the present disclosure and the method for obtaining the maximum pulse charging and discharging current of the battery provided by the above embodiment belong to the same disclosed concept, and the technical details not described in detail in this embodiment can be referred to the above embodiment.
  • An embodiment of the present disclosure provides a computer storage medium, on which a computer program is stored.
  • the program is executed by a processor, the method for obtaining the maximum pulse charge and discharge current of a battery provided in the above embodiments is implemented.
  • the above-mentioned computer-readable medium in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof.
  • Computer-readable storage media may include, but are not limited to, electrical connections having at least one lead, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable Read memory (Erasable Programmable Read-Only Memory, EPROM) or flash memory (FLASH), optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or the above any suitable combination.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • the program code contained on the computer readable medium can be transmitted by any appropriate medium, including but not limited to: electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • the client and the server can communicate using any currently known or future-developed network protocols such as HTTP (Hyper Text Transfer Protocol, Hypertext Transfer Protocol), and can communicate with any form or medium of digital Data communication (eg, communication network) interconnections.
  • network protocols such as HTTP (Hyper Text Transfer Protocol, Hypertext Transfer Protocol)
  • Examples of communication networks include local area networks (Local Area Network, LAN), wide area networks (Wide Area Network, WAN), internetworks (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks), as well as any currently existing networks that are known or developed in the future.
  • the above-mentioned computer-readable medium may be included in the above-mentioned device, or may exist independently without being incorporated into the device.
  • the above-mentioned computer-readable medium carries at least one program, and when the above-mentioned at least one program is executed by the device, the device:
  • the pulse model is established based on the coupling model of electrochemical and solid heat transfer, and the pulse model is calibrated according to the measured pulse charge and discharge data;
  • Computer program code for carrying out the operations of the present disclosure can be written in at least one programming language, or a combination thereof, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and conventional A procedural programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code that contains at least one programmable logic function for implementing the specified logical function.
  • Execute instructions may also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or by hardware. Among them, the names of the units and modules do not limit the units and modules themselves under certain circumstances.
  • the coupling model building unit can also be described as "electrochemical and solid heat transfer coupled model building unit".
  • exemplary types of hardware logic components include: Field Programmable Gate Arrays (Field Programmable Gate Arrays, FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (Application Specific Standard Parts, ASSP), System on Chip (System on Chip, SOC), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD) and so on.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include at least one wire-based electrical connection, a portable computer disk, a hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM), or flash memory), optical fiber, compact disc read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • flash memory flash memory
  • optical fiber compact disc read only memory
  • CD-ROM compact disc read only memory
  • magnetic storage or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池脉冲充放电最大电流的获取方法、装置、设备及介质,其中,电池脉冲充放电最大电流的获取方法包括:建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型;基于所述电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定所述脉冲模型;基于所述脉冲模型预测脉冲充放电最大电流。

Description

电池脉冲充放电最大电流的获取方法、装置、设备及介质
本申请要求在2021年5月13日提交中国专利局、申请号为202110519745.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如涉及一种电池脉冲充放电最大电流的获取方法、装置、设备及介质。
背景技术
随着石油资源的逐渐枯竭、汽车尾气排放带来的资源减少和环境污染等问题日趋严重,新能源汽车成为未来汽车的主要发展方向并成为行业热点。
但是,新能源汽车充电难、充电时间长等技术性问题一直是电动汽车推广的拦路虎。众多电动汽车企业在追求更高的续航里程的同时,并没很好地兼顾到充电时间。大电流充电会使电池内阻增加,降低电芯功率性能,并有可能出现析锂现象,析锂产生的锂枝晶会破坏电芯内部结构,使电池出现安全隐患;同时电池的功率性能以及电动汽车瞬间加速性能体现在大电流放电上,大电流放电对电芯结构件的性能要求很高。
发明内容
本申请实施例提供了一种电池脉冲充放电最大电流的获取方法、装置、设备及介质,以便于准确预测电池充放电的最大电流,提升电池的安全性能。
第一方面,本申请实施例提供了一种电池脉冲充放电最大电流的获取方法,包括:
建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型;
基于所述电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放 电数据标定所述脉冲模型;
基于所述脉冲模型预测脉冲充放电的最大电流。
第二方面,本申请实施例还提供了一种电池脉冲充放电最大电流的获取装置,包括:
耦合模型建立单元,设置为建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型;
脉冲模型建立单元,设置为基于所述电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定所述脉冲模型;
预估电流单元,设置为基于所述脉冲模型预测脉冲充放电最大电流。
第三方面,本申请实施例还提供了一种电池脉冲充放电最大电流的获取设备,包括:
至少一个处理器;
存储装置,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现本申请任意实施例提供的电池脉冲充放电最大电流的获取方法。
第四方面,本申请实施例还提供了一种包含计算机可执行指令的介质,所述计算机可执行指令在由计算机处理器执行时用于执行本申请任意实施例提供的电池脉冲充放电最大电流的获取方法。
附图说明
图1是本申请实施例提供的一种电池脉冲充放电最大电流的获取方法的流程示意图;
图2是本申请实施例提供的一种建立电化学与固体传热耦合模型的流程示意图;
图3是本申请实施例提供的一种一维电化学场的结构示意图;
图4是本申请实施例提供的一种固体传热场的结构示意图;
图5是本申请实施例提供的一种电化学场和固体产热场耦合关系示意图;
图6是本申请实施例提供的另一种电池脉冲充放电最大电流的获取方法的流程示意图;
图7是本申请实施例提供的一种设定温度下不同倍率放电电压-时间仿真曲线与实测曲线对比图;
图8是本申请实施例提供的一种设定温度下不同倍率放电温升-时间仿真曲线与实测曲线对比图;
图9是本申请实施例提供的一种设定倍率下不同温度放电电压-时间仿真曲线与实测曲线对比图;
图10是本申请实施例提供的一种设定倍率下不同温度放电温升-时间仿真曲线与实测曲线对比图;
图11是本申请实施例提供的又一种电池脉冲充放电最大电流的获取方法的流程示意图;
图12是本申请实施例提供的一种电池脉冲充放电最大电流的获取装置的结构示意图;
图13是本申请实施例提供的一种电池脉冲充放电最大电流的获取设备结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
目前采用的电池脉冲充放电最大电流获取方法一般包括两种:第一种,通过已有电芯实测数据的数据库,分析某一相近设计电芯在不同倍率状态时脉冲充放电的最大电流;第二种,根据设计信息制作电芯,然后实测不同倍率状态电芯的脉冲充放电的最大电流。其中,第一种方法根据经验及数据整理粗略的预测不同倍率状态电芯的脉冲充放电的最大电流,在预估过程中凭借从业经验做出的分析,具有较大的误差;第二种方法中电芯从设计到量产分为不同阶段, 如果每个阶段都选取一定数量的平行样品进行测试,不仅会增加产品成本,也会增加人力、物力的消耗。为解决上述问题,发明人通过搭建脉冲充放电模型以模拟更为真实的电芯脉冲充放电过程,并通过脉冲充放电模型预测电芯的最大电流,既保证测量精准率,又能够避免产品浪费。
本申请实施例提供了一种电池脉冲充放电最大电流的获取方法,如图1所示,图1是本申请实施例提供的一种电池脉冲充放电最大电流的获取方法的流程示意图,步骤包括:
S110、建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定电化学与固体传热耦合模型。
S120、基于电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定脉冲模型。
S130、基于脉冲模型预测脉冲充放电最大电流。
可选的,本实施例可提供一种利用comsol multiphysics软件预测电池不同电池荷电状态(State of Charge,SOC)时脉冲充放电的最大电流的方案,定量的预测电池处于不同SOC时脉冲充放电一定时间的最大电流,并且考虑析锂对电芯的影响,可以通过分析仿真结果优化电芯设计。并且通过仿真预测的方式,不需要设计实际的电池进行充放电试验,减少实验次数,降低研发成本,提高研发效率,缩短了电芯的开发周期,而且因为析锂的试验数据只能在充电结束后拆解电池电芯进行观察,对电池具有不可逆的有损检测,本实施例通过搭建电化学与固体传热耦合模型,并在此基础上形成脉冲模型,从而模拟贴近真实情况的充放电过程,能够有效避免电池因有损检测造成的试验成本,并且避开了电芯拆解,没有电芯拆解带来的安全隐患。
本申请实施例中,建立电芯的电化学与固体传热耦合模型,并通过电芯实测多种倍率充放电数据,例如,电压和温度等数据,对电化学与固体传热耦合模型进行标定,使得电化学与固体传热耦合模型的仿真数据与实际恒流充放电数据匹配,并基于该电化学与固体传热耦合模型进行脉冲充放电仿真,从而形 成脉冲模型,并根据实测脉冲充放电数据对脉冲模型进行标定,使得脉冲模型的仿真数据与实际脉冲充放电数据匹配,并且相较于电化学与固体传热耦合模型,对脉冲充电过程具有较高的仿真精度,更加适应阶梯倍率或其他瞬态充放电状态的参数预测,本实施例通过脉冲模型进行脉冲充放电过程中最大电流的预测,因为脉冲模型的较高的仿真精度,本申请实施例可准确预测电池充放电的最大电流,提升电池的安全性。
在上述实施例的基础上,电化学与固体传热耦合模型可以包括相互耦合的电化学场和固体传热场,如图2所示,图2是本申请实施例提供的一种建立电化学与固体传热耦合模型的流程示意图,可选的,建立电芯的电化学与固体传热耦合模型的过程,可以包括如下步骤:
S210、建立一维电化学场的多个材料域;多个材料域包括依次设置的负极集流体、负极多孔电极、隔膜、正极多孔电极、正极集流体。
本实施例建立五层结构的一维有限元电化学几何模型,如图3所示,图3是本申请实施例提供的一种一维电化学场的结构示意图,电化学场包括一维的依次设置的五层材料域:负极集流体、负极多孔电极、隔膜、正极多孔电极、正极集流体。
S220、定义电化学场的每个材料域的材料基础参数;电接地位置设置为负极集流体左端点处,电极电流密度获取位置设置为正极集流体右端点处,定义初始电池电荷分布;并自定义电化学场中的变量;电化学场中的变量至少包括电池电压、负极材料荷电状态、正极材料荷电状态和温度。
在对电化学场的每个材料域的参数进行定义之前,可对材料域中的材料属性进行定义。首先,定义正负极活性物质属性,正负极活性物质属性包括:正负极材料本征的开路电压(Open Circuit Voltage,OCV)、固相扩散系数(solid diffusion coefficient,Ds)和正负极材料的固相电导率。其中,对于正负极材料本征的开路电压,用0.01C-0.05C恒流充放电测试相应正负极材料的扣式半电池,然后通过MATLAB应用遗传算法经电压重构得到正负极材料的OCV,并将该 正负极材料的OCV曲线插入到COMSOL材料属性中;对于固相扩散系数,实际上石墨材料颗粒的形状多种多样,即使是石墨化中间相碳小球(Mesocarbon microbeads,MCMB)也不会具有完美的球形。考虑颗粒的实际形状,一般采用BET比表面积测试法测定的比表面积来计算锂离子扩散系数。以电化学方法测定的材料真实比表面积S(cm 2/g)计算锂离子扩散系数,可得到更可靠的数值,用如下公式计算:
Figure PCTCN2022087834-appb-000001
其中ρ为密度(g/cm 3),ΔQ为阶跃区间流过的电量(mAh),m为相应电流i与t -1/2直线关系的斜率(mA*s 1/2);t为时间(s);正负极材料的固相电导率为材料库中默认属性即可。
其次,对电解液属性和电极属性进行定义。电解液属性可以包括液相扩散系数、液相锂离子电导率、锂离子迁移数以及电解液热力学相对活性系数等,分别由实验测得与文献值及材料库默认值;电极属性包括电导率。
对电化学场的每个材料域的材料基础参数进行定义可以包括:定义正/负极多孔电极域:域中材料链接到正/负极活性物质属性,并设置正/负极活性颗粒的粒径、电化学反应中的交换电流密度、正/负极活性材料的体积分数及多孔电极中电解液的扩散系数与离子电导率;定义隔膜域:域中材料链接到电解液材料属性,并设置隔膜域中的电解质电导率与扩散系数;定义正/负极箔材域:域中材料链接到电极属性的铜/铝箔材料属性。
除了对电化学场的多个材料域的参数进行定义,还需要设置电接地位置与电极电流密度获取位置等边界条件:如图3所示,电接地位置111设置为负极集流体左端点处,电极电流密度获取位置112设置为正极集流体右端点处。
可选的,定义初始电池电荷分布至少可以包括:初始电压、电池容量,电池可循环物质损耗分数和负极伺服容量过剩分数。初始电池电荷分布需要设置初始电压(或初始电池荷点状态)、电池容量,根据电芯的实际设计设置电池组装后可循环物质损耗分数,可循环物质损耗分数可以取值为0~0.1,设置负极伺服容量过剩分数,即电芯设计中的负极容量与正极容量的比值(Negative/Positive, NP比),NP比可以取值为1~1.2。
定义电化学场中的变量至少可以包括:以正极集流体右端点固相电势为电池电压;以负极多孔电极颗粒表面锂离子平均浓度与负极最大锂离子浓度之比为负极材料荷电状态;以正极多孔电极颗粒表面锂离子平均浓度与正极最大锂离子浓度之比为正极材料荷电状态;定义温度T,该温度来源于固体传热场,将变量T赋予到多个材料域内,用于实现固体传热模型与电化学模型的耦合。
本实施例还可以添加全局变量探针,以便于在计算过程中查看变量,例如,定义探针变量为Ecell,计算过程中可查看到电池电压的变化;定义探针变量为T,计算过程中可查看到电芯温度的变化;定义探针变量为SOC_neg,计算过程中可查看到负极材料荷电状态变化,此探针在模型标定中可作为标定的参。
S230、建立固体传热场;固体传热场为尺寸与电芯一致的三维几何模型。
如图4所示,图4是本申请实施例提供的一种固体传热场的结构示意图,根据固体传热场的收敛性及计算的时间成本将固体传热场最简化成一个尺寸与方向和电芯一致的长方体,不考虑结构件是因为结构件为良导体,电阻较小,因此忽略。
S240、定义固体传热场的热参数;热参数包括电芯的等效比热容、展向导热系数和径向导热系数;定义固体传热场的热源为电化学场中电化学体平均产热功率变量;设定固体传热场的六个边界表面的对流热通量和初始外界温度;将固体传热场中电芯的温度赋予至电化学场的多个材料域中。
定义固体传热场的热参数,即对几何域所属材料属性进行定义,赋予极简电芯几何域实际电芯的等效比热容、等效展向导热系数和等效径向导热系数;上述等效比热容、等效展向导热系数与等效径向导热系数计算由以下公式定义:等效径向导热系数k z
Figure PCTCN2022087834-appb-000002
等效展向导热系数k r:k rΣ id i=Σ ik id i。d i为每层材料的厚度;k i每层材料的导热系数。
定义热源:电芯结构件为良导体,产热较小而忽略,在电池充放电过程中 电芯产热主要来源于电化学产热,故将电化学场中计算出的产热功率变量Qh(W/m3)填入即可。定义边界热通量:将图4中的电芯的极简几何模型的6个边界表面全部选中,设定对流热通量为10~20(W/m 2K),设置外部温度为初始外界温度即可。此外,固体传热场的变量包括产热功率变量;产热功率变量源于电化学场。
综上,图5是本申请实施例提供的一种电化学场和固体产热场耦合关系示意图,可知,一维的电化学场(1D Electro)和三维的固体传热场(3D Heat)的耦合关系如附图5所示,电化学场的产热功率作用到电芯(固体传热场)使电芯具有温度分布,同时电池温度变化又会影响电池的性能,也即,电化学场和固体传热场为双向耦合的方式。
在本申请实施例的另一示例中,如图6所示,图6是本申请实施例提供的另一种电池脉冲充放电最大电流的获取方法的流程示意图,本示例对电芯的电化学与固体传热耦合模型的标定过程进行详述,电池脉冲充放电最大电流的获取方法的步骤如下:
S310、建立电芯的电化学与固体传热耦合模型。
S320、添加研究选项;研究选项包括电池接口中的初始电池电荷分布。
在完成电芯的电化学与固体传热耦合模型的建立之后,需要对电化学与固体传热耦合模型进行标定,示例性的,本实施例通过将电池充放电过程中的实测数值,例如,电压,电流等,与电化学与固体传热耦合模型的仿真数据对比,并通过不断调节电化学与固体传热耦合模型中的参数,使得电化学与固体传热耦合模型的仿真数据与电池实际工作中的数据相同或接近。
在对电化学与固体传热耦合模型进行标定时,需要在电池接口中添加带初始化的瞬态,也即,添加上述实施例中提及的初始电池电荷分布,为电化学与固体传热耦合模型的仿真提供初始工作状态。
S330、设置电化学与固体传热耦合模型的第一停止条件;第一停止条件包 括充电电压超过充电电压上限,以及放电电压小于放电电压下限。
在仿真电池充电时,第一停止条件包括超过充电电压上限,充电电压上限与电池材料体系有关,根据实际设计定义即可,同理,在仿真电池放电时,第一停止条件包括放电电压小于放电电压下限。
S340、根据实测电压值和实测温度值调整电化学与固体传热耦合模型的参数,使得在设定温度下不同倍率的充放电电压-时间仿真曲线和温升-时间仿真曲线均与实测数据匹配,并使得在设定倍率下不同温度的充放电电压-时间仿真曲线和温升-时间仿真曲线均与实测数据匹配。
步骤S320~S340的过程即为“根据电芯不同倍率实测充放电数据标定电化学与固体传热耦合模型”的过程,也即,采用电化学与固体传热耦合模型对不同倍率和不同温度的充放电电压仿真曲线和温度仿真曲线进行修正,使得电化学与固体传热耦合模型的仿真数据更加接近实测数据的过程。
本实施例中,在保证充电电压小于或等于充电电压上限,并且放电电压大于或等于放电电压下限的同时,对电化学与固体传热耦合模型进行恒流充放电过程的仿真。示例性的,本实施例通过将仿真数据与实测数据对比,并不断调整电化学与固体传热耦合模型的参数,使得电化学与固体传热耦合模型的仿真数据与实测数据相同或相近度较高。可选的,本实施例可以通过对设定温度下的不同倍率的充放电过程进行仿真,从而使得充放电电压-时间仿真曲线和温升-时间仿真曲线更趋近于实测曲线。从而使得电化学与固体传热耦合模型更趋于标准化。
此外,本实施例还考虑到了温度对电芯的影响,本实施例还可以通过对设定倍率下不同温度的充放电过程进行仿真,从而使得充放电电压-时间仿真曲线和温升-时间仿真曲线与实测曲线相同或相近度较高。
示例性的,如图7至图10所示,本实施例对电池放电过程的电压-时间仿真曲线和温升-时间仿真曲线的修正结果进行展示,图7是本申请实施例提供的一种设定温度下不同倍率放电电压-时间仿真曲线与实测曲线对比图,图8是本申 请实施例提供的一种设定温度下不同倍率放电温升-时间仿真曲线与实测曲线对比图,图9是本申请实施例提供的一种设定倍率下不同温度放电电压-时间仿真曲线与实测曲线对比图,图10是本申请实施例提供的一种设定倍率下不同温度放电温升-时间仿真曲线与实测曲线对比图。参考图7至图10,本实施分别对相同温度下的1C、5C、10C、15C、20C等不同倍率的放电电压-时间仿真曲线以及温升-时间仿真曲线进行修正,使得仿真曲线与实测曲线相匹配,上述相同温度可选取常温25℃,并分别对相同倍率下的-30℃、-20℃、-10℃、0℃、10℃、45℃、55℃不同温度的放电电压-时间仿真曲线以及温升-时间仿真曲线进行修正,使得仿真曲线与实测曲线相匹配,上述相同倍率可以为1C。充电过程与此类似,此处不再赘述电池充电过程中的仿真情况。
上述仿真过程即完成了电化学与固体传热耦合模型的标定,此时可认为电化学与固体传热耦合模型的恒流充放电仿真过程与电池实际充放电过程相匹配。
S350、基于电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定脉冲模型。
S360、基于脉冲模型预测脉冲充放电最大电流。
本实施例为电化学与固体传热耦合模型提供了一种标定方法,也即,对相同温度下不同倍率的充放电仿真曲线进行修正,使其与实测曲线匹配,同时考虑到温度对电芯的影响,对相同倍率下不同温度的充放电仿真曲线进行修正,使其与实测曲线匹配,从而完成对电化学与固体传热耦合模型的标定,在恒流充放电过程中,电化学与固体传热耦合模型的各项参数符合实际情况,提高了电化学与固体传热耦合模型的仿真精准度。
在本申请实施例的又一示例中,如图11所示,图11是本申请实施例提供的另一种电池脉冲充放电最大电流的获取方法的流程示意图,本示例对电芯的脉冲模型的建立及标定过程进行详述,电池脉冲充放电最大电流的获取方法的步骤如下:
S410、建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定电化学与固体传热耦合模型。
S420、在电化学场中,设定负极多孔电极和正极多孔电极电化学反应过程中产生的交换电流密度i 0与电池荷电状态SOC和电芯温度T之间的函数:i 0(SOC,T)=i 0(SOC)*exp(-E a1/R*(1/T-1/T ref))。
其中,SOC为脉冲充放电过程中电池荷电状态;E a1为电化学反应活化能,单位为J/mol;R为摩尔气体常数,单位为J*mol -1*K -1;T ref为参考温度,单位为K。
步骤S410对电化学与固体传热耦合模型进行了恒流充放电的标定。对于日趋兴起的阶梯充电或脉冲充电,本实施例对电化学与固体传热耦合模型进一步进行标定,使得电化学与固体传热耦合模型可对脉冲充放电过程进行仿真,并增强脉冲充放电的仿真精度。发明人发现电化学与固体传热耦合模型的参数中,交换电流密度i 0和固相扩散系数Ds能够影响脉冲充放电的仿真精度。本实施例,在S410的基础上,对交换电流密度i 0和固相扩散系数Ds建立更加符合脉冲充放电的函数关系,从而建立脉冲模型。
S430、在电化学场中,设定负极材料的固相扩散系数Ds1与负极材料荷电状态SOC_neg和电芯温度T之间的函数:Ds1(SOC_neg,T)=Ds1(SOC_neg)*exp(-E a2/R*(1/T-1/T ref));在电化学场中,同时设定正极材料的固相扩散系数Ds2与正极材料荷电状态SOC_pos和电芯温度T之间的函数:Ds2(SOC_pos,T)=Ds2(SOC_pos)*exp(-E a2/R*(1/T-1/T ref))。
其中E a2为锂离子固相扩散的活化能。
上述步骤S420~S430的过程即为步骤S120中“基于电化学与固体传热耦合模型建立脉冲模型”的具体内容。
示例性的,在电化学场中,负极多孔电极和正极多孔电极电化学反应过程中产生交换电流密度i 0,设定i 0与电池荷电状态SOC的函数,并考虑温度对化学反应速率的影响,在函数中与阿伦尼乌斯公式组合使用,函数为 i 0(SOC,T)=i 0(SOC)*exp(-E a1/R*(1/T-1/T ref))。
在电化学场中,负极材料的固相扩散系数Ds1与负极材料荷电状态SOC_neg,以及电芯温度T之间的函数:Ds1(SOC_neg,T)=Ds1(SOC_neg)*exp(-E a2/R*(1/T-1/T ref));同理,正极材料固相扩散系数Ds2与正极材料荷电状态SOC_pos和电芯温度T之间的函数:Ds2(SOC_pos,T)=Ds2(SOC_pos)*exp(-E a2/R*(1/T-1/T ref))。
S440、根据脉冲充放电过程中的实测电压值和实测温度值调整交换电流密度和固相扩散系数,直至在设定温度下不同倍率的充放电电压-时间仿真曲线与电压-时间实测曲线匹配,且温升-时间仿真曲线与温升-时间实测曲线匹配,并且使得在设定倍率下不同温度的充放电电压-时间仿真曲线与电压-时间实测曲线匹配,且温升-时间仿真曲线与温升-时间实测曲线匹配。
步骤S440即为步骤S120中“根据实测脉冲充放电数据标定脉冲模型”的具体内容。
经过步骤S410~S430建立脉冲模型之后,需要根据实测数据对脉冲模型进行标定,示例性的,可将实测数据(实测电压值、实测温度值)与仿真数据(仿真电压值、仿真温度值)对比,从而对交换电流密度和固相扩散系数进行调整,使得不同倍率下充放电电压-时间仿真曲线与电压-时间实测曲线匹配,且温升-时间仿真曲线与温升-时间实测曲线匹配。则标定后的脉冲模块可准确地对脉冲充放电过程进行仿真,并获取较为精准的脉冲充放电过程中的最大电流。示例性的,如表1所示,表1是不同温度下的电芯脉冲放电10s最大电流仿真表。表1中分别预测了在30%、50%、70%、80%、90%的电池荷电状态SOC的最大电流值I/A。
表1:不同温度下的电芯脉冲充放电10s最大电流仿真表
T/SOC 30% 50% 70% 80% 90%
45 176.8 176.8 176.8 176.8 176.8
25 156.0 322.4 338.0 353.6 400.4
0 46.8 62.4 67.6 104.0 119.6
-20 24.7 39.9 51.8 54.2 57.2
-30 23.9 33.3 49.9 54.1 58.2
S450、设置电芯的电池荷电状态和脉冲充放电时间,并设置第二停止条件;在充电过程中,第二停止条件包括:充电电压超过充电电压上限;负极多孔电极与隔膜界面处的固相电势小于液相电势;电芯温度大于温度上限;在放电过程中,第二停止条件包括:放电电压小于放电电压下限;电芯温度大于温度上限。
S460、给出预估电流的初始值,并根据脉冲充放电过程中实测电压值和实测温度值不断调整预估电流,直至预估电流满足第二停止条件;满足第二停止条件的预估电流为最大电流。
上述步骤S450~S460的过程即为步骤S130中“基于脉冲模型预测脉冲充放电最大电流”的具体内容。
在基于脉冲模型预测脉冲充放电最大电流的过程中,本实施例通过设置第二停止条件进行筛选,本实施例中,第二停止条件除了包括充电电压超过充电电压上限,以及放电电流小于放电电压下限;还设置有负极多孔电极与隔膜界面处的固相电势小于液相电势,以及电芯温度大于温度上限。因为当负极多孔电极与隔膜界面处的固相电势小于液相电势时,判定充电时出现析锂,所以设置负极多孔电极与隔膜界面处的固相电势小于液相电势作为停止条件。需要注意的是,在充电过程中,第二停止条件为充电电压超过充电电压上限,负极多孔电极与隔膜界面处的固相电势小于液相电势,以及电芯温度大于温度上限;在放电过程中,第二停止条件为放电电压小于放电电压下限和电芯温度大于温度上限。
本实施例考虑到了电芯的温度上限,也考虑电芯是否析锂,通过上述第二停止条件可筛选出放电电流或充电电流的边界值,从而该边界值即为最大电流,示例性的,在筛选最大电流的过程中,需要给出预估电流的初始值,并根据脉 冲充放电过程中实测电压值和实测温度值不断调整预估电流,直至预估电流满足第二停止条件,则此时的预估电流即为本实施例需要预估的最大电流。
在本申请实施例的又一示例中,基于脉冲模型预测脉冲充放电最大电流还可以通过其他寻解方式获取,例如,可以使用“优化”模块,运用最小二乘法寻找出满足条件的最大电流;可以运用MATLAB软件,实现COMSOL与MATLAB联用,运用寻优函数寻找出满足条件的最大电流。本实施例对最大电流的寻解方式不进行特殊限定。
本申请可通过COMSOL Mutiphysics软件中电化学与固体传热耦合模型实现,其核心在于该模型可以预测电芯在一定外界环境温度,不同电池荷电状态时,脉冲充电一定时间的情况下,并且在电芯不出现析锂与电芯温度小于或等于上限的情况下,电芯的最大充电电流,以及脉冲放电时放大电压大于或等于下限与电芯温度小于或等于温度上限,电芯的最大放电电流。
本实施例运用实验阶段的电芯实测数据,能够直接的预测电芯脉冲充放电最大电流,即在电芯研发阶段就能够得知此款电芯的功率与快充性能,加快了研发进程,缩短了研发周期,减少了人工成本、时间成本与电芯制作成本,实现了电芯设计的快速产品迭代。
本申请实施例还提供一种电池脉冲充放电最大电流的获取装置。本实施例提供的电池脉冲充放电最大电流的获取装置适用于预测电池脉冲充放电的最大电流的情形,尤其适用于预测锂离子电池脉冲充放电最大电流的情形。图12是本申请实施例提供的一种电池脉冲充放电最大电流的获取装置的结构示意图,如图12所示,电池脉冲充放电最大电流的获取装置包括:
耦合模型建立单元51,设置为建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定电化学与固体传热耦合模型;
脉冲模型建立单元52,设置为基于电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定脉冲模型;
预估电流单元53,设置为基于脉冲模型预测脉冲充放电最大电流。
本公开实施例所提供的电池脉冲充放电最大电流的获取装置,可执行本公开任意实施例所提供的电池脉冲充放电最大电流的获取方法,具备执行方法相应的功能模块。
值得注意的是,上述装置所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本公开实施例的保护范围。
下面参考图13,其示出了适于用来实现本公开实施例的电池脉冲充放电最大电流的获取设备600,图13中电池脉冲充放电最大电流的获取设备600可以为终端设备或服务器。本公开实施例中的终端设备可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、PAD(平板电脑)、便携式多媒体播放器(Portable Media Player,PMP)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字电视(Television,TV)、台式计算机等等的固定终端。图13示出的设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图13所示,电池脉冲充放电最大电流的获取设备600可以包括处理装置601(例如中央处理器、图形处理器等),其可以根据存储在只读存储器(Read-Only Memory,ROM)602中的程序或者从存储装置608加载到随机访问存储器(Random Access Memory,RAM)603中的程序而执行各种适当的动作和处理。在RAM603中,还存储有电池脉冲充放电最大电流的获取设备600操作所需的各种程序和数据。处理装置601、ROM602以及RAM603通过总线604彼此相连。输入/输出(Input/Output,I/O)接口605也连接至总线604。
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显 示器(Liquid Crystal Display,LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电池脉冲充放电最大电流的获取设备600与其他设备进行无线或有线通信以交换数据。虽然图13示出了具有各种装置的电池脉冲充放电最大电流的获取设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM602被安装。在该计算机程序被处理装置601执行时,执行本公开实施例的电池脉冲充放电最大电流的获取方法中限定的上述功能。
本公开实施例提供的设备与上述实施例提供的电池脉冲充放电最大电流的获取方法属于同一公开构思,未在本实施例中详尽描述的技术细节可参见上述实施例。
本公开实施例提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例所提供的电池脉冲充放电最大电流的获取方法。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(Erasable Programmable  Read-Only Memory,EPROM)或闪存(FLASH)、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(Hyper Text Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(Local Area Network,LAN),广域网(Wide Area Network,WAN),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述设备中所包含的;也可以是单独存在,而未装配入该设备中。
上述计算机可读介质承载有至少一个程序,当上述至少一个程序被该设备执行时,使得该设备:
建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定电化学与固体传热耦合模型;
基于电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定脉冲模型;
基于脉冲模型预测脉冲充放电最大电流。
可以以至少一种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元、模块的名称在某种情况下并不构成对该单元、模块本身的限定,例如,耦合模型建立单元还可以被描述为“电化学与固体传热耦合模型建立单元”。
本文中以上描述的功能可以至少部分地由至少一个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门 阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、片上系统(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于至少一个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。

Claims (10)

  1. 一种电池脉冲充放电最大电流的获取方法,包括:
    建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型;
    基于所述电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定所述脉冲模型;
    基于所述脉冲模型预测脉冲充放电最大电流。
  2. 根据权利要求1所述的方法,其中,所述电化学与固体传热耦合模型包括相互耦合的电化学场和固体传热场;
    建立电芯的电化学与固体传热耦合模型,包括:
    建立一维电化学场的多个材料域;所述多个材料域包括依次设置的负极集流体、负极多孔电极、隔膜、正极多孔电极、正极集流体;
    定义所述电化学场的每个材料域的材料基础参数;电接地位置设置为负极集流体左端点处,电极电流密度获取位置设置为正极集流体右端点处,定义初始电池电荷分布;并自定义所述电化学场中的变量;所述电化学场中的变量至少包括电池电压、负极材料荷电状态、正极材料荷电状态和温度;
    建立固体传热场;所述固体传热场为尺寸与电芯一致的三维几何模型;
    定义固体传热场的热参数;所述热参数包括电芯的等效比热容、展向导热系数和径向导热系数;定义所述固体传热场的热源为所述电化学场中电化学体平均产热功率变量;设定所述固体传热场的六个边界表面的对流热通量和初始外界温度;将所述固体传热场中电芯的温度赋予至所述电化学场的多个材料域中。
  3. 根据权利要求2所述的方法,其中,所述初始电池电荷分布包括:
    初始电压、电池容量,电池可循环物质损耗分数和负极伺服容量过剩分数。
  4. 根据权利要求2所述的方法,其中,根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型,包括:
    添加研究选项;所述研究选项包括电池接口中的所述初始电池电荷分布;
    设置电化学与固体传热耦合模型的第一停止条件;所述第一停止条件包括充电电压超过充电电压上限,以及放电电压小于放电电压下限;
    根据实测电压值和实测温度值调整所述电化学与固体传热耦合模型的参数,使得在设定温度下不同倍率的充放电电压-时间仿真曲线和温升-时间仿真曲线均与实测数据匹配,并使得在设定倍率下不同温度的充放电电压-时间仿真曲线和温升-时间仿真曲线均与实测数据匹配。
  5. 根据权利要求2所述的方法,其中,基于所述电化学与固体传热耦合模型建立脉冲模型,包括:
    在所述电化学场中,设定负极多孔电极和正极多孔电极电化学反应过程中产生的交换电流密度i 0与电池荷电状态SOC和电芯温度T之间的函数:i 0(SOC,T)=i 0(SOC)*exp(-E a1/R*(1/T-1/T ref));其中,SOC为脉冲充放电过程中电池荷电状态;E a1为电化学反应活化能;R为摩尔气体常数;T ref为参考温度;
    在所述电化学场中,设定负极材料的固相扩散系数Ds1与负极材料荷电状态SOC_neg和电芯温度T之间的函数:
    Ds1(SOC_neg,T)=Ds1(SOC_neg)*exp(-E a2/R*(1/T-1/T ref));其中,E a2为锂离子固相扩散的活化能;
    在所述电化学场中,设定正极材料的固相扩散系数Ds2与正极材料荷电状态SOC_pos和电芯温度T之间的函数:
    Ds2(SOC_pos,T)=Ds2(SOC_pos)*exp(-E a2/R*(1/T-1/T ref))。
  6. 根据权利要求5所述的方法,其中,根据实测脉冲充放电数据标定所述脉冲模型,包括:
    根据脉冲充放电过程中的实测电压值和实测温度值调整所述交换电流密度、所述负极材料的固相扩散系数和所述正极材料的固相扩散系数,直至在设定温度下不同倍率的充放电电压-时间仿真曲线与电压-时间实测曲线匹配,且温升-时间仿真曲线与温升-时间实测曲线匹配,并且使的在设定倍率下不同温度的充放电电压-时间仿真曲线与电压-时间实测曲线匹配,且温升-时间仿真曲线与温 升-时间实测曲线匹配。
  7. 根据权利要求6所述的方法,其中,基于所述脉冲模型预测脉冲充放电最大电流,包括:
    设置电芯的电池荷电状态和脉冲充放电时间,并设置第二停止条件;
    在充电过程中,所述第二停止条件包括:充电电压超过充电电压上限;负极多孔电极与隔膜界面处的固相电势小于液相电势;电芯温度大于温度上限;
    在放电过程中,所述第二停止条件包括:放电电压小于放电电压下限;电芯温度大于温度上限;
    给出预估电流的初始值,并根据脉冲充放电过程中实测电压值和实测温度值不断调整预估电流,直至所述预估电流满足所述第二停止条件;满足所述第二停止条件的所述预估电流为所述最大电流。
  8. 一种电池脉冲充放电最大电流的获取装置,包括:
    耦合模型建立单元,设置为建立电芯的电化学与固体传热耦合模型,并根据电芯不同倍率实测充放电数据标定所述电化学与固体传热耦合模型;
    脉冲模型建立单元,设置为基于所述电化学与固体传热耦合模型建立脉冲模型,并根据实测脉冲充放电数据标定所述脉冲模型;
    预估电流单元,设置为基于所述脉冲模型预测脉冲充放电最大电流。
  9. 一种电池脉冲充放电最大电流的获取设备,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的电池脉冲充放电最大电流的获取方法。
  10. 一种包含计算机可执行指令的介质,所述计算机可执行指令在由计算机处理器执行时用于执行如权利要求1-7中任一所述的电池脉冲充放电最大电流的获取方法。
PCT/CN2022/087834 2021-05-13 2022-04-20 电池脉冲充放电最大电流的获取方法、装置、设备及介质 WO2022237476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110519745.9 2021-05-13
CN202110519745.9A CN112949101B (zh) 2021-05-13 2021-05-13 电池脉冲充放电最大电流的获取方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022237476A1 true WO2022237476A1 (zh) 2022-11-17

Family

ID=76233776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087834 WO2022237476A1 (zh) 2021-05-13 2022-04-20 电池脉冲充放电最大电流的获取方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN112949101B (zh)
WO (1) WO2022237476A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117828908A (zh) * 2024-03-06 2024-04-05 苏州易来科得科技有限公司 反应电流密度的计算方法,应用,装置,电子设备和计算机存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112949101B (zh) * 2021-05-13 2021-08-03 蜂巢能源科技有限公司 电池脉冲充放电最大电流的获取方法、装置、设备及介质
CN114062946A (zh) * 2021-10-21 2022-02-18 合肥国轩高科动力能源有限公司 一种锂离子电池操作极限电流的测试方法及系统
WO2024026854A1 (zh) * 2022-08-05 2024-02-08 重庆大学 一种应用于汽化锂离子电池正极集流体的脉冲放电系统
CN116111219B (zh) * 2023-04-10 2024-03-29 苏州易来科得科技有限公司 电池无析锂快充方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165314A (zh) * 2019-04-30 2019-08-23 蜂巢能源科技有限公司 电池电芯性能参数获取方法及获取装置
CN110728056A (zh) * 2019-10-14 2020-01-24 合肥国轩高科动力能源有限公司 一种锂离子电池充放电的最大电流仿真测试方法
CN111180813A (zh) * 2018-11-13 2020-05-19 罗伯特·博世有限公司 近似基于电化学电池模型给锂离子电池快充电算法的方法
CN112949101A (zh) * 2021-05-13 2021-06-11 蜂巢能源科技有限公司 电池脉冲充放电最大电流的获取方法、装置、设备及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199122B (zh) * 2017-12-28 2019-09-13 哈尔滨工业大学 基于电化学-热耦合模型的锂离子电池无析锂低温加热方法
CN110954831B (zh) * 2019-12-06 2021-10-26 重庆大学 一种多时间尺度的方形锂电池soc和sot联合估计方法
CN111308163B (zh) * 2020-02-21 2022-08-30 青岛力神新能源科技有限公司 一种锂离子动力电池脉冲放电最大电流的确定方法
CN112379289B (zh) * 2020-10-31 2024-03-29 浙江锋锂新能源科技有限公司 一种锂离子电池最大电流的测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180813A (zh) * 2018-11-13 2020-05-19 罗伯特·博世有限公司 近似基于电化学电池模型给锂离子电池快充电算法的方法
CN110165314A (zh) * 2019-04-30 2019-08-23 蜂巢能源科技有限公司 电池电芯性能参数获取方法及获取装置
CN110728056A (zh) * 2019-10-14 2020-01-24 合肥国轩高科动力能源有限公司 一种锂离子电池充放电的最大电流仿真测试方法
CN112949101A (zh) * 2021-05-13 2021-06-11 蜂巢能源科技有限公司 电池脉冲充放电最大电流的获取方法、装置、设备及介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117828908A (zh) * 2024-03-06 2024-04-05 苏州易来科得科技有限公司 反应电流密度的计算方法,应用,装置,电子设备和计算机存储介质
CN117828908B (zh) * 2024-03-06 2024-05-24 苏州易来科得科技有限公司 反应电流密度的计算方法,应用,装置,电子设备和计算机存储介质

Also Published As

Publication number Publication date
CN112949101A (zh) 2021-06-11
CN112949101B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
WO2022237476A1 (zh) 电池脉冲充放电最大电流的获取方法、装置、设备及介质
WO2022262566A1 (zh) 三电极锂离子电池锂沉积的预测方法、装置、设备及介质
Kong et al. Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells
Yang et al. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit
Li et al. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods
Liu et al. Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery
Yu et al. Fractional-order modeling of lithium-ion batteries using additive noise assisted modeling and correlative information criterion
WO2022228284A1 (zh) 电芯结构件接触电阻的获取方法、装置、设备及存储介质
CN113253131B (zh) 确定电芯充放电性能的方法、装置、存储介质及电子设备
Zhang et al. Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model
Sesidhar et al. A review on data-driven SOC estimation with Li-Ion batteries: Implementation methods & future aspirations
CN115453377B (zh) 基于电化学-热-老化与三维降阶的电池组寿命预测方法
Hahn et al. Revealing inhomogeneities in electrode lithiation using a real-time discrete electro-chemical model
Muñoz et al. Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery
Garrick et al. Modeling electrochemical transport within a three-electrode system
CN114210604B (zh) 一种多特征梯次利用动力电池分选方法、装置及存储介质
CN115828685A (zh) 基于切比雪夫谱方法的锂电池温度仿真方法、装置及介质
CN113011065B (zh) 预测电芯充放电性能的方法、装置、存储介质及电子设备
Parmananda et al. Underpinnings of Multiscale Interactions and Heterogeneities in Li‐Ion Batteries: Electrode Microstructure to Cell Format
García et al. Development of a calibration methodology for fitting the response of a lithium-ion cell P2D model using real driving cycles
CN116068408B (zh) 电池老化数据确定方法、装置、计算机设备和存储介质
Ma et al. Sensitivity analysis of electrochemical model parameters for lithium-ion batteries on terminal voltages and anode lithium plating criterion
Fernandez et al. Towards a fast-charging of LIBs electrode materials: a heuristic model based on galvanostatic simulations
CN116865388A (zh) 一种快充策略的制定方法、装置和电子设备
CN116165547A (zh) 锂电池的电压计算与修正方法及系统、装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806446

Country of ref document: EP

Kind code of ref document: A1