WO2022237223A1 - 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构 - Google Patents

一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构 Download PDF

Info

Publication number
WO2022237223A1
WO2022237223A1 PCT/CN2022/071871 CN2022071871W WO2022237223A1 WO 2022237223 A1 WO2022237223 A1 WO 2022237223A1 CN 2022071871 W CN2022071871 W CN 2022071871W WO 2022237223 A1 WO2022237223 A1 WO 2022237223A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
fuel
afterburner
fuel nozzle
cavity
Prior art date
Application number
PCT/CN2022/071871
Other languages
English (en)
French (fr)
Inventor
王士奇
温泉
韩啸
Original Assignee
中国航空发动机研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航空发动机研究院 filed Critical 中国航空发动机研究院
Publication of WO2022237223A1 publication Critical patent/WO2022237223A1/zh
Priority to US18/173,175 priority Critical patent/US11913409B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/08Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof
    • F02K3/10Plants including a gas turbine driving a compressor or a ducted fan with supplementary heating of the working fluid; Control thereof by after-burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/16Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration with devices inside the flame tube or the combustion chamber to influence the air or gas flow
    • F23R3/18Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants
    • F23R3/20Flame stabilising means, e.g. flame holders for after-burners of jet-propulsion plants incorporating fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • F05D2240/36Fuel vaporizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14482Burner nozzles incorporating a fluidic oscillator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention belongs to the technical field of fuel injection and structural design of aero-engines, and in particular relates to fuel injection and structural forms in afterburning chambers.
  • Certain aeroengines may not perform well across the entire thrust range. For example, when an aircraft takes off, it needs a lot more thrust than when it is cruising. If the engine is designed according to the take-off thrust, the mass of the engine will be too large, and the engine will be in a non-design point state during cruising, and the performance will be very poor; If the engine is not designed for thrust, it will cause the aircraft to fail to take off normally.
  • One of the measures to solve the above problems is to add an afterburner between the gas turbine and the nozzle of the engine to greatly increase the engine thrust in a short time. Although the mass of the afterburner is only about 1/5 of the engine, the thrust can be increased by more than 60%.
  • the main military engines of all countries in the world basically adopt the structure with afterburner.
  • the traditional afterburner is mainly composed of a diffuser 1, a mixer 2, an ignition device (not shown in the figure), a fuel injection rod 3, a flame stabilizer 4, a pre-chamber (not shown in the figure), a heat shield 5, and a fuel manifold , turbine blade 6, rectifying strut plate 7, fuel nozzle 8, outer duct 9, inner duct 10 and other components (as shown in Figure 1).
  • the high-temperature airflow discharged from the turbine and the air from the external duct enter the afterburner, and are mixed by the mixer to form an airflow with uniform pressure, speed, and temperature; It is ignited under the action; the gas flow flows back forward, igniting the subsequent oil-gas mixture, so that the gas in the afterburner chamber is fully burned, and the purpose of increasing the jet speed and thrust is achieved.
  • the combustion chamber of the sub-combustion ramjet generally also adopts the above-mentioned form.
  • the liquid fuel of the afterburner engine of the turbo engine and the sub-combustion ramjet engine is mainly injected into the direction perpendicular to or at a certain angle to the main flow through the direct injection nozzle on the fuel injection rod.
  • the liquid column gradually turns into liquid lumps and small droplets (as shown in Figure 1), and evaporates in a high-temperature environment, forming a flammable mixture with the air in the afterburner.
  • atomization is the first step to complete the mixing of oil and gas.
  • the diameter of the atomized droplets is small and uniform, which is conducive to the mixing of fuel and air, which will bring great benefits to combustion.
  • Good fuel atomization and uniform oil-air mixing are the prerequisites for high-efficiency combustion. Improving the quality of spray after jet atomization and improving the spatial distribution uniformity of oil mist can effectively improve the efficiency and stability of combustion.
  • the present invention provides a novel fuel nozzle-based afterburner structure, which can be used without increasing the structural complexity of the current turbine engine afterburner and sub-combustion ram ram , greatly improve the atomization performance and spatial distribution uniformity of fuel in the afterburner/ram combustion chamber, thereby improving the combustion efficiency and combustion instability of the engine, while shortening the length and weight of the afterburner and sub-fuel ram combustion chamber.
  • the object of the present invention is achieved through the following solutions:
  • An afterburner structure based on a new type of fuel nozzle including a casing, a central rectifying cone located in the casing, several airfoil struts connecting the central rectifying cone and the inner wall of the casing, the airfoil struts
  • the plate is evenly arranged around the center rectifying cone; a number of new fuel nozzles are arranged on the airfoil support plate, and the injection direction of the new fuel nozzle is perpendicular to the direction of flow in the engine;
  • the new fuel nozzle includes a fuel nozzle body, a The oscillating cavity in the body and the feedback channel connected to the oscillating cavity, the nozzle connected to the oscillating cavity and suitable for injecting fuel to the engine; the fuel is fan-shaped output through the nozzle, and is The flow is dispersed.
  • the nozzle direction of the novel fuel nozzle forms an angle ⁇ with the tangent line of the airfoil support plate surface where the nozzle is located.
  • the nozzle is located within the range of 10% chord length to 90% chord length of the airfoil strut section.
  • the sector angle is 5° to 160°.
  • A1 is the throat cross-sectional area of the inlet throat of the first nozzle
  • A2 is the throat cross-sectional area of the inlet throat of the second nozzle.
  • the oscillating cavity is provided with a fluid inlet, and the main fluid of the fluid passes through the oscillating cavity and is suitable for generating a vortex, so that the main fluid flows against the side wall of the oscillating cavity and flows in the oscillating cavity
  • the nozzle is deflected in one direction;
  • the feedback channel is connected with the oscillating cavity, and the feedback channel is used for transmitting control fluid, and the control fluid drives the main fluid to flow to the other side wall and deflect in the other direction at the nozzle.
  • the new fuel nozzle has two feedback channels, which are symmetrically distributed on both sides of the oscillation cavity, and the feedback channels are suitable for introducing the branch fluid of the fluid, and the inlet of the feedback channel is close to the The nozzle, the outlet of the feedback channel is close to the inlet.
  • sectional area of the middle part of the oscillating cavity is larger than the sectional area of the entrance and the sectional area of the nozzle of the oscillating cavity.
  • a rib is provided in the middle of the airfoil support, the rib divides the airfoil into two cavities, and a fuel passage connecting the fuel injection device and the fuel pump is provided in the middle of the rib.
  • the present invention Compared with the prior art, the present invention has the advantages that: the present invention provides a novel fuel nozzle-based afterburner structure, the interior of the afterburner is provided with a novel fuel nozzle, and the novel fuel nozzle includes fuel The nozzle body, the oscillating cavity and the feedback channel set in the fuel nozzle body, the nozzle connected to the oscillating cavity and suitable for injecting fuel to the engine; the fuel is fan-shaped output through the nozzle, and is sent flow dispersed.
  • the invention forms sweeping jet flow at the outlet under the condition of stable inlet flow rate, fluid Coanda effect and alternate feedback action of the feedback channel.
  • the atomization performance and spatial distribution uniformity of the fuel can be greatly improved, and the combustion efficiency and combustion instability of the engine can be improved. Shorten the length of afterburner and sub-combustion ram combustor.
  • Figure 1 is a schematic diagram of a conventional afterburner
  • Fig. 2 is the afterburner structure based on the novel fuel nozzle of the present invention
  • Fig. 3 is a schematic diagram of the internal structure after removing the turbine in Fig. 2;
  • Fig. 4 is a schematic cross-sectional view of the afterburner in Fig. 2 along the central axis;
  • Fig. 5 is a detailed schematic diagram of the airfoil support plate in Fig. 3;
  • Fig. 6 is a schematic cross-sectional view of A-A in Fig. 5;
  • Fig. 7 is a schematic cross-sectional view along the fuel passage in Fig. 5;
  • a) the direct injection nozzle injects the fuel into the high-speed horizontal airflow; b) the crushing and atomization process of the liquid fuel in the horizontal airflow;
  • FIG. 9 (a) a schematic diagram of injecting fuel into a direct injection nozzle; (b) a schematic diagram of injecting fuel into a new type of fuel nozzle;
  • FIG. 10 (a) is the detailed schematic diagram of the novel fuel nozzle of Fig. 9 (b), and (b) is the transient image of the outlet sweeping liquid column of the novel fuel nozzle;
  • Figure 11 is a detailed schematic diagram of the new fuel nozzle.
  • the present invention first discloses a structure of afterburner chamber based on a new type of fuel nozzle 152 .
  • the engine includes a casing 110 , an outer turbine 120 , an inner turbine 130 and a central rectifying cone 140 .
  • the central rectifying cone 140 is located at the center of the engine, and divides the engine into an outer duct 200 and an inner duct 300 at the inlet of the engine through the wall.
  • the outer turbine 120 is arranged inside the outer duct 200
  • the inner turbine 130 is arranged inside the inner duct 300 .
  • the engine of the present invention also includes an airfoil support plate 150 .
  • the airfoil strut 150 is located at the rear side of the outer turbine 120 and the inner turbine 130 .
  • the inner turbine 130 and the outer turbine 120 are removed, so that the airfoil strut 150 can be presented.
  • the casing 110 is provided with a shockproof screen 160 inside, and the shockproof screen 160 is used to isolate the noise and vibration generated in the engine, and prevent excessive noise and vibration from being transmitted to the inside of the aircraft.
  • the rear side space of the airfoil support plate 150 is the combustion chamber, and the shockproof screen 160 is arranged on the inner wall of the casing 110 of the combustion chamber.
  • the shockproof screen 160 also has the function of heat insulation.
  • a mixer 170 is provided behind the inner turbine 130 and the outer turbine 120 , and in the mixer 170 , the air inhaled by the inner turbine 130 and the outer turbine 120 is mixed to obtain a cross flow. And the mixed transverse airflow is further delivered to the airfoil strut 150 .
  • a fuel channel 151 is provided in the middle of the airfoil support plate 150, and the fuel channel 151 is connected with an external fuel pump 190.
  • Several new fuel nozzles 152 are arranged on the surface of the airfoil support plate 150. The new fuel nozzles 152 are used to supply fuel to all Inject fuel into the combustion chamber. Under the action of the high-speed lateral airflow input by the inner turbine 130 and the outer turbine 120, the fuel injected by the new fuel nozzle 152 rapidly diffuses and fully mixes in the combustion chamber.
  • the combustion chamber is also provided with an igniter 180 near the airfoil support plate 150.
  • the fully mixed gas is ignited by the igniter 180 to generate combustion, and the high-speed jet gas pushes the turbine on the rear side and drives the connotation of the front part of the engine.
  • Turbine 130 and external turbine 120 are preferably uniformly arranged around the center straightening cone 140, so that the novel fuel nozzle 152 injects fuel uniformly into the combustion chamber.
  • the airfoil strut 150 is preferably an integrated airfoil strut.
  • the integrated airfoil strut can effectively support the outer casing of the afterburner, and at the same time, the flow resistance of its shape is extremely small. It can still maintain a high flow efficiency.
  • its internal cavity structure is also convenient for the arrangement of airflow cooling or fuel cooling flow path.
  • the internal cavity structure of the airfoil support plate also greatly facilitates the installation and arrangement of the new fuel nozzle.
  • the uniform degree of mixing of fuel and air will determine the sufficient degree and quality of combustion.
  • the new fuel nozzle 152 can spread the fuel in a large space and mix it evenly with the air under the action of the high-speed transverse airflow, thereby effectively improving the combustion efficiency.
  • the use of direct fuel atomization leads to low fuel injection efficiency (Fig. 9a), while the use of swing fuel injection usually requires the introduction of mechanical control structures or electromagnetic control mechanisms, which increases the complexity of the engine.
  • the present invention creatively introduces a novel fuel nozzle 152 of self-excited sweep oscillation. Under the injection of high-pressure oil, the self-excited oscillation chamber is used to generate high-frequency sweep-type oscillation oil output (accompanying drawing 9b), without A mechanical motion structure or an electromagnetic structure needs to be added.
  • the new type of fuel nozzle 152 is an oscillator 500, which includes a fuel nozzle body 510, an oscillation cavity 520 disposed in the body, and a feedback loop connected to the oscillation cavity.
  • the channel 530 and the nozzle 540 connected with the oscillation cavity 520 and suitable for injecting fuel to the engine; the fuel is fan-shaped output through the nozzle and dispersed by the incoming flow 400 .
  • the oscillating cavity is provided with a fluid inlet 550, and the main fluid 600 of the fluid passes through the oscillating cavity and is suitable for generating a vortex, so that the main fluid 600 flows against the side wall of the oscillating cavity and flows on the side wall of the oscillating cavity.
  • the spout is deflected in one direction.
  • the feedback channel is connected with the oscillation cavity, and the feedback channel is used to transmit the control fluid, and the control fluid drives the main fluid to flow to the other side wall and deflect in the other direction at the nozzle (Fig. 10b).
  • Two feedback channels 530 are symmetrically distributed on both sides of the oscillating cavity 520, the feedback channels 530 are suitable for introducing the branch fluid of the fluid, the inlet of the feedback channel is close to the nozzle 540, and the outlet of the feedback channel close to the inlet 550 .
  • the cross-sectional area of the middle part of the oscillation cavity is larger than the entrance cross-sectional area and the nozzle cross-sectional area of the oscillation cavity, so that the fuel can enter the oscillation cavity in the form of injection, and is suitable for cohesive flow and Create a vortex.
  • a new fuel injector 152 with dual feedback passages is employed.
  • the oscillating cavity of the novel fuel nozzle 152 is provided with a fluid inlet.
  • Two feedback channels are symmetrically distributed on both sides of the oscillating cavity, the feedback channels are suitable for introducing the branch fluid of the fluid, the inlet of the feedback channel is close to the nozzle, and the outlet of the feedback channel is close to the Entrance.
  • the cross-sectional area of the middle part of the oscillation chamber is larger than the cross-sectional area of the entrance of the oscillation chamber to form an inlet throat, and the cross-sectional area of the middle part of the oscillation chamber is larger than the cross-sectional area of the nozzle to form an exit throat.
  • the inlet usually has a smaller area, while the input channel has a larger flow area, so the liquid can enter the oscillation cavity at a higher speed after passing through the inlet.
  • the sectional area of the oscillating cavity is larger than that of the inlet, so it can be known that the flow velocity of the fluid inside the oscillating cavity is slower than that at the inlet.
  • the main fluid flows against the wall of the oscillating cavity on one side, and at this time, a larger vortex is generated on the other side, and the vortex has a lower intensity.
  • the pressure of the liquid at the outlet of the feedback channel is smaller than that at the inlet, driving the liquid from the inlet of the feedback channel to the feedback channel. flow at the exit. Therefore, the main fluid is driven to adhere to the wall of the oscillation cavity on the other side.
  • the above-mentioned larger vortex gradually decreases, but the strength of the vortex is constantly increasing, which leads to an increase in the attractive force, so that the main fluid is further attached to the side.
  • the main fluid gradually forms a new vortex between the wall of the oscillation cavity attached in the previous stage and the main fluid.
  • the above process realizes that the main fluid is deflected in another direction at the nozzle.
  • the main fluid passing through the oscillating cavity is suitable for generating vortices, which further increases the stability of the fluid, thereby generating deflection with a certain frequency.
  • Fig. 11 is another representation of the structure in Fig. 10, and the adjustment of the fine structure does not change the functions and effects of the two structures.
  • the two feedback channels have width FW, fuel nozzle width OW, outlet throat width W, fan angle ⁇ , inlet throat width T, fan outlet height H1, oscillator height H2, feedback channel outlet height for H3.
  • T When the inlet throat width T is too large, the operating frequency of the oscillator will be too low to form a fan-shaped liquid mist. Therefore, in a preferred solution, T ⁇ 3mm.
  • the working frequency and fan angle are also related to the outlet throat, in a preferred embodiment, 0.2 ⁇ W/T ⁇ 4. If the ratio is too small, the fan angle formed by the exit jet is too small, and if the ratio is too large, the fan-shaped sweeping liquid mist cannot be formed at the exit.
  • the height H1 of the fan-shaped outlet satisfies 0 ⁇ H1/W ⁇ 5, and the existence of this height can limit the coverage of the outlet fan-shaped sweeping liquid mist. If the ratio is too large, the energy loss of the outlet jet when it flows out of the fan-shaped area is too high. Large, unable to achieve effective penetration depth.
  • the outlet fan angle satisfies 5 ⁇ 160°.
  • the new fuel nozzle 152 of the present invention has a simple internal structure, and a better atomization effect can be achieved through a fixed flow channel design.
  • its atomization performance and uniformity of fuel spatial distribution are significantly improved, and because of the internal cavity structure, the increase in flow resistance is limited, the flow coefficient is limited, and it is less prone to coking and clogging , while the increase in structural complexity of its implementation is limited.
  • the traditional centrifugal atomizing nozzle it can produce fan-shaped spray under low pressure drop, which reduces the burden on the fuel pump.
  • due to the internal cavity structure its flow resistance is small, the flow coefficient is high, and it is not easy to clog and coke. ;
  • its structure is relatively simple, the processing cost is low, and it is easier to carry out integrated structural design with other parts in the afterburner.
  • the frequency is optimized to reduce the combustion instability of the afterburner and improve the reliability and life of the afterburner and the sub-combustion ramjet .
  • FIG. 6 there is a fuel channel 151 inside the airfoil strut, and the end of the fuel channel is connected to the new fuel nozzle 152 .
  • the blunt body structure 153 of the trailing edge of the airfoil strut 150 is suitable for generating a low-velocity recirculation zone.
  • the surface of the airfoil strut where the nozzle of the novel fuel nozzle 1 is located has a tangent line, and the novel fuel nozzle 152 has an injection direction 154 along its nozzle, and the tangent line forms an angle ⁇ with the injection direction 154 .
  • the angle ⁇ is 20° to 160°. The breaking and atomizing effect of the main airflow on the fuel jet is enhanced.
  • the injection direction of the novel fuel nozzle 1 is substantially perpendicular to the flow direction in the afterburner, that is, the flow direction of the above-mentioned transverse airflow. Diffusion and mixing of the injected fuel in the combustion chamber. And prevent fuel from adhering to the surface of the airfoil strut.
  • the cross-section of the airfoil support plate in Figure 5 is a low-resistance airfoil structure, which can significantly reduce the flow loss of the incoming flow, but the tail of the airfoil adopts a blunt body structure to form a low-speed recirculation zone at the rear, stabilize the flame structure, and bear the flame The role of the stabilizer.
  • the nozzle is located within the range of 10% chord length to 90% chord length of the airfoil strut section.
  • A1 is the inlet throat area of the first nozzle
  • A2 is the inlet area of the second nozzle.
  • the oil mist formed by multiple nozzles can be distributed in the circular channel of the entire afterburner.
  • the distribution within the afterburner is more uniform, avoiding the existence of local oil-rich or lean areas in the afterburner, and the problems caused by insufficient local combustion and uneven local temperature distribution, thereby improving the overall combustion efficiency in the afterburner.
  • Improve the uniformity of outlet temperature distribution and ultimately achieve the purpose of further improving the afterburner and the overall performance of the engine.
  • the afterburner structure based on the new fuel nozzle provided by the present invention greatly improves the atomization ability and spatial distribution uniformity of the fuel in the afterburner, can significantly improve the combustion efficiency, and reduces the afterburner and sub-combustion The length of the ramjet. And there is a certain unsteady frequency in its work, and its frequency is optimized to reduce the combustion instability of the afterburner and improve the reliability and life of the afterburner and the sub-combustion ramjet.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种基于新型燃油喷嘴(152)的加力燃烧室结构,采用的燃油喷嘴(152)在稳定的进口燃油流量条件下,在流体康达效应,以及反馈通道(530)的交替反馈作用下,在出口形成具有一定频率的扫掠式振荡射流,从而改善燃油喷射的空间均匀性,能够在不增加目前涡轮发动机加力燃烧室、亚燃冲压发动机燃烧室结构复杂度的基础上,大幅提高燃油在加力/冲压燃烧室内的雾化性能和油气混合均匀性,改善发动机的燃烧效率和燃烧不稳定性,同时缩短加力燃烧室以及亚燃冲压燃烧室的长度。

Description

一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构 技术领域
本发明属于航空发动机燃油喷射和结构设计技术领域,尤其涉及加力燃烧室内的燃油喷射和结构形式。
背景技术
特定的航空发动机无法在整个推力范围内都具备优良的性能。例如,飞机起飞时需要比巡航时大许多的推力,若按照起飞推力设计发动机,则该发动机质量将会过大,而在巡航时发动机因处于非设计点状态,性能会很差;若按照巡航推力设计发动机,则会导致飞机无法正常起飞。解决上述问题的措施之一是在发动机的燃气涡轮与喷管之间增加加力燃烧室,在短时间内大幅度提升发动机推力。尽管加力燃烧室的质量只占发动机的1/5左右,但推力可以增加60%以上。目前,世界各国主力军用发动机基本都采用了带加力燃烧室的结构。
传统加力燃烧室主要由扩压器1、混合器2、点火装置(图未示)、喷油杆3、火焰稳定器4、预燃室(图未示)、隔热屏5、燃油总管、涡轮叶片6、整流支板7、燃油喷嘴8、外涵道9、内涵道10等部件组成(如图1所示)。涡轮排出高温气流与外涵道空气进入加力燃烧室,通过混合器混合形成压力、速度、温度均匀的气流;气流通过扩压器增压减速,与燃油掺混后在点火装置和火焰稳定器作用下被点燃;已燃气流向前回流,点燃后续油气混合物,使得加力燃烧室内气体充分燃烧,达到增加喷气速度与推力的目的。亚燃冲压发动机的燃烧室一般也采用上述形式。
目前涡轮式发动机的加力发动机和亚燃冲压发动机的液态燃油主要通过喷油杆上的直射式喷嘴,沿与主流动垂直或成一定角度的方向喷入,在高速气流的横向作用下,经过一次破碎和二次雾化过程,从液柱逐渐变成液块和小液滴(如图1所示),并在高温环境下完成蒸发,与加力发 动机中的空气形成可燃的混合气。对于液体燃油来说,雾化是完成油气混合的第一步。如果燃油在气流中的喷射雾化过程进行得好,雾化后的液滴直径小而且均匀,就有利于燃油与空气的掺混,这将对燃烧带来极大的好处。良好的燃油雾化以及均匀的油气混合是实现高效率燃烧的前提,提高射流雾化后形成喷雾的质量并改善油雾的空间分布均匀性能够有效提高燃烧的效率和稳定性。
下一代发动机为了追求更高的推重比和工作效率,需要将涡轮的后框架、整流支板、燃油喷管、火焰稳定器等部件进行一定程度的一体化设计,以缩短加力燃烧室的长度和重量。但是,如果依然在加力燃烧室以及亚燃冲压燃烧室中使用传统的直射式燃油喷嘴形式,虽然其结构形式简单,但是喷射出的燃油空间分布极不均匀,会严重影响燃烧的效率;同时导致其在高速横向气流中完成雾化和掺混的流向距离过长,难以实现下一代发动机进一步降低加力燃烧室长度的要求;同时,下一代加力燃烧室的进口温度更高,自燃延迟时间更短,要在50mm内完成燃油的良好雾化、蒸发和混合,以免引起燃油自燃,采用普通直射式燃油喷嘴也难以实现上述设计目标。
发明内容
为了解决上述技术问题中的至少一个,本发明提供了一种基于新型燃油喷嘴的加力燃烧室结构,能够在不增加目前涡轮发动机加力燃烧室、亚燃冲压燃烧室结构复杂度的基础上,大幅提高燃油在加力/冲压燃烧室内的雾化性能和空间分布均匀性,从而改善发动机的燃烧效率和燃烧不稳定性,同时缩短加力燃烧室以及亚燃冲压燃烧室的长度和重量。本发明的目的通过以下方案实现:
一种基于新型燃油喷嘴的加力燃烧室结构,包括机匣,位于所述机匣内的中心整流锥、连接所述中心整流锥和机匣内壁的若干翼型支板,所述翼型支板绕中心整流锥均匀设置;所述翼型支板上设有若干新型燃油喷嘴,所述新型燃油喷嘴的喷射方向与发动机中的来流方向垂直;所述新型燃油喷嘴包括燃油喷嘴本体、设于所述本体内的振荡腔体及与所述振荡腔体连接的反馈通道、与所述振荡腔体连接并适于 向发动机喷射燃油的喷口;燃油通过所述喷口呈扇形输出,并被所述来流分散。
进一步地,所述新型燃油喷嘴的喷口方向与喷口所在的翼型支板表面切线成α角。
进一步地,所述喷口位于所述翼型支板截面10%弦长至90%弦长范围内。
进一步地,所述扇形角度为5°至160°。
进一步地,如果相邻燃油喷嘴的内部流道尺寸相同,则相邻的新型燃油喷嘴之间的距离满足以下关系:
(Li+d1) 2-Li 2=(Li+d1+d2) 2-(Li+d1) 2
其中,Li为接近发动机中心轴的第一喷口到所述发动机中心轴的距离;d1为接近发动机中心轴的喷口与其相邻的第二喷口的距离;d2为与第二喷口向邻的第三喷口与第二喷口的距离。
进一步地,如果所述的d1=d2=d,则相邻新型燃油喷嘴内的燃油等效流通面积需要满足:
A1/[(Li+d) 2-Li 2]=A2/[(Li+2d) 2-(Li+d) 2]
其中,A1为第一喷嘴的进口喉道截面积,A2为第二喷嘴的进口喉道的喉道截面积。
进一步地,所述振荡腔体设有流体进入入口,所述流体的主流体经过振荡腔体适于产生漩涡,从而使所述主流体贴合振荡腔体的一侧壁流动,并在振荡腔体的喷口向一方向偏摆;
所述反馈通道与所述振荡腔体连接,所述反馈通道用于传递控制流体,所述控制流体驱使主流体向另一侧壁流动,并在所述喷口向另一方向偏摆。
进一步地,所述新型燃油喷嘴具有两反馈通道,两反馈通道对称分布于所述振荡腔体两侧,所述反馈通道适于引入所述流体的支流体,所述反馈通道的入口接近于所述喷口,所述反馈通道的出口接近于所述入口。
进一步地,所述振荡腔体的中部截面积大于振荡腔体的入口截面积及喷口截面积。
进一步地,所述翼型支板中部设有肋板,所述肋板将翼型支板隔断为两个空腔,肋板中部设有将燃油注射装置与燃油泵连通的燃油通道。
相比于现有技术本发明的优势在于:本发明提供了一种基于新型燃油喷嘴的加力燃烧室结构,所述加力燃烧室的内部设有新型燃油喷嘴,所述新型燃油喷嘴包括燃油喷嘴本体、设于所述燃油喷嘴本体内的振荡腔体及反馈通道、与所述振荡腔体连接并适于向发动机喷射燃油的喷口;燃油通过所述喷口呈扇形输出,并被所述来流分散。本发明在稳定的进口流量条件下,在流体康达效应,以及反馈通道的交替反馈作用下,在出口形成扫掠式的射流。从而能够在不增加目前涡轮发动机加力燃烧室、亚燃冲压燃烧室结构复杂度的基础上,大幅提高燃油的雾化性能和空间分布均匀性,改善发动机的燃烧效率和燃烧不稳定性,同时缩短加力燃烧室以及亚燃冲压燃烧室的长度。
附图说明
附图示出了本发明的示例性实施方式,并与其说明一起用于解释本发明的原理,其中包括了这些附图以提供对本发明的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1为传统加力燃烧室示意图;
图2为本发明的基于新型燃油喷嘴的加力燃烧室结构;
图3为图2去除涡轮后的内部结构示意图;
图4为图2加力燃烧室沿中心轴的剖面示意图;
图5为图3中翼型支板的详细示意图;
图6为图5中A-A向截面示意图;
图7为图5中沿燃油通道的截面示意图;
图8中a)直射式喷嘴将燃油注入高速横向气流中;b)液态燃油在横向气流中的破碎和雾化过程;
图9中(a)直射式喷嘴注入燃油示意图;(b)新型燃油喷嘴注入燃油示意图;
图10中(a)为图9(b)新型燃油喷嘴详细示意图,(b)为新型 燃油喷嘴的出口扫掠型液柱的瞬态图像;
图11为新型燃油喷嘴详细示意图。
其中,1、扩压器;2、混合器;3、喷油杆;4、火焰稳定器;5、隔热屏;6、涡轮叶片;7、整流支板;8、喷嘴;9、外涵道;10、内涵道;110、机匣;120、外涵涡轮;130、内涵涡轮;140、中心整流锥;150、翼型支板;151、燃油通道;152、新型燃油喷嘴;153、尾缘钝体结构;154、喷射方向;160、防震屏;170、混合器;180、点火器;190、燃油泵;200、外涵道;300、内涵道;400、来流;500、振荡器;510、燃油喷嘴本体;520、振荡腔体;530、反馈通道;540、喷口;550、入口;600、主流体。
具体实施方式
下面结合附图和实施方式对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本发明。
参见说明书附图2及附图4,本发明首先公开了一种基于新型燃油喷嘴152的加力燃烧室结构。该发动机包括机匣110、外涵涡轮120、内涵涡轮130及中心整流锥140。其中,中心整流锥140位于发动机中心,通过壁面在发动机的进口处将发动机分隔为外涵道200及内涵道300。外涵涡轮120设置于外涵道200内、内涵涡轮130设置于内涵道300内部。
参见说明书附图3,本发明的发动机还包括有翼型支板150。具体地,翼型支板150位于外涵涡轮120及内涵涡轮130的后侧。附图3将内涵涡轮130及外涵涡轮120进行了拆除,从而使得翼型支板150得以呈现。
参见说明书附图4,机匣110的内部设置有防震屏160,所述防震屏160用于隔绝发动机内产生的噪声及振动,避免过多的噪声及振动传导至飞行器内部。翼型支板150的后侧空间即为燃烧室,所述防震屏160设 置于燃烧室的机匣110内壁面。优选地,所述防震屏160还具有隔热的作用。
内涵涡轮130及外涵涡轮120的后侧设置有混合器170,在所述混合器170中,内涵涡轮130及外涵涡轮120吸入的空气混合得到横向气流。并将混合后的横向气流进一步向翼型支板150输送。翼型支板150中部设有燃油通道151,并且该燃油通道151与外部的燃油泵190进行连接,翼型支板150的表面上设置有若干新型燃油喷嘴152,新型燃油喷嘴152用于向所述燃烧室内部喷射燃油。在内涵涡轮130、外涵涡轮120输入的高速横向气流的作用下,新型燃油喷嘴152喷射的燃油迅速在燃烧室内扩散并充分混合。
燃烧室接近翼型支板150的位置上还设置有点火器180,经过充分混合后的气体在点火器180的点火作用下产生燃烧,高速喷射气体推动后侧的涡轮,并带动发动机前部的内涵涡轮130及外涵涡轮120。翼型支板150优选地绕中心整流锥140均匀设置,使得新型燃油喷嘴152向燃烧室内均匀喷射燃油。
翼型支板150优选为一体化翼型支板,一体化翼型支板能够有效支撑加力燃烧室的外机匣,同时其外形的流动阻力极小,在不启用加力的飞行工况下依然能够保持较高的流动效率。在加力燃烧室的高温来流环境下,其内部的空腔结构也便于进行了气流冷却或燃油冷却流路的布置。同时,翼型支板的内部空腔结构也大大方便了新型燃油喷嘴的安装和布置。
通常地,燃油与空气的混合均匀程度将决定了燃烧的充分程度及质量。新型燃油喷嘴152能够在高速横向气流作用下将燃油在较大空间内散布并与空气均匀混合,从而有效提高燃烧效率。采用直接的燃油雾化导致燃油注入效率低(附图9a),而采用摆动式的燃油注入方式,通常需要引入机械控制结构或电磁控制机构,增加了发动机的复杂度。本发明创造性地引入了自激发扫掠振荡的新型燃油喷嘴152,在高压油液的注入下,利用自激发的振荡腔产生高频率的扫掠式振荡油液输出(附图9b),而不需要增加机械运动结构或电磁结构。
参见说明书附图8-10,所述新型燃油喷嘴152为振荡器500,所 述振荡器包括燃油喷嘴本体510、设于所述本体内的振荡腔体520及与所述振荡腔体连接的反馈通道530、与所述振荡腔体520连接并适于向发动机喷射燃油的喷口540;燃油通过所述喷口呈扇形输出,并被所述来流400分散。
振荡腔体设有流体进入入口550,所述流体的主流体600经过振荡腔体适于产生漩涡,从而使所述主流体600贴合振荡腔体的一侧壁流动,并在振荡腔体的喷口向一方向偏摆。反馈通道与所述振荡腔体连接,反馈通道用于传递控制流体,所述控制流体驱使主流体向另一侧壁流动,并在所述喷口向另一方向偏摆(附图10b)。两反馈通道530对称分布于所述振荡腔体520两侧,所述反馈通道530适于引入所述流体的支流体,所述反馈通道的入口接近于所述喷口540,所述反馈通道的出口接近于所述入口550。
优选地,所述振荡腔体的中部截面积大于振荡腔体的入口截面积及喷口截面积,从而能够使得燃油以喷射的方式进入振荡腔体,并且适于在振荡腔体中附壁流动及产生漩涡。
在该实施方式中,采用了具有双反馈通道的新型燃油喷嘴152。具体地,该新型燃油喷嘴152的振荡腔体设有流体进入入口。两反馈通道对称分布于所述振荡腔体两侧,所述反馈通道适于引入所述流体的支流体,所述反馈通道的入口接近于所述喷口,所述反馈通道的出口接近于所述入口。所述振荡腔体的中部截面积大于振荡腔体的入口截面积从而形成入口喉道,并且振荡腔体的中部截面积大于喷口截面积,形成出口喉道。
所述入口通常具有较小的面积,而输入通道具有较大的过流面积,因此,液体能够在经过入口后以较大的速度进入振荡腔体。振荡腔体的截面积较入口截面积大,因此可知道在振荡腔体内部流体的流速较入口处的流速慢。
由于在振荡腔体内具有凹陷的结构,容易产生漩涡。在康达效应的作用下,主流体贴着一侧振荡腔体的壁面进行流动,此时在另一侧产生较大的漩涡,该漩涡的强度较低。当经过所述反馈通道的入口时,由于反馈通道出口处的流体流速大于反馈通道入口处的流速,因此反 馈通道出口处的液体压力较入口处的小,驱使液体从反馈通道入口处向反馈通道出口处流动。从而驱动主流体向另外一侧的振荡腔体壁面依附。在该过程中,上述的较大的漩涡逐渐减小,但是漩涡的强度在不断增大,从而导致吸引力的增大,使得主流体进一步向该侧面贴附。而主流体在上一阶段贴附的振荡腔体壁面与主流体之间逐渐形成新的漩涡。以上过程实现了主流体在所述喷口向另一方向偏摆。主流体经过振荡腔体适于产生漩涡,进一步加大了流体的稳定性,从而产生具有一定频率的偏摆。
尽管图11与图10(a)在外形上具有细微的差别,但是图11的主要结构、尺寸与图10(a)是一致的。图11是图10结构的另一种表现形式,其细微结构的调整,并未使得两个结构所拥有的功能、效果改变。两所述反馈通道具有宽度FW,燃油喷嘴宽度OW,出口喉道宽度为W,扇形角度为β,进口喉道的宽度为T,扇形出口高度为H1,振荡器高度为H2,反馈通道出口高度为H3。
当进口喉道宽度T过大时,将导致振荡器的工作频率过低,无法形成扇形液雾。因此,在优选的方案中,T<3mm。
并且工作的频率及扇形角度还与出口喉道相关,在优选的实施方案中,0.2<W/T<4。如果比值过小,出口射流形成的扇形角过小,如果该比值过大,则无法在出口处形成扇形扫掠液雾。
更进一步地,扇形出口高度H1满足0<H1/W<5,此高度的存在可以限制出口扇形扫掠液雾的覆盖范围,如果该比值过大,则出口射流流出扇形区域时的能量损失过大,无法实现有效的穿透深度。
出口扇形角度满足5<β<160°,通过调节扇形出口角度,从而改变扇形喷嘴形成的液雾扇形面的角度。
本发明的新型燃油喷嘴152内部结构简单,通过固定的流道设计就能实现较好的雾化效果。与目前常用的直射式喷嘴相比,其雾化性能和燃油空间散布均匀性显著提高,且由于内部为空腔结构,因此流阻增加有限,流量系数减小有限,且更不容易结焦和阻塞,同时其实现的结构复杂度增加有限。与传统的离心式雾化喷嘴相比,在低压降 下即可产型扇形喷雾,降低了燃油泵的负担,同时由于内部的空腔结构,其流阻小,流量系数高,不易阻塞,不易结焦;同时,其结构相对简单,加工成本低,且更易与加力燃烧室中其他部件进行一体化结构设计。
并且由于漩涡的存在,其工作中存在一定的非稳态频率,对其频率进行优化设计,从而降低加力燃烧室燃烧不稳定性,提高加力燃烧室及亚燃冲压发动机的可靠性与寿命。
所述喷口优选地设计为喇叭形开口,即该喷口由较小的截面向较大的截面扩张。在康达效应的作用下,从喷口喷出的燃油,将贴附于一侧喷口壁面向外部喷射,喷口的喇叭形的角度可以有效增大燃油的喷射角度。使得燃油以扇形角度进行喷射。优选地,所述扇形角度为5°至160°。本发明提供的基于新型燃油喷嘴152的加力燃烧室结构,采用了自激扫掠振荡喷嘴,其能够产生扇形液膜或扇形液雾。与普通直射式液柱相比,扇形液膜或液雾在横向高速横向流动中的雾化效果和燃油空间分布均匀度得到显著提高。
参见附图6,翼型支板内部设有燃油通道151,燃油通道的末端连接所述新型燃油喷嘴152。翼型支板150的尾缘钝体结构153处适于产生低速回流区。所述新型燃油喷嘴1的喷口所在的翼型支板的表面具有切线,新型燃油喷嘴152沿其喷口具有喷射方向154,切线与喷射方向154成α角。所述α角为20度至160度。增强了主气流对燃油射流的破碎和雾化效果。参见附图5,新型燃油喷嘴1的喷射方向与加力燃烧室中的来流方向,即上述横向气流的流动方向是基本垂直的。使得喷射的燃油在燃烧室内扩散混合。且避免燃油附着于翼型支板表面。图5中的翼型支板截面是一个低阻力翼型结构,能够显著降低来流的流动损失,但是翼型尾部采用钝体结构,以在后方形成低速回流区,稳定火焰结构,承担了火焰稳定器的作用。
在优选的技术方案中,所述喷口位于所述翼型支板截面10%弦长至90%弦长范围内。
参见附图7,在翼型内部两侧形成了两排对称的新型燃油喷嘴内部燃油通道,为了使燃油喷雾能够在加力燃烧室圆形通道内均匀分布, 如果每个喷嘴的内部构型尺寸相同,则相邻的新型燃油喷嘴1之间的距离满足以下关系:
(Li+d1) 2-Li 2=(Li+d1+d2) 2-(Li+d1) 2
其中,Li为接近发动机中心轴的第一喷口到所述发动机中心轴的距离;d1为接近发动机中心轴的喷口与其相邻的第二喷口的距离;d2为与第二喷口向邻的第三喷口与第二喷口的距离。
进一步地,为了使燃油喷雾能够在加力燃烧室圆形通道内均匀分布,如果所述的d1=d2=d,即喷嘴之间的分布间隔距离相同,则相邻燃油喷嘴内流道的尺寸需要进行一定比例的缩放,其缩放比例满足:
A1/[(Li+d) 2-Li 2]=A2/[(Li+2d) 2-(Li+d) 2]
其中,A1为第一喷口的进口喉道面积,A2为第二喷口的进口面积。通过以上的尺寸设计,能够使得燃油在加力燃烧室的空间内部均匀分布。
通过上述方法中对支板中各个喷嘴的流道尺寸和分布规律的设置,在单个喷嘴油雾散布更加均匀的基础上,能够使多个喷嘴形成的油雾在整个加力燃烧室圆形通道内的分布更加均匀,避免加力燃烧室内存在局部的富油或贫油区域,及其造成的局部燃烧不充分,以及局部温度分布不均匀的问题,从而提高加力燃烧室内的整体燃烧效率,改善出口温度分布均匀度,最终实现进一步提高加力燃烧室和发动机整体性能的目的。本发明提供的基于新型燃油喷嘴的加力燃烧室结构,使得燃油在加力燃烧室内的雾化能力和空间分布均匀度大幅提高,能够显著提高燃烧的效率,减小加力燃烧室以及亚燃冲压发动机的长度。并且其工作中存在一定的非稳态频率,对其频率进行优化设计,从而降低加力燃烧室燃烧不稳定性,提高加力燃烧室及亚燃冲压发动机的可靠性与寿命。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、 结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本发明,而并非是对本发明的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本发明的范围内。

Claims (10)

  1. 一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:包括机匣,位于所述机匣内的中心整流锥、连接所述中心整流锥和机匣内壁的若干翼型支板,所述翼型支板绕中心整流锥均匀设置;
    所述翼型支板上设有若干新型燃油喷嘴,所述新型燃油喷嘴的喷射方向与发动机中的来流方向垂直;所述新型燃油喷嘴包括新型燃油喷嘴本体、设于所述本体内的振荡腔体及与所述振荡腔体连接的反馈通道、与所述振荡腔体连接并适于向加力燃烧室内喷射燃油的喷口;燃油通过所述喷口呈扇形输出,并被所述来流分散。
  2. 如权利要求1所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述新型燃油喷嘴的喷口位于翼型支板的壁面,且喷口方向与喷口所述的翼型支板表面切线成α角,20°<α<160°。
  3. 如权利要求1所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述燃油喷嘴的喷口位于所述翼型支板截面10%弦长至90%弦长范围内。
  4. 如权利要求1所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述扇形角度为5°至160°。
  5. 如权利要求1-4任意一项所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:相邻的新型燃油喷嘴内流道的尺寸相同,则燃油喷嘴之间的距离满足以下关系:
    (Li+d1) 2-Li 2=(Li+d1+d2) 2-(Li+d1) 2
    其中,Li为接近发动机中心轴的第一喷口到所述发动机中心轴的距离;d1为接近发动机中心轴的喷口与其相邻的第二喷口的距离;d2为与第二喷口向邻的第三喷口与第二喷口的距离。
  6. 如权利要求5所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:d1=d2=d,相邻新型燃油喷嘴内的燃油等效流通面积需要满足:
    A1/[(Li+d) 2-Li 2]=A2/[(Li+2d) 2-(Li+d) 2]
    其中,A1为第一燃油喷嘴内部的进口喉道截面积,A2为第二燃油喷嘴内部的进口喉道截面积。
  7. 如权利要求1-4任意一项所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述振荡腔体设有流体进入入口,所述流体的主流体经过振荡腔体适于产生漩涡,从而使所述主流体贴合振荡腔体的一侧壁流动,并在振荡腔体的喷口向一方向偏摆;
    所述反馈通道与所述振荡腔体连接,所述反馈通道用于传递控制流体,所述控制流体驱使主流体向另一侧壁流动,并在所述喷口向另一方向偏摆。
  8. 如权利要求7所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述新型燃油喷嘴具有两反馈通道,两反馈通道对称分布于所述振荡腔体两侧,所述反馈通道适于引入所述流体的支流体,所述反馈通道的入口接近于所述喷口,所述反馈通道的出口接近于所述入口。
  9. 如权利要求7所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述振荡腔体的中部截面积大于振荡腔体的入口截面积及喷口截面积。
  10. 如权利要求7所述的一种基于新型燃油喷嘴的加力燃烧室结构,其特征在于:所述翼型支板中部设有肋板,所述肋板将翼型支板隔断为两个空腔,肋板中部设有将燃油注射装置与燃油泵连通的燃油通道。
PCT/CN2022/071871 2021-05-13 2022-01-13 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构 WO2022237223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/173,175 US11913409B2 (en) 2021-05-13 2023-02-23 Afterburner structure with self-excited sweeping oscillating fuel injection nozzles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110519916.8A CN113280366B (zh) 2021-05-13 2021-05-13 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构
CN202110519916.8 2021-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,175 Continuation US11913409B2 (en) 2021-05-13 2023-02-23 Afterburner structure with self-excited sweeping oscillating fuel injection nozzles

Publications (1)

Publication Number Publication Date
WO2022237223A1 true WO2022237223A1 (zh) 2022-11-17

Family

ID=77278880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071871 WO2022237223A1 (zh) 2021-05-13 2022-01-13 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构

Country Status (3)

Country Link
US (1) US11913409B2 (zh)
CN (1) CN113280366B (zh)
WO (1) WO2022237223A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116181526A (zh) * 2023-02-07 2023-05-30 中国人民解放军32804部队 基于支板引气的超声速燃烧室低马赫数点火装置和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464976B (zh) * 2021-05-12 2022-08-05 深圳市万泽航空科技有限责任公司 一种火焰稳定器及其制造方法
CN113280366B (zh) * 2021-05-13 2022-09-27 中国航空发动机研究院 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构
CN113757719B (zh) * 2021-09-18 2023-05-05 北京航空航天大学 燃烧室燃烧振荡的控制方法及燃烧室
CN114018583B (zh) * 2021-10-28 2024-03-19 中国航发沈阳发动机研究所 一种均匀进气的涵道喷管推力与流量同步测量进气结构
CN114060853B (zh) * 2021-12-02 2022-07-19 厦门大学 一种用于一体化加力燃烧室的多级梯齿型混合器
CN115183273A (zh) * 2022-07-21 2022-10-14 中国航发沈阳发动机研究所 一种加力发动机燃烧室

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979088A (ja) * 1995-09-14 1997-03-25 Ishikawajima Harima Heavy Ind Co Ltd ラム燃焼器
US5685140A (en) * 1995-06-21 1997-11-11 United Technologies Corporation Method for distributing fuel within an augmentor
CN102538010A (zh) * 2012-02-12 2012-07-04 北京航空航天大学 一种稳定器与涡轮后整流支板一体化设计的加力燃烧室
CN105435976A (zh) * 2015-11-18 2016-03-30 北京航空航天大学 一种自激振荡气体射流辅助雾化装置
CN106594800A (zh) * 2016-11-18 2017-04-26 西北工业大学 一种双油路喷射及支板射流的一体化加力燃烧室
CN106662328A (zh) * 2014-09-12 2017-05-10 西门子公司 具有流体振荡器的用于燃气轮机的燃烧器和具有至少一个这种燃烧器的燃气轮机
CN106678876A (zh) * 2016-11-18 2017-05-17 西北工业大学 一种在整流支板内设计气流通道的加力燃烧室
CN112547330A (zh) * 2020-11-30 2021-03-26 上海交通大学 一种无反馈管道的流体振荡器
CN113280366A (zh) * 2021-05-13 2021-08-20 中国航空发动机研究院 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748852A (en) * 1969-12-05 1973-07-31 L Cole Self-stabilizing pressure compensated injector
SU1432287A1 (ru) * 1986-11-19 1988-10-23 Государственный научно-исследовательский институт теплоэнергетического приборостроения Струйный автогенератор
US5456594A (en) * 1994-03-14 1995-10-10 The Boc Group, Inc. Pulsating combustion method and apparatus
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
US7093442B2 (en) * 2003-04-30 2006-08-22 United Technologies Corporation Augmentor
US7506514B2 (en) * 2005-06-30 2009-03-24 United Technologies Corporation Augmentor fuel conduit bushing
US7128082B1 (en) * 2005-08-10 2006-10-31 General Electric Company Method and system for flow control with fluidic oscillators
US8201462B2 (en) * 2008-06-10 2012-06-19 Avinash Shrikrishna Vaidya Recirculation type oscillator flow meter
WO2009150663A1 (en) * 2008-06-10 2009-12-17 Avinash Shrikrishna Vaidya Fluidic oscillator flow meter
US9759424B2 (en) * 2008-10-29 2017-09-12 United Technologies Corporation Systems and methods involving reduced thermo-acoustic coupling of gas turbine engine augmentors
US20100123031A1 (en) * 2008-11-17 2010-05-20 Caterpillar Inc. Fluid oscillator assembly for fuel injectors and fuel injection system using same
US8209987B2 (en) * 2008-11-26 2012-07-03 United Technologies Corporation Augmentor pilot
CN101776283B (zh) * 2009-01-13 2012-06-20 北京航空航天大学 带射流注入的火焰稳定装置
US20130192237A1 (en) * 2012-01-31 2013-08-01 Solar Turbines Inc. Fuel injector system with fluidic oscillator
EP2644999A1 (de) * 2012-03-29 2013-10-02 Alstom Technology Ltd Gasturbinenanlage mit Fluidic-Injektor
WO2016012962A1 (ru) * 2014-07-25 2016-01-28 Дмитрий Юрьевич УКРАИНСКИЙ Расходомер струйный автогенераторный
CN104549805A (zh) * 2014-12-19 2015-04-29 北京航空航天大学 一种自激振荡射流发生装置
DE102015222771B3 (de) * 2015-11-18 2017-05-18 Technische Universität Berlin Fluidisches Bauteil
CN105240095A (zh) * 2015-11-19 2016-01-13 大连海事大学 一种应用于船用柴油机scr系统自激振荡脉冲雾化喷嘴
US10823062B2 (en) * 2018-07-27 2020-11-03 Rohr, Inc. Sweeping jet swirl nozzle
CN110833373B (zh) * 2018-08-15 2021-12-17 广东美的白色家电技术创新中心有限公司 振荡射流装置和家用清洗设备
CN109611214B (zh) * 2018-11-07 2020-12-18 中国人民解放军空军工程大学 扫掠式等离子体射流点火器
CN209588046U (zh) * 2019-02-25 2019-11-05 中国石油大学(华东) 一种燃油燃烧器自激脉动喷嘴
CN211781231U (zh) * 2019-12-12 2020-10-27 哈尔滨实力航空工业有限公司 一种双油路喷射的一体化加力燃烧室
CN111623010B (zh) * 2020-06-04 2021-08-27 中国航空发动机研究院 一种脉冲扫射式流体振荡激励器
CN111810454A (zh) * 2020-07-17 2020-10-23 中国航空发动机研究院 一种基于自循环振荡射流的机匣、压气机及其扩稳方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685140A (en) * 1995-06-21 1997-11-11 United Technologies Corporation Method for distributing fuel within an augmentor
JPH0979088A (ja) * 1995-09-14 1997-03-25 Ishikawajima Harima Heavy Ind Co Ltd ラム燃焼器
CN102538010A (zh) * 2012-02-12 2012-07-04 北京航空航天大学 一种稳定器与涡轮后整流支板一体化设计的加力燃烧室
CN106662328A (zh) * 2014-09-12 2017-05-10 西门子公司 具有流体振荡器的用于燃气轮机的燃烧器和具有至少一个这种燃烧器的燃气轮机
CN105435976A (zh) * 2015-11-18 2016-03-30 北京航空航天大学 一种自激振荡气体射流辅助雾化装置
CN106594800A (zh) * 2016-11-18 2017-04-26 西北工业大学 一种双油路喷射及支板射流的一体化加力燃烧室
CN106678876A (zh) * 2016-11-18 2017-05-17 西北工业大学 一种在整流支板内设计气流通道的加力燃烧室
CN112547330A (zh) * 2020-11-30 2021-03-26 上海交通大学 一种无反馈管道的流体振荡器
CN113280366A (zh) * 2021-05-13 2021-08-20 中国航空发动机研究院 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116181526A (zh) * 2023-02-07 2023-05-30 中国人民解放军32804部队 基于支板引气的超声速燃烧室低马赫数点火装置和方法
CN116181526B (zh) * 2023-02-07 2023-09-15 中国人民解放军32804部队 基于支板引气的超声速燃烧室低马赫数点火装置和方法

Also Published As

Publication number Publication date
CN113280366A (zh) 2021-08-20
CN113280366B (zh) 2022-09-27
US11913409B2 (en) 2024-02-27
US20230392565A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022237223A1 (zh) 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构
CN105953265B (zh) 一种组合燃烧室
US8925325B2 (en) Recirculating product injection nozzle
US8011188B2 (en) Augmentor with trapped vortex cavity pilot
US8365531B2 (en) Fuel injector
US7467518B1 (en) Externally fueled trapped vortex cavity augmentor
CN101435585B (zh) 一种燃气轮机组合式燃油蒸发雾化燃烧装置
CN106678876B (zh) 一种在整流支板内设计气流通道的加力燃烧室
CN110686275B (zh) 一种强化掺混与火焰传播的燃烧室火焰稳定结构
CN102032598A (zh) 一种带多旋流中间稳焰级的周向分级低污染燃烧室
CN106678868A (zh) 一种偏转整流支板的一体化加力燃烧室
CN103884024B (zh) 一种能够组织燃烧并将火焰传导到外涵道气流的联焰装置
CN108758693A (zh) 一种具有双油路及截头中心锥结构的一体化加力燃烧室
CN110762554A (zh) 一种燃气自循环预热的蒸发式凹腔火焰稳定器
CN115597088B (zh) 燃烧室结构、燃烧调控的方法
CN109654533A (zh) 一种适应来流畸变的尾缘吹气式稳定器
CN108870441B (zh) 一种采用圆弧形扇形喷嘴和凹腔结构加力燃烧室
CN114459056A (zh) 一种结构可调的组合式旋转爆震加力燃烧室
CN203940469U (zh) 一种加力燃烧室供油装置
CN104061598B (zh) 加力燃烧室供油装置
CN109915858A (zh) 一种可预混带驻涡凹腔结构的支板火焰稳定器
CN211575178U (zh) 一种燃气自循环预热的蒸发式凹腔火焰稳定器
CN112066412B (zh) 燃烧室、燃气轮机以及抑制振荡燃烧的方法
CN112066415B (zh) 燃烧室、燃气轮机以及抑制振荡燃烧的方法
CN104819484B (zh) 一种径向点火的蒸发式火焰稳定器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22806201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22806201

Country of ref document: EP

Kind code of ref document: A1