WO2022236992A1 - 一种超导量子比特读取脉冲的优化方法 - Google Patents

一种超导量子比特读取脉冲的优化方法 Download PDF

Info

Publication number
WO2022236992A1
WO2022236992A1 PCT/CN2021/112474 CN2021112474W WO2022236992A1 WO 2022236992 A1 WO2022236992 A1 WO 2022236992A1 CN 2021112474 W CN2021112474 W CN 2021112474W WO 2022236992 A1 WO2022236992 A1 WO 2022236992A1
Authority
WO
WIPO (PCT)
Prior art keywords
qubit
measurement
power
read
control system
Prior art date
Application number
PCT/CN2021/112474
Other languages
English (en)
French (fr)
Inventor
刘幼航
李彦祯
刘强
Original Assignee
山东浪潮科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东浪潮科学研究院有限公司 filed Critical 山东浪潮科学研究院有限公司
Publication of WO2022236992A1 publication Critical patent/WO2022236992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena

Definitions

  • the invention relates to the technical field of quantum computing, in particular to an optimization method for reading pulses of superconducting qubits.
  • Quantum computing is one of the potential solutions to improve computing power in the post-Moore era.
  • Superconducting qubit is a macroscopic quantum phenomenon, and has the advantages of easy expansion, easy processing, long decoherence time, and non-destructive measurement. It is currently a popular qubit construction scheme.
  • the improvement of the reading accuracy of superconducting qubits is also one of the keys to the realization of superconducting quantum computing.
  • the readout of superconducting qubit states relies on the microwave transmission properties of planar waveguides. Specifically, when the read signal passes through the read line in the quantum chip, it will be affected by the qubit read resonant cavity. Different qubit states correspond to different S21 transmission characteristics of the planar waveguide. Therefore, after passing through the read line, the The read signal is collected and analyzed to determine the state of the qubit. However, in order to prevent the read signal from damaging the quantum state of the qubit, the read signal input to the quantum chip will be attenuated many times to reach the single photon level. This leads to the fact that the finally collected read signal after passing through the quantum chip to read the transmission line is very weak, and it needs to be amplified multiple times to collect and analyze the read signal. However, when the read signal is amplified by the amplifier, noise will inevitably be introduced, which will adversely affect the state of the final obtained qubit.
  • the present invention provides an optimization method for superconducting qubit read pulses that can obtain optimal read signal parameters.
  • a method for optimizing a superconducting qubit read pulse comprising the steps of:
  • step c) act a single X gate on the qubit, place the qubit in the
  • N is a positive integer greater than or equal to 1000, count the number of times the measurement result is
  • step f) After step f) is completed, (p2-p1)(f2-f1)/(a*b) parameter points and the probability of measuring the qubit to obtain the
  • the step size a in step a) is divisible by p2-p1.
  • the step size b in step a) is divisible by f2-f1.
  • the beneficial effect of the present invention is: change the power of the read signal generated by the measurement and control system with a certain step size, and then change the frequency of the read signal generated by the measurement and control system with a certain step size at each output power, and at each power ,
  • the frequency point repeatedly uses a single X-gate operation to place the qubit in the
  • 1> at each power and frequency point is n/N;
  • 1> is the final optimal parameter.
  • Fig. 1 is a schematic diagram of a quantum circuit for reading a qubit in the
  • a method for optimizing a superconducting qubit read pulse comprising the steps of:
  • step c) act a single X gate on the qubit, place the qubit in the
  • N is a positive integer greater than or equal to 1000, count the number of times the measurement result is
  • step f) After step f) is completed, (p2-p1)(f2-f1)/(a*b) parameter points and the probability of measuring the qubit to obtain the
  • step a the step size a is divisible by p2-p1.
  • step a the step size b is divisible by f2-f1.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种超导量子比特读取脉冲的优化方法,以一定的步长改变测控系统所生成读取信号的功率,在每个输出功率下再以一定的步长改变测控系统所生成读取信号的频率,在每个功率、频率点重复利用单个X门操作将量子比特置于|1>态并且对量子比特的状态进行读取,假设上述过程重复的次数为N,其中读取到量子比特状态为|1>的次数为n,那么在每个功率、频率点读取到量子比特状态为|1>的概率为n/N;在完成对设定功率、频率范围读取信号的扫描后即可对比在不同功率、频率点下读取量子比特状态得到|1>的概率,选取其中读取到|1>概率最大所对应的读取信号参数即为最终得到的最优参数。

Description

一种超导量子比特读取脉冲的优化方法 技术领域
本发明涉及量子计算技术领域,具体涉及一种超导量子比特读取脉冲的优化方法。
背景技术
随着摩尔定律近临失效,人们需要继续寻找新的计算方案来确保计算力的持续提升。量子计算是后摩尔时代提升计算力的潜在方案之一,对于量子计算的实现而言,量子比特的构造存在多种不同的物理载体。超导量子比特是一种宏观量子现象,并且具有易于扩展、易于加工、退相干时间较长、能够进行非破坏性测量等优势,是目前热门的量子比特构造方案。而在超导量子计算的研究中,除了量子比特控制精度外,超导量子比特的读取精度提升也是实现超导量子计算的关键之一。
超导量子比特状态的读取依赖于平面波导的微波传输特性。具体来说,读取信号在经过量子芯片中的读取线时会受到量子比特读取谐振腔的影响,不同量子比特状态对应平面波导不同的S21传输特性,因此,可以对经过读取线后的读取信号进行采集分析,从而判断量子比特所处的状态。但是,为了避免读取信号对量子比特所处的量子态造成破坏,输入到量子芯片上的读取信号会经过多次衰减,达到单光子量级。这就导致了最终采集到的经过量子芯片读取传输线以后的读取信号十分微弱,需要经过多次放大才能对读取信号进行采集分析。而读取信号在经过放大器放大时会不可避免的引入噪声,对最终获取量子比特的状态造成不利影响。
发明内容
本发明为了克服以上技术的不足,提供了一种可以得到最优读取信号参数的超导量子比特读取脉冲的优化方法。
本发明克服其技术问题所采用的技术方案是:
一种超导量子比特读取脉冲的优化方法,包括如下步骤:
a)选取测控系统输出读取信号功率扫描范围的下界p1和上界p2,选取测控系统输出读取信号功率扫描改变的步长a,选取测控系统输出读取信号频率扫描范围的下界f1和上界f2,选取测控系统输出读取信号频率扫描改变的步长b;
b)将测控系统输出读取信号的功率设置为p1,频率设置为f1;
c)对量子比特作用单个X门,将量子比特置于|1>态,利用步骤b)中输出读取信号对量子比特进行读取,得到测量结果;
d)重复步骤c)N次,N为大于等于1000的正整数,统计测量结果为|1>的次数,得到测量结果为|1>的次数为n次,将n/N作为此功率和频率设置下对量子比特读取得到|1>态的概率;
e)将测控系统输出读取信号的功率设置为p1,频率设置为f1+b*n2后重复执行步骤c)和步骤d),n2=0,1,2,3…(f2-f1)/b;
f)将测控系统输出读取信号的功率设置为p1+a*n1后重复执行步骤e),n1=0,1,2,3…(p2-p1)/a;
g)步骤f)执行完毕后得到(p2-p1)(f2-f1)/(a*b)个参数点以及每个参数点所对应读取信号下测量量子比特得到|1>态的概率,选取概率最大值所对应的参数点作为优化后的量子比特读取信号参数。
优选的,步骤a)中步长a能被p2-p1整除。
优选的,步骤a)中步长b能被f2-f1整除。
本发明的有益效果是:以一定的步长改变测控系统所生成读取信号的功率,在每个输出功率下再以一定的步长改变测控系统所生成读取信号的频率,在每个功率、频率点重复利用单个X门操作将量子比特置于|1>态并且对量子比特的状态进行读取,假设上述过程重复的次数为N,其中读取到量子比特状态为|1>的次数为n,那么在每个功率、频率点读取到量子比特状态为|1>的概率为n/N;在完成对设定功率、频率范围读取信号的扫描后即可对比在不同功率、频率点下读取量子比特状态得到|1>的概率,选取其中读取到|1>概率最大所对应的读取信号参数即为最终得到的最优参数。
附图说明
图1为对置于|1>态量子比特进行读取的量子线路示意图。
具体实施方式
下面结合附图1对本发明做进一步说明。
一种超导量子比特读取脉冲的优化方法,包括如下步骤:
a)选取测控系统输出读取信号功率扫描范围的下界p1和上界p2,选取测控系统输出读取信号功率扫描改变的步长a,选取测控系统输出读取信号频率扫描范围的下界f1和上界f2,选取测控系统输出读取信号频率扫描改变的步长b;
b)将测控系统输出读取信号的功率设置为p1,频率设置为f1;
c)对量子比特作用单个X门,将量子比特置于|1>态,利用步骤b)中输出读取信号对量子比特进行读取,得到测量结果;
d)重复步骤c)N次,N为大于等于1000的正整数,统计测量结果为|1>的次数,得到测量结果为|1>的次数为n次,将n/N作为此功率和频率设置下对量子比特读取得到|1>态的概率;
e)将测控系统输出读取信号的功率设置为p1,频率设置为f1+b*n2后重复执行步骤c)和步骤d),n2=0,1,2,3…(f2-f1)/b;
f)将测控系统输出读取信号的功率设置为p1+a*n1后重复执行步骤e),n1=0,1,2,3…(p2-p1)/a;
g)步骤f)执行完毕后得到(p2-p1)(f2-f1)/(a*b)个参数点以及每个参数点所对应读取信号下测量量子比特得到|1>态的概率,选取概率最大值所对应的参数点作为优化后的量子比特读取信号参数。
以一定的步长改变测控系统所生成读取信号的功率,在每个输出功率下再以一定的步长改变测控系统所生成读取信号的频率,在每个功率、频率点重复利用单个X门操作将量子比特置于|1>态并且对量子比特的状态进行读取,假设上述过程重复的次数为N,其中读取到量子比特状态为|1>的次数为n,那么在每个功率、频率点读取到量子比特状态为|1>的概率为n/N;在完成对设定功率、频率范围读取信号的扫描后即可对比在不同功率、频率点下读取量子比特状态得到|1>的概率,选取其中读取到|1>概率最大所对应的读取信号参数即为最终得到的最优参数。
实施例1:
步骤a)中步长a能被p2-p1整除。
实施例2:
步骤a)中步长b能被f2-f1整除。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

  1. 一种超导量子比特读取脉冲的优化方法,其特征在于,包括如下步骤:
    a)选取测控系统输出读取信号功率扫描范围的下界p1和上界p2,选取测控系统输出读取信号功率扫描改变的步长a,选取测控系统输出读取信号频率扫描范围的下界f1和上界f2,选取测控系统输出读取信号频率扫描改变的步长b;
    b)将测控系统输出读取信号的功率设置为p1,频率设置为f1;
    c)对量子比特作用单个X门,将量子比特置于|1>态,利用步骤b)中输出读取信号对量子比特进行读取,得到测量结果;
    d)重复步骤c)N次,N为大于等于1000的正整数,统计测量结果为|1>的次数,得到测量结果为|1>的次数为n次,将n/N作为此功率和频率设置下对量子比特读取得到|1>态的概率;
    e)将测控系统输出读取信号的功率设置为p1,频率设置为f1+b*n2后重复执行步骤c)和步骤d),n2=0,1,2,3…(f2-f1)/b;
    f)将测控系统输出读取信号的功率设置为p1+a*n1后重复执行步骤e),n1=0,1,2,3…(p2-p1)/a;
    g)步骤f)执行完毕后得到(p2-p1)(f2-f1)/(a*b)个参数点以及每个参数点所对应读取信号下测量量子比特得到|1>态的概率,选取概率最大值所对应的参数点作为优化后的量子比特读取信号参数。
  2. 根据权利要求1所述的超导量子比特读取脉冲的优化方法,其特征在于:步骤a)中步长a能被p2-p1整除。
  3. 根据权利要求1所述的超导量子比特读取脉冲的优化方法,其特征在于:步骤a)中步长b能被f2-f1整除。
PCT/CN2021/112474 2021-05-11 2021-08-13 一种超导量子比特读取脉冲的优化方法 WO2022236992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110511938.X 2021-05-11
CN202110511938.XA CN113300781B (zh) 2021-05-11 2021-05-11 一种超导量子比特读取脉冲的优化方法

Publications (1)

Publication Number Publication Date
WO2022236992A1 true WO2022236992A1 (zh) 2022-11-17

Family

ID=77321381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112474 WO2022236992A1 (zh) 2021-05-11 2021-08-13 一种超导量子比特读取脉冲的优化方法

Country Status (2)

Country Link
CN (1) CN113300781B (zh)
WO (1) WO2022236992A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115146781B (zh) * 2022-09-01 2022-12-06 合肥本源量子计算科技有限责任公司 联合读取信号的参数获取方法、装置及量子控制系统
CN117669752A (zh) * 2024-01-29 2024-03-08 山东云海国创云计算装备产业创新中心有限公司 一种量子比特逻辑门参数的优化方法、系统、设备及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289638A1 (en) * 2008-05-23 2009-11-26 International Business Machines Corporation Microwave readout for flux-biased qubits
CN109327190A (zh) * 2018-09-29 2019-02-12 华东计算技术研究所(中国电子科技集团公司第三十二研究所) 一种多量子比特调控读取装置
CN109874327A (zh) * 2016-09-15 2019-06-11 谷歌有限责任公司 用于量子比特读出的放大器频率匹配
US20190303788A1 (en) * 2016-12-13 2019-10-03 Google Llc Compensation pulses for qubit readout
CN110476175A (zh) * 2017-04-04 2019-11-19 国际商业机器公司 用于超导量子比特的集成驱动和读出电路
CN111027701A (zh) * 2018-10-10 2020-04-17 Iqm芬兰有限公司 用于读出量子比特状态的装置和方法
CN111652376A (zh) * 2020-07-03 2020-09-11 合肥本源量子计算科技有限责任公司 一种量子比特信号的读取方法及装置
CN112417992A (zh) * 2020-11-02 2021-02-26 济南浪潮高新科技投资发展有限公司 一种量子比特状态读取形式的选取方法及装置、存储介质
CN112444714A (zh) * 2019-08-28 2021-03-05 合肥本源量子计算科技有限责任公司 一种量子比特工作参数检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624387B (zh) * 2012-03-29 2014-08-06 江汉大学 一种原子频标的短期稳定度参数优化的方法和装置
EP3593298A4 (en) * 2017-03-10 2021-01-20 Rigetti & Co., Inc. PERFORMING A CALIBRATION PROCESS IN A QUANTUM DATA PROCESSING SYSTEM
CN111275196B (zh) * 2020-01-15 2023-06-30 山东浪潮科学研究院有限公司 一种超导量子计算单比特门序列的优化方法及设备、介质
CN111539531A (zh) * 2020-04-28 2020-08-14 济南浪潮高新科技投资发展有限公司 一种量子比特的重置方法、装置、设备及可读存储介质
CN111722084B (zh) * 2020-06-29 2021-07-20 浪潮集团有限公司 一种超导量子芯片参数自动校准方法及相关组件
CN111882069A (zh) * 2020-07-27 2020-11-03 济南浪潮高新科技投资发展有限公司 单量子比特相对相位的判断方法、装置、设备及存储介质
CN112149832B (zh) * 2020-10-09 2022-05-10 腾讯科技(深圳)有限公司 量子比特的频率控制信号处理方法、超导量子芯片

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289638A1 (en) * 2008-05-23 2009-11-26 International Business Machines Corporation Microwave readout for flux-biased qubits
CN109874327A (zh) * 2016-09-15 2019-06-11 谷歌有限责任公司 用于量子比特读出的放大器频率匹配
US20190303788A1 (en) * 2016-12-13 2019-10-03 Google Llc Compensation pulses for qubit readout
CN110476175A (zh) * 2017-04-04 2019-11-19 国际商业机器公司 用于超导量子比特的集成驱动和读出电路
CN109327190A (zh) * 2018-09-29 2019-02-12 华东计算技术研究所(中国电子科技集团公司第三十二研究所) 一种多量子比特调控读取装置
CN111027701A (zh) * 2018-10-10 2020-04-17 Iqm芬兰有限公司 用于读出量子比特状态的装置和方法
CN112444714A (zh) * 2019-08-28 2021-03-05 合肥本源量子计算科技有限责任公司 一种量子比特工作参数检测方法
CN111652376A (zh) * 2020-07-03 2020-09-11 合肥本源量子计算科技有限责任公司 一种量子比特信号的读取方法及装置
CN112417992A (zh) * 2020-11-02 2021-02-26 济南浪潮高新科技投资发展有限公司 一种量子比特状态读取形式的选取方法及装置、存储介质

Also Published As

Publication number Publication date
CN113300781A (zh) 2021-08-24
CN113300781B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2022236992A1 (zh) 一种超导量子比特读取脉冲的优化方法
Macklin et al. A near–quantum-limited Josephson traveling-wave parametric amplifier
Leykam et al. Artificial flat band systems: from lattice models to experiments
US10725131B2 (en) Topologically-protected traveling-wave amplifier
Pankratov et al. Towards a microwave single-photon counter for searching axions
CN114077897B (zh) 一种量子芯片耦合结构优化方法
Chow et al. Characterizing a four-qubit planar lattice for arbitrary error detection
Ravindran et al. Active quenching of superconducting nanowire single photon detectors
Meyer-Scott et al. Power-efficient production of photon pairs in a tapered chalcogenide microwire
Guarcello et al. Modeling of Josephson traveling wave parametric amplifiers
Liu et al. The silicon vacancy centers in SiC: determination of intrinsic spin dynamics for integrated quantum photonics
Zhou et al. Self-focusing and defocusing of Gaussian laser beams in plasmas with linear temperature ramp
Jahromi Parameter estimation in plasmonic QED
Botha et al. Chaos along the rc-branch of RLC-shunted intrinsic Josephson junctions
CN108645505A (zh) 一种随机共振微弱信号检测方法
CN106124046B (zh) 一种超导纳米线单光子探测器的时域抖动仿真方法
Song et al. Amplification of optical Schrödinger cat states with an implementation protocol based on a frequency comb
Huang et al. Splitter trees of superconducting nanowire cryotrons for large fan-out
Ye et al. Implication of giant photon bunching on quantum phase transition in the dissipative anisotropic quantum Rabi model
CN110113032A (zh) 晶体振荡控制电路及其控制方法
CN114819352A (zh) 一种基于mic-tcn-lstm的负荷预测方法、存储介质及计算机系统
Luo et al. Speed-up coherent Ising machine with a squeezed feedback system
Wang et al. Nonclassical properties and decoherence of fields in photon-added squeezing-enhanced thermal states
Shnyrkov et al. Coherent Rabi response of a charge-phase qubit under microwave irradiation
CN107024289A (zh) 一种低时间抖动的单光子探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941559

Country of ref document: EP

Kind code of ref document: A1