WO2022236828A1 - 一种头戴式无线耳机及其通信方法 - Google Patents

一种头戴式无线耳机及其通信方法 Download PDF

Info

Publication number
WO2022236828A1
WO2022236828A1 PCT/CN2021/093920 CN2021093920W WO2022236828A1 WO 2022236828 A1 WO2022236828 A1 WO 2022236828A1 CN 2021093920 W CN2021093920 W CN 2021093920W WO 2022236828 A1 WO2022236828 A1 WO 2022236828A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
wireless communication
communication chip
range wireless
data packet
Prior art date
Application number
PCT/CN2021/093920
Other languages
English (en)
French (fr)
Inventor
杨孝良
曹聪
张圣杰
田军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180096012.7A priority Critical patent/CN117044227A/zh
Priority to EP21941397.8A priority patent/EP4325884A4/en
Priority to PCT/CN2021/093920 priority patent/WO2022236828A1/zh
Publication of WO2022236828A1 publication Critical patent/WO2022236828A1/zh
Priority to US18/507,790 priority patent/US20240089660A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/01Input selection or mixing for amplifiers or loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless headset and a communication method thereof.
  • a head-mounted bluetooth earphone as shown in Figure 1 the head-mounted bluetooth earphone includes a bluetooth chip, and a radio frequency antenna coupled with the bluetooth chip, the bluetooth chip and the radio frequency antenna are located in the head-mounted wireless earphone in a headset.
  • the radio frequency antenna is located in one earphone, and there is no radio frequency antenna in the other earphone, so the coverage area of the antenna is small, and the direction limitation is large, resulting in poor user experience.
  • the Bluetooth chip is located on the user's left ear side and the mobile phone is located in the user's right pocket, the Bluetooth signal has to pass through the head and the human body, and the signal attenuation is huge, resulting in a high packet loss rate of the headset and poor user experience. .
  • Embodiments of the present application provide a wireless headset and a communication method thereof, which can reduce a packet loss rate of the wireless headset and improve user experience.
  • a wireless headset which includes: a first headset, including: a first short-distance wireless communication chip and a first radio frequency antenna, the first short-distance The distance wireless communication chip is coupled to the first radio frequency antenna; the second earphone includes: a second short distance wireless communication chip and a second radio frequency antenna; the second short distance wireless communication chip is connected to the second radio frequency antenna Coupling; a data bus, respectively connecting the first short-range wireless communication chip and the second short-range wireless communication chip, for providing a connection between the first short-range wireless communication chip and the second short-range wireless communication chip The physical link required for inter-communication.
  • each short-distance wireless communication chip can receive data through the radio frequency antenna coupled with it, ensuring that the head-mounted wireless Headphones have a larger coverage area.
  • the two short-distance wireless communication chips can exchange data through the data bus, so a part of the air interface resources can be released, and the head-mounted wireless earphones can be reduced. packet loss rate, improving user experience.
  • the above-mentioned data bus may be set in a mechanical structure connecting the first earphone and the second earphone.
  • the short-range wireless communication chip in the embodiment of the present application may include but is not limited to a Bluetooth chip, a green tooth chip, a ZigBee chip, a near field communication (near field communication, NFC) chip or other short-distance wireless communication chips derived in the future.
  • the wireless communication chip the embodiment of the present application does not limit the specific type of the short-range wireless communication chip.
  • the above-mentioned first short-range wireless communication chip is configured to: receive a data packet from the terminal device through the first radio frequency antenna;
  • the data bus sends first information to the second short-distance wireless communication chip to request the second short-distance wireless communication chip to forward the data packet; the first information is used to indicate that the first short-distance wireless communication chip fails to receive the data packet.
  • the short-range wireless communication chip that fails to receive the data packet can request another short-range wireless communication chip to forward the data packet through the data bus, so that even If one short-range wireless communication chip fails to receive the data packet, as long as another short-distance wireless communication chip successfully receives the data packet, the short-distance wireless communication chip that successfully receives the data packet can send a message to the short-distance wireless communication chip that did not successfully receive the data packet. Forwarding the data packets successfully received does not require the terminal to retransmit the data packets, so it can improve the success rate of receiving data packets of the wireless headphones, reduce the packet loss rate of the wireless headphones, and improve user experience.
  • the above-mentioned first short-range wireless communication chip may be a master chip or a slave chip.
  • the second short-range wireless communication chip is the slave chip.
  • the first short-range wireless communication chip is a slave chip
  • the second short-range wireless communication chip may be a master chip.
  • the above-mentioned main chip may be a chip in the left earphone, or a chip in the right earphone.
  • the above-mentioned second short-range wireless communication chip is configured to: receive the above-mentioned data packet from the above-mentioned terminal device through the above-mentioned second radio frequency antenna; If the data packet is successfully received, in response to the first information, transmit the successfully received data packet to the first short-range wireless communication chip through the data bus. Based on this scheme, the short-range wireless communication chip that successfully receives the data packet forwards the successfully received data packet to the short-range wireless communication chip that fails to receive the data packet through the data bus. The transmission speed of the transmitted data is fast, so the power consumption of the terminal equipment and the wireless headset can be reduced.
  • the short-distance wireless communication chip that successfully receives the data packet can send a message to the short-range wireless communication chip that did not successfully receive the data packet through the data bus. Forwarding data packets, end devices do not need to retransmit data packets. Only when the two short-distance wireless communication chips fail to receive the data packet, the terminal device will retransmit the data packet. Therefore, the success rate of receiving data packets by the wireless headphone can be improved.
  • the above-mentioned first short-range wireless communication chip is the master chip, and the above-mentioned second short-range wireless communication chip is the slave chip; the second short-range wireless communication chip is the slave chip;
  • the communication chip is also used to send second information to the first short-distance wireless communication chip through the above-mentioned data bus; the second information is used to indicate that the second short-distance wireless communication chip has successfully received the above-mentioned data packet; the first short-distance wireless communication
  • the chip is further configured to send third information to the terminal device in response to the second information, where the third information is used to indicate that the data packet is received successfully.
  • the slave chip can inform the master chip that it has successfully received the data packet through the data bus. After the master chip learns that the slave chip has successfully received the data packet, The terminal can be notified through the air interface that the data packet is received successfully. Since the master and slave chips interact and synchronize through the data bus instead of the air interface, a part of the air interface resources can be released and the packet loss rate of the wireless headset can be reduced.
  • the above-mentioned first short-range wireless communication chip is the master chip, and the above-mentioned second short-range wireless communication chip is the slave chip; the first short-range wireless communication chip is the slave chip; The communication chip is further configured to send third information to the terminal device when the first short-distance wireless communication chip successfully receives the data packet, and the third information is used to indicate that the data packet is received successfully.
  • the master chip when the master chip successfully receives the data packet, regardless of whether the slave chip successfully receives the data packet, the master chip can directly notify the terminal device that the data packet has been successfully received.
  • the difference between this implementation and the previous implementation is that in this implementation, since the main chip successfully receives the data packet, the main chip can directly notify the terminal device that the data packet is successfully received. In the previous implementation, since the master chip fails to receive the data packet, but the slave chip receives the data packet successfully, the master chip notifies the terminal device that the data packet has been received successfully after learning that the slave chip has successfully received the data packet.
  • the above-mentioned first short-range wireless communication chip is further configured to send fourth information to the second short-distance wireless communication chip, and the fourth information It is used to indicate that the first short-range wireless communication chip successfully receives the data packet.
  • the first short-distance wireless communication chip can inform the second short-distance wireless communication chip whether it has successfully received the data packet from the terminal device through the data bus, so as to realize binaural synchronization.
  • the first short-range wireless communication chip and the second short-range wireless communication chip can Inform the other party through the data bus whether they have successfully received the data packet from the terminal device, so as to realize the synchronization between the ears.
  • the first earphone further includes a first speaker, and the first speaker is coupled to the first short-range wireless communication chip; the second earphone also It includes a second speaker, the second speaker is coupled with the second short-distance wireless communication chip; the first short-distance wireless communication chip is also used to decode the above-mentioned data packets, and play the decoded data packets through the first speaker; the second short-distance wireless communication chip The wireless communication chip is also used to decode the above data packets, and play the decoded data packets through the second speaker.
  • the first short-range wireless communication chip and the second short-range wireless communication chip successfully receives the data packet
  • the first short-range wireless communication chip and the second short-range wireless communication chip The data packets can be decoded, and the decoded data packets can be respectively played through the speakers coupled to it, so that the success rate of receiving the data packets by the head-mounted wireless earphone can be improved.
  • the data packet decoded by the first short-range wireless communication chip may be a data packet successfully received by it from the terminal device, or may be a data packet forwarded to it by the second short-range wireless communication chip.
  • the data packet decoded by the second short-range wireless communication chip may be a data packet successfully received by it from the terminal device, or may be a data packet forwarded to it by the first short-range wireless communication chip.
  • the above-mentioned first short-range wireless communication chip is the master chip, and the above-mentioned second short-range wireless communication chip is the slave chip; the second short-range wireless communication chip is the slave chip;
  • the communication chip is also used to send fifth information to the first short-distance wireless communication chip through the data bus when the second short-distance wireless communication chip fails to receive the data packet from the terminal device; the fifth information is used to indicate The second short-distance wireless communication chip fails to receive the data packet; the first short-distance wireless communication chip is used to respond to the fifth message and send the fifth information to the terminal device when the first short-distance wireless communication chip fails to receive the data packet.
  • the sixth information is used to instruct the terminal device to retransmit the data packet.
  • the main chip will instruct the terminal device to retransmit the data packet. That is to say, as long as at least one short-range wireless communication chip successfully receives the data packet in the solution in the embodiment of the present application, the terminal device does not need to retransmit the data packet, so the success rate of receiving the data packet by the headset can be improved.
  • the two short-distance wireless communication chips interact through the data bus instead of the air interface, which can save some air interface resources, further reduce the packet loss rate of the headset wireless headset, and improve user experience.
  • the above-mentioned data bus includes a serial peripheral interface SPI bus, a queue serial peripheral interface QSPI bus, a dual serial peripheral interface DSPI bus , Universal Asynchronous Receiver Transceiver UART bus, or bus I2C between integrated circuits.
  • a serial peripheral interface SPI bus a queue serial peripheral interface QSPI bus
  • a dual serial peripheral interface DSPI bus Universal Asynchronous Receiver Transceiver UART bus
  • I2C bus I2C between integrated circuits.
  • two short-distance wireless communication chips can be connected through SPI bus, QSPI bus, DSPI, UART bus or I2C bus, so that two short-distance wireless communication chips can exchange data through the above data bus instead of through the air interface Interaction, so it can release part of the air interface resources, reduce the packet loss rate of the headset wireless headset, and improve the user experience.
  • the first short-range wireless communication chip includes a first audio processor, a first radio frequency circuit, and a first physical interface, and the first audio The processor is respectively coupled to the first radio frequency circuit and the first physical interface, and the first radio frequency circuit is coupled to the first radio frequency antenna;
  • the second short-distance wireless communication chip includes a second audio processor, a second radio frequency circuit and a second physical interface interface, the second audio processor is coupled to the second radio frequency circuit and the second physical interface, the second radio frequency circuit is coupled to the second radio frequency antenna, and the first physical interface is coupled to the second physical interface through a data bus;
  • the first audio processor is used to transmit data between the first radio frequency circuit and the first radio frequency antenna and the terminal device, and transmit data between the first physical interface and the data bus and the second short-range wireless communication chip;
  • the second audio frequency The processor is configured to transmit data between the terminal device through the second radio frequency circuit and the second radio frequency antenna, and transmit data between the first short-distance wireless communication chip through the
  • the first short-distance wireless communication chip and the second short-distance wireless communication chip respectively include physical interfaces, and the two physical interfaces are coupled through a data bus, so that the first short-distance wireless communication chip and the second short-distance wireless communication chip
  • the wireless communication chip can interact through the data bus instead of the air interface, so it can release part of the air interface resources and reduce the packet loss rate of the wireless headset.
  • the above-mentioned first short-range wireless communication chip and the above-mentioned second short-range wireless communication chip are also used to The signal quality parameters of the signals received by the chip and the second short-range wireless communication chip determine the main chip in the first short-range wireless communication chip and the second short-range wireless communication chip. Based on this solution, both the first short-distance wireless communication chip and the second short-distance wireless communication chip can determine the main chip among the two short-distance wireless communication chips based on the signal quality parameters of the signals received by the two short-distance wireless communication chips. .
  • the main chip at the current moment can be used in the first short-range wireless communication chip and the second short-range wireless communication chip according to the signal quality parameters of the signal received by the first short-range wireless communication chip and the second short-range wireless communication chip.
  • the first short-range wireless communication chip can The signal quality parameter of the signal received by the wireless communication chip and the second short-distance wireless communication chip, if the signal quality parameter of the signal received by the second short-distance wireless communication chip is better than the signal quality parameter of the signal received by the first short-distance wireless communication chip, then The first short-distance wireless communication chip can determine the second short-distance wireless communication chip as the main chip, and inform the second short-distance wireless communication chip that it is the main chip, and the second short-distance wireless communication chip continues to perform the functions of the main chip.
  • the first short-distance wireless communication chip determines the second short-distance wireless communication chip as the main chip, and the first short-distance wireless communication chip may transfer the authority of the main chip to the second short-distance wireless communication chip, that is, the second short-distance wireless communication chip
  • the short-distance wireless communication chip is the main chip, and the second main chip can subsequently inform the terminal device whether the data packet is received successfully.
  • the above signal quality parameters include: Reference Signal Received Power RSRP, Reference Signal Received Quality RSRQ, Received Signal Strength Indicator RSSI, Packet Loss Rate PER, And any one or more of the signal-to-interference-plus-noise ratio SINR.
  • the current main chip can be based on any one or more parameters of RSRP, RSRQ, RSSI, PER or SINR of the signals received by the first short-distance wireless communication chip and the second short-distance wireless communication chip.
  • the main chip is determined from the short-distance wireless communication chip and the second short-distance wireless communication chip, so as to ensure that the determined main chip is a main chip with better signal quality parameters.
  • the first short-distance wireless communication chip also uses Determine the target first radio frequency antenna among the multiple first radio frequency antennas according to the signal quality parameters of the signals received by the multiple first radio frequency antennas, the target first radio frequency antenna is one or more; the second short-range wireless communication chip, It is also used to determine the target second radio frequency antenna among the multiple second radio frequency antennas according to the signal quality parameters of the signals received by the multiple second radio frequency antennas, where there are one or more target second radio frequency antennas.
  • the two short-distance wireless communication chips can also determine one or more target antennas with better received signal quality parameters from the multiple radio frequency antennas coupled to them, thereby further improving the success rate of receiving signals by the Bluetooth headset.
  • the above-mentioned first short-range wireless communication chip is specifically configured to receive a data packet from the terminal device through the above-mentioned target first radio frequency antenna; the above-mentioned first Two short-distance wireless communication chips, specifically configured to receive data packets from the above-mentioned terminal equipment through the above-mentioned target second radio frequency antenna.
  • the two short-distance wireless communication chips can receive data packets sent by the terminal device based on one or more target antennas with better received signal quality parameters, thereby further improving the success rate of receiving signals by the Bluetooth headset.
  • the second aspect of the embodiment of the present application provides a short-range wireless communication chip
  • the short-range wireless communication chip includes an audio processor, a radio frequency circuit and a physical interface, the audio processor is coupled to the radio frequency circuit and the physical interface, and the radio frequency circuit Used to couple with the radio frequency antenna, the physical interface is used to couple with the data bus; the audio processor is used to transmit data between the radio frequency circuit and the radio frequency antenna and the terminal equipment; the audio processor is also used to send data to the data bus through the physical interface The bus sends data and receives data transmitted by the data bus.
  • the above audio processor is specifically configured to: receive a data packet from the above terminal device through the above radio frequency antenna; Sending first information to the data bus to request the data packet successfully received by another short-range wireless communication chip transponder coupled to the data bus; the first information is used to indicate that the short-distance wireless communication chip failed to receive the data packet.
  • the above audio processor is specifically further configured to, through the physical interface and the The data bus receives data packets from another short-range wireless communication chip.
  • the above audio processor is further configured to: receive second information from another short-distance wireless communication chip; use the second information to Instructing another short-distance wireless communication chip to successfully receive the data packet; in response to the second information, sending third information to the terminal device, where the third information is used to indicate that the data packet is successfully received.
  • the above audio processor is specifically further configured to: send the first Three pieces of information, the third piece of information is used to indicate that the data packet is received successfully.
  • the above audio processor is specifically further configured to: send fourth information to another short-range wireless communication chip, the fourth information is used to indicate The short-range wireless communication chip successfully receives the data packet.
  • the above audio processor is further configured to: receive fifth information from another short-range wireless communication chip coupled to the data bus ;
  • the fifth information is used to indicate that another short-distance wireless communication chip has not successfully received the data packet from the terminal device; in the case that the short-distance wireless communication chip has not successfully received the data packet, in response to the fifth information, send the fifth information to the terminal device Sixth information, where the sixth information is used to instruct the terminal device to retransmit the data packet.
  • the third aspect of the embodiment of the present application provides a communication method for a wireless headset, the wireless headset includes a first earphone, a second earphone and a data bus, and the first earphone includes a first short-distance wireless communication chip , and a first radio frequency antenna coupled with the first short-range wireless communication chip, the second earphone includes a second short-range wireless communication chip, and a second radio frequency antenna coupled with the second short-range wireless communication chip; the data bus is respectively connected to the The first short-range wireless communication chip and the second short-range wireless communication chip are used to provide a physical link required for communication between the first short-range wireless communication chip and the second short-range wireless communication chip; the communication method includes: The first short-range wireless communication chip receives data packets from the terminal device through the first radio frequency antenna; the second short-range wireless communication chip receives data packets from the terminal device through the second radio frequency antenna.
  • the method further includes: when the first short-range wireless communication chip fails to receive the data packet, sending the first short-range wireless communication chip to The second short-distance wireless communication chip sends first information to request the second short-distance wireless communication chip to forward the successfully received data packet; the first information is used to indicate that the first short-distance wireless communication chip fails to receive the data packet.
  • the above method further includes: when the second short-range wireless communication chip successfully receives the data packet, the second short-range wireless communication In response to the first information, the chip transmits the successfully received data packet to the first short-distance wireless communication chip through the data bus.
  • the above-mentioned first short-range wireless communication chip is a master chip
  • the above-mentioned second short-range wireless communication chip is a slave chip
  • the above method also includes: The second short-distance wireless communication chip sends second information to the first short-distance wireless communication chip through the data bus; the second information is used to indicate that the second short-distance wireless communication chip successfully receives the data packet; the first short-distance wireless communication chip responds In response to the second information, third information is sent to the terminal device, where the third information is used to indicate that the data packet is received successfully.
  • the above-mentioned first short-range wireless communication chip is a master chip, and the above-mentioned second short-range wireless communication chip is a slave chip; the above method also includes: When the first short-range wireless communication chip successfully receives the data packet, the first short-range wireless communication chip sends third information to the terminal device, where the third information is used to indicate that the data packet is received successfully.
  • the above method further includes: the first short-range wireless communication chip sends fourth information to the second short-distance wireless communication chip, the fourth information It is used to indicate that the first short-range wireless communication chip successfully receives the data packet.
  • the above-mentioned first earphone further includes a first speaker, and the first speaker is coupled to the first short-distance wireless communication chip; the second earphone further includes The second loudspeaker, the second loudspeaker is coupled with the second short-distance wireless communication chip; the above method also includes: the first short-distance wireless communication chip decodes the data packet, and plays the decoded data packet through the first loudspeaker; the second short-distance wireless communication chip The communication chip decodes the data packets and plays the decoded data packets through the second speaker.
  • the above-mentioned first short-range wireless communication chip is a master chip
  • the above-mentioned second short-range wireless communication chip is a slave chip
  • the above method also includes: In the case that the second short-range wireless communication chip fails to receive the data packet, the second short-range wireless communication chip sends fifth information to the first short-range wireless communication chip through the data bus; the fifth information is used to indicate that the second short-range wireless communication chip
  • the distance wireless communication chip fails to receive the data packet; in the case that the first short-distance wireless communication chip fails to receive the data packet, the first short-distance wireless communication chip responds to the fifth information and sends sixth information to the terminal device. Six messages are used to instruct the end device to retransmit the data packet.
  • the first short-range wireless communication chip includes a first audio processor, a first radio frequency circuit, and a first physical interface, and the first audio processing The device is respectively coupled with the first radio frequency circuit and the first physical interface, and the first radio frequency circuit is coupled with the first radio frequency antenna;
  • the second short-distance wireless communication chip includes a second audio processor, a second radio frequency circuit and a second Physical interface, the second audio processor is coupled to the second radio frequency circuit and the second physical interface, the second radio frequency circuit is coupled to the second radio frequency antenna, the first physical interface is coupled to the second physical interface through a data bus .
  • the above-mentioned data bus includes a serial peripheral interface SPI bus, a queue serial peripheral interface QSPI bus, a dual serial peripheral interface DSPI bus , Universal Asynchronous Receiver Transceiver UART bus, or bus I2C between integrated circuits.
  • a computer-readable storage medium stores computer program code, and when the computer program code is run on a processor, the processor Execute the method described in the third aspect above.
  • a fifth aspect of the embodiments of the present application provides a computer program product, the program product stores computer software instructions executed by the above-mentioned processor, and the computer software instructions include a program for executing the solution described in the above-mentioned third aspect.
  • FIG. 1 is a schematic structural diagram of a wireless headset provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another head-mounted wireless earphone provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of another head-mounted wireless earphone provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another head-mounted wireless earphone provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hardware structure of a wireless headset provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a short-range wireless communication chip provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method for a wireless headset provided in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method for a wireless headset provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method for a wireless headset provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method for a wireless headset provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication effect of a wireless headset provided by an embodiment of the present application.
  • At least one item (piece) of a, b or c can represent: a, b, c, a and b, a and c, b and c, or, a and b and c, wherein a, b and c can be single or multiple.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect, Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order.
  • first and second in the second earphone in the embodiment of the present application are only used to distinguish different earphones.
  • the first, second, etc. descriptions that appear in the embodiments of this application are only for illustration and to distinguish the description objects. Any limitations of the examples.
  • wireless headphones are the first choice for all kinds of music lovers to enjoy music because they are suitable for playing high-definition music.
  • the existing head-mounted wireless earphones are generally bluetooth earphones with a single bluetooth chip.
  • Fig. 1 is a head-mounted wireless headset with a single Bluetooth chip, as shown in Fig. 1, the headset includes a Bluetooth chip, and a radio frequency antenna coupled with the Bluetooth chip, the Bluetooth chip The radio frequency antenna and the radio frequency antenna are located on one side of the wireless headset, and the speakers in the two earphones of the wireless headset are respectively coupled and connected to the Bluetooth chip through a cable.
  • the radio frequency antenna is located in one earphone and there is no radio frequency antenna in the other earphone, so the coverage area of the antenna is small and the direction is limited, resulting in poor user experience.
  • the Bluetooth chip is located on the user's left ear side and the mobile phone is located in the user's right pocket, the Bluetooth signal has to pass through the head and the human body, and the signal attenuation is huge, resulting in a high packet loss rate of the headset and poor user experience. .
  • an embodiment of the present application provides a wireless headphone.
  • radio frequency antennas can be respectively installed in the two headphones, and the two headphones can be connected to each other.
  • Antennas are connected via antenna coaxial lines.
  • this head-mounted wireless earphone comprises earphone 1 and earphone 2
  • earphone 1 comprises a bluetooth chip
  • the radio frequency antenna 1 that is coupled with this bluetooth chip
  • earphone 2 It includes a radio frequency antenna 2
  • the radio frequency antenna 2 is coupled with the bluetooth chip through the antenna coaxial line, and the antenna coaxial line passes through the connection part of the headset.
  • the speakers in the earphone 1 and the earphone 2 are respectively coupled with the bluetooth chip through cables.
  • the antenna coaxial line passes through the connecting part of the headphone, and the connecting part will be bent to different degrees during the user's use, the antenna coaxial line is easy to break , the antenna cannot be guaranteed to receive data normally, which may result in poor user experience.
  • the coaxial line of the antenna is too long, the insertion loss of the antenna is too large, and the gain of the antenna is poor, resulting in a poor signal received by the antenna.
  • the embodiment of the present application further provides a wireless headset, and the wireless headset can be provided with a Bluetooth chip and a radio frequency antenna in the two headsets respectively.
  • a headset wireless headset as shown in FIG. 2 includes a bluetooth chip 2, and a radio frequency antenna 2 coupled with the bluetooth chip 2.
  • the earphone 1 and the earphone 2 may further include speakers, the speaker in the earphone 1 is coupled to the Bluetooth chip 1 , and the speaker in the earphone 2 is coupled to the Bluetooth chip 2 .
  • the Bluetooth headset shown in Figure 3 has a relatively large coverage area, in most scenarios, the received signals of the two headsets are unbalanced, so the packet loss of the two headsets will affect each other. For example, when the mobile phone is in the right pocket of the user, since the right ear is closer to the mobile phone and the signal quality parameters are better, the right earphone can receive the audio data packets sent by the mobile phone. However, the right earphone cannot play directly after receiving the audio data packet. It needs to wait for the left earphone to receive the audio data packet and play it together. The packet loss of the left earphone will affect the right earphone, so that neither the left earphone nor the right earphone can play audio data.
  • the Bluetooth chips of the left earphone and the right earphone not only receive the audio data packets sent by the mobile phone through the air interface, but also confirm whether the other party has received the audio data packets through the air interface between the left and right earphones, which may result in insufficient air interface rate and affect the audio data packets. transmission.
  • the embodiment of the present application also provides a headset wireless headset, the headset wireless headset includes a first headset, a second headset and a data bus; the first headset includes: a first short-distance wireless communication chip and a first radio frequency antenna, The first short-range wireless communication chip is coupled with the first radio frequency antenna.
  • the second earphone includes: a second short-range wireless communication chip and a second radio frequency antenna, and the second short-distance wireless communication chip is coupled with the second radio frequency antenna.
  • the data bus connects the first short-range wireless communication chip and the second short-range wireless communication chip respectively, and is used to provide a physical link required for communication between the first short-range wireless communication chip and the second short-range wireless communication chip.
  • the above-mentioned first earphone may be a left earphone or a right earphone.
  • the second earphone is the right earphone.
  • the second earphone is the left earphone.
  • the first earphone may include one or more first radio frequency antennas
  • the second earphone may include one or more second radio frequency antennas.
  • the above-mentioned first short-range wireless communication chip and the second short-range wireless communication chip may include but are not limited to Bluetooth chips, green tooth chips, ZigBee chips, near field communication (near field communication, NFC) chips or future derived
  • the embodiment of the present application does not limit the specific type of the short-distance wireless communication chip.
  • the following embodiments take the short-distance wireless communication chip as an example for illustration.
  • the above-mentioned data bus may be set in a mechanical structure connecting the first earphone and the second earphone.
  • the headset wireless earphone may also include an arc-shaped support frame through which the first earphone and the second earphone are connected, and the data bus between the first short-range wireless communication chip and the second short-distance wireless communication chip Can be set in the arc support frame.
  • the embodiment of the present application does not limit the specific location of the data bus between the first short-range wireless communication chip and the second short-range wireless communication chip, and it is only an exemplary description here.
  • the data bus includes a serial peripheral interface (serial peripheral interface, SPI) bus, a queued serial peripheral interface (queued serial peripheral interface, QSPI) bus, a dual serial peripheral interface (dual serial peripheral interface, DSPI) bus, universal asynchronous receiver/transmitter (universal asynchronous receiver/transmitter, UART) bus, or integrated circuit bus (inter-integrated circuit bus, I2C).
  • SPI serial peripheral interface
  • QSPI queued serial peripheral interface
  • DSPI dual serial peripheral interface
  • UART universal asynchronous receiver/transmitter
  • I2C integrated circuit bus
  • the first earphone may further include a first speaker, and the first speaker is coupled with the first short-range wireless communication chip.
  • the first short-distance wireless communication chip is used for decoding the data packet, and playing the decoded data packet through the first loudspeaker.
  • the second earphone may further include a second speaker, and the second speaker is coupled with the second short-range wireless communication chip.
  • the second short-distance wireless communication chip is used to decode the data packet and play the decoded data packet through the second speaker.
  • this head-mounted wireless earphone comprises earphone 1, earphone 2 and data bus
  • earphone 1 comprises bluetooth chip 1
  • the radio frequency antenna 1 that is coupled with bluetooth chip 1 respectively
  • the speaker 1 the earphone 2 includes a bluetooth chip 2, and a radio frequency antenna 2 and a speaker 2 respectively coupled with the bluetooth chip 2.
  • the earphone 1 and the earphone 2 are connected through an arc-shaped support frame
  • the Bluetooth chip 1 and the Bluetooth chip 2 are connected through a data bus
  • the data bus can be set in the arc-shaped support frame.
  • the first short-range wireless communication chip is configured to receive a data packet from the terminal device through the first radio frequency antenna.
  • the second short-range wireless communication chip is configured to receive data packets from the terminal device through the second radio frequency antenna.
  • the data packets received by the first short-range wireless communication chip and the second short-range wireless communication chip may be audio data packets.
  • the first short-range wireless communication chip and the second short-range wireless communication chip can receive audio data packets from the terminal device through the air interface.
  • the Bluetooth chip 1 can receive the data packet 1 from the terminal device through the radio frequency antenna 1
  • the Bluetooth chip 2 can receive the data packet 1 from the terminal device through the radio frequency antenna 2 .
  • both the first short-range wireless communication chip and the second short-range wireless communication chip may fail to receive the data packet sent by the terminal device, or both may successfully receive the data packet sent by the terminal device, or one of the short-range wireless communication chips may receive the data packet sent by the terminal device successfully.
  • the wireless communication chip successfully receives the data packet sent by the terminal device, and the other short-range wireless communication chip fails to receive the data packet sent by the terminal device.
  • the main chip may be a chip in the left earphone, or a chip in the right earphone, which is not limited in this embodiment of the present application.
  • the master chip is the short-range wireless communication chip in the left earphone
  • the short-range wireless communication chip in the right earphone is the slave chip.
  • the main chip is the short-range wireless communication chip in the right earphone
  • the short-distance wireless communication chip in the left earphone is the main chip.
  • the first short-distance wireless communication chip fails to receive the data packet, and the second short-distance wireless communication chip successfully receives the data packet.
  • the first short-range wireless communication chip is further configured to send first information to the second short-range wireless communication chip through the data bus, so as to request the second short-range wireless communication chip to forward the successfully received data packets.
  • the first information is used to indicate that the first short-range wireless communication chip fails to receive the data packet.
  • the second short-range wireless communication chip is further configured to forward the successfully received data packet to the first short-range wireless communication chip through the data bus in response to the first information.
  • the Bluetooth chip 1 As shown in FIG. 4 , take the Bluetooth chip 1 as the master chip and the Bluetooth chip 2 as the slave chip as an example.
  • the Bluetooth chip 1 fails to receive the data packet 1 and the Bluetooth chip 2 successfully receives the data packet 1
  • the Bluetooth chip 1 sends the first information to the Bluetooth chip 2, and notifies the Bluetooth chip 2 that the Bluetooth chip 1 fails to receive the data packet 1, so as to Request the Bluetooth chip 2 to forward the data packet 1 it successfully received.
  • the Bluetooth chip 2 forwards the successfully received data packet 1 to the Bluetooth chip 1 through the data bus.
  • the second short-range wireless communication chip is further configured to send second information to the first short-range wireless communication chip through the data bus.
  • the second information is used to indicate that the second short-range wireless communication chip successfully receives the data packet.
  • the first short-range wireless communication chip is further configured to send third information to the terminal device in response to the second information.
  • the third information is used to indicate that the data packet is received successfully.
  • the foregoing third information may be an acknowledgment (Acknowledgment, ACK).
  • the Bluetooth chip 1 As shown in FIG. 4 , take the Bluetooth chip 1 as the master chip and the Bluetooth chip 2 as the slave chip as an example.
  • the Bluetooth chip 1 fails to receive the data packet 1 and the Bluetooth chip 2 successfully receives the data packet 1, the Bluetooth chip 2 sends a second message to the Bluetooth chip 1, notifying the Bluetooth chip 1 that the Bluetooth chip 2 successfully receives the data packet 1.
  • the Bluetooth chip 1 successfully receives the data packet through the terminal device.
  • the slave chip when the master chip fails to receive the data packet but the slave chip successfully receives the data packet, the slave chip can inform the master chip that it has successfully received the data packet through the data bus. After the master chip learns that the slave chip has successfully received the data packet, The terminal can be notified through the air interface that the data packet is received successfully.
  • the first short-distance wireless communication chip successfully receives the data packet
  • the second short-distance wireless communication chip fails to receive the data packet
  • the second short-distance wireless communication chip is further configured to send fifth information to the first short-distance wireless communication chip through the data bus, so as to request the first short-distance wireless communication chip to forward the data packet.
  • the fifth information is used to indicate that the second short-range wireless communication chip fails to receive the data packet.
  • the first short-range wireless communication chip is further configured to transmit a data packet to the second short-range wireless communication chip through the data bus in response to the fifth message.
  • the Bluetooth chip 1 As shown in FIG. 4 , take the Bluetooth chip 1 as the master chip and the Bluetooth chip 2 as the slave chip as an example.
  • the bluetooth chip 2 sends the fifth message to the bluetooth chip 1, notifying the bluetooth chip 1 that the bluetooth chip 2 has not successfully received the data packet 2, and Request Bluetooth chip 1 to forward the data packet 2 it successfully received.
  • the Bluetooth chip 1 forwards the successfully received data packet 2 to the Bluetooth chip 2 through the data bus.
  • the first short-range wireless communication chip is further configured to send third information to the terminal device, where the third information is used to indicate that the data packet is received successfully.
  • the main chip will notify the terminal device that the data packet is received successfully.
  • the difference between the second scenario and the first scenario is that in the second scenario, since the main chip successfully receives the data packet, the main chip can directly notify the terminal device that the data packet is successfully received.
  • the master chip since the master chip fails to receive the data packet, but the slave chip receives the data packet successfully, the master chip notifies the terminal device that the data packet has been received successfully after learning that the slave chip has successfully received the data packet.
  • the first short-range wireless communication chip may also send fourth information to the second short-range wireless communication chip.
  • the fourth information is used to indicate that the first short-range wireless communication chip successfully receives the data packet.
  • the short-range wireless communication chip that successfully receives the data packet can send data to the other unsuccessfully received data packet through the data bus.
  • the short-distance wireless communication chip of the packet forwards the data packet that it receives successfully.
  • the short-distance wireless communication chip that successfully receives the data packet can be a master chip or a slave chip, which is not limited in this application.
  • the two short-distance wireless communication chips can interact through the data bus instead of through the air interface, so a part of the air interface resources can be released. Reduce packet loss in wireless headsets.
  • the short-distance wireless communication chip that successfully receives the data packet can forward its successfully received data packet to the short-distance wireless communication chip that did not successfully receive the data packet through the data bus. Due to the fast transmission speed of the data bus, the success rate of receiving data packets by the two short-distance wireless communication chips can be improved, and the power consumption of the terminal equipment and the wireless headset can be reduced.
  • the first short-distance wireless communication chip successfully receives the data packet
  • the second short-distance wireless communication chip successfully receives the data packet
  • the first short-distance wireless communication chip is further configured to send third information to the terminal device, where the third information is used to indicate that the data packet is received successfully.
  • the main chip since the main chip successfully receives the data packet, the main chip can directly notify the terminal device that the data packet is successfully received.
  • the second short-distance wireless communication chip may also send second information to the first short-distance wireless communication chip to notify the first short-distance wireless communication chip that the second short-distance wireless communication chip has successfully received the data packet.
  • the first short-distance wireless communication chip fails to receive the data packet
  • the second short-distance wireless communication chip fails to receive the data packet
  • the second short-range wireless communication chip is further configured to send fifth information to the first short-range wireless communication chip through the data bus.
  • the fifth information is used to indicate that the second short-range wireless communication chip fails to receive the data packet.
  • the first short-range wireless communication chip is further configured to send sixth information to the terminal device in response to the fifth information.
  • the sixth information is used to instruct the terminal device to retransmit the data packet.
  • the sixth information may be a negative acknowledgment (Negative Acknowledgment, NACK).
  • NACK Negative Acknowledgment
  • the master chip can notify the terminal device to retransmit the data packet through the air interface after learning that the slave chip has also failed to receive the data packet through the data bus.
  • the first short-range wireless communication chip and the second short-range wireless communication chip can inform the other party through the data bus whether they have successfully received the data packet from the terminal device, for binaural synchronization.
  • the Bluetooth chip 1 may notify the Bluetooth chip 2 through the data bus that the Bluetooth chip 1 successfully or unsuccessfully receives the data packet.
  • the bluetooth chip 2 notifies the bluetooth chip 1 through the data bus that the bluetooth chip 2 receives the data packet successfully or unsuccessfully. In this way, the two Bluetooth chips can know whether the other party has successfully received the data packet from the terminal device, and realize the synchronization between the ears.
  • the above-mentioned first short-range wireless communication chip includes a first audio processor, a first radio frequency circuit and a first physical interface, the first audio processor is respectively coupled to the first radio frequency circuit and the first physical interface, and the first The radio frequency circuit is coupled to the first radio frequency antenna.
  • the second short-distance wireless communication chip includes a second audio processor, a second radio frequency circuit, and a second physical interface, the second audio processor is coupled to the second radio frequency circuit and the second physical interface, and the second radio frequency circuit is connected to the second The radio frequency antennas are coupled, and the first physical interface and the second physical interface are coupled through a data bus.
  • the first audio processor is configured to transmit data between the terminal device through the first radio frequency circuit and the first radio frequency antenna, and transmit data between the second short-distance wireless communication chip through the first physical interface and the data bus.
  • the second audio processor is used to transmit data between the terminal device through the second radio frequency circuit and the second radio frequency antenna, and transmit data between the first short-distance wireless communication chip through the second physical interface and the data bus.
  • the first short-range wireless communication chip and the second short-range wireless communication chip are Bluetooth chips
  • the first audio processor and the second audio processor are digital signal processing (DSP) ) as an example.
  • the first bluetooth chip includes a first bluetooth (bluetooth, BT) core and a first DSP, and data between the first BT core and the first DSP is exchanged through inter-process communication (inter-process communication, IPC).
  • the first BT core includes a radio frequency circuit 1 and a physical interface 1
  • the first DSP is coupled to the radio frequency circuit 1 and the physical interface 1 respectively
  • the radio frequency circuit 1 is coupled to the radio frequency antenna 1 .
  • the second Bluetooth chip can include a second BT core and a second DSP, the second BT core includes a radio frequency circuit 2 and a physical interface 2, the second DSP is coupled with the radio frequency circuit 2 and the physical interface 2 respectively, the radio frequency circuit 2 and the radio frequency antenna 2 Coupled.
  • the physical interface 1 and the physical interface 2 are connected through a data bus, and the physical interface 1 and the physical interface 2 may be interfaces such as SPI, UART, or I2C.
  • the embodiment of the present application does not limit the specific type of the audio processor.
  • the audio processor may be any processor capable of decoding audio data packets.
  • FIG. 5 only illustrates that the audio processor is a DSP as an example.
  • the business module and algorithm module included in the DSP are used to decode the audio data packets.
  • circuit structures of the first Bluetooth chip and the second Bluetooth chip may or may not be completely the same, and the embodiment of the present application does not limit the specific structures of the first Bluetooth chip and the second Bluetooth chip, as shown in Fig. 5 Illustrative only.
  • the two short-distance wireless communication chips can interact through the data bus, and in a short-distance wireless communication
  • another short-range wireless communication chip that successfully receives the data packet can forward the successfully received data packet to the short-range wireless communication chip that fails to receive the data packet through the data bus.
  • the two short-distance wireless communication chips interact through the data bus instead of the air interface, so a part of the air interface resources can be released and the packet loss rate of the wireless headset can be reduced.
  • the data packets are forwarded through the data bus between the two short-distance wireless communication chips, and the transmission speed is relatively fast, which can improve the success rate of receiving data packets between the two short-distance wireless communication chips, and reduce the number of terminal devices and headsets. power consumption.
  • the success rate of the left earphone to receive data packets is 80%
  • the success rate of the right earphone to receive data packets is 60%.
  • the success rate of the headset wireless headset with a single bluetooth chip shown in Figure 1 if the single bluetooth chip is located on the left ear side of the headset, the success rate of receiving data packets for the headset with a single bluetooth chip is 80%. %.
  • the terminal device needs to retransmit the data packet, so the success of the headset wireless headset receiving the data packet
  • the success rate of single reception of data packets by the left earphone is 60%
  • the success rate of single reception of data packets by the right earphone is 80%.
  • the success rate of receiving data packets for the headset with a single Bluetooth chip is 60%. %.
  • the terminal device needs to retransmit the data packet, so the success of the headset wireless headset receiving the data packet
  • the first short-range wireless communication chip and the second short-range wireless communication chip can not only transmit the above-mentioned first information, second information, fourth information, and fifth information through the data bus, but also transmit Information other than the above-mentioned first information, second information, fourth information and fifth information.
  • the first short-range wireless communication chip and the second short-range wireless communication chip can transmit information such as volume, statistical data, signal quality parameters, logs, and time stamps of the headset through the data bus.
  • the head-mounted wireless earphone provided by this embodiment is provided with two short-distance wireless communication chips, and these two short-distance wireless communication chips can interact through the data bus, so a part of the air interface resources can be released and the retransmission of data packets can be reduced. times, reducing the power consumption of terminal equipment and wireless headsets.
  • a short-range wireless communication chip fails to receive the data packet
  • another short-range wireless communication chip that successfully receives the data packet can forward its successfully received data packet to the short-range wireless communication chip that has not successfully received the data packet through the data bus.
  • the data packet can improve the success rate of receiving data packets by the wireless headset, reduce the packet loss rate of the wireless headset, and improve user experience.
  • the embodiment of the present application also provides a short-distance wireless communication chip.
  • the short-distance wireless communication chip includes an audio processor, a radio frequency circuit and a physical interface, and the audio processor is coupled to the radio frequency circuit and the physical interface respectively.
  • the radio frequency circuit is used for coupling with the radio frequency antenna
  • the physical interface is used for coupling with the data bus.
  • the audio processor is used to transmit data between the terminal equipment and the radio frequency circuit and radio frequency antenna.
  • the audio processor is also used to send data to the data bus through the physical interface and receive data transmitted by the data bus.
  • the short-range wireless communication chip may be coupled to another short-range wireless communication chip through a data bus, and the two short-range wireless communication chips interact through the data bus.
  • the audio processor is specifically used to receive data packets from the terminal device through the radio frequency antenna.
  • the audio processor is specifically further configured to send the first information to the data bus through the physical interface to request another short-distance wireless communication chip coupled to the data bus to forward the data packet when the data packet is not successfully received.
  • the first information is used to indicate that the short-range wireless communication chip fails to receive the data packet.
  • the audio processor is specifically further configured to receive a data packet from another short-range wireless communication chip through the physical interface and the data bus if another short-range wireless communication chip coupled to the data bus successfully receives the data packet.
  • the audio processor is also specifically configured to receive second information from another short-distance wireless communication chip coupled to the data bus.
  • the second information is used to indicate that another short-range wireless communication chip successfully receives the data packet.
  • third information is sent to the terminal device, where the third information is used to indicate that the data packet is received successfully.
  • the audio processor is specifically further configured to send third information to the terminal device when the short-range wireless communication chip successfully receives the data packet.
  • the audio processor may also send fourth information to another short-range wireless communication chip coupled to the data bus. The fourth information is used to indicate that the short-range wireless communication chip successfully receives the data packet.
  • the audio processor is specifically further configured to receive fifth information from another short-distance wireless communication chip coupled to the data bus.
  • the fifth information is used to indicate that another short-range wireless communication chip has not successfully received the data packet from the terminal device.
  • the audio processor sends sixth information to the terminal device.
  • the sixth information is used to instruct the terminal device to retransmit the data packet.
  • the short-range wireless communication chip provided in this embodiment can interact with another short-range wireless communication chip through the data bus, that is, the two short-range wireless communication chips interact through the data bus instead of through the air interface. , so part of the air interface resources can be released and the packet loss rate can be reduced.
  • a short-distance wireless communication chip when a short-distance wireless communication chip fails to receive the data packet, it can request another short-distance wireless communication chip that successfully receives the data packet to forward the data packet, and the short-distance wireless communication chip that successfully receives the data packet can The data packet is forwarded through the data bus, and the transmission speed is fast, which can improve the success rate of receiving the data packet by the short-distance wireless communication chip, and reduce the power consumption of the terminal equipment and the chip.
  • the embodiment of the present application also provides a communication method for a wireless headset.
  • the wireless headset may be the wireless headset shown in FIG. 4 above. If the first short-distance wireless
  • the communication chip is the master chip, and the second short-distance wireless communication chip is the slave chip.
  • the master chip does not successfully receive the data packet, but the slave chip successfully receives the data packet.
  • the communication method may include the following steps:
  • the first short-range wireless communication chip receives a data packet from a terminal device through a first radio frequency antenna.
  • the first short-range wireless communication chip can receive a data packet from the terminal device through the first radio frequency antenna.
  • the wireless headset includes multiple first radio frequency antennas
  • the first short-range wireless communication chip can receive data packets from the terminal device through one first radio frequency antenna, or simultaneously receive data packets through multiple first radio frequency antennas. Packets from end devices.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a desktop, a laptop, a handheld computer, a notebook computer, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook, and a cellular phone.
  • UMPC ultra-mobile personal computer
  • UMPC ultra-mobile personal computer
  • netbook a netbook
  • cellular phone a cellular phone.
  • electronic devices such as telephones, personal digital assistants (PDA), augmented reality (augmented reality, AR) ⁇ virtual reality (virtual reality, VR) equipment
  • PDA personal digital assistants
  • AR augmented reality
  • VR virtual reality
  • the first short-range wireless communication chip may further include: according to the signal quality parameters of the signals received by the multiple first radio frequency antennas, The target first radio frequency antenna is determined among the radio frequency antennas.
  • the first short-range wireless communication chip receives the data packet from the terminal device through the first radio frequency antenna, including: the first short-range wireless communication chip receives the data packet from the terminal device through the target first radio frequency antenna .
  • the first short-range wireless communication chip receives the data packet from the terminal device through the one target first radio frequency antenna.
  • the first short-range wireless communication chip simultaneously receives data packets from the terminal device through the multiple target first radio frequency antennas.
  • the signal quality parameters of the signal received by the first radio frequency antenna include reference signal receiving power (reference signal receiving power, RSRP), reference signal receiving quality (reference signal receiving quality, RSRQ), received signal strength indication (received signal strength indicator, RSSI), packet loss rate (packet error rate, PER), and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR) in one or more.
  • reference signal receiving power reference signal receiving power, RSRP
  • reference signal receiving quality reference signal receiving quality
  • RSRQ received signal strength indication
  • RSSI received signal strength indicator
  • packet loss rate packet error rate
  • SINR signal to interference plus noise ratio
  • the first short-range wireless communication chip may determine one or more target first radio frequency antennas among the plurality of first radio frequency antennas according to the strength RSSI of signals received by the plurality of first radio frequency antennas and the packet loss rate PER.
  • the first short-range wireless communication chip can improve the performance of the wireless headset by determining the target first radio frequency antenna among the multiple first radio frequency antennas, and receiving the data packet from the terminal device through the target first radio frequency antenna. The success rate of receiving the signal.
  • the second short-range wireless communication chip receives the data packet from the terminal device through the second radio frequency antenna.
  • the second short-range wireless communication chip determines among the multiple second radio frequency antennas according to the signal quality parameters of the signals received by the multiple second radio frequency antennas Target second RF antenna.
  • the second short-range wireless communication chip receives the data packet from the terminal device through the second radio frequency antenna, including: the second short-range wireless communication chip receives the data packet from the terminal device through the target second radio frequency antenna .
  • the second short-range wireless communication chip receives the data packet from the terminal device through the one target second radio frequency antenna.
  • the second short-range wireless communication chip simultaneously receives data packets from the terminal device through the multiple target second radio frequency antennas.
  • the signal quality parameters of the signal received by the second radio frequency antenna include reference signal received power RSRP, reference signal received quality RSRQ, received signal strength indicator RSSI, packet loss rate PER, and signal-to-interference-plus-noise ratio SINR one or more.
  • the second short-range wireless communication chip may determine one or more target second radio frequency antennas among the plurality of second radio frequency antennas according to the strength RSSI and the packet loss rate PER of the received signals of the plurality of second radio frequency antennas.
  • the signal quality parameters of the first radio frequency antenna determined by the first short-range wireless communication chip may be the same as or different from the signal quality parameters of the second radio frequency antenna determined by the second short-distance wireless communication chip. This is not limited.
  • the second short-range wireless communication chip can improve the performance of the wireless headset by determining the target second radio frequency antenna among the multiple second radio frequency antennas, and receiving the data packet from the terminal device through the target second radio frequency antenna. The success rate of receiving the signal.
  • the first short-distance wireless communication chip receives the data packet first, and the second short-distance wireless communication chip receives the data packet later. It is also possible that the second short-distance wireless communication chip receives the data packet first, and the first short-distance wireless communication chip receives the data packet later. It is also possible that the first short-range wireless communication chip and the second short-range wireless communication chip receive the data packet at the same time. The embodiment of the present application does not limit this.
  • the first short-distance wireless communication chip fails to receive the data packet, the first short-distance wireless communication chip sends the first information to the second short-distance wireless communication chip through the data bus to request the second short-distance wireless communication The chip forwards the packet.
  • the first information is used to indicate that the first short-range wireless communication chip fails to receive the data packet.
  • the first short-range wireless communication chip may be a chip in the left earphone, or a chip in the right earphone.
  • the second short-range wireless communication chip is a chip in the right earphone.
  • the first short-range wireless communication chip is a chip in the right earphone
  • the second short-range wireless communication chip is a chip in the left earphone.
  • the second short-distance wireless communication chip responds to the first information, and transmits the successfully received data packet to the first short-distance wireless communication chip through the data bus.
  • a short-range wireless communication chip when a short-range wireless communication chip fails to receive the data packet, the short-range wireless communication chip that fails to receive the data packet can send a message to another short-range wireless communication chip that successfully receives the data packet.
  • the wireless communication chip requests to forward the data packet, and the short-distance wireless communication chip that successfully receives the data packet can forward the data packet to the short-distance wireless communication chip that has not successfully received the data packet through the data bus, thereby improving the ability of the headset to receive data.
  • packet success rate reduce the packet loss rate of wireless headsets, and improve user experience.
  • S705-S706 may also be included.
  • the second short-range wireless communication chip sends the second information to the first short-range wireless communication chip through the data bus.
  • the second information is used to indicate that the second short-range wireless communication chip successfully receives the data packet.
  • the first short-distance wireless communication chip sends third information to the terminal device in response to the second information.
  • the third information is used to indicate that the data packet is received successfully.
  • FIG. 7 is only an exemplary illustration.
  • the short-distance wireless communication chip that successfully receives the data packet can communicate with the short-distance wireless communication chip that has not successfully received the data packet through the data bus.
  • the chip forwards the data packets it receives, and the terminal device does not need to retransmit the data packets. Therefore, it can reduce the packet loss rate of the wireless headset and improve the user experience.
  • the two short-distance wireless communication chips interact through the data bus instead of the air interface, which can release part of the air interface resources, further reduce the packet loss rate of the headset wireless headset, and improve user experience.
  • the embodiment of the present application also provides a communication method for a head-mounted wireless headset.
  • the data packet, the unsuccessful reception of the data packet from the chip may also include the following steps after the above steps S701-S702:
  • the second short-distance wireless communication chip fails to receive the data packet, the second short-distance wireless communication chip sends fifth information to the first short-distance wireless communication chip through the data bus to request the first short-distance wireless communication The chip forwards the packet.
  • the fifth information is used to indicate that the second short-range wireless communication chip fails to receive the data packet.
  • the first short-distance wireless communication chip responds to the fifth information, and transmits the successfully received data packet to the second short-distance wireless communication chip through the data bus.
  • the first short-range wireless communication chip sends third information to the terminal device.
  • the third information is used to indicate that the data packet is received successfully.
  • the master chip can notify the terminal device that the data packet is successfully received. If the slave chip fails to receive the data packet, the slave chip can request the master chip to forward the data packet, so that both the master chip and the slave chip can successfully receive the data packet and play audio data.
  • the main chip will notify the terminal device that the data packet is successfully received.
  • the difference between the embodiment shown in FIG. 7 and the embodiment shown in FIG. 8 is that in the embodiment shown in FIG. 8 , since the main chip successfully receives the data packet, the main chip can directly notify the terminal device that the data packet is successfully received.
  • the master chip since the master chip fails to receive the data packet, but the slave chip receives the data packet successfully, the master chip notifies the terminal device that the data packet has been successfully received after learning that the slave chip has successfully received the data packet.
  • the method may further include step S710.
  • the first short-range wireless communication chip sends fourth information to the second short-range wireless communication chip.
  • the fourth information is used to indicate that the first short-range wireless communication chip successfully receives the data packet.
  • the first short-distance wireless communication chip and the second short-distance wireless communication chip can inform each other through the data bus Whether you have successfully received the data packet from the terminal device to achieve synchronization between the ears.
  • step S709 may be performed before step S707, may also be performed after step S707, and may also be performed simultaneously with step S707.
  • the embodiment of the present application also provides a communication method for a head-mounted wireless headset. As shown in FIG. None of the chips successfully receives the data packet, and the following steps may also be included after the above steps S701-S702:
  • the second short-range wireless communication chip In a case where the second short-range wireless communication chip fails to receive the data packet, the second short-range wireless communication chip sends fifth information to the first short-range wireless communication chip through the data bus.
  • the fifth information is used to indicate that the second short-range wireless communication chip fails to receive the data packet.
  • the first short-distance wireless communication chip When the first short-distance wireless communication chip fails to receive the data packet, the first short-distance wireless communication chip responds to the fifth information and sends sixth information to the terminal device.
  • the sixth information is used to instruct the terminal device to retransmit the data packet.
  • the master chip can notify the terminal device to retransmit the data packet through the air interface after learning that the slave chip has also failed to receive the data packet through the data bus. . That is to say, in the embodiment of the present application, only when the two short-range wireless communication chips fail to receive the data packet, the terminal device will retransmit the data packet. Therefore, the success rate of receiving data packets by the wireless headphone can be improved.
  • the communication method for a wireless headset shown in any one of the embodiments shown in FIGS. 7-9 may further include step S713.
  • FIG. 10 only illustrates that the embodiment shown in FIG. 7 also includes step S713 as an example.
  • the signal quality parameters of the above-mentioned received signal include: any one or Various.
  • the execution body of the above step S713 may be a main chip, and the main chip may be the first short-range wireless communication chip or the second short-distance wireless communication chip.
  • any short-range wireless communication chip in the first short-range wireless communication chip and the second short-range wireless communication chip can be set as the main chip, and used in the wireless headset In the process, the main chip can dynamically determine the short-range wireless communication chip with better signal quality parameters of the received signal as main chip. That is to say, during the use of the wireless headset, as parameters such as the position of the terminal device change, the main chip may switch between the first short-range wireless communication chip and the second short-range wireless communication chip.
  • the first short-range wireless communication chip in the left earphone is set as the main chip when the wireless headset leaves the factory, during the use of the wireless headset, if the second short-range wireless communication chip in the right earphone The signal quality parameter of the signal received by the chip is better than the signal quality parameter of the signal received by the first short-distance wireless communication chip in the left earphone, then the first short-distance wireless communication chip can determine the second short-distance wireless communication chip as the main chip, and The second short-distance wireless communication chip is notified that it is the main chip, and the second short-distance wireless communication chip continues to perform the function of the main chip.
  • the first short-distance wireless communication chip determines the second short-distance wireless communication chip as the main chip, and the first short-distance wireless communication chip may transfer the authority of the main chip to the second short-distance wireless communication chip, that is, the second short-distance wireless communication chip
  • the short-distance wireless communication chip is the main chip, and the second main chip can subsequently inform the terminal device whether the data packet is received successfully.
  • step S713 may be performed at regular intervals to determine the main chip, or step S713 may be performed in real time to determine the main chip, or when the signal quality parameter of the current main chip is relatively low. If it is not good, step S713 is executed to determine the master chip, which is not limited in this embodiment of the present application.
  • step S713 does not limit the execution order of step S713 and steps S701-S702, and FIG. 10 only illustrates an example in which step S713 is executed before steps S701-S702. In practical applications, step S713 may also be performed before steps S701-S702, or step S713 may be performed simultaneously with steps S701-S702.
  • two short-distance wireless communication chips interact through the data bus, which can release a part of air interface resources, reduce the number of retransmissions of data packets, and reduce the power consumption of terminal equipment and headsets. .
  • Figure 11 is a schematic diagram of the communication effect of a wireless headset provided by the embodiment of the present application
  • (a) in Figure 11 is a schematic diagram of the communication effect of the wireless headset shown in Figure 3
  • (b) in Figure 11 ) is a schematic diagram of the communication effect of the wireless headset shown in FIG. 4 .
  • the main ear and the auxiliary ear try to receive the data packet 1 (the rectangular box filled with slashes in Figure 11 indicates that it is trying to receive), if the main ear Both (the earphone where the main chip is located) and the secondary ear (the earphone where the slave chip is located) fail to receive data packet 1, then the main ear sends a NACK to the mobile phone.
  • the mobile phone retransmits data packet 1. If the main ear fails to receive data packet 1 and the auxiliary ear receives data packet 1 successfully, then the auxiliary ear sends a synchronization packet to the main ear to inform the main ear that the auxiliary ear has successfully received data packet 1. Since the packet loss of the main ear will affect the secondary ear, neither the primary ear nor the secondary ear can play audio data, so the primary ear sends a negative response NACK to the mobile phone. The mobile phone retransmits data packet 1 again.
  • the main ear If the main ear receives data packet 1 successfully and the auxiliary ear fails to receive data packet 1, the packet loss of the auxiliary ear will affect the main ear, causing both the main ear and the auxiliary ear to be unable to play audio data.
  • the master ear sends a negative acknowledgment NACK to the handset.
  • the mobile phone retransmits data packet 1 again. If both the main ear and the auxiliary ear successfully receive data packet 1, then the auxiliary ear sends a synchronization packet to the main ear to inform the main ear that the auxiliary ear has successfully received data packet 1. Since the main ear also successfully receives data packet 1. Therefore, the main ear sends ACK to the mobile phone to inform the mobile phone that data packet 1 has been received successfully.
  • the main ear fails to receive data packet 1 and the auxiliary ear receives data packet 1 successfully, the main ear will inform the auxiliary ear that it failed to receive data packet 1 through the data bus (binaural synchronization) to request the auxiliary ear to forward Data packet 1, when the auxiliary ear knows that the main ear has failed to receive data packet 1, the auxiliary ear sends the successfully received data packet 1 to the main ear through the data bus (data reissue shown in (b) in Figure 11). After the auxiliary ear successfully receives the data packet 1, it notifies the main ear (binaural synchronization).
  • the main ear can send an ACK to the mobile phone to inform the mobile phone that the data packet 1 has been successfully received.
  • the mobile phone sends data packet 2, if the main ear successfully receives the data packet 2, and the auxiliary ear fails to receive the data packet 2, the auxiliary ear will inform the main ear that it failed to receive the data packet 2 through the data bus (binaural synchronization), so as to request the main ear to receive the data packet 2.
  • the ear forwards the data packet 2, and when the main ear learns that the auxiliary ear has failed to receive the data packet 2, the main ear sends the successfully received data packet 2 to the auxiliary ear through the data bus between the two ears.
  • the main ear sends an ACK to the mobile phone to inform the mobile phone that data packet 2 has been received successfully.
  • the mobile phone sends data packet 3, if both the main ear and the auxiliary ear successfully receive the data packet 3, the main ear and the auxiliary ear can perform binaural synchronization through the data bus, and the main ear sends an ACK to the mobile phone to inform the mobile phone that the data packet 3 has been received successfully .
  • the main ear can send an ACK to the mobile phone to inform the mobile phone that the data packet has been received successfully. Only one earphone of the main ear and the auxiliary ear successfully receives the data packet, then the earphone that successfully receives the data packet can forward the successfully received data packet to the earphone that fails to receive the data packet through the data bus.
  • the packet loss between the two ears will not affect each other.
  • the short-distance wireless communication chip that successfully receives the data packet can The data packet is reissued to the short-distance wireless communication chip that fails to receive the data packet through the data bus, and the terminal device does not need to retransmit the data packet. Only when the two short-distance wireless communication chips fail to receive the data packet, the terminal device will retransmit the data packet. Therefore, the wireless headset shown in FIG. 4 has a higher success rate in receiving data packets.
  • the wireless headset shown in FIG. 3 Compared with the wireless headset shown in FIG. 3, the wireless headset shown in FIG. The bus resends the data packet, so only when the two earphones fail to receive the data packet, the mobile phone needs to retransmit the data packet, which can improve the success rate of the wireless headset receiving the data packet.
  • the two ears are synchronized through the data bus instead of interacting through the air interface, so part of the air interface resources can be released, the number of retransmissions of data packets can be reduced, and the power consumption of terminal equipment and earphones can be reduced.
  • the main ear in the embodiment of the present application may be the left earphone of the wireless headset, or the right earphone of the wireless headset, which is not limited in the embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the computer program code runs on the short-range wireless communication chip, the short-range wireless communication chip executes the To the communication method of the wireless headset shown in any embodiment in FIG. 10 .
  • the embodiment of the present application also provides a computer program product.
  • the wireless headset executes the headset wireless headset as shown in any one of the embodiments shown in FIG. 7 to FIG. 10 .
  • Communication method of wireless earphones are also provided.
  • the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (random access memory, RAM), flash memory, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable Programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Headphones And Earphones (AREA)

Abstract

本申请实施例公开了一种头戴式无线耳机及其通信方法,涉及通信领域,改善了现有技术中头戴式无线耳机的丢包率较高,用户体验较差的问题。具体方案为:头戴式无线耳机包括:第一耳机,包括:第一短距无线通信芯片以及第一射频天线,第一短距无线通信芯片与第一射频天线相耦合;第二耳机,包括:第二短距无线通信芯片以及第二射频天线;第二短距无线通信芯片与第二射频天线相耦合;数据总线,分别连接第一短距无线通信芯片与第二短距无线通信芯片,用于提供第一短距无线通信芯片与第二短距无线通信芯片之间通信所需的物理链路。

Description

一种头戴式无线耳机及其通信方法 技术领域
本申请实施例涉及通信领域,尤其涉及一种头戴式无线耳机及其通信方法。
背景技术
随着通信技术的发展,耳机成为人们生活中不可缺少的产品。目前,头戴式无线耳机因适合高清音乐播放,是各类音乐爱好者欣赏音乐的首选设备。
如图1所示的一种头戴式蓝牙耳机,该头戴式蓝牙耳机包括一个蓝牙芯片,以及和该蓝牙芯片相耦合的射频天线,该蓝牙芯片和射频天线位于头戴式无线耳机的其中一个耳机中。
由于该头戴式无线耳机中,射频天线位于一个耳机中,另一个耳机中无射频天线,因此天线的覆盖范围较小,方向局限性较大,导致用户体验较差。例如,当蓝牙芯片位于用户的左耳侧,手机位于用户的右口袋,则蓝牙信号要穿过人头及人体,信号衰减巨大,导致头戴式无线耳机的丢包率较高,用户体验较差。
发明内容
本申请实施例提供一种头戴式无线耳机及其通信方法,能够降低头戴式无线耳机的丢包率,提升用户体验。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种头戴式无线耳机,该头戴式无线耳机包括:第一耳机,包括:第一短距无线通信芯片以及第一射频天线,所述第一短距无线通信芯片与所述第一射频天线相耦合;第二耳机,包括:第二短距无线通信芯片以及第二射频天线;所述第二短距无线通信芯片与所述第二射频天线相耦合;数据总线,分别连接所述第一短距无线通信芯片与所述第二短距无线通信芯片,用于提供所述第一短距无线通信芯片与所述第二短距无线通信芯片之间通信所需的物理链路。基于本方案,通过在头戴式无线耳机的两个耳机中分别设置短距无线通信芯片和射频天线,从而每个短距无线通信芯片可以通过与其耦合的射频天线接收数据,确保头戴式无线耳机的覆盖范围较大。而且通过在两个耳机中的短距无线通信芯片之间设置数据总线,使得两个短距无线通信芯片之间可以通过该数据总线交互数据,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率,提升用户体验。
可选的,上述数据总线可以设置在连接第一耳机和第二耳机的机械结构之中。
可选的,本申请实施例中的短距无线通信芯片可以包括但不限于蓝牙芯片、绿牙芯片、ZigBee芯片、近场通信(near field communication,NFC)芯片或者未来衍生的其他用于短距离无线通信的芯片,本申请实施例对于短距无线通信芯片的具体类型并不限定。
结合第一方面,在一种可能的实现方式中,上述第一短距无线通信芯片用于:通过第一射频天线接收来自终端设备的数据包;在未成功接收该数据包的情况下,通过 数据总线向第二短距无线通信芯片发送第一信息,以请求第二短距无线通信芯片转发数据包;该第一信息用于指示第一短距无线通信芯片未成功接收该数据包。基于本方案,在一个短距无线通信芯片未成功接收数据包的情况下,该未成功接收数据包的短距无线通信芯片可以通过数据总线请求另一短距无线通信芯片转发数据包,从而即使有一个短距无线通信芯片未成功接收数据包,只要另一个短距无线通信芯片成功接收数据包,该成功接收数据包的短距无线通信芯片可以向未成功接收数据包的短距无线通信芯片转发其成功接收的数据包,不需要终端设重传数据包,因此能够提升头戴式无线耳机接收数据包的成功率,降低头戴式无线耳机的丢包率,提升用户体验。
可选的,上述第一短距无线通信芯片可以为主芯片,也可以为从芯片。当第一短距无线通信芯片为主芯片时,第二短距无线通信芯片为从芯片。当第一短距无线通信芯片为从芯片时,第二短距无线通信芯片可以为主芯片。上述主芯片可以为左耳机中的芯片,也可以为右耳机中的芯片。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第二短距无线通信芯片,用于:通过上述第二射频天线接收来自上述终端设备的上述数据包;在成功接收该数据包的情况下,响应上述第一信息,通过上述数据总线向上述第一短距无线通信芯片传输其成功接收的数据包。基于本方案,成功接收数据包的短距无线通信芯片通过数据总线向未成功接收数据包的短距无线通信芯片转发其成功接收的数据包,由于数据总线重传数据包,相对于通过空口重传数据的传输速度快,因此能够降低终端设备和头戴式无线耳机的功耗。
可以理解的,本申请提供的方案中,如果只有一个短距无线通信芯片成功接收数据包,成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发数据包,终端设备无需重传数据包。只有在两个短距无线通信芯片均接收数据包失败的情况下,终端设备才会重传数据包。因此,能够提高头戴式无线耳机接收数据包的成功率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;第二短距无线通信芯片,还用于通过上述数据总线向上述第一短距无线通信芯片发送第二信息;该第二信息用于指示第二短距无线通信芯片成功接收上述数据包;第一短距无线通信芯片,还用于响应该第二信息,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。基于本方案,在主芯片未成功接收数据包,而从芯片成功接收数据包的情况下,从芯片可以通过数据总线告知主芯片其成功接收数据包,主芯片获知从芯片成功接收数据包之后,可以通过空口通知终端数据包接收成功。由于主从芯片之间是通过数据总线进行交互同步的,而不是通过空口交互,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;第一短距无线通信芯片,还用于在第一短距无线通信芯片成功接收上述数据包的情况下,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。基于本方案,在主芯片成功接收数据包的情况下,不论从芯片是否成功接收数据包,主芯片可以直接通知终端设备数 据包接收成功。该实现方式与前一实现方式的区别在于,该实现方式中由于主芯片成功接收数据包,因此主芯片可以直接通知终端设备数据包接收成功。而前一实现方式中,由于主芯片接收数据包失败,而从芯片接收数据包成功,因此主芯片是在获知从芯片接收数据包成功以后,再通知终端设备数据包接收成功。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片,还用于向第二短距无线通信芯片发送第四信息,该第四信息用于指示第一短距无线通信芯片成功接收数据包。基于本方案,第一短距无线通信芯片可以通过数据总线告知第二短距无线通信芯片自己是否成功接收到来自终端设备的数据包,以实现双耳同步。
可选的,本申请实施例中无论第一短距无线通信芯片和第二短距无线通信芯片是否成功接收终端的数据包,第一短距无线通信芯片和第二短距无线通信芯片都可以通过数据总线告知对方自己是否成功接收到来自终端设备的数据包,以实现双耳间的同步。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一耳机还包括第一扬声器,该第一扬声器与第一短距无线通信芯片相耦合;第二耳机还包括第二扬声器,该第二扬声器与第二短距无线通信芯片相耦合;第一短距无线通信芯片,还用于解码上述数据包,并通过第一扬声器播放解码的数据包;第二短距无线通信芯片,还用于解码上述数据包,并通过第二扬声器播放解码的数据包。基于本方案,在第一短距无线通信芯片和第二短距无线通信芯片中的至少一个短距无线通信芯片成功接收数据包时,第一短距无线通信芯片和第二短距无线通信芯片可以解码数据包,分别通过与其耦合的扬声器播放解码后的数据包,从而能够提高头戴式无线耳机接收数据包的成功率。
可选的,第一短距无线通信芯片解码的数据包可以是其从终端设备成功接收的数据包,也可以是第二短距无线通信芯片转发给它的数据包。第二短距无线通信芯片解码的数据包可以是其从终端设备成功接收的数据包,也可以是第一短距无线通信芯片转发给它的数据包。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;第二短距无线通信芯片,还用于在第二短距无线通信芯片未成功接收来自终端设备的数据包的情况下,通过数据总线向第一短距无线通信芯片发送第五信息;该第五信息用于指示第二短距无线通信芯片未成功接收数据包;第一短距无线通信芯片,用于在第一短距无线通信芯片未成功接收数据包的情况下,响应第五信息,向终端设备发送第六信息,该第六信息用于指示终端设备重传数据包。基于本方案,在第一短距无线通信芯片和第二短距无线通信芯片均未成功接收数据包的情况下,主芯片才会指示终端设备重传数据包。也就是说,本申请实施例中的方案只要有至少一个短距无线通信芯片成功接收数据包,终端设备就不需要重传数据包,因此能够提高头戴式无线耳机接收数据包的成功率。而且两个短距无线通信芯片之间通过数据总线交互,而不需要通过空口交互,能够节省一部分空口资源,进一步降低头戴式无线耳机的丢包率,提升用户体验。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述数据总 线包括串行外设接口SPI总线、队列串行外设接口QSPI总线、双串行外设接口DSPI总线、通用异步收发器UART总线、或集成电路间的总线I2C。基于本方案,两个短距无线通信芯片之间可以通过SPI总线、QSPI总线、DSPI、UART总线或I2C总线连接,从而两个短距无线通信芯片可以通过上述数据总线交互数据,而不是通过空口交互,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率,提升用户体验。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片包括第一音频处理器、第一射频电路和第一物理接口,该第一音频处理器分别与第一射频电路和第一物理接口相耦合,第一射频电路与第一射频天线相耦合;第二短距无线通信芯片包括第二音频处理器、第二射频电路和第二物理接口,第二音频处理器分别与第二射频电路和所述第二物理接口相耦合,第二射频电路与第二射频天线相耦合,第一物理接口与第二物理接口通过数据总线相耦合;第一音频处理器,用于通过第一射频电路和第一射频天线与终端设备之间传输数据,通过第一物理接口和数据总线与第二短距无线通信芯片之间传输数据;第二音频处理器,用于通过第二射频电路和第二射频天线与终端设备之间传输数据,通过第二物理接口和数据总线与第一短距无线通信芯片之间传输数据。基于本方案,第一短距无线通信芯片和第二短距无线通信芯片分别包括物理接口,两个物理接口之间通过数据总线相耦合,从而使得第一短距无线通信芯片和第二短距无线通信芯片可以通过数据总线交互,而不需要通过空口交互,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片和上述第二短距无线通信芯片,还用于基于上述第一短距无线通信芯片和上述第二短距无线通信芯片接收信号的信号质量参数,在上述第一短距无线通信芯片和上述第二短距无线通信芯片中确定主芯片。基于本方案,第一短距无线通信芯片和第二短距无线通信芯片都可以基于这两个短距无线通信芯片接收信号的信号质量参数,在这两个短距无线通信芯片中确定主芯片。可以理解的,可以由当前时刻的主芯片根据第一短距无线通信芯片和第二短距无线通信芯片接收信号的信号质量参数,在第一短距无线通信芯片和第二短距无线通信芯片中确定主芯片。如果当前主芯片和确定出的主芯片不同,那么当前主芯片将主芯片的权限转移给确定出的主芯片,后续由该确定出的主芯片执行主芯片的功能。
可选的,以头戴式无线耳机出厂时将第一短距无线通信芯片设置为主芯片为例,在头戴式无线耳机使用过程中,该第一短距无线通信芯片可以根据第一短距无线通信芯片和第二短距无线通信芯片接收信号的信号质量参数,如果第二短距无线通信芯片接收信号的信号质量参数较第一短距无线通信芯片接收信号的信号质量参数好,那么第一短距无线通信芯片可以将第二短距无线通信芯片确定为主芯片,并告知第二短距无线通信芯片其为主芯片,由第二短距无线通信芯片继续执行主芯片的功能。可选的,第一短距无线通信芯片将第二短距无线通信芯片确定为主芯片,第一短距无线通信芯片可以将主芯片的权限转移给第二短距无线通信芯片,即第二短距无线通信芯片为主芯片,后续可以由第二主芯片告知终端设备数据包是否接收成功。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述信号质量参数包括:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示 RSSI、丢包率PER,以及信号与干扰加噪声比SINR中的任意一种或多种。基于本方案,当前主芯片可以根据第一短距无线通信芯片和第二短距无线通信芯片接收信号的RSRP、RSRQ、RSSI、PER或SINR中的任意一种或多种参数,在第一短距无线通信芯片和第二短距无线通信芯片中确定主芯片,从而确保确定出的主芯片为信号质量参数较好的主芯片。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一射频天线为多个,上述第二射频天线为多个;上述第一短距无线通信芯片,还用于根据多个第一射频天线接收信号的信号质量参数,在多个第一射频天线中确定目标第一射频天线,该目标第一射频天线为一个或多个;第二短距无线通信芯片,还用于根据多个第二射频天线接收信号的信号质量参数,在多个第二射频天线中确定目标第二射频天线,该目标第二射频天线为一个或多个。基于本方案,两个短距无线通信芯片还可以从与其相耦合的多个射频天线中确定出接收信号质量参数较好的一个或多个目标天线,从而进一步提高蓝牙耳机接收信号的成功率。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片,具体用于通过上述目标第一射频天线接收来自终端设备的数据包;上述第二短距无线通信芯片,具体用于通过上述目标第二射频天线接收来自上述终端设备的数据包。基于本方案,两个短距无线通信芯片可以基于接收信号质量参数较好的一个或多个目标天线接收终端设备发送的数据包,从而能够进一步提高蓝牙耳机接收信号的成功率。
本申请实施例的第二方面,提供一种短距无线通信芯片,该短距无线通信芯片包括音频处理器、射频电路和物理接口,音频处理器分别与射频电路和物理接口相耦合,射频电路用于与射频天线相耦合,物理接口用于与数据总线相耦合;音频处理器,用于通过射频电路和射频天线与终端设备之间传输数据;音频处理器,还用于通过物理接口向数据总线发送数据,并接收数据总线传输的数据。
结合第二方面,在一种可能的实现方式中,上述音频处理器,具体用于:通过上述射频天线接收来自上述终端设备的数据包;在未成功接收该数据包的情况下,通过物理接口向数据总线发送第一信息,以请求与该数据总线相耦合的另一短距无线通信芯片转发器成功接收的数据包;该第一信息用于指示短距无线通信芯片未成功接收数据包。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述音频处理器,具体还用于在另一短距无线通信芯片成功接收数据包的情况下,通过物理接口和数据总线接收来自另一短距无线通信芯片的数据包。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述音频处理器,具体还用于:接收来自另一短距无线通信芯片的第二信息;该第二信息用于指示另一短距无线通信芯片成功接收数据包;响应第二信息,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述音频处理器,具体还用于:在短距无线通信芯片成功接收数据包的情况下,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述音频处理器,具体还用于:向另一短距无线通信芯片发送第四信息,第四信息用于指示短距无线通信芯片成功接收数据包。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上述音频处理器,具体还用于:接收来自与数据总线相耦合的另一短距无线通信芯片的第五信息;该第五信息用于指示另一短距无线通信芯片未成功接收来自终端设备的数据包;在短距无线通信芯片未成功接收数据包的情况下,响应第五信息,向终端设备发送第六信息,该第六信息用于指示所述终端设备重传所述数据包。
本申请实施例的第三方面,提供一种头戴式无线耳机的通信方法,该头戴式无线耳机包括第一耳机、第二耳机和数据总线,第一耳机包括第一短距无线通信芯片,以及与第一短距无线通信芯片耦合的第一射频天线,第二耳机包括第二短距无线通信芯片,以及与第二短距无线通信芯片耦合的第二射频天线;数据总线分别连接该第一短距无线通信芯片和该第二短距无线通信芯片,用于提供第一短距无线通信芯片与第二短距无线通信芯片之间通信所需的物理链路;该通信方法包括:第一短距无线通信芯片通过第一射频天线接收来自终端设备的数据包;第二短距无线通信芯片通过第二射频天线接收来自该终端设备的数据包。
结合第三方面,在一种可能的实现方式中,上述方法还包括:在上述第一短距无线通信芯片未成功接收上述数据包的情况下,第一短距无线通信芯片通过上述数据总线向上述第二短距无线通信芯片发送第一信息,以请求第二短距无线通信芯片转发其成功接收到数据包;该第一信息用于指示第一短距无线通信芯片未成功接收数据包。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述方法还包括:在第二短距无线通信芯片成功接收所述数据包的情况下,第二短距无线通信芯片响应第一信息,通过数据总线向所述第一短距无线通信芯片传输其成功接收的数据包。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;上述方法还包括:第二短距无线通信芯片通过数据总线向第一短距无线通信芯片发送第二信息;该第二信息用于指示第二短距无线通信芯片成功接收数据包;第一短距无线通信芯片响应该第二信息,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;上述方法还包括:在第一短距无线通信芯片成功接收数据包的情况下,第一短距无线通信芯片向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述方法还包括:第一短距无线通信芯片向第二短距无线通信芯片发送第四信息,该第四信息用于指示第一短距无线通信芯片成功接收数据包。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一耳机还包括第一扬声器,第一扬声器与第一短距无线通信芯片相耦合;第二耳机还包括第二扬声器,第二扬声器与第二短距无线通信芯片相耦合;上述方法还包括:第一短 距无线通信芯片解码数据包,并通过第一扬声器播放解码的数据包;第二短距无线通信芯片解码数据包,并通过第二扬声器播放解码的数据包。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片为主芯片,上述第二短距无线通信芯片为从芯片;上述方法还包括:在第二短距无线通信芯片未成功接收数据包的情况下,第二短距无线通信芯片通过数据总线向第一短距无线通信芯片发送第五信息;该第五信息用于指示第二短距无线通信芯片未成功接收数据包;在第一短距无线通信芯片未成功接收数据包的情况下,第一短距无线通信芯片响应该第五信息,向终端设备发送第六信息,该第六信息用于指示终端设备重传数据包。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述第一短距无线通信芯片包括第一音频处理器、第一射频电路和第一物理接口,第一音频处理器分别与第一射频电路和第一物理接口相耦合,第一射频电路与所述第一射频天线相耦合;第二短距无线通信芯片包括第二音频处理器、第二射频电路和第二物理接口,第二音频处理器分别与第二射频电路和所述第二物理接口相耦合,第二射频电路与第二射频天线相耦合,第一物理接口与第二物理接口通过数据总线相耦合。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,上述数据总线包括串行外设接口SPI总线、队列串行外设接口QSPI总线、双串行外设接口DSPI总线、通用异步收发器UART总线、或集成电路间的总线I2C。
上述第二方面和第三方面的效果描述可以参考第一方面的效果描述,在此不再赘述。
本申请实施例的第四方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序代码,当所述计算机程序代码在处理器上运行时,使得所述处理器执行上述第三方面所述的方法。
本申请实施例的第五方面,提供了一种计算机程序产品,该程序产品储存有上述处理器执行的计算机软件指令,该计算机软件指令包含用于执行上述第三方面所述方案的程序。
附图说明
图1为本申请实施例提供的一种头戴式无线耳机的结构示意图;
图2为本申请实施例提供的另一种头戴式无线耳机的示意图;
图3为本申请实施例提供的另一种头戴式无线耳机的示意图;
图4为本申请实施例提供的另一种头戴式无线耳机的示意图;
图5为本申请实施例提供的一种头戴式无线耳机的硬件结构示意图;
图6为本申请实施例提供的一种短距无线通信芯片的结构示意图;
图7为本申请实施例提供的一种头戴式无线耳机的通信方法的流程示意图;
图8为本申请实施例提供的另一种头戴式无线耳机的通信方法的流程示意图;
图9为本申请实施例提供的另一种头戴式无线耳机的通信方法的流程示意图;
图10为本申请实施例提供的一种头戴式无线耳机的通信方法的流程示意图;
图11为本申请实施例提供的一种头戴式无线耳机的通信效果示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或,a和b和c,其中a、b和c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。比如,本申请实施例中的第一耳机中的“第一”和第二耳机中的“第二”仅用于区分不同的耳机。本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
目前,头戴式无线耳机因适合高清音乐播放,是各类音乐爱好者欣赏音乐的首选设备。但是,现有的头戴式无线耳机一般为单蓝牙芯片的蓝牙耳机。
示例性的,图1为一种单蓝牙芯片的头戴式无线耳机,如图1所示,该头戴式无线耳机包括一个蓝牙芯片,以及和该蓝牙芯片相耦合的射频天线,该蓝牙芯片和射频天线位于头戴式无线耳机的一侧,头戴式无线耳机的两个耳机中的扬声器分别通过线缆与该蓝牙芯片耦合连接。
但是,由于图1所示的头戴式无线耳机中,射频天线位于一个耳机中,另一个耳机中无射频天线,因此天线的覆盖范围较小,方向局限性较大,导致用户体验较差。例如,当蓝牙芯片位于用户的左耳侧,手机位于用户的右口袋,则蓝牙信号要穿过人头及人体,信号衰减巨大,导致头戴式无线耳机的丢包率较高,用户体验较差。
为了提升单蓝牙芯片的头戴式无线耳机的覆盖范围,本申请实施例提供一种头戴式无线耳机,该头戴式无线耳机可以在两个耳机中分别设置射频天线,并将两个耳机的天线通过天线同轴线连接。
例如,如图2所示的一种头戴式无线耳机,该头戴式无线耳机包括耳机1和耳机2,耳机1包括一个蓝牙芯片,以及与该蓝牙芯片相耦合的射频天线1,耳机2包括射频天线2,射频天线2通过天线同轴线与蓝牙芯片相耦合,该天线同轴线穿过头戴式耳机的连接部分。耳机1和耳机2中的扬声器分别通过线缆与该蓝牙芯片相耦合。
但是,图2所示头戴式无线耳机中因天线同轴线穿过头戴式耳机的连接部分,而该连接部分在用户使用过程中会存在不同程度的弯曲,造成天线同轴线容易断裂,无法保证天线正常接收数据,可能造成用户体验较差。而且由于天线同轴线过长,造成天线插损过大,天线增益较差,导致天线接收的信号较差。
为了提升头戴式无线耳机的覆盖范围,本申请实施例还提供一种头戴式无线耳机,该头戴式无线耳机可以在两个耳机中分别设置蓝牙芯片和射频天线。
例如,如图3所示的一种头戴式无线耳机,该头戴式无线耳机包括耳机1和耳机2,耳机1包括蓝牙芯片1,以及与该蓝牙芯片1相耦合的射频天线1,耳机2包括蓝牙芯片2,以及与该蓝牙芯片2相耦合的射频天线2。可选的,耳机1和耳机2还可以包括扬声器,耳机1中的扬声器与蓝牙芯片1相耦合,耳机2中的扬声器与蓝牙芯片2相耦合。
虽然图3所示的蓝牙耳机覆盖范围较大,但是由于两个耳机在大多数场景下,接收信号是不平衡的,导致两个耳机的丢包会互相影响。例如,当手机位于用户的右口袋,由于右耳距离手机较近,信号质量参数较好,右耳机能够接收手机发送的音频数据包。但是,右耳机接收到音频数据包后不能直接播放,需要等左耳机收到该音频数据包后一起播放,然而,由于左耳机距离手机较远,信号质量参数较差,可能接收不到手机发送的音频数据包,左耳机的丢包会对右耳机造成影响,导致左耳机和右耳机都不能播放音频数据。而且,由于左耳机和右耳机的蓝牙芯片不仅通过空口接收手机发送的音频数据包,而且左右耳机之间还要通过空口确认对方是否收到音频数据包,可能导致空口速率不够,影响音频数据包的传输。
为了降低头戴式无线耳机的丢包率,提升用户体验。本申请实施例还提供一种头戴式无线耳机,该头戴式无线耳机包括第一耳机、第二耳机和数据总线;第一耳机包括:第一短距无线通信芯片以及第一射频天线,该第一短距无线通信芯片与第一射频天线相耦合。第二耳机包括:第二短距无线通信芯片以及第二射频天线,第二短距无线通信芯片与第二射频天线相耦合。数据总线分别连接第一短距无线通信芯片与第二短距无线通信芯片,用于提供第一短距无线通信芯片与第二短距无线通信芯片之间通信所需的物理链路。
上述第一耳机可以为左耳机也可以为右耳机。当第一耳机为左耳机时,第二耳机为右耳机。当第一耳机为右耳机时,第二耳机为左耳机。
可选的,上述第一耳机可以包括一个或多个第一射频天线,第二耳机可以包括一个或多个第二射频天线。
可选的,上述第一短距无线通信芯片和第二短距无线通信芯片可以包括但不限于蓝牙芯片、绿牙芯片、ZigBee芯片、近场通信(near field communication,NFC)芯片或者未来衍生的其他用于短距离无线通信的芯片,本申请实施例对于短距无线通信芯片的具体类型并不限定,下述实施例以短距无线通信芯片为蓝牙芯片为例进行说明。
可选的,上述数据总线可以设置在连接第一耳机和第二耳机的机械结构之中。例如,头戴式无线耳机还可以包括弧形支撑架,第一耳机和第二耳机通过该弧形支撑架连接,第一短距无线通信芯片与第二短距无线通信芯片之间的数据总线可以设置于该弧形支撑架中。本申请实施例对于第一短距无线通信芯片和第二短距无线通信芯片之间的数据总线的具体设置位置并不限定,在此仅是示例性说明。
可选的,上述数据总线包括串行外设接口(serial peripheral interface,SPI)总线、队列串行外设接口(queued serial peripheral interface,QSPI)总线、双串行外设接口(dual serial peripheral interface,DSPI)总线、通用异步收发器(universal asynchronous  receiver/transmitter,UART)总线、或集成电路总线(inter-integrated circuit bus,I2C)。本申请实施例对于数据总线的具体类型并不限定。
可选的,第一耳机还可以包括第一扬声器,第一扬声器与第一短距无线通信芯片相耦合。第一短距无线通信芯片,用于解码数据包,并通过第一扬声器播放解码的数据包。
可选的,第二耳机还可以包括第二扬声器,第二扬声器与第二短距无线通信芯片相耦合。第二短距无线通信芯片,用于解码数据包,并通过第二扬声器播放解码的数据包。
例如,如图4所示的一种头戴式无线耳机,该头戴式无线耳机包括耳机1、耳机2和数据总线,耳机1包括蓝牙芯片1,以及与蓝牙芯片1分别耦合的射频天线1和扬声器1,耳机2包括蓝牙芯片2,以及与蓝牙芯片2分别耦合的射频天线2和扬声器2。耳机1和耳机2通过弧形支撑架连接,蓝牙芯片1与蓝牙芯片2之间通过数据总线连接,该数据总线可以设置于该弧形支撑架中。
第一短距无线通信芯片,用于通过第一射频天线接收来自终端设备的数据包。
第二短距无线通信芯片,用于通过第二射频天线接收来自终端设备的数据包。
可选的,第一短距无线通信芯片和第二短距无线通信芯片接收的数据包可以为音频数据包。第一短距无线通信芯片和第二短距无线通信芯片可以通过空口接收来自终端设备的音频数据包。
例如,如图4所示,蓝牙芯片1可以通过射频天线1接收来自终端设备的数据包1,蓝牙芯片2可以通过射频天线2接收来自终端设备的数据包1。
实际应用中,第一短距无线通信芯片和第二短距无线通信芯片可能均未成功接收终端设备发送的数据包,也可能均成功接收终端设备发送的数据包,还有可能其中一个短距无线通信芯片成功接收终端设备发送的数据包,另一个短距无线通信芯片未成功接收终端设备发送的数据包。下面结合不同场景,以第一短距无线通信芯片为主芯片,第二短距无线通信芯片为从芯片为例,对第一短距无线通信芯片与第二短距无线通信芯片的功能进行详细介绍。
可选的,主芯片可以为左耳机中的芯片,也可以右耳机中的芯片,本申请实施例对此并不限定。当主芯片为左耳机中的短距无线通信芯片时,右耳机中的短距无线通信芯片为从芯片。当主芯片为右耳机中的短距无线通信芯片时,左耳机中的短距无线通信芯片为主芯片。
第一种场景,第一短距无线通信芯片未成功接收数据包,第二短距无线通信芯片成功接收数据包。
第一短距无线通信芯片,还用于通过数据总线向第二短距无线通信芯片发送第一信息,以请求第二短距无线通信芯片转发其成功接收的数据包。该第一信息用于指示第一短距无线通信芯片未成功接收数据包。
第二短距无线通信芯片,还用于响应该第一信息,通过数据总线向第一短距无线通信芯片转发其成功接收的数据包。
例如,如图4所示,以蓝牙芯片1为主芯片,蓝牙芯片2为从芯片为例。在蓝牙芯片1未成功接收数据包1,蓝牙芯片2成功接收数据包1的情况下,蓝牙芯片1向 蓝牙芯片2发送第一信息,通知蓝牙芯片2蓝牙芯片1未成功接收数据包1,以请求蓝牙芯片2转发其成功接收的数据包1。蓝牙芯片2响应该第一信息,通过数据总线将其成功接收的数据包1转发给蓝牙芯片1。
第二短距无线通信芯片,还用于通过数据总线向第一短距无线通信芯片发送第二信息。该第二信息用于指示第二短距无线通信芯片成功接收数据包。
第一短距无线通信芯片,还用于响应该第二信息,向终端设备发送第三信息。该第三信息用于指示数据包接收成功。
可选的,上述第三信息可以为肯定应答(Acknowledgement,ACK)。
例如,如图4所示,以蓝牙芯片1为主芯片,蓝牙芯片2为从芯片为例。在蓝牙芯片1未成功接收数据包1,蓝牙芯片2成功接收数据包1的情况下,蓝牙芯片2向蓝牙芯片1发送第二信息,通知蓝牙芯片1蓝牙芯片2成功接收数据包1。蓝牙芯片1响应该第二信息,通过终端设备数据包接收成功。
本申请实施例在主芯片未成功接收数据包,而从芯片成功接收数据包的情况下,从芯片可以通过数据总线告知主芯片其成功接收数据包,主芯片获知从芯片成功接收数据包之后,可以通过空口通知终端数据包接收成功。
第二种场景,第一短距无线通信芯片成功接收数据包,第二短距无线通信芯片未成功接收数据包。
第二短距无线通信芯片,还用于通过数据总线向第一短距无线通信芯片发送第五信息,以请求第一短距无线通信芯片转发上述数据包。该第五信息用于指示第二短距无线通信芯片未成功接收数据包。
第一短距无线通信芯片,还用于响应第五信息,通过数据总线向第二短距无线通信芯片传输数据包。
例如,如图4所示,以蓝牙芯片1为主芯片,蓝牙芯片2为从芯片为例。在蓝牙芯片1成功接收数据包2,蓝牙芯片2未成功接收数据包2的情况下,蓝牙芯片2向蓝牙芯片1发送第五信息,通知蓝牙芯片1蓝牙芯片2未成功接收数据包2,以请求蓝牙芯片1转发其成功接收的数据包2。蓝牙芯片1响应该第五信息,通过数据总线将其成功接收的数据包2转发给蓝牙芯片2。
第一短距无线通信芯片还用于向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
上述第一种场景和第二种场景主芯片都会通知终端设备数据包接收成功。第二种场景与第一种场景的区别在于,第二种场景中由于主芯片成功接收数据包,因此主芯片可以直接通知终端设备数据包接收成功。而第一种场景中,由于主芯片接收数据包失败,而从芯片接收数据包成功,因此主芯片是在获知从芯片接收数据包成功以后,再通知终端设备数据包接收成功。
可选的,上述第二种场景中,第一短距无线通信芯片还可以向第二短距无线通信芯片发送第四信息。该第四信息用于指示第一短距无线通信芯片成功接收数据包。
上述第一种场景和第二种场景中,在只有一个短距无线通信芯片成功接收数据包的情况下,该成功接收数据包的短距无线通信芯片可以通过数据总线向另一未成功接收数据包的短距无线通信芯片转发其接收成功的数据包。该成功接收数据包的短距无 线通信芯片可以为主芯片,也可以为从芯片,本申请对此并不限定。
可以理解的,本实施例通过在两个短距无线通信芯片之间设置数据总线,两个短距无线通信芯片之间可以通过数据总线交互,而不是通过空口交互,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率。而且本实施例在一个短距无线通信芯片未成功接收数据包的情况下,成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发其成功接收的数据包,由于数据总线的传输速度较快,因此能够提高两个短距无线通信芯片接收数据包的成功率,降低终端设备和头戴式无线耳机的功耗。
第三种场景,第一短距无线通信芯片成功接收数据包,第二短距无线通信芯片成功接收数据包。
第一短距无线通信芯片,还用于向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
在该场景中,由于主芯片成功接收数据包,主芯片可以直接通知终端设备数据包接收成功。
可选的,第二短距无线通信芯片还可以向第一短距无线通信芯片发送第二信息,以通知第一短距无线通信芯片,第二短距无线通信芯片成功接收上述数据包。
第四种场景,第一短距无线通信芯片未成功接收数据包,第二短距无线通信芯片未成功接收数据包。
第二短距无线通信芯片,还用于通过数据总线向第一短距无线通信芯片发送第五信息。该第五信息用于指示第二短距无线通信芯片未成功接收数据包。
第一短距无线通信芯片,还用于响应第五信息,向终端设备发送第六信息。该第六信息用于指示终端设备重传数据包。
可选的,第六信息可以为否定应答(Negative Acknowledgement,NACK)。
在该场景中,由于主芯片和从芯片均未成功接收数据包,因此主芯片通过数据总线获知从芯片也未成功接收数据包后,可以通过空口通知终端设备重传数据包。
可选的,实际应用中,不管在上述哪种场景中,第一短距无线通信芯片和第二短距无线通信芯片都可以通过数据总线告知对方自己是否成功接收到来自终端设备的数据包,以实现双耳同步。比如,如图4所示,蓝牙芯片1可以通过数据总线通知蓝牙芯片2,蓝牙芯片1成功或未成功接收数据包。蓝牙芯片2通过数据总线通知蓝牙芯片1,蓝牙芯片2成功或未成功接收数据包。从而使得两个蓝牙芯片可以获知对方是否成功接收到来自终端设备的数据包,实现双耳间的同步。
可选的,上述第一短距无线通信芯片包括第一音频处理器、第一射频电路和第一物理接口,第一音频处理器分别与第一射频电路和第一物理接口相耦合,第一射频电路与第一射频天线相耦合。第二短距无线通信芯片包括第二音频处理器、第二射频电路和第二物理接口,第二音频处理器分别与第二射频电路和第二物理接口相耦合,第二射频电路与第二射频天线相耦合,第一物理接口与第二物理接口通过数据总线相耦合。
第一音频处理器,用于通过第一射频电路和第一射频天线与终端设备之间传输数据,通过第一物理接口和数据总线与第二短距无线通信芯片之间传输数据。
第二音频处理器,用于通过第二射频电路和第二射频天线与终端设备之间传输数据,通过第二物理接口和数据总线与第一短距无线通信芯片之间传输数据。
例如,如图5所示,以第一短距无线通信芯片和第二短距无线通信芯片为蓝牙芯片,第一音频处理器和第二音频处理器为数字信号处理器(digital signal processing,DSP)为例。第一蓝牙芯片包括第一蓝牙(bluetooth,BT)核和第一DSP,第一BT核和第一DSP之间的数据通过进程间通信(inter-process communication,IPC)的方式进行交互。第一BT核包括射频电路1和物理接口1,第一DSP分别与射频电路1和物理接口1相耦合,射频电路1与射频天线1相耦合。第二蓝牙芯片可以包括第二BT核和第二DSP,第二BT核包括射频电路2和物理接口2,第二DSP分别与射频电路2和物理接口2相耦合,射频电路2与射频天线2相耦合。物理接口1与物理接口2通过数据总线连接,物理接口1和物理接口2可以为SPI、UART或I2C等接口。本申请实施例对于音频处理器的具体类型并不限定,该音频处理器可以为任一能够对音频数据包进行解码的处理器,图5仅以音频处理器为DSP为例进行示意。DSP包括的业务模块和算法模块用于对音频数据包进行解码处理。
需要说明的是,第一蓝牙芯片和第二蓝牙芯片的电路结构可以完全相同,也可以不完全相同,本申请实施例对于第一蓝牙芯片和第二蓝牙芯片的具体结构并不限定,图5仅是示例性说明。
可以理解的,本实施例通过在第一短距无线通信芯片与第二短距无线通信芯片之间设置数据总线,两个短距无线通信芯片可以通过数据总线交互,并且在一个短距无线通信芯片未成功接收到数据包的情况下,另一个成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发其成功接收的数据包。本实施例中两个短距无线通信芯片之间是通过数据总线交互的,而不是通过空口交互,因此能够释放一部分空口资源,降低头戴式无线耳机的丢包率。而且本实施例两个短距无线通信芯片之间通过数据总线转发数据包,传输速度较快,能够提高两个短距无线通信芯片接收数据包的成功率,降低终端设备和头戴式无线耳机的功耗。
例如,以手机距离左耳较近,距离右耳较远,左耳机单次接收数据包的成功率为80%,右耳机单次接收数据包的成功率为60%为例。对于图1所示的单蓝牙芯片的头戴式无线耳机,如果单蓝牙芯片位于头戴式无线耳机的左耳侧,那么该单蓝牙芯片的头戴式无线耳机接收数据包的成功率为80%。对于图3所示的头戴式无线耳机,在两个耳机均成功接收数据包的情况下,才能正常播放音频数据,即该双蓝牙芯片的头戴式无线耳机接收数据包的成功率为80%*60%=48%。对于图4所示的头戴式无线耳机,只有在两个耳机均未成功接收到数据包的情况下,才需要终端设备重传该数据包,因此该头戴式无线耳机接收数据包的成功率为1-(1-80%)*(1-60%)=88%。因此,图4所示头戴式无线耳机,能够提高接收数据包的成功率。
再例如,以手机距离右耳较近,距离左耳较远,左耳机单次接收数据包的成功率为60%,右耳机单次接收数据包的成功率为80%为例。对于图1所示的单蓝牙芯片的头戴式无线耳机,如果单蓝牙芯片位于头戴式无线耳机的左耳侧,那么该单蓝牙芯片的头戴式无线耳机接收数据包的成功率为60%。对于图3所示的头戴式无线耳机,在两个耳机均成功接收数据包的情况下,才能正常播放音频数据,即该双蓝牙芯片的头 戴式无线耳机接收数据包的成功率为80%*60%=48%。对于图4所示的头戴式无线耳机,只有在两个耳机均未成功接收到数据包的情况下,才需要终端设备重传该数据包,因此该头戴式无线耳机接收数据包的成功率为1-(1-80%)*(1-60%)=88%。因此,图4所示的头戴式无线耳机,能够提高接收数据包的成功率。
可选的,本申请实施例中第一短距无线通信芯片和第二短距无线通信芯片不仅可以通过数据总线传输上述第一信息、第二信息、第四信息和第五信息,还可以传输除上述第一信息、第二信息、第四信息和第五信息以外的其他信息。例如,第一短距无线通信芯片和第二短距无线通信芯片可以通过数据总线传输耳机的音量、统计数据、信号质量参数、日志、时间戳等信息。
本实施例提供的头戴式无线耳机,通过设置两个短距无线通信芯片,而且这两个短距无线通信芯片可以通过数据总线进行交互,因此能够释放一部分空口资源,降低数据包的重传次数,降低终端设备及头戴式无线耳机的功耗。在一个短距无线通信芯片未成功接收到数据包的情况下,另一个成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发其成功接收的数据包,能够提升头戴式无线耳机接收数据包的成功率,降低头戴式无线耳机的丢包率,提升用户体验。
本申请实施例还提供一种短距无线通信芯片,如图6所示,该短距无线通信芯片包括音频处理器、射频电路和物理接口,音频处理器分别与射频电路和物理接口相耦合,射频电路用于与射频天线相耦合,物理接口用于与数据总线相耦合。
音频处理器,用于通过射频电路和射频天线与终端设备之间传输数据。
音频处理器,还用于通过物理接口向数据总线发送数据,并接收数据总线传输的数据。
可选的,如图6所示,该短距无线通信芯片可以通过数据总线与另一短距无线通信芯片相耦合,这两个短距无线通信芯片之间通过数据总线交互。
音频处理器,具体用于通过射频天线接收来自终端设备的数据包。
音频处理器,具体还用于在未成功接收该数据包的情况下,通过物理接口向数据总线发送第一信息,以请求与数据总线相耦合的另一短距无线通信芯片转发该数据包。该第一信息用于指示短距无线通信芯片未成功接收数据包。
音频处理器,具体还用于在与数据总线相耦合的另一短距无线通信芯片成功接收数据包的情况下,通过物理接口和数据总线接收来自该另一短距无线通信芯片的数据包。
音频处理器,具体还用于接收来自与数据总线相耦合的另一短距无线通信芯片的第二信息。该第二信息用于指示另一短距无线通信芯片成功接收数据包。响应该第二信息,向终端设备发送第三信息,该第三信息用于指示数据包接收成功。
音频处理器,具体还用于在该短距无线通信芯片成功接收数据包的情况下,向终端设备发送第三信息。可选的,音频处理器还可以向与数据总线相耦合的另一短距无线通信芯片发送第四信息。该第四信息用于指示该短距无线通信芯片成功接收数据包。
音频处理器,具体还用于接收来自与数据总线相耦合的另一短距无线通信芯片的第五信息。该第五信息用于指示另一短距无线通信芯片未成功接收来自终端设备的数 据包。在该短距无线通信芯片未成功接收数据包的情况下,响应第五信息,音频处理器向终端设备发送第六信息。该第六信息用于指示终端设备重传数据包。
可以理解的,本实施例提供的短距无线通信芯片,可以通过数据总线与另一短距无线通信芯片交互,即两个短距无线通信芯片之间是通过数据总线交互,而不是通过空口交互,因此能够释放一部分空口资源,降低丢包率。而且本实施例在一个短距无线通信芯片未成功接收数据包的情况下,可以向另一成功接收数据包的短距无线通信芯片请求转发数据包,成功接收数据包的短距无线通信芯片可以通过数据总线转发数据包,传输速度较快,能够提高短距无线通信芯片接收数据包的成功率,降低终端设备和芯片的功耗。
结合图4至图6,本申请实施例还提供一种头戴式无线耳机的通信方法,该头戴式无线耳机可以为上述图4所示的头戴式无线耳机,若第一短距无线通信芯片为主芯片,第二短距无线通信芯片为从芯片,主芯片未成功接收数据包,从芯片成功接收数据包,如图7所示,该通信方法可以包括以下步骤:
S701、第一短距无线通信芯片通过第一射频天线接收来自终端设备的数据包。
可选的,第一射频天线可以为一个或多个。在头戴式无线耳机包括一个第一射频天线的情况下,第一短距无线通信芯片可以通过该一个第一射频天线接收来自终端设备的数据包。在头戴式无线耳机包括多个第一射频天线的情况下,第一短距无线通信芯片可以通过一个第一射频天线接收来自终端设备的数据包,也可以通过多个第一射频天线同时接收来自终端设备的数据包。
可选的,本申请实施例中的终端设备可以是手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等电子设备,本申请实施例对该终端设备的具体形态不作特殊限制,下述实施例以该终端设备为手机为例进行说明。
可选的,在第一射频天线为多个的情况下,上述步骤S701之前还可以包括:第一短距无线通信芯片根据多个第一射频天线接收信号的信号质量参数,在多个第一射频天线中确定目标第一射频天线。相应的,上述步骤S701中第一短距无线通信芯片通过第一射频天线接收来自终端设备的数据包,包括:第一短距无线通信芯片通过该目标第一射频天线接收来自终端设备的数据包。
可选的,目标第一射频天线可以为一个或多个。当目标第一射频天线为一个时,第一短距无线通信芯片通过该一个目标第一射频天线接收来自终端设备的数据包。当目标第一射频天线为多个时,第一短距无线通信芯片通过该多个目标第一射频天线同时接收来自终端设备的数据包。
可选的,上述第一射频天线接收信号的信号质量参数包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、接收信号强度指示(received signal strength indicator,RSSI)、丢包率(packet error rate,PER),以及信号与干扰加噪声比(signal to interference plus noise ratio,SINR)中的一种或多种。
例如,第一短距无线通信芯片可以根据多个第一射频天线接收信号的强度RSSI和丢包率PER,在多个第一射频天线中确定一个或多个目标第一射频天线。
可以理解的,第一短距无线通信芯片通过在多个第一射频天线中确定目标第一射频天线,并通过该目标第一射频天线接收来自终端设备的数据包,能够提高头戴式无线耳机接收信号的成功率。
S702、第二短距无线通信芯片通过第二射频天线接收来自终端设备的数据包。
可选的,第二射频天线可以为一个或多个。在第二射频天线为多个的情况下,上述步骤S702之前还可以包括:第二短距无线通信芯片根据多个第二射频天线接收信号的信号质量参数,在多个第二射频天线中确定目标第二射频天线。相应的,上述步骤S702中第二短距无线通信芯片通过第二射频天线接收来自终端设备的数据包,包括:第二短距无线通信芯片通过该目标第二射频天线接收来自终端设备的数据包。
可选的,目标第二射频天线可以为一个或多个。当目标第二射频天线为一个时,第二短距无线通信芯片通过该一个目标第二射频天线接收来自终端设备的数据包。当目标第二射频天线为多个时,第二短距无线通信芯片通过该多个目标第二射频天线同时接收来自终端设备的数据包。
可选的,上述第二射频天线接收信号的信号质量参数包括参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、丢包率PER,以及信号与干扰加噪声比SINR中的任意一种或多种。
例如,第二短距无线通信芯片可以根据多个第二射频天线接收信号的强度RSSI和丢包率PER,在多个第二射频天线中确定一个或多个目标第二射频天线。
可选的,第一短距无线通信芯片确定目标第一射频天线的信号质量参数与第二短距无线通信芯片确定目标第二射频天线的信号质量参数可以相同,也可以不同,本申请实施例对此并不限定。
可以理解的,第二短距无线通信芯片通过在多个第二射频天线中确定目标第二射频天线,并通过该目标第二射频天线接收来自终端设备的数据包,能够提高头戴式无线耳机接收信号的成功率。
可选的,实际应用中,终端设备发送数据包时,有可能第一短距无线通信芯片先接收该数据包,第二短距无线通信芯片后接收该数据包。也有可能第二短距无线通信芯片先接收该数据包,第一短距无线通信芯片后接收该数据包。还有可能第一短距无线通信芯片和第二短距无线通信芯片同时接收该数据包。本申请实施例对此并不限定。
S703、在第一短距无线通信芯片未成功接收数据包的情况下,第一短距无线通信芯片通过数据总线向第二短距无线通信芯片发送第一信息,以请求第二短距无线通信芯片转发数据包。
该第一信息用于指示第一短距无线通信芯片未成功接收数据包。
可选的,第一短距无线通信芯片可以为左耳机中的芯片,也可以为右耳机中的芯片。当第一短距无线通信芯片为左耳机中的芯片时,第二短距无线通信芯片为右耳机中的芯片。当第一短距无线通信芯片为右耳机中的芯片时,第二短距无线通信芯片为左耳机中的芯片。
S704、第二短距无线通信芯片响应第一信息,通过数据总线向第一短距无线通信 芯片传输其成功接收的数据包。
可以理解的,本实施例中,在一个短距无线通信芯片未成功接收到数据包的情况下,该未成功接收到数据包的短距无线通信芯片可以向另一成功接收数据包的短距无线通信芯片请求转发数据包,该成功接收到数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发数据包,从而能够提升头戴式无线耳机接收数据包的成功率,降低头戴式无线耳机的丢包率,提升用户体验。
可选的,上述步骤S701-S704之后还可以包括S705-S706。
S705、第二短距无线通信芯片通过数据总线向第一短距无线通信芯片发送第二信息。
该第二信息用于指示第二短距无线通信芯片成功接收数据包。
S706、第一短距无线通信芯片响应第二信息,向终端设备发送第三信息。
该第三信息用于指示数据包接收成功。
需要说明的是,本申请对于图7所示的步骤S701-S706的执行顺序并不进行限定,图7仅是示例性说明。
本申请实施例提供的通信方法,在只有一个短距无线通信芯片成功接收数据包的情况下,成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片转发其接收的数据包,终端设备无需重传数据包,因此,能够降低头戴式无线耳机的丢包率,提升用户体验。而且两个短距无线通信芯片之间通过数据总线交互,而不是通过空口交互,能够释放一部分空口资源,进一步降低头戴式无线耳机的丢包率,提升用户体验。
本申请实施例还提供一种头戴式无线耳机的通信方法,如图8所示,若第一短距无线通信芯片为主芯片,第二短距无线通信芯片为从芯片,主芯片成功接收数据包,从芯片未成功接收数据包,在上述步骤S701-S702之后还可以包括以下步骤:
S707、在第二短距无线通信芯片未成功接收数据包的情况下,第二短距无线通信芯片通过数据总线向第一短距无线通信芯片发送第五信息,以请求第一短距无线通信芯片转发数据包。
该第五信息用于指示第二短距无线通信芯片未成功接收数据包。
S708、第一短距无线通信芯片响应第五信息,通过数据总线向第二短距无线通信芯片传输其成功接收的数据包。
S709、第一短距无线通信芯片向终端设备发送第三信息。
该第三信息用于指示数据包接收成功。
在本实施例中,如果主芯片成功接收数据包,那么无论从芯片是否成功接收数据包,主芯片都可以通知终端设备数据包接收成功。如果从芯片未成功接收数据包,从芯片可以请求主芯片转发数据包,从而实现主从芯片均成功接收数据包,播放音频数据。
可选的,本申请图7和图8所示的实施例中,只要有一个短距无线通信芯片成功接收终端设备发送的数据包,主芯片都会通知终端设备数据包接收成功。图7所示的实施例与图8所示的实施例的区别在于,图8所示的实施例中,由于主芯片成功接收数据包,因此主芯片可以直接通知终端设备数据包接收成功。而图7所示的实施例中, 由于主芯片接收数据包失败,而从芯片接收数据包成功,因此主芯片是在获知从芯片接收数据包成功以后,再通知终端设备数据包接收成功。
可选的,该方法还可以包括步骤S710。
S710、第一短距无线通信芯片向第二短距无线通信芯片发送第四信息。
该第四信息用于指示第一短距无线通信芯片成功接收数据包。
可选的,无论第一短距无线通信芯片和第二短距无线通信芯片是否成功接收终端的数据包,第一短距无线通信芯片和第二短距无线通信芯片都可以通过数据总线告知对方自己是否成功接收到来自终端设备的数据包,以实现双耳间的同步。
需要说明的是,本申请对于图8所示的步骤S707-S710的执行顺序并不进行限定,图8仅是示例性说明。例如,步骤S709可以在步骤S707之前执行,也可以在步骤S707之后执行,还可以和步骤S707同时执行。
本申请实施例还提供一种头戴式无线耳机的通信方法,如图9所示,若第一短距无线通信芯片为主芯片,第二短距无线通信芯片为从芯片,主芯片和从芯片均未成功接收数据包,在上述步骤S701-S702之后还可以包括以下步骤:
S711、在第二短距无线通信芯片未成功接收数据包的情况下,第二短距无线通信芯片通过数据总线向第一短距无线通信芯片发送第五信息。
该第五信息用于指示第二短距无线通信芯片未成功接收数据包。
S712、在第一短距无线通信芯片未成功接收数据包的情况下,第一短距无线通信芯片响应第五信息,向终端设备发送第六信息。
该第六信息用于指示终端设备重传数据包。
可以理解的,在本实施例中,由于主芯片和从芯片均未成功接收数据包,因此主芯片通过数据总线获知从芯片也未成功接收数据包后,可以通过空口通知终端设备重传数据包。也就是说,本申请实施例只有在两个短距无线通信芯片均接收数据包失败的情况下,终端设备才会重传数据包。因此,能够提高头戴式无线耳机接收数据包的成功率。
可选的,上述图7-图9任一实施例所示的头戴式无线耳机的通信方法,还可以包括步骤S713。图10仅以图7所示的实施例还包括步骤S713为例进行示意。
S713、基于第一短距无线通信芯片和第二短距无线通信芯片接收信号的信号质量参数,在第一短距无线通信芯片和第二短距无线通信芯片中确定主芯片。
可选的,上述接收信号的信号质量参数包括:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、丢包率PER,以及信号与干扰加噪声比SINR中的任意一种或多种。
可选的,上述步骤S713的执行主体可以为主芯片,该主芯片可以为第一短距无线通信芯片,也可以为第二短距无线通信芯片。
示例性的,在头戴式无线耳机出厂时可以将第一短距无线通信芯片和第二短距无线通信芯片中的任意一个短距无线通信芯片设置为主芯片,在头戴式无线耳机使用过程中,可以由该主芯片根据第一短距无线通信芯片和第二短距无线通信芯片接收信号的信号质量参数,动态的将接收信号的信号质量参数较好的短距无线通信芯片确定为主芯片。也就是说,在头戴式无线耳机使用过程中,随着终端设备位置等参数的变化, 主芯片可能会在第一短距无线通信芯片和第二短距无线通信芯片之间切换。
例如,以头戴式无线耳机出厂时将左耳机中的第一短距无线通信芯片设置为主芯片为例,在头戴式无线耳机使用过程中,如果右耳机中的第二短距无线通信芯片接收信号的信号质量参数较左耳机中的第一短距无线通信芯片接收信号的信号质量参数好,那么第一短距无线通信芯片可以将第二短距无线通信芯片确定为主芯片,并告知第二短距无线通信芯片其为主芯片,由第二短距无线通信芯片继续执行主芯片的功能。可选的,第一短距无线通信芯片将第二短距无线通信芯片确定为主芯片,第一短距无线通信芯片可以将主芯片的权限转移给第二短距无线通信芯片,即第二短距无线通信芯片为主芯片,后续可以由第二主芯片告知终端设备数据包是否接收成功。
可选的,在头戴式无线耳机使用过程中,可以每隔一段时间执行一次步骤S713确定一次主芯片,也可以实时地执行步骤S713确定主芯片,还可以在当前主芯片的信号质量参数较差的情况下再执行步骤S713确定主芯片,本申请实施例对此并不限定。
本申请实施例对于步骤S713与步骤S701-S702的先后执行顺序并不限定,图10仅以步骤S713在步骤S701-S702之前执行为例进行示意。实际应用中,步骤S713也可以在步骤S701-S702之前执行,或者步骤S713还可以与步骤S701-S702同时执行。
本实施例提供的头戴式无线耳机的通信方法,两个短距无线通信芯片之间通过数据总线交互,能够释放一部分空口资源,降低数据包的重传次数,降低终端设备及耳机的功耗。
图11为本申请实施例提供的一种头戴式无线耳机的通信效果示意图,图11中的(a)为图3所示的头戴式无线耳机的通信效果示意图,图11中的(b)为图4所示的头戴式无线耳机的通信效果示意图。如图11中的(a)所示,手机发送数据包1后,主耳和副耳尝试接收该数据包1(图11中的斜线填充的矩形框表示尝试去做接收),如果主耳(主芯片所在的耳机)和副耳(从芯片所在的耳机)均接收数据包1失败,那么主耳向手机发送NACK。手机重传数据包1,如果主耳接收数据包1失败,副耳接收数据包1成功,那么副耳向主耳发送同步包,告知主耳副耳成功接收数据包1。由于主耳的丢包会对副耳造成影响,导致主耳和副耳都不能播放音频数据,因此主耳向手机发送否定应答NACK。手机再次重传数据包1,如果主耳接收数据包1成功,副耳接收数据包1失败,副耳的丢包会对主耳造成影响,导致主耳和副耳都不能播放音频数据,因此主耳向手机发送否定应答NACK。手机再次重传数据包1,如果主耳和副耳均成功接收数据包1,那么副耳向主耳发送同步包,告知主耳副耳成功接收数据包1,由于主耳也成功接收数据包1,故主耳向手机发送ACK,告知手机数据包1接收成功。
可以理解的,采用图3所示的头戴式无线耳机通信时,双耳之间的丢包会互相影响,只要有一个耳机接收数据包失败,那么该耳机的丢包会影响另一个耳机,造成两个耳机都不能播放音频数据。只有在两个耳机都成功接收数据包的情况下,才能正常播放音频数据,因此,头戴式无线耳机接收数据包的成功率较低。
如图11中的(b)所示,手机发送数据包1后,如果主耳和副耳均接收数据包1失败,主耳和副耳之间会通过数据总线进行双耳同步以确定对方是否成功接收到数据包1,当主耳确定主耳和副耳均接收数据包1失败时,主耳向手机发送否定应答NACK。 手机重传数据包1,如果主耳接收数据包1失败,副耳接收数据包1成功,主耳会通过数据总线告知副耳其接收数据包1失败(双耳同步),以请求副耳转发数据包1,当副耳获知主耳接收数据包1失败时,副耳通过数据总线向主耳发送其成功接收的数据包1(图11中的(b)所示的数据补发)。副耳成功接收数据包1后通知主耳(双耳同步),当主耳确定副耳成功接收数据包1时,主耳可以向手机发送ACK,告知手机数据包1接收成功。手机发送数据包2,如果主耳成功接收该数据包2,副耳接收数据包失败2,副耳之间会通过数据总线告知主耳其接收数据包2失败(双耳同步),以请求主耳转发数据包2,当主耳获知副耳接收数据包2失败时,主耳将其成功接收的数据包2通过双耳间的数据总线发送给副耳。主耳向手机发送ACK,告知手机数据包2接收成功。手机发送数据包3,如果主耳和副耳均成功接收该数据包3,主耳和副耳之间可以通过数据总线进行双耳同步,主耳向手机发送ACK,告知手机数据包3接收成功。
如图11中的(b)所示,在主耳和副耳中的至少一个耳机成功接收手机发送的数据包的情况下,主耳就可以向手机发送ACK,告知手机数据包接收成功,如果主耳和副耳中只有一个耳机成功接收该数据包,那么成功接收数据包的耳机可以通过数据总线向接收数据包失败的耳机转发其成功接收的数据包。
可以理解的,采用图4所示的头戴式无线耳机通信时,双耳之间的丢包不会互相影响,只要有一个耳机成功接收数据包,成功接收数据包的短距无线通信芯片可以通过数据总线向未成功接收数据包的短距无线通信芯片补发数据包,终端设备无需重传数据包。只有在两个短距无线通信芯片均接收数据包失败的情况下,终端设备才会重传数据包。因此,图4所示的头戴式无线耳机接收数据包的成功率较高。
如图11中的(a)所示,手机和双耳交互完音频数据后,如果双耳间没有数据交互,双耳间还需要通过Polling轮询机制,由主耳定期发送POLL包,副耳回复NULL包,告知主耳,副耳当前没有数据传输,以维持双耳间的链路正常。当双耳之间需要交互数据(例如,双耳间交互耳机音量、时间戳、日志等信息)时,可以将POLL包和NULL包替换为数据包,以完成双耳间的数据交互。如图11中的(b)所示,手机和双耳交互完音频数据后,由于双耳之间是通过数据总线交互的,可以通过数据总线传输耳机音量、时间戳、日志等信息,无需维持双耳间的空口链路,因此能够节省空口资源,提升蓝牙耳机接收数据包的成功率。而且双耳间通过数据总线重传数据包的传输速度较快,能够降低终端设备和头戴式无线耳机的功耗。
可以理解的,图4所示的头戴式无线耳机较图3所示的头戴式无线耳机,由于在双耳的短距无线通信芯片间设置了数据总线,双耳之间可以通过该数据总线补发数据包,因此只有在两个耳机都没有成功接收数据包的情况下,才需要手机重传数据包,能够提升头戴式无线耳机接收数据包的成功率。而且双耳之间通过数据总线同步,而不是通过空口交互,因此能够释放一部分空口资源,降低数据包的重传次数,降低终端设备及耳机的功耗。
需要说明的是,本申请实施例中的主耳可以为头戴式无线耳机的左耳机,也可以为头戴式无线耳机的右耳机,本申请实施例对此并不限定。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有 计算机程序代码,当计算机程序代码在短距无线通信芯片上运行时,使得短距无线通信芯片执行图7至图10中任一实施例所示的头戴式无线耳机的通信方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在头戴式无线耳机上运行时,使得头戴式无线耳机执行图7至图10中任一实施例所示的头戴式无线耳机的通信方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (30)

  1. 一种头戴式无线耳机,其特征在于,包括:
    第一耳机,包括:第一短距无线通信芯片以及第一射频天线,所述第一短距无线通信芯片与所述第一射频天线相耦合;
    第二耳机,包括:第二短距无线通信芯片以及第二射频天线;所述第二短距无线通信芯片与所述第二射频天线相耦合;
    数据总线,分别连接所述第一短距无线通信芯片与所述第二短距无线通信芯片,用于提供所述第一短距无线通信芯片与所述第二短距无线通信芯片之间通信所需的物理链路。
  2. 根据权利要求1所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片用于:
    通过所述第一射频天线接收来自终端设备的数据包;
    在未成功接收所述数据包的情况下,通过所述数据总线向所述第二短距无线通信芯片发送第一信息,以请求所述第二短距无线通信芯片转发所述数据包;所述第一信息用于指示所述第一短距无线通信芯片未成功接收所述数据包。
  3. 根据权利要求2所述的头戴式无线耳机,其特征在于,所述第二短距无线通信芯片,用于:
    通过所述第二射频天线接收来自所述终端设备的所述数据包;
    在成功接收所述数据包的情况下,响应所述第一信息,通过所述数据总线向所述第一短距无线通信芯片传输所述数据包。
  4. 根据权利要求2或3所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;
    所述第二短距无线通信芯片,还用于通过所述数据总线向所述第一短距无线通信芯片发送第二信息;所述第二信息用于指示所述第二短距无线通信芯片成功接收所述数据包;
    所述第一短距无线通信芯片,还用于响应所述第二信息,向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  5. 根据权利要求2所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;
    所述第一短距无线通信芯片,还用于在所述第一短距无线通信芯片成功接收所述数据包的情况下,向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  6. 根据权利要求5所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片,还用于向所述第二短距无线通信芯片发送第四信息,所述第四信息用于指示所述第一短距无线通信芯片成功接收所述数据包。
  7. 根据权利要求1-6中任一项所述的头戴式无线耳机,其特征在于,所述第一耳机还包括第一扬声器,所述第一扬声器与所述第一短距无线通信芯片相耦合;所述第二耳机还包括第二扬声器,所述第二扬声器与所述第二短距无线通信芯片相耦合;
    所述第一短距无线通信芯片,还用于解码所述数据包,并通过所述第一扬声器播 放解码的所述数据包;
    所述第二短距无线通信芯片,还用于解码所述数据包,并通过所述第二扬声器播放解码的所述数据包。
  8. 根据权利要求1所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;
    所述第二短距无线通信芯片,还用于在所述第二短距无线通信芯片未成功接收来自终端设备的数据包的情况下,通过所述数据总线向所述第一短距无线通信芯片发送第五信息;所述第五信息用于指示所述第二短距无线通信芯片未成功接收所述数据包;
    所述第一短距无线通信芯片,用于在所述第一短距无线通信芯片未成功接收所述数据包的情况下,响应所述第五信息,向所述终端设备发送第六信息,所述第六信息用于指示所述终端设备重传所述数据包。
  9. 根据权利要求1-8中任一项所述的头戴式无线耳机,其特征在于,所述数据总线包括串行外设接口SPI总线、队列串行外设接口QSPI总线、双串行外设接口DSPI总线、通用异步收发器UART总线、或集成电路间的总线I2C。
  10. 根据权利要求1-9中任一项所述的头戴式无线耳机,其特征在于,所述第一短距无线通信芯片包括第一音频处理器、第一射频电路和第一物理接口,所述第一音频处理器分别与所述第一射频电路和所述第一物理接口相耦合,所述第一射频电路与所述第一射频天线相耦合;所述第二短距无线通信芯片包括第二音频处理器、第二射频电路和第二物理接口,所述第二音频处理器分别与所述第二射频电路和所述第二物理接口相耦合,所述第二射频电路与所述第二射频天线相耦合,所述第一物理接口与所述第二物理接口通过所述数据总线相耦合;
    所述第一音频处理器,用于通过所述第一射频电路和所述第一射频天线与终端设备之间传输数据,通过所述第一物理接口和所述数据总线与所述第二短距无线通信芯片之间传输数据;
    所述第二音频处理器,用于通过所述第二射频电路和所述第二射频天线与所述终端设备之间传输数据,通过所述第二物理接口和所述数据总线与所述第一短距无线通信芯片之间传输数据。
  11. 根据权利要求1-10中任一项所述的头戴式无线耳机,其特征在于,
    所述第一短距无线通信芯片和所述第二短距无线通信芯片,还用于基于所述第一短距无线通信芯片和所述第二短距无线通信芯片接收信号的信号质量参数,在所述第一短距无线通信芯片和所述第二短距无线通信芯片中确定主芯片。
  12. 根据权利要求11所述的头戴式无线耳机,其特征在于,所述信号质量参数包括:参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI、丢包率PER,以及信号与干扰加噪声比SINR中的任意一种或多种。
  13. 根据权利要求1-12中任一项所述的头戴式无线耳机,其特征在于,所述第一射频天线为多个,所述第二射频天线为多个;
    所述第一短距无线通信芯片,还用于根据多个所述第一射频天线接收信号的信号质量参数,在多个所述第一射频天线中确定目标第一射频天线,所述目标第一射频天线为一个或多个;
    所述第二短距无线通信芯片,还用于根据多个所述第二射频天线接收信号的信号质量参数,在多个所述第二射频天线中确定目标第二射频天线,所述目标第二射频天线为一个或多个。
  14. 根据权利要求13所述的头戴式无线耳机,其特征在于,
    所述第一短距无线通信芯片,具体用于通过所述目标第一射频天线接收来自终端设备的数据包;
    所述第二短距无线通信芯片,具体用于通过所述目标第二射频天线接收来自所述终端设备的数据包。
  15. 一种短距无线通信芯片,其特征在于,所述短距无线通信芯片包括音频处理器、射频电路和物理接口,所述音频处理器分别与所述射频电路和所述物理接口相耦合,所述射频电路用于与射频天线相耦合,所述物理接口用于与数据总线相耦合;
    所述音频处理器,用于通过所述射频电路和所述射频天线与终端设备之间传输数据;
    所述音频处理器,还用于通过所述物理接口向所述数据总线发送数据,并接收所述数据总线传输的数据。
  16. 根据权利要求15所述的芯片,其特征在于,所述音频处理器,具体用于:
    通过所述射频天线接收来自所述终端设备的数据包;
    在未成功接收所述数据包的情况下,通过所述物理接口向所述数据总线发送第一信息,以请求与所述数据总线相耦合的另一短距无线通信芯片转发所述数据包;所述第一信息用于指示所述短距无线通信芯片未成功接收所述数据包。
  17. 根据权利要求16所述的芯片,其特征在于,
    所述音频处理器,具体还用于在所述另一短距无线通信芯片成功接收所述数据包的情况下,通过所述物理接口和所述数据总线接收来自所述另一短距无线通信芯片的所述数据包。
  18. 根据权利要求16或17所述的芯片,其特征在于,所述音频处理器,具体还用于:
    接收来自所述另一短距无线通信芯片的第二信息;所述第二信息用于指示所述另一短距无线通信芯片成功接收所述数据包;
    响应所述第二信息,向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  19. 根据权利要求16所述的芯片,其特征在于,所述音频处理器,具体还用于:在所述短距无线通信芯片成功接收所述数据包的情况下,向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  20. 根据权利要求19所述的芯片,其特征在于,所述音频处理器,具体还用于:向所述另一短距无线通信芯片发送第四信息,所述第四信息用于指示所述短距无线通信芯片成功接收所述数据包。
  21. 根据权利要求15所述的芯片,其特征在于,所述音频处理器,具体还用于:
    接收来自与所述数据总线相耦合的另一短距无线通信芯片的第五信息;所述第五信息用于指示所述另一短距无线通信芯片未成功接收来自所述终端设备的数据包;
    在所述短距无线通信芯片未成功接收所述数据包的情况下,响应所述第五信息,向所述终端设备发送第六信息,所述第六信息用于指示所述终端设备重传所述数据包。
  22. 一种头戴式无线耳机的通信方法,其特征在于,所述头戴式无线耳机包括第一耳机、第二耳机和数据总线,所述第一耳机包括第一短距无线通信芯片,以及与所述第一短距无线通信芯片耦合的第一射频天线,所述第二耳机包括第二短距无线通信芯片,以及与所述第二短距无线通信芯片耦合的第二射频天线;所述数据总线分别连接所述第一短距无线通信芯片和所述第二短距无线通信芯片,用于提供所述第一短距无线通信芯片与所述第二短距无线通信芯片之间通信所需的物理链路;所述方法包括:
    所述第一短距无线通信芯片通过所述第一射频天线接收来自终端设备的数据包;
    所述第二短距无线通信芯片通过所述第二射频天线接收来自所述终端设备的所述数据包。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    在所述第一短距无线通信芯片未成功接收所述数据包的情况下,所述第一短距无线通信芯片通过所述数据总线向所述第二短距无线通信芯片发送第一信息,以请求所述第二短距无线通信芯片转发所述数据包;所述第一信息用于指示所述第一短距无线通信芯片未成功接收所述数据包。
  24. 根据权利要求23所述的方法,其特征在于,所述方法还包括:
    在所述第二短距无线通信芯片成功接收所述数据包的情况下,所述第二短距无线通信芯片响应所述第一信息,通过所述数据总线向所述第一短距无线通信芯片传输所述数据包。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;所述方法还包括:
    所述第二短距无线通信芯片通过所述数据总线向所述第一短距无线通信芯片发送第二信息;所述第二信息用于指示所述第二短距无线通信芯片成功接收所述数据包;
    所述第一短距无线通信芯片响应所述第二信息,向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  26. 根据权利要求23所述的方法,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;所述方法还包括:
    在所述第一短距无线通信芯片成功接收所述数据包的情况下,所述第一短距无线通信芯片向所述终端设备发送第三信息,所述第三信息用于指示所述数据包接收成功。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述第一短距无线通信芯片向所述第二短距无线通信芯片发送第四信息,所述第四信息用于指示所述第一短距无线通信芯片成功接收所述数据包。
  28. 根据权利要求22-27中任一项所述的方法,其特征在于,所述第一耳机还包括第一扬声器,所述第一扬声器与所述第一短距无线通信芯片相耦合;所述第二耳机还包括第二扬声器,所述第二扬声器与所述第二短距无线通信芯片相耦合;所述方法还包括:
    所述第一短距无线通信芯片解码所述数据包,并通过所述第一扬声器播放解码的所述数据包;
    所述第二短距无线通信芯片解码所述数据包,并通过所述第二扬声器播放解码的所述数据包。
  29. 根据权利要求22所述的方法,其特征在于,所述第一短距无线通信芯片为主芯片,所述第二短距无线通信芯片为从芯片;所述方法还包括:
    在所述第二短距无线通信芯片未成功接收所述数据包的情况下,所述第二短距无线通信芯片通过所述数据总线向所述第一短距无线通信芯片发送第五信息;所述第五信息用于指示所述第二短距无线通信芯片未成功接收所述数据包;
    在所述第一短距无线通信芯片未成功接收所述数据包的情况下,所述第一短距无线通信芯片响应所述第五信息,向所述终端设备发送第六信息,所述第六信息用于指示所述终端设备重传所述数据包。
  30. 根据权利要求22-29中任一项所述的方法,其特征在于,所述第一短距无线通信芯片包括第一音频处理器、第一射频电路和第一物理接口,所述第一音频处理器分别与所述第一射频电路和所述第一物理接口相耦合,所述第一射频电路与所述第一射频天线相耦合;所述第二短距无线通信芯片包括第二音频处理器、第二射频电路和第二物理接口,所述第二音频处理器分别与所述第二射频电路和所述第二物理接口相耦合,所述第二射频电路与所述第二射频天线相耦合,所述第一物理接口与所述第二物理接口通过所述数据总线相耦合。
PCT/CN2021/093920 2021-05-14 2021-05-14 一种头戴式无线耳机及其通信方法 WO2022236828A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180096012.7A CN117044227A (zh) 2021-05-14 2021-05-14 一种头戴式无线耳机及其通信方法
EP21941397.8A EP4325884A4 (en) 2021-05-14 2021-05-14 HEAD-MOUNTED WIRELESS EARPHONES AND COMMUNICATION METHODS THEREFOR
PCT/CN2021/093920 WO2022236828A1 (zh) 2021-05-14 2021-05-14 一种头戴式无线耳机及其通信方法
US18/507,790 US20240089660A1 (en) 2021-05-14 2023-11-13 Head-mounted wireless headset and communication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093920 WO2022236828A1 (zh) 2021-05-14 2021-05-14 一种头戴式无线耳机及其通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/507,790 Continuation US20240089660A1 (en) 2021-05-14 2023-11-13 Head-mounted wireless headset and communication method thereof

Publications (1)

Publication Number Publication Date
WO2022236828A1 true WO2022236828A1 (zh) 2022-11-17

Family

ID=84027941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093920 WO2022236828A1 (zh) 2021-05-14 2021-05-14 一种头戴式无线耳机及其通信方法

Country Status (4)

Country Link
US (1) US20240089660A1 (zh)
EP (1) EP4325884A4 (zh)
CN (1) CN117044227A (zh)
WO (1) WO2022236828A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195466A1 (en) * 2016-01-02 2017-07-06 Erato (Cayman) Holdings Co., Ltd. Radiofrequency communication device
CN109905798A (zh) * 2019-04-08 2019-06-18 成都必盛科技有限公司 无线耳机
CN111935796A (zh) * 2020-09-24 2020-11-13 恒玄科技(北京)有限公司 用于无线通信的无线耳机、无线通信方法和介质
CN112153514A (zh) * 2020-09-24 2020-12-29 恒玄科技(上海)股份有限公司 用于无线通信的无线对耳耳机、无线通信方法和介质
CN112153513A (zh) * 2020-09-24 2020-12-29 恒玄科技(上海)股份有限公司 用于无线通信的无线对耳耳机、无线通信方法和介质
CN112703746A (zh) * 2020-10-23 2021-04-23 万魔声学股份有限公司 一种处理信号的方法、装置、蓝牙耳机及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825688B2 (en) * 2015-02-27 2017-11-21 Bose Corporation Systems and methods of antenna diversity switching
US9980189B2 (en) * 2015-10-20 2018-05-22 Bragi GmbH Diversity bluetooth system and method
CN109905925B (zh) * 2019-05-10 2019-08-16 恒玄科技(上海)有限公司 无线设备组件及无线设备组件的通信方法
GB2599567B (en) * 2019-06-27 2023-08-23 Dopple Ip B V Wireless stereo headset with bidirectional diversity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195466A1 (en) * 2016-01-02 2017-07-06 Erato (Cayman) Holdings Co., Ltd. Radiofrequency communication device
CN109905798A (zh) * 2019-04-08 2019-06-18 成都必盛科技有限公司 无线耳机
CN111935796A (zh) * 2020-09-24 2020-11-13 恒玄科技(北京)有限公司 用于无线通信的无线耳机、无线通信方法和介质
CN112153514A (zh) * 2020-09-24 2020-12-29 恒玄科技(上海)股份有限公司 用于无线通信的无线对耳耳机、无线通信方法和介质
CN112153513A (zh) * 2020-09-24 2020-12-29 恒玄科技(上海)股份有限公司 用于无线通信的无线对耳耳机、无线通信方法和介质
CN112703746A (zh) * 2020-10-23 2021-04-23 万魔声学股份有限公司 一种处理信号的方法、装置、蓝牙耳机及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4325884A4 *

Also Published As

Publication number Publication date
US20240089660A1 (en) 2024-03-14
CN117044227A (zh) 2023-11-10
EP4325884A4 (en) 2024-04-24
EP4325884A1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
CN109768806B (zh) 无线蓝牙装置、控制器以及使用于控制器的方法
US11412409B2 (en) Real-time relay of wireless communications
US10348370B2 (en) Wireless device communication
WO2021129892A1 (zh) 用于无线通信的设备主从角色切换系统及方法
CN111435844B (zh) 双无线蓝牙通信音频数据更正方法、装置、设备及系统
WO2021190430A1 (zh) 音频数据传输方法、系统和装置
CN109995479A (zh) 一种音频数据通信方法、系统及音频通信设备
WO2021129893A1 (zh) 一种用于无线通信系统的设备通信方法及系统
CN112039637B (zh) 一种音频数据通信方法、系统及音频通信设备
EP3923608B1 (en) Data transmission method between tws bluetooth devices and tws bluetooth device therefor
CN111770428B (zh) 一种无线设备的监听方法
CN111447603A (zh) 数据传输方法及装置
CN111436043A (zh) 双无线蓝牙通信网络的通信方法、装置、设备及系统
US20230179902A1 (en) Communication method applied to binaural wireless headset, and apparatus
CN110166988B (zh) 一种无线通信系统及其方法
CN110234101B (zh) 一种可靠传输数据的无线传输方法、设备及系统
CN113330757B (zh) 一种数据传输方法以及相关装置
CN112335328B (zh) 传输音频数据的方法、系统及无线音频系统
WO2022236828A1 (zh) 一种头戴式无线耳机及其通信方法
TW202209838A (zh) 等待時間減少
CN111601344A (zh) 无线通信方法和装置
TWI710225B (zh) 無線藍牙裝置的控制器及方法
WO2023000565A1 (zh) 双发模式下丢包数据纠错方法、装置、设备及系统
WO2021204263A1 (zh) 一种多收发点架构下重传的方法及装置
CN114786096A (zh) 一种无线耳机以及用于无线耳机的通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180096012.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021941397

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021941397

Country of ref document: EP

Effective date: 20231114

NENP Non-entry into the national phase

Ref country code: DE