WO2022236717A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022236717A1
WO2022236717A1 PCT/CN2021/093172 CN2021093172W WO2022236717A1 WO 2022236717 A1 WO2022236717 A1 WO 2022236717A1 CN 2021093172 W CN2021093172 W CN 2021093172W WO 2022236717 A1 WO2022236717 A1 WO 2022236717A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
uplink
transmission
indication information
target
Prior art date
Application number
PCT/CN2021/093172
Other languages
English (en)
French (fr)
Inventor
贺传峰
崔胜江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180091659.0A priority Critical patent/CN116830744A/zh
Priority to PCT/CN2021/093172 priority patent/WO2022236717A1/zh
Publication of WO2022236717A1 publication Critical patent/WO2022236717A1/zh
Priority to US18/498,426 priority patent/US20240080817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • a variety of time slot structures are defined in the New Radio (NR) system, for example: uplink time slots, downlink time slots, and flexible time slots.
  • the symbols included in the uplink time slot are all uplink symbols, therefore, the uplink time slot is also called full uplink time slot.
  • the symbols included in the downlink time slot are all downlink symbols, therefore, the downlink time slot is also called full downlink time slot.
  • a flexible slot includes at least one flexible symbol.
  • a network device can indicate a time slot format through high-layer signaling (ie, a high-layer parameter), and a terminal device can determine the positions of uplink time slots, downlink time slots, and flexible time slots according to the time slot format.
  • terminal equipment can only use uplink time slots for uplink repeated transmission, resulting in that flexible time slots cannot be used for uplink repeated transmission, resulting in a problem of low utilization of uplink transmission resources.
  • this problem may also exist in other uplink transmissions.
  • the uplink time slot is a time slot for transmitting uplink data, however, for a certain channel, whether data transmission can be performed on the uplink time slot is also a technical problem to be solved in this application.
  • the embodiment of the present application provides a wireless communication method, a terminal device, and a network device.
  • the first indication information can indicate whether the flexible time slot is used for uplink transmission, thereby improving resource utilization.
  • whether the uplink time slot can be used for uplink transmission can also be clearly indicated through the first indication information.
  • a wireless communication method including: a terminal device receives first indication information, and the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of a target channel or to indicate at least one target time slot Whether it is used for joint channel estimation for uplink transmission; the terminal device performs uplink transmission according to the first indication information.
  • a wireless communication method including: a network device sends first indication information, and the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of a target channel or to indicate at least one target time slot Whether it is used for joint channel estimation for uplink transmission.
  • a terminal device including: a communication unit, configured to: receive first indication information, where the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of a target channel or to indicate at least one Whether the target time slot is used for joint channel estimation for uplink transmission; perform uplink transmission according to the first indication information.
  • a network device including: a communication unit, configured to send first indication information, where the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of a target channel or to indicate at least one target time slot Whether the slot is used for joint channel estimation for uplink transmission.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • an apparatus for realizing the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above-mentioned first to second aspects or their implementations .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first to second aspects or in each implementation manner thereof.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the method in any one of the above first to second aspects or in each implementation manner thereof.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the first to second aspects above or in each implementation manner thereof.
  • the first indication information can indicate whether the flexible time slot is used for uplink transmission, thereby improving resource utilization.
  • the first indication information can also clearly indicate Indicates whether the uplink time slot can be used for uplink transmission.
  • the first indication information provided by the present application can be carried in the message for scheduling uplink transmission without using other DCI to carry the information, so as to prevent the loss of the information and cause the network device and the terminal device to use The problem of inconsistency in understanding the time slots for uplink transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIGS. 2A to 2D are schematic diagrams of flexible time slots
  • FIG. 3 is a schematic diagram of time slot distribution corresponding to uplink repeated transmission
  • FIG. 4 is a process interaction diagram of a contention-based four-step random access process
  • FIG. 5 is a schematic diagram of multi-slot transmission of one TB of TB
  • FIG. 6 is a schematic diagram of joint channel estimation
  • FIG. 7 is an interaction flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of uplink repeated transmission of the PUSCH provided by the embodiment of the present application.
  • FIG. 9 is an interactive flow chart of another wireless communication method provided by an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • FIG. 11 shows a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided in an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication system 1400 provided by an embodiment of the present application.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, NR system , the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, NR-U) system on the unlicensed spectrum, the general Mobile communication system (Universal Mobile Telecommunication System, UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), next generation communication system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Pack
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user device etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks or Terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device can be a device used to communicate with mobile devices, and the network device can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, or a base station (BTS) in WCDMA.
  • the base station (NodeB, NB) can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or an access point, or a vehicle device, a wearable device, and a network device or base station in an NR network ( gNB) or network equipment in the future evolved PLMN network.
  • gNB NR network
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network device (for example, The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the flexible (Flexible, F) symbol is introduced in the NR system, and the flexible symbol has the following characteristics:
  • the flexible symbol indicates that the direction of the symbol is undecided, and it can be changed to a downlink symbol or an uplink symbol through other signaling;
  • Flexible symbols can also represent symbols reserved for future use for forward compatibility
  • the flexible symbol is used for the transceiving conversion of the terminal, which is similar to the guard period (Guard Period, GP) symbol in the LTE time division duplex (Time Division Duplex, TDD) system, and the terminal completes the transceiving conversion within this symbol.
  • Guard Period Guard Period, GP
  • TDD Time Division Duplex
  • various time slot structures are defined in the NR system, such as uplink time slots, downlink time slots and flexible time slots.
  • the symbols included in the uplink time slot are all uplink (Uplink, U) symbols.
  • the symbols included in the downlink time slot are all downlink (Downlink, D) symbols.
  • a flexible slot includes at least one flexible symbol, that is, when a slot includes at least one flexible symbol, the slot is called a flexible slot. Wherein, each slot structure corresponds to an index.
  • slot structure is also referred to as a slot format, which is not limited in the present application.
  • FIG. 2A to FIG. 2D are schematic diagrams of flexible time slots.
  • the flexible time slots shown in FIG. 2A to FIG. 2D respectively include flexible symbols.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the network device can schedule uplink repeated transmission through downlink control information (Downlink Control Information, DCI), and the DCI can include: the number of transmission times K of uplink repeated transmission, and the number of transmissions can be the number of nominal (nominal) repeated transmissions, that is, the The number of retransmissions indicated by the device, but the actual number of retransmissions may be less than or equal to the number of retransmissions. Alternatively, the number of transmissions may be an actual (actual) number of repeated transmissions.
  • DCI Downlink Control Information
  • network devices can indicate the time slot format through the high-level parameters TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated, and the terminal device can determine which symbols in the time slot are uplink symbols, downlink symbols and flexible symbols according to the time slot format , that is, the terminal device can determine the position of the uplink time slot, downlink time slot, and flexible time slot according to the time slot format.
  • the terminal device can only perform uplink repeated transmission on the uplink time slot, resulting in that the flexible time slot cannot be used for uplink repeated transmission. , thus causing the problem of low utilization of uplink transmission resources.
  • the network device can dynamically indicate the time slot format through DCI, that is, modify at least one flexible symbol to an uplink symbol or a downlink symbol through DCI. If all flexible symbols are changed to uplink symbols or downlink symbols through DCI, there is no flexible time slot at this time, but if the DCI is lost, the network device thinks that after modification, all uplink time slots can be used.
  • the terminal device since the terminal device does not receive the DCI, the terminal device still determines that the uplink time slot can be used for uplink repeated transmission through the time slot format indicated by the high-level parameters, which will cause the network device and the terminal device to use the uplink Inconsistent understanding of slots for repeated transmissions. If some flexible symbols are modified to uplink symbols or downlink symbols through DCI, there will still be flexible time slots at this time. On the one hand, if the DCI is lost, the network device will think that after modification, all uplink time slots can be used.
  • the terminal device since the terminal device does not receive the DCI, the terminal device still determines that the uplink time slot can be used for uplink repeated transmission through the time slot format indicated by the high-level parameters, which will cause the network device and the terminal device to use The problem of inconsistency in the understanding of time slots for uplink repeated transmission.
  • the terminal equipment since there may be flexible time slots, but the terminal equipment can still only perform uplink repeated transmission on the uplink time slots, the flexible time slots cannot be used for uplink repeated transmission, resulting in a problem of low utilization of uplink transmission resources.
  • Figure 3 is a schematic diagram of the time slot distribution corresponding to uplink repeated transmission.
  • 1 includes all downlink symbols, that is, slot 1 is a downlink time slot, which cannot be used for uplink repeated transmission
  • time slot 2 includes flexible symbols, that is, slot 2 is a flexible time slot, so it cannot be used for uplink repeated transmission Transmission, the final terminal device performs uplink repeated transmission on time slot 0 and time slot 3.
  • the uplink time slot is a time slot for transmitting uplink data.
  • whether data transmission can be performed on the uplink time slot is also a technical problem to be solved urgently in this application.
  • the 3GPP R17 standard in order to improve the coverage performance of PUCCH transmission, the 3GPP R17 standard also adopts repeated transmission of PUCCH.
  • Fig. 4 is a flow interaction diagram of a contention-based four-step random access process.
  • the random access process may include the following four steps:
  • the terminal device sends Msg 1 to the network device to tell the network device that the terminal device has initiated a random access request, and the Msg 1 carries a random access preamble (Random Access Preamble, RAP), or called a random access preamble, preamble, preamble, etc.
  • RAP Random Access Preamble
  • Msg 1 can also be used by the network device to estimate the transmission delay between it and the terminal device and use this to calibrate the uplink time.
  • the terminal device selects a preamble index (index) and a PRACH resource for sending the preamble; then the terminal device transmits the Preamble on the PRACH.
  • the network device will notify all terminal devices by broadcasting the system information system information block (System Information Block, SIB), which time-frequency resources are allowed to transmit the preamble, for example, SIB1.
  • SIB System Information Block
  • the network device After receiving Msg 1 sent by the terminal device, the network device sends Msg 2 to the terminal device, that is, a Random Access Response (Random Access Response, RAR) message.
  • the Msg 2 may carry, for example, a time advance (Time Advance, TA), an uplink authorization instruction such as configuration of uplink resources, and a Temporary Cell-Radio Network Temporary Identity (Temporary Cell-Radio Network Temporary Identity, TC-RNTI), etc.
  • the terminal device monitors the physical downlink control channel (Physical Downlink Control Channel, PDCCH) within the random access response time window (RAR window), so as to receive the RAR message replied by the network device.
  • the RAR message may be descrambled using a corresponding Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal device does not receive the RAR message replied by the network device within the RAR time window, it considers that the random access procedure has failed.
  • the terminal device successfully receives a RAR message, and the preamble index carried in the RAR message is the same as the index of the preamble sent by the terminal device through Msg 1, it is considered that the RAR has been successfully received, and the terminal The device can stop monitoring in the RAR time window.
  • Msg 2 may include RAR messages for multiple terminal devices, and the RAR message of each terminal device may include a random access preamble identification (RAP Identify, RAPID) adopted by the terminal device, which is used to transmit Msg 3 resource information, TA adjustment information, TC-RNTI, etc.
  • RAP Identify random access preamble identification
  • RAPID random access preamble identification
  • the terminal device After receiving the RAR message, the terminal device judges whether the RAR is its own RAR message. For example, the terminal device can use the preamble identifier to check. After confirming that it belongs to its own RAR message, the terminal device generates Msg 3 at the RRC layer. And send Msg 3 to the network device. Wherein, identification information of the terminal device and the like need to be carried.
  • the Msg 3 in Step 3 of the 4-step random access process may include different content for scheduled transmission (Scheduled Transmission).
  • Msg 3 may include an RRC Connection Request (RRC Connection Request) generated by the RRC layer, which at least carries the Non-Access Stratum (Non-Access Stratum, NAS) identification information of the terminal device, and may also carry For example, a Serving-Temporary Mobile Subscriber Identity (Serving-Temporary Mobile Subscriber Identity, S-TMSI) or a random number of the terminal device.
  • RRC Connection Request RRC Connection Request
  • NAS Non-Access Stratum
  • S-TMSI Serving-Temporary Mobile Subscriber Identity
  • Msg 3 may include an RRC Connection Re-establishment Request (RRC Connection Re-establishment Request) generated by the RRC layer without carrying any NAS message, and may also carry, for example, a Cell Radio Network Temporary Identifier (Cell Radio Network Temporary Identifier, C-RNTI) and protocol control information (Protocol Control Information, PCI), etc.
  • RRC Connection Re-establishment Request RRC Connection Re-establishment Request
  • C-RNTI Cell Radio Network Temporary Identifier
  • PCI Protocol Control Information
  • Msg 3 may include the RRC handover completion message (RRC Handover Confirm) generated by the RRC layer and the C-RNTI of the terminal device, and may also carry, for example, a buffer status report (Buffer Status Report, BSR); for other triggers
  • RRC Handover completion message RRC Handover Confirm
  • BSR Buffer Status Report
  • the network device sends Msg 4 to the terminal device, and the terminal device correctly receives Msg 4 to complete contention resolution.
  • Msg 4 may carry the RRC connection establishment message.
  • the network device Since the terminal device in step 3 will carry its own unique identifier in Msg 3, such as C-RNTI or identification information from the core network (such as S-TMSI or a random number), the network device will, in the contention resolution mechanism, Carry the unique identifier of the terminal device in Msg 4 to designate the winning terminal device in the competition. However, other terminal devices that do not win the contention resolution will re-initiate random access.
  • Msg 3 such as C-RNTI or identification information from the core network (such as S-TMSI or a random number)
  • the network device does not receive Msg 3 correctly, it will indicate the retransmission scheduling information of Msg 3 through DCI.
  • the 3GPP R17 standard adopts the repeated transmission of PUSCH, which also includes the repeated transmission of Msg 3PUSCH, the uplink repeated transmission and the retransmitted uplink repeated transmission of Msg 3 .
  • FIG. 5 is a schematic diagram of multi-slot transmission of one TB of a TB. As shown in FIG. 5 , after channel coding, one TB can be mapped to four time slots for transmission. Optionally, on this basis, the TBs mapped to multiple time slots may be further repeatedly transmitted in units of multiple time slots.
  • FIG. 6 is a schematic diagram of joint channel estimation. As shown in FIG. 6 , the network device may perform joint channel estimation according to DMRS on time slot 0 to time slot 3.
  • DMRS Demodulation Reference Signal
  • Fig. 7 is an interactive flowchart of a wireless communication method provided in the embodiment of the present application. As shown in Fig. 7, the method includes the following steps:
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel.
  • S720 The terminal device performs uplink transmission according to the first indication information.
  • Realizable manner 1 the target channel is the target PUSCH, and the uplink transmission of the target channel is the uplink repeated transmission of the target PUSCH.
  • Realization mode 2 the target channel is the target PUCCH, and the uplink transmission of the target channel is the uplink repeated transmission of the target PUCCH.
  • the target channel is the target PUSCH, and the target PUSCH carries Msg 3. Based on this, the uplink transmission of the target channel is the uplink repeated transmission of the initial transmission carrying Msg 3.
  • the target channel is the target PUSCH, and the target PUSCH carries Msg 3. Based on this, the uplink transmission of the target channel is the uplink repeated transmission of the retransmission carrying Msg 3.
  • the target channel is the target PUSCH
  • the target PUSCH carries the multi-slot transmission of one TB. Based on this, the uplink transmission of the target channel is the multi-slot transmission of the TB.
  • target PUSCH specifically refers to a certain PUSCH
  • target PUCCH specifically refers to a certain PUCCH
  • each of the above-mentioned target time slots may be a flexible time slot or an uplink time slot, for example: at least one of the above-mentioned target time slots is all flexible time slots, or all of them are uplink time slots, or part of them are flexible time slots, and the rest Some are uplink time slots, which is not limited in this application.
  • the target time slot used for uplink transmission of the target channel may be referred to as an available time slot, therefore, the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, and is also described as The first indication information is used to indicate whether at least one target time slot is an available time slot.
  • the above-mentioned first indication information may be carried in the first DCI for scheduling the uplink repeated transmission.
  • the first DCI may include: the number of repeated transmissions of the target PUSCH, the number of repeated transmissions may be a nominal number of repeated transmissions K1 or an actual number of repeated transmissions K2, and both K1 and K2 are integers greater than 1.
  • the so-called nominal number of repeated transmissions K1 refers to the number of repeated transmissions of the target PUSCH configured by the network device for the terminal device, but the actual number of repeated transmissions of the terminal device may be less than or equal to the nominal number of repeated transmissions.
  • the so-called nominal number of repeated transmissions K1 refers to the actual number of repeated transmissions of the terminal device for the target PUSCH.
  • the K1 repeated transmissions of the uplink repeated transmissions correspond to K1 consecutive time slots, and the K1 consecutive time slots constitute the first time slot set.
  • the at least one target time slot is a time slot in the first time slot set.
  • the first set of time slots may also be any set of time slots configured by the network device to the terminal device, and this application does not limit how to determine the first set of time slots.
  • the terminal device can sequentially find K2 available time slots according to the starting position of repeated transmissions configured by the network device for the terminal device and the actual number of repeated transmissions K2 .
  • the available time slots may be referred to as first time slots.
  • the length of the first indication information or the number of occupied bits may be any, but not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the flexible time slot is used for uplink transmission of the target channel. Assuming that at least one target time slot is a plurality of flexible time slots, the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these flexible time slots are used for uplink transmission of the target PUSCH.
  • the network device may determine whether the flexible time slot is used for uplink transmission of the target PUSCH according to the symbol of the target PUSCH in the flexible time slot. Wherein, when the network device determines that the symbol of the target PUSCH in the flexible time slot is not a downlink symbol, then it is determined that the flexible time slot can be used for the uplink transmission of the target PUSCH; on the contrary, when the network device determines that the target PUSCH in the flexible time slot If the symbol is a downlink symbol, it is determined that the flexible time slot cannot be used for uplink transmission of the target PUSCH.
  • this application does not limit how the network device determines whether the flexible time slot is used for uplink transmission of the target PUSCH.
  • the network device when the first indication information jointly indicates whether these flexible time slots are used for uplink transmission of the target PUSCH, if at least one of these flexible time slots cannot be used for During the uplink transmission of the target PUSCH, the network device indicates through the first indication information that these flexible time slots cannot be used for the uplink transmission of the target PUSCH. On the contrary, if all these flexible time slots can be used for uplink transmission of the target PUSCH, the network device indicates through the first indication information that these flexible time slots can be used for uplink transmission of the target PUSCH.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for uplink transmission.
  • N1 is the number of the at least one target time slot.
  • the first indication information is used to indicate whether the flexible time slot is used for uplink transmission of the target channel. Assuming that at least one target time slot is a plurality of flexible time slots, each bit in the first indication information is used to indicate whether the corresponding target time slot is used for uplink transmission.
  • the network device may determine whether the flexible time slot is used for uplink transmission of the target PUSCH according to the symbol of the target PUSCH in the flexible time slot. Wherein, when the network device determines that the symbol of the target PUSCH in the flexible time slot is not a downlink symbol, then it is determined that the flexible time slot can be used for the uplink transmission of the target PUSCH; on the contrary, when the network device determines that the target PUSCH in the flexible time slot If the symbol is a downlink symbol, it is determined that the flexible time slot cannot be used for uplink transmission of the target PUSCH.
  • this application does not limit how the network device determines whether the flexible time slot is used for uplink transmission of the target PUSCH.
  • the length of the first indication information is K1 bits, and the K1 bits are in one-to-one correspondence with K1 consecutive time slots. Each bit in the K1 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • K1 is the number of time slots included in the first time slot set.
  • the first time slot set may include at least one of the following time slots: uplink time slots and flexible time slots.
  • Each bit in the first indication information is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • the continuous time slots here may be uplink time slots or flexible time slots. It can be understood that when at least one of the above target time slots is a flexible time slot, that is, in this case, the uplink time slot is understood as the uplink transmission that can be used for the target channel. Therefore, for any of the K1 consecutive time slots For an uplink time slot, the terminal device does not determine whether the uplink time slot is used for uplink transmission according to the first indication information. For any flexible time slot in the K1 consecutive time slots, the terminal device needs to determine whether the uplink time slot is used for uplink transmission according to the first indication information.
  • the network device may determine whether the flexible time slot is used for uplink transmission of the target PUSCH according to the symbol of the target PUSCH in the flexible time slot. Wherein, when the network device determines that the symbol of the target PUSCH in the flexible time slot is not a downlink symbol, then it is determined that the flexible time slot can be used for the uplink transmission of the target PUSCH; on the contrary, when the network device determines that the target PUSCH in the flexible time slot If the symbol is a downlink symbol, it is determined that the flexible time slot cannot be used for uplink transmission of the target PUSCH.
  • this application does not limit how the network device determines whether the flexible time slot is used for uplink transmission of the target PUSCH.
  • the uplink time slot is understood as whether it can be used for uplink transmission of the target channel
  • the length of the first indication information or the occupied bits Numbers can be any, but are not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the uplink time slot is used for uplink transmission of the target channel. Assuming that at least one target time slot is a plurality of uplink time slots, the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these uplink time slots are used for uplink transmission of the target PUSCH.
  • this application does not limit how the network device determines whether the uplink time slot is used for uplink transmission of the target PUSCH.
  • the network device when the first indication information jointly indicates whether these uplink time slots are used for uplink transmission of the target PUSCH, if at least one of these uplink time slots cannot be used for During the uplink transmission of the target PUSCH, the network device indicates through the first indication information that these uplink time slots cannot be used for the uplink transmission of the target PUSCH. On the contrary, if all these uplink time slots can be used for uplink transmission of the target PUSCH, the network device indicates through the first indication information that these uplink time slots can be used for uplink transmission of the target PUSCH.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for uplink transmission.
  • N1 is the number of the at least one target time slot.
  • the first indication information is used to indicate whether the uplink time slot is used for uplink transmission of the target channel. Assuming that at least one target time slot is a plurality of uplink time slots, each bit in the first indication information is used to indicate whether the corresponding uplink time slot is used for uplink transmission.
  • this application does not limit how the network device determines whether the uplink time slot is used for uplink transmission of the target PUSCH.
  • the length of the first indication information is K1 bits, and the K1 bits are in one-to-one correspondence with K1 consecutive time slots. Each bit in the K1 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • K1 is the number of time slots included in the first time slot set.
  • the uplink time slot is understood as whether it has not been determined whether it can be used for uplink transmission of the target channel, then the length or occupancy of the first indication information
  • the number of bits can be either, but not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the uplink time slot or the uplink time slot is used for uplink transmission of the target channel. Assuming that at least one target time slot includes an uplink time slot and a flexible time slot, the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these time slots are used for uplink transmission of the target PUSCH.
  • this application can refer to the above for how the network device determines the flexible time slot for uplink transmission of the target PUSCH, and this application will not repeat it. In addition, this application determines how the network device determines whether the uplink time slot is used for The uplink transmission of the target PUSCH is not limited.
  • the length of the first indication information is 2 bits. Wherein, 2 bits are respectively used to indicate whether the uplink time slot in the at least one target time slot is used for uplink transmission of the target channel, and indicate whether the flexible time slot in the at least one target time slot is used for uplink transmission of the target channel.
  • this application can refer to the above for how the network device determines the flexible time slot for uplink transmission of the target PUSCH, and this application will not repeat it. In addition, this application determines how the network device determines whether the uplink time slot is used for The uplink transmission of the target PUSCH is not limited.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for uplink transmission.
  • N1 is the number of the at least one target time slot.
  • the length of the first indication information is K1 bits, and the K1 bits are in one-to-one correspondence with K1 consecutive time slots. Each bit in the K1 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • K1 is the number of time slots included in the first time slot set.
  • FIG. 8 is a schematic diagram of the uplink repeated transmission of the PUSCH provided by the embodiment of the present application.
  • the DCI schedules the repeated transmission of the PUSCH 4 times it is assumed that the set of time slots where the repeated transmission is located is four consecutive If these 4 time slots include flexible time slots, DCI needs to be used to indicate whether the flexible time slots can be used for PUSCH transmission.
  • the terminal device can determine that the time slots where time slot 0 and time slot 3 are located are uplink time slots through the time slot format indicated by high-layer signaling TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated , the uplink time slot is understood to be used for the repeated transmission of the PUSCH, but for time slot 1 and time slot 2, high layer signaling indicates that it is a flexible time slot.
  • the terminal device determines whether the flexible time slot is used for the repeated transmission of the PUSCH through the first indication information carried in the DCI for scheduling the repeated transmission of the PUSCH. As shown in FIG. 8 , here the network device indicates through the first indication information that time slot 1 and time slot 2 are not used for repeated transmission of the PUSCH.
  • the above-mentioned first indication information may be carried in the second DCI used to schedule the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), because the target PUCCH carries the PDSCH feedback information.
  • PDSCH Physical Downlink Shared Channel
  • the second DCI may include: the number of repeated transmissions of the target PUCCH, the number of repeated transmissions may be a nominal number of repeated transmissions K1 or an actual number of repeated transmissions K2, and both K1 and K2 are integers greater than 1.
  • the so-called nominal number of repeated transmissions K1 refers to the number of repeated transmissions of the target PUCCH configured by the network device for the terminal device, but the actual number of repeated transmissions of the terminal device may be less than or equal to the nominal number of repeated transmissions.
  • the so-called nominal repeated transmission times K1 refers to the actual repeated transmission times of the terminal device for the target PUCCH.
  • the K1 repeated transmissions of the uplink repeated transmissions correspond to K1 consecutive time slots, and the K1 consecutive time slots constitute the first time slot set.
  • the at least one target time slot is a time slot in the first time slot set.
  • the first set of time slots may also be any set of time slots configured by the network device to the terminal device, and this application does not limit how to determine the first set of time slots.
  • the terminal device can sequentially find K2 available time slots according to the repeated transmission start position configured by the network device for the terminal device and the actual number of repeated transmissions K2 .
  • the available time slots may also be referred to as first time slots.
  • how to determine the length of the first indication information can refer to the method for determining the length of the first indication information in the first possible implementation, which will not be repeated in this application.
  • the first indication information may be carried in Msg2, but is not limited thereto.
  • the Msg2 may include: the number of repeated transmissions of the uplink repeated transmission, the number of repeated transmissions may be a nominal number of repeated transmissions K1 or an actual number of repeated transmissions K2, and both K1 and K2 are integers greater than 1.
  • the so-called nominal number of repeated transmissions K1 refers to the number of repeated transmissions of the uplink repeated transmissions of the initial transmission of Msg 3 configured by the network device for the terminal device, but the actual number of repeated transmissions of the terminal device may be less than or equal to the nominal number of repeated transmissions.
  • the so-called nominal number of repeated transmissions K1 refers to the actual number of repeated transmissions of the terminal device for the initial transmission bearing Msg 3 .
  • the K1 repeated transmissions of the uplink repeated transmission correspond to K1 consecutive time slots, and the K1 consecutive time slots constitute the first set of time slots.
  • the at least one target time slot is a time slot in the first time slot set.
  • the first set of time slots may also be any set of time slots configured by the network device to the terminal device, and this application does not limit how to determine the first set of time slots.
  • Msg2 includes the actual repeated transmission times K2 of the uplink repeated transmission
  • the terminal device can find K2 available time slots sequentially according to the repeated transmission start position and the actual repeated transmission times K2 configured by the network device for the terminal device .
  • the available time slot may also be referred to as the first time slot.
  • how to determine the length of the first indication information can refer to the method for determining the length of the first indication information in the first possible implementation, which will not be repeated in this application.
  • the first indication information may be carried in the third DCI used to schedule the retransmission, such as DCI format scrambled by TC-RNTI 0_0, but not limited to.
  • the third DCI may include: the number of repeated transmissions of the uplink repeated transmission, the number of repeated transmissions may be a nominal number of repeated transmissions K1 or an actual number of repeated transmissions K2, and both K1 and K2 are integers greater than 1.
  • the so-called nominal number of repeated transmissions K1 refers to the number of repeated transmissions of the uplink repeated transmissions of the retransmission of Msg 3 configured by the network device for the terminal device, but the actual number of repeated transmissions of the terminal device may be less than or equal to the nominal number of repeated transmissions.
  • the so-called nominal number of repeated transmissions K1 refers to the actual number of repeated transmissions of the terminal device for the retransmission of the bearer Msg 3 .
  • the K1 repeated transmissions of the uplink repeated transmission correspond to K1 consecutive time slots, and the K1 consecutive time slots constitute the first time slot set.
  • the at least one target time slot is a time slot in the first time slot set.
  • the first set of time slots may also be any set of time slots configured by the network device to the terminal device, and this application does not limit how to determine the first set of time slots.
  • the terminal device can sequentially find K2 available time slot.
  • the available time slots may also be referred to as first time slots.
  • how to determine the length of the first indication information can refer to the method for determining the length of the first indication information in the first possible implementation, which will not be repeated in this application.
  • the foregoing first indication information may be carried in the fourth DCI for scheduling the multi-slot transmission.
  • the fourth DCI may include: the number of time slots used for multi-slot transmission included in the multi-slot transmission, the number of time slots may be the nominal number of time slots K3 or the number of actual time slots K4, K3 , K4 are integers greater than 1.
  • the so-called nominal number of time slots K3 refers to the number of time slots configured by the network device for the terminal device for multi-slot transmission, but the actual number of time slots for the terminal device to perform multi-slot transmission may be less than or equal to the nominal time slot number.
  • the so-called nominal number of time slots K4 refers to the actual number of time slots of the terminal device for multi-slot transmission.
  • the fourth DCI includes the number K3 of time slots nominally used for multi-slot transmission included in the time-slot transmission, then the multi-slot transmission corresponds to K3 consecutive time slots, and the K3 consecutive time slots constitute the second time slot gather.
  • the aforementioned at least one target time slot is a time slot in the second set of time slots.
  • the second set of time slots may also be any set of time slots configured by the network device to the terminal device, and this application does not limit how to determine the second set of time slots.
  • the terminal device may configure the terminal device according to the multi-slot transmission start position configured by the network device and the actual The number K4 of time slots used for multi-slot transmission is sequentially searched for K4 available time slots.
  • the available time slots in the foregoing different implementable manners, in the five implementable manners, the available time slots may be referred to as second time slots.
  • the length of the first indication information or the number of occupied bits may be any, but not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the flexible time slot is used for the foregoing multi-slot transmission. Assuming that at least one target time slot is a plurality of flexible time slots, the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these flexible time slots are used for the above-mentioned multi-slot transmission.
  • the network device may determine whether the flexible time slot is used for the multi-slot transmission according to the symbols of the multi-slot transmission in the flexible time slot. Wherein, when the network device determines that the symbol in the flexible time slot for the multi-slot transmission is not a downlink symbol, then it is determined that the flexible time slot can be used for the multi-slot transmission; on the contrary, when the network device determines that the multi-slot transmission is in the flexible time slot If the symbols in the slot are downlink symbols, then it is determined that the flexible time slot cannot be used for the above-mentioned multi-slot transmission.
  • the network device when the first indication information jointly indicates whether these flexible time slots are used for multi-slot transmission, if at least one of these flexible time slots cannot be used for multi-slot transmission During transmission, the network device indicates through the first indication information that these flexible time slots cannot be used for multi-slot transmission. On the contrary, if all these flexible time slots can be used for multi-slot transmission, the network device indicates through the first indication information that these flexible time slots can be used for multi-slot transmission.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for multi-slot transmission.
  • N1 is the number of the at least one target time slot.
  • the first indication information is used to indicate whether the flexible time slot is used for multi-slot transmission. Assuming that at least one target time slot is multiple flexible time slots, each bit in the first indication information is used to indicate whether the corresponding target time slot is used for multi-slot transmission.
  • the network device may determine whether the flexible time slot is used for multi-slot transmission according to the symbols of the multi-slot transmission in the flexible time slot. Wherein, when the network device determines that the symbol in the flexible time slot for multi-slot transmission is not a downlink symbol, then it is determined that the flexible time slot can be used for multi-slot transmission; on the contrary, when the network device determines that the multi-slot transmission in the flexible time slot If the symbol is a downlink symbol, it is determined that the flexible time slot cannot be used for multi-slot transmission.
  • the length of the first indication information is K3 bits, and the K3 bits are in one-to-one correspondence with K3 consecutive time slots. Each bit in the K3 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • K3 is the number of time slots included in the second time slot set.
  • the second time slot set may include at least one of the following time slots: uplink time slots and flexible time slots.
  • Each bit in the first indication information is used to indicate whether the corresponding continuous time slot is used for uplink transmission.
  • the continuous time slots here may be uplink time slots or flexible time slots. It can be understood that when at least one of the above target time slots is a flexible time slot, that is, in this case, the uplink time slot is understood as being available for multi-slot transmission. Therefore, for any uplink time slot in the K3 consecutive time slots slot, the terminal device does not determine whether the uplink time slot is used for multi-slot transmission according to the first indication information. However, for any flexible time slot in the K1 consecutive time slots, the terminal device needs to determine multi-slot transmission according to the first indication information.
  • the network device may determine whether the flexible time slot is used for multi-slot transmission according to symbols of the multi-slot transmission in the flexible time slot. Wherein, when the network device determines that the symbol in the flexible time slot for multi-slot transmission is not a downlink symbol, then it is determined that the flexible time slot can be used for multi-slot transmission; on the contrary, when the network device determines that the multi-slot transmission in the flexible time slot If the symbol is a downlink symbol, it is determined that the flexible time slot cannot be used for multi-slot transmission.
  • the uplink time slot is understood as whether it can be used for uplink transmission of the target channel
  • the length of the first indication information or the occupied bits Numbers can be any, but are not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the uplink time slot is used for multi-slot transmission. Assuming that at least one target time slot is multiple uplink time slots, then the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these uplink time slots are used for multi-slot transmission.
  • the network device when the first indication information jointly indicates whether these uplink time slots are used for multi-slot transmission, if at least one of these uplink time slots cannot be used for multi-slot During transmission, the network device indicates through the first indication information that these uplink time slots cannot be used for multi-slot transmission. On the contrary, if all these uplink time slots can be used for multi-slot transmission, the network device indicates through the first indication information that these uplink time slots can be used for multi-slot transmission.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for multi-slot transmission.
  • N1 is the number of the at least one target time slot.
  • the first indication information is used to indicate whether the uplink time slot is used for multi-slot transmission. Assuming that at least one target time slot is multiple uplink time slots, each bit in the first indication information is used to indicate whether the corresponding uplink time slot is used for multi-slot transmission.
  • the length of the first indication information is K3 bits, and the K3 bits are in one-to-one correspondence with K3 consecutive time slots. Each bit in the K3 bits is used to indicate whether the corresponding consecutive time slot is used for multi-slot transmission.
  • K3 is the number of time slots included in the second time slot set.
  • the uplink time slot is understood as whether it can be used for multi-slot transmission
  • the length of the first indication information or the occupied bits Numbers can be any, but are not limited to:
  • the length of the first indication information is 1 bit.
  • the first indication information is used to indicate whether the uplink time slot or the uplink time slot is used for multi-slot transmission. Assuming that at least one target time slot includes an uplink time slot and a flexible time slot, the first indication information is used to jointly indicate (that is, simultaneously indicate) whether these time slots are used for multi-slot transmission.
  • this application can refer to the above for how the network device determines the flexible time slot for multi-slot transmission, and this application will not repeat it. In addition, this application determines whether the uplink time slot is used for multi-slot Transfers are unlimited.
  • the length of the first indication information is 2 bits. Wherein, 2 bits are respectively used to indicate whether the uplink time slot in the at least one target time slot is used for multi-slot transmission, and indicate whether the flexible time slot in the at least one target time slot is used for multi-slot transmission.
  • this application can refer to the above for how the network device determines the flexible time slot for multi-slot transmission, and this application will not repeat it. In addition, this application determines whether the uplink time slot is used for multi-slot Transfers are unlimited.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, and each bit in N1 is used to indicate whether the corresponding target time slot is used for uplink transmission.
  • N1 is the number of the at least one target time slot.
  • the length of the first indication information is K3 bits, and the K3 bits are in one-to-one correspondence with K3 consecutive time slots. Each bit in the K3 bits is used to indicate whether the corresponding consecutive time slot is used for multi-slot transmission.
  • K3 is the number of time slots included in the second time slot set.
  • the first indication information can indicate whether the flexible time slot is used for uplink transmission, thereby improving resource utilization.
  • the first indication information can also clearly indicate Indicates whether the uplink time slot can be used for uplink transmission.
  • the first indication information provided by the present application can be carried in the message for scheduling uplink transmission without using other DCI to carry the information, so as to prevent the loss of the information and cause the network device and the terminal device to use The problem of inconsistency in understanding the time slots for uplink transmission.
  • the terminal device may, according to the time slot format indicated by the higher layer signaling TDD-UL-DL-ConfigurationCommon or TDD-UL-DL-ConfigDedicated, Or further determine whether the flexible time slot in the time slot set is used for uplink transmission according to the time slot format determined by other DCIs.
  • Fig. 9 is an interactive flowchart of another wireless communication method provided by the embodiment of the present application. As shown in Fig. 9, the method includes the following steps:
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate whether at least one target time slot is used for joint channel estimation for uplink transmission.
  • S920 The terminal device performs uplink transmission according to the first indication information.
  • joint channel estimation may be joint channel estimation for PUSCH, joint channel estimation for PUCCH, or joint channel estimation for multi-slot transmission of one TB, which is not limited in this application.
  • the joint channel estimation of the network device assumes that the DMRSs of multiple time slots are correlated, in this application, the joint channel estimation can be described as DMRS bundling, etc., and this application does not do this limit.
  • Fig. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present application.
  • the terminal equipment includes: a communication unit 1010, configured to: receive first indication information, the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel or is used to indicate whether at least one target time slot is used for Joint channel estimation for uplink transmission. Perform uplink transmission according to the first indication information.
  • the uplink transmission is uplink repeated transmission, and the first indication information is carried in the first message.
  • the target channel is the target PUSCH
  • the first message is the first DCI for scheduling uplink repeated transmission.
  • the target channel is the target PUCCH
  • the first message is the second DCI for scheduling the PDSCH.
  • the uplink repeated transmission is the uplink repeated transmission that bears the initial transmission of Msg3.
  • the first message is Msg2.
  • the row repeated transmission is an uplink repeated transmission bearing the retransmission of Msg3.
  • the first message is the third DCI for scheduling retransmission.
  • At least one target time slot is a time slot in the first time slot set.
  • the first message also includes: the nominal number of repeated transmissions K1 of uplink repeated transmissions, K1 is an integer greater than 1, K1 repeated transmissions of uplink repeated transmissions correspond to K1 consecutive time slots, and K1 consecutive time slots constitute the first A collection of time slots.
  • the first message further includes: an actual number K2 of uplink repeated transmissions, where K2 is an integer greater than 1.
  • K2 repeated transmissions correspond to K2 first time slots, if the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, then each first time slot is an uplink time slot or the first indication The target time slot for uplink repeated transmission indicated by the information, if the first indication information is used to indicate joint channel estimation for uplink transmission, then each first time slot is an uplink time slot or the target time slot indicated by the first indication information Target slot for joint channel estimation.
  • the uplink transmission is multi-slot transmission of one transport block TB.
  • the first indication information is carried in the fourth DCI for scheduling multi-slot transmission.
  • At least one target time slot is a time slot in the second set of time slots.
  • the fourth DCI also includes: the number of time slots K3 nominally used for multi-slot transmission included in multi-slot transmission, K3 is an integer greater than 1, multi-slot transmission corresponds to K3 consecutive time slots, and K3 consecutive time slots The slots form a second set of time slots.
  • the fourth DCI further includes: the number K4 of time slots actually used for multi-slot transmission included in the multi-slot transmission, where K4 is an integer greater than 1.
  • the multi-slot transmission corresponds to K4 second time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each second time slot is an uplink time slot or the first indication information The indicated target time slot for multi-slot transmission, if the first indication information is used to indicate joint channel estimation for uplink transmission, then each second time slot is an uplink time slot or the channel used for channel indicated by the first indication information Joint estimated target slot.
  • the length of the first indication information is 1 bit.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, if the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit of N1 bits is used to indicate whether the corresponding target time slot is used for uplink transmission, If the first indication information is used to indicate joint channel estimation for uplink transmission, each bit in the N1 bits is used to indicate whether the corresponding target time slot is used for joint channel estimation.
  • the length of the first indication information is K1 bits, and the K1 bits are in one-to-one correspondence with K1 consecutive time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit in the K1 bit is used to indicate whether the corresponding continuous time slot is used for uplink transmission, if the first indication information is used for Indicates joint channel estimation for uplink transmission, and each bit in the K1 bit is used to indicate whether the corresponding continuous time slot is used for joint channel estimation.
  • the terminal device does not determine whether the uplink time slot is used for uplink transmission according to the first indication information or does not determine whether the uplink time slot is used for the channel according to the first indication information joint estimate.
  • the length of the first indication information is K3 bits, and the K3 bits are in one-to-one correspondence with K3 consecutive time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit in K3 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission, if the first indication information is used for indicates joint channel estimation for uplink transmission, and each bit in the K3 bits indicates whether the corresponding continuous time slot is used for joint channel estimation.
  • the terminal device does not determine whether the uplink time slot is used for uplink transmission according to the first indication information or does not determine whether the uplink time slot is used for the channel according to the first indication information joint estimate.
  • each target time slot is a flexible time slot or an uplink time slot.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system on chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 1000 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 1000 are to realize the For the sake of brevity, the corresponding flow of the terminal device in the shown method will not be repeated here.
  • Fig. 11 shows a schematic block diagram of a network device 1100 according to an embodiment of the present application.
  • the terminal equipment includes: a communication unit 1110, configured to send first indication information, the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel or is used to indicate whether at least one target time slot is used for Joint channel estimation for uplink transmission.
  • the uplink transmission is uplink repeated transmission, and the first indication information is carried in the first message.
  • the target channel is the target PUSCH
  • the first message is the first DCI for scheduling uplink repeated transmission.
  • the target channel is the target PUCCH
  • the first message is the second DCI for scheduling the PDSCH.
  • the uplink repeated transmission is the uplink repeated transmission that bears the initial transmission of Msg3.
  • the first message is Msg2.
  • the uplink repeated transmission is an uplink repeated transmission that bears the retransmission of Msg3.
  • the first message is the third DCI for scheduling retransmission.
  • At least one target time slot is a time slot in the first time slot set.
  • the first message also includes: the nominal number of repeated transmissions K1 of uplink repeated transmissions, K1 is an integer greater than 1, K1 repeated transmissions of uplink repeated transmissions correspond to K1 consecutive time slots, and K1 consecutive time slots constitute the first A collection of time slots.
  • the first message further includes: an actual number K2 of uplink repeated transmissions, where K2 is an integer greater than 1.
  • K2 repeated transmissions correspond to K2 first time slots, if the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, then each first time slot is an uplink time slot or the first indication The target time slot for uplink repeated transmission indicated by the information, if the first indication information is used to indicate joint channel estimation for uplink transmission, then each first time slot is an uplink time slot or the target time slot indicated by the first indication information Target slot for joint channel estimation.
  • the uplink transmission is multi-slot transmission of one TB.
  • the first indication information is carried in the fourth DCI for scheduling multi-slot transmission.
  • At least one target time slot is a time slot in the second set of time slots.
  • the fourth DCI also includes: the number of time slots K3 nominally used for multi-slot transmission included in multi-slot transmission, K3 is an integer greater than 1, multi-slot transmission corresponds to K3 consecutive time slots, and K3 consecutive time slots The slots form a second set of time slots.
  • the fourth DCI further includes: the number K4 of time slots actually used for multi-slot transmission included in the multi-slot transmission, where K4 is an integer greater than 1.
  • the multi-slot transmission corresponds to K4 second time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each second time slot is an uplink time slot or the first indication information The indicated target time slot for multi-slot transmission, if the first indication information is used to indicate joint channel estimation for uplink transmission, then each second time slot is an uplink time slot or the channel used for channel indicated by the first indication information Joint estimated target slot.
  • the length of the first indication information is 1 bit.
  • the length of the first indication information is N1 bits, and the N1 bits are in one-to-one correspondence with at least one target time slot.
  • N1 is an integer greater than 1, if the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit of N1 bits is used to indicate whether the corresponding target time slot is used for uplink transmission, If the first indication information is used to indicate joint channel estimation for uplink transmission, each bit in the N1 bits is used to indicate whether the corresponding target time slot is used for joint channel estimation.
  • the length of the first indication information is K1 bits, and the K1 bits are in one-to-one correspondence with K1 consecutive time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit in the K1 bit is used to indicate whether the corresponding continuous time slot is used for uplink transmission, if the first indication information is used for Indicates joint channel estimation for uplink transmission, and each bit in the K1 bit is used to indicate whether the corresponding continuous time slot is used for joint channel estimation.
  • the length of the first indication information is K3 bits, and the K3 bits are in one-to-one correspondence with K3 consecutive time slots. If the first indication information is used to indicate whether at least one target time slot is used for uplink transmission of the target channel, each bit in K3 bits is used to indicate whether the corresponding continuous time slot is used for uplink transmission, if the first indication information is used for indicates joint channel estimation for uplink transmission, and each bit in the K3 bits indicates whether the corresponding continuous time slot is used for joint channel estimation.
  • each target time slot is a flexible time slot or an uplink time slot.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the network device 1100 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1100 are to realize the functions shown in FIG. 7 and FIG. 9 respectively.
  • the corresponding flow of the network device in the shown method will not be repeated here.
  • Fig. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220 .
  • the processor 1210 can invoke and run a computer program from the memory 1220, so as to implement the method in the embodiment of the present application.
  • the memory 1220 may be an independent device independent of the processor 1210 , or may be integrated in the processor 1210 .
  • the communication device 1200 may further include a transceiver 1230, and the processor 1210 may control the transceiver 1230 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 1210 may control the transceiver 1230 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include antennas, and the number of antennas may be one or more.
  • the communication device 1200 may specifically be the network device of the embodiment of the present application, and the communication device 1200 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1200 may specifically be a terminal device in the embodiment of the present application, and the communication device 1200 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • Fig. 13 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 1300 may further include a memory 1320 .
  • the processor 1310 can invoke and run a computer program from the memory 1320, so as to implement the method in the embodiment of the present application.
  • the memory 1320 may be an independent device independent of the processor 1310 , or may be integrated in the processor 1310 .
  • the device 1300 may also include an input interface 1330 .
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 1300 may also include an output interface 1340 .
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiment of the present application, and the device can implement the corresponding process implemented by the network device in each method of the embodiment of the present application, and for the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 14 is a schematic block diagram of a communication system 1400 provided by an embodiment of the present application. As shown in FIG. 14 , the communication system 1400 includes a terminal device 1410 and a network device 1420 .
  • the terminal device 1410 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1420 can be used to realize the corresponding functions realized by the network device or the base station in the above method. Let me repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or the base station in the embodiments of the present application.
  • the computer program executes the corresponding functions implemented by the network device or the base station in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,包括:终端设备接收第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计;终端设备根据第一指示信息进行上行传输。基于此,对于灵活时隙,通过第一指示信息可以指示该灵活时隙是否用于上行传输,从而可以提高资源利用率,此外,对于上行时隙,通过第一指示信息也可以明确指示该上行时隙是否可以用于上行传输。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)系统中定义了多种时隙结构,例如:上行时隙、下行时隙以及灵活时隙。上行时隙包括的符号均为上行符号,因此,上行时隙也被称为全上行时隙。下行时隙包括的符号均为下行符号,因此,下行时隙也被称为全下行时隙。灵活时隙包括至少一个灵活符号。
目前,网络设备可以通过高层信令(即高层参数)指示时隙格式,终端设备根据该时隙格式可以确定上行时隙、下行时隙以及灵活时隙的位置。目前终端设备只能将上行时隙用于上行重复传输,导致灵活时隙无法用于上行重复传输,从而造成上行传输资源利用率低的问题。类似地,在其他上行传输中也可能存在该问题。此外,上行时隙是用于传输上行数据的时隙,然而,针对某一信道,是否可以在上行时隙上进行数据传输也是本申请要解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,对于灵活时隙,通过第一指示信息可以指示该灵活时隙是否用于上行传输,从而可以提高资源利用率,此外,对于上行时隙,通过第一指示信息也可以明确指示该上行时隙是否可以用于上行传输。
第一方面,提供一种无线通信方法,包括:终端设备接收第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计;终端设备根据第一指示信息进行上行传输。
第二方面,提供一种无线通信方法,包括:网络设备发送第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计。
第三方面,提供一种终端设备,包括:通信单元,用于:接收第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计;根据第一指示信息进行上行传输。
第四方面,提供一种网络设备,包括:通信单元,用于发送第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一方面或其各实现方式中的方法。
综上,一方面,对于灵活时隙,通过第一指示信息可以指示该灵活时隙是否用于上行传输,从而可以提高资源利用率,此外,对于上行时隙,通过第一指示信息也可以明确指示该上行时隙是否可以用于上行传输。另一方面,本申请提供的第一指示信息可以携带在用于调度上行传输的消息中,而无需使用其他DCI来携带该信息,从而可以防止该信息丢失,而导致网络设备和终端设备对用于上行传输的时隙理解不一致的问题。
附图说明
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2A至图2D为灵活时隙的示意图;
图3为上行重复传输对应的时隙分布示意图;
图4是基于竞争的四步随机接入过程的流程交互图;
图5为TB一个TB的多时隙传输的示意图;
图6为联合信道估计的示意图;
图7为本申请实施例提供的一种无线通信方法的交互流程图;
图8为本申请实施例提供的PUSCH的上行重复传输的示意图;
图9为本申请实施例提供的另一种无线通信方法的交互流程图;
图10示出了根据本申请实施例的终端设备1000的示意性框图;
图11示出了根据本申请实施例的网络设备1100的示意性框图;
图12是本申请实施例提供的一种通信设备1200示意性结构图;
图13是本申请实施例提供的装置的示意性结构图;以及
图14是本申请实施例提供的一种通信系统1400的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、NR系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移 动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在介绍本申请技术方案之前,下面先对本申请的相关知识进行阐述:
一、NR系统中的时隙结构
NR系统中引入了灵活(Flexible,F)符号,该灵活符号具有如下特征:
1、灵活符号表示该符号的方向是未定的,可以通过其他信令将其改变为下行符号或者上行符号;
2、灵活符号也可以表示为了前向兼容性,预留给将来用的符号;
3、灵活符号用于终端的收发转换,类似于LTE时分双工(Time Division Duplex,TDD)系统中的保护间隔(Guard Period,GP)符号,终端在该符号内完成收发转换。
如上所述,在NR系统中定义了多种时隙结构,例如:上行时隙、下行时隙以及灵活时隙。上行时隙包括的符号均为上行(Uplink,U)符号。下行时隙包括的符号均为下行(Downlink,D)符号。灵活时隙包括至少一个灵活符号,即当一个时隙包括至少一个灵活符号时,该时隙被称为灵活时隙。其中,每个时隙结构对应一个索引。
应理解的是,时隙结构也被称为时隙格式,本申请对此不做限制。
图2A至图2D为灵活时隙的示意图,如图2A至图2D分别所示的灵活时隙,其均包括灵活符号。
二、NR中的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复传输以及物理上行控制信道(Physical Uplink Control Channel,PUCCH)的重复传输
在NR系统中,为了支持高可靠低时延(Ultra-Reliable and Low Latency Communication,URLLC)业务,采用了上行数据传输重复发送来提高传输可靠性。应理解的是,PUSCH重复传输、上行数据传输重复发送以及上行重复传输是等价的,本申请对此描述方式不做限制。
其中,网络设备可以通过下行控制信息(Downlink Control Information,DCI)调度上行重复传输,该DCI中可以包括:上行重复传输的传输次数K,该传输次数可以是名义(nominal)重复传输次数,即网络设备指示的重复传输次数,但是实际重复传输次数可能小于或等于该传输次数。或者,该传输次数可以是实际(actual)重复传输次数。
目前网络设备可以通过高层参数TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated指示时隙格式,终端设备根据该时隙格式可以确定时隙中哪些符号是上行符号、下行符号以及灵活符号,即终端设备可以根据该时隙格式确定上行时隙、下行时隙以及灵活时隙的位置,目前终端设备只能在上行时隙上进行上行重复传输,导致灵活时隙无法用于上行重复传输,从而造成上行传输资源利用率低的问题。
一方面,在根据高层参数确定的时隙格式的基础上,网络设备可以通过DCI动态指示时隙格式,即通过DCI将至少一个灵活符号修改为上行符号或者下行符号。如果通过DCI将所有的灵活符号修 改为上行符号或者下行符号,这时也不存在灵活时隙的情况,但是若该DCI丢失,导致网络设备认为经过修改后,所有的上行时隙都可以用于上行重复传输,但是,由于终端设备未接收到该DCI,终端设备仍然通过高层参数指示的时隙格式,确定上行时隙可以用于上行重复传输,这将导致网络设备和终端设备对用于上行重复传输的时隙理解不一致的问题。如果通过DCI将部分灵活符号修改为上行符号或者下行符号,这时还会存在灵活时隙的情况,一方面,若该DCI丢失,导致网络设备认为经过修改后,所有的上行时隙都可以用于上行重复传输,但是,由于终端设备未接收到该DCI,终端设备仍然通过高层参数指示的时隙格式,确定上行时隙可以用于上行重复传输,这将导致网络设备和终端设备对用于上行重复传输的时隙理解不一致的问题。另一方面,由于可能存在灵活时隙,但是终端设备仍然只能在上行时隙上进行上行重复传输,导致灵活时隙无法用于上行重复传输,从而造成上行传输资源利用率低的问题。
例如:图3为上行重复传输对应的时隙分布示意图,如图3所示,假设终端设备根据上述高层参数半静态指示的时隙格式或者根据DCI动态指示的时隙格式,确定出在时隙1上包括的都是下行符号,即时隙1是下行时隙,其无法用于上行重复传输,而时隙2包括灵活符号,即时隙2是灵活时隙,因此,其也无法用于上行重复传输,最终终端设备在时隙0和时隙3上进行上行重复传输。
另一方面,如上所述,上行时隙是用于传输上行数据的时隙,然而,针对某一信道,是否可以在上行时隙上进行数据传输也是本申请亟待解决的技术问题。
应理解的是,为了提高PUCCH传输的覆盖性能,3GPP R17标准也采用了PUCCH的重复传输。
三、基于竞争的四步随机接入过程的流程交互图。
图4是基于竞争的四步随机接入过程的流程交互图。
如图4所示,该随机接入流程可以包括以下四个步骤:
步骤1,Msg 1。
终端设备向网络设备发送Msg 1,以告诉网络设备该终端设备发起了随机接入请求,该Msg 1中携带随机接入前导码(Random Access Preamble,RAP),或称为随机接入前导序列、前导序列、前导码等。同时,Msg 1还可以用于网络设备能估计其与终端设备之间的传输时延并以此校准上行时间。
具体而言,终端设备选择preamble索引(index)和用于发送preamble的PRACH资源;然后该终端设备在PRACH上传输Preamble。其中,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备,允许在哪些个时频资源上传输preamble,例如,SIB1。
步骤2,Msg 2。
网络设备在接收到终端设备发送的Msg 1后,向终端设备发送Msg 2,即随机接入响应(Random Access Response,RAR)消息。该Msg 2中例如可以携带时间提前量(Time Advance,TA)、上行授权指令例如上行资源的配置、以及临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,TC-RNTI)等。
终端设备则在随机接入响应时间窗(RAR window)内监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以用于接收网络设备回复的RAR消息。该RAR消息可以使用相应的随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)进行解扰。
如果终端设备在该RAR时间窗内没有接收到网络设备回复的RAR消息,则认为此次随机接入过程失败。
如果终端设备成功地接收到一个RAR消息,且该RAR消息中携带的前导码索引(preamble index)与终端设备通过Msg 1发送的前导码的索引相同时,则认为成功接收了RAR,此时终端设备就可以停止RAR时间窗内的监听了。
其中,Msg 2中可以包括针对多个终端设备的RAR消息,每一个终端设备的RAR消息中可以包括该终端设备所采用的随机接入前导码标识(RAP Identify,RAPID)、用于传输Msg 3的资源的信息、TA调整信息、TC-RNTI等。
步骤3,Msg 3。
终端设备在收到RAR消息后,判断该RAR是否为属于自己的RAR消息,例如终端设备可以利用前导码标识进行核对,在确定是属于自己的RAR消息后,终端设备在RRC层产生Msg 3,并向网络设备发送Msg 3。其中,需要携带终端设备的标识信息等。
具体地,针对不同的随机接入触发事件,4步随机接入过程的步骤3中的Msg 3可以包括不同的内容,以进行调度传输(Scheduled Transmission)。
例如,对于初始接入的场景,Msg 3可以包括RRC层生成的RRC连接请求(RRC Connection Request),其中至少携带终端设备的非接入层(Non-Access Stratum,NAS)标识信息,还可以携带 例如终端设备的服务临时移动用户标识(Serving-Temporary Mobile Subscriber Identity,S-TMSI)或随机数等。
又例如,对于连接重建场景,Msg 3可以包括RRC层生成的RRC连接重建请求(RRC Connection Re-establishment Request)且不携带任何NAS消息,此外还可以携带例如小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)和协议控制信息(Protocol Control Information,PCI)等。
又例如,对于切换场景,Msg 3可以包括RRC层生成的RRC切换完成消息(RRC Handover Confirm)和终端设备的C-RNTI,还可携带例如缓冲状态报告(Buffer Status Report,BSR);对于其它触发事件例如上/下行数据到达的场景,Msg 3至少需要包括终端设备的C-RNTI。
步骤4,Msg 4。
网络设备向终端设备发送Msg 4,终端设备正确接收Msg 4完成竞争解决(Contention Resolution)。例如在RRC连接建立过程中,Msg 4中可以携带RRC连接建立消息。
由于步骤3中的终端设备会在Msg 3中携带自己唯一的标识,例如C-RNTI或来自核心网的标识信息(比如S-TMSI或一个随机数),从而网络设备在竞争解决机制中,会在Msg 4中携带终端设备的唯一标识以指定竞争中胜出的终端设备。而其它没有在竞争解决中胜出的终端设备将重新发起随机接入。
需要说明的是,如果网络设备没有正确收到Msg 3,会通过DCI指示Msg 3的重传的调度信息。如上所述,为了提高PUSCH传输的覆盖性能,3GPP R17标准采用了PUSCH的重复传输,这其中也包括了Msg 3PUSCH的重复传输,涉及Msg 3的初传的上行重复传输和重传的上行重复传输。
四、一个传输块(Transmission Block,TB)的多时隙传输
目前第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)在版本(Release,R)17中,计划标准化一种新型的PUSCH的传输方案,其主要思想是将一个TB块映射到多个时隙上以增强覆盖。这种方式称为一个TB的多时隙传输(TB over Multi-slot,TBoMS)。图5为TB一个TB的多时隙传输的示意图,如图5所示,一个TB经信道编码后,最终可以映射到4个时隙进行传输。可选的,在此基础上,也可以进一步对映射于多个时隙的TB再以多个时隙为单位重复传输。
五、联合信道估计
3GPP R17中,计划标准化上行重复传输的联合信道估计,即网络设备根据上行重复传输占用的多个时隙中的解调参考信号(Demodulation Reference Signal,DMRS)进行联合信道估计,以提高信道估计的准确性。对于联合信道估计,需要确定进行联合信道估计的时隙数或者上行重复传输的重复传输次数,网络设备的联合信道估计会假设多个时隙的DMRS的是相关的,包括功率、天线端口、预编码不变,相位连续等。图6为联合信道估计的的示意图,如图6所示,网络设备可以根据时隙0至时隙3上的DMRS进行联合信道估计。
下面将对本申请技术方案进行详细阐述:
图7为本申请实施例提供的一种无线通信方法的交互流程图,如图7所示,该方法包括如下步骤:
S710:网络设备向终端设备发送第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输。
S720:终端设备根据第一指示信息进行上行传输。
可选的,关于目标信道以及上行传输存在如下几种可实现方式,但不限于此:
可实现方式一:目标信道是目标PUSCH,该目标信道的上行传输是目标PUSCH的上行重复传输。
可实现方式二:目标信道是目标PUCCH,该目标信道的上行传输是目标PUCCH的上行重复传输。
可实现方式三:目标信道是目标PUSCH,该目标PUSCH承载Msg 3,基于此,该目标信道的上行传输是承载Msg 3的初传的上行重复传输。
可实现方式四:目标信道是目标PUSCH,该目标PUSCH承载Msg 3,基于此,该目标信道的上行传输是承载Msg 3的重传的上行重复传输。
可实现方式五:目标信道是目标PUSCH,该目标PUSCH承载一个TB的多时隙传输,基于此,该目标信道的上行传输是该TB的多时隙传输。
应理解的是,目标PUSCH特指某一个PUSCH,目标PUCCH特指某一个PUCCH。
可选的,上述每个目标时隙可以是灵活时隙或者上行时隙,例如:上述至少一个目标时隙都是灵活时隙,或者都是上行时隙,又或者部分是灵活时隙,其余部分是上行时隙,本申请对此不做限制。
应理解的是,用于目标信道的上行传输的目标时隙可以被称为可用时隙,因此,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,也被描述为第一指示信息用于指示至少一个 目标时隙是否为可用时隙。
下面针对可实现方式一进行说明:
可选的,针对目标PUSCH的上行重复传输情况,上述第一指示信息可以携带在用于调度该上行重复传输的第一DCI中。
可选的,该第一DCI中可以包括:目标PUSCH的重复传输次数,该重复传输次数可以是名义重复传输次数K1或者实际重复传输次数K2,K1、K2均为大于1的整数。所谓名义重复传输次数K1指的是网络设备为终端设备配置的目标PUSCH的重复传输次数,但是终端设备实际的重复传输次数可能小于或等于该名义重复传输次数。所谓名义重复传输次数K1指的是终端设备针对目标PUSCH的实际重复传输次数。
应理解的是,若第一DCI包括目标PUSCH的名义重复传输次数K1,那么上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。上述至少一个目标时隙是该第一时隙集合中的时隙。需要说明的是,该第一时隙集合也可以是网络设备向终端设备配置的任一个时隙集合,本申请对如何确定第一时隙集合不做限制。
应理解的是,若第一DCI包括目标PUSCH的实际重复传输次数K2,那么终端设备可以根据网络设备为终端设备配置的重复传输起始位置以及实际重复传输次数K2依次查找到K2个可用时隙。
应理解的是,为了将上述不同可实现方式中的可用时隙进行区分,在可实现方式一种,可以将可用时隙称为第一时隙。
可选的,假设上述至少一个目标时隙均为灵活时隙,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个灵活时隙,那么该第一指示信息用于指示该灵活时隙是否用于目标信道的上行传输。假设至少一个目标时隙是多个灵活时隙,那么该第一指示信息用于联合指示(即同时指示)这些灵活时隙是否用于目标PUSCH的上行传输。
可选的,对于灵活时隙,网络设备可以根据目标PUSCH在该灵活时隙中的符号来确定该灵活时隙是否用于目标PUSCH的上行传输。其中,当网络设备确定目标PUSCH在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于目标PUSCH的上行传输,相反,当网络设备确定目标PUSCH在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于目标PUSCH的上行传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于目标PUSCH的上行传输,不做限制。
可选的,假设至少一个目标时隙是多个灵活时隙,第一指示信息在联合指示这些灵活时隙是否用于目标PUSCH的上行传输时,如果这些灵活时隙中存在至少一个不能用于目标PUSCH的上行传输时,网络设备通过第一指示信息指示这些灵活时隙不可以用于目标PUSCH的上行传输。相反,如果这些灵活时隙全部都能用于目标PUSCH的上行传输时,网络设备通过第一指示信息指示这些灵活时隙可以用于目标PUSCH的上行传输。
(2)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于上行传输。
其中,N1是上述至少一个目标时隙的个数。
应理解的是,假设至少一个目标时隙是一个灵活时隙,那么该第一指示信息用于指示该灵活时隙是否用于目标信道的上行传输。假设至少一个目标时隙是多个灵活时隙,那么该第一指示信息中每一比特用于指示对应的目标时隙是否用于上行传输。
可选的,对于灵活时隙,网络设备可以根据目标PUSCH在该灵活时隙中的符号来确定该灵活时隙是否用于目标PUSCH的上行传输。其中,当网络设备确定目标PUSCH在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于目标PUSCH的上行传输,相反,当网络设备确定目标PUSCH在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于目标PUSCH的上行传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于目标PUSCH的上行传输,不做限制。
(3)第一指示信息长度为K1比特,K1比特与K1个连续时隙一一对应。K1比特中每一比特用于指示对应的连续时隙是否用于上行传输。
其中,K1是上述第一时隙集合包括的时隙个数。该第一时隙集合中可以包括以下至少一种时隙:上行时隙、灵活时隙。而第一指示信息中每一比特用于指示对应的连续时隙是否用于上行传输。这里的连续时隙可以是上行时隙或者灵活时隙。可以理解的是,当上述至少一个目标时隙都是灵活时隙时,即这种情况将上行时隙理解为可以用于目标信道的上行传输,因此,针对K1个连续时隙中的任一上 行时隙,终端设备不根据第一指示信息确定上行时隙是否用于上行传输。而针对K1个连续时隙中的任一灵活时隙,终端设备需要根据第一指示信息确定上行时隙是否用于上行传输。
可选的,对于灵活时隙,网络设备可以根据目标PUSCH在该灵活时隙中的符号来确定该灵活时隙是否用于目标PUSCH的上行传输。其中,当网络设备确定目标PUSCH在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于目标PUSCH的上行传输,相反,当网络设备确定目标PUSCH在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于目标PUSCH的上行传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于目标PUSCH的上行传输,不做限制。
可选的,假设上述至少一个目标时隙均为上行时隙,即这种情况将上行时隙理解为尚未确定是否可以用于目标信道的上行传输,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个上行时隙,那么该第一指示信息用于指示该上行时隙是否用于目标信道的上行传输。假设至少一个目标时隙是多个上行时隙,那么该第一指示信息用于联合指示(即同时指示)这些上行时隙是否用于目标PUSCH的上行传输。
应理解的是,本申请对网络设备如何确定上行时隙是否用于目标PUSCH的上行传输,不做限制。
可选的,假设至少一个目标时隙是多个上行时隙,第一指示信息在联合指示这些上行时隙是否用于目标PUSCH的上行传输时,如果这些上行时隙中存在至少一个不能用于目标PUSCH的上行传输时,网络设备通过第一指示信息指示这些上行时隙不可以用于目标PUSCH的上行传输。相反,如果这些上行时隙全部都能用于目标PUSCH的上行传输时,网络设备通过第一指示信息指示这些上行时隙可以用于目标PUSCH的上行传输。
(2)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于上行传输。
其中,N1是上述至少一个目标时隙的个数。
应理解的是,假设至少一个目标时隙是一个上行时隙,那么该第一指示信息用于指示该上行时隙是否用于目标信道的上行传输。假设至少一个目标时隙是多个上行时隙,那么该第一指示信息中每一比特用于指示对应的上行时隙是否用于上行传输。
应理解的是,本申请对网络设备如何确定上行时隙是否用于目标PUSCH的上行传输,不做限制。
(3)第一指示信息长度为K1比特,K1比特与K1个连续时隙一一对应。K1比特中每一比特用于指示对应的连续时隙是否用于上行传输。
其中,K1是上述第一时隙集合包括的时隙个数。
可选的,假设上述至少一个目标时隙包括上行时隙和灵活时隙,这种情况将上行时隙理解为尚未确定是否可以用于目标信道的上行传输,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个上行时隙或者灵活时隙,那么该第一指示信息用于指示该上行时隙或者上行时隙是否用于目标信道的上行传输。假设至少一个目标时隙包括上行时隙和灵活时隙,那么该第一指示信息用于联合指示(即同时指示)这些时隙是否用于目标PUSCH的上行传输。
应理解的是,本申请对网络设备如何确定灵活时隙用于目标PUSCH的上行传输可参考上文,本申请对此不再赘述,另外,本申请对网络设备如何确定上行时隙是否用于目标PUSCH的上行传输不做限制。
(2)第一指示信息的长度为2比特。其中,2比特分别用于指示上述至少一个目标时隙中的上行时隙是否用于目标信道的上行传输,以及指示上述至少一个目标时隙中的灵活时隙是否用于目标信道的上行传输。
应理解的是,本申请对网络设备如何确定灵活时隙用于目标PUSCH的上行传输可参考上文,本申请对此不再赘述,另外,本申请对网络设备如何确定上行时隙是否用于目标PUSCH的上行传输不做限制。
(3)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于上行传输。
其中,N1是上述至少一个目标时隙的个数。
(4)第一指示信息长度为K1比特,K1比特与K1个连续时隙一一对应。K1比特中每一比特用 于指示对应的连续时隙是否用于上行传输。
其中,K1是上述第一时隙集合包括的时隙个数。
示例性的,图8为本申请实施例提供的PUSCH的上行重复传输的示意图,如图8所示,当DCI调度PUSCH重复传输4次,假设重复传输所在的时隙集合为连续的4个时隙,如果这4个时隙中包含灵活时隙,需要通过DCI指示灵活时隙是否可以用于PUSCH传输。如图8所示,终端设备可以通过高层信令TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated指示的时隙格式,确定时隙0和时隙3所在的时隙为上行时隙,该上行时隙被理解为可以用于该PUSCH的重复传输,但是对于时隙1和时隙2,高层信令指示为灵活时隙。终端设备通过调度该PUSCH重复传输的DCI中携带的第一指示信息确定灵活时隙是否用于PUSCH的重复传输。如图8所示,这里网络设备通过第一指示信息指示时隙1和时隙2不用于该PUSCH的重复传输。
下面针对可实现方式二进行说明:
可选的,针对目标PUCCH的上行重复传输情况,上述第一指示信息可以携带在用于调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的第二DCI中,这是因为目标PUCCH承载该PDSCH的反馈信息。
可选的,该第二DCI中可以包括:目标PUCCH的重复传输次数,该重复传输次数可以是名义重复传输次数K1或者实际重复传输次数K2,K1、K2均为大于1的整数。所谓名义重复传输次数K1指的是网络设备为终端设备配置的目标PUCCH的重复传输次数,但是终端设备实际的重复传输次数可能小于或等于该名义重复传输次数。所谓名义重复传输次数K1指的是终端设备针对目标PUCCH的实际重复传输次数。
应理解的是,若该第二DCI包括目标PUCCH的名义重复传输次数K1,那么上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。上述至少一个目标时隙是该第一时隙集合中的时隙。需要说明的是,该第一时隙集合也可以是网络设备向终端设备配置的任一个时隙集合,本申请对如何确定第一时隙集合不做限制。
应理解的是,若第二DCI包括目标PUCCH的实际重复传输次数K2,那么终端设备可以根据网络设备为终端设备配置的重复传输起始位置以及实际重复传输次数K2依次查找到K2个可用时隙。
应理解的是,为了将上述不同可实现方式中的可用时隙进行区分,在可实现方式二种,也可以将可用时隙称为第一时隙。
需要说明的,在可实现方式二中,关于如何确定第一指示信息的长度,可参考可实现方式一中确定第一指示信息长度的方法,本申请对此不再赘述。
下面针对可实现方式三进行说明:
针对目标信道的上行传输是承载Msg 3的初传的上行重复传输的情况,第一指示信息可以携带在Msg2中,但不限于此。
可选的,该Msg2中可以包括:该上行重复传输的重复传输次数,该重复传输次数可以是名义重复传输次数K1或者实际重复传输次数K2,K1、K2均为大于1的整数。所谓名义重复传输次数K1指的是网络设备为终端设备配置的承载Msg 3的初传的上行重复传输的重复传输次数,但是终端设备实际的重复传输次数可能小于或等于该名义重复传输次数。所谓名义重复传输次数K1指的是终端设备针对承载Msg 3的初传的实际重复传输次数。
应理解的是,若该Msg2包括该上行重复传输的名义重复传输次数K1,那么上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。上述至少一个目标时隙是该第一时隙集合中的时隙。需要说明的是,该第一时隙集合也可以是网络设备向终端设备配置的任一个时隙集合,本申请对如何确定第一时隙集合不做限制。
应理解的是,若Msg2包括该上行重复传输的实际重复传输次数K2,那么终端设备可以根据网络设备为终端设备配置的重复传输起始位置以及实际重复传输次数K2依次查找到K2个可用时隙。
应理解的是,为了将上述不同可实现方式中的可用时隙进行区分,在可实现方式三种,也可以将可用时隙称为第一时隙。
需要说明的,在可实现方式三中,关于如何确定第一指示信息的长度,可参考可实现方式一中确定第一指示信息长度的方法,本申请对此不再赘述。
下面针对可实现方式四进行说明:
针对目标信道的上行传输是承载Msg 3的重传的上行重复传输的情况,第一指示信息可以携带在用于调度该重传的第三DCI中,例如是通过TC-RNTI加扰的DCI format 0_0,但不限于此。
可选的,该第三DCI中可以包括:该上行重复传输的重复传输次数,该重复传输次数可以是名义重复传输次数K1或者实际重复传输次数K2,K1、K2均为大于1的整数。所谓名义重复传输次数 K1指的是网络设备为终端设备配置的承载Msg 3的重传的上行重复传输的重复传输次数,但是终端设备实际的重复传输次数可能小于或等于该名义重复传输次数。所谓名义重复传输次数K1指的是终端设备针对承载Msg 3的重传的实际重复传输次数。
应理解的是,若该第三DCI包括该上行重复传输的名义重复传输次数K1,那么上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。上述至少一个目标时隙是该第一时隙集合中的时隙。需要说明的是,该第一时隙集合也可以是网络设备向终端设备配置的任一个时隙集合,本申请对如何确定第一时隙集合不做限制。
应理解的是,若第三DCI包括该上行重复传输的实际重复传输次数K2,那么终端设备可以根据网络设备为终端设备配置的重复传输起始位置以及实际重复传输次数K2依次查找到K2个可用时隙。
应理解的是,为了将上述不同可实现方式中的可用时隙进行区分,在可实现方式四种,也可以将可用时隙称为第一时隙。
需要说明的,在可实现方式四中,关于如何确定第一指示信息的长度,可参考可实现方式一中确定第一指示信息长度的方法,本申请对此不再赘述。
下面针对可实现方式五进行说明:
可选的,针对上行传输是一个TB的多时隙传输情况,上述第一指示信息可以携带在用于调度该多时隙传输的第四DCI中。
可选的,该第四DCI中可以包括:多时隙传输包括的用于多时隙传输的时隙个数,该时隙个数可以是名义时隙个数K3或者实际时隙个数K4,K3、K4均为大于1的整数。所谓名义时隙个数K3指的是网络设备为终端设备配置的用于多时隙传输的时隙个数,但是终端设备实际的进行多时隙传输的时隙个数可能小于或等于该名义时隙个数。所谓名义时隙个数K4指的是终端设备针对多时隙传输的实际时隙个数。
应理解的是,若第四DCI包括时隙传输包括的名义上用于多时隙传输的时隙个数K3,那么多时隙传输对应K3个连续时隙,K3个连续时隙构成第二时隙集合。上述至少一个目标时隙是该第二时隙集合中的时隙。需要说明的是,该第二时隙集合也可以是网络设备向终端设备配置的任一个时隙集合,本申请对如何确定第二时隙集合不做限制。
应理解的是,若第四DCI包括多时隙传输包括的实际上用于多时隙传输的时隙个数K4,那么终端设备可以根据网络设备为终端设备配置的多时隙传输起始位置以及实际上用于多时隙传输的时隙个数K4依次查找到K4个可用时隙。
应理解的是,为了将上述不同可实现方式中的可用时隙进行区分,在可实现方式五种,可以将可用时隙称为第二时隙。
可选的,假设上述至少一个目标时隙均为灵活时隙,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个灵活时隙,那么该第一指示信息用于指示该灵活时隙是否用于上述多时隙传输。假设至少一个目标时隙是多个灵活时隙,那么该第一指示信息用于联合指示(即同时指示)这些灵活时隙是否用于上述多时隙传输。
可选的,对于灵活时隙,网络设备可以根据上述多时隙传输在该灵活时隙中的符号来确定该灵活时隙是否用于上述多时隙传输。其中,当网络设备确定上述多时隙传输在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于上述多时隙传输,相反,当网络设备确定上述多时隙传输在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于上述多时隙传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于多时隙传输,不做限制。
可选的,假设至少一个目标时隙是多个灵活时隙,第一指示信息在联合指示这些灵活时隙是否用于多时隙传输时,如果这些灵活时隙中存在至少一个不能用于多时隙传输时,网络设备通过第一指示信息指示这些灵活时隙不可以用于多时隙传输。相反,如果这些灵活时隙全部都能用于多时隙传输时,网络设备通过第一指示信息指示这些灵活时隙可以用于多时隙传输。
(2)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于多时隙传输。
其中,N1是上述至少一个目标时隙的个数。
应理解的是,假设至少一个目标时隙是一个灵活时隙,那么该第一指示信息用于指示该灵活时隙是否用于多时隙传输。假设至少一个目标时隙是多个灵活时隙,那么该第一指示信息中每一比特用于指示对应的目标时隙是否用于多时隙传输。
可选的,对于灵活时隙,网络设备可以根据多时隙传输在该灵活时隙中的符号来确定该灵活时隙 是否用于多时隙传输。其中,当网络设备确定多时隙传输在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于多时隙传输,相反,当网络设备确定多时隙传输在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于多时隙传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于多时隙传输,不做限制。
(3)第一指示信息长度为K3比特,K3比特与K3个连续时隙一一对应。K3比特中每一比特用于指示对应的连续时隙是否用于上行传输。
其中,K3是上述第二时隙集合包括的时隙个数。该第二时隙集合中可以包括以下至少一种时隙:上行时隙、灵活时隙。而第一指示信息中每一比特用于指示对应的连续时隙是否用于上行传输。这里的连续时隙可以是上行时隙或者灵活时隙。可以理解的是,当上述至少一个目标时隙都是灵活时隙时,即这种情况将上行时隙理解为可以用于多时隙传输,因此,针对K3个连续时隙中的任一上行时隙,终端设备不根据第一指示信息确定上行时隙是否用于多时隙传输。而针对K1个连续时隙中的任一灵活时隙,终端设备需要根据第一指示信息确定多时隙传输。
可选的,对于灵活时隙,网络设备可以根据多时隙传输在该灵活时隙中的符号来确定该灵活时隙是否用于多时隙传输。其中,当网络设备确定多时隙传输在该灵活时隙中的符号不是下行符号,那么确定该灵活时隙可以用于多时隙传输,相反,当网络设备确定多时隙传输在该灵活时隙中的符号是下行符号,那么确定该灵活时隙不可以用于多时隙传输。
应理解的是,本申请对网络设备如何确定灵活时隙是否用于多时隙传输,不做限制。
可选的,假设上述至少一个目标时隙均为上行时隙,即这种情况将上行时隙理解为尚未确定是否可以用于目标信道的上行传输,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个上行时隙,那么该第一指示信息用于指示该上行时隙是否用于多时隙传输。假设至少一个目标时隙是多个上行时隙,那么该第一指示信息用于联合指示(即同时指示)这些上行时隙是否用于多时隙传输。
应理解的是,本申请对网络设备如何确定上行时隙是否用于多时隙传输,不做限制。
可选的,假设至少一个目标时隙是多个上行时隙,第一指示信息在联合指示这些上行时隙是否用于多时隙传输时,如果这些上行时隙中存在至少一个不能用于多时隙传输时,网络设备通过第一指示信息指示这些上行时隙不可以用于多时隙传输。相反,如果这些上行时隙全部都能用于多时隙传输时,网络设备通过第一指示信息指示这些上行时隙可以用于多时隙传输。
(2)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于多时隙传输。
其中,N1是上述至少一个目标时隙的个数。
应理解的是,假设至少一个目标时隙是一个上行时隙,那么该第一指示信息用于指示该上行时隙是否用于多时隙传输。假设至少一个目标时隙是多个上行时隙,那么该第一指示信息中每一比特用于指示对应的上行时隙是否用于多时隙传输。
应理解的是,本申请对网络设备如何确定上行时隙是否用于多时隙传输,不做限制。
(3)第一指示信息长度为K3比特,K3比特与K3个连续时隙一一对应。K3比特中每一比特用于指示对应的连续时隙是否用于多时隙传输。
其中,K3是上述第二时隙集合包括的时隙个数。
可选的,假设上述至少一个目标时隙包括上行时隙和灵活时隙,这种情况将上行时隙理解为尚未确定是否可以用于多时隙传输,那么第一指示信息的长度或者占用的比特数可以是任一种,但不限于此:
(1)第一指示信息的长度为1比特。
应理解的是,假设至少一个目标时隙是一个上行时隙或者灵活时隙,那么该第一指示信息用于指示该上行时隙或者上行时隙是否用于多时隙传输。假设至少一个目标时隙包括上行时隙和灵活时隙,那么该第一指示信息用于联合指示(即同时指示)这些时隙是否用于多时隙传输。
应理解的是,本申请对网络设备如何确定灵活时隙用于多时隙传输可参考上文,本申请对此不再赘述,另外,本申请对网络设备如何确定上行时隙是否用于多时隙传输不做限制。
(2)第一指示信息的长度为2比特。其中,2比特分别用于指示上述至少一个目标时隙中的上行时隙是否用于多时隙传输,以及指示上述至少一个目标时隙中的灵活时隙是否用于多时隙传输。
应理解的是,本申请对网络设备如何确定灵活时隙用于多时隙传输可参考上文,本申请对此不再赘述,另外,本申请对网络设备如何确定上行时隙是否用于多时隙传输不做限制。
(3)第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,N1比特中每一比特用于指示对应的目标时隙是否用于上行传输。
其中,N1是上述至少一个目标时隙的个数。
(4)第一指示信息长度为K3比特,K3比特与K3个连续时隙一一对应。K3比特中每一比特用于指示对应的连续时隙是否用于多时隙传输。
其中,K3是上述第二时隙集合包括的时隙个数。
综上,一方面,对于灵活时隙,通过第一指示信息可以指示该灵活时隙是否用于上行传输,从而可以提高资源利用率,此外,对于上行时隙,通过第一指示信息也可以明确指示该上行时隙是否可以用于上行传输。另一方面,本申请提供的第一指示信息可以携带在用于调度上行传输的消息中,而无需使用其他DCI来携带该信息,从而可以防止该信息丢失,而导致网络设备和终端设备对用于上行传输的时隙理解不一致的问题。
需要说明的是,如果用于调度上行传输的消息中未携带第一指示信息,那么终端设备可以根据高层信令TDD-UL-DL-ConfigurationCommon或TDD-UL-DL-ConfigDedicated指示的时隙格式,或者进一步根据其他DCI确定的时隙格式,确定时隙集合中的灵活时隙是否用于上行传输。
图9为本申请实施例提供的另一种无线通信方法的交互流程图,如图9所示,该方法包括如下步骤:
S910:网络设备向终端设备发送第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计。
S920:终端设备根据第一指示信息进行上行传输。
需要说明的是,联合信道估计可以是针对PUSCH的联合信道估计,或者是针对PUCCH的联合信道估计,又或者是针对一个TB的多时隙传输的联合信道估计,本申请对此不做限制。
应理解的是,由于网络设备的联合信道估计会假设多个时隙的DMRS的是相关的,因此,在本申请中,可以将联合信道估计描述为DMRS绑定等,本申请对此不做限制。
需要说明的,关于第一指示信息以及上行传输的解释说明可参考图7对应实施例,本申请对此不再赘述。
图10示出了根据本申请实施例的终端设备1000的示意性框图。该终端设备包括:通信单元1010,用于:接收第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计。根据第一指示信息进行上行传输。
可选的,上行传输是上行重复传输,第一指示信息携带在第一消息中。
可选的,目标信道是目标PUSCH,第一消息是用于调度上行重复传输的第一DCI。
可选的,目标信道是目标PUCCH,第一消息是用于调度PDSCH的第二DCI。
可选的,上行重复传输是承载Msg3的初传的上行重复传输。
可选的,第一消息是Msg2。
可选的,行重复传输是承载Msg3的重传的上行重复传输。
可选的,第一消息是用于调度重传的第三DCI。
可选的,至少一个目标时隙是第一时隙集合中的时隙。
可选的,第一消息还包括:上行重复传输的名义重复传输次数K1,K1为大于1的整数,上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。
可选的,第一消息还包括:上行重复传输的实际重复传输次数K2,K2为大于1的整数。K2次重复传输对应K2个第一时隙,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个第一时隙是上行时隙或者是第一指示信息指示的用于上行重复传输的目标时隙,若第一指示信息用于指示针对上行传输的信道联合估计,则每个第一时隙是上行时隙或者是第一指示信息指示的用于信道联合估计的目标时隙。
可选的,上行传输是一个传输块TB的多时隙传输。
可选的,第一指示信息携带在用于调度多时隙传输的第四DCI中。
可选的,至少一个目标时隙是第二时隙集合中的时隙。
可选的,第四DCI还包括:多时隙传输包括的名义上用于多时隙传输的时隙个数K3,K3为大于1的整数,多时隙传输对应K3个连续时隙,K3个连续时隙构成第二时隙集合。
可选的,第四DCI还包括:多时隙传输包括的实际上用于多时隙传输的时隙个数K4,K4为大于1的整数。多时隙传输对应K4个第二时隙,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个第二时隙是上行时隙或者是第一指示信息指示的用于多时隙传输的目标时 隙,若第一指示信息用于指示针对上行传输的信道联合估计,则每个第二时隙是上行时隙或者是第一指示信息指示的用于信道联合估计的目标时隙。
可选的,第一指示信息长度为1比特。
可选的,第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则N1比特中每一比特用于指示对应的目标时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则N1比特中每一比特用于指示对应的目标时隙是否用于信道联合估计。
可选的,第一指示信息长度为K1比特,K1比特与K1个连续时隙一一对应。若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则K1比特中每一比特用于指示对应的连续时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则K1比特中每一比特用于指示对应的连续时隙是否用于信道联合估计。
可选的,针对K1个连续时隙中的任一上行时隙,终端设备不根据第一指示信息确定上行时隙是否用于上行传输或者不根据第一指示信息确定上行时隙是否用于信道联合估计。
可选的,第一指示信息长度为K3比特,K3比特与K3个连续时隙一一对应。若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则K3比特中每一比特用于指示对应的连续时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则K3比特中每一比特指示对应的连续时隙是否用于信道联合估计。
可选的,针对K3个连续时隙中的任一上行时隙,终端设备不根据第一指示信息确定上行时隙是否用于上行传输或者不根据第一指示信息确定上行时隙是否用于信道联合估计。
可选的,每个目标时隙是灵活时隙或者上行时隙。
可选的,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备1000可对应于本申请方法实施例中的终端设备,并且终端设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图7、图9所示方法中终端设备的相应流程,为了简洁,在此不再赘述。
图11示出了根据本申请实施例的网络设备1100的示意性框图。该终端设备包括:通信单元1110,用于发送第一指示信息,第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示至少一个目标时隙是否用于针对上行传输的信道联合估计。
可选的,上行传输是上行重复传输,第一指示信息携带在第一消息中。
可选的,目标信道是目标PUSCH,第一消息是用于调度上行重复传输的第一DCI。
可选的,目标信道是目标PUCCH,第一消息是用于调度PDSCH的第二DCI。
可选的,上行重复传输是承载Msg3的初传的上行重复传输。
可选的,第一消息是Msg2。
可选的,上行重复传输是承载Msg3的重传的上行重复传输。
可选的,第一消息是用于调度重传的第三DCI。
可选的,至少一个目标时隙是第一时隙集合中的时隙。
可选的,第一消息还包括:上行重复传输的名义重复传输次数K1,K1为大于1的整数,上行重复传输的K1次重复传输对应K1个连续时隙,K1个连续时隙构成第一时隙集合。
可选的,第一消息还包括:上行重复传输的实际重复传输次数K2,K2为大于1的整数。K2次重复传输对应K2个第一时隙,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个第一时隙是上行时隙或者是第一指示信息指示的用于上行重复传输的目标时隙,若第一指示信息用于指示针对上行传输的信道联合估计,则每个第一时隙是上行时隙或者是第一指示信息指示的用于信道联合估计的目标时隙。
可选的,上行传输是一个TB的多时隙传输。
可选的,第一指示信息携带在用于调度多时隙传输的第四DCI中。
可选的,至少一个目标时隙是第二时隙集合中的时隙。
可选的,第四DCI还包括:多时隙传输包括的名义上用于多时隙传输的时隙个数K3,K3为大于1的整数,多时隙传输对应K3个连续时隙,K3个连续时隙构成第二时隙集合。
可选的,第四DCI还包括:多时隙传输包括的实际上用于多时隙传输的时隙个数K4,K4为大于1的整数。多时隙传输对应K4个第二时隙,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个第二时隙是上行时隙或者是第一指示信息指示的用于多时隙传输的目标时隙,若第一指示信息用于指示针对上行传输的信道联合估计,则每个第二时隙是上行时隙或者是第一 指示信息指示的用于信道联合估计的目标时隙。
可选的,第一指示信息长度为1比特。
可选的,第一指示信息长度为N1比特,N1比特与至少一个目标时隙一一对应。N1为大于1的整数,若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则N1比特中每一比特用于指示对应的目标时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则N1比特中每一比特用于指示对应的目标时隙是否用于信道联合估计。
可选的,第一指示信息长度为K1比特,K1比特与K1个连续时隙一一对应。若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则K1比特中每一比特用于指示对应的连续时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则K1比特中每一比特用于指示对应的连续时隙是否用于信道联合估计。
可选的,第一指示信息长度为K3比特,K3比特与K3个连续时隙一一对应。若第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则K3比特中每一比特用于指示对应的连续时隙是否用于上行传输,若第一指示信息用于指示针对上行传输的信道联合估计,则K3比特中每一比特指示对应的连续时隙是否用于信道联合估计。
可选的,每个目标时隙是灵活时隙或者上行时隙。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备1100可对应于本申请方法实施例中的网络设备,并且网络设备1100中的各个单元的上述和其它操作和/或功能分别为了实现图7、图9所示方法中网络设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备1200示意性结构图。图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的终端设备,并且该通信设备1200可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的装置的示意性结构图。图13所示的装置1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,装置1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该装置1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端设备1410和网络设备1420。
其中,该终端设备1410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设 备1420可以用于实现上述方法中由网络设备或者基站实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执 行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (56)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备接收第一指示信息,所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示所述至少一个目标时隙是否用于针对所述上行传输的信道联合估计;
    所述终端设备根据所述第一指示信息进行所述上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述上行传输是上行重复传输,所述第一指示信息携带在第一消息中。
  3. 根据权利要求2所述的方法,其特征在于,所述目标信道是目标物理上行共享信道PUSCH,所述第一消息是用于调度所述上行重复传输的第一下行控制信息DCI。
  4. 根据权利要求2所述的方法,其特征在于,所述目标信道是目标物理上行控制信道PUCCH,所述第一消息是用于调度物理下行共享信道PDSCH的第二DCI。
  5. 根据权利要求2所述的方法,其特征在于,所述上行重复传输是承载消息Msg3的初传的上行重复传输。
  6. 根据权利要求5所述的方法,其特征在于,所述第一消息是Msg2。
  7. 根据权利要求2所述的方法,其特征在于,所述上行重复传输是承载消息Msg3的重传的上行重复传输。
  8. 根据权利要求7所述的方法,其特征在于,所述第一消息是用于调度所述重传的第三DCI。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述至少一个目标时隙是第一时隙集合中的时隙。
  10. 根据权利要求9所述的方法,其特征在于,所述第一消息还包括:所述上行重复传输的名义重复传输次数K1,K1为大于1的整数,所述上行重复传输的K1次重复传输对应K1个连续时隙,所述K1个连续时隙构成所述第一时隙集合。
  11. 根据权利要求2-8任一项所述的方法,其特征在于,所述第一消息还包括:所述上行重复传输的实际重复传输次数K2,K2为大于1的整数;
    K2次重复传输对应K2个第一时隙,若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个所述第一时隙是上行时隙或者是所述第一指示信息指示的用于所述上行重复传输的目标时隙,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则每个所述第一时隙是上行时隙或者是所述第一指示信息指示的用于所述信道联合估计的目标时隙。
  12. 根据权利要求1所述的方法,其特征在于,所述上行传输是一个传输块TB的多时隙传输。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息携带在用于调度所述多时隙传输的第四DCI中。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个目标时隙是第二时隙集合中的时隙。
  15. 根据权利要求14所述的方法,其特征在于,所述第四DCI还包括:所述多时隙传输包括的名义上用于所述多时隙传输的时隙个数K3,K3为大于1的整数,所述多时隙传输对应K3个连续时隙,所述K3个连续时隙构成所述第二时隙集合。
  16. 根据权利要求13所述的方法,其特征在于,所述第四DCI还包括:所述多时隙传输包括的实际上用于所述多时隙传输的时隙个数K4,K4为大于1的整数;
    所述多时隙传输对应K4个第二时隙,若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个所述第二时隙是上行时隙或者是所述第一指示信息指示的用于所述多时隙传输的目标时隙,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则每个所述第二时隙是上行时隙或者是所述第一指示信息指示的用于所述信道联合估计的目标时隙。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述第一指示信息长度为1比特。
  18. 根据权利要求1-16任一项所述的方法,其特征在于,所述第一指示信息长度为N1比特,所述N1比特与所述至少一个目标时隙一一对应,N1为大于1的整数;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述N1比特中每一比特用于指示对应的目标时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述N1比特中每一比特用于指示对应的目标时隙是否用于所述信道联合估计。
  19. 根据权利要求10所述的方法,其特征在于,所述第一指示信息长度为所述K1比特,所述K1比特与所述K1个连续时隙一一对应;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述K1比特 中每一比特用于指示对应的连续时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述K1比特中每一比特用于指示对应的连续时隙是否用于所述信道联合估计。
  20. 根据权利要求19所述的方法,其特征在于,针对所述K1个连续时隙中的任一上行时隙,所述终端设备不根据所述第一指示信息确定所述上行时隙是否用于所述上行传输或者不根据所述第一指示信息确定所述上行时隙是否用于所述信道联合估计。
  21. 根据权利要求15所述的方法,其特征在于,所述第一指示信息长度为所述K3比特,所述K3比特与所述K3个连续时隙一一对应;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述K3比特中每一比特用于指示对应的连续时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述K3比特中每一比特指示对应的连续时隙是否用于所述信道联合估计。
  22. 根据权利要求21所述的方法,其特征在于,针对所述K3个连续时隙中的任一上行时隙,所述终端设备不根据所述第一指示信息确定所述上行时隙是否用于所述上行传输或者不根据所述第一指示信息确定所述上行时隙是否用于所述信道联合估计。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,每个所述目标时隙是灵活时隙或者上行时隙。
  24. 一种无线通信方法,其特征在于,包括:
    网络设备发送第一指示信息,所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示所述至少一个目标时隙是否用于针对所述上行传输的信道联合估计。
  25. 根据权利要求24所述的方法,其特征在于,所述上行传输是上行重复传输,所述第一指示信息携带在第一消息中。
  26. 根据权利要求25所述的方法,其特征在于,所述目标信道是目标PUSCH,所述第一消息是用于调度所述上行重复传输的第一DCI。
  27. 根据权利要求25所述的方法,其特征在于,所述目标信道是目标物理上行控制信道PUCCH,所述第一消息是用于调度PDSCH的第二DCI。
  28. 根据权利要求25所述的方法,其特征在于,所述上行重复传输是承载Msg3的初传的上行重复传输。
  29. 根据权利要求28所述的方法,其特征在于,所述第一消息是Msg2。
  30. 根据权利要求25所述的方法,其特征在于,所述上行重复传输是承载Msg3的重传的上行重复传输。
  31. 根据权利要求30所述的方法,其特征在于,所述第一消息是用于调度所述重传的第三DCI。
  32. 根据权利要求25-31任一项所述的方法,其特征在于,所述至少一个目标时隙是第一时隙集合中的时隙。
  33. 根据权利要求32所述的方法,其特征在于,所述第一消息还包括:所述上行重复传输的名义重复传输次数K1,K1为大于1的整数,所述上行重复传输的K1次重复传输对应K1个连续时隙,所述K1个连续时隙构成所述第一时隙集合。
  34. 根据权利要求25-31任一项所述的方法,其特征在于,所述第一消息还包括:所述上行重复传输的实际重复传输次数K2,K2为大于1的整数;
    K2次重复传输对应K2个第一时隙,若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个所述第一时隙是上行时隙或者是所述第一指示信息指示的用于所述上行重复传输的目标时隙,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则每个所述第一时隙是上行时隙或者是所述第一指示信息指示的用于所述信道联合估计的目标时隙。
  35. 根据权利要求24所述的方法,其特征在于,所述上行传输是一个TB的多时隙传输。
  36. 根据权利要求35所述的方法,其特征在于,所述第一指示信息携带在用于调度所述多时隙传输的第四DCI中。
  37. 根据权利要求36所述的方法,其特征在于,所述至少一个目标时隙是第二时隙集合中的时隙。
  38. 根据权利要求37所述的方法,其特征在于,所述第四DCI还包括:所述多时隙传输包括的名义上用于所述多时隙传输的时隙个数K3,K3为大于1的整数,所述多时隙传输对应K3个连续时隙,所述K3个连续时隙构成所述第二时隙集合。
  39. 根据权利要求36所述的方法,其特征在于,所述第四DCI还包括:所述多时隙传输包括的 实际上用于所述多时隙传输的时隙个数K4,K4为大于1的整数;
    所述多时隙传输对应K4个第二时隙,若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则每个所述第二时隙是上行时隙或者是所述第一指示信息指示的用于所述多时隙传输的目标时隙,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则每个所述第二时隙是上行时隙或者是所述第一指示信息指示的用于所述信道联合估计的目标时隙。
  40. 根据权利要求24-39任一项所述的方法,其特征在于,所述第一指示信息长度为1比特。
  41. 根据权利要求24-39任一项所述的方法,其特征在于,所述第一指示信息长度为N1比特,所述N1比特与所述至少一个目标时隙一一对应,N1为大于1的整数;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述N1比特中每一比特用于指示对应的目标时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述N1比特中每一比特用于指示对应的目标时隙是否用于所述信道联合估计。
  42. 根据权利要求33所述的方法,其特征在于,所述第一指示信息长度为所述K1比特,所述K1比特与所述K1个连续时隙一一对应;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述K1比特中每一比特用于指示对应的连续时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述K1比特中每一比特用于指示对应的连续时隙是否用于所述信道联合估计。
  43. 根据权利要求38所述的方法,其特征在于,所述第一指示信息长度为所述K3比特,所述K3比特与所述K3个连续时隙一一对应;
    若所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输,则所述K3比特中每一比特用于指示对应的连续时隙是否用于所述上行传输,若所述第一指示信息用于指示针对所述上行传输的信道联合估计,则所述K3比特中每一比特指示对应的连续时隙是否用于所述信道联合估计。
  44. 根据权利要求24-43任一项所述的方法,其特征在于,每个所述目标时隙是灵活时隙或者上行时隙。
  45. 一种终端设备,其特征在于,包括:通信单元,用于:
    接收第一指示信息,所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示所述至少一个目标时隙是否用于针对所述上行传输的信道联合估计;
    根据所述第一指示信息进行所述上行传输。
  46. 一种网络设备,其特征在于,包括:
    通信单元,用于发送第一指示信息,所述第一指示信息用于指示至少一个目标时隙是否用于目标信道的上行传输或者用于指示所述至少一个目标时隙是否用于针对所述上行传输的信道联合估计。
  47. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至23中任一项所述的方法。
  48. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求24至44中任一项所述的方法。
  49. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至23中任一项所述的方法。
  50. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求24至44中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至23中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求24至44中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至23中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求24至44中任一项所述的方法。
  55. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至23中任一 项所述的方法。
  56. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求24至44中任一项所述的方法。
PCT/CN2021/093172 2021-05-11 2021-05-11 无线通信方法、终端设备和网络设备 WO2022236717A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180091659.0A CN116830744A (zh) 2021-05-11 2021-05-11 无线通信方法、终端设备和网络设备
PCT/CN2021/093172 WO2022236717A1 (zh) 2021-05-11 2021-05-11 无线通信方法、终端设备和网络设备
US18/498,426 US20240080817A1 (en) 2021-05-11 2023-10-31 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093172 WO2022236717A1 (zh) 2021-05-11 2021-05-11 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/498,426 Continuation US20240080817A1 (en) 2021-05-11 2023-10-31 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022236717A1 true WO2022236717A1 (zh) 2022-11-17

Family

ID=84028731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093172 WO2022236717A1 (zh) 2021-05-11 2021-05-11 无线通信方法、终端设备和网络设备

Country Status (3)

Country Link
US (1) US20240080817A1 (zh)
CN (1) CN116830744A (zh)
WO (1) WO2022236717A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475374A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种通信方法和通信装置
US20200136784A1 (en) * 2017-07-25 2020-04-30 Lg Electronics Inc. Method and apparatus for designing ack/nack channel in wireless communication system
CN111279777A (zh) * 2017-10-26 2020-06-12 Lg电子株式会社 在无线通信系统中根据组公共dci进行操作的方法和装置
CN111436150A (zh) * 2019-01-11 2020-07-21 中国移动通信有限公司研究院 信息传输方法、传输调度方法、终端及网络侧设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200136784A1 (en) * 2017-07-25 2020-04-30 Lg Electronics Inc. Method and apparatus for designing ack/nack channel in wireless communication system
CN111279777A (zh) * 2017-10-26 2020-06-12 Lg电子株式会社 在无线通信系统中根据组公共dci进行操作的方法和装置
CN110475374A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种通信方法和通信装置
CN111436150A (zh) * 2019-01-11 2020-07-21 中国移动通信有限公司研究院 信息传输方法、传输调度方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN116830744A (zh) 2023-09-29
US20240080817A1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2020087509A1 (zh) 无线通信方法、终端设备和网络设备
WO2020063828A1 (zh) 一种随机接入的方法和通信装置
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
CN115413045B (zh) 信息传输方法、终端设备和网络设备
WO2020191679A1 (zh) 随机接入方法、终端设备和网络设备
WO2020034223A1 (zh) Harq信息的传输方法、网络设备和终端设备
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2020124598A1 (zh) 随机接入的方法和设备
WO2022067519A1 (zh) 随机接入方法和终端设备
US20240023095A1 (en) Method for transmitting data channel, terminal device and network device
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20210136834A1 (en) Random Access Method, Terminal Device, and Network Device
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2022099634A1 (zh) 无线通信方法、终端设备和网络设备
WO2022236717A1 (zh) 无线通信方法、终端设备和网络设备
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2023130473A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011396A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023130467A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022036696A1 (zh) 无线通信方法、终端设备和网络设备
WO2021163967A1 (zh) 数据传输方法、终端设备和网络设备
WO2022150991A1 (zh) 无线通信的方法和设备
WO2024103310A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023133878A1 (zh) 资源配置方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091659.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021941292

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021941292

Country of ref document: EP

Effective date: 20231106

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941292

Country of ref document: EP

Kind code of ref document: A1