WO2020063828A1 - 一种随机接入的方法和通信装置 - Google Patents

一种随机接入的方法和通信装置 Download PDF

Info

Publication number
WO2020063828A1
WO2020063828A1 PCT/CN2019/108431 CN2019108431W WO2020063828A1 WO 2020063828 A1 WO2020063828 A1 WO 2020063828A1 CN 2019108431 W CN2019108431 W CN 2019108431W WO 2020063828 A1 WO2020063828 A1 WO 2020063828A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
msg1
transmission parameter
data
wireless device
Prior art date
Application number
PCT/CN2019/108431
Other languages
English (en)
French (fr)
Inventor
吴艺群
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19867588.6A priority Critical patent/EP3855850A4/en
Publication of WO2020063828A1 publication Critical patent/WO2020063828A1/zh
Priority to US17/214,434 priority patent/US20210219350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and a communication device for random access.
  • Wireless cellular networks can provide wireless communication services to terminal equipment by deploying network equipment, such as base stations.
  • Network equipment and terminal equipment can perform data transmission.
  • a terminal device When a terminal device sends data to a network device, it is generally necessary to establish uplink synchronization with the network device.
  • uplink synchronization When uplink synchronization is not established between the terminal device and the network device, it is generally necessary to obtain uplink synchronization through a four-step random access procedure based on competition or a two-step random access procedure before performing uplink data transmission.
  • the present application provides a random access method and communication device, which can enable a network device to flexibly adjust a random access mode adopted by a terminal device, reduce delay, and improve communication efficiency.
  • a method for random access includes: a first wireless device sending instruction information to a second wireless device, where the instruction information is used to indicate a random access mode of the second wireless device, The instruction information is carried in a physical layer control information or a medium access control MAC control unit; the first wireless device receives a first message Msg1 sent during a random access process of the second wireless device.
  • the first wireless device may indicate the random access mode of the second wireless device by sending the instruction information carried by the second wireless device to the non-high-level signaling, where the non-high-level signaling may be physical layer control information.
  • the following control information (downlink control information, DCI) or side link control information (sidelink control information, SCI), or the non-high-level signaling may be a medium access control MAC control unit.
  • the random access method may include two-step random access and four-step random access; or, the random access method may also include Msg1 carrying only a random access preamble or Msg1 carrying only data, or both. Preamble and data of Msg1.
  • the specific random access method adopted by the second wireless device may be determined by the first wireless device according to some factors. For example, the first wireless device may determine which random access mode the second wireless device uses according to the network status or the service type of the second wireless device. Specifically, for example, when the service of the second wireless device has a high delay requirement, the first wireless device may instruct the second wireless device to adopt two-step random access or carry data in Msg1 (or, carry data and random access in Msg1 Into the preamble).
  • the first wireless device can instruct the second
  • the wireless device adopts four-step random access or carries only a random access preamble in Msg1.
  • the non-high-level signaling can indicate the random access mode of the second wireless device in real time.
  • the random access mode of the second wireless device can be indicated according to the real-time load status of the network, thereby improving communication efficiency.
  • the random access manner includes any of the following: sending Msg1 carrying a random access preamble; or sending Msg1 carrying a random access preamble and data; Or, send Msg1 with data.
  • the above-mentioned random access mode can also be understood as the sending mode of Msg1 in the random access process.
  • the random access method may be sending Msg1 carrying a random access preamble.
  • the random access method may also be understood as a four-step random access method, that is, the second wireless device may instruct the first wireless device.
  • the random access method is a four-step random access method.
  • the random access method may be sending Msg1 carrying data, or the random access method may be sending Msg1 carrying both data and random access preambles.
  • These two cases can also be understood as two-step random access methods, that is, The second wireless device may indicate that the random access mode of the first wireless device is a two-step random access mode.
  • the random access method adopted by the second wireless device can be flexibly adjusted according to the real-time load. .
  • the indication information is carried in the physical layer control information or one or more reserved bits in the MAC control unit.
  • the reserved bits in the physical layer control information (such as DCI or SCI) or the MAC control unit can be reasonably used to indicate the message format of Msg1 through the reserved bits (or it can also be referred to as the sending method of Msg1) .
  • a field of 1 or more bits may be added to indicate the message format of Msg1. Therefore, the random access mode of the second wireless device can be flexibly adjusted in real time, and the signaling overhead can also be reduced.
  • the cyclic redundancy check CRC bit of the physical layer control information is scrambled by one of at least two scrambling sequences, and the at least two scramble sequences Different scrambling sequences in the scrambling sequence correspond to different random access modes; the indication information is specifically a scrambling sequence used for scrambling CRC bits of the physical layer control information.
  • the indication information may specifically be a scrambling sequence used by the CRC bits, that is, the message format of Msg1 may be indicated through different CRC scrambling sequences.
  • CRC cyclic redundancy check
  • C-RNTI cell wireless network temporary identifier
  • M-RNTI M- RNTI
  • the C-RNTI or M-RNTI is used to scramble the CRC bits to indicate different random access methods.
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying a random access preamble and data
  • the physical layer controls
  • the information or MAC control unit also carries a random access preamble index, where the random access preamble index is used to determine: the random access preamble and transmission parameter configuration for transmitting data.
  • the random access method when the random access method is instructed to be two-step random access, or the random access method is to send Msg1 carrying a random access preamble and data, control information (such as DCI or SCI) at the physical layer or
  • the MAC control unit carries a random access preamble index, and the random access preamble index can be used to determine: a random access preamble and a transmission parameter configuration (that is, a transmission parameter configuration for transmitting data).
  • a transmission parameter configuration that is, a transmission parameter configuration for transmitting data.
  • the second wireless device may determine the transmission parameter configuration according to the random access preamble index and the corresponding relationship, and according to the transmission parameter configuration and the random access Enter the leading index to generate Msg1.
  • the second wireless device may The random access preamble index determines multiple transmission parameter configurations corresponding to the random access preamble index, and then selects a transmission parameter configuration from the multiple transmission parameter configurations to transmit data in Msg1 according to a predetermined rule or randomly. .
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying a random access preamble and data
  • the physical layer controls
  • the information or MAC control unit also carries a random access preamble index and an index of transmission parameter configuration, and the index of transmission parameter configuration indicates one or more transmission parameter configurations for transmitting data.
  • the random access method when the random access method is instructed to be two-step random access, or the random access method is to send Msg1 carrying a random access preamble and data, control information (such as DCI or SCI) at the physical layer or
  • the MAC control unit carries a random access preamble index and an index of transmission parameter configuration, and determines a random access preamble and transmission parameter configuration according to the random access preamble index and the index of transmission parameter configuration. For example, if the index of the transmission parameter configuration only indicates one transmission parameter configuration, it is determined that the transmission parameter configuration for transmitting Msg1 data is the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the index of the transmission parameter configuration indicates multiple transmission parameter configurations (or a set of transmission parameter configurations), and there is a one-to-many correspondence between the random access preamble index and the transmission parameter configuration, so the second wireless device may
  • the random access preamble index and the corresponding relationship determine multiple transmission parameter configurations, and determine the transmission parameter configuration for transmitting the foregoing data from the multiple transmission parameter configurations, and then, according to the determined transmission parameter configuration, random access
  • the leading index is generated to generate Msg1, which can ensure communication reliability.
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying data, the physical layer control information or the MAC control unit It also carries an index of transmission parameter configuration, where the index of transmission parameter configuration is used to indicate one or more transmission parameter configurations for transmitting data.
  • the first wireless device notifies the second wireless device of an index of transmission parameter configuration through the physical layer control information or the MAC control unit, and the second wireless device determines one or more transmissions for transmitting data according to the index of the transmission parameter configuration.
  • Parameter configuration In an embodiment, the index of the transmission parameter configuration only indicates one transmission parameter configuration, and the second wireless device directly uses the transmission parameter configuration indicated by the index of the transmission parameter configuration to transmit the data in Msg1. In another embodiment, the index of the transmission parameter configuration indicates a plurality of transmission parameter configurations, and the second wireless device determines (eg, randomly determines) a transmission parameter configuration from the plurality of transmission parameter configurations to transmit the data in Msg1 .
  • Each transmission parameter configuration includes, for example, the configuration of one or more of transmission parameters such as time-frequency resources, transmission waveforms, modulation and coding modes, and signature sequences. This can save the signaling overhead caused by the configuration of the transmission parameters used to notify the transmission of data.
  • the transmission parameter configuration for transmitting data includes configuration of at least one of the following transmission parameters: time-frequency resources of data, transmission waveform, modulation and coding mode, and hybrid Automatic retransmission request HARQ process number, reference signal, signature sequence.
  • the transmission parameter configuration for transmitting data indicates configuration information of transmission parameters related to the transmission data, and the specific name does not limit the protection scope of the present application.
  • a method for random access includes: a second wireless device acquiring instruction information sent by the first wireless device, where the instruction information is used to indicate a random access manner of the second wireless device Wherein, the instruction information is carried in a physical layer control information or a medium access control MAC control unit; according to the instruction information, the second wireless device sends a first message Msg1 to the first wireless device.
  • the second wireless device can confirm the random access mode through the received instruction information, which can be carried in non-high-level signaling, where the non-high-level signaling can be physical layer control information, such as DCI Or SCI, or the non-high-level signaling may be a medium access control MAC control unit.
  • the random access method may include two-step random access and four-step random access, or the random access method may also include content carried in Msg1 during the random access process (for example, only carrying a random access preamble or Only carry data, or carry both random access preamble and data, etc.).
  • the random access method that the second wireless device specifically adopts may be determined by the first wireless device and notified to the second wireless device according to some factors.
  • the first wireless device may determine which random access mode the second wireless device uses according to the network status or the service type of the second wireless device. Specifically, for example, when the service of the second wireless device has a high delay requirement, the first wireless device may instruct the second wireless device to adopt two-step random access or carry data in Msg1 (or, carry data and random access in Msg1) Into the preamble). Or, for another example, when the network is congested, using two-step random access will increase the interference between the devices, making the network congestion more serious, so it is more suitable to use four-step random access, so the first wireless device can instruct the second The wireless device adopts four-step random access or carries only a random access preamble in Msg1.
  • the non-high-level signaling can indicate the random access mode of the second wireless device in real time. For example, the random access mode of the second wireless device can be indicated according to the real-time load status of the network, thereby improving communication efficiency.
  • the sending, by the second wireless device, the Msg1 to the first wireless device according to the instruction information includes: according to the instruction information, the The second wireless device sends Msg1 carrying a random access preamble to the first wireless device; or, according to the instruction information, the second wireless device sends a random access preamble and data to the first wireless device. Msg1; or, according to the instruction information, the second wireless device sends Msg1 carrying data to the first wireless device.
  • the random access mode can also be understood as the sending mode of Msg1 in the random access process.
  • the random access method may be sending Msg1 with a random access preamble.
  • the random access method may also be understood as a four-step random access method, that is, the second wireless device may indicate that the random access method of the first wireless device is Four-step random access method.
  • the random access method may be sending Msg1 carrying data, or the random access method may be sending Msg1 carrying both data and random access preambles.
  • These two cases can also be understood as two-step random access methods, that is,
  • the second wireless device may indicate that the random access mode of the first wireless device is a two-step random access mode.
  • the indication information is carried in the physical layer control information or one or more reserved bits in the MAC control unit.
  • the reserved bits in the physical layer control information (such as DCI or SCI) or the MAC control unit can be reasonably used to indicate the message format of Msg1 through the reserved bits. For example, a field of 1 or more bits may be added to indicate the message format of Msg1. Therefore, the random access mode of the second wireless device can be flexibly adjusted in real time, and the signaling overhead can also be reduced.
  • the acquiring, by the second wireless device, the instruction information sent by the first wireless device includes: determining a cyclic redundancy check CRC bit of the physical layer control information at The scrambling sequence used during scrambling, the indication information is specifically the determined scrambling sequence; and according to the indication information, the second wireless device sends Msg1 to the first wireless device, including : According to the random access mode corresponding to the determined scrambling sequence, the second wireless device sends Msg1 to the first wireless device.
  • the second device may determine what kind of random access corresponds to the determined scrambling sequence according to a correspondence between a preset or pre-configured CRC scrambling sequence and a random access mode. the way. In the correspondence between the CRC scrambling sequence and the random access mode, there are at least two different CRC scrambling sequences, and different kinds of CRC scrambling sequences correspond to different random access modes.
  • the indication information may specifically be a CRC scrambling sequence, that is, Msg1 may be determined according to the correspondence between the CRC scrambling sequence and the access mode, and the CRC scrambling sequence used by the received physical layer control information.
  • Message format or Msg1 sending method.
  • CRC bits are generally scrambled with C-RNTI, then another scrambling sequence can be added, such as M-RNTI (Messsage1-RNTI). These two scrambling sequences correspond to a random access method.
  • -RNTI or M-RNTI to scramble the CRC bits, thereby indicating different random access methods.
  • the second wireless device may determine the corresponding random access mode according to the CRC scrambling sequence in the control information.
  • the indication information specifically indicates that the random access mode is sending Msg1 carrying a random access preamble and data, and the physical layer control information or the MAC control unit further Carrying a random access preamble index; the method further comprises: determining a transmission parameter configuration for transmitting data associated with the random access preamble index according to the random access preamble index; and according to the instruction information
  • the sending, by the second wireless device, the Msg1 to the first wireless device includes: sending, by the second wireless device, the Msg1 to the first wireless device according to the determined transmission parameter configuration for transmitting data. Data.
  • the random access method when the random access method is instructed to be two-step random access, or the random access method is to send Msg1 carrying a random access preamble and data, control information (such as DCI or SCI) at the physical layer or
  • the MAC control unit carries a random access preamble index, and determines a transmission parameter configuration for transmitting data in Msg1 according to a correspondence between the random access preamble index and the transmission parameter configuration for transmitting data. For example, there is a one-to-one correspondence between the random access preamble index and the transmission parameter configuration, so the second wireless device may determine the transmission parameter configuration according to the random access preamble index and the corresponding relationship, and according to the transmission parameter configuration and the random access Enter the leading index to generate Msg1.
  • the second wireless device may The random access preamble index determines multiple transmission parameter configurations corresponding to the random access preamble index, and then selects a transmission parameter configuration from the multiple transmission parameter configurations to transmit data in Msg1 according to a predetermined rule or randomly. .
  • the indication information specifically indicates that the random access mode is sending Msg1 carrying a random access preamble and data, the physical layer control information or a MAC control unit It also carries a random access preamble index and an index of transmission parameter configuration, where the index of the transmission parameter configuration indicates one or more transmission parameter configurations for transmitting data; and according to the indication information, the second wireless device sends the
  • the sending, by the first wireless device, Msg1 includes: sending, by the second wireless device, the Msg1 in the Msg1 to the first wireless device according to a transmission parameter configuration for data transmission indicated by an index of the transmission parameter configuration. data.
  • determining a transmission parameter configuration for transmitting data in Msg1 includes: determining a transmission parameter configuration for transmitting the data among a plurality of transmission parameter configurations indicated by an index of the transmission parameter configuration.
  • multiple transmission parameter configurations can be determined according to the index of the transmission parameter configuration, and the transmission parameter configuration for transmitting the data in the Msg1 can be determined from the multiple transmission parameter configuration, and then the transmission parameter configuration can be configured according to the transmission parameter configuration.
  • the index of the random access preamble index generates Msg1, which can ensure communication reliability.
  • the indication information specifically indicates that the random access mode is sending Msg1 carrying data
  • the physical layer control information or the MAC control unit also carries transmission parameter configuration An index of the transmission parameter configuration indicating one or more transmission parameter configurations for transmitting data
  • the second wireless device sending Msg1 to the first wireless device includes: Sending, by the second wireless device, the data in the Msg1 to the first wireless device according to the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the first wireless device notifies the second wireless device of an index of transmission parameter configuration through the physical layer control information or the MAC control unit, and the second wireless device determines one or more transmissions for transmitting data according to the index of the transmission parameter configuration.
  • Parameter configuration In an embodiment, the index of the transmission parameter configuration only indicates one transmission parameter configuration, and the second wireless device directly uses the transmission parameter configuration indicated by the index of the transmission parameter configuration to transmit the data in Msg1.
  • a plurality of transmission parameter configurations may be determined according to an index of the transmission parameter configuration, and the second wireless device determines (eg, randomly determines) a transmission parameter configuration from the plurality of transmission parameter configurations to transmit the Msg1. The data.
  • Each transmission parameter configuration includes, for example, a configuration that determines one or more of transmission parameters such as time-frequency resources of data, transmission waveforms, modulation and coding modes, and signature sequences. This can save the signaling overhead caused by the configuration of the transmission parameters used to notify the transmission of data.
  • the transmission parameter configuration for transmitting data includes configuration of at least one of the following transmission parameters: time-frequency resources of data, transmission waveforms, modulation and coding modes, and hybrid Automatic retransmission request HARQ process number, reference signal, signature sequence.
  • a communication device including each module or unit for performing the method in any one of the possible implementation manners of the first aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the first aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a communication device including each module or unit for performing the method in any one of the possible implementation manners of the second aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the possible implementation manners of the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input / output interface.
  • the communication device is a chip configured in a terminal device.
  • the communication interface may be an input / output interface.
  • the transceiver may be a transceiver circuit.
  • the input / output interface may be an input / output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is configured to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Method.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • An input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • a signal output by the output circuit may be, for example, but not limited to, output to and transmitted by a transmitter
  • the circuits may be the same circuit, which are used as input circuits and output circuits respectively at different times.
  • the embodiments of the present application do not limit specific implementations of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver and transmit signals through a transmitter to execute the first aspect or the second aspect and any possible implementation manner of the first aspect or the second aspect Methods.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory is separately provided from the processor.
  • the memory may be a non-transitory memory, such as a read-only memory (ROM), which may be integrated on the same chip as the processor, or may be separately set in different On the chip, the embodiment of the present application does not limit the type of the memory and the way of setting the memory and the processor.
  • ROM read-only memory
  • sending instruction information may be a process of outputting instruction information from a processor
  • receiving capability information may be a process of receiving input capability information by a processor.
  • the processed output data can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the above eighth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor When implemented, the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes a computer program (also referred to as code or instructions), and when the computer program is executed, causes a computer to execute the first aspect or the first aspect.
  • a computer program product includes a computer program (also referred to as a code or an instruction).
  • the communication device executes the first aspect. Or the second aspect and the method in any one of the first aspect or the second aspect.
  • a computer-readable medium stores a computer program (also referred to as code, or instructions) that when run on a computer, causes the computer to execute the first aspect or The second aspect and the method in any of the first aspect or any possible implementation manner of the second aspect.
  • a computer program also referred to as code, or instructions
  • a communication system including the foregoing network device (that is, an example of a first wireless device) and a terminal device (that is, an example of a second wireless device).
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is another schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a four-step random access process
  • FIG. 4 is a schematic flowchart of a two-step random access process applicable to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a non-contention-based random access process
  • FIG. 6 is a schematic interaction diagram of a random access method according to an embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of a random access method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a bit field of a DCI applicable to an embodiment of the present application.
  • FIG. 9 is a schematic interaction diagram of a random access method according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a MAC protocol data unit format applicable to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a MAC control unit applicable to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • 5G 5th generation
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long-term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interconnected microwave access system Access
  • V2X vehicle to vehicle
  • V2I vehicle to roadside infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network
  • FIG. 1 is a schematic diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device, such as network device 111 shown in FIG. 1, and the wireless communication system 100 may further include at least one terminal device, such as terminal device 121 shown in FIG. 1.
  • the terminal device 123 To the terminal device 123. Both network equipment and terminal equipment can be configured with multiple antennas, and network equipment and terminal equipment can use multi-antenna technology to communicate.
  • the network device may serve as the first wireless device, and the terminal device may serve as the second wireless device.
  • the network device can manage one or more cells, and a cell can have an integer number of terminal devices.
  • the network device 111 and the terminal device 121 to the terminal device 123 form a single-cell communication system. Without loss of generality, the cell is recorded as cell # 1.
  • the network device 111 may be a network device in the cell # 1, or in other words, the network device 111 may serve terminal devices (for example, the terminal device 121) in the cell # 1.
  • a cell can be understood as an area within a wireless signal coverage area of a network device.
  • FIG. 2 is another schematic diagram of a wireless communication system 200 applicable to an embodiment of the present application.
  • the wireless communication system 200 includes a plurality of terminal devices, such as the terminal device 124 to the terminal device 126 in FIG. 2.
  • the terminal device 124 to the terminal device 126 can communicate directly.
  • the terminal device 124 and the terminal device 125 may send data to the terminal device 126 separately or simultaneously.
  • the terminal device 124 may serve as the first wireless device
  • the terminal device 125 or the terminal device 126 may serve as the second wireless device.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the network equipment includes, but is not limited to: a base station (BS), an evolved Node B (eNB), a radio network controller (RNC), a node B (Node B, NB), and a base station Controller (base station controller, BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit (BBU), wireless fidelity (wireless fidelity, WIFI) access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc.
  • BS base station
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station Controller
  • BTS base transceiver station
  • home base station e.g., home NodeB, or home NodeB, HNB
  • BBU baseband unit
  • AP
  • 5G such as NR, gNB in the system, or transmission point (TRP or TP), one or a group of base stations (including multiple antenna panels) in 5G systems, or it can also be Network nodes that make up a gNB or transmission point, such as a baseband unit (BBU) or a distributed unit (DU).
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • RLC wireless chain Functions of radio control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in an access network (RAN), or the CU can be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN access network
  • CN core network
  • the terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiments of the present application may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, or an augmented reality (AR) terminal.
  • Equipment wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiment of the present application does not limit the application scenario.
  • a process in which a network device (for example, a base station) sends data to a terminal device is called downlink data transmission, and a process in which a terminal device sends data to a base station is called uplink data transmission.
  • a terminal device performs data transmission, it is generally necessary to establish uplink synchronization with the network device.
  • the terminal equipment and the network equipment have not established uplink synchronization, they need to establish uplink synchronization with the network equipment through a random access procedure.
  • Typical application scenarios of the random access process include: initial access, handover, out-of-sync, positioning, beam failure recovery, and so on.
  • this application proposes a random access method, which can enable a network device to flexibly adjust a random access mode adopted by a terminal device according to a real-time load, thereby improving communication performance.
  • One random access method is four-step random access.
  • the four-step random access is only a name used to indicate a random access method, and the specific name does not limit the scope of the embodiments of the present application.
  • Four-step information interaction (Msg1, Msg2, Msg3, Msg4) is required between the terminal device and the network device.
  • the basic flow of the four-step random access process is shown in Figure 3.
  • the network device may send random access configuration information (for example, carried in high-level signaling) or a physical downlink control channel (PDCCH) to the device to facilitate the terminal device.
  • random access configuration information for example, carried in high-level signaling
  • PDCCH physical downlink control channel
  • step 1 the terminal device sends a random access preamble (also referred to as a first message (Msg1)) to the network device.
  • a random access preamble also referred to as a first message (Msg1)
  • Msg1 a first message
  • Step 2 The network device sends a random access response (RAR) to the terminal device, which is also called a second message (Msg2). Specifically, after detecting the random access preamble, the network device sends Msg2 to the terminal device.
  • Msg2 may include information such as an index of a random access preamble, timing advance command (timing advance command), uplink resource allocation, and temporary identification of a cell wireless network.
  • Step 3 The terminal device sends a third message (Msg3) to the network device. Specifically, after receiving the Msg2, the terminal device first adjusts the uplink timing according to the timing advance instruction, and sends an uplink message on the allocated uplink resource according to its instruction, which is also called Msg3. If multiple terminal devices select the same random access preamble in step 1, a conflict will occur. For example, the random access preamble of one terminal device among the multiple terminal devices is correctly received by the network device, the network device sends Msg2 to the terminal device, and the multiple terminal devices can all receive the Msg2. The multiple terminal devices cannot determine, through Msg2, which terminal device receives the random access preamble of the terminal device. At this time, these terminal devices may all receive Msg2 and send Msg3 respectively. Therefore, Msg3 includes the unique identification of the terminal device and is used to resolve subsequent conflicts.
  • Msg3 includes the unique identification of the terminal device and is used to resolve subsequent conflicts.
  • Step 4 The network device sends a conflict resolution to the terminal device. Specifically, the network device receives the Msg3 of the terminal device, and returns a conflict resolution message, also referred to as a fourth message (Msg4), to the successfully accessed terminal device.
  • Msg4 a conflict resolution message
  • the network device will carry the unique identifier in Msg3 in the conflict resolution message to specify the terminal device that has successfully accessed, and other terminal devices that have not successfully accessed will re-initiate random access.
  • the terminal device can send the random access preamble and data at the same time in Msg1, so that it is not necessary to send Msg3 and Msg4 mentioned in FIG. 3.
  • Two-step random access can reduce latency and signaling overhead. Since the random access process includes only two steps, it can be called two-step random access. Similarly, the two-step random access is only a name used to indicate a random access method, and the specific name does not limit the scope of the embodiments of the present application.
  • Figure 4 shows a schematic diagram of two-step random access. As shown in Figure 4, two-step random access includes two steps.
  • Step 1 The terminal device sends a random access preamble and data to the network device, that is, the terminal device sends a Msg1 to the network device, and the Msg1 includes the random access preamble and data.
  • Step 2 The network device sends a random access response to the terminal device.
  • the non-contention-based random access process mainly includes two steps.
  • a non-contention-based random access process is shown in Figure 5.
  • Step 1. The terminal device sends a random access preamble, also called Msg1, to the network device.
  • Msg1 random access preamble
  • the random access preamble is dedicated to the terminal device, so there is no conflict.
  • Step 2 The network device sends a random access response to the terminal device, which is also called Msg2.
  • the terminal device receives random access configuration information or a physical downlink control channel (PDCCH) instruction sent by the network device to determine the sequence and time-frequency resources of the random access preamble. , Power configuration and other information.
  • PDCCH physical downlink control channel
  • DCI Downlink control information
  • the information carried by the PDCCH is called downlink control information (downlink control information).
  • DCI can be used to send information such as downlink or uplink scheduling, resource allocation, power control, and retransmission instructions.
  • the DCI may indicate terminal-level information, and may be scrambled using a cell wireless network temporary identifier (C-RNTI). Alternatively, DCI may also indicate cell-level information. You can use system information wireless network temporary identifier (SI-RNTI), paging wireless network temporary identifier (P-RNTI). ), Random access wireless network temporary identifier (RA-RNTI), and other scrambling.
  • SI-RNTI system information wireless network temporary identifier
  • P-RNTI paging wireless network temporary identifier
  • RA-RNTI Random access wireless network temporary identifier
  • time-frequency resources may include resources in the time domain and resources in the frequency domain.
  • the time-frequency resource may include one or more time-domain units (or may also be referred to as a time unit), and in the frequency domain, the time-frequency resource may include a frequency-domain unit.
  • a time-domain unit (also referred to as a time unit) may be a symbol, or a mini-slot, or a slot, or a subframe, where a sub-frame
  • the duration of a frame in the time domain can be 1 millisecond (ms).
  • a time slot consists of 7 or 14 symbols.
  • a mini time slot can include at least one symbol (for example, 2 symbols or 7 symbols or 14 symbols). Symbol, or any number of symbols less than or equal to 14 symbols).
  • the above-mentioned time-domain unit size is merely for the convenience of understanding the scheme of the present application, and the limitation of the present application should not be understood. It can be understood that the above-mentioned time-domain unit size may be other values, and is not limited in this application.
  • a frequency domain unit may be a resource block (RB), a resource block group (RBG), or a predefined subband.
  • data or “information” may be understood as bits generated after the information block is encoded, or “data” or “information” may also be understood as modulation symbols generated after the information block is encoded and modulated.
  • the terminal device only sends a random access preamble in Msg1".
  • This description is relative to the uplink data, that is, among the uplink data and the random access preamble, the terminal device only carries the random access preamble in Msg1 and does not carry the uplink data. Therefore, “the terminal device only sends the random access preamble in Msg1” does not mean that the terminal device only carries the random access preamble in Msg1 and does not carry other signals. Similarly, "the terminal device only sends data in Msg1".
  • the terminal device only carries the uplink data in Msg1 and does not carry the random access preamble. Therefore, "the terminal device only sends data in Msg1" does not mean that the terminal device only carries data and does not carry other signals in Msg1, for example, demodulation reference signal (DMRS), sounding reference signal (sounding reference signal) , SRS) and so on.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • Msg1 includes a random access preamble
  • Msg1 includes data
  • Msg1 includes a random access preamble and data
  • the data carried in Msg1 can be understood as the uplink data sent by the terminal device to the network device.
  • the "protocol” may refer to standard protocols in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols used in future communication systems, which is not limited in this application. .
  • pre-acquisition may include indication or pre-definition by network device signaling, for example, protocol definition.
  • pre-defined can be achieved by pre-saving corresponding codes, forms, or other methods that can be used to indicate related information in devices (for example, terminal devices and network devices), and this application does not make specific implementations thereof. limited.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and / or B can represent: the case where A exists alone, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one (a) of a, b, and c may represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B, and c, where a, b, and c can be single or multiple.
  • the random access method provided in this application may be applicable to a wireless communication system, for example, the system 100 shown in FIG. 1 or the system 200 shown in FIG. 2.
  • the first wireless device may be the network device 111 in the system 100 shown in FIG. 1, or the terminal device 124 in the system 200 shown in FIG. 2; the second wireless device may be the system 100 shown in FIG. 1.
  • Any one or more of the terminal device 121 to terminal device 123 in FIG. 2 may also be the terminal device 125 and / or the terminal device 126 in the system 200 shown in FIG. 2.
  • the first wireless device is a network device # 1
  • the second wireless device is a terminal device # 1
  • the interaction process between the terminal device # 1 and the network device # 1 is used as an example to describe the application in detail.
  • the terminal device # 1 may be in a wireless communication system with one or more network devices, or the terminal device # 1 may be any terminal device having a wireless connection relationship with the terminal device. It can be understood that any terminal device in the wireless communication system can implement wireless communication based on the same technical solution. This application does not limit this.
  • FIG. 6 is a schematic interaction diagram of a random access method 200 provided by an embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 200 may include steps 210 and 220:
  • the network device # 1 sends instruction information to the terminal device # 1, where the instruction information is used to indicate the random access mode of the terminal device # 1, and the instruction information is carried in control information or a medium access control MAC control unit;
  • the terminal device # 1 sends Msg1 in the random access process to the network device # 1.
  • the method 200 is described in detail below with reference to FIG. 6.
  • the control information or medium access control (MAC) layer can be understood as non-high-level signaling.
  • Non-high-level signaling is relative to high-level signaling.
  • High-level signaling may refer to signaling sent by a higher-level protocol layer, and the high-level protocol layer is at least one protocol layer in each protocol layer above the MAC layer.
  • the high-level signaling may refer to a broadcast message or a radio resource control (RRC) dedicated to a terminal device.
  • RRC radio resource control
  • the network device # 1 indicates the random access mode of the terminal device # 1 through non-high-level signaling (for example, DCI or MAC control unit).
  • the non-high-level signaling may be a MAC control unit, or the non-high-level signaling may be control information, such as DCI or sidelink control information (SCI).
  • the random access method includes: sending Msg1 carrying a random access preamble (that is, terminal device # 1 only carries a random access preamble in Msg1); or sending Msg1 carrying a random access preamble and data (i.e., , Terminal device # 1 carries the random access preamble and data in Msg1); or, sends Msg1 carrying the data (ie, terminal device # 1 only carries data in Msg1).
  • the random access method may include a sending method of Msg1 in the random access process of terminal device # 1.
  • sending method of Msg1 and “message format of Msg1” are consistent , Or rather, replaceable.
  • This sending method includes three possible forms. One is that the Msg1 sent during the random access process of the terminal device # 1 includes only a random access preamble; the other is that the Msg1 sent during the random access process of the terminal device # 1. It includes both the random access preamble and data; one is that Msg1 sent during the random access process of terminal device # 1 includes only data.
  • the network device # 1 may determine one of the three possible forms described above, or two of the three possible forms, as the random access mode of the terminal device # 1.
  • the random access method may also include the aforementioned four-step random access and two-step random access, that is, the network device # 1 indicates that the random access method of the terminal device # 1 is four-step random access through the instruction information. , Or a two-step random access method.
  • the sending mode of Msg1 may be further indicated. For example, it may be indicated that the Msg1 sent during the random access process of the terminal device # 1 includes both the random access preamble and the data, or the Msg1 sent during the random access process of the terminal device # 1 includes only data.
  • the network device # 1 indicates the terminal device # 1.
  • the random access method is two-step random access.
  • the foregoing indication or determination of the random access mode may also be understood as indicating or determining the Msg1 message format in the first step in the random access process.
  • the random access mode of the terminal device # 1 may be determined first. Specifically, the network device # 1 may determine which random access method the terminal device # 1 uses according to the network status or the service type of the terminal device # 1. For example, when the service of terminal device # 1 has a higher latency requirement, network device # 1 may instruct terminal device # 1 to adopt two-step random access. Or, for another example, when the network is congested, using two-step random access will increase the interference between terminal devices, making the network congestion more serious, so it is more suitable to use four-step random access, so network device # 1 can indicate the terminal Device # 1 uses four-step random access. Specifically, how the network device # 1 determines what kind of random access mode the terminal device # 1 uses is not limited in this embodiment of the present application.
  • the instruction information is carried in the DCI or MAC control unit to explain how the network device # 1 instructs the random access mode of the terminal device # 1, respectively.
  • FIG. 7 shows a schematic interaction diagram of a random access method 300 according to an embodiment of the present application.
  • the method 300 includes steps 310 to 330, and each step is described in detail below.
  • Network device # 1 sends DCI to terminal device # 1.
  • the DCI is used to notify the terminal device # 1 to perform a random access process, and indicate the random access mode of the terminal device # 1.
  • the network device # 1 can instruct the terminal device # 1 to adopt a random access method through DCI, so it is convenient for the network device # 1 to flexibly adjust the random access method used by the terminal device # 1 according to the real-time load.
  • using DCI to instruct the terminal device # 1 to use a random access method can further reduce signaling delay and improve communication efficiency.
  • the following specifically describes how to instruct the terminal device # 1 to adopt a random access method through DCI.
  • the DCI includes control information and corresponding cyclic redundancy check (CRC) bits, and the control information includes multiple bit fields.
  • FIG. 8 is a schematic diagram of a bit field of a DCI applicable to an embodiment of the present application. It can be seen from FIG. 8 that the control information includes field 1, field 2,..., Field N. Therefore, in the embodiment of the present application, when the random access mode of the terminal device # 1 is indicated through the DCI, at least the following two modes can be adopted: adding a field or a CRC scrambling sequence. The two methods are described in detail below.
  • a field may be added on the basis of the PDCCH instruction, and the added field is used to indicate the random access mode of the terminal device # 1.
  • the length of the DCI after adding the field and the DCI before adding may be the same or different.
  • the network device # 1 when the network device # 1 sends a DCI to the terminal device # 1, the network device # 1 indicates a random access mode of the terminal device # 1 by using one or more reserved bits in the DCI.
  • the reserved bit in the DCI indicates the random access mode of the terminal device # 1, so that the DCI after the addition of the field has the same length as the DCI before the addition, thereby reducing the number of blind detections of the PDCCH.
  • the terminal device does not know which format of the DCI the PDCCH carries, nor does it know which PDCCH candidate the DCI uses for transmission, so the terminal device will perform blind PDCCH detection to receive Corresponding DCI.
  • the specific format of the DCI used to indicate the random access mode is not limited in the embodiment of the present application.
  • it can be DCI format 1_0, DCI format 1_1, and so on.
  • the information field (filed) of the DCI format 1_0 for example, a reserved bit in the DCI format 1_0 may be used to indicate the random access method.
  • the DCI currently used to indicate the random access process has 10 reserved bits, and one or more of the reserved bits can be used to indicate the random access mode of the terminal device # 1. Take the sending mode of Msg1 during the random access process of the network device # 1 instructing the terminal device # 1 as an example for description.
  • a 1-bit field is added to indicate the sending mode of Msg1.
  • 0 corresponds to Msg1 sending only random access preamble
  • 1 corresponds to Msg1 sending random access preamble and data.
  • 1 corresponds to Msg1 sending only random access preamble
  • 0 corresponds to Msg1 sending random access preamble and data.
  • 0 corresponds to Msg1 sending only the random access preamble
  • 1 corresponds to Msg1 sending only data.
  • 1 corresponds to Msg1 sending only the random access preamble
  • 0 corresponds to Msg1 sending only data. It should be understood that specific instructions are not limited in the embodiments of the present application.
  • Another possible implementation manner is to add a 2-bit field to indicate the sending mode of Msg1.
  • 00 corresponds to Msg1 sending only random access preamble
  • 01 corresponds to Msg1 sending random access preamble and data
  • 10 corresponds to Msg1 sending only data.
  • 01 corresponds to Msg1 sending only random access preamble
  • 10 corresponds to Msg1 sending random access preamble and data
  • 00 corresponds to Msg1 sending only data. It should be understood that specific instructions are not limited in the embodiments of the present application.
  • the added fields can be used to indicate the random access mode of the terminal device # 1 (such as the transmission method of Msg1), and can also indicate the scheduling information of Msg1 data (that is, the transmission used to transmit data)
  • Msg1 data that is, the transmission used to transmit data
  • An example of parameter configuration For example, data in time-frequency resources, transmission waveforms, modulation and coding methods, hybrid automatic repeat request (HARQ) process index, new data indication, redundant version, reference signal, power control indication and other transmission parameters.
  • HARQ hybrid automatic repeat request
  • One or more types of configuration information are used.
  • the reserved bits because there are fewer reserved bits, only a part of the scheduling information may be included, and then other messages may be pre-configured through high-level signaling.
  • the corresponding fields can be compressed.
  • the modulation and coding mode is indicated by 5 bits.
  • the terminal device # 1 may also be notified through high-level signaling such as radio resource control (RRC), indicating the meaning of the corresponding bit field in the DCI.
  • RRC radio resource control
  • the meaning of the bit field in the DCI may be determined by an information unit in high-level signaling.
  • the RRC configuration message includes an information element PUSCHInMsg1, and the information element PUSCHInMsg1 is used to indicate whether data can be sent at Msg1.
  • the terminal device # 1 judges that data can be sent in Msg1 according to PUSCHInMsg1, the corresponding bit field in the DCI is understood as a bit field used for random access mode indication, otherwise these bits are considered as reserved bits.
  • the network device # 1 indicates a random access manner of the terminal device # 1 through a CRC scrambling sequence of the DCI.
  • the CRC bits of DCI are scrambled by C-RNTI.
  • the C-RNTI is an identity assigned by the network device # 1 to the terminal device # 1, and different terminal devices # 1 use different C-RNTIs.
  • the terminal device # 1 determines whether the DCI is used to indicate the terminal device # 1 according to whether the CRC bit is scrambled by the C-RNTI.
  • another RNTI may be allocated to the terminal device # 1, and for the difference, it is recorded as M-RNTI (Messsage1-RNTI), so that a flexible indication of a random access process can be achieved through a CRC scrambling sequence of DCI.
  • Terminal device # 1 determines the CRC scrambling sequence used when the received CRC bits of the DCI are scrambled, and determines the determined scrambling according to the correspondence between a pre-configured or preset CRC scrambling sequence and a random access method. Random access mode corresponding to the scrambling sequence. In the above correspondence, there are at least two CRC scrambling sequences, and different CRC scrambling sequences correspond to different random access modes.
  • the process for terminal device # 1 to determine the CRC scrambling sequence used for the received CRC bits of the DCI during scrambling is as follows: Terminal device # 1 attempts to descramble the CRC bits.
  • CRC bits are used for CRC; if the result of CRC is correct, the scrambling sequence (or scrambling identifier) used in descrambling is considered to be the correct scrambling sequence, that is, the same as used by network equipment when scrambling CRC bits The scrambling sequence using the same scrambling sequence (or scrambling identifier) is used for descrambling. Otherwise, it is considered that the correct scrambling sequence is not used for descrambling, and the scrambling sequence needs to be replaced to descramble the CRC bits.
  • the scrambling sequence used to descramble the CRC bits of the received DCI is the CRC scrambling sequence used when the CRC bits of DCI are scrambled, which can be used to determine the randomness of terminal device # 1. Access method.
  • the attempt to descramble the CRC bits can be understood as randomly using a scrambling sequence to descramble, and then performing a CRC based on the descrambled CRC bits. If the CRC result is correct, corresponding to the scrambling sequence Msg1 is sent in random access mode; if the CRC result is wrong, another scrambling sequence is used to descramble.
  • the terminal device determines that the scramble identifier used when the CRC bits of the DCI are scrambled is the C-RNTI of the terminal device # 1, only the random access preamble is sent in Msg1; when the terminal device determines the DCI When the scrambling identifier used for the CRC bit is M-RNTI of the terminal device # 1, the random access preamble and data are transmitted at Msg1, or only the data is transmitted.
  • the terminal device determines that the CRC bit of the DCI is a scramble identifier used by the lock when it is scrambled, it is the C-RNTI of the terminal device # 1, and then sends a random access preamble and data at Msg1, or sends only data;
  • the terminal device determines that the scramble bit used in the scramble of the CRC bits of the DCI is the M-RNTI of the terminal device # 1, only the random access preamble is sent in Msg1.
  • the process for terminal device # 1 to determine the CRC scrambling sequence used when the received CRC bits of the DCI are scrambled is as follows: there is no need to descramble the CRC bits of the DCI, but to perform the CRC directly according to the DCI , Compare the check data obtained by the CRC with the above two types of CRC scrambling identifiers allocated by the network device for the terminal device # 1, and if it matches any of them, it can be determined that the CRC bits of the DCI are used in the scrambling
  • the scramble flag is the scramble flag that matches the check data successfully.
  • M-RNTI is only used to distinguish the C-RNTI, and its specific name does not limit the protection scope of the embodiments of the present application.
  • the terminal device # 1 can obtain in advance which random access method corresponding to the M-RNTI or C-RNTI. For example, M-RNTI or C-RNTI can be stored in advance which random access method respectively. After receiving the DCI, terminal device # 1 determines the random access according to different CRC scrambling sequences and the pre-saved correspondence relationship. the way.
  • the DCI scrambled with M-RNTI in addition to indicating the transmission mode of Msg1, it can also indicate the random access preamble of Msg1 and the transmission parameters used to transmit data.
  • the DCI scrambled with M-RNTI may also indicate at least one of the following: random access preamble index, uplink carrier (UL) / supplementary uplink carrier (SUL) indication, synchronization signal (SS) ) / Physical broadcast channel (PBCH) index, physical random access channel (PRACH) mask index, data time-frequency resource, transmission waveform, modulation and coding method, HARQ process index, new data Instructions, redundant versions, reference signals, power control instructions, etc.
  • the network device # 1 may also indicate the transmission parameter configuration of the terminal device # 1 through DCI.
  • the transmission parameter configuration indicates the transmission parameter configuration for transmitting data, that is, the configuration information of the transmission parameters related to the transmission data.
  • the transmission parameter configuration is used to indicate the transmission parameter configuration for transmitting data.
  • the transmission parameter configuration is only a name and does not limit the protection scope of the present application.
  • it may also be called data configuration or data configuration information. The following describes from two scenarios.
  • the random access method of the terminal device # 1 is two-step random access, or when the Msg1 sent by the terminal device # 1 needs to carry a random access preamble and data.
  • the transmission parameter configuration may include, but is not limited to, one or more configurations of transmission parameters such as time-frequency resources of data, transmission waveforms, modulation and coding methods, HARQ process numbers, new data indications, reference signals, and signature sequences.
  • a second possible implementation manner is to pre-configure the correspondence between the random access preamble and the transmission parameter configuration, and the terminal device # 1 determines the transmission parameter configuration according to the correspondence and the random access preamble index. The second possible implementation manner is described in detail below.
  • network device # 1 When network device # 1 notifies terminal device # 1 to send random access preamble and data at the same time in Msg1, network device # 1 can pre-configure the correspondence between the random access preamble and the transmission parameter configuration, so that different random access preambles correspond. Different transmission parameter configuration.
  • the correspondence relationship may be a one-to-one correspondence relationship between a random access preamble index and a transmission parameter configuration.
  • the corresponding relationship may be pre-configured by high-level signaling, and the terminal device # 1 saves the corresponding relationship in advance.
  • the DCI sent by the network device # 1 to the terminal device # 1 carries a random access preamble index, and the terminal device # 1 determines a transmission parameter configuration according to the saved correspondence and the random access preamble index in the DCI. According to the transmission parameter configuration, the data signal of Msg1 can be generated.
  • the random access preamble index can be configured in the following form:
  • the frequency domain resource of the data refers to the frequency domain resource that the data corresponding to the random access preamble index can use.
  • the time domain resource of the data refers to the time domain resource that the data corresponding to the random access preamble index can use.
  • the data transmission waveform indicates a waveform that can be used for data corresponding to the random access preamble index.
  • the modulation and coding mode of the data indicates the modulation order and the code rate of the channel coding that can be used for the data corresponding to the random access preamble index.
  • the HARQ process number of the data indicates the HARQ process number that can be used for the data corresponding to the random access preamble index.
  • the reference signal port index (or antenna port index) of the data is the index of the antenna port that can be used for the data corresponding to the random access preamble index.
  • the signature sequence index of the data indicates the signature sequence index that can be used for the data corresponding to the random access preamble index.
  • the correspondence relationship may also be a one-to-one correspondence based on the index design, or a one-to-one correspondence arranged in order. The ordering can be performed according to the ascending or descending order of the index, that is, the ordering is based on the ascending or descending order of the random access preamble index, and the transmission parameter configuration is corresponding one by one according to the sorted order.
  • network device # 1 When network device # 1 notifies terminal device # 1 to send random access preamble and data at the same time in Msg1, network device # 1 can pre-configure the correspondence between the random access preamble and the transmission parameter configuration information, thereby different random access preamble Corresponds to different transmission parameter configurations.
  • the correspondence relationship may be a one-to-many correspondence relationship between the random access preamble index and the transmission parameter configuration, that is, one random access preamble index corresponds to multiple transmission parameter configurations.
  • the corresponding relationship may be pre-configured by high-level signaling, and the terminal device # 1 saves the corresponding relationship in advance.
  • the DCI sent by the network device # 1 to the terminal device # 1 carries a random access preamble index and an index of transmission parameter configuration.
  • the terminal device # 1 determines multiple (two or more) transmission parameter configurations according to the saved correspondence and the random access preamble index in the DCI, and then determines The target transmission parameter configuration is determined from multiple transmission parameter configurations. Or, in another possible implementation manner, the terminal device # 1 determines a target transmission parameter configuration from multiple transmission parameter configurations according to the index of the transmission parameter configuration, that is, the transmission indicated by the index of the transmission parameter configuration is the target transmission parameter configuration. Parameter configuration.
  • the random access preamble index can be configured in the following form:
  • the foregoing exemplifies the correspondence between the random access preamble index and the transmission parameter configuration.
  • the embodiments of the present application are not limited to the above two forms of correspondence.
  • the embodiments of the present application are concerned that the random access preamble and the transmission parameter configuration have a correspondence (or association relationship), so that the terminal device # 1 can perform the correspondence according to the correspondence.
  • the relationship and the random access preamble index determine the transmission parameter configuration.
  • the network device # 1 notifies the terminal device # 1 that when Msg1 sends a random access preamble and data at the same time, the network device # 1 may pre-configure a many-to-one correspondence between the random access preamble and transmission parameter configuration.
  • the corresponding relationship may be pre-configured by high-level signaling, and the terminal device # 1 saves the corresponding relationship in advance.
  • the DCI sent by the network device # 1 to the terminal device # 1 carries a random access preamble index, and the terminal device # 1 determines a transmission parameter configuration according to the saved correspondence and the random access preamble index in the DCI. According to the transmission parameter configuration, the data signal of Msg1 can be generated.
  • the network device # 1 notifies the terminal device # 1 of the random access preamble index and other information in the DCI, and the terminal device # 1 determines the transmission parameter configuration according to the random access preamble index, the transmission parameter configuration index, and the corresponding relationship, including but not limited to Configuration of one or more of data transmission parameters such as time-frequency resources, transmission waveforms, modulation and coding modes, and signature sequences. This can save the DCI signaling overhead caused by notifying the random access preamble and data separately.
  • the first possible implementation method is that network device # 1 can send data to the terminal.
  • Device # 1 sends the transmission parameter configuration.
  • the transmission parameter configuration may include, but is not limited to, one or more of information such as time-frequency resources of data, transmission waveforms, modulation and coding methods, HARQ process numbers, new data indications, reference signals, and signature sequences.
  • a second possible implementation manner is to configure a set of transmission parameter configurations in advance, and terminal device # 1 determines a transmission parameter configuration according to an index of the transmission parameter configuration.
  • the terminal device # 1 determines the transmission parameter configuration according to the index of the transmission parameter configuration, which may be configured from multiple transmission parameters (or from a set (a set consisting of multiple transmission parameter configurations) according to the index of the transmission parameter configuration), Alternatively, a transmission parameter configuration is determined from a set of transmission parameter configurations). Alternatively, the transmission parameter configuration determined by the terminal device # 1 according to the index of the transmission parameter configuration may be the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the index of the transmission parameter configuration which may be configured from multiple transmission parameters (or from a set (a set consisting of multiple transmission parameter configurations) according to the index of the transmission parameter configuration).
  • a transmission parameter configuration is determined from a set of transmission parameter configurations).
  • the transmission parameter configuration determined by the terminal device # 1 according to the index of the transmission parameter configuration may be the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the network device # 1 notifies the terminal device # 1 of the transmission parameter configuration index and other information in the DCI, and the terminal device # 1 determines the transmission parameter configuration according to the transmission parameter configuration index, including but not limited to time-frequency resources of the data, transmission waveforms, modulation One or more of encoding information, signature sequence and other information. This can save the DCI signaling overhead caused by the notification transmission parameter configuration.
  • the terminal device # 1 sends a random access preamble and / or data to the network device # 1.
  • Terminal device # 1 sends a random access preamble and / or data in Msg1 according to an instruction of DCI. That is, when the DCI indicates that the random access mode of the terminal device # 1 is to send only the random access preamble in Msg1, the terminal device # 1 carries the random access preamble in the Msg1 sent during random access. Or, when the DCI indicates that the random access mode of the terminal device # 1 is to send the random access preamble and data in Msg1, the terminal device # 1 sends the random access preamble and the terminal device in the Msg1 sent during random access. # 1 Data to send to network device # 1.
  • the transmitted Msg1 carries the terminal device # 1 to be sent to the network device # 1 The data.
  • Network device # 1 sends a random access response to terminal device # 1.
  • the network device # 1 sends random access response information to the terminal device # 1, and the information carried in the random access response information is determined according to the processing result of the network device # 1 on Msg1.
  • the terminal device # 1 sends Msg1 according to the DCI instruction, and the network device # 1 sends a random access response according to the random access preamble and data reception. Specifically, at least the following three scenarios are included.
  • Terminal device # 1 sends only a random access preamble at Msg1.
  • the random access response sent by network device # 1 to terminal device # 1 may include: random access preamble index, timing advance information, uplink scheduling information, and cell radio Network temporary identification, etc.
  • the terminal device # 1 simultaneously sends a random access preamble and data at Msg1.
  • terminal device # 1 When terminal device # 1 sends the random access preamble and data at the same time in Msg1, network device # 1 first attempts to detect the random access preamble after receiving Msg1. If a random access preamble is detected, the data is further demodulated.
  • the random access response sent to terminal device # 1 may include: random access preamble index, timing advance information, uplink scheduling information, cell Wireless network temporary identification and other information.
  • the uplink scheduling information may include a retransmission indication of data.
  • the random access corresponding to the terminal device # 1 may include: a random access preamble index, timing advance information, terminal device # 1 identity, and the like. At this time, uplink scheduling information may not be sent.
  • the terminal device # 1 will re-initiate random access.
  • Terminal device # 1 only sends data on Msg1.
  • terminal device # 1 When terminal device # 1 only sends data at Msg1, network device # 1 directly demodulates data when receiving Msg1. If the network device # 1 successfully demodulate data, it sends timing advance information, terminal device # 1 identity, etc. to the terminal device # 1. If network device # 1 does not successfully demodulate data, terminal device # 1 will re-initiate random access.
  • control information is DCI as an example, and the “DCI” in the above embodiment may also be replaced with “SCI”.
  • the random access mode of the terminal device is indicated by adding fields or different CRC scrambling sequences to the control information (such as DCI or SCI), so that the network device can flexibly adjust according to the real-time load. Random access method used by terminal equipment.
  • the signaling overhead of control information can be reduced.
  • FIG. 9 shows a schematic interaction diagram of a random access method 400 according to another embodiment of the present application.
  • the method 400 includes steps 410 to 430, and each step is described in detail below.
  • the network device # 1 sends a MAC control unit to the terminal device # 1.
  • the MAC control unit is used to notify the terminal device # 1 to perform a random access process, and to indicate the random access mode of the terminal device # 1.
  • the network device # 1 can instruct the terminal device # 1 to adopt a random access method through the MAC control unit, so it is convenient for the network device # 1 to flexibly adjust the random access method used by the terminal device # 1 according to the real-time load, thereby improving communication. effectiveness.
  • the following specifically describes how to instruct the terminal device # 1 to adopt a random access method through the MAC control unit.
  • FIG. 10 shows a schematic diagram of a MAC protocol data unit format.
  • the MAC protocol data unit includes one or more MAC control units and one or more MAC service data units (SDUs).
  • Each control unit has a corresponding subheader (ie, a MAC header), which includes a logical channel identifier (ID), which is used to indicate the type of the MAC control unit, so that terminal device # 1 can bite the MAC control unit.
  • ID logical channel identifier
  • Embodiments of the present application may provide a new type of MAC control unit, so as to implement flexible indication of a random access process.
  • the network device # 1 indicates a random access manner of the terminal device # 1 by using an information field (filed) in the MAC control unit, for example, one or more reserved bits in the MAC control unit.
  • an information field filed
  • the network device # 1 indicates a random access manner of the terminal device # 1 by using an information field (filed) in the MAC control unit, for example, one or more reserved bits in the MAC control unit.
  • the MAC control unit may include one or more bits to indicate a random access manner of the terminal device # 1. Take the sending mode of Msg1 during the random access process of the network device # 1 instructing the terminal device # 1 as an example for description.
  • 1 bit in the MAC control unit is used to indicate the sending mode of Msg1.
  • 0 corresponds to Msg1 sending only random access preamble
  • 1 corresponds to Msg1 sending random access preamble and data.
  • 1 corresponds to Msg1 sending only random access preamble
  • 0 corresponds to Msg1 sending random access preamble and data.
  • 0 corresponds to Msg1 sending only the random access preamble
  • 1 corresponds to Msg1 sending only data.
  • 1 corresponds to Msg1 sending only the random access preamble
  • 0 corresponds to Msg1 sending only data. It should be understood that specific instructions are not limited in the embodiments of the present application.
  • a 2-bit field in the MAC control unit is used to indicate the sending manner of Msg1.
  • 00 corresponds to Msg1 sending only random access preamble
  • 01 corresponds to Msg1 sending random access preamble and data
  • 10 corresponds to Msg1 sending only data.
  • 01 corresponds to Msg1 sending only random access preamble
  • 10 corresponds to Msg1 sending random access preamble and data
  • 00 corresponds to Msg1 sending only data. It should be understood that specific instructions are not limited in the embodiments of the present application.
  • the MAC control unit may include information about the random access preamble and data in addition to the random access mode (such as the sending mode of Msg1) for indicating the terminal device # 1. For example, random access preamble index, UL / SUL indication, SS / PBCH index, PRACH mask index, time-frequency resource of data, transmission waveform, modulation and coding mode, HARQ process index, new data indication, redundant version, reference signal , Power control instructions, etc.
  • FIG. 11 shows a schematic diagram of a MAC control unit applicable to an embodiment of the present application. As shown in FIG. 11, the MAC control unit may include a Msg1format field, which indicates that Msg1 carries a random access preamble and / or data. The MAC control unit may further include preamble information (that is, random access preamble information) and data information (that is, physical uplink shared channel information (physical uplink shared channel information) (PUSCH information).
  • preamble information that is, random access preamble information
  • data information
  • the network device # 1 may also instruct the terminal device # 1 to transmit the parameter configuration through the MAC control unit.
  • the random access method of the terminal device # 1 is two-step random access, or when the Msg1 sent by the terminal device # 1 needs to carry a random access preamble and data.
  • the transmission parameter configuration may include, but is not limited to, one or more of information such as time-frequency resources of data, transmission waveforms, modulation and coding methods, HARQ process numbers, new data indications, reference signals, and signature sequences.
  • a second possible implementation manner is to pre-configure a correspondence relationship between the random access preamble and the transmission parameter configuration, and the terminal device # 1 determines the transmission parameter configuration according to the correspondence relationship and the random access preamble index. The second possible implementation manner is described in detail below.
  • network device # 1 When network device # 1 notifies terminal device # 1 to send random access preamble and data at the same time in Msg1, network device # 1 can pre-configure the correspondence between the random access preamble and the transmission parameter configuration, so that different random access preambles correspond. Different transmission parameter configuration.
  • the correspondence relationship may be a one-to-one correspondence relationship between a random access preamble index and a transmission parameter configuration.
  • the corresponding relationship may be pre-configured by high-level signaling, and the terminal device # 1 saves the corresponding relationship in advance.
  • the MAC control unit sent from the network device # 1 to the terminal device # 1 carries a random access preamble index, and the terminal device # 1 determines a transmission parameter configuration according to the saved correspondence and the random access preamble index in the MAC control unit. According to the transmission parameter configuration, the data signal of Msg1 can be generated.
  • the random access preamble index can be configured in the following form:
  • the frequency domain resource of the data refers to the frequency domain resource that the data corresponding to the random access preamble index can use.
  • the time domain resource of the data refers to the time domain resource that the data corresponding to the random access preamble index can use.
  • the data transmission waveform indicates a waveform that can be used for data corresponding to the random access preamble index.
  • the modulation and coding mode of the data indicates the modulation order and the code rate of the channel coding that can be used for the data corresponding to the random access preamble index.
  • the HARQ process number of the data indicates the HARQ process number that can be used for the data corresponding to the random access preamble index.
  • the reference signal port index of the data indicates the reference signal index that can be used for the data corresponding to the random access preamble index.
  • the signature sequence index of the data indicates the signature sequence index that can be used for the data corresponding to the random access preamble index.
  • the correspondence relationship may be a one-to-one correspondence based on the index design, or a one-to-one correspondence arranged in order. The ordering can be performed according to the ascending or descending order of the index, that is, the ordering is based on the ascending or descending order of the random access preamble index, and the transmission parameter configuration is corresponding to the one-to-one order.
  • network device # 1 When network device # 1 notifies terminal device # 1 to send random access preamble and data at the same time in Msg1, network device # 1 can pre-configure the correspondence between the random access preamble and the transmission parameter configuration, so that different random access preambles correspond. Different transmission parameter configuration.
  • the correspondence relationship may be a one-to-many correspondence relationship between the random access preamble index and the transmission parameter configuration, that is, one random access preamble index corresponds to multiple transmission parameter configurations.
  • the corresponding relationship may be pre-configured by high-level signaling, and the terminal device # 1 saves the corresponding relationship in advance.
  • the MAC control unit sent by the network device # 1 to the terminal device # 1 carries a random access preamble index and an index of transmission parameter configuration, and determines a target transmission parameter configuration according to the index of the transmission parameter configuration.
  • the terminal device # 1 determines multiple transmission parameter configurations according to the saved correspondence and the random access preamble index in the MAC control unit, and then selects from the multiple transmission parameter configurations according to the index of the transmission parameter configuration. Determine the target transmission parameter configuration.
  • the terminal device # 1 determines a target transmission parameter configuration from multiple transmission parameter configurations according to the index of the transmission parameter configuration, that is, the transmission indicated by the index of the transmission parameter configuration is the target transmission parameter configuration. Parameter configuration.
  • the random access preamble index can be configured in the following form:
  • the network device # 1 notifies the terminal device # 1 of the random access preamble index and other information in the MAC control unit.
  • the terminal device # 1 determines the transmission parameter configuration according to the random access preamble index, the transmission parameter configuration index, and the corresponding relationship, including but It is not limited to one or more of information such as time-frequency resources of data, transmission waveforms, modulation and coding methods, and signature sequences. This can save the MAC control unit signaling overhead caused by notifying the random access preamble and data separately.
  • the first possible implementation method is that network device # 1 can send data to the terminal.
  • Device # 1 sends the transmission parameter configuration.
  • the transmission parameter configuration may include, but is not limited to, one or more of information such as time-frequency resources of data, transmission waveforms, modulation and coding methods, HARQ process numbers, new data indications, reference signals, and signature sequences.
  • a second possible implementation manner is to configure a set of transmission parameter configurations in advance, and terminal device # 1 determines a transmission parameter configuration according to an index of the transmission parameter configuration.
  • the terminal device # 1 determines the transmission parameter configuration according to the index of the transmission parameter configuration, which may be configured from multiple transmission parameters (or from a set (a set consisting of multiple transmission parameter configurations) according to the index of the transmission parameter configuration), Alternatively, a transmission parameter configuration is determined from a set of transmission parameter configurations). Alternatively, the transmission parameter configuration determined by the terminal device # 1 according to the index of the transmission parameter configuration may be the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the index of the transmission parameter configuration which may be configured from multiple transmission parameters (or from a set (a set consisting of multiple transmission parameter configurations) according to the index of the transmission parameter configuration).
  • a transmission parameter configuration is determined from a set of transmission parameter configurations).
  • the transmission parameter configuration determined by the terminal device # 1 according to the index of the transmission parameter configuration may be the transmission parameter configuration indicated by the index of the transmission parameter configuration.
  • the network device # 1 informs the terminal device # 1 of the transmission parameter configuration index and other information in the MAC control unit.
  • the terminal device # 1 determines the transmission parameter configuration according to the transmission parameter configuration index, including but not limited to the time-frequency resources of the data and the transmission waveform. , One or more of information such as modulation and coding method, signature sequence, and the like. This can save the MAC control unit signaling overhead caused by the notification transmission parameter configuration.
  • the terminal device # 1 sends a random access preamble and / or data to the network device # 1.
  • Terminal device # 1 sends a random access preamble and / or data in Msg1 according to the instruction of the MAC control unit. That is, when the random access mode of the terminal device # 1 is instructed in the MAC control unit to send only the random access preamble in Msg1, the terminal device # 1 sends the random access preamble in the Msg1 sent during random access. Or, when the MAC control unit indicates that the random access mode of the terminal device # 1 is to send the random access preamble and data in Msg1, the terminal device # 1 sends the random access preamble and the Msg1 during random access. Data to be transmitted by the terminal device # 1 to the network device # 1.
  • the MAC control unit indicates that the random access mode of the terminal device # 1 is to send only data in Msg1
  • the sent Msg1 carries the terminal device # 1 to be sent to the network device # 1 of data.
  • the network device # 1 sends a random access response to the terminal device # 1.
  • the network device # 1 sends random access response information to the terminal device # 1, and the information carried in the random access response information is determined according to the processing result of the network device # 1 on Msg1.
  • the terminal device # 1 sends Msg1 according to the instruction of the MAC control unit, and the network device # 1 sends a random access response according to the random access preamble and the reception of the data.
  • at least three scenarios are included. These three scenarios are similar to the above three scenarios (Scenario 1, Scenario 2, and Scenario 3 in step 330). The above three scenarios have been described in detail when describing the above step 330. At this time, they are concise and will not be described again.
  • the network device instructs the random access method of the terminal device through the MAC control unit, so that the network device can flexibly adjust the random access method used by the terminal device according to the real-time load, thereby improving communication efficiency.
  • the embodiments of the present application are not limited to indicating the random access method by the DCI in the case 1 or the MAC control unit in the case 2. Any method that can quickly notify the terminal device of the random access is included in the application The protection scope of the embodiment.
  • the network device # 1 can indicate the random access mode of the terminal device # 1 by sending the instruction information carried in the non-high layer signaling to the terminal device # 1, where the non-high layer signaling can be control information, such as DCI or SCI, or the non-high-level signaling may be a MAC control unit.
  • the random access method may include two-step random access and four-step random access, or the random access method may also include content carried in Msg1 during the random access process (for example, only carrying a random access preamble or Only carry data, or carry both random access preamble and data, etc.).
  • the specific random access method used by terminal device # 1 can be determined by network device # 1 according to some factors.
  • the network device # 1 may determine which random access method the terminal device # 1 uses according to the network status or the service type of the terminal device # 1.
  • non-high-level signaling can indicate the random access mode of terminal device # 1 in real time, thereby improving communication efficiency and improving user experience.
  • FIG. 12 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • the communication device 500 may include a transceiver unit 510 and a processing unit 520.
  • the communication device 500 may correspond to the terminal device in the foregoing method embodiment.
  • the communication device 500 may be a terminal device or a chip configured in the terminal device.
  • the transceiver unit 510 is configured to receive non-high-level signaling sent by the first wireless device, where the non-high-level signaling is physical layer control information or a MAC control unit.
  • the processing unit 520 is configured to: obtain instruction information from the non-high-level signaling, where the instruction information is used to indicate a random access mode; and generate Msg1 according to the instruction information.
  • the transceiver unit 510 is further configured to send the Msg1 to the first wireless device.
  • the processing unit 520 is specifically configured to: generate Msg1 carrying the random access preamble according to the instruction information; or generate Msg1 carrying the random access preamble and data according to the instruction information; or generate and send according to the instruction information Msg1 carrying data.
  • the indication information is carried in the physical layer control information or one or more reserved bits in the MAC control unit.
  • the processing unit 520 is specifically configured to determine a scrambling sequence used when the CRC bits of the physical layer control information are scrambled, and the indication information is specifically the determined scrambling sequence; the processing unit 520 It is specifically used to generate Msg1 according to the random access mode corresponding to the determined scrambling sequence.
  • the indication information specifically indicates that the random access mode is sending Msg1 carrying a random access preamble and data, and the physical layer control information or the MAC control unit also carries a random access preamble index;
  • the processing unit 520 is further configured to: : Determining, according to the random access preamble index, a transmission parameter configuration for transmitting data associated with the random access preamble index;
  • the transceiver unit 510 is further configured to: according to the determined transmission parameter configuration for transmitting data, Sending the data in the Msg1 to the first wireless device.
  • the indication information specifically indicates that the random access mode is to send Msg1 carrying a random access preamble and data
  • the physical layer control information or the MAC control unit further carries a random access preamble index and an index of transmission parameter configuration
  • the index of the transmission parameter configuration is used to determine one or more transmission parameter configurations for transmitting data
  • the transceiver unit 510 is further configured to: according to the transmission parameter configuration determined by the index of the transmission parameter configuration, send to the first wireless device Send the data in this Msg1.
  • the indication information specifically indicates that the random access mode is to send Msg1 carrying data
  • the physical layer control information or the MAC control unit also carries an index of transmission parameter configuration, and the index of the transmission parameter configuration is used to determine one or Multiple transmission parameter configurations for transmitting data
  • the transceiver unit 510 is further configured to send the data in the Msg1 to the first wireless device according to the transmission parameter configuration determined by the index of the transmission parameter configuration.
  • the transmission parameter configuration for transmitting data includes the configuration of at least one of the following transmission parameters: time-frequency resources of the data, transmission waveform, modulation and coding mode, hybrid automatic repeat request HARQ process number, reference signal, and signature sequence .
  • the communication device 500 may correspond to the terminal device in the method 200, the method 300, or the method 400 according to the embodiment of the present application, and the communication device 500 may include a method for performing the method 200 in FIG. 6 or the method in FIG. 300.
  • each unit in the communication device 500 and the other operations and / or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 6, the method 300 in FIG. 7, and the method 400 in FIG. 9.
  • the transceiver unit 510 may be used to execute steps 210 and 220 in the method 200.
  • the processing unit 520 may be configured to perform, according to the received instruction, the terminal device to determine which content needs to be carried in Msg1, and the terminal device to determine the relevant steps of the transmission parameter configuration according to the received correspondence.
  • the transceiver unit 510 may be used to execute steps 310, 320, and 330 in the method 300.
  • the processing unit 520 may be configured to execute the terminal device in the method 300 to determine which content needs to be carried in the Msg1 according to the received instruction, and the terminal device to determine the relevant steps of the transmission parameter configuration according to the received correspondence.
  • the transceiver unit 510 may be used to execute steps 410, 420, and 430 in the method 400.
  • the processing unit 520 may be configured to execute the terminal device in the method 400 to determine which content needs to be carried in the Msg1 according to the received instruction, and the terminal device to determine the relevant steps of the transmission parameter configuration according to the received correspondence.
  • transceiver unit in the communication device 500 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 13, and the processing unit 520 in the communication device 500 may correspond to the terminal device shown in FIG. 13.
  • the processor 601 in 600 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 13, and the processing unit 520 in the communication device 500 may correspond to the terminal device shown in FIG. 13.
  • the processor 601 in 600 may correspond to the transceiver 602 in the terminal device 600 shown in FIG. 13
  • the communication device 500 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the processing unit 520 is configured to generate instruction information that is used to indicate a random access manner of the second wireless device; and the transceiver unit 510 is configured to send the instruction to the second wireless device.
  • Information where the indication information is carried in physical layer control information or a MAC control unit; the transceiver unit 510 is further configured to receive Msg1 sent by the second wireless device during random access.
  • the random access mode includes any one of the following: sending Msg1 carrying a random access preamble; or sending Msg1 carrying a random access preamble and data; or sending Msg1 carrying data.
  • the indication information is carried in the physical layer control information or one or more reserved bits in the MAC control unit.
  • the processing unit 520 is further configured to scramble the cyclic redundancy check CRC bit of the physical layer control information with one scrambling sequence of at least two scrambling sequences.
  • the different scrambling sequences correspond to different random access modes; the indication information is specifically a scrambling sequence used for scrambling the CRC bits of the physical layer control information.
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying a random access preamble and data
  • the physical layer control information or the MAC control unit also carries a random access preamble index, where The random access preamble index is used to determine: the random access preamble and transmission parameter configuration for transmitting the data.
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying a random access preamble and data
  • the physical layer control information or the MAC control unit also carries a random access preamble index and transmission.
  • the index of the transmission parameter configuration may be used to determine one or more transmission parameter configurations for transmitting data.
  • the indication information specifically indicates that the random access mode of the second wireless device is to send Msg1 carrying data
  • the physical layer control information or the MAC control unit further carries an index of transmission parameter configuration, and the index of the transmission parameter configuration Used to determine one or more transmission parameter configurations for transmitting data.
  • the transmission parameter configuration for transmitting data includes the configuration of at least one of the following transmission parameters: time-frequency resources of the data, transmission waveform, modulation and coding mode, hybrid automatic repeat request HARQ process number, reference signal, and signature sequence .
  • the communication device 500 may correspond to the network device in the method 200, the method 300, or the method 400 according to the embodiment of the present application.
  • the communication device 500 may include a method for performing the method 200 in FIG. 6, or the method in FIG. 300.
  • each unit in the communication device 500 and the other operations and / or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 6, the method 300 in FIG. 7, and the method 400 in FIG. 9.
  • the transceiver unit 510 may be used to execute steps 210 and 220 in the method 200.
  • the processing unit 520 may be configured to perform the steps of determining a random access mode of the terminal device in the method 200 and processing the received random access preamble and / or data. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the above method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute steps 310, 320, and 330 in the method 300.
  • the processing unit 520 may be configured to execute the method 300 for determining a random access mode of the terminal device and related steps of processing the received random access preamble and / or data. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • the transceiver unit 510 may be used to execute steps 410, 420, and 430 in the method 400.
  • the processing unit 520 may be configured to perform a method 400 for determining a random access manner of the terminal device and related steps of processing the received random access preamble and / or data. It should be understood that the specific process for each unit to execute the above corresponding steps has been described in detail in the foregoing method embodiment, and for the sake of brevity, it will not be repeated here.
  • transceiver unit 510 in the communication device 500 may correspond to the transceiver 720 in the network device 700 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the network shown in FIG. 14.
  • the processor 710 in the device 700 may correspond to the transceiver 720 in the network device 700 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the network shown in FIG. 14.
  • the processor 710 in the device 700 may correspond to the transceiver 720 in the network device 700 shown in FIG. 14, and the processing unit 520 in the communication device 500 may correspond to the network shown in FIG. 14.
  • the processor 710 in the device 700 may correspond to the transceiver 720 in the network device 700 shown in FIG. 14.
  • FIG. 13 is a schematic structural diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602, and the memory 603 can communicate with each other through an internal connection path to transfer control and / or data signals.
  • the memory 603 is used to store a computer program
  • the processor 601 is used to store the computer program from the memory 603.
  • the computer program is called and executed to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 604 for sending uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the processor 601 and the memory 603 may be combined into a processing device, and the processor 601 is configured to execute program codes stored in the memory 603 to implement the foregoing functions.
  • the memory 603 may also be integrated in the processor 601 or independent of the processor 601.
  • the processor 601 When the program instructions stored in the memory 603 are executed by the processor 601, the processor 601 is used to control the transceiver 602 to receive the physical layer control information or the MAC control unit, and determine the need in Msg1 based on the physical layer control information or the MAC control unit. What to bring.
  • the terminal device 600 may correspond to the terminal device in the method 200, the method 300, or the method 400 according to the embodiment of the present application, and the terminal device 600 may include a method for performing the method 200 in FIG. 6 or the method in FIG. 300.
  • each unit in the terminal device 600 and the other operations and / or functions described above are respectively used to implement the corresponding processes of the method 200 in FIG. 6, the method 300 in FIG. 7, and the method 400 in FIG. 9.
  • the foregoing processor 601 may be used to perform the actions implemented in the terminal device described in the foregoing method embodiment, and the transceiver 602 may be used to execute the terminal device described in the foregoing method embodiment that is sent to or received from the network device by the terminal device. action.
  • the transceiver 602 may be used to execute the terminal device described in the foregoing method embodiment that is sent to or received from the network device by the terminal device. action.
  • the above-mentioned terminal device 600 may further include a power source 605 for supplying power to various devices or circuits in the terminal device.
  • the terminal device 600 may further include one or more of an input unit 606, a display unit 607, an audio circuit 608, a camera 609, and a sensor 610, and the audio circuit It may also include a speaker 6082, a microphone 6084, and the like.
  • FIG. 14 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • the network device 700 includes a processor 710 and a transceiver 720.
  • the network device 700 further includes a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the memory 730 is used to store a computer program, and the processor 710 is used to call from the memory 730.
  • the computer program is run to control the transceiver 720 to send and receive signals.
  • the processor 710 and the memory 730 may be combined into a processing device, and the processor 710 is configured to execute program codes stored in the memory 730 to implement the foregoing functions.
  • the memory 730 may also be integrated in the processor 710, or be independent of the processor 710.
  • the above network device 700 may further include an antenna 740 for sending downlink data or downlink control signaling output by the transceiver 720 through a wireless signal.
  • the processor 710 When the program instructions stored in the memory 730 are executed by the processor 710, the processor 710 is used to control the transceiver 720 to send a physical layer or a MAC control unit, and the physical layer or the MAC control unit carries instruction information indicating a random access mode
  • the processor 710 is further configured to control the transceiver 720 to receive Msg1.
  • the network device 700 may correspond to the network device in the method 200, the method 300, or the method 400 according to the embodiment of the present application, and the network device 700 may include a method for performing the method 200 in FIG. 6 or the method in FIG. 300.
  • a unit of a method performed by a network device in the method 400 in FIG. A unit of a method performed by a network device in the method 400 in FIG.
  • each unit in the network device 700 and the other operations and / or functions described above respectively implement the corresponding processes of the method 200 in FIG. 6, the method 300 in FIG. 7, and the method 400 in FIG. 9, and each unit executes the corresponding operations.
  • the specific process of the steps has been described in detail in the foregoing method embodiments, and for the sake of brevity, they are not repeated here.
  • the foregoing processor 710 may be configured to perform the actions implemented by the network device described in the foregoing method embodiment, and the transceiver 720 may be configured to perform the network device described in the foregoing method embodiment to send or receive from the terminal device to the terminal device. action.
  • the transceiver 720 may be configured to perform the network device described in the foregoing method embodiment to send or receive from the terminal device to the terminal device. action.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application-specific integrated circuits. (application specific integrated circuit (ASIC)), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access Access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer executes FIG. 6, FIG. 7, The method in the embodiment shown in FIG. 9.
  • the present application also provides a computer-readable medium, where the computer-readable medium stores program code, and when the program code runs on the computer, the computer executes FIG. 6, FIG. 7, The method in the embodiment shown in FIG. 9.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种随机接入的方法和通信装置。该方法包括:第一无线设备向第二无线设备发送携带于物理层控制信息或介质访问控制MAC控制单元中的指示信息,该指示信息用于指示第二无线设备的随机接入方式。随机接入方式包括四步随机接入和两步随机接入,或者,随机接入方式包括发送哪种格式的Msg1。如,发送携带随机接入前导和数据的Msg1,或发送携带随机接入前导的Msg1,或发送携带数据的Msg1。第二无线设备根据指示信息向第一无线设备发送随机接入过程中的第一消息Msg1。基于本申请,可以实时地灵活调整终端设备采用的随机接入方式,提高通信效率。

Description

一种随机接入的方法和通信装置
本申请要求于2018年09月28日提交中国专利局、申请号为201811140232.1、申请名称为“一种随机接入的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种随机接入的方法和通信装置。
背景技术
无线蜂窝网络可以通过部署网络设备,例如基站,为终端设备提供无线通信服务。网络设备和终端设备可以进行数据传输。
终端设备向网络设备发送数据时,一般需要和网络设备之间建立上行同步。当终端设备和网络设备未建立上行同步时,则一般需要先通过基于竞争的四步随机接入过程(random access procedure)或者基于两步随机接入过程取得上行同步,然后再进行上行数据传输。
然而,终端设备在进行上行同步时具体应采用何种随机接入过程,现有技术中并没有相应的方案。
发明内容
本申请提供一种随机接入的方法和通信装置,可以使得网络设备灵活地调整终端设备采用的随机接入方式,并降低延时,提高通信效率。
第一方面,提供了一种随机接入的方法,该方法包括:第一无线设备向第二无线设备发送指示信息,所述指示信息用于指示所述第二无线设备的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;所述第一无线设备接收所述第二无线设备随机接入过程中发送的第一消息Msg1。
基于上述技术方案,第一无线设备可以通过向第二无线设备发送携带于非高层信令的指示信息来指示第二无线设备的随机接入方式,其中该非高层信令可以为物理层控制信息,如下行控制信息(downlink control information,DCI)或辅链路控制信息(sidelink control information,SCI),或者,该非高层信令可以为介质访问控制MAC控制单元。随机接入方式可以包括两步随机接入和四步随机接入两种;或者,随机接入方式也可以包括仅携带随机接入前导的Msg1或仅携带数据的Msg1,或同时携带随机接入前导和数据的Msg1。第二无线设备具体采用何种随机接入方式,可以由第一无线设备根据一些因素确定。例如,第一无线设备可以根据网络状态或者第二无线设备的业务类型来确定第二无线设备采用何种随机接入方式。具体地,例如,当第二无线设备的业务具有较高延时要求时,第一无线设备可以指示第二无线设备采用两步随机接入或者在Msg1中携带数据(或者,Msg1 中携带数据和随机接入前导)。或者,又如,当网络出现拥塞时,采用两步随机接入将增加设备之间的干扰,使得网络拥塞更加严重,因此更适合使用四步随机接入,因此第一无线设备可以指示第二无线设备采用四步随机接入或者在Msg1中仅携带随机接入前导。此外,通过非高层信令可以实时地指示第二无线设备的随机接入方式,例如可以根据网络实时负载状况来指示第二无线设备采用何种随机接入方式,从而可以提高通信效率。
结合第一方面,在第一方面的某些实现方式中,所述随机接入方式包括以下任一项:发送携带随机接入前导的Msg1;或,发送携带随机接入前导和数据的Msg1;或,发送携带数据的Msg1。上述随机接入方式也可以被理解为随机接入过程中Msg1的发送方式。
基于上述技术方案,随机接入方式可以为发送携带随机接入前导的Msg1,此时,随机接入方式也可以理解为四步随机接入方式,即第二无线设备可以指示第一无线设备的随机接入方式为四步随机接入方式。又如,随机接入方式可以为发送携带数据的Msg1,或者随机接入方式可以为发送同时携带数据和随机接入前导的Msg1,这两种情况也可以理解为两步随机接入方式,即第二无线设备可以指示第一无线设备的随机接入方式为两步随机接入方式。通过指示随机接入过程中第一步的Msg1的消息格式,或者,指示是四步随机接入还是两步随机接入,可以实现根据实时负载灵活地调整第二无线设备采用的随机接入方式。
结合第一方面,在第一方面的某些实现方式中,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
基于上述技术方案,可以合理地利用物理层控制信息(例如DCI或SCI)或MAC控制单元中的预留比特,通过预留比特来指示Msg1的消息格式(或者也可以称为Msg1的发送方式)。例如,可以增加1个或多个比特的字段,来指示Msg1的消息格式。从而不仅可以实时灵活调整第二无线设备的随机接入方式,而且也可以减少节省信令开销。
结合第一方面,在第一方面的某些实现方式中,所述物理层控制信息的循环冗余校验CRC比特被至少两种加扰序列中的一种加扰,所述至少两种加扰序列中的不同的加扰序列对应不同的随机接入方式;所述指示信息具体为加扰所述物理层控制信息的CRC比特所使用的加扰序列。
基于上述技术方案,指示信息具体可以为CRC比特所使用的加扰序列,即可以通过不同的CRC加扰序列来指示Msg1的消息格式。例如,循环冗余校验(cyclic redundancy check,CRC)比特一般采用小区无线网络临时标识符(cell radio network temporary identifier,C-RNTI)加扰,那么可以增加另一种加扰序列,如M-RNTI(Messsage1-RNTI),这两种加扰序列分别对应一种随机接入方式,通过使用C-RNTI或M-RNTI来加扰CRC比特,进而指示不同的随机接入方式。
结合第一方面,在第一方面的某些实现方式中,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引,所述随机接入前导索引用于确定:所述随机接入前导和用于传输数据的传输参数配置。
基于上述技术方案,当指示随机接入方式为两步随机接入,或者,随机接入方式为发送携带随机接入前导和数据的Msg1时,可以在物理层控制信息(例如DCI或SCI)或MAC控制单元中携带随机接入前导索引,随机接入前导索引可以用于确定:随机接入前 导和传输参数配置(即用于传输数据的传输参数配置)。例如,随机接入前导索引和传输参数配置之间具有一一对应关系,因此第二无线设备可以根据该随机接入前导索引和该对应关系,确定传输参数配置,并根据传输参数配置和随机接入前导索引生成Msg1。在另一种示例中,随机接入前导索引和传输参数配置之间具有一对多的对应关系,即一个随机接入前导索引对应了多个传输参数配置,此时,第二无线设备可以根据该随机接入前导索引,确定出随机接入前导索引所对应的多个传输参数配置,然后按照预定的规则或者随机地从该多个传输参数配置中选取一个传输参数配置来传输Msg1中的数据。
结合第一方面,在第一方面的某些实现方式中,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,传输参数配置的索引指示一个或者多个用于传输数据的传输参数配置。
基于上述技术方案,当指示随机接入方式为两步随机接入,或者,随机接入方式为发送携带随机接入前导和数据的Msg1时,可以在物理层控制信息(例如DCI或SCI)或MAC控制单元中携带随机接入前导索引和传输参数配置的索引,根据随机接入前导索引和传输参数配置的索引确定随机接入前导和传输参数配置。例如,传输参数配置的索引仅仅指示了一个传输参数配置,则确定用于传输Msg1数据的传输参数配置为该传输参数配置的索引所指示的传输参数配置。又如,传输参数配置的索引指示了多个传输参数配置(或者传输参数配置的集合),随机接入前导索引和传输参数配置之间具有一对多的对应关系,因此第二无线设备可以根据该随机接入前导索引和该对应关系,确定多个传输参数配置,并从该多个传输参数配置确定出用于传输上述数据的传输参数配置,继而可以根据确定出的传输参数配置、随机接入前导索引生成Msg1,进而可以保证通信可靠性。
结合第一方面,在第一方面的某些实现方式中,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带数据的Msg1,所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引用于指示一个或者多个用于传输数据的传输参数配置。
基于上述技术方案,第一无线设备通过物理层控制信息或MAC控制单元通知第二无线设备传输参数配置的索引,第二无线设备根据传输参数配置的索引确定一个或者多个用于传输数据的传输参数配置。在一实施例中,传输参数配置的索引仅仅指示了一个传输参数配置,第二无线设备直接使用该传输参数配置的索引所指示的传输参数配置来传输Msg1中的数据。在另一实施例中,传输参数配置的索引指示了多个传输参数配置,第二无线设备从该多个传输参数配置中确定(例如,随机地确定)一个传输参数配置来传输Msg1中的数据。每个传输参数配置包括,例如,时频资源、传输波形、调制编码方式、签名序列等传输参数中的一种或多种的配置。这样可以节省通知用于传输数据的传输参数配置带来的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
基于上述技术方案,用于传输数据的传输参数配置,即表示与传输数据相关的传输参数的配置信息,其具体名称不对本申请的保护范围造成限定。
第二方面,提供了一种随机接入的方法,该方法包括:第二无线设备获取第一无线设备发送的指示信息,所述指示信息用于指示所述第二无线设备的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;根据所述指示信息,所述第二无线设备向所述第一无线设备发送第一消息Msg1。
基于上述技术方案,第二无线设备可以通过接收到的指示信息来确认随机接入方式,该指示信息可以携带于非高层信令中,其中该非高层信令可以为物理层控制信息,如DCI或SCI,或者,该非高层信令可以为介质访问控制MAC控制单元。随机接入方式可以包括两步随机接入和四步随机接入两种,或者,随机接入方式也可以包括随机接入过程中的Msg1中携带的内容(例如,仅携带随机接入前导或仅携带数据,或者同时携带随机接入前导和数据,等等)。第二无线设备具体采用何种随机接入方式,可以由第一无线设备根据一些因素确定并通知给第二无线设备。例如,第一无线设备可以根据网络状态或者第二无线设备的业务类型来确定第二无线设备采用何种随机接入方式。具体地,例如,当第二无线设备的业务具有较高延时要求时,第一无线设备可以指示第二无线设备采用两步随机接入或者在Msg1中携带数据(或者,Msg1中携带数据和随机接入前导)。或者,又如,当网络出现拥塞时,采用两步随机接入将增加设备之间的干扰,使得网络拥塞更加严重,因此更适合使用四步随机接入,因此第一无线设备可以指示第二无线设备采用四步随机接入或者在Msg1中仅携带随机接入前导。此外,通过非高层信令可以实时地指示第二无线设备的随机接入方式,例如可以根据网络实时负载状况来指示第二无线设备采用何种随机接入方式,从而可以提高通信效率。
结合第二方面,在第二方面的某些实现方式中,所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带随机接入前导的Msg1;或,根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带随机接入前导和数据的Msg1;或,根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带数据的Msg1。
基于上述技术方案,随机接入方式也可以被理解为随机接入过程中Msg1的发送方式。随机接入方式可以为发送携带随机接入前导的Msg1,此时,随机接入方式也可以理解为四步随机接入方式,即第二无线设备可以指示第一无线设备的随机接入方式为四步随机接入方式。又如,随机接入方式可以为发送携带数据的Msg1,或者随机接入方式可以为发送同时携带数据和随机接入前导的Msg1,这两种情况也可以理解为两步随机接入方式,即第二无线设备可以指示第一无线设备的随机接入方式为两步随机接入方式。通过指示发送携带哪些内容的Msg1,或者,指示是四步随机接入还是两步随机接入,可以实现根据实时负载灵活地调整第二无线设备采用的随机接入方式。
结合第二方面,在第二方面的某些实现方式中,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
基于上述技术方案,可以合理地利用物理层控制信息(例如DCI或SCI)或MAC控制单元中的预留比特,通过预留比特来指示Msg1的消息格式。例如,可以增加1个或多个比特的字段,来指示Msg1的消息格式。从而不仅可以实时灵活调整第二无线设备的随机接入方式,而且也可以减少节省信令开销。
结合第二方面,在第二方面的某些实现方式中,所述第二无线设备获取第一无线设备 发送的指示信息,包括:确定所述物理层控制信息的循环冗余校验CRC比特在加扰时所使用的加扰序列,所述指示信息具体为所述确定出的加扰序列;所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:根据所述确定出的加扰序列所对应的随机接入方式,所述第二无线设备向所述第一无线设备发送Msg1。在一实例中,第二设备可以根据预设或预先配置的CRC加扰序列与随机接入方式之间的对应关系,确定出所述确定出的加扰序列所对应的是何种随机接入方式。在CRC加扰序列与随机接入方式之间的对应关系中,至少存在两种不同的CRC加扰序列,不同种的CRC加扰序列对应不同的随机接入方式。
基于上述技术方案,指示信息具体可以为CRC加扰序列,即可以根据CRC加扰序列与接入方式之间的对应关系、和接收到的物理层控制信息所使用的CRC加扰序列来确定Msg1的消息格式(或者也可以称为Msg1的发送方式)。例如,CRC比特一般采用C-RNTI加扰,那么可以增加另一种加扰序列,如M-RNTI(Messsage1-RNTI),这两种加扰序列分别对应一种随机接入方式,通过使用C-RNTI或M-RNTI来加扰CRC比特,进而指示不同的随机接入方式。第二无线设备接收到控制信息后,可以根据控制信息中的CRC加扰序列,确定对应的随机接入方式。
结合第二方面,在第二方面的某些实现方式中,所述指示信息具体指示随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引;所述方法还包括:根据所述随机接入前导索引,确定与所述随机接入前导索引所关联的用于传输数据的传输参数配置;所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:所述第二无线设备根据所述确定的用于传输数据的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
基于上述技术方案,当指示随机接入方式为两步随机接入,或者,随机接入方式为发送携带随机接入前导和数据的Msg1时,可以在物理层控制信息(例如DCI或SCI)或MAC控制单元中携带随机接入前导索引,根据随机接入前导索引和用于传输数据的传输参数配置之间的对应关系确定用于传输Msg1中数据的传输参数配置。例如,随机接入前导索引和传输参数配置之间具有一一对应关系,因此第二无线设备可以根据该随机接入前导索引和该对应关系,确定传输参数配置,并根据传输参数配置和随机接入前导索引生成Msg1。在另一种示例中,随机接入前导索引和传输参数配置之间具有一对多的对应关系,即一个随机接入前导索引对应了多个传输参数配置,此时,第二无线设备可以根据该随机接入前导索引,确定出随机接入前导索引所对应的多个传输参数配置,然后按照预定的规则或者随机地从该多个传输参数配置中选取一个传输参数配置来传输Msg1中的数据。
结合第二方面,在第二方面的某些实现方式中,所述指示信息具体指示所述随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,该传输参数配置的索引指示一个或多个用于传输数据的传输参数配置;所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:所述第二无线设备根据所述传输参数配置的索引所指示的用于传输数据的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
基于上述技术方案,当指示随机接入方式为两步随机接入,或者,随机接入方式为发送携带随机接入前导和数据的Msg1时,可以在物理层控制信息(例如DCI或SCI)或 MAC控制单元中携带随机接入前导索引和传输参数配置的索引,根据随机接入前导索引和传输参数配置的索引确定随机接入前导和用于传输Msg1中数据的传输参数配置。例如,确定用于传输Msg1中数据的传输参数配置包括:在所述传输参数配置的索引所指示的多个传输参数配置中确定出用于传输所述数据的传输参数配置。又如,根据所述传输参数配置的索引可以确定出多个传输参数配置,从该多个传输参数配置确中定用于传输所述Msg1中数据的传输参数配置,继而可以根据该传输参数配置、随机接入前导索引的索引生成Msg1,进而可以保证通信可靠性。
结合第二方面,在第二方面的某些实现方式中,所述指示信息具体指示所随机接入方式为发送携带数据的Msg1,所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引指示一个或者多个用于传输数据的传输参数配置;所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:所述第二无线设备根据传输参数配置的索引所指示的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
基于上述技术方案,第一无线设备通过物理层控制信息或MAC控制单元通知第二无线设备传输参数配置的索引,第二无线设备根据传输参数配置的索引确定一个或者多个用于传输数据的传输参数配置。在一实施例中,传输参数配置的索引仅仅指示了一个传输参数配置,第二无线设备直接使用该传输参数配置的索引所指示的传输参数配置来传输Msg1中的数据。在另一实施例中,根据传输参数配置的索引可以确定出多个传输参数配置,第二无线设备从该多个传输参数配置中确定(例如,随机地确定)一个传输参数配置来传输Msg1中的数据。每个传输参数配置包括,例如,确定数据的时频资源、传输波形、调制编码方式、签名序列等传输参数中的一种或多种的配置。这样可以节省通知用于传输数据的传输参数配置带来的信令开销。
结合第二方面,在第二方面的某些实现方式中,所述用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
第三方面,提供了一种通信装置,包括用于执行第一方面中任一种可能实现方式中的方法的各个模块或单元。
第四方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第五方面,提供了一种通信装置,包括用于执行第二方面中任一种可能实现方式中的方法的各个模块或单元。
第六方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行 存储器中的指令,以实现上述第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第八方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第八方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也 可以称为代码,或指令),当所述计算机程序被计算机执行时,使得通信装置执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信系统,包括前述的网络设备(即,第一无线设备的一例)和终端设备(即,第二无线设备的一例)。
附图说明
图1是适用于本申请实施例的通信系统的一示意图;
图2是适用于本申请实施例的通信系统的另一示意图;
图3是四步随机接入过程的示意性流程图;
图4是适用于本申请实施例的两步随机接入过程的示意性流程图;
图5是基于非竞争的随机接入过程的示意性流程图;
图6是本申请实施例提供的随机接入的方法的示意性交互图;
图7是根据本申请一实施例提供的随机接入的方法的示意性交互图;
图8是适用于本申请实施例的DCI的比特字段的示意图;
图9是根据本申请另一实施例提供的随机接入的方法的示意性交互图;
图10是适用于本申请实施例的MAC协议数据单元格式的示意图;
图11是适用于本申请实施例的MAC控制单元的示意图;
图12是本申请实施例提供的通信装置的示意性框图;
图13是本申请实施例提供的终端设备的结构示意图;
图14是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统等。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车联网系统中的通信。其中,车联网系统中的通信方式统称为V2X(X代表任何事物),例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)通信,车辆与路边基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle  to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
为便于理解本申请实施例,首先结合图1和图2详细说明适用于本申请实施例的通信系统。
图1是适用于本申请实施例的无线通信系统100的一示意图。如1图所示,该无线通信系统100可以包括至少一个网络设备,例如图1所示的网络设备111,该无线通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备121至终端设备123。网络设备和终端设备均可配置多个天线,网络设备与终端设备可使用多天线技术通信。
其中,网络设备可以作为第一无线设备,终端设备可以作为第二无线设备。网络设备和终端设备通信时,网络设备可以管理一个或多个小区,一个小区中可以有整数个终端设备。可选地,网络设备111和终端设备121至终端设备123组成一个单小区通信系统,不失一般性,将小区记为小区#1。网络设备111可以是小区#1中的网络设备,或者说,网络设备111可以为小区#1中的终端设备(例如终端设备121)服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
图2是适用于本申请实施例的无线通信系统200的另一示意图。如2图所示,本申请实施例的技术方案还可以应用于D2D通信。该无线通信系统200包括多个终端设备,例如图2中的终端设备124至终端设备126。终端设备124至终端设备126之间可以直接进行通信。例如,终端设备124和终端设备125可以单独或同时发送数据给终端设备126。其中,终端设备124可以作为第一无线设备,终端设备125或终端设备126可以作为第二无线设备。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:基站(base station,BS)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会转换成PHY层的信息,或者,由PHY层的信息转换而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请 对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
一般地,网络设备(例如基站)向终端设备发送数据的过程称为下行数据传输,终端设备向基站发送数据的过程称为上行数据传输。终端设备进行数据传输时,一般需要和网络设备之间建立上行同步。当终端设备和网络设备未建立上行同步,则需要通过随机接入过程(random access procedure)与网络设备建立上行同步。随机接入过程的典型应用场景包括:初始接入,切换,上行失步,定位,波束失败恢复(beam failure recovery)等。
具体地,当终端设备有新的上行数据到达、且和网络设备失去上行同步时,一般需先通过基于竞争的四步随机接入过程取得上行同步,然后再进行上行数据传输。为了进一步降低延时和信令开销,人们提出一种直接在第一消息(Msg1)发送数据的随机接入过程。由于该接入过程包括两个步骤,也称为两步随机接入。对于不同的随机接入方式,终端设备具体应如何选择,现有技术中缺乏相应的解决方案。
鉴于此,本申请提出一种随机接入的方法,能够使得网络设备根据实时负载灵活地调整终端设备采用的随机接入方式,从而提高通信性能。
为便于理解本申请,在介绍本申请实施例之前,先对本申请中涉及到的几个概念做简单介绍。
1、四步随机接入过程
一种随机接入方式为四步随机接入。四步随机接入仅是用来表示一种随机接入方式的名称,其具体名称并不对本申请实施例的范围造成限定。终端设备和网络设备之间需要进行四步信息交互(Msg1,Msg2,Msg3,Msg4)。四步随机接入过程的基本流程如图3所示。
可选地,四步随机接入过程之前,网络设备可以向设备发送随机接入配置信息(例如,携带于高层信令)或物理下行控制信道(physical downlink control channel,PDCCH),以方便终端设备确定随机接入前导(random access preamble)的索引、时频资源、功率配置等信息。
步骤1,终端设备向网络设备发送随机接入前导(preamble),也称为第一消息(Msg1)。随机接入前导的目的是通知网络设备有一个随机接入请求,从而网络设备可以估计与终端设备之间的传输时延,以校准上行定时(uplink timing)。
步骤2,网络设备向终端设备发送随机接入响应(random access response,RAR),也称为第二消息(Msg2)。具体地,网络设备检测到随机接入前导后,向终端设备发送Msg2。Msg2中可以包括随机接入前导的索引,定时提前指令(timing advance command)、上行资源分配和小区无线网络临时标识等信息。
步骤3,终端设备向网络设备发送第三消息(Msg3)。具体地,终端设备接收到Msg2后,首先根据定时提前指令调整上行定时,并根据其指示在分配的上行资源上发送上行消息,也称为Msg3。如果步骤1中多个终端设备选择了相同的随机接入前导,则将导致冲突的出现。例如,该多个终端设备中的一个终端设备的随机接入前导被网络设备正确接收,网络设备向终端设备发送Msg2,该多个终端设备都可以接收到该Msg2。该多个终端设备无法通过Msg2确定网络设备接收到了哪个终端设备的随机接入前导。此时,这些终端设备都可能接收到Msg2并分别发送Msg3。因此Msg3包括终端设备的唯一标识,用于解决后续冲突。
步骤4,网络设备向终端设备发送冲突解决。具体地,网络设备接收到终端设备的Msg3,向接入成功的终端设备返回冲突解决消息,也称为第四消息(Msg4)。网络设备在冲突解决消息中将携带Msg3中的唯一标识以指定接入成功的终端设备,而其他没有接入成功的终端设备将重新发起随机接入。
2、两步随机接入
终端设备可以在Msg1中同时发送随机接入前导和数据,从而可以不需要发送图3中提及的Msg3和Msg4。通过两步随机接入可以降低延时和信令开销。由于该随机接入过程仅包括两步,所以可以被称为两步随机接入。同样,两步随机接入仅是用来表示一种随机接入方式的名称,其具体名称并不对本申请实施例的范围造成限定。图4示出了两步随机接入的一种示意图。如图4所示,两步随机接入包括两个步骤。步骤1,终端设备向网络设备发送随机接入前导和数据,即,终端设备向网络设备发送Msg1,该Msg1中包括随机接入前导和数据。步骤2,网络设备向终端设备发送随机接入响应。
3、竞争和非竞争随机接入
根据随机接入过程中,不同终端设备是否可能发生碰撞分为两种不同的随机接入过程:基于竞争的(contention-based)随机接入过程和基于非竞争的(contention-free,non-contention)随机接入过程。基于非竞争的随机接入过程主要包括两个步骤。一种基于非竞争的随机接入过程如图5所示。步骤1,终端设备向网络设备发送随机接入前导,也称为Msg1。对于基于非竞争的随机接入,随机接入前导是终端设备专用的,所以不存在冲突。步骤2,网络设备向终端设备发送随机接入响应,也称为Msg2。可选地,在进行随机接入之前,终端设备接收网络设备发送的随机接入配置信息或物理下行控制信道(physical downlink control channel,PDCCH)指令,以确定随机接入前导的序列、时频资源、功率配置等信息。
需要说明,图4所示的两步随机接入过程和图5所示的基于非竞争的随机接入过程虽然都包括两个步骤,但具体的传输方式和消息内容并不相同。
4、下行控制信息(downlink control information,DCI)
PDCCH携带的信息称为下行控制信息(downlink control information,DCI)。DCI可以用于发送下行或上行调度、资源分配、功率控制、重传指示等信息。DCI可能指示终端设备级的信息,可以使用小区无线网络临时标识符(cell radio network temporary identifier,C-RNTI)加扰。或者,DCI也可能指示小区级的信息,可以使用系统信息无线网络临时标识符(system information radio network temporary identifier,SI-RNTI)、寻呼无线网络临时标识符(paging radio network temporary identifier,P-RNTI)、随机接入无线 网络临时标识符(random access radio network temporary identifier,RA-RNTI)等加扰。
5、时频资源
在本申请实施例中,数据或信息可以通过时频资源来承载,其中,该时频资源可以包括时域上的资源和频域上的资源。其中,在时域上,时频资源可以包括一个或多个时域单位(或者,也可以称为时间单位),在频域上,时频资源可以包括频域单位。
其中,一个时域单位(也可称为时间单元)可以是一个符号,或者一个迷你时隙(Mini-slot),或者一个时隙(slot),或者一个子帧(subframe),其中,一个子帧在时域上的持续时间可以是1毫秒(ms),一个时隙由7个或者14个符号组成,一个迷你时隙可以包括至少一个符号(例如,2个符号或7个符号或者14个符号,或者小于等于14个符号的任意数目符号)。列举的上述时域单位大小仅仅是为了方便理解本申请的方案,不应理解对本申请的限定,可以理解的是,上述时域单位大小可以为其它值,本申请不做限定。
一个频域单位可以是一个资源块(resource block,RB),或者一个资源块组(resource block group,RBG),或者一个预定义的子带(subband)。
在本申请实施例中,“数据”或“信息”可以理解为信息块经过编码后生成的比特,或者,“数据”或“信息”还可以理解为信息块经过编码调制后生成的调制符号。
特别需要说明的是,在本申请实施例中,多次提及“终端设备在Msg1中仅发送随机接入前导”。这种描述是相对于上行数据而言,也就是说,在上行数据和随机接入前导之中,终端设备在Msg1中仅携带随机接入前导而不携带上行数据。因此,“终端设备在Msg1中仅发送随机接入前导”并不代表该终端设备在Msg1中仅携带随机接入前导不携带其他信号。同样的,“终端设备在Msg1中仅发送数据”。这种描述是相对于随机接入前导而言,也就是说,在上行数据和随机接入前导之中,终端设备在Msg1中仅携带上行数据而不携带随机接入前导。因此,“终端设备在Msg1中仅发送数据”并不代表该终端设备在Msg1中仅携带数据不携带其他信号,例如,解调参考信号(demodulation reference signal,DMRS)、探测参考信号(sounding reference signal,SRS)等。本领域的技术人员可以理解,在某些情况下,若终端设备在物理上行信道上仅发送上行数据而不发送解调参考信号,网络设备可能无法正确接收到该上行数据的。
还需要说明的是,在本申请实施例中,多次提及“Msg1中包括随机接入前导”、或“Msg1中包括数据”、或“Msg1中包括随机接入前导和数据”。本领域技术人员可以理解其含义。“Msg1中包括随机接入前导”指的是Msg1中携带随机接入前导。或者,“Msg1中包括数据”指的是Msg1中携带上行数据。或者,“Msg1中包括随机接入前导和数据”指的是Msg1中携带随机接入前导和数据。
还需要说明的是,在本申请实施例中,Msg1中的携带的数据,该数据可以理解为终端设备向网络设备发送的上行数据。
还需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对 于其具体的实现方式不做限定。
还需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c,其中a,b,c可以是单个,也可以是多个。
下面将结合附图详细说明本申请提供的技术方案。
应理解,本申请提供的随机接入的方法可适用于无线通信系统,例如,图1中所示的系统100或图2中所示的系统200。其中,第一无线设备可以是如图1所示系统100中的网络设备111,也可以是如图2所示系统200中的终端设备124;第二无线设备可以是如图1所示系统100中的终端设备121至终端设备123中的任意一个或多个,也可以是如图2所示系统200中的终端设备125和/或终端设备126。
以下,不失一般性,以第一无线设备为网络设备#1,第二无线设备为终端设备#1,并以终端设备#1与网络设备#1之间的交互过程为例详细说明本申请实施例。该终端设备#1可以为处于无线通信系统中与一个或多个网络设备,或该终端设备#1可以为与终端设备具有无线连接关系的任意终端设备。可以理解的是,处于该无线通信系统中的任意一个终端设备均可以基于相同的技术方案实现无线通信。本申请对此不做限定。
图6是从设备交互的角度示出的本申请实施例提供的随机接入的方法200的示意性交互图。如图所示,方法200可以包括步骤210、步骤220:
210,网络设备#1向终端设备#1发送指示信息,该指示信息用于指示终端设备#1的随机接入方式,该指示信息携带于控制信息或介质访问控制MAC控制单元中;
220,终端设备#1向网络设备#1发送随机接入过程中的Msg1。
下面结合图6对方法200进行详细描述。
其中,控制信息或者介质访问控制(medium access control,MAC)层均可以理解为非高层信令。非高层信令是相对于高层信令来说的。高层信令可以指高层协议层发出的信令,高层协议层为MAC层以上的每个协议层中的至少一个协议层。高层信令可以是指广播消息或终端设备专用的无线资源控制(radio resource control,RRC)等。为了降低高层信令可能带来的传输时延,本申请提出了将指示信息携带于非高层信令中。或者,也可以理解为网络设备#1通过非高层信令(例如DCI或MAC控制单元)指示终端设备#1的随机接入方式。其中该非高层信令可以为MAC控制单元,或者,该非高层信令可以为控制信息,如DCI或辅链路控制信息(sidelink control information,SCI)。
为便于理解,本申请分别以DCI和MAC控制单元为例进行详细说明。应理解,下文具 体实施例中的“DCI”也可以替换成“SCI”。
可选地,随机接入方式包括:发送携带随机接入前导的Msg1(即,终端设备#1在Msg1中仅携带随机接入前导);或,发送携带随机接入前导和数据的Msg1(即,终端设备#1在Msg1中携带随机接入前导和数据);或,发送携带数据的Msg1(即,终端设备#1在Msg1中仅携带数据)。
具体地,随机接入方式可以包括终端设备#1随机接入过程中的Msg1的发送方式,在本申请实施例中,“Msg1的发送方式”和“Msg1的消息格式”所表达的含义是一致的,或者说,可替换的。该发送方式包括三种可能的形式,一种是,终端设备#1随机接入过程中发送的Msg1中仅包括随机接入前导;一种是,终端设备#1随机接入过程中发送的Msg1中同时包括随机接入前导和数据;一种是,终端设备#1随机接入过程中发送的Msg1中仅包括数据。此时,网络设备#1可以通过上述三种可能的形式,或者上述三种可能的形式中的两种可能的形式中,确定一种作为终端设备#1的随机接入方式。
或者,随机接入方式也可以包括前述的四步随机接入、两步随机接入,也就是说,网络设备#1通过指示信息指示终端设备#1的随机接入方式是四步随机接入,还是两步随机接入方式。可选地,当网络设备#1指示终端设备#1的随机接入方式为两步随机接入方式时,还可以进一步地指示Msg1的发送方式。例如,可以指示在终端设备#1随机接入过程中发送的Msg1中同时包括随机接入前导和数据,或者,终端设备#1随机接入过程中发送的Msg1中仅包括数据。换句话说,指示终端设备#1发送的Msg1中仅包括数据,或者,指示终端设备#1发送的Msg1中包括随机接入前导和数据时,可以理解为网络设备#1指示终端设备#1的随机接入方式为两步随机接入。
需要说明的是,上述指示或者确定随机接入方式也可以理解为指示或确定随机接入过程中第一步的Msg1的消息格式。
网络设备#1向终端设备#1发送指示信息之前,可以先确定终端设备#1的随机接入方式。具体地,网络设备#1可以根据网络状态或者终端设备#1的业务类型来确定终端设备#1采用何种随机接入方式。例如,当终端设备#1的业务具有较高延时要求时,网络设备#1可以指示终端设备#1采用两步随机接入。或者,又如,当网络出现拥塞时,采用两步随机接入将增加终端设备之间的干扰,使得网络拥塞更加严重,因此更适合使用四步随机接入,因此网络设备#1可以指示终端设备#1采用四步随机接入。具体地,关于网络设备#1如何确定终端设备#1采用何种随机接入方式,本申请实施例不作限定。
下面以指示信息携带于DCI或MAC控制单元中,分别说明网络设备#1如何指示终端设备#1的随机接入方式。
情况1:指示信息携带于DCI
具体地,图7示出了根据本申请一实施例提供的随机接入的方法300的示意性交互图。方法300包括步骤310至步骤330,下面详细介绍各个步骤。
310,网络设备#1向终端设备#1发送DCI。通过该DCI通知终端设备#1进行随机接入过程,并指示终端设备#1的随机接入方式。
网络设备#1可以通过DCI来指示终端设备#1采用何种随机接入方式,因此可以方便网络设备#1根据实时负载灵活地调整终端设备#1采用的随机接入方式。此外,相对于通过高层信令来指示终端设备#1采用何种随机接入方式,通过DCI来指示终端设备#1采用 何种随机接入方式可以进一步降低信令的延时,提高通信效率。
下面具体介绍如何通过DCI来指示终端设备#1采用何种随机接入方式。
DCI包括控制信息和对应的循环冗余校验(cyclic redundancy check,CRC)比特,控制信息包括多个比特字段。图8示出了适用于本申请实施例的DCI的比特字段的示意图。从图8可以看出,控制信息包括字段1、字段2、……、字段N。因此,在本申请实施例中,通过DCI指示终端设备#1的随机接入方式时,至少可以通过以下两种方式:增加字段或CRC加扰序列。下面具体介绍这两种方式。
方式1:增加字段
具体地,可以在PDCCH指令的基础上增加字段,通过该增加的字段来指示终端设备#1的随机接入方式。增加字段后的DCI和增加前的DCI长度可以相同也可以不同。
可选地,当网络设备#1向终端设备#1发送DCI时,网络设备#1通过DCI中的1个或多个预留比特指示终端设备#1的随机接入方式。
通过DCI中的预留比特指示终端设备#1的随机接入方式,从而增加字段后的DCI和增加前的DCI长度相同,进而可以减少PDCCH的盲检次数。
其中,关于PDCCH盲检。因为DCI有多种格式(format),终端设备并不知道接收到的PDCCH携带的是哪种format的DCI,也不知道该DCI通过哪个PDCCH候选进行传输,所以终端设备会进行PDCCH盲检以接收对应的DCI。
具体采用何种格式的DCI来指示随机接入方式,本申请实施例不作限定。例如,可以是DCI format 1_0,DCI format 1_1等等。以采用DCI format 1_0来指示随机接入方式为例,可以在DCI format 1_0的信息域(filed),例如DCI format 1_0中的预留比特来指示随机接入方式。
以NR系统为例,当前用于指示随机接入过程的DCI有10个预留比特,可以将其中一个或多个预留比特用来指示终端设备#1的随机接入方式。以网络设备#1指示终端设备#1随机接入过程中Msg1的发送方式为例进行说明。
一种可能的实现方式,增加一个1比特的字段来指示Msg1的发送方式。其中,0对应Msg1仅发送随机接入前导,1对应Msg1发送随机接入前导和数据。或者,1对应Msg1仅发送随机接入前导,0对应Msg1发送随机接入前导和数据。或者,0对应Msg1仅发送随机接入前导,1对应Msg1仅发送数据。或者,1对应Msg1仅发送随机接入前导,0对应Msg1仅发送数据。应理解,具体如何指示,本申请实施例对此不作限定。
另一种可能的实现方式,增加一个2比特的字段来指示Msg1的发送方式。其中,00对应Msg1仅发送随机接入前导,01对应Msg1发送随机接入前导和数据,10对应Msg1仅发送数据。或者,01对应Msg1仅发送随机接入前导,10对应Msg1发送随机接入前导和数据,00对应Msg1仅发送数据。应理解,具体如何指示,本申请实施例对此不作限定。
上述两种可能的实现方式仅是示例性说明,具体使用多少个预留比特来指示Msg1的发送方式,或者,具体的指示方式,本申请实施例并不作限定。
此外,增加的字段(如预留比特)除用于指示终端设备#1的随机接入方式(如Msg1的发送方式)外,还可以指示Msg1数据的调度信息(即,用于传输数据的传输参数配置的一例)。例如,数据的时频资源、传输波形、调制编码方式、混合自动重传请求(hybrid automatic repeat reQuest,HARQ)进程索引、新数据指示、冗余版本、参考信号、功率控 制指示等传输参数中的一种或者多种的配置信息。可选地,采用预留比特时,由于预留比特较少,可能仅包括其中的部分调度信息,那么其他消息还可以通过高层信令预先配置。此外,对应的字段还可以进行压缩。例如一般DCI中通过5个比特指示调制编码方式,在指示Msg1发送方式的DCI中,可以用小于5个比特指示调制编码方式。为了满足前向兼容性,还可以通过无线资源控制(radio resource control,RRC)等高层信令通知终端设备#1,指示DCI中的对应比特字段的含义。未接收到该高层信令的终端设备则认为这些比特是预留比特。可选地,可以通过高层信令中的信息单元判断DCI中比特字段的含义。例如,RRC配置消息中包括信息单元PUSCHInMsg1,该信息单元PUSCHInMsg1用于指示是否可以在Msg1发送数据。
Figure PCTCN2019108431-appb-000001
需要说明的是,上述所示的指示是否可以在Msg1中发送数据的形式仅是一种可能的实现形式,本申请并未限定于此。
当终端设备#1根据PUSCHInMsg1判断可以在Msg1发送数据时,则将DCI中的对应比特字段理解为用于随机接入方式指示的比特字段,否则认为这些比特是预留比特。
方式2:CRC加扰序列
可选地,网络设备#1通过DCI的CRC加扰序列指示终端设备#1的随机接入方式。
一般地,DCI的CRC比特通过C-RNTI加扰。其中C-RNTI是网络设备#1分配给终端设备#1的身份标识,不同终端设备#1使用不同的C-RNTI。终端设备#1在检测PDCCH的过程中,根据CRC比特是否由该C-RNTI加扰以判断DCI是否用于指示该终端设备#1。在本申请实施例中,可以为终端设备#1分配另一个RNTI,为区别,记为M-RNTI(Messsage1-RNTI),从而可以通过DCI的CRC加扰序列实现随机接入过程的灵活指示。
终端设备#1确定接收到的DCI的CRC比特在加扰时所使用的CRC加扰序列,根据预先配置或者预设的CRC加扰序列与随机接入方式之间的对应关系确定确定出的加扰序列所对应的随机接入方式。在上述对应关系中,至少存在两个CRC加扰序列,不同的CRC加扰序列对应不同的随机接入方式。在一实例中,终端设备#1确定接收到的DCI的CRC比特在加扰时所使用的CRC加扰序列的过程如下:,终端设备#1尝试对CRC比特进行解扰,根据解扰后的CRC比特进行CRC;如果CRC的结果为正确时,则认为解扰时所使用的加扰序列(或者加扰标识)是正确的加扰序列,即使用了与网络设备在加扰CRC比特时所使用的加扰序列(或者加扰标识)相同的加扰序列进行解扰,否则,认为没有使用正确的加扰序列进行解扰,需要更换加扰序列对CRC比特进行解扰。CRC结果正确时用于解扰接收到的DCI的CRC比特所使用的加扰序列即为DCI的CRC比特在加扰时所使用的CRC加扰序列,进而可以用于确定终端设备#1的随机接入方式。其中,尝试对CRC比特进行解扰可以理解为,随意使用一种加扰序列去解扰,随后根据解扰后的CRC比特进行CRC,如果CRC的结果为正确时,则根据该加扰序列对应的随机接入方式发送Msg1;如果CRC的结果为错误时,则使用另一种加扰序列去解扰。例如,当终端设备确定出DCI的CRC比特在加扰时所使用的加扰标识是终端设备#1的C-RNTI时,则在Msg1中仅发 送随机接入前导;当终端设备确定出DCI的CRC比特在加扰时所使用的加扰标识是该终端设备#1的M-RNTI时,则在Msg1发送随机接入前导和数据,或者仅发送数据。又如,当终端设备确定出DCI的CRC比特在加扰时是锁使用的加扰标识是终端设备#1的C-RNTI时,则在Msg1发送随机接入前导和数据,或者仅发送数据;当终端设备确定出DCI的CRC比特在加扰时所使用的加扰比特是该终端设备#1的M-RNTI,则在Msg1中仅发送随机接入前导。
在另一实施中,终端设备#1确定接收到的DCI的CRC比特在加扰时所使用的CRC加扰序列的过程如下:无需对DCI的CRC比特进行解扰,而是根据DCI直接进行CRC,将CRC得到的校验数据与网路设备为终端设备#1分配的上述两种CRC加扰标识比较,如果与其中任意一种匹配,则可以确定出DCI的CRC比特在加扰时使用的加扰标识,即为和校验数据匹配成功的那个加扰标识。
应理解,M-RNTI仅是用于区分C-RNTI,其具体的名称不对本申请实施例的保护范围造成限定。
需要说明的是,关于M-RNTI或C-RNTI分别对应哪种随机接入方式,终端设备#1可以预先获取M-RNTI或C-RNTI分别对应哪种随机接入方式。例如,可以将M-RNTI或C-RNTI分别对应哪种随机接入方式预先保存,终端设备#1接收到DCI后,根据不同的CRC加扰序列、以及预先保存的对应关系,确定随机接入方式。
用M-RNTI加扰的DCI除可以用于指示Msg1的发送方式外,还可以指示Msg1的随机接入前导和用于传输数据的传输参数。例如,用M-RNTI加扰的DCI还可以指示以下至少一项:随机接入前导索引、上行载波(uplink,UL)/辅助上行载波(supplementary uplink,SUL)指示、同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)索引、物理随机接入信道(physical random access channel,PRACH)掩码索引,数据的时频资源、传输波形、调制编码方式、HARQ进程索引、新数据指示、冗余版本、参考信号、功率控制指示等。
上述两种方式仅是示例性说明,本申请实施例并未限定于此,任何可以通过DCI来指示终端设备#1的随机接入方式的方法都属于本申请实施例的保护范围。
此外,在情况1中,网络设备#1也可以通过DCI来指示终端设备#1的传输参数配置。其中,传输参数配置表示用于传输数据的传输参数配置,即表示与传输数据相关的传输参数的配置信息。在本申请实施例中,为简洁,用传输参数配置表示用于传输数据的传输参数配置。应理解,传输参数配置仅是一个名称,不对本申请的保护范围造成限定,例如,也可以称为数据配置或数据配置信息。下面从两个场景说明。
场景A
终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带随机接入前导和数据时。
当网络设备#1确定终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带随机接入前导和数据时,第一种可能的实现方式,网络设备#1可以分别通知随机接入前导和传输参数配置。其中,传输参数配置可包括但不限于数据的时频资源、传输波形、调制编码方式、HARQ进程号、新数据指示、参考信号、签名序列等传输参数中的一种或多种的配置。第二种可能的实现方式,预先配置随机接入前导和传输参 数配置的对应关系,终端设备#1根据该对应关系以及随机接入前导索引确定传输参数配置。下面详细描述第二种可能的实现方式。
可选地,随机接入前导索引和传输参数配置之间具有一一对应关系。
当网络设备#1通知终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1可以预先配置随机接入前导和传输参数配置之间的对应关系,从而不同随机接入前导对应不同的传输参数配置。该对应关系可以是随机接入前导索引和传输参数配置之间的一一对应关系。该对应关系可以是高层信令预先配置的,终端设备#1预先保存该对应关系。网络设备#1向终端设备#1发送的DCI中携带随机接入前导索引,终端设备#1根据保存的对应关系,以及DCI中的随机接入前导索引,确定传输参数配置。根据传输参数配置可以生成Msg1的数据信号。
随机接入前导索引和传输参数配置之间具有一一对应关系。例如,可以采用以下形式进行配置:
Figure PCTCN2019108431-appb-000002
其中,数据的频域资源,即表示随机接入前导索引对应的数据可以使用的频域资源。数据的时域资源,即表示随机接入前导索引对应的数据可以使用的时域资源。数据的传输波形,即表示随机接入前导索引对应的数据可以使用的波形。数据的调制编码方式,即表示随机接入前导索引对应的数据可以使用的调制阶数和信道编码的码率。数据的HARQ进程号,即表示随机接入前导索引对应的数据可以使用的HARQ进程号。数据的参考信号端口索引(或者,天线端口索引),即表示随机接入前导索引对应的数据可以使用的天线端口的索引。数据的签名序列索引,即表示随机接入前导索引对应的数据可以使用的签名序列索引。该对应关系也可以是基于索引设计的一一对应,也可以是按序排列的一一对应。其中,按序排列可以是根据索引的升序或降序进行对应,即按照随机接入前导索引的升序或降序进行排列,根据排序的顺序一一对应不同的传输参数配置。
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。
可选地,随机接入前导索引和传输参数配置之间具有一对多的对应关系。
当网络设备#1通知终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1可以预先配置随机接入前导和传输参数配置信息之间的对应关系,从而不同随机接入前导对应不同的传输参数配置。该对应关系可以是随机接入前导索引和传输参数配置之间 的一对多的对应关系,即一个随机接入前导索引对应多个传输参数配置。该对应关系可以是高层信令预先配置的,终端设备#1预先保存该对应关系。网络设备#1向终端设备#1发送的DCI中携带随机接入前导索引和传输参数配置的索引。一种可能的实现方式,终端设备#1根据保存的对应关系,以及DCI中的随机接入前导索引,确定多个(两个或两个以上)传输参数配置,再根据传输参数配置的索引从多个传输参数配置中确定目标传输参数配置。或者,又一种可能的实现方式,终端设备#1根据传输参数配置的索引,从多个传输参数配置中确定一个目标传输参数配置,即目标传输参数配置为传输参数配置的索引所指示的传输参数配置。
随机接入前导索引和传输参数配置之间具有一对多的对应关系。例如,可以采用以下形式进行配置:
Figure PCTCN2019108431-appb-000003
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。
应理解,上述示例性地列举了随机接入前导索引和传输参数配置之间的对应关系,如随机接入前导索引和传输参数配置之间可以具有一对一的对应关系,或者,随机接入前导索引和传输参数配置之间可以具有一对多的对应关系。本申请实施例并未限定于上述两种形式的对应关系,本申请实施例关心的是,随机接入前导和传输参数配置具有对应关系(或关联关系),从而终端设备#1能够根据该对应关系以及随机接入前导索引确定传输参数配置。如,随机接入前导索引和传输参数配置之间也可以具有多对一的对应关系。
例如,网络设备#1通知终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1可以预先配置随机接入前导和传输参数配置之间多对一的对应关系。该对应关系可以是高层信令预先配置的,终端设备#1预先保存该对应关系。网络设备#1向终端设备#1发送的DCI中携带随机接入前导索引,终端设备#1根据保存的对应关系,以及DCI中 的随机接入前导索引,确定传输参数配置。根据传输参数配置可以生成Msg1的数据信号。
通过网络设备#1在DCI中通知终端设备#1随机接入前导索引等信息,终端设备#1根据随机接入前导索引、传输参数配置的索引、以及对应关系确定传输参数配置,包括但不限于数据的时频资源、传输波形、调制编码方式、签名序列等传输参数中的一种或多种的配置。这样可以节省分别通知随机接入前导和数据带来的DCI信令开销。
场景B
终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带数据时。
当网络设备#1确定终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中携带数据时,第一种可能的实现方式,网络设备#1可以向终端设备#1发送传输参数配置。其中,传输参数配置可包括但不限于数据的时频资源、传输波形、调制编码方式、HARQ进程号、新数据指示、参考信号、签名序列等信息中的一种或多种。第二种可能的实现方式,预先配置一组传输参数配置,终端设备#1根据该传输参数配置的索引确定传输参数配置。其中,终端设备#1根据该传输参数配置的索引确定传输参数配置,可以是根据传输参数配置的索引,从多个传输参数配置(或者,从一个集合(多个传输参数配置组成的集合),或者,从一组传输参数配置)中确定一个传输参数配置。或者,终端设备#1根据该传输参数配置的索引确定的传输参数配置,可以是传输参数配置的索引所指示的传输参数配置。下面详细描述第二种可能的实现方式。
Figure PCTCN2019108431-appb-000004
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。通过网络设备#1在DCI中通知终端设备#1传输参数配置的索引等信息,终端设备#1根据传输参数配置的索引确定传输参数配置,包括但不限于数据的时频资源、传输波形、调制编码方式、签名序列等信息中的一种或多种。这样可以节省通知传输参数配置带来的DCI信令开销。
320,终端设备#1向网络设备#1发送随机接入前导和/或数据。
终端设备#1根据DCI的指示,在Msg1中发送随机接入前导和/或数据。即,当DCI中指示终端设备#1的随机接入方式为在Msg1中仅发送随机接入前导时,终端设备#1在随机接入时,发送的Msg1中携带随机接入前导。或,当DCI中指示终端设备#1的随机接入方式为在Msg1中发送随机接入前导和数据时,终端设备#1在随机接入时,发送的Msg1中携带随机接入前导和终端设备#1要发送给网络设备#1的数据。或,当DCI中指 示终端设备#1的随机接入方式为在Msg1中仅发送数据时,终端设备#1在随机接入时,发送的Msg1中携带终端设备#1要发送给网络设备#1的数据。
330,网络设备#1向终端设备#1发送随机接入响应。
可选地,网络设备#1向终端设备#1发送随机接入响应信息,该随机接入响应信息中携带的信息是根据网络设备#1对Msg1的处理结果确定的。
终端设备#1根据DCI指示发送Msg1,网络设备#1根据随机接入前导和数据的接收情况发送随机接入响应。具体地,至少包括以下三种场景。
场景1
终端设备#1在Msg1仅发送随机接入前导。
当终端设备#1在Msg1仅发送随机接入前导时,网络设备#1向终端设备#1发送的随机接入响应中可以包括:随机接入前导索引、定时提前信息、上行调度信息和小区无线网络临时标识等。
场景2
终端设备#1在Msg1同时发送随机接入前导和数据。
当终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1接收Msg1后首先尝试检测随机接入前导。如果检测到随机接入前导,再进一步解调数据。
如果网络设备#1检测到随机接入前导,并未能成功解调数据,则向终端设备#1发送的随机接入响应可以包括:随机接入前导索引、定时提前信息、上行调度信息、小区无线网络临时标识等信息。其中上行调度信息可以包括数据的重传指示。
如果网络设备#1检测到随机接入前导并成功解调数据,则向终端设备#1发送的随机接入相应可以包括:随机接入前导索引、定时提前信息、终端设备#1身份标识等。此时可以不发送上行调度信息。
如果网络设备#1未检测到随机接入前导,则终端设备#1将重新发起随机接入。
场景3
终端设备#1在Msg1仅发送数据。
当终端设备#1在Msg1仅发送数据时,网络设备#1接收Msg1时直接解调数据。如果网络设备#1成功解调数据,则向终端设备#1发送定时提前信息、终端设备#1身份标识等。如果网络设备#1未成功解调数据,则终端设备#1将重新发起随机接入。
需要说明的是,上述以控制信息为DCI为例进行了说明,上文实施例中的“DCI”也可以替换成“SCI”。
基于上述情况1中的技术方案,通过在控制信息(如DCI或SCI)中增加字段或者不同的CRC加扰序列等方式指示终端设备的随机接入方式,使得网络设备可以根据实时负载灵活地调整终端设备采用的随机接入方式。此外,通过预先配置Msg1中随机接入前导索引和传输参数配置之间的对应关系,从而可以减少控制信息的信令开销。
上文结合图7和图8介绍了指示信息携带于DCI中的情况,下面结合图9至图11说明指示信息携带于MAC控制单元中的情况。
情况2:指示信息携带于MAC控制单元
具体地,图9示出了根据本申请另一实施例提供的随机接入的方法400的示意性交互图。方法400包括步骤410至步骤430,下面详细介绍各个步骤。
410,网络设备#1向终端设备#1发送MAC控制单元。通过该MAC控制单元通知终端设备#1进行随机接入过程,并指示终端设备#1的随机接入方式。
网络设备#1可以通过MAC控制单元来指示终端设备#1采用何种随机接入方式,因此可以方便网络设备#1根据实时负载灵活地调整终端设备#1采用的随机接入方式,进而提高通信效率。
下面具体介绍如何通过MAC控制单元来指示终端设备#1采用何种随机接入方式。
从MAC层看,网络设备#1向终端设备#1发送的是MAC协议数据单元(protocol data unit,PDU)。图10示出了MAC协议数据单元格式的示意图。如图10所示,MAC协议数据单元包括一个或多个MAC控制单元、一个或多个MAC服务数据单元(service data unit,SDU)。每个控制单元有一个对应的子头(即,MAC字头),其中包括逻辑信道标识(identifier,ID),用于指示MAC控制单元的类型,以便于终端设备#1对MAC控制单元的比特进行解析。
本申请实施例可以提供一种新的MAC控制单元类型,以便于实现随机接入过程的灵活指示。
可选地,网络设备#1通过MAC控制单元中信息域(filed),例如,MAC控制单元中的1个或多个预留比特指示终端设备#1的随机接入方式。
具体地,MAC控制单元中可以包括一个或多个比特用来指示终端设备#1的随机接入方式。以网络设备#1指示终端设备#1随机接入过程中Msg1的发送方式为例进行说明。
一种可能的实现方式,用MAC控制单元中的1比特来指示Msg1的发送方式。其中,0对应Msg1仅发送随机接入前导,1对应Msg1发送随机接入前导和数据。或者,1对应Msg1仅发送随机接入前导,0对应Msg1发送随机接入前导和数据。或者,0对应Msg1仅发送随机接入前导,1对应Msg1仅发送数据。或者,1对应Msg1仅发送随机接入前导,0对应Msg1仅发送数据。应理解,具体如何指示,本申请实施例对此不作限定。
另一种可能的实现方式,用MAC控制单元中的2比特的字段来指示Msg1的发送方式。其中,00对应Msg1仅发送随机接入前导,01对应Msg1发送随机接入前导和数据,10对应Msg1仅发送数据。或者,01对应Msg1仅发送随机接入前导,10对应Msg1发送随机接入前导和数据,00对应Msg1仅发送数据。应理解,具体如何指示,本申请实施例对此不作限定。
上述两种可能的实现方式仅是示例性说明,具体使用多少个比特来指示Msg1的发送方式,或者,具体的指示方式,本申请实施例并不作限定。
此外,MAC控制单元中除用于指示终端设备#1的随机接入方式(如Msg1的发送方式)外,还可以包括随机接入前导和数据的信息。例如,随机接入前导索引、UL/SUL指示、SS/PBCH索引、PRACH掩码索引,数据的时频资源、传输波形、调制编码方式、HARQ进程索引、新数据指示、冗余版本、参考信号、功率控制指示等。图11示出了适用于本申请实施例的MAC控制单元的示意图。如图11所示,MAC控制单元中可以包括Msg1format字段,指示Msg1中携带随机接入前导和/或数据。MAC控制单元中还可以包括前导的信息(preamble information)(即,随机接入前导的信息)、数据的信息(即,物理上行共享信道的信息(physical uplink shared channel information,PUSCH information))。
此外,在情况2中,网络设备#1也可以通过MAC控制单元来指示终端设备#1传输 参数配置。下面从两个场景说明。
场景A
终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带随机接入前导和数据时。
当网络设备#1确定终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带随机接入前导和数据时,第一种可能的实现方式,网络设备#1可以分别通知随机接入前导和传输参数配置。其中,传输参数配置可包括但不限于数据的时频资源、传输波形、调制编码方式、HARQ进程号、新数据指示、参考信号、签名序列等信息中的一种或多种。第二种可能的实现方式,预先配置随机接入前导和传输参数配置的对应关系,终端设备#1根据该对应关系以及随机接入前导索引确定传输参数配置。下面详细描述第二种可能的实现方式。
可选地,随机接入前导索引和传输参数配置之间具有一一对应关系。
当网络设备#1通知终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1可以预先配置随机接入前导和传输参数配置之间的对应关系,从而不同随机接入前导对应不同的传输参数配置。该对应关系可以是随机接入前导索引和传输参数配置之间的一一对应关系。该对应关系可以是高层信令预先配置的,终端设备#1预先保存该对应关系。网络设备#1向终端设备#1发送的MAC控制单元中携带随机接入前导索引,终端设备#1根据保存的对应关系,以及MAC控制单元中的随机接入前导索引,确定传输参数配置。根据传输参数配置可以生成Msg1的数据信号。
随机接入前导索引和传输参数配置之间具有一一对应关系。例如,可以采用以下形式进行配置:
Figure PCTCN2019108431-appb-000005
其中,数据的频域资源,即表示随机接入前导索引对应的数据可以使用的频域资源。数据的时域资源,即表示随机接入前导索引对应的数据可以使用的时域资源。数据的传输波形,即表示随机接入前导索引对应的数据可以使用的波形。数据的调制编码方式,即表示随机接入前导索引对应的数据可以使用的调制阶数和信道编码的码率。数据的HARQ进程号,即表示随机接入前导索引对应的数据可以使用的HARQ进程号。数据的参考信号端口索引,即表示随机接入前导索引对应的数据可以使用的参考信号索引。数据的签名序列索引,即表示随机接入前导索引对应的数据可以使用的签名序列索引。该对应关系可 以是基于索引设计的一一对应,也可以是按序排列的一一对应。其中,按序排列可以是根据索引的升序或降序进行对应,即按照随机接入前导索引的升序或降序进行排列,根据排序的顺序一一对应不同的传输参数配置。
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。
可选地,随机接入前导索引和传输参数配置之间具有一对多的对应关系。
当网络设备#1通知终端设备#1在Msg1同时发送随机接入前导和数据时,网络设备#1可以预先配置随机接入前导和传输参数配置之间的对应关系,从而不同随机接入前导对应不同的传输参数配置。该对应关系可以是随机接入前导索引和传输参数配置之间的一对多的对应关系,即一个随机接入前导索引对应多个传输参数配置。该对应关系可以是高层信令预先配置的,终端设备#1预先保存该对应关系。网络设备#1向终端设备#1发送的MAC控制单元中携带随机接入前导索引和传输参数配置的索引,根据传输参数配置的索引确定目标传输参数配置。一种可能的实现方式,终端设备#1根据保存的对应关系,以及MAC控制单元中的随机接入前导索引,确定多个传输参数配置,再根据传输参数配置的索引从多个传输参数配置中确定目标传输参数配置。或者,又一种可能的实现方式,终端设备#1根据传输参数配置的索引,从多个传输参数配置中确定一个目标传输参数配置,即目标传输参数配置为传输参数配置的索引所指示的传输参数配置。
随机接入前导索引和传输参数配置之间具有一对多的对应关系。例如,可以采用以下形式进行配置:
Figure PCTCN2019108431-appb-000006
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。
通过网络设备#1在MAC控制单元中通知终端设备#1随机接入前导索引等信息,终 端设备#1根据随机接入前导索引、传输参数配置的索引、以及对应关系确定传输参数配置,包括但不限于数据的时频资源、传输波形、调制编码方式、签名序列等信息中的一种或多种。这样可以节省分别通知随机接入前导和数据带来的MAC控制单元信令开销。
场景B
终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中需要携带数据时。
当网络设备#1确定终端设备#1的随机接入方式为两步随机接入,或者终端设备#1发送的Msg1中携带数据时,第一种可能的实现方式,网络设备#1可以向终端设备#1发送传输参数配置。其中,传输参数配置可包括但不限于数据的时频资源、传输波形、调制编码方式、HARQ进程号、新数据指示、参考信号、签名序列等信息中的一种或多种。第二种可能的实现方式,预先配置一组传输参数配置,终端设备#1根据该传输参数配置的索引确定传输参数配置。其中,终端设备#1根据该传输参数配置的索引确定传输参数配置,可以是根据传输参数配置的索引,从多个传输参数配置(或者,从一个集合(多个传输参数配置组成的集合),或者,从一组传输参数配置)中确定一个传输参数配置。或者,终端设备#1根据该传输参数配置的索引确定的传输参数配置,可以是传输参数配置的索引所指示的传输参数配置。下面详细描述第二种可能的实现方式。
Figure PCTCN2019108431-appb-000007
需要说明的是,上述所示的传输参数配置的形式仅是一种可能的实现形式,本申请并未限定于此。通过网络设备#1在MAC控制单元中通知终端设备#1传输参数配置的索引等信息,终端设备#1根据传输参数配置的索引确定传输参数配置,包括但不限于数据的时频资源、传输波形、调制编码方式、签名序列等信息中的一种或多种。这样可以节省通知传输参数配置带来的MAC控制单元信令开销。
420,终端设备#1向网络设备#1发送随机接入前导和/或数据。
终端设备#1根据MAC控制单元的指示,在Msg1中发送随机接入前导和/或数据。即,当MAC控制单元中指示终端设备#1的随机接入方式为在Msg1中仅发送随机接入前导时,终端设备#1在随机接入时,发送的Msg1中携带随机接入前导。或,当MAC控制单元中指示终端设备#1的随机接入方式为在Msg1中发送随机接入前导和数据时,终端设备#1在随机接入时,发送的Msg1中携带随机接入前导和终端设备#1要发送给网络设备#1的数据。或,当MAC控制单元中指示终端设备#1的随机接入方式为在Msg1中仅发送数据时,终端设备#1在随机接入时,发送的Msg1中携带终端设备#1要发送给网络设备#1的 数据。
430,网络设备#1向终端设备#1发送随机接入响应。
可选地,网络设备#1向终端设备#1发送随机接入响应信息,该随机接入响应信息中携带的信息是根据网络设备#1对Msg1的处理结果确定的。
终端设备#1根据MAC控制单元指示发送Msg1,网络设备#1根据随机接入前导和数据的接收情况发送随机接入响应。具体地,至少包括三种场景。该三种场景与上述三种场景(步骤330中的场景1、场景2、场景3)类似,上述三种场景在描述上述步骤330时已详细介绍,此时为简洁,不再赘述。
基于上述情况2中的技术方案,网络设备通过MAC控制单元指示终端设备的随机接入方式,使得网络设备可以根据实时负载灵活地调整终端设备采用的随机接入方式,从而可以提高通信效率。
以上,结合图6至图11详细说明了本申请实施例提供的随机接入的方法。
需要说明的是,本申请实施例并不限定通过情况1中的DCI或情况2中的MAC控制单元来指示随机接入方式,任何可以快速地通知终端设备的随机接入的方式都纳入本申请实施例的保护范围。
基于上述技术方案,网络设备#1可以通过向终端设备#1发送携带于非高层信令的指示信息来指示终端设备#1的随机接入方式,其中该非高层信令可以为控制信息,如DCI或SCI,或者,该非高层信令可以为MAC控制单元。随机接入方式可以包括两步随机接入和四步随机接入两种,或者,随机接入方式也可以包括随机接入过程中的Msg1中携带的内容(例如,仅携带随机接入前导或仅携带数据,或者同时携带随机接入前导和数据,等等)。终端设备#1具体采用何种随机接入方式,可以由网络设备#1根据一些因素确定。例如,网络设备#1可以根据网络状态或者终端设备#1的业务类型来确定终端设备#1采用何种随机接入方式。此外,通过非高层信令可以实时地指示终端设备#1的随机接入方式,从而可以提高通信效率,提升用户体验。
以下,结合图12至图14详细说明本申请实施例提供的通信装置。
图12是本申请实施例提供的通信装置的示意性框图。如图12所示,该通信装置500可以包括收发单元510和处理单元520。
在一种可能的设计中,该通信装置500可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
在一种可能的实现方式中,该收发单元510用于:接收第一无线设备发送的非高层信令,该非高层信令为物理层控制信息或MAC控制单元。该处理单元520用于:从该非高层信令中获取指示信息,该指示信息用于指示随机接入方式;根据该指示信息生成Msg1。该收发单元510还用于向该第一无线设备发送该Msg1。
可选地,该处理单元520具体用于:根据该指示信息生成携带随机接入前导的Msg1;或,根据该指示信息生成携带随机接入前导和数据的Msg1;或,根据该指示信息生成发送携带数据的Msg1。
可选地,该指示信息承载于该物理层控制信息或该MAC控制单元中的1个或多个预留比特。
可选地,该处理单元520具体用于:确定出该物理层控制信息的CRC比特在加扰时 所使用的加扰序列,该指示信息具体为该确定出的加扰序列;该处理单元520具体用于:根据该确定出的加扰序列所对应的随机接入方式,生成Msg1。
可选地,该指示信息具体指示随机接入方式为发送携带随机接入前导和数据的Msg1,该物理层控制信息或MAC控制单元中还携带随机接入前导索引;该处理单元520还用于:根据该随机接入前导索引,确定与该随机接入前导索引所关联的用于传输数据的传输参数配置;该收发单元510还用于:根据该确定的用于传输数据的传输参数配置,向该第一无线设备发送该Msg1中的数据。
可选地,该指示信息具体指示该随机接入方式为发送携带随机接入前导和数据的Msg1,该物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,该传输参数配置的索引用于确定一个或多个用于传输数据的传输参数配置;该收发单元510还用于:根据该传输参数配置的索引所确定的传输参数配置,向该第一无线设备发送该Msg1中的数据。
可选地,该指示信息具体指示所随机接入方式为发送携带数据的Msg1,该物理层控制信息或MAC控制单元中还携带传输参数配置的索引,该传输参数配置的索引用于确定一个或多个用于传输数据的传输参数配置;该收发单元510还用于:根据传输参数配置的索引所确定的传输参数配置,向该第一无线设备发送该Msg1中的数据。
可选地,该用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
具体地,该通信装置500可对应于根据本申请实施例的方法200、方法300、方法400中的终端设备,该通信装置500可以包括用于执行图6中的方法200、图7中的方法300、图9中的方法400中的终端设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图6中的方法200、图7中的方法300、图9中的方法400的相应流程。
其中,当该通信装置500用于执行图6中的方法200时,收发单元510可用于执行方法200中的步骤210、步骤220。处理单元520可用于执行方法200中的终端设备根据接收到的指示确定Msg1中需要携带哪些内容、以及终端设备根据接收到的对应关系确定传输参数配置的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图7中的方法300时,收发单元510可用于执行方法300中的步骤310、步骤320、步骤330。处理单元520可用于执行方法300中的终端设备根据接收到的指示确定Msg1中需要携带哪些内容、以及终端设备根据接收到的对应关系确定传输参数配置的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图9中的方法400时,收发单元510可用于执行方法400中的步骤410、步骤420、步骤430。处理单元520可用于执行方法400中的终端设备根据接收到的指示确定Msg1中需要携带哪些内容、以及终端设备根据接收到的对应关系确定传输参数配置的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500中的收发单元可对应于图13中示出的终端设备600中的收发器602,该通信装置500中的处理单元520可对应于图13中示出的终端设备600中的处理器601。
在另一种可能的设计中,该通信装置500可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
在一种可能的实现方式中,处理单元520用于:生成指示信息,该指示信息用于指示该第二无线设备的随机接入方式;收发单元510用于:向第二无线设备发送该指示信息,其中,该指示信息携带于物理层控制信息或MAC控制单元中;收发单元510还用于:接收该第二无线设备随机接入过程中发送的Msg1。
可选地,该随机接入方式包括以下任一项:发送携带随机接入前导的Msg1;或,发送携带随机接入前导和数据的Msg1;或,发送携带数据的Msg1。
可选地,该指示信息承载于该物理层控制信息或该MAC控制单元中的1个或多个预留比特。
可选地,处理单元520还用于:用至少两种加扰序列中的一种加扰序列对该物理层控制信息的循环冗余校验CRC比特加扰,该至少两种加扰序列中的不同的加扰序列对应不同的随机接入方式;该指示信息具体为加扰该物理层控制信息的CRC比特所使用的加扰序列。
可选地,该指示信息具体指示该第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,该物理层控制信息或MAC控制单元中还携带随机接入前导索引,该随机接入前导索引用于确定:该随机接入前导和用于传输该数据的传输参数配置。
可选地,该指示信息具体指示该第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,该物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,该传输参数配置的索引可用于确定一个或者多个用于传输数据的传输参数配置。
可选地,该指示信息具体指示该第二无线设备的随机接入方式为发送携带数据的Msg1,该物理层控制信息或MAC控制单元中还携带传输参数配置的索引,该传输参数配置的索引用于确定一个或者多个用于传输数据的传输参数配置。
可选地,该用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
具体地,该通信装置500可对应于根据本申请实施例的方法200、方法300、方法400中的网络设备,该通信装置500可以包括用于执行图6中的方法200、图7中的方法300、图9中的方法400中的网络设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图6中的方法200、图7中的方法300、图9中的方法400的相应流程。
其中,当该通信装置500用于执行图6中的方法200时,收发单元510可用于执行方法200中的步骤210、步骤220。处理单元520可用于执行方法200中的确定终端设备的随机接入方式、以及处理接收到的随机接入前导和/或数据的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘 述。
当该通信装置500用于执行图7中的方法300时,收发单元510可用于执行方法300中的步骤310、步骤320、步骤330。处理单元520可用于执行方法300中的确定终端设备的随机接入方式、以及处理接收到的随机接入前导和/或数据的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置500用于执行图9中的方法400时,收发单元510可用于执行方法400中的步骤410、步骤420、步骤430。处理单元520可用于执行方法400中的确定终端设备的随机接入方式、以及处理接收到的随机接入前导和/或数据的相关步骤。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置500中的收发单元510可对应于图14中示出的网络设备700中的收发器720,该通信装置500中的处理单元520可对应于图14中示出的网络设备700中的处理器710。
图13是本申请实施例提供的终端设备600的结构示意图。如图所示,该终端设备600包括处理器601和收发器602。可选地,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。可选地,终端设备600还可以包括天线604,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。
当存储器603中存储的程序指令被处理器601执行时,该处理器601用于控制收发器602接收物理层控制信息或MAC控制单元,并基于该物理层控制信息或MAC控制单元确定Msg1中需要携带的内容。
具体地,该终端设备600可对应于根据本申请实施例的方法200、方法300、方法400中的终端设备,该终端设备600可以包括用于执行图6中的方法200、图7中的方法300、图9中的方法400中的终端设备执行的方法的单元。并且,该终端设备600中的各单元和上述其他操作和/或功能分别为了实现图6中的方法200、图7中的方法300、图9中的方法400的相应流程。
上述处理器601可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器602可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备600还可以包括电源605,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器610等中的一个或多个,所述音频电路还可以包括扬声器6082、麦克风6084等。
图14是本申请实施例提供的网络设备700的结构示意图。如图所示,该网络设备700包括处理器710和收发器720。可选地,该网络设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述网络设备700还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
当存储器730中存储的程序指令被处理器710执行时,该处理器710用于控制收发器720发送物理层或MAC控制单元,该物理层或MAC控制单元中携带指示随机接入方式的指示信息;该处理器710还用于控制收发器720接收Msg1。
具体地,该网络设备700可对应于根据本申请实施例的方法200、方法300、方法400中的网络设备,该网络设备700可以包括用于执行图6中的方法200、图7中的方法300、图9中的方法400中的网络设备执行的方法的单元。并且,该网络设备700中的各单元和上述其他操作和/或功能分别为了实现图6中的方法200、图7中的方法300、图9中的方法400的相应流程,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上述处理器710可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而收发器720可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6、图7、图9所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6、图7、图9所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (37)

  1. 一种随机接入的方法,其特征在于,包括:
    第一无线设备向第二无线设备发送指示信息,所述指示信息用于指示所述第二无线设备的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;
    所述第一无线设备接收所述第二无线设备随机接入过程中发送的第一消息Msg1。
  2. 根据权利要求1所述的方法,其特征在于,所述随机接入方式包括以下任一项:
    发送携带随机接入前导的Msg1;
    发送携带随机接入前导和数据的Msg1;
    发送携带数据的Msg1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
  4. 根据权利要求1或2所述的方法,其特征在于,所述物理层控制信息的循环冗余校验CRC比特被至少两种加扰序列中的一种加扰,所述至少两种加扰序列中的不同的加扰序列对应不同的随机接入方式;
    所述指示信息具体为加扰所述物理层控制信息的CRC比特所使用的加扰序列。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1;
    所述物理层控制信息或MAC控制单元中还携带随机接入前导索引,所述随机接入前导索引用于确定:所述随机接入前导和用于传输数据的传输参数配置。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,
    所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,所述传输参数配置的索引指示一个或多个用于传输数据的传输参数配置。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带数据的Msg1,
    所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引用于指示一个或多个用于传输数据的传输参数配置。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
  9. 一种随机接入的方法,其特征在于,包括:
    第二无线设备获取第一无线设备发送的指示信息,所述指示信息用于指示所述第二无线设备的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;
    根据所述指示信息,所述第二无线设备向所述第一无线设备发送第一消息Msg1。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述指示信息,所述第二无 线设备向所述第一无线设备发送Msg1,包括:
    根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带随机接入前导的Msg1;或,
    根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带随机接入前导和数据的Msg1;或,
    根据所述指示信息,所述第二无线设备向所述第一无线设备发送携带数据的Msg1。
  11. 根据权利要求9或10所述的方法,其特征在于,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
  12. 根据权利要求9或10所述的方法,其特征在于,所述第二无线设备获取第一无线设备发送的指示信息,包括:
    确定所述物理层控制信息的循环冗余校验CRC比特在加扰时所使用的加扰序列,所述指示信息具体为所述确定出的加扰序列;
    所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:
    根据所述确定出的加扰序列所对应的随机接入方式,所述第二无线设备向所述第一无线设备发送Msg1。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,所述指示信息具体指示随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引;
    所述方法还包括:
    根据所述随机接入前导索引,确定与所述随机接入前导索引所关联的用于传输数据的传输参数配置;
    所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:
    所述第二无线设备根据所述确定的用于传输数据的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  14. 根据权利要求9至12中任一项所述的方法,其特征在于,所述指示信息具体指示所述随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,所述传输参数配置的索引用于指示一个或者多个用于传输数据的传输参数配置;
    所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:
    所述第二无线设备根据所述传输参数配置的索引所指示的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  15. 根据权利要求9至12中任一项所述的方法,其特征在于,所述指示信息具体指示所随机接入方式为发送携带数据的Msg1,所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引指示一个或多个用于传输数据的传输参数配置;
    所述根据所述指示信息,所述第二无线设备向所述第一无线设备发送Msg1,包括:
    所述第二无线设备根据所述传输参数配置的索引所指示的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述用于传输数据的 传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
  17. 一种通信装置,其特征在于,包括收发单元和处理单元,
    所述处理单元用于:生成指示信息;
    所述收发单元用于:向第二无线设备发送所述指示信息,所述指示信息用于指示所述第二无线设备的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;
    所述收发单元还用于:接收所述第二无线设备随机接入过程中发送的第一消息Msg1。
  18. 根据权利要求17所述的通信装置,其特征在于,所述随机接入方式包括以下任一项:
    发送携带随机接入前导的Msg1;
    发送携带随机接入前导和数据的Msg1;
    发送携带数据的Msg1。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
  20. 根据权利要求17或18所述的通信装置,其特征在于,所述处理单元还用于:
    用至少两种加扰序列中的一种加扰序列对所述物理层控制信息的循环冗余校验CRC比特加扰,所述至少两种加扰序列中的不同的加扰序列对应不同的随机接入方式;
    所述指示信息具体为加扰所述物理层控制信息的CRC比特所使用的加扰序列。
  21. 根据权利要求17至20中任一项所述的通信装置,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1;
    所述物理层控制信息或MAC控制单元中还携带随机接入前导索引,所述随机接入前导索引用于确定:所述随机接入前导和用于传输数据的传输参数配置。
  22. 根据权利要求17至20中任一项所述的通信装置,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带随机接入前导和数据的Msg1,
    所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,所述传输参数配置的索引指示一个或多个用于传输数据的传输参数配置。
  23. 根据权利要求17至20中任一项所述的通信装置,其特征在于,所述指示信息具体指示所述第二无线设备的随机接入方式为发送携带数据的Msg1,
    所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引用于指示一个或多个用于传输数据的传输参数配置。
  24. 根据权利要求21至23中任一项所述的通信装置,其特征在于,所述用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
  25. 一种通信装置,其特征在于,包括收发单元和处理单元,
    所述收发单元用于,获取第一无线设备发送的指示信息,所述指示信息用于指示所述通信装置的随机接入方式,其中,所述指示信息携带于物理层控制信息或介质访问控制MAC控制单元中;
    所述处理单元用于,根据所述指示信息,生成第一消息Msg1;
    所述收发单元还用于,根据所述指示信息,向所述第一无线设备发送所述Msg1。
  26. 根据权利要求25所述的通信装置,其特征在于,所述处理单元具体用于,
    根据所述指示信息,生成随机接入前导的Msg1;或,
    根据所述指示信息,生成随机接入前导和数据的Msg1;或,
    根据所述指示信息,生成数据的Msg1。
  27. 根据权利要求25或26所述的通信装置,其特征在于,所述指示信息承载于所述物理层控制信息或所述MAC控制单元中的1个或多个预留比特。
  28. 根据权利要求25或26所述的通信装置,其特征在于,所述处理单元具体用于:
    确定所述物理层控制信息的循环冗余校验CRC比特在加扰时所使用的加扰序列,所述指示信息具体为所述确定出的加扰序列;
    根据所述确定出的加扰序列所对应的随机接入方式,生成所述Msg1。
  29. 根据权利要求25至28中任一项所述的通信装置,其特征在于,所述指示信息具体指示随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引;
    所述处理单元还用于:根据所述随机接入前导索引,确定与所述随机接入前导索引所关联的用于传输数据的传输参数配置;
    所述收发单元用于,根据所述确定的用于传输数据的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  30. 根据权利要求25至28中任一项所述的通信装置,其特征在于,所述指示信息具体指示所述随机接入方式为发送携带随机接入前导和数据的Msg1,所述物理层控制信息或MAC控制单元中还携带随机接入前导索引和传输参数配置的索引,所述传输参数配置的索引用于指示一个或者多个用于传输数据的传输参数配置;
    所述收发单元用于,根据所述传输参数配置的索引所指示的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  31. 根据权利要求25至28中任一项所述的通信装置,其特征在于,所述指示信息具体指示所随机接入方式为发送携带数据的Msg1,所述物理层控制信息或MAC控制单元中还携带传输参数配置的索引,所述传输参数配置的索引指示一个或多个用于传输数据的传输参数配置;
    所述收发单元用于,根据所述传输参数配置的索引所指示的传输参数配置,向所述第一无线设备发送所述Msg1中的数据。
  32. 根据权利要求29至31中任一项所述的通信装置,其特征在于,所述用于传输数据的传输参数配置包括以下至少一项传输参数的配置:数据的时频资源、传输波形、调制编码方式、混合自动重传请求HARQ进程号、参考信号、签名序列。
  33. 一种通信装置,其特征在于,用于执行如权利要求1至16中任一项所述的方法。
  34. 一种通信装置,其特征在于,所述通信装置包括处理器、存储器以及存储在存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述通信装置执行如权利要求1至16中任一项所述的方法。
  35. 一种处理器,其特征在于,所述处理器包括输入电路、输出电路和处理电路,所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处 理器执行如权利要求1至16中任一项所述的方法。
  36. 一种计算机程序产品,所述计算机程序产品包括:计算机程序,所述计算机程序被计算机执行时,使得通信装置执行如权利要求1至16中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至16中任一项所述的方法。
PCT/CN2019/108431 2018-09-28 2019-09-27 一种随机接入的方法和通信装置 WO2020063828A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19867588.6A EP3855850A4 (en) 2018-09-28 2019-09-27 Random access method and communication apparatus
US17/214,434 US20210219350A1 (en) 2018-09-28 2021-03-26 Random access method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811140232.1A CN110972322B (zh) 2018-09-28 2018-09-28 一种随机接入的方法和通信装置
CN201811140232.1 2018-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/214,434 Continuation US20210219350A1 (en) 2018-09-28 2021-03-26 Random access method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020063828A1 true WO2020063828A1 (zh) 2020-04-02

Family

ID=69951033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108431 WO2020063828A1 (zh) 2018-09-28 2019-09-27 一种随机接入的方法和通信装置

Country Status (4)

Country Link
US (1) US20210219350A1 (zh)
EP (1) EP3855850A4 (zh)
CN (1) CN110972322B (zh)
WO (1) WO2020063828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918409A (zh) * 2020-08-10 2020-11-10 郑州大学体育学院 用于教育软件的大数据信息收集方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020137072A1 (ja) * 2018-12-28 2021-11-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 送信装置、受信装置、送信方法及び受信方法
US11832212B2 (en) * 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
US11800491B2 (en) * 2020-08-25 2023-10-24 Qualcomm Incorporated Resource pool-based communications for sidelink
CN112913318B (zh) * 2021-01-15 2023-07-25 北京小米移动软件有限公司 随机接入消息盲重传指示方法和装置
CN116830766A (zh) * 2021-01-29 2023-09-29 华为技术有限公司 通信方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064050A (zh) * 2016-11-05 2018-05-22 华为技术有限公司 配置方法及装置
WO2018094094A2 (en) * 2016-11-16 2018-05-24 Qualcomm Incorporated Ul waveform during rach procedure and autonomous ul transmission
US20180205516A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and Apparatus for Performing Contention Based Random Access in a Carrier Frequency

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220795A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 下行控制信息的发送方法和基站
US10178703B2 (en) * 2013-05-09 2019-01-08 Blackberry Limited Stopping a random access procedure
CN105338589A (zh) * 2014-08-11 2016-02-17 中兴通讯股份有限公司 随机接入响应消息的传输方法及装置
CN105682232B (zh) * 2016-01-08 2018-03-16 宇龙计算机通信科技(深圳)有限公司 资源配置方法、资源配置装置和基站
CN106993332B (zh) * 2016-01-20 2019-07-02 中兴通讯股份有限公司 上行调度的方法及装置
JP2019054314A (ja) * 2016-02-02 2019-04-04 シャープ株式会社 端末装置および方法
EP3499781B1 (en) * 2016-08-09 2021-04-14 LG Electronics Inc. Method and apparatus for a terminal to transmit d2d data in wireless communication system
CN107820318A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种发送信息的方法及装置
US10425970B2 (en) * 2016-09-30 2019-09-24 Qualcomm Incorporated Precoding management for random access procedures
US20180124626A1 (en) * 2016-11-03 2018-05-03 Mediatek Inc. Method of Data Transmission and Reception in Random Access Procedure
CN108271275B (zh) * 2017-01-04 2021-02-05 电信科学技术研究院 一种竞争随机接入的方法和装置
US10785801B2 (en) * 2017-01-05 2020-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for random access in a wireless communication system
CN108282874B (zh) * 2017-01-06 2019-08-16 电信科学技术研究院 一种数据传输方法、装置及系统
US10841954B2 (en) * 2017-01-13 2020-11-17 Acer Incorporated Device of handling a random access procedure
JP2020047963A (ja) * 2017-01-20 2020-03-26 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
JP2020047964A (ja) * 2017-01-20 2020-03-26 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US10849022B2 (en) * 2017-03-17 2020-11-24 Ofinno, Llc Cell selection of inactive state wireless device
US10568007B2 (en) * 2017-03-22 2020-02-18 Comcast Cable Communications, Llc Handover random access
US11647543B2 (en) * 2017-03-23 2023-05-09 Comcast Cable Communications, Llc Power control for random access
KR102440020B1 (ko) * 2017-05-04 2022-09-06 삼성전자주식회사 래치 전력 오프셋
WO2018226026A1 (en) * 2017-06-07 2018-12-13 Samsung Electronics Co., Ltd. System and method of identifying random access response
JP2019004246A (ja) * 2017-06-13 2019-01-10 シャープ株式会社 端末装置、基地局装置、および、通信方法
US11723063B2 (en) * 2017-08-11 2023-08-08 Qualcomm Incorporated Different configurations for message content and transmission in a random access procedure
US20200221503A1 (en) * 2017-09-28 2020-07-09 Sony Corporation Terminal device, base station device, method, and recording medium
US11778659B2 (en) * 2018-02-26 2023-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Beam selection for PDCCH order

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108064050A (zh) * 2016-11-05 2018-05-22 华为技术有限公司 配置方法及装置
WO2018094094A2 (en) * 2016-11-16 2018-05-24 Qualcomm Incorporated Ul waveform during rach procedure and autonomous ul transmission
US20180205516A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and Apparatus for Performing Contention Based Random Access in a Carrier Frequency

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Random Access Procedure", R I-1700702, 3GPP TSG RAN WG1 AH_NR MEETING, 20 January 2017 (2017-01-20), XP051208226 *
"System Access and Support for Different Numerologies", R2-168592, 3GPP TSG-RAN WG2 #96, 18 November 2016 (2016-11-18), XP051178162 *
OPPO: "Two-steps RACH Procedure for NR-U", R2-1811067, 3GPP TSG-RAN WG2 MEETING #103, 24 August 2018 (2018-08-24), XP051520768 *
See also references of EP3855850A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918409A (zh) * 2020-08-10 2020-11-10 郑州大学体育学院 用于教育软件的大数据信息收集方法及系统

Also Published As

Publication number Publication date
CN110972322B (zh) 2022-10-28
CN110972322A (zh) 2020-04-07
EP3855850A4 (en) 2021-12-29
US20210219350A1 (en) 2021-07-15
EP3855850A1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2020063828A1 (zh) 一种随机接入的方法和通信装置
WO2020020270A1 (zh) 随机接入的方法和通信设备
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
WO2020259662A1 (zh) 一种随机接入的方法及通信装置
WO2020107429A1 (zh) 随机接入的方法和设备
US20220070926A1 (en) Communication control method and user equipment
WO2020124763A1 (zh) 随机接入的方法和设备
WO2022067519A1 (zh) 随机接入方法和终端设备
CN107046737B (zh) 处理系统信息的装置及方法
EP4124146A1 (en) Communication method and communication apparatus
US20230129426A1 (en) Wireless communication method and terminal device
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2022183406A1 (zh) 传输数据信道的方法、终端设备和网络设备
WO2022126667A1 (zh) 随机接入响应的处理方法、网络设备和终端设备
WO2020020352A1 (zh) 随机接入方法、终端设备和网络设备
WO2020206658A1 (zh) 无线通信方法、终端设备和网络设备
WO2022150991A1 (zh) 无线通信的方法和设备
US20240080817A1 (en) Wireless communication method, terminal device, and network device
US11395350B2 (en) Random access method, terminal device, and network device
JP7456551B2 (ja) 信号の送受信方法、装置及び通信システム
EP3836475B1 (en) Method for controlling power ramp counter, and terminal device
WO2022099634A1 (zh) 无线通信方法、终端设备和网络设备
WO2024011396A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023010351A1 (zh) 无线通信方法、装置、设备及存储介质
CN116647932A (zh) 物理上行控制信道传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867588

Country of ref document: EP

Effective date: 20210421