WO2022236601A1 - 图像数据的传输方法及装置 - Google Patents

图像数据的传输方法及装置 Download PDF

Info

Publication number
WO2022236601A1
WO2022236601A1 PCT/CN2021/092840 CN2021092840W WO2022236601A1 WO 2022236601 A1 WO2022236601 A1 WO 2022236601A1 CN 2021092840 W CN2021092840 W CN 2021092840W WO 2022236601 A1 WO2022236601 A1 WO 2022236601A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel data
pixels
driver chip
pixel
data
Prior art date
Application number
PCT/CN2021/092840
Other languages
English (en)
French (fr)
Inventor
刘蕊
宗少雷
段欣
孙伟
孙继刚
于淑环
郝可歆
刘建涛
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001105.7A priority Critical patent/CN115606178A/zh
Priority to US17/773,337 priority patent/US20240153433A1/en
Priority to PCT/CN2021/092840 priority patent/WO2022236601A1/zh
Publication of WO2022236601A1 publication Critical patent/WO2022236601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication

Definitions

  • the present disclosure relates to the field of display technology, in particular to a method and device for transmitting image data.
  • a display device generally includes a timing controller (timer controller, TCON), a driving circuit, and a display panel.
  • TCON timing controller
  • the driving circuit can drive the display panel to display the image based on the image data.
  • the resolution of the image displayed on the display panel is relatively high, resulting in a large amount of image data transmitted by the TCON to the drive circuit.
  • the bandwidth occupied during image data transmission is relatively high.
  • the disclosure provides a method and device for transmitting image data. Described technical scheme is as follows:
  • a method for transmitting image data which is applied to a transmission component of image data, and the method includes:
  • initial image data of an image to be displayed in a display panel where the display panel includes a plurality of pixels, and the initial image data includes pixel data of the plurality of pixels;
  • the plurality of first pixels are located in the non-watching area of the display panel, and all but one of the plurality of pixels
  • a plurality of second pixels other than the plurality of first pixels are located in the viewing area of the display panel;
  • the compressed image data includes: the at least one compressed pixel data, and the pixel data of the plurality of second pixels, the compressed image data is used for the
  • the driving chip drives the display panel to display.
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in a pixel column direction;
  • the compressing the pixel data of a plurality of first pixels in the initial image data to obtain at least one compressed pixel data includes:
  • the non-attention area includes a second area, and the second area and the attention area are arranged in a pixel row direction;
  • the compressing the pixel data of a plurality of first pixels in the initial image data to obtain at least one compressed pixel data includes:
  • the M columns of first pixels are connected to the same driver chip.
  • the method before compressing the pixel data of a plurality of first pixels in the initial image data, the method further includes:
  • the gaze area is determined based on the data collected by the gaze area detection sensor.
  • said compressing the pixel data of a plurality of first pixels in the initial image data to obtain at least one compressed pixel data includes:
  • each of the compressed pixel data is the pixel data of one first pixel, or is an average value or median value of the pixel data of at least two first pixels.
  • the image data transmission component is a processor in a display device, and the display device further includes a controller connected to the driver chip; the sending to the driver chip of the display panel Compress image data, including:
  • the processor sends compressed image data to the controller, and the compressed image data is used for the controller to transmit to the driver chip.
  • the image data transmission component is a controller in the display device, and the controller is connected to at least one of the driver chips; the sending compressed image data to the driver chip of the display panel includes:
  • the power consumption reduction instruction is used to instruct the target driver chip to close the target channel, wherein the target driver chip is a driver chip for driving the first pixel, the The target driver chip has a plurality of data channels, and the target channel is a channel for receiving compressed pixel data;
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in a pixel column direction;
  • the pixels connected to the target driving chip include the first pixel and the the second pixel, and the first pixel and the second pixel are arranged in sequence along the driving direction of the pixel row;
  • the sending the pixel data of the plurality of second pixels to the driver chip used to drive the plurality of second pixels among the plurality of driver chips includes:
  • the sending the power consumption recovery instruction to the target driver chip includes:
  • a method for transmitting image data which is applied to a controller in a display device, and the controller is connected to at least one of the driving chips in the display device; the method includes:
  • the compressed image data includes at least one compressed pixel data and pixel data of a plurality of second pixels, wherein the at least one compressed pixel data is for a plurality of first pixels Obtained by compressing pixel data of pixels, the plurality of first pixels are located in the non-gazing area of the display panel, and the plurality of second pixels are located in the gazing area of the display panel;
  • the power consumption reduction instruction is used to instruct the target driver chip to close the target channel, wherein the target driver chip is a driver chip for driving the first pixel, the The target driver chip has a plurality of data channels, and the target channel is a channel for receiving compressed pixel data;
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in a pixel column direction;
  • the pixels connected to the target driving chip include the first pixel and the the second pixel, and the first pixel and the second pixel are arranged in sequence along the driving direction of the pixel row;
  • the sending the pixel data of the plurality of second pixels to the driver chip used to drive the plurality of second pixels among the plurality of driver chips includes:
  • a method for transmitting image data which is applied to a driver chip in a display device, and the driver chip is connected to a display panel; the method includes:
  • the compressed pixel data is obtained by compressing the pixel data of a plurality of first pixels in the display panel, and the plurality of first pixels are located in a non-watching area of the display panel;
  • the plurality of first pixels are driven using the compressed pixel data.
  • an image data transmission component includes:
  • An acquisition module configured to acquire initial image data of an image to be displayed in a display panel, where the display panel includes a plurality of pixels, and the initial image data includes pixel data of the plurality of pixels;
  • a compression module configured to compress pixel data of a plurality of first pixels in the initial image data to obtain at least one compressed pixel data, the plurality of first pixels are located in a non-watching area of the display panel, and the plurality of first pixels are located in a non-watching area of the display panel.
  • a plurality of second pixels except the plurality of first pixels among the pixels are located in the viewing area of the display panel;
  • a sending module configured to send compressed image data to the driver chip of the display panel, the compressed image data includes: the at least one compressed pixel data, and the pixel data of the plurality of second pixels, the compressed image data It is used for the driving chip to drive the display panel to display.
  • a controller is provided, the controller is connected to at least one of the driving chips in the display device; the controller includes:
  • An acquisition module configured to acquire compressed image data of an image to be displayed in the display panel, the compressed image data includes at least one compressed pixel data, and pixel data of a plurality of second pixels, wherein the at least one compressed pixel data is Obtained by compressing the pixel data of a plurality of first pixels, the plurality of first pixels are located in the non-gazing area of the display panel, and the plurality of second pixels are located in the gazing area of the display panel;
  • a sending module configured to send a power consumption reduction instruction to the target driver chip, where the power consumption reduction instruction is used to instruct the target driver chip to close the target channel, wherein the target driver chip is used to drive the first pixel A driver chip, the target driver chip has a plurality of data channels, and the target channel is a channel for receiving compressed pixel data;
  • the sending module is configured to send the compressed pixel data to the target driver chip, and send the plurality of second pixels to a driver chip used to drive the plurality of second pixels in the at least one driver chip of pixel data.
  • a driver chip is provided, the driver chip is connected to a display panel; the driver chip includes:
  • a receiving module configured to receive compressed pixel data, the compressed pixel data is obtained by compressing the pixel data of a plurality of first pixels in the display panel, and the plurality of first pixels are located in the non-focused area of the display panel area;
  • a driving module configured to drive the plurality of first pixels by using the compressed pixel data.
  • a display device in a seventh aspect, includes: a processor, a controller, at least one driver chip, and a display panel;
  • the processor is the transmission component described in the fourth aspect above
  • the controller is the transmission component described in the fourth aspect above, or the controller described in the fifth aspect above
  • the driver chip is such as The driver chip described in the sixth aspect.
  • a display device comprising: a processing component, a memory for storing executable instructions of the processing component; wherein, the processing component is configured to execute the instructions in the memory to implement the above first
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, and the instructions are executed by a processing component to realize the image data described in any one of the first to third aspects above. the transmission method.
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the image data transmission method described in any one of the first to third aspects above.
  • FIG. 1 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure
  • FIG. 2 is a flow chart of a method for transmitting image data provided by an embodiment of the present disclosure
  • FIG. 3 is a flow chart of another image data transmission method provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of a non-watching area provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a display area of a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a display area of another display panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a processor compressing pixel data of a non-attention area provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of compressed image data provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of a line of invalid display data sent by a controller according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of a line of display data sent by a controller according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a controller transmitting compressed image data to a driver chip according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of a data channel of a driver chip provided by an embodiment of the present disclosure.
  • Fig. 13 is a schematic diagram of another line of display data sent by another controller according to an embodiment of the present disclosure.
  • Fig. 14 is a schematic structural diagram of an image data transmission component provided by an embodiment of the present disclosure.
  • Fig. 15 is a schematic structural diagram of another image data transmission component provided by an embodiment of the present disclosure.
  • Fig. 16 is a schematic structural diagram of a controller provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a driver chip provided by an embodiment of the present disclosure.
  • Fig. 18 is a schematic diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of an application environment of a method for transmitting image data provided by an embodiment of the present disclosure.
  • the image data transmission method can be applied to a display device, and the display device includes: a processor 01 , a controller 02 , at least one driver chip 03 and a display panel 04 .
  • the processor 01 may be a graphics processing unit (graphics processing unit, GPU) or an application processor (application processor, AP).
  • the controller 02 can be TCON.
  • Each driver chip 03 may be a source driver chip.
  • the driver chip 03 may also be called a driver integrated circuit (driver IC).
  • the processor 01 is connected to the controller 02 and can be used to transmit the image data of the image to be displayed to the controller 02 .
  • the controller 02 is also connected to the at least one driver chip 03 for transmitting image data to each driver chip 03 .
  • the at least one driving chip 03 is connected to the display panel 04, and each driving chip 03 is used to drive pixels in the display panel 04 based on the received image data, so that the display panel 04 displays images.
  • the image data of the image to be displayed may include pixel data of a plurality of pixels in the display panel 04, and the pixel data may refer to color values of the pixels.
  • the color value may include a red green blue (RGB) color value.
  • the refresh rate and resolution of the display device are to be increased, the data volume of the image data transmitted from the processor 01 to the controller 02 will be multiplied, and the data volume of the image data transmitted from the controller 02 to the driver chip 03 will be doubled. Therefore, not only will the power consumption of the display device be significantly increased, but also the data transmission bandwidth between the processor 01 and the controller 02 in the display device, and the data transmission bandwidth between the controller 02 and the driver chip 03 are required to be relatively high. , leading to a higher cost of the display device. For example, the number of data channels (also referred to as transmission interfaces) of the driver chip 03 needs to be large, and the cost of the driver chip 03 is relatively high.
  • Fig. 2 is a flowchart of an image data transmission method provided by an embodiment of the present disclosure, and the method can be applied to the application scenario shown in Fig. 1 .
  • the transmission method of the image data includes:
  • Step 101 the image data transmission component acquires the initial image data of the image to be displayed on the display panel.
  • the display panel includes a plurality of pixels, and the initial image data includes pixel data of the plurality of pixels.
  • the pixel data of each pixel refers to the color value of the pixel.
  • the color values may include RGB color values.
  • the image data transmission component may be a processor in the display device, or may be a controller in the display device.
  • Step 102 the image data transmission component compresses the pixel data of a plurality of first pixels in the initial image data to obtain at least one piece of compressed pixel data.
  • the display area of the display panel may be divided into a gazing area and a non-gazing area.
  • the gazing area may refer to an area that the viewer gazing at
  • the non-gazing area refers to an area in the display area other than the gazing area.
  • the plurality of first pixels are located in the non-focus area, and the plurality of second pixels in the plurality of pixels are located in the attention area except for the plurality of first pixels.
  • the image data transmission component may compress the pixel data of the plurality of first pixels in the non-attention area to obtain at least one compressed pixel data.
  • compressing the pixel data of a plurality of first pixels may refer to: deleting the pixel data of at least one first pixel.
  • Each piece of compressed pixel data obtained by the image data transmission component may be the pixel data of a certain first pixel, or may be an average value or a median value of the pixel data of at least two first pixels.
  • the transmission component may determine the fixation area based on the data collected by the fixation area detection sensor, and then determine the non-fixation area.
  • the gaze area may be a preset fixed area, and the position of the fixed gaze area may be pre-stored in the transmission component.
  • Step 103 the image data transmission component sends the compressed image data to the driver chip of the display panel.
  • the compressed image data includes: at least one compressed pixel data compressed by the transmission component, and uncompressed pixel data of a plurality of second pixels in the gaze area.
  • the compressed image data is used for the driver chip to drive the display panel for display.
  • the processor may send the compressed image data to the controller, and then the controller sends the compressed image data to the driver chip. If the image data transmission component is a controller, the controller can directly send the compressed image data to the driver chip.
  • Step 104 the driver chip drives the pixels in the display panel by using the compressed image data.
  • the driver chip After the driver chip receives the compressed image data, it can use the compressed pixel data in the compressed image data to drive a plurality of first pixels in the display panel, and can use the pixel data of the second pixels in the compressed image data to drive the pixels in the display panel. The second pixel, thereby realizing the display of the image.
  • the embodiments of the present disclosure provide an image data transmission method.
  • the transmission component can compress the pixel data of the non-focus area in the initial image data, and send the compressed image data obtained by compression to the driver chip. Since the data volume of the compressed image data is small, the data volume of the image data to be transmitted by the transmission component can be effectively reduced without affecting the display effect, thereby reducing the bandwidth occupied during the image data transmission process.
  • the power consumption of the display device can also be reduced, and the requirements for the data transmission bandwidth between the transmission component and the driver chip in the display device are relatively low, thereby enabling Avoid increasing the cost of the display device.
  • Fig. 3 is a flow chart of another image data transmission method provided by an embodiment of the present disclosure. This method can be applied to the application scenario shown in Fig. 1, and the method takes the image data transmission component as a processor as an example. illustrate. As shown in Figure 3, the transmission method of the image data includes:
  • Step 201 the processor determines the gaze area on the display panel based on the data collected by the gaze area detection sensor.
  • a gaze area detection sensor may be provided on the display panel, and the processor may acquire data collected by the gaze area detection sensor in real time, and determine the viewer's line of sight on the display panel based on the acquired data. the gaze area.
  • the gaze area detection sensor may include a camera
  • the processor may determine the face size of the viewer according to the image data collected by the camera, and then determine the relative position between the viewer and the display panel, and the relative position may at least including distance.
  • the processor can calculate the gaze area of the display panel based on the relative position.
  • the processor can determine the changed gaze area based on the changed relative position. For example, when the distance between the viewer and the display panel becomes farther, at the same 30° optimal viewing angle, the area where the viewer's line of sight is projected onto the display panel becomes larger, and the viewing area in the display panel also increases accordingly. .
  • the gaze zone detection sensor may also include an infrared emitter in addition to the camera.
  • the infrared emitter can emit infrared light to the viewer's eyes, and the camera can collect the viewer's eye images and transmit the eye images to the processor.
  • the processor can determine the pupil position of the viewer according to the eye image, and then determine the gaze area of the viewer according to the pupil position. Since the viewer's line of sight may change during the process of displaying images on the display panel, dynamic tracking of the viewer's gaze area can be achieved through the data collected by the gaze area detection sensor. Furthermore, it can be ensured that the viewing experience of the viewer will not be affected after the pixel data of the non-attention area is compressed.
  • Step 202 the processor acquires initial image data of an image to be displayed on the display panel.
  • the initial image data includes pixel data of a plurality of pixels in the display panel.
  • the pixel data of each pixel refers to the color value of the pixel.
  • the color values may include RGB color values.
  • Step 203 the processor compresses the pixel data of the plurality of first pixels in the non-attention area to obtain at least one piece of compressed pixel data.
  • the non-gazing area refers to an area of the display panel other than the gazing area.
  • the multiple first pixels are located in the non-gazing area, and the multiple second pixels in the multiple pixels of the display panel except the multiple first pixels are located in the watching area.
  • the processor may compress the pixel data of the plurality of first pixels in the non-attention area to obtain at least one piece of compressed pixel data.
  • compressing the pixel data of a plurality of first pixels may refer to: deleting the pixel data of at least one first pixel.
  • Each piece of compressed pixel data obtained by the processor may be the pixel data of a certain first pixel, or may be an average value or a median value of the pixel data of at least two first pixels.
  • FIG. 4 is a schematic diagram of a non-gazing area provided by an embodiment of the present disclosure.
  • the processor can delete the pixel data of 15 first pixels P1, and only keep one pixel of the first pixel data as a compressed pixel data.
  • the processor may use the pixel data of the first pixel in row 4 and column 1 as compressed pixel data.
  • the non-watching area may include at least one of the first area A1 and the second area A2.
  • the first area A1 refers to the area aligned with the attention area B0 in the pixel column direction X
  • the second area A2 refers to the area aligned with the attention area B0 in the pixel row direction Y.
  • the non-watching area may include one or more first areas A1, and may include one or more second areas A2.
  • the non-watching area may include a first area A11 and a first area A12, and may include a second area A21 and a second area A22.
  • the processor may compress the pixel data of the first pixel in the N rows and M columns in the first area A1 to obtain compressed pixel data.
  • N and M may be integers greater than 1.
  • Each piece of compressed pixel data may be the pixel data of a certain first pixel in the first pixels of the N rows and M columns, or may be an average value or a median value of the pixel data of the first pixels of the N rows and M columns.
  • the processor can perform horizontal compression and vertical compression on the pixel data of the plurality of first pixels in the first area A1 respectively.
  • the horizontal compression ratio is 1/M
  • the vertical compression ratio is 1/N
  • the overall compression ratio is 1/(M ⁇ N). That is, the data volume of at least one piece of compressed pixel data obtained after the processor compresses the pixel data of the plurality of first pixels in the first area A1 is 1/(M ⁇ N) of the original data volume.
  • the display device may include multiple driving chips, for example, 8 driving chips D1 to D8 are shown in FIG. 7 .
  • Each of the driver chips can be connected to multiple columns of pixels in the display panel.
  • the processor compresses the pixel data of the first pixels in the first region A1, it may compress the pixel data of multiple columns of first pixels connected to the same driver chip.
  • each driver chip may include multiple data channels, each data channel is connected to multiple columns of pixels, and pixels connected to different data channels are located in different columns. If the columns of pixels connected to the target driving chip among the plurality of driving chips include the first pixel located in the first area A1, then M may be equal to the number of data channels included in the target driving chip.
  • the processor compresses the pixel data of the first pixel connected to the target driver chip, it can only retain part or all of the pixel data of one data channel, and store other pixel data of the data channel, and other M- The pixel data of 1 data channel (that is, the target channel) is deleted.
  • the pixel data (i.e. compressed pixel data) of a reserved data channel may be the pixel data of the first pixel connected to the data channel, or may be the average value of the pixel data of the first pixel connected to the M data channels or median.
  • the target driver chip has M data channels, and each data channel is connected to the first pixel in column J in the first area A1, that is, the target driver chip is connected to the first pixel in the first area A1.
  • K ⁇ M ⁇ J first pixels in an area A1 are connected.
  • K is an integer multiple of N
  • J is an integer greater than 1.
  • the processor can perform horizontal compression and vertical compression on the pixel data of the plurality of first pixels connected to the target driver chip D1, and the data of the compressed pixel data obtained after compression The amount is 1/16 of the original data amount.
  • the compressed pixel data obtained after compression is 1/4 of the pixel data of the first pixel connected to the first data channel of the target driver chip D1, and the first pixel data connected to the first data channel of the target driver chip D1 3/4 of the pixel data of the pixel, and the pixel data of the first pixel to which the other three data channels are connected are deleted.
  • the processor may compress the pixel data of the first pixels in the M columns in the second area A2 to obtain compressed pixel data.
  • M may be an integer greater than 1.
  • the gazing area is the area that the viewer focuses on.
  • the processor will not compress the pixel data of multiple second pixels in the gazing area. Since the processor does not compress the pixel data of the gaze area, if the processor longitudinally compresses the pixel data of the first pixel in the second area A2, a complete rectangular image may not be displayed based on the finally obtained compressed image data. Therefore, in the embodiment of the present disclosure, the processor may only perform horizontal compression on the pixel data of the first pixel in the second area A2. Also, the ratio of lateral compression may be 1/M.
  • the processor compresses the pixel data of the first pixels in the second area A2, the pixels of multiple rows of first pixels connected to the same driver chip The data is compressed.
  • M may be equal to the number of data channels included in the driver chip.
  • the target driver chip has M data channels, and each data channel is connected to the first pixels in J columns in the second area A2, where J is an integer greater than 1. Then, for each row of first pixels connected to the target driver chip in the second area A2, the processor can compress the pixel data of every M first pixels to obtain a piece of compressed pixel data, and finally obtain the J pixels located in the same row. compressed pixel data.
  • the jth compressed pixel data may be the pixel data of the first pixel in the jth column in any data channel.
  • the pixel data of the first pixel in the j-th column of each of the M data channels can be obtained, and the average value or The median value is used as the jth compressed pixel data.
  • j is a positive integer not greater than J.
  • M may be equal to 4.
  • the processor compresses the pixel data of the first pixel connected to the target driver chip D2, it can only retain the pixel data corresponding to one data channel, and compress the pixel data corresponding to the other three target channels. Pixel data is removed. That is, the ratio of horizontal compression is 1/4, and the vertical direction is not compressed.
  • the data volume of the compressed pixel data obtained after compression is 1/4 of the original data volume.
  • Step 204 the processor sends the compressed image data to the controller.
  • compressed image data can be obtained, and the compressed image data can be sent to the controller.
  • the compressed image data includes: at least one compressed pixel data obtained through compression, and pixel data of a plurality of uncompressed second pixels in the gaze area.
  • the compressed image data is used for the controller to transmit to the driver chip, so that the driver chip can drive the display panel for display.
  • the compressed image data transmitted by the processor is obtained by compressing the pixel data of the first pixel in the non-attention area, the data volume of the compressed image data is relatively small. Furthermore, it can be ensured that less bandwidth is occupied when the processor sends the compressed image data to the controller, and the transmission efficiency of the image data is higher.
  • the compressed image data sent by the processor to the controller may be as shown in FIG. 8 .
  • the compressed image data includes compressed pixel data and pixel data of a plurality of second pixels.
  • the compressed image data obtained by the processor may also include invalid pixel data.
  • the invalid pixel data is arranged with the pixel data of the second pixel along the pixel column direction X, and is arranged with the compressed pixel data in the first area A1 along the pixel row direction Y.
  • the invalid pixel data filled by the processor in the compressed image data may all be 0.
  • Step 205 the controller sends a power consumption reduction instruction to the target driver chip.
  • the controller may transmit the compressed image data to at least one driver chip connected to the display panel. Moreover, the controller can also transmit the compressed pixel data in the compressed image data and the pixel data of the second pixel to the corresponding driver chip. Wherein, the pixel data received by each driving chip is the pixel data of the pixels connected thereto.
  • the controller may transmit pixel data row by row. Assuming that the display panel is connected to T driver chips, and T is an integer greater than 1, the controller can divide each row of pixel data in the compressed image data into T groups of pixel data corresponding to the T driver chips one-to-one, and The T groups of pixel data are respectively transmitted to corresponding driving chips. If the driver chip includes M enabled data channels, the controller can divide a group of pixel data corresponding to the driver chip into M parts, and transmit the M parts of pixel data to the corresponding data channels respectively.
  • a row of pixel data in the compressed image data includes both compressed pixel data and uncompressed second pixel pixel data
  • the controller can transmit the compressed pixel data and the second pixel's pixel data in parallel. pixel data.
  • the controller may first send a power consumption reduction instruction to the target driver chip before sending the compressed pixel data to the target driver chip.
  • the power consumption reduction instruction is used to instruct the target driver chip to turn off the target channel, wherein the target channel is a data channel for receiving compressed pixel data (that is, deleted pixel data).
  • the controller may carry the power consumption reduction instruction in the configuration instruction CTRL_L sent to the target driver chip.
  • the power consumption reduction command may also carry a target channel identifier, and the target driver chip may close the target channel indicated by the power consumption reduction command upon receiving the power consumption reduction command.
  • the first area A1 and the attention area B0 can be arranged sequentially along the driving direction of the pixel row (that is, the pixel column direction X), that is, when the target driving chip drives the pixels in the display area, it first drives the first area A1 The first pixel in the region B0 is then driven to drive the second pixel in the attention area B0.
  • the controller may first send a row of invalid display data to the target driver chip before sending the first row of pixel data in the compressed image data.
  • the row of invalid display data may include: a start indicator K1 , a configuration command CTRL_L, invalid pixel data, and an end indicator K2 arranged in sequence.
  • the configuration command CTRL_L is used to carry a power consumption reduction command.
  • the row of invalid display data may also include an idle (IDLE) area located after the end indicator K2.
  • the attention area B0 and the first area A1 can be arranged sequentially along the driving direction of the pixel row (that is, the pixel column direction X), that is, when the target driving chip drives each pixel in the display area, it first drives the attention area
  • the second pixel in B0 drives the first pixel in the first area A1.
  • the controller may carry the power consumption reduction instruction when sending the pixel data of the last row of second pixels in the gaze area B0 to the target driver chip.
  • the controller can send a row of display data to the target driver chip, and the row of display data can include: the start indicator K1, the configuration command CTRL_L, the pixel data of the second pixel in the last row and the end indicator K2 arranged in sequence.
  • the configuration command CTRL_L is used to carry the power consumption reduction command.
  • Step 206 the target driver chip closes the target channel among the multiple data channels based on the power consumption reduction instruction.
  • the target driver chip After the target driver chip receives the power consumption reduction instruction sent by the controller, it can close the target channel in the plurality of data channels based on the power consumption reduction instruction, that is, the target driver chip can enter a low power mode.
  • the target channel is a channel for receiving compressed pixel data (that is, deleted pixel data).
  • the target driver chip may determine the target channel to be closed based on the identification of the target channel carried in the power consumption reduction instruction. Since the target driver chip can close the target channel that does not need to receive pixel data based on the instruction of the controller, the power consumption of the target driver chip can be effectively reduced on the premise of ensuring reliable transmission of pixel data.
  • the target driver chip is D3, before the controller sends the first line of compressed pixel data, it can first send a power consumption reduction instruction to the target driver chip, and the power consumption is reduced
  • the instruction may carry identifiers of the second data channel R2 to the fourth data channel R4.
  • the target driver chip D3 can turn off the second data channel R2 to the fourth data channel R4, and only keep the first data channel R1 in the open state.
  • the controller can send pixel data to the data channel of the driver chip through its transmit (TX) interface.
  • the data channel of the driver chip may also be called a receive (receive, RX) interface.
  • the controller may include multiple TX interfaces that correspond one-to-one to the multiple data channels.
  • the controller before the controller sends the compressed pixel data to the target driver chip, it can also close the TX interface corresponding to the target channel of the target driver chip.
  • the power consumption of the controller can be effectively reduced, and further the overall power consumption of the display device can be further reduced.
  • the controller may at least include 4 TX interfaces for connecting to the target driver chip D3, and the 4 TX interfaces are respectively T1 Interface to T4 interface.
  • the target driver chip D3 After the target driver chip D3 receives the power consumption reduction instruction, it can turn off the second data channel R2 to the fourth data channel R4, and only keep the first data channel R1 in an open state.
  • the controller may close the T2 interface to the T4 interface corresponding to the second data channel R2 to the fourth data channel R4, and only keep the T1 interface in an open state.
  • Step 207 the controller sends the compressed pixel data to the target driver chip.
  • the controller instructs the target driver chip to close the target channel, it can send the compressed pixel data to the target driver chip. That is, the controller can send the compressed pixel data to the data channel in the target driver chip that is kept open.
  • the compressed pixel data is obtained by compressing the pixel data of a plurality of first pixels connected to the target driving chip. Since the data volume of the compressed pixel data is small, it can be ensured that less bandwidth is occupied when the controller sends the compressed pixel data to the target driver chip.
  • the controller can send compressed pixel data to the first data channel R1 of the target driver chip D3, wherein the compressed pixel data is for the target It is obtained by compressing the pixel data of the four data channels R1 to R4 connected to the driver chip D3.
  • Step 208 the target driving chip drives at least two first pixels in the display panel based on the compressed pixel data.
  • the target driving chip After receiving the compressed pixel data sent by the controller, the target driving chip can use the compressed pixel data to drive at least two first pixels in the display panel.
  • the controller can also send a compression rule for compressing image data to the target driver chip, and the target driver chip can drive at least two first pixels connected to it based on the compression rule and the received compressed pixel data.
  • the target driver chip can receive (K/N) ⁇ J pieces of compressed pixel data.
  • the target driver chip can copy the received (K/N) ⁇ J pieces of compressed pixel data horizontally by M-1 pieces and vertically by N-1 pieces, so as to obtain K ⁇ M ⁇ J pieces of compressed pixel data.
  • the target driver chip can then drive the first pixel in the K rows and M ⁇ J columns connected to it based on the K ⁇ M ⁇ J compressed pixel data.
  • the target driver chip can receive K ⁇ J pieces of compressed pixel data.
  • the target driver chip can horizontally copy the received K ⁇ J compressed pixel data by M ⁇ 1 copies, so as to obtain K ⁇ M ⁇ J compressed pixel data.
  • the target driver chip can then drive the first pixel in the K rows and M ⁇ J columns connected to it based on the K ⁇ M ⁇ J compressed pixel data.
  • driver chip and the display panel can be connected by chip on film (COF) technology or bonding. Therefore, there is no strict limitation on data transmission bandwidth between the driver chip and the display panel, and the driver chip can directly drive the display panel for display after decompressing the received compressed pixel data.
  • COF chip on film
  • Step 209 the controller sends a power consumption recovery instruction to the target driver chip.
  • the controller also needs to drive The chip sends pixel data of the second pixel. Since the pixel data of the second pixel is not compressed, the target driver chip also needs to receive the pixel data of the second pixel through its target channel. Correspondingly, before sending the pixel data of the second pixel, the controller also needs to send a power consumption recovery instruction to the target driver chip, so as to instruct the target driver chip to turn on the target channel.
  • the pixels connected to the driver chip D3 include both the first pixel located in the first area A1 and the second pixel located in the attention area B0, and the first pixel and the second pixel are aligned along the pixel row.
  • the driving directions are arranged in order. Therefore, before the controller sends the pixel data of the second pixel, it needs to send a power consumption recovery command to the driver chip D3, and the power consumption recovery command is used to instruct the driver chip D3 to turn on and off the three target channels R2 to R4.
  • the controller needs to send the power consumption recovery command in advance to ensure that when the controller sends the pixel data of the second pixel, the target driver chip has opened its target channel, thereby ensuring reliable reception of the pixel data of the second pixel.
  • the time interval between the controller sending the power consumption recovery instruction to the target driving chip and sending the pixel data of the second pixel may be greater than or equal to a time length threshold.
  • the duration threshold may be determined based on the duration required for the target driver chip to enable its data channel, and the duration is related to hardware parameters of the target driver chip.
  • the controller may send the power consumption restoration instruction to the target driver chip when sending the compressed pixel data of the first pixel in the penultimate (N+1)th row before the second pixel in the first row.
  • the controller may sequentially transmit the compressed pixel data of the last N rows of first pixels in the first area, and then transmit the pixel data of the first row of second pixels in the gaze area. In this way, it can be ensured that when the controller sends the pixel data of the second pixel in the first row, the target driver chip has turned on its target channel.
  • the power consumption recovery instruction sent by the controller to the target driver chip may include a clock training pattern (clock training pattern) and a link stabilization sequence (link stable pattern, LSP).
  • clock training pattern clock training pattern
  • link stabilization sequence link stable pattern, LSP
  • the controller can send a row of display data to the target chip, and the row of display data can include sequentially arranged clock training sequences, LSP, start indicator K1, configuration command CTRL_L, located before the second pixel in the first row The compressed pixel data of the first pixel in the penultimate (N+1)th row and the end indicator K2.
  • Step 210 the driver chip enables the target channel based on the power consumption recovery instruction.
  • the target driver chip After the target driver chip receives the power consumption recovery command sent by the controller, it can enable the closed target channel in the target driver chip based on the power consumption recovery command, so as to ensure the reliable transmission of the uncompressed second pixel pixel data.
  • the power consumption recovery instruction may carry an identifier of the target channel to be turned on, and the target driver chip may enable the corresponding target channel based on the identifier carried in the power consumption recovery instruction.
  • the target driver chip is D3, and the power consumption restoration command sent by the controller to the target driver chip D3 carries identifiers of the second data channel R2 to the fourth data channel R4. Then the target driver core D3 may enable the second data channel R2 to the fourth data channel R4 based on the identification in the power consumption recovery instruction.
  • Step 211 the controller sends the pixel data of the second pixel to the target driving chip.
  • the controller After the controller completes the transmission of the compressed pixel data of the first area, it can send the pixel data of the second pixel located in the gaze area B0 to the target driving chip.
  • the controller closes part of the TX interface when sending the compressed pixel data to the target driver chip, the pixel data of the second pixel will be sent Before receiving the data, the closed TX interface needs to be turned on to ensure the reliable transmission of the uncompressed second pixel pixel data.
  • the controller closes the interfaces T2 to T4 when sending compressed pixel data to the target driver chip D3, the controller needs to open T2 to T4 before sending the pixel data of the second pixel.
  • the interface ensures reliable transmission of the pixel data of the uncompressed second pixel connected to the target drive core D3.
  • the controller may also synchronously send the pixel data of the second pixel to other driver chips, and/or compress the pixel data.
  • the transmission process can be divided into three transmission stages, wherein the first transmission stage is used to transmit the compressed pixel data of the first area A11, the second transmission stage is used to transmit the compressed pixel data of the second area A21, and the compressed pixel data of the attention area B0.
  • the controller may first send a power consumption reduction instruction to the driver chips D1 to D8 to instruct the driver chip D1 to From D8 to D8, the 3 target channels are closed, and only one data channel is kept open. Afterwards, the controller may send the compressed pixel data of the first area A11 to the driving chips D1 to D8 row by row.
  • each line of compressed pixel data can be split into 8 groups of pixel data, and each group of pixel data includes 1 piece of compressed pixel data, and the 1 piece of compressed pixel data can be transmitted to the first driver chip corresponding to one of the driver chips D1 to D8. data channel R1.
  • the controller sends the compressed pixel data of the penultimate (N+1) row in the first area A11, it can send power consumption reduction and recovery instructions to the driver chips D3 to D6 respectively, so as to instruct the driver chips D3 to D6 to turn on and off the three targets. aisle.
  • the controller may send the compressed pixel data of the last N rows in the first area A11 to the driving chips D1 to D8 row by row. After the sending of the compressed pixel data in the first area A11 is completed, that is, after the execution of the first transmission stage is completed, the controller can start to execute the second transmission stage.
  • each row of pixel data sent by the controller can be split into 8 sets of pixel data, wherein the first set of pixel data includes 1 piece of compressed pixel data, and the 1 piece of compressed pixel data can be transmitted to the driver chip The first data channel R1 of D1.
  • the second set of pixel data includes 1 piece of compressed pixel data, which can be transmitted to the first data channel R1 of the driver chip D2, and the third set of pixel data includes 4 pieces of pixel data of the second pixel, the 4 pieces of pixel data
  • the pixel data of the second pixel can be transmitted to the first data channel R1 to the fourth data channel R4 of the driving chip D3 respectively.
  • the fourth set of pixel data includes 4 pieces of pixel data of the second pixel, and the 4 pieces of pixel data of the second pixel can be respectively transmitted to the first data channel R1 to the fourth data channel R4 of the driving chip D4.
  • the fifth group of pixel data includes 4 pieces of pixel data of the second pixel, and the 4 pieces of pixel data of the second pixel can be transmitted to the first data channel R1 to the fourth data channel R4 of the driving chip D5 respectively.
  • the sixth group of pixel data includes 4 pieces of pixel data of the second pixel, and the 4 pieces of pixel data of the second pixel can be respectively transmitted to the first data channel R1 to the fourth data channel R4 of the driving chip D6.
  • the seventh group of pixel data includes a piece of compressed pixel data, which can be transmitted to the first data channel R1 of the driver chip D7.
  • the eighth group of pixel data includes 1 piece of compressed pixel data, and the 1 piece of compressed pixel data can be transmitted to the first data channel R1 of the driver chip D8.
  • the controller When the controller sends the pixel data of the second pixel in the last row, it can send power consumption reduction instructions to the driver chips D3 to D6 respectively, so as to instruct the driver chips D3 to D6 to turn off the three target channels, and only keep one data channel as open state.
  • the controller can then execute the third transfer phase.
  • the controller may transmit the compressed pixel data of the first area A12 to the driving chips D1 to D8 row by row.
  • each line of compressed pixel data can be split into 8 groups of pixel data, and each group of pixel data includes 1 piece of compressed pixel data, and the 1 piece of compressed pixel data can be transmitted to the first driver chip corresponding to one of the driver chips D1 to D8. data channel R1.
  • each line of pixel data sent by the controller in the first and third transmission stages includes 8 pieces of compressed pixel data, and the data sent by the controller in the second transmission stage
  • Each row of pixel data includes 20 pieces of pixel data in total.
  • the pixel data in the first areas A11 and A12 may also include invalid data, and the invalid data corresponds to the target channel in the driver chip. Since the controller has instructed the driving chip to close the target channel before transmitting the pixel data in the first areas A11 and A12, the controller does not need to transmit the invalid data to the driving chip.
  • Step 212 the target driving chip drives the second pixel in the display panel based on the pixel data of the second pixel.
  • the target driving chip After receiving the pixel data of the second pixel sent by the controller, the target driving chip can drive the second pixel in the display panel based on the pixel data of the second pixel.
  • step 201 may be deleted according to circumstances, that is, the processor may use a pre-stored fixed area as the fixation area.
  • step 211 may be performed before step 207, or may be performed synchronously with step 207.
  • step 209 and step 210 can be deleted according to the situation. For example, if the non-watching area only includes the second area A2 and does not include the first area A1, the target channel of the target driver chip can always remain closed. Any person skilled in the art within the technical scope disclosed in the present disclosure can easily think of various methods that should be included in the protection scope of the present disclosure, and thus will not be repeated here.
  • the embodiments of the present disclosure provide a method for transmitting image data.
  • the processor can compress the pixel data of the non-focus area in the initial image data, and send the compressed image data to the controller. Therefore, under the premise of avoiding affecting the display effect, the data amount of the image data to be transmitted by the processor can be effectively reduced, thereby reducing the bandwidth occupied by the processor in the process of transmitting the image data to the controller. Since the amount of image data received by the controller is small, the amount of pixel data transmitted by the controller to the driver chip is correspondingly reduced, thereby reducing the bandwidth occupied by the controller in the process of transmitting image data to the driver chip.
  • the power consumption of the display device can also be reduced, and there is a need for the communication between the processor and the controller, as well as between the controller and the driver chip in the display device.
  • the requirements for data transmission bandwidth between them are relatively low, thereby avoiding increasing the cost of the display device.
  • the controller can close the interface that does not need to send pixel data, and can instruct the driver chip to close the target channel that does not need to receive pixel data, it can effectively reduce the power consumption of the controller and the driver chip on the premise of ensuring reliable transmission of pixel data .
  • the processor can also dynamically track the gaze area of the viewer based on the data detected by the gaze area detection sensor, it is possible to dynamically adjust the data channels that need to be closed in the driver chip, and the pixel data of the pixels that need to be compressed dynamic adjustment. Therefore, under the premise of effectively reducing the data transmission bandwidth and the power consumption of the display device, high-definition rendering of the gaze area can be ensured, satisfying the user's visual experience of ultra-high-definition and ultra-high frequency in the gaze area.
  • FIG. 14 is a schematic structural diagram of an image data transmission component provided by an embodiment of the present disclosure.
  • the transmission component can be applied to the display device shown in FIG. 1.
  • the image transmission component can be a processor or a controller in the display device. device.
  • the transmission component may be used to implement the steps performed by the transmission component in the method embodiment shown in FIG. 2 , or may be used to implement the steps performed by the processor or the controller in the method embodiment shown in FIG. 3 .
  • the transmission component may include:
  • the acquiring module 301 is configured to acquire initial image data of an image to be displayed in the display panel, where the display panel includes a plurality of pixels, and the initial image data includes pixel data of the plurality of pixels.
  • a compression module 302 configured to compress the pixel data of a plurality of first pixels in the initial image data to obtain at least one compressed pixel data, the plurality of first pixels are located in the non-watching area of the display panel, except A plurality of second pixels other than the plurality of first pixels are located in a viewing area of the display panel.
  • the sending module 303 is configured to send compressed image data to the driver chip of the display panel, the compressed image data includes: at least one compressed pixel data, and pixel data of a plurality of second pixels, the compressed image data is used for the driver chip
  • the display panel is driven for display.
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in a pixel column direction.
  • the compression module 302 may be configured to: compress the pixel data of the first pixel in the N rows and M columns in the first area to obtain compressed pixel data, where N and M are both integers greater than 1.
  • the non-attention area includes a second area, and the second area and the attention area are arranged in a row of pixels.
  • the compression module 302 may be configured to compress the pixel data of the first pixels in the M columns located in the same row in the second region to obtain compressed pixel data, where M is an integer greater than 1.
  • the M columns of first pixels are connected to the same driver chip.
  • the transmission component also includes:
  • the determination module 304 is configured to determine the gaze area based on the data collected by the gaze area detection sensor before the compression module 302 compresses the pixel data of the plurality of first pixels in the initial image data.
  • the compression module 302 may be configured to delete the pixel data of at least one first pixel among the pixel data of the plurality of first pixels to obtain at least one piece of compressed pixel data.
  • each compressed pixel data is the pixel data of one first pixel, or is an average value or median value of the pixel data of at least two first pixels.
  • the image data transmission component is a processor in the display device, and the display device further includes a controller connected to the driving chip.
  • the sending module 303 may be configured to: send the compressed image data to the controller, and the compressed image data is used for the controller to transmit to the driver chip.
  • the image data transmission component is a controller in the display device, and the controller is connected to at least one of the driving chips.
  • the sending module 303 can be used for:
  • the power consumption reduction instruction is used to instruct the target driver chip to close the target channel, wherein the target driver chip is a driver chip used to drive the first pixel, and the target driver chip has multiple A data channel, the target channel is a channel for receiving compressed pixel data;
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in a pixel column direction.
  • the pixels connected to the target driving chip include the first pixel and the second pixel, and the first pixel and the second pixel are arranged in sequence along the driving direction of the pixel row.
  • the sending module 303 can be used for:
  • the time interval between sending the power consumption recovery instruction to the target driver chip and sending the pixel data of the second pixel is greater than or equal to a time length threshold.
  • the sending module 303 may be configured to send a clock training sequence and a link stabilization sequence to the target driver chip.
  • the embodiment of the present disclosure provides a transmission component.
  • the transmission component can compress the pixel data of the non-focus area in the initial image data, and send the compressed image data to the driver chip. Therefore, under the premise of avoiding affecting the display effect, the amount of image data to be transmitted can be effectively reduced, thereby reducing the bandwidth occupied during image data transmission.
  • the power consumption of the display device can also be reduced, and the requirements for the data transmission bandwidth between the transmission component and the driver chip in the display device are relatively low, thereby enabling Avoid increasing the cost of the display device.
  • Fig. 16 is a schematic structural diagram of a controller provided by an embodiment of the present disclosure, the controller is connected to at least one of the driving chips in the display device. Moreover, the controller may be used to implement the steps performed by the transmission component in the method embodiment shown in FIG. 2 , or may be used to implement the steps performed by the controller in the method embodiment shown in FIG. 3 . As shown in Figure 15, the controller may include:
  • An acquisition module 401 configured to acquire compressed image data of an image to be displayed in the display panel, the compressed image data includes at least one compressed pixel data, and pixel data of a plurality of second pixels, wherein at least one compressed pixel data is one-to-many obtained by compressing the pixel data of a first pixel, a plurality of first pixels are located in a non-focused area of the display panel, and a plurality of second pixels are located in a focused area of the display panel.
  • the sending module 402 is configured to send a power consumption reduction instruction to the target driver chip, the power consumption reduction instruction is used to instruct the target driver chip to close the target channel, wherein the target driver chip is a driver chip for driving the first pixel, and the target driver chip has A plurality of data channels, the target channel is a channel for receiving compressed pixel data;
  • the sending module 402 is further configured to send the compressed pixel data to the target driver chip, and send the pixel data of the plurality of second pixels to the driver chip used to drive the plurality of second pixels in at least one driver chip.
  • the non-watching area includes a first area, and the first area and the watching area of the display panel are arranged in the pixel column direction;
  • the pixels connected to the target drive chip include a first pixel and a second pixel, and the first pixel and the second pixel are connected to each other.
  • the second pixels are sequentially arranged along the driving direction of the pixel row.
  • the sending module 402 can be used for:
  • the embodiments of the present disclosure provide a controller that can acquire compressed image data and send the compressed image data to a driver chip. Since the amount of image data to be transmitted by the controller is low, the power consumption of the display device can also be reduced, and the requirement for the data transmission bandwidth between the controller and the driver chip in the display device is low, thereby avoiding an increase in Displays the cost of the device.
  • FIG. 17 is a schematic structural diagram of a driving chip provided by an embodiment of the present disclosure, which can be applied to the display device shown in FIG. 1 .
  • the driver chip may be used to implement the steps performed by the driver chip in the method embodiment shown in FIG. 2 , or may be used to implement the steps performed by the driver chip in the method embodiment shown in FIG. 3 .
  • the driver chip can include:
  • the receiving module 501 is configured to receive compressed pixel data, the compressed pixel data is obtained by compressing the pixel data of a plurality of first pixels in the display panel, and the plurality of first pixels are located in a non-watching area of the display panel.
  • the driving module 502 is configured to drive a plurality of first pixels by using compressed pixel data.
  • the embodiment of the present disclosure provides a driver chip, and the pixel data received by the driver chip is compressed compressed pixel data. Since the data volume of the compressed pixel data is small, the bandwidth occupied during the transmission of the pixel data can be effectively reduced, and the transmission efficiency can be improved.
  • an embodiment of the present disclosure further provides a display device, which includes: a processor 01 , a controller 02 , at least one driver chip 03 and a display panel 04 .
  • the processor 01 may be a GPU or an AP, and the structure of the processor 01 may be as shown in FIG. 14 or FIG. 15 .
  • the controller 02 may be a TCON, and the structure of the controller 02 may be as shown in FIG. 14 , FIG. 15 or FIG. 16 .
  • the driving chip 03 may be a source driving circuit, and the driving chip 03 may also be called a driving integrated circuit.
  • FIG. 18 is a schematic structural diagram of another display device provided by an embodiment of the present disclosure.
  • the display device may include: a processing component 601 and a memory 602 for storing executable instructions of the processing component 601 .
  • the processing component 601 is configured to execute instructions in the memory 602, so as to implement the steps implemented by the processor, the controller, or the driver chip in the above-mentioned embodiments.
  • processing component 601 may be the processor, controller or driver chip in the above-mentioned embodiments.
  • the display device may be any display device with a display function, such as a liquid crystal display device, an electronic paper, an OLED display device, a mobile phone, a tablet computer, a TV set, a monitor, a notebook computer, a digital photo frame, or a navigator. product or part.
  • a display function such as a liquid crystal display device, an electronic paper, an OLED display device, a mobile phone, a tablet computer, a TV set, a monitor, a notebook computer, a digital photo frame, or a navigator. product or part.
  • the display device may be an AR or VR device.
  • An embodiment of the present disclosure provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the readable storage medium is run on a processing component, the processing component executes the transmission component in the above-mentioned embodiments.
  • processing component may be the processor, the controller or the driver chip in the foregoing embodiments.
  • An embodiment of the present disclosure provides a computer program product containing instructions, and when the computer program product is run on a computer, the computer is made to execute the method for transmitting image data as described in any one of the above method embodiments.
  • first and second are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
  • the meaning of the term “at least one” refers to one or more, and the meaning of the term “multiple” in the present disclosure refers to two or more, for example, a plurality of clock calibration circuits refers to two or more clocks Calibrate the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开提供了一种图像数据的传输方法及装置,属于显示技术领域,图像数据的传输组件可以对初始图像数据中的非注视区域的像素数据进行压缩,并将压缩得到的压缩图像数据发送给驱动芯片。由于压缩图像数据的数据量较小,因此可以在避免影响显示效果的前提下,有效减少传输组件所需传输的图像数据的数据量,进而降低图像数据传输过程中占用的带宽。

Description

图像数据的传输方法及装置 技术领域
本公开涉及显示技术领域,特别涉及一种图像数据的传输方法及装置。
背景技术
显示装置一般包括时序控制器(timer controller,TCON)、驱动电路以及显示面板。其中,TCON可以将待显示的图像的图像数据传输至驱动电路,驱动电路可以基于该图像数据驱动显示面板显示图像。
在虚拟现实(virtual reality,VR)或增强现实(augmented reality,AR)等显示场景下,显示面板中显示的图像的分辨率较高,导致TCON向驱动电路传输的图像数据的数据量较大,图像数据传输过程中占用的带宽较高。
发明内容
本公开提供了一种图像数据的传输方法及装置。所述技术方案如下:
第一方面,提供了一种图像数据的传输方法,应用于图像数据的传输组件,所述方法包括:
获取显示面板中待显示的图像的初始图像数据,所述显示面板包括多个像素,所述初始图像数据包括所述多个像素的像素数据;
对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,所述多个第一像素位于所述显示面板的非注视区域,所述多个像素中除所述多个第一像素之外的多个第二像素位于所述显示面板的注视区域;
向所述显示面板的驱动芯片发送压缩图像数据,所述压缩图像数据包括:所述至少一个压缩像素数据,以及所述多个第二像素的像素数据,所述压缩图像数据用于供所述驱动芯片驱动所述显示面板进行显示。
可选地,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;
所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
对所述第一区域中N行M列的第一像素的像素数据进行压缩,得到一个压缩像素数据,所述N和所述M均为大于1的整数。
可选地,所述非注视区域包括第二区域,所述第二区域与所述注视区域按像素行方向排列;
所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
对所述第二区域中位于同一行的M列第一像素的像素数据进行压缩,得到一个压缩像素数据,所述M均为大于1的整数。
可选地,所述M列第一像素与同一个驱动芯片连接。
可选地,在对所述初始图像数据中多个第一像素的像素数据进行压缩之前,所述方法还包括:
基于注视区检测传感器采集到的数据确定所述注视区域。
可选地,所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
将所述多个第一像素的像素数据中,至少一个第一像素的像素数据删除,得到至少一个压缩像素数据;
其中,每个所述压缩像素数据为一个所述第一像素的像素数据,或者为至少两个第一像素的像素数据的均值或中值。
可选地,所述图像数据的传输组件为显示装置中的处理器,所述显示装置还包括控制器,所述控制器与所述驱动芯片连接;所述向所述显示面板的驱动芯片发送压缩图像数据,包括:
所述处理器向所述控制器发送压缩图像数据,所述压缩图像数据用于供所述控制器传输至所述驱动芯片。
可选地,所述图像数据的传输组件为显示装置中的控制器,所述控制器与至少一个所述驱动芯片连接;所述向所述显示面板的驱动芯片发送压缩图像数据,包括:
向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的 驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
向所述目标驱动芯片发送所述压缩像素数据,并向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
可选地,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;所述目标驱动芯片所连接的像素包括所述第一像素和所述第二像素,且所述第一像素和所述第二像素沿像素行的驱动方向依次排列;
所述向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据,包括:
向所述目标驱动芯片发送功耗恢复指令,所述功耗恢复指令用于指示所述目标驱动芯片开启所述目标通道;
向所述目标驱动芯片发送所述目标驱动芯片所连接的第二像素的像素数据;其中,向所述目标驱动芯片发送所述功耗恢复指令与发送所述第二像素的像素数据的间隔时长大于或等于时长阈值。
可选地,所述向所述目标驱动芯片发送功耗恢复指令,包括:
向所述目标驱动芯片发送时钟训练序列和链路稳定序列。
第二方面,提供了一种图像数据的传输方法,应用于显示装置中的控制器,所述控制器与所述显示装置中的至少一个所述驱动芯片连接;所述方法包括:
获取显示面板中待显示的图像的压缩图像数据,所述压缩图像数据包括至少一个压缩像素数据,以及多个第二像素的像素数据,其中,所述至少一个压缩像素数据是对多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域,所述多个第二像素位于所述显示面板的注视区域;
向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
向所述目标驱动芯片发送所述压缩像素数据,并向所述至少一个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
可选地,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;所述目标驱动芯片所连接的像素包括所述第一像素和所述第二像素,且所述第一像素和所述第二像素沿像素行的驱动方向依次排列;
所述向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据,包括:
向所述目标驱动芯片发送功耗恢复指令,所述功耗恢复指令用于指示所述目标驱动芯片开启所述目标通道;
向所述目标驱动芯片发送所述目标驱动芯片所连接的第二像素的像素数据;其中,向所述目标驱动芯片发送所述功耗恢复指令与发送所述第二像素的像素数据的间隔时长大于或等于时长阈值。
第三方面,提供了一种图像数据的传输方法,应用于显示装置中的驱动芯片,所述驱动芯片与显示面板连接;所述方法包括:
接收压缩像素数据,所述压缩像素数据是对所述显示面板中多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域;
采用所述压缩像素数据驱动所述多个第一像素。
第四方面,提供了一种图像数据的传输组件,所述传输组件包括:
获取模块,用于获取显示面板中待显示的图像的初始图像数据,所述显示面板包括多个像素,所述初始图像数据包括所述多个像素的像素数据;
压缩模块,用于对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,所述多个第一像素位于所述显示面板的非注视区域,所述多个像素中除所述多个第一像素之外的多个第二像素位于所述显示面板的注视区域;
发送模块,用于向所述显示面板的驱动芯片发送压缩图像数据,所述压缩图像数据包括:所述至少一个压缩像素数据,以及所述多个第二像素的像素数据,所述压缩图像数据用于供所述驱动芯片驱动所述显示面板进行显示。
第五方面,提供了一种控制器,所述控制器与所述显示装置中的至少一个所述驱动芯片连接;所述控制器包括:
获取模块,用于获取显示面板中待显示的图像的压缩图像数据,所述压缩 图像数据包括至少一个压缩像素数据,以及多个第二像素的像素数据,其中,所述至少一个压缩像素数据是对多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域,所述多个第二像素位于所述显示面板的注视区域;
发送模块,用于向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
所述发送模块,用于向所述目标驱动芯片发送所述压缩像素数据,并向所述至少一个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
第六方面,提供了一种驱动芯片,所述驱动芯片与显示面板连接;所述驱动芯片包括:
接收模块,用于接收压缩像素数据,所述压缩像素数据是对所述显示面板中多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域;
驱动模块,用于采用所述压缩像素数据驱动所述多个第一像素。
第七方面,提供了一种显示装置,所述显示装置包括:处理器、控制器、至少一个驱动芯片及显示面板;
其中,所述处理器为上述第四方面所述的传输组件,所述控制器为如上述第四方面所述的传输组件,或上述第五方面所述的控制器;所述驱动芯片为如第六方面所述的驱动芯片。
第八方面,提供了一种显示装置,所述显示装置包括:处理组件,用于存储处理组件的可执行指令的存储器;其中,处理组件被配置为执行存储器中的指令,以实现上述第一方面至第三方面任一所述的图像数据的传输方法。
第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令由处理组件执行以实现上述第一方面至第三方面任一所述的图像数据的传输方法。
第十方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行如上述第一方面至第三方面任一所述的 图像数据的传输方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示装置的结构示意图;
图2是本公开实施例提供的一种图像数据的传输方法的流程图;
图3是本公开实施例提供的另一种图像数据的传输方法的流程图;
图4是本公开实施例提供的一种非注视区域的示意图;
图5是本公开实施例提供的一种显示面板的显示区域的示意图;
图6是本公开实施例提供的另一种显示面板的显示区域的示意图;
图7是本公开实施例提供的一种处理器对非注视区域的像素数据进行压缩的示意图;
图8是本公开实施例提供的一种压缩图像数据的示意图;
图9是本公开实施例提供的一种控制器发送的一行无效显示数据的示意图;
图10是本公开实施例提供的一种控制器发送的一行显示数据的示意图;
图11是本公开实施例提供的一种控制器向驱动芯片传输压缩图像数据的示意图;
图12是本公开实施例提供的一种驱动芯片的数据通道的示意图;
图13是本公开实施例提供的另一种控制器发送的一行显示数据的示意图;
图14是本公开实施例提供的一种图像数据的传输组件的结构示意图;
图15是本公开实施例提供的另一种图像数据的传输组件的结构示意图;
图16是本公开实施例提供的一种控制器的结构示意图;
图17是本公开实施例提供的一种驱动芯片的结构示意图;
图18是本公开实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开 实施方式作进一步地详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1是本公开实施例提供的一种图像数据的传输方法的应用环境示意图。如图1所示,该图像数据的传输方法可以应用于显示装置中,该显示装置包括:处理器01、控制器02、至少一个驱动芯片03以及显示面板04。例如,图1中示出了4个驱动芯片03。其中,该处理器01可以为图形处理器(graphics processing unit,GPU)或应用处理器(application processor,AP)。该控制器02可以为TCON。该每个驱动芯片03可以为源极驱动芯片。该驱动芯片03也可以称为驱动集成电路(driver integrated circuit,driver IC)。
参考图1可以看出,该处理器01与控制器02连接,可以用于向控制器02传输待显示的图像的图像数据。控制器02还与该至少一个驱动芯片03连接,用于向各个驱动芯片03传输图像数据。该至少一个驱动芯片03与显示面板04连接,每个驱动芯片03用于基于接收到的图像数据驱动显示面板04中的像素,以使得显示面板04显示图像。
其中,待显示的图像的图像数据可以包括显示面板04中多个像素的像素数据,该像素数据可以是指像素的颜色值。例如,该颜色值可以包括红绿蓝(red green blue,RGB)颜色值。
随着显示行业的快速发展,用户对显示面板的画质要求越来越高,进而对显示装置的画面刷新率和分辨率提出了较高的要求。若要提高显示装置的刷新率和分辨率,则会导致处理器01向控制器02传输的图像数据的数据量倍增,且会导致控制器02向驱动芯片03传输的图像数据的数据量倍增。由此,不仅会显著增加显示装置的功耗,而且对显示装置中处理器01与控制器02之间的数据传输带宽,以及控制器02与驱动芯片03之间的数据传输带宽提出较高要求,导致显示装置的成本较高。例如,驱动芯片03的数据通道(也可以称为传输接口)的数量需较多,驱动芯片03的成本较高。
图2是本公开实施例提供的一种图像数据的传输方法的流程图,该方法可 以应用于如图1所示的应用场景中。如图2所示,该图像数据的传输方法包括:
步骤101、图像数据的传输组件获取显示面板中待显示的图像的初始图像数据。
该显示面板包括多个像素,该初始图像数据包括该多个像素的像素数据。其中,每个像素的像素数据是指像素的颜色值。例如,该颜色值可以包括RGB颜色值。可选地,该图像数据的传输组件可以为显示装置中的处理器,也可以为显示装置中的控制器。
步骤102、图像数据的传输组件对该初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据。
在本公开实施例中,可以将显示面板的显示区域划分为注视区域和非注视区域。其中,该注视区域可以是指观看者注视的区域,该非注视区域是指显示区域中除该注视区域之外的区域。该多个第一像素位于非注视区域,该多个像素中除多个第一像素之外的多个第二像素位于注视区域。
由于非注视区域并非是观看者重点观看的区域,因此图像数据的传输组件可以对该非注视区域中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据。其中,对多个第一像素的像素数据进行压缩可以是指:删除至少一个第一像素的像素数据。图像数据的传输组件得到的每个压缩像素数据可以是某个第一像素的像素数据,或者,可以是至少两个第一像素的像素数据的均值或中值。通过对多个第一像素的像素数据进行压缩,可以确保得到的至少一个压缩像素数据的数据量较少。
可选地,在本公开实施例中,传输组件可以基于注视区检测传感器采集到的数据确定注视区域,进而确定非注视区域。或者,该注视区域可以为预先设定的固定区域,传输组件中可以预先存储该固定的注视区域的位置。
步骤103、图像数据的传输组件向显示面板的驱动芯片发送压缩图像数据。
该压缩图像数据包括:传输组件压缩得到的至少一个压缩像素数据,以及注视区域内未被压缩的多个第二像素的像素数据。该压缩图像数据用于供驱动芯片驱动显示面板进行显示。
可以理解的是,若该图像数据的传输组件为处理器,则该处理器可以将压缩图像数据发送至控制器,然后再由控制器发送至驱动芯片。若该图像数据的传输组件为控制器,则该控制器可以直接将压缩图像数据发送至驱动芯片。
步骤104、驱动芯片采用压缩图像数据驱动显示面板中的像素。
驱动芯片接收到压缩图像数据后,可以采用该压缩图像数据中的压缩像素数据驱动显示面板中的多个第一像素,并可以采用该压缩图像数据中的第二像素的像素数据驱动显示面板中的第二像素,由此实现图像的显示。
综上所述,本公开实施例提供了一种图像数据的传输方法,传输组件可以对初始图像数据中的非注视区域的像素数据进行压缩,并将压缩得到的压缩图像数据发送给驱动芯片。由于压缩图像数据的数据量较小,因此可以在避免影响显示效果的前提下,有效减少传输组件所需传输的图像数据的数据量,进而降低图像数据传输过程中占用的带宽。
并且,由于传输组件所需传输的图像数据的数据量较低,因此还可以降低显示装置的功耗,而且对显示装置中传输组件与驱动芯片之间的数据传输带宽的要求较低,进而可以避免增加显示装置的成本。
图3是本公开实施例提供的另一种图像数据的传输方法的流程图,该方法可以应用于如图1所示的应用场景中,该方法以图像数据的传输组件为处理器为例进行说明。如图3所示,该图像数据的传输方法包括:
步骤201、处理器基于注视区检测传感器采集到的数据,在显示面板中确定注视区域。
在本公开实施例中,显示面板上可以设置有注视区检测传感器,处理器可以实时获取该注视区检测传感器采集到的数据,并基于获取到的数据在显示面板中确定观看者的视线所注视的注视区域。
可选地,注视区检测传感器可以包括摄像头(camera),处理器可以根据摄像头采集的图像数据,确定观看者的人脸大小,进而可以确定观看者与显示面板的相对位置,该相对位置至少可以包括距离。之后,处理器可以基于该相对位置计算得到显示面板的注视区域。当观看者与显示面板的相对位置发生变化时,该注视区域也会随之变化。相应的,处理器即可基于变化后的相对位置确定出变化后的注视区域。例如,当观看者与显示面板之间的距离变远之后,同样30°最佳视觉角度,观看者的视线投射到显示面板上的面积变大,显示面板中的注视区域也就随之增大。
或者,除了摄像头之外,该注视区检测传感器还可以包括红外发射器。该 红外发射器可以向观看者的眼部发射红外光,摄像头可以采集观看者的眼部图像,并将该眼部图像传输至处理器。处理器可以根据该眼部图像确定观看者的瞳孔位置,而后根据瞳孔位置确定观看者的注视区域。由于显示面板在显示图像的过程中,观看者的视线方向可能会发生变化,因此通过注视区检测传感器采集到的数据,可以实现对观看者的注视区域的动态跟踪。进而,可以确保对非注视区域的像素数据进行压缩后,不会影响观看者的观看体验。
步骤202、处理器获取显示面板中待显示的图像的初始图像数据。
其中,该初始图像数据包括显示面板中多个像素的像素数据。其中,每个像素的像素数据是指像素的颜色值。例如,该颜色值可以包括RGB颜色值。
步骤203、处理器对非注视区域的多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据。
该非注视区域是指显示面板中除注视区域之外的区域。该多个第一像素位于非注视区域,该显示面板的多个像素中除多个第一像素之外的多个第二像素位于注视区域。
由于非注视区域并非是观看者重点观看的区域,因此处理器可以对该非注视区域中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据。其中,对多个第一像素的像素数据进行压缩可以是指:删除至少一个第一像素的像素数据。处理器得到的每个压缩像素数据可以是某个第一像素的像素数据,或者,可以是至少两个第一像素的像素数据的均值或中值。通过对多个第一像素的像素数据进行压缩,可以确保得到的至少一个压缩像素数据的数据量较少。
示例的,图4是本公开实施例提供的一种非注视区域的示意图。参考图4,假设非注视区域包括4行4列第一像素(即16个第一像素)P1,则处理器可以将15个第一像素P1的像素数据删除,仅保留一个第一像素的像素数据作为一个压缩像素数据。例如图4中,处理器可以将第4行第1列的第一像素的像素数据作为一个压缩像素数据。
在本公开实施例中,如图5所示,该非注视区域可以包括第一区域A1和第二区域A2中的至少一个区域。其中,第一区域A1是指与该注视区域B0按照按像素列方向X排列的区域,第二区域A2是指与该注视区域B0按像素行方向Y排列的区域。可以理解的是,该非注视区域可以包括一个或多个第一区域A1,且可以包括一个或多个第二区域A2。例如,如图6所示,该非注视区域可以包 括第一区域A11和第一区域A12,且可以包括第二区域A21和第二区域A22。
对于非注视区域包括第一区域A1的场景,处理器可以对第一区域A1中N行M列的第一像素的像素数据进行压缩,得到一个压缩像素数据。其中,N和M均可以为大于1的整数。每个压缩像素数据可以是该N行M列的第一像素中某个第一像素的像素数据,或者,可以是该N行M列的第一像素的像素数据的均值或中值。
假设将像素行方向Y称为横向,将像素列方向X称为纵向,则对于该第一区域A1中多个第一像素的像素数据,处理器可以分别进行横向压缩和纵向压缩。并且,横向压缩的比例为1/M,纵向的压缩比例为1/N,整体的压缩比例为1/(M×N)。也即是,处理器对第一区域A1中的多个第一像素的像素数据进行压缩后得到的至少一个压缩像素数据的数据量为原数据量的1/(M×N)。
参考图7,该显示装置可以包括多个驱动芯片,例如,图7中示出了D1至D8共8个驱动芯片。其中每个驱动芯片可以与显示面板中的多列像素连接。处理器在对第一区域A1的第一像素的像素数据进行压缩时,可以对同一驱动芯片连接的多列第一像素的像素数据进行压缩。
可选地,该每个驱动芯片可以包括多个数据通道,每个数据通道与多列像素连接,且不同数据通道所连接的像素位于不同列。若多个驱动芯片中目标驱动芯片所连接的多列像素包括位于第一区域A1的第一像素,则M可以等于该目标驱动芯片包括的数据通道的个数。相应的,处理器对该目标驱动芯片所连接的第一像素的像素数据进行压缩后,可以仅保留一个数据通道的部分或全部像素数据,并将该数据通道的其他像素数据,以及其他M-1个数据通道(即目标通道)的像素数据均删除。其中,保留的一个数据通道的像素数据(即压缩像素数据)可以是该数据通道所连接的第一像素的像素数据,或者可以是该M个数据通道所连接的第一像素的像素数据的均值或中值。
假设某个第一区域A1包括K行第一像素,目标驱动芯片具有M个数据通道,且每个数据通道与该第一区域A1中的J列第一像素连接,即目标驱动芯片与该第一区域A1内的K×M×J个第一像素连接。其中,K为N的整数倍,J为大于1的整数。则处理器对该第一区域A1中每N行M列的第一像素的像素数据进行压缩后,可以得到(K/N)×J个压缩像素数据,该(K/N)×J个压缩像素数据可以阵列排布为K/N行和J列。
示例的,参考图7,假设目标驱动芯片为驱动芯片D1,该目标驱动芯片D1包括4个数据通道,则M可以等于4。假设N也等于4,则如图7所示,处理器可以对该目标驱动芯片D1所连接的多个第一像素的像素数据进行横向压缩和纵向压缩,且压缩后得到的压缩像素数据的数据量为原数据量的1/16。
参考图7可以看出,压缩后得到的压缩像素数据为目标驱动芯片D1的第一个数据通道所连接的第一像素的像素数据的1/4,该第一个数据通道所连接的第一像素的像素数据的3/4,以及其他三个数据通道所连接的第一像素的像素数据均被删除。
对于非注视区域包括第二区域A2的场景,处理器可以对该第二区域A2中M列的第一像素的像素数据进行压缩,得到一个压缩像素数据。其中,M可以为大于1的整数。
注视区域是观看者重点观看的区域,为了不影响注视区域的显示效果,处理器不会对注视区域中多个第二像素的像素数据进行压缩。由于处理器不会对注视区域的像素数据压缩,因此若处理器对第二区域A2中第一像素的像素数据进行纵向压缩,则可能导致基于最终得到的压缩图像数据无法显示完整的矩形图像。因此,在本公开实施例中,处理器可以只对第二区域A2中第一像素的像素数据进行横向压缩。并且,横向压缩的比例可以为1/M。
可以理解的是,对于该显示装置包括多个驱动芯片的场景,处理器在对第二区域A2的第一像素的像素数据进行压缩时,可以对同一驱动芯片连接的多列第一像素的像素数据进行压缩。并且,M可以等于驱动芯片包括的数据通道的个数。
假设目标驱动芯片具有M个数据通道,每个数据通道与第二区域A2中的J列第一像素连接,J为大于1的整数。则对于第二区域A2中该目标驱动芯片所连接的每一行第一像素,处理器可以对每M个第一像素的像素数据进行压缩,得到一个压缩像素数据,最终可以得到位于同一行的J个压缩像素数据。其中,第j个压缩像素数据可以为任一数据通道中第j列第一像素的像素数据。或者,在计算第j个压缩像素数据时,可以获取M个数据通道中每个数据通道的第j列第一像素的像素数据,并将获取到的M个第一像素的像素数据的均值或中值作为该第j个压缩像素数据。其中,j为不大于J的正整数。
示例的,参考图7,假设目标驱动芯片为驱动芯片D2,该目标驱动芯片D2 包括4个数据通道,则M可以等于4。相应的,如图7所示,处理器对该目标驱动芯片D2所连接的第一像素的像素数据进行压缩后,可以仅保留一个数据通道对应的像素数据,并将其他三个目标通道对应的像素数据均删除。即横向压缩的比例为1/4,且纵向不压缩。相应的,压缩后得到的压缩像素数据的数据量为原始数据量的1/4。
步骤204、处理器向控制器发送压缩图像数据。
处理器对非注视区域的第一像素的像素数据进行压缩后,可以得到压缩图像数据,并向控制器发送该压缩图像数据。该压缩图像数据包括:压缩得到的至少一个压缩像素数据,以及注视区域中未被压缩的多个第二像素的像素数据。该压缩图像数据用于供控制器传输至驱动芯片,以便驱动芯片驱动显示面板进行显示。
由于处理器传输的压缩图像数据是对非注视区域的第一像素的像素数据进行压缩得到的,因此该压缩图像数据的数据量较少。进而,可以确保处理器向控制器发送压缩图像数据时占用的带宽较少,图像数据的传输效率较高。
示例的,处理器向控制器发送的压缩图像数据可以如图8所示。参考图8,该压缩图像数据包括压缩像素数据以及多个第二像素的像素数据。
可选地,参考图7,若第一区域A1中的部分第一像素与注视区域B0的第二像素共列,且处理器对该部分第一像素的像素数据进行了横向压缩,则如图8,处理器得到的压缩图像数据中还可以包括无效像素数据。该无效像素数据与第二像素的像素数据按照像素列方向X排列,且与第一区域A1中的压缩像素数据按像素行方向Y排列。由此,可以确保该压缩图像数据对应的图像为完整的矩形图像。其中,处理器在压缩图像数据中填充的无效像素数据可以均为0。
步骤205、控制器向目标驱动芯片发送功耗降低指令。
在本公开实施例中,控制器接收到处理器发送的压缩图像数据后,可以将该压缩图像数据传输至与显示面板连接的至少一个驱动芯片。并且,控制器还可以基于该压缩图像数据的压缩规则,以及各个驱动芯片与显示面板中各列像素的连接关系,将压缩图像数据中的压缩像素数据,以及第二像素的像素数据传输至对应的驱动芯片。其中,每个驱动芯片接收到的像素数据为其所连接的像素的像素数据。
可以理解的是,控制器可以逐行传输像素数据。假设显示面板与T个驱动 芯片连接,T为大于1的整数,则控制器可以将压缩图像数据中的每一行像素数据划分为与该T个驱动芯片一一对应的T组像素数据,并将该T组像素数据分别传输至对应的驱动芯片。若驱动芯片包括M个开启的数据通道,则控制器可以将与该驱动芯片对应的一组像素数据划分为M份,并将M份像素数据分别传输至对应的数据通道。
还可以理解的是,若压缩图像数据中的某行像素数据既包括压缩像素数据,也包括未被压缩的第二像素的像素数据,则控制器可以并行传输该压缩像素数据和第二像素的像素数据。
为了降低与非注视区域内的第一像素连接的目标驱动芯片的功耗,控制器在向该目标驱动芯片发送压缩像素数据之前,可以先向该目标驱动芯片发送功耗降低指令。该功耗降低指令用于指示该目标驱动芯片关闭目标通道,其中,该目标通道为用于接收被压缩的像素数据(即被删除的像素数据)的数据通道。
可选地,控制器可以在向目标驱动芯片发送的配置指令CTRL_L中携带该功耗降低指令。并且,该功耗降低指令中还可以携带有目标通道的标识,目标驱动芯片接收到功耗降低指令,可以关闭该标识指示的目标通道。
作为一种可能的示例,第一区域A1与注视区域B0可以沿像素行的驱动方向(即像素列方向X)依次排列,即目标驱动芯片在驱动显示区域的像素时,先驱动第一区域A1中的第一像素,再驱动注视区域B0中的第二像素。则在该示例中,控制器可以在发送压缩图像数据中的第一行像素数据之前,先向目标驱动芯片发送一行无效显示数据。参考图9,该一行无效显示数据可以包括:依次排列的开始指示标志K1,配置指令CTRL_L、无效像素数据以及结束指示标志K2。该配置指令CTRL_L用于携带功耗降低指令。并且,如图8所示,该一行无效显示数据还可以包括位于结束指示标志K2之后的空闲(IDLE)区域。
作为另一种可能的示例,注视区域B0与第一区域A1可以沿像素行的驱动方向(即像素列方向X)依次排列,即目标驱动芯片在驱动显示区域的各像素时,先驱动注视区域B0中的第二像素,再驱动第一区域A1中的第一像素。则在该示例中,控制器可以在向目标驱动芯片发送注视区域B0中最后一行第二像素的像素数据时携带该功耗降低指令。参考图10,控制器可以向目标驱动芯片发送一行显示数据,该一行显示数据可以包括:依次排列的开始指示标志K1,配置指令CTRL_L、最后一行第二像素的像素数据以及结束指示标志K2。该配 置指令CTRL_L用于携带功耗降低指令。
步骤206、目标驱动芯片基于功耗降低指令,关闭多个数据通道中的目标通道。
目标驱动芯片接收到控制器发送的功耗降低指令后,可以基于该功耗降低指令关闭多个数据通道中的目标通道,即目标驱动芯片可以进入低功耗(low power)模式。其中,该目标通道为用于接收被压缩的像素数据(即被删除的像素数据)的通道。例如,目标驱动芯片可以基于该功耗降低指令中携带的目标通道的标识,确定所需关闭的目标通道。由于目标驱动芯片可以基于控制器的指示,关闭无需接收像素数据的目标通道,因此可以在确保像素数据的可靠传输的前提下,有效降低目标驱动芯片的功耗。
示例的,如图11和图12所示,假设目标驱动芯片为D3,则控制器在发送第一行压缩像素数据之前,可以先向该目标驱动芯片发送功耗降低指令,且该功耗降低指令中可以携带有第二个数据通道R2至第四个数据通道R4的标识。目标驱动芯片D3接收到该功耗降低指令后,可以将第二个数据通道R2至第四个数据通道R4均关闭,仅保持第一个数据通道R1为开启状态。
可以理解的是,控制器可以通过其发射(transmit,TX)接口向驱动芯片的数据通道发送像素数据。驱动芯片的数据通道也可以称为接收(receive,RX)接口。并且,对于驱动芯片包括多个数据通道的场景,控制器可以包括与该多个数据通道一一对应的多个TX接口。
还可以理解的是,控制器在向目标驱动芯片发送压缩像素数据之前,还可以将与该目标驱动芯片的目标通道对应的TX接口关闭。由此,可以有效降低控制器的功耗,进而进一步降低显示装置的整体功耗。
示例的,参考图12,若目标驱动芯片D3包括R1至R4共4个数据通道,则控制器至少可以包括用于与目标驱动芯片D3连接的4个TX接口,该4个TX接口分别为T1接口至T4接口。该目标驱动芯片D3接收到功耗降低指令后,可以将第二个数据通道R2至第四个数据通道R4均关闭,仅保持第一个数据通道R1为开启状态。并且,控制器可以将与第二个数据通道R2至第四个数据通道R4对应的T2接口至T4接口均关闭,仅保持T1接口为开启状态。
步骤207、控制器向目标驱动芯片发送压缩像素数据。
控制器在指示目标驱动芯片关闭目标通道后,即可向目标驱动芯片发送压 缩像素数据。也即是,控制器可以向目标驱动芯片中保持开启状态的数据通道发送压缩像素数据。其中,该压缩像素数据是对目标驱动芯片所连接的多个第一像素的像素数据进行压缩得到的。由于该压缩像素数据的数据量较小,因此可以确保控制器向目标驱动芯片发送压缩像素数据时占用的带宽较少。
示例的,如图11和图12所示,假设目标驱动芯片为D3,则控制器可以向该目标驱动芯片D3的第一个数据通道R1发送压缩像素数据,其中,该压缩像素数据是对目标驱动芯片D3所连接的四个数据通道R1至R4的像素数据压缩得到的。
步骤208、目标驱动芯片基于该压缩像素数据,驱动显示面板中的至少两个第一像素。
目标驱动芯片接收到控制器发送的压缩像素数据后,可以采用该压缩像素数据驱动显示面板中的至少两个第一像素。
可以理解的是,控制器还可以向目标驱动芯片发送压缩图像数据的压缩规则,目标驱动芯片可以基于该压缩规则和接收到的压缩像素数据,驱动其所连接的至少两个第一像素。
作为一种可能的示例,若目标驱动芯片接收到的一个压缩像素数据是对第一区域A1中N行M列的第一像素的像素数据进行压缩得到的,且该目标驱动芯片与第一区域A1中K行,M×J列第一像素连接。则该目标驱动芯片可以接收到(K/N)×J个压缩像素数据。目标驱动芯片可以将接收到该(K/N)×J个压缩像素数据横向复制M-1份,纵向复制N-1份,从而得到K×M×J个压缩像素数据。该目标驱动芯片进而可以基于该K×M×J个压缩像素数据驱动其所连接的K行,M×J列第一像素。
作为另一种可能的示例,若目标驱动芯片接收到的一个压缩像素数据是对第二区域A2中M列的第一像素的像素数据进行压缩得到的,且该目标驱动芯片与第二区域A2中K行,M×J列第一像素连接。则该目标驱动芯片可以接收到K×J个压缩像素数据。目标驱动芯片可以将接收到的该K×J个压缩像素数据横向复制M-1份,从而得到K×M×J个压缩像素数据。该目标驱动芯片进而可以基于该K×M×J个压缩像素数据驱动其所连接的K行,M×J列第一像素。
还可以理解的是,上述复制压缩像素数据的操作也可以理解为对压缩像素数据进行解压缩。
还可以理解的是,驱动芯片与显示面板之间可以采用覆晶薄膜(chip on film,COF)技术或者绑定(bonding)的方式连接。因此,驱动芯片与显示面板之间没有严格的数据传输带宽的限制,驱动芯片对接收到的压缩像素数据进行解压缩后可以直接驱动显示面板进行显示。
步骤209、控制器向目标驱动芯片发送功耗恢复指令。
在本公开实施例中,若目标驱动芯片所连接的像素包括第一像素和第二像素,且第一像素和第二像素沿像素行的驱动方向依次排列,则该控制器还需向目标驱动芯片发送第二像素的像素数据。由于第二像素的像素数据未被压缩,因此目标驱动芯片还需通过其目标通道接收该第二像素的像素数据。相应的,控制器在发送第二像素的像素数据之前,还需向目标驱动芯片发送功耗恢复指令,以指示该目标驱动芯片开启目标通道。
示例的,如图11所示,驱动芯片D3所连接的像素既包括位于第一区域A1的第一像素,也包括位于注视区域B0的第二像素,且第一像素和第二像素沿像素行的驱动方向依次排列。因此,控制器在发送第二像素的像素数据前,需要先向驱动芯片D3发送功耗恢复指令,该功耗恢复指令用于指示驱动芯片D3开启关闭的三个目标通道R2至R4。
可以理解的是,目标驱动芯片开启其目标通道需要一定的时间,即目标驱动芯片开启其目标通道的时刻,相对于控制器发送功耗恢复指令的时刻存在一定的延迟。因此,控制器需提前发送功耗恢复指令,以确保控制器在发送第二像素的像素数据时,目标驱动芯片已开启其目标通道,进而确保第二像素的像素数据的可靠接收。
其中,控制器向该目标驱动芯片发送该功耗恢复指令与发送第二像素的像素数据的间隔时长可以大于或等于时长阈值。该时长阈值可以是基于目标驱动芯片开启其数据通道所需的开启时长确定的,该开启时长与目标驱动芯片的硬件参数有关。
示例的,假设该开启时长等于控制器传输N行像素数据所需的时长,且该间隔时长等于该开启时长。则控制器可以在发送位于第一行第二像素之前的倒数第N+1行第一像素的压缩像素数据时,向目标驱动芯片发送功耗恢复指令。控制器在发送完功耗恢复指令后,可以依次传输第一区域的最后N行第一像素的压缩像素数据,然后再传输注视区域内第一行第二像素的像素数据。由此, 可以确保控制器在发送第一行第二像素的像素数据时,目标驱动芯片已开启其目标通道。
可选地,如图13所示,控制器向目标驱动芯片发送的功耗恢复指令可以包括时钟训练序列(clock training pattern)和链路稳定序列(link stable pattern,LSP)。
示例的,参考图13,控制器可以向目标芯片发送一行显示数据,该一行显示数据可以包括依次排列的时钟训练序列、LSP、开始指示标志K1,配置指令CTRL_L、位于第一行第二像素之前的倒数第N+1行第一像素的压缩像素数据以及结束指示标志K2。
步骤210、驱动芯片基于功耗恢复指令,开启目标通道。
目标驱动芯片接收到控制器发送的功耗恢复指令后,可以基于该功耗恢复指令,开启目标驱动芯片中关闭的目标通道,以确保未被压缩的第二像素的像素数据的可靠传输。例如,该功耗恢复指令中可以携带待开启的目标通道的标识,目标驱动芯片可以基于该功耗恢复指令中携带的标识,开启对应的目标通道。
示例的,如图12所示,假设目标驱动芯片为D3,且控制器向目标驱动芯片D3发送的功耗恢复指令中携带有第二个数据通道R2至第四个数据通道R4的标识。则目标驱动芯D3可以基于该功耗恢复指令中的标识,开启该第二个数据通道R2至第四个数据通道R4。
步骤211、控制器向目标驱动芯片发送第二像素的像素数据。
控制器在传输完成第一区域的压缩像素数据后,即可向目标驱动芯片发送位于注视区域B0中的第二像素的像素数据。
可以理解的是,由于注视区域B0内的第二像素的像素数据未被压缩,因此若控制器在向目标驱动芯片发送压缩像素数据时关闭了部分TX接口,则在发送该第二像素的像素数据之前,还需开启关闭的TX接口,以确保未被压缩的第二像素的像素数据的可靠传输。
示例的,如图12所示,假设控制器在向目标驱动芯片D3发送压缩像素数据时关闭了T2至T4接口,则该控制器在发送第二像素的像素数据之前,还需开启T2至T4接口,确保目标驱动芯D3连接的未被压缩的第二像素的像素数据的可靠传输。
可以理解的是,控制器在向目标驱动芯片发送第二像素的像素数据的过程中,还可以同步向其他驱动芯片发送第二像素的像素数据,和/或,压缩像素数据。
下文以图11为例,对压缩图像数据的传输过程进行介绍。该传输过程可以划分为三个传输阶段,其中第一个传输阶段用于传输第一区域A11的压缩像素数据,第二个传输阶段用于传输第二区域A21的压缩像素数据、注视区域B0的未被压缩的第二像素的像素数据和第二区域A22的压缩像素数据,第三个传输阶段用于传输第一区域A12的压缩像素数据。
在第一个传输阶段中,参考图11,控制器在发送第一区域A11中第一行压缩像素数据之前,可以先向驱动芯片D1至D8均发送功耗降低指令,以指示该驱动芯片D1至D8均关闭3个目标通道,仅保留一个数据通道为开启状态。之后,控制器可以逐行向驱动芯片D1至D8发送第一区域A11的压缩像素数据。其中,每行压缩像素数据可以拆分为8组像素数据,每组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D1至D8中对应的一个驱动芯片的第一个数据通道R1。
由于注视区域B0与第一区域A11沿像素行的驱动方向依次排布,且驱动芯片D3至D6与该注视区域B0的第二像素连接。因此,控制器可以在发送第一区域A11中倒数第N+1行压缩像素数据时,分别向驱动芯片D3至D6发送功耗降恢复指令,以指示驱动芯片D3至D6开启关闭的3个目标通道。之后,控制器可以逐行向驱动芯片D1至D8发送第一区域A11中最后N行的压缩像素数据。在完成第一区域A11中压缩像素数据的发送后,即第一个传输阶段执行完成后,控制器即可开始执行第二个传输阶段。
参考图11,由于驱动芯片D1和D2,以及驱动芯片D7和D8所连接的像素均为第一像素,因此上述4个驱动芯片的目标通道在第二个传输阶段可以保持关闭状态。在该第二个传输阶段内,控制器发送的每行像素数据可以拆分为8组像素数据,其中第一组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D1的第一个数据通道R1。第二组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D2的第一个数据通道R1,第三组像素数据包括4份第二像素的像素数据,该4份第二像素的像素数据可以分别传输至驱动芯片D3的第一个数据通道R1至第四个数据通道R4。第 四组像素数据包括4份第二像素的像素数据,该4份第二像素的像素数据可以分别传输至驱动芯片D4的第一个数据通道R1至第四个数据通道R4。第五组像素数据包括4份第二像素的像素数据,该4份第二像素的像素数据可以分别传输至驱动芯片D5的第一个数据通道R1至第四个数据通道R4。第六组像素数据包括4份第二像素的像素数据,该4份第二像素的像素数据可以分别传输至驱动芯片D6的第一个数据通道R1至第四个数据通道R4。第七组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D7的第一个数据通道R1。第八组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D8的第一个数据通道R1。
控制器在发送最后一行第二像素的像素数据时,可以分别向驱动芯片D3至D6发送功耗降低指令,以指示该驱动芯片D3至D6均关闭3个目标通道,仅保留一个数据通道为开启状态。之后,控制器即可执行第三个传输阶段。参考图11,在该第三个传输阶段中,控制器可以逐行向驱动芯片D1至D8发送第一区域A12的压缩像素数据。其中,每行压缩像素数据可以拆分为8组像素数据,每组像素数据包括1份压缩像素数据,该1份压缩像素数据可以传输至驱动芯片D1至D8中对应的一个驱动芯片的第一个数据通道R1。
基于上述对三个传输阶段的介绍可知,控制器在第一个传输阶段和第三个传输阶段发送的每行像素数据均包括8份压缩像素数据,且控制器在第二个传输阶段发送的每行像素数据共包括20份像素数据。
可以理解的是,如图11所示,该第一区域A11和A12中的像素数据还可以包括无效数据,该无效数据与驱动芯片中的目标通道对应。由于控制器在传输该第一区域A11和A12中的像素数据之前,已指示驱动芯片关闭目标通道,因此控制器无需向驱动芯片传输该无效数据。
步骤212、目标驱动芯片基于该第二像素的像素数据,驱动显示面板中的第二像素。
目标驱动芯片接收到控制器发送的第二像素的像素数据后,可以基于该第二像素的像素数据,驱动显示面板中的第二像素。
应理解的是,本公开实施例提供的图像数据的传输方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。例如,步骤201可以根据情况删除,即处理器可以将预先存储的固定区域作为注视区域。或者,步 骤211可以在步骤207之前执行,或者可以与步骤207同步执行。又或者,步骤209和步骤210可以根据情况删除,例如,若非注视区域仅包括第二区域A2,而不包括第一区域A1,则目标驱动芯片的目标通道可以始终保持关闭状态。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供了一种图像数据的传输方法,处理器可以对初始图像数据中的非注视区域的像素数据进行压缩,并将压缩图像数据发送给控制器。由此,可以在避免影响显示效果的前提下,有效减少处理器所需传输的图像数据的数据量,进而降低处理器向控制器传输图像数据的过程中占用的带宽。由于控制器接收到的图像数据的数据量较少,因此控制器向驱动芯片传输的像素数据的数量也相应减少,因此还可以降低控制器向驱动芯片传输图像数据的过程中占用的带宽。
并且,由于处理器和控制器所需传输的图像数据的数据量较低,因此还可以降低显示装置的功耗,而且对显示装置中处理器和控制器之间,以及控制器和驱动芯片之间的数据传输带宽的要求较低,进而可以避免增加显示装置的成本。又由于控制器可以关闭无需发送像素数据的接口,且可以指示驱动芯片关闭无需接收像素数据的目标通道,因此可以在确保像素数据的可靠传输的前提下,有效降低控制器和驱动芯片的功耗。
此外,由于处理器还可以根据注视区检测传感器检测到的数据动态跟踪观看者的注视区域,因此可以实现对驱动芯片中需关闭的数据通道的动态调整,以及对所需压缩的像素的像素数据的动态调整。由此,可以在有效降低数据传输带宽和显示装置的功耗的前提下,确保对注视区域的高清晰度渲染,满足用户对注视区域超高清和超高频的视觉体验。
图14是本公开实施例提供的一种图像数据的传输组件的结构示意图,该传输组件可以应用于图1所示的显示装置中,例如该图像传输组件可以为显示装置中的处理器或控制器。并且,该传输组件可以用于实现如图2所示的方法实施例中由传输组件执行的步骤,或者可以用于实现图3所示的方法实施例中由处理器或控制器执行的步骤。如图14所示,该传输组件可以包括:
获取模块301,用于获取显示面板中待显示的图像的初始图像数据,该显示 面板包括多个像素,该初始图像数据包括多个像素的像素数据。
压缩模块302,用于对该初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,该多个第一像素位于显示面板的非注视区域,该多个像素中除该多个第一像素之外的多个第二像素位于该显示面板的注视区域。
发送模块303,用于向该显示面板的驱动芯片发送压缩图像数据,该压缩图像数据包括:至少一个压缩像素数据,以及多个第二像素的像素数据,该压缩图像数据用于供该驱动芯片驱动该显示面板进行显示。
可选地,该非注视区域包括第一区域,该第一区域与显示面板的注视区域按像素列方向排列。相应的,该压缩模块302,可以用于:对该第一区域中N行M列的第一像素的像素数据进行压缩,得到一个压缩像素数据,N和M均为大于1的整数。
可选地,该非注视区域包括第二区域,该第二区域与该注视区域按像素行方向排列。相应的,该压缩模块302,可以用于对该第二区域中位于同一行的M列第一像素的像素数据进行压缩,得到一个压缩像素数据,M为大于1的整数。
可选地,该M列第一像素与同一个驱动芯片连接。
可选地,如图15所示,该传输组件还包括:
确定模块304,用于在该压缩模块302对初始图像数据中多个第一像素的像素数据进行压缩之前,基于注视区检测传感器采集到的数据确定注视区域。
可选地,压缩模块302,可以用于将多个第一像素的像素数据中,至少一个第一像素的像素数据删除,得到至少一个压缩像素数据。
其中,每个压缩像素数据为一个第一像素的像素数据,或者为至少两个第一像素的像素数据的均值或中值。
可选地,该图像数据的传输组件为显示装置中的处理器,该显示装置还包括控制器,该控制器与该驱动芯片连接。相应的,该发送模块303,可以用于:向控制器发送压缩图像数据,该压缩图像数据用于供控制器传输至驱动芯片。
可选地,该图像数据的传输组件为显示装置中的控制器,该控制器与至少一个该驱动芯片连接。相应的,该发送模块303,可以用于:
向目标驱动芯片发送功耗降低指令,该功耗降低指令用于指示该目标驱动芯片关闭目标通道,其中,该目标驱动芯片为用于驱动该第一像素的驱动芯片, 该目标驱动芯片具有多个数据通道,该目标通道为用于接收被压缩的像素数据的通道;
向该目标驱动芯片发送该压缩像素数据,并向该多个驱动芯片中用于驱动该多个第二像素的驱动芯片发送该多个第二像素的像素数据。
可选地,该非注视区域包括第一区域,该第一区域与该显示面板的注视区域按像素列方向排列。该目标驱动芯片所连接的像素包括该第一像素和该第二像素,且该第一像素和该第二像素沿像素行的驱动方向依次排列。相应的,该发送模块303,可以用于:
向该目标驱动芯片发送功耗恢复指令,该功耗恢复指令用于指示该目标驱动芯片开启该目标通道;
向该目标驱动芯片发送该目标驱动芯片所连接的第二像素的像素数据。其中,向该目标驱动芯片发送该功耗恢复指令与发送该第二像素的像素数据的间隔时长大于或等于时长阈值。
可选地,该发送模块303,可以用于向该目标驱动芯片发送时钟训练序列和链路稳定序列。
综上所述,本公开实施例提供了一种传输组件,该传输组件在进行传输像素数据时,可以对初始图像数据中的非注视区域的像素数据进行压缩,并将压缩图像数据发送给驱动芯片。由此,可以在避免影响显示效果的前提下,有效减少所需传输的图像数据的数据量,进而降低图像数据传输过程中占用的带宽。
并且,由于传输组件所需传输的图像数据的数据量较低,因此还可以降低显示装置的功耗,而且对显示装置中传输组件与驱动芯片之间的数据传输带宽的要求较低,进而可以避免增加显示装置的成本。
图16是本公开实施例提供的一种控制器的结构示意图,该控制器与显示装置中的至少一个所述驱动芯片连接。并且,该控制器可以用于实现如图2所示的方法实施例中由传输组件执行的步骤,或者可以用于实现图3所示的方法实施例中由控制器执行的步骤。如图15所示,该控制器可以包括:
获取模块401,用于获取显示面板中待显示的图像的压缩图像数据,该压缩图像数据包括至少一个压缩像素数据,以及多个第二像素的像素数据,其中,至少一个压缩像素数据是对多个第一像素的像素数据进行压缩得到的,多个第 一像素位于显示面板的非注视区域,多个第二像素位于显示面板的注视区域。
发送模块402,用于向目标驱动芯片发送功耗降低指令,功耗降低指令用于指示目标驱动芯片关闭目标通道,其中,目标驱动芯片为用于驱动第一像素的驱动芯片,目标驱动芯片具有多个数据通道,目标通道为用于接收被压缩的像素数据的通道;
发送模块402,还用于向目标驱动芯片发送压缩像素数据,并向至少一个驱动芯片中用于驱动多个第二像素的驱动芯片发送多个第二像素的像素数据。
可选地,该非注视区域包括第一区域,第一区域与显示面板的注视区域按像素列方向排列;该目标驱动芯片所连接的像素包括第一像素和第二像素,且第一像素和第二像素沿像素行的驱动方向依次排列。相应的,该发送模块402可以用于:
向目标驱动芯片发送功耗恢复指令,功耗恢复指令用于指示目标驱动芯片开启目标通道;
向目标驱动芯片发送目标驱动芯片所连接的第二像素的像素数据;其中,向目标驱动芯片发送功耗恢复指令与发送第二像素的像素数据的间隔时长大于或等于时长阈值。
综上所述,本公开实施例提供了一种控制器,该控制器可以获取压缩图像数据,并将压缩图像数据发送给驱动芯片。由于控制器所需传输的图像数据的数据量较低,因此还可以降低显示装置的功耗,而且对显示装置中控制器与驱动芯片之间的数据传输带宽的要求较低,进而可以避免增加显示装置的成本。
图17是本公开实施例提供的一种驱动芯片的结构示意图,该驱动芯片可以应用于图1所示的显示装置中。并且,该驱动芯片可以用于实现如图2所示的方法实施例中由驱动芯片执行的步骤,或者可以用于实现图3所示的方法实施例中由驱动芯片执行的步骤。如图17所示,该驱动芯片可以包括:
接收模块501,用于接收压缩像素数据,该压缩像素数据是对显示面板中多个第一像素的像素数据进行压缩得到的,多个第一像素位于显示面板的非注视区域。
驱动模块502,用于采用压缩像素数据驱动多个第一像素。
综上所述,本公开实施例提供了一种驱动芯片,该驱动芯片接收到的像素 数据为经过压缩的压缩像素数据。由于该压缩像素数据的数据量较小,因此可以有效降低像素数据传输的过程中占用的带宽,提高传输效率。
参考图1,本公开实施例还提供了一种显示装置,该显示装置包括:处理器01、控制器02、至少一个驱动芯片03及显示面板04。
其中,该处理器01可以为GPU或AP,且该处理器01的结构可以如图14或图15所示。该控制器02可以为TCON,且该控制器02的结构可以如图14、图15或图16所示。该驱动芯片03可以为源极驱动电路,该驱动芯片03也可以称为驱动集成电路。
图18是本公开实施例提供的另一种显示装置的结构示意图,如图18所示,该显示装置可以包括:处理组件601,用于存储该处理组件601的可执行指令的存储器602。其中,该处理组件601被配置为执行该存储器602中的指令,以实现上述实施例中由处理器、控制器或者驱动芯片实现的步骤。
其中,该处理组件601可以为上述实施例中的处理器、控制器或者驱动芯片。
可选地,本公开实施例提供的显示装置可以为:液晶显示装置、电子纸、OLED显示装置、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
示例的,该显示装置可以为AR或VR设备。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该可读存储介质在处理组件上运行时,使得处理组件执行上述实施例中由传输组件实现的步骤,由控制器实现的步骤,或者由驱动芯片实现的步骤。
其中,该处理组件可以为上述实施例中的处理器、控制器或者驱动芯片。
本公开实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如上述方法实施例任一所述的图像数据的传输方法。
在本公开中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”的含义是指一个或多个,本公开中术语“多个”的含义是指两个或两个以上,例如,多个时钟校准电路是指两个或两个以上的时钟校准电路。
应当理解的是,在本文中提及的“和/或”,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述仅为本公开的示例性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (17)

  1. 一种图像数据的传输方法,其中,应用于图像数据的传输组件,所述方法包括:
    获取显示面板中待显示的图像的初始图像数据,所述显示面板包括多个像素,所述初始图像数据包括所述多个像素的像素数据;
    对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,所述多个第一像素位于所述显示面板的非注视区域,所述多个像素中除所述多个第一像素之外的多个第二像素位于所述显示面板的注视区域;
    向所述显示面板的驱动芯片发送压缩图像数据,所述压缩图像数据包括:所述至少一个压缩像素数据,以及所述多个第二像素的像素数据,所述压缩图像数据用于供所述驱动芯片驱动所述显示面板进行显示。
  2. 根据权利要求1所述的方法,其中,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;
    所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
    对所述第一区域中N行M列的第一像素的像素数据进行压缩,得到一个压缩像素数据,所述N和所述M均为大于1的整数。
  3. 根据权利要求1或2所述的方法,其中,所述非注视区域包括第二区域,所述第二区域与所述注视区域按像素行方向排列;
    所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
    对所述第二区域中位于同一行的M列第一像素的像素数据进行压缩,得到一个压缩像素数据,所述M均为大于1的整数。
  4. 根据权利要求1至3任一所述的方法,其中,在对所述初始图像数据中多个第一像素的像素数据进行压缩之前,所述方法还包括:
    基于注视区检测传感器采集到的数据确定所述注视区域。
  5. 根据权利要求1至4任一所述的方法,其中,所述对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,包括:
    将所述多个第一像素的像素数据中,至少一个第一像素的像素数据删除,得到至少一个压缩像素数据;
    其中,每个所述压缩像素数据为一个所述第一像素的像素数据,或者为至少两个第一像素的像素数据的均值或中值。
  6. 根据权利要求1至5任一所述的方法,其中,所述图像数据的传输组件为显示装置中的处理器,所述显示装置还包括控制器,所述控制器与所述驱动芯片连接;所述向所述显示面板的驱动芯片发送压缩图像数据,包括:
    所述处理器向所述控制器发送压缩图像数据,所述压缩图像数据用于供所述控制器传输至所述驱动芯片。
  7. 根据权利要求1至6任一所述的方法,其中,所述图像数据的传输组件为显示装置中的控制器,所述控制器与至少一个所述驱动芯片连接;所述向所述显示面板的驱动芯片发送压缩图像数据,包括:
    向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
    向所述目标驱动芯片发送所述压缩像素数据,并向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
  8. 根据权利要求7所述的方法,其中,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;所述目标驱动芯片所连接的像素包括所述第一像素和所述第二像素,且所述第一像素和所述第二像素沿像素行的驱动方向依次排列;
    所述向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所 述多个第二像素的像素数据,包括:
    向所述目标驱动芯片发送功耗恢复指令,所述功耗恢复指令用于指示所述目标驱动芯片开启所述目标通道;
    向所述目标驱动芯片发送所述目标驱动芯片所连接的第二像素的像素数据;其中,向所述目标驱动芯片发送所述功耗恢复指令与发送所述第二像素的像素数据的间隔时长大于或等于时长阈值。
  9. 根据权利要求7或8所述的方法,其中,所述向所述目标驱动芯片发送功耗恢复指令,包括:
    向所述目标驱动芯片发送时钟训练序列和链路稳定序列。
  10. 一种图像数据的传输方法,应用于显示装置中的控制器,所述控制器与所述显示装置中的至少一个所述驱动芯片连接;所述方法包括:
    获取显示面板中待显示的图像的压缩图像数据,所述压缩图像数据包括至少一个压缩像素数据,以及多个第二像素的像素数据,其中,所述至少一个压缩像素数据是对多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域,所述多个第二像素位于所述显示面板的注视区域;
    向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
    向所述目标驱动芯片发送所述压缩像素数据,并向所述至少一个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
  11. 根据权利要求10所述的方法,其中,所述非注视区域包括第一区域,所述第一区域与所述显示面板的注视区域按像素列方向排列;所述目标驱动芯片所连接的像素包括所述第一像素和所述第二像素,且所述第一像素和所述第二像素沿像素行的驱动方向依次排列;
    所述向所述多个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所 述多个第二像素的像素数据,包括:
    向所述目标驱动芯片发送功耗恢复指令,所述功耗恢复指令用于指示所述目标驱动芯片开启所述目标通道;
    向所述目标驱动芯片发送所述目标驱动芯片所连接的第二像素的像素数据;其中,向所述目标驱动芯片发送所述功耗恢复指令与发送所述第二像素的像素数据的间隔时长大于或等于时长阈值。
  12. 一种图像显示方法,其中,应用于显示装置中的驱动芯片,所述驱动芯片与显示面板连接;所述方法包括:
    接收压缩像素数据,所述压缩像素数据是对所述显示面板中多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域;
    采用所述压缩像素数据驱动所述多个第一像素。
  13. 一种图像数据的传输组件,其中,所述传输组件包括:
    获取模块,用于获取显示面板中待显示的图像的初始图像数据,所述显示面板包括多个像素,所述初始图像数据包括所述多个像素的像素数据;
    压缩模块,用于对所述初始图像数据中多个第一像素的像素数据进行压缩,得到至少一个压缩像素数据,所述多个第一像素位于所述显示面板的非注视区域,所述多个像素中除所述多个第一像素之外的多个第二像素位于所述显示面板的注视区域;
    发送模块,用于向所述显示面板的驱动芯片发送压缩图像数据,所述压缩图像数据包括:所述至少一个压缩像素数据,以及所述多个第二像素的像素数据,所述压缩图像数据用于供所述驱动芯片驱动所述显示面板进行显示。
  14. 一种控制器,其中,所述控制器与所述显示装置中的至少一个所述驱动芯片连接;所述控制器包括:
    获取模块,用于获取显示面板中待显示的图像的压缩图像数据,所述压缩图像数据包括至少一个压缩像素数据,以及多个第二像素的像素数据,其中,所述至少一个压缩像素数据是对多个第一像素的像素数据进行压缩得到的,所 述多个第一像素位于所述显示面板的非注视区域,所述多个第二像素位于所述显示面板的注视区域;
    发送模块,用于向目标驱动芯片发送功耗降低指令,所述功耗降低指令用于指示所述目标驱动芯片关闭目标通道,其中,所述目标驱动芯片为用于驱动所述第一像素的驱动芯片,所述目标驱动芯片具有多个数据通道,所述目标通道为用于接收被压缩的像素数据的通道;
    所述发送模块,还用于向所述目标驱动芯片发送所述压缩像素数据,并向所述至少一个驱动芯片中用于驱动所述多个第二像素的驱动芯片发送所述多个第二像素的像素数据。
  15. 一种驱动芯片,其中,所述驱动芯片与显示面板连接;所述驱动芯片包括:
    接收模块,用于接收压缩像素数据,所述压缩像素数据是对所述显示面板中多个第一像素的像素数据进行压缩得到的,所述多个第一像素位于所述显示面板的非注视区域;
    驱动模块,用于采用所述压缩像素数据驱动所述多个第一像素。
  16. 一种显示装置,其中,所述显示装置包括:处理器、控制器、至少一个驱动芯片及显示面板;
    其中,所述处理器为如权利要求13所述的传输组件;所述控制器为权利要求13所述的传输组件,或权利要求14所述的控制器;所述驱动芯片为如权利要求15所述的驱动芯片。
  17. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有指令,所述指令由处理组件执行以实现如权利要求1至12任一所述的图像数据的传输方法。
PCT/CN2021/092840 2021-05-10 2021-05-10 图像数据的传输方法及装置 WO2022236601A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001105.7A CN115606178A (zh) 2021-05-10 2021-05-10 图像数据的传输方法及装置
US17/773,337 US20240153433A1 (en) 2021-05-10 2021-05-10 Method and apparatus for transmitting image data
PCT/CN2021/092840 WO2022236601A1 (zh) 2021-05-10 2021-05-10 图像数据的传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092840 WO2022236601A1 (zh) 2021-05-10 2021-05-10 图像数据的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2022236601A1 true WO2022236601A1 (zh) 2022-11-17

Family

ID=84029009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092840 WO2022236601A1 (zh) 2021-05-10 2021-05-10 图像数据的传输方法及装置

Country Status (3)

Country Link
US (1) US20240153433A1 (zh)
CN (1) CN115606178A (zh)
WO (1) WO2022236601A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918580A (zh) * 2010-03-31 2013-02-06 苹果公司 电子显示器内降低功率的通信
CN106935224A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN107317987A (zh) * 2017-08-14 2017-11-03 歌尔股份有限公司 虚拟现实的显示数据压缩方法和设备、系统
CN108391133A (zh) * 2018-03-01 2018-08-10 京东方科技集团股份有限公司 显示数据的处理方法、处理设备和显示设备
CN111819798A (zh) * 2018-03-05 2020-10-23 威尔乌集团 经由实时压缩控制周边图像区域中的图像显示

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918580A (zh) * 2010-03-31 2013-02-06 苹果公司 电子显示器内降低功率的通信
CN106935224A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 显示装置及其驱动方法和驱动电路
CN107317987A (zh) * 2017-08-14 2017-11-03 歌尔股份有限公司 虚拟现实的显示数据压缩方法和设备、系统
CN108391133A (zh) * 2018-03-01 2018-08-10 京东方科技集团股份有限公司 显示数据的处理方法、处理设备和显示设备
CN111819798A (zh) * 2018-03-05 2020-10-23 威尔乌集团 经由实时压缩控制周边图像区域中的图像显示

Also Published As

Publication number Publication date
US20240153433A1 (en) 2024-05-09
CN115606178A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US8581833B2 (en) System, method, and computer program product for controlling stereo glasses shutters
US8878904B2 (en) System, method, and computer program product for increasing an LCD display vertical blanking interval
JP4846020B2 (ja) 立体メガネシャッタを制御するシステム、方法、及びコンピュータプログラム製品
US8866833B2 (en) System, method, and computer program product for providing a dynamic display refresh
JP5062674B2 (ja) ステレオコンテンツの表示の際にクロストークを補償するためのシステム、方法、及びコンピュータプログラム製品
US8872754B2 (en) System, method, and computer program product for controlling stereo glasses shutters
US9406263B2 (en) Method and apparatus for controlling a backlight brightness according to average grayscales
US20150348509A1 (en) Dynamic frame repetition in a variable refresh rate system
CN109891381A (zh) 双路径中央凹图形管线
CN109036262B (zh) 医用led显示屏的显示特性曲线校正方法及控制系统
US9261706B2 (en) Display device, display method and computer program
WO2021238361A1 (zh) 显示设备以及显示控制方法
WO2019042405A1 (zh) 显示面板及其驱动方法、显示装置
WO2022236601A1 (zh) 图像数据的传输方法及装置
JP2004165713A (ja) 画像表示装置
JP2006106345A (ja) 映像表示装置
CN115174883A (zh) 基于平面oled屏幕的主动式3d效果显示方法、系统及设备
CN109688401B (zh) 数据传输方法、显示系统、显示设备及数据存储设备
US10347167B2 (en) Image driving method and system using the same
CN102256160B (zh) 一种立体图像处理设备及方法
TWI397896B (zh) 使用單一資料致能訊號來控制顯示器時序之方法及相關時序控制電路
US10678064B2 (en) Video display device
CN118101865A (zh) 图像处理装置、方法和电子设备
CN116741121A (zh) 显示控制系统、电子设备和显示方法
TW201205545A (en) Driving method for a liquid crystal display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17773337

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2024)