WO2022236595A1 - Methods, devices and computer storage media for communication - Google Patents

Methods, devices and computer storage media for communication Download PDF

Info

Publication number
WO2022236595A1
WO2022236595A1 PCT/CN2021/092829 CN2021092829W WO2022236595A1 WO 2022236595 A1 WO2022236595 A1 WO 2022236595A1 CN 2021092829 W CN2021092829 W CN 2021092829W WO 2022236595 A1 WO2022236595 A1 WO 2022236595A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
determining
terminal device
resource
threshold
Prior art date
Application number
PCT/CN2021/092829
Other languages
French (fr)
Inventor
Zhaobang MIAO
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2021/092829 priority Critical patent/WO2022236595A1/en
Publication of WO2022236595A1 publication Critical patent/WO2022236595A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media for random resource selection.
  • SL sidelink
  • V2X vehicle to everything
  • NR 3rd Generation Partnership Project
  • RA resource allocation
  • a resource pool is configured with mixed RA schemes.
  • a resource pool may be configured to support full sensing only, partial sensing only, random resource selection only, or any combination (s) thereof. Random resource selection for transmission by a terminal device such as a user equipment (UE) needs to be enhanced.
  • example embodiments of the present disclosure provide methods, devices and computer storage media for random resource selection.
  • a method of communication comprises: receiving, at a terminal device, a configuration concerning random resource selection; determining, based on the configuration, a first priority of a transmission to be performed by the terminal device, the first priority being higher than or equal to a second priority in the configuration; and setting the first priority in sidelink control information (SCI) .
  • SCI sidelink control information
  • a communication method comprises: determining, at a terminal device, a priority of traffic to be transmitted by the terminal device; determining a plurality of resource pools from a resource pool set supporting at least random resource selection, each resource pool in the plurality of resource pools having a threshold priority less than or equal to the priority of the traffic; and determining, from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
  • a terminal device comprising a processor and a memory.
  • the memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the first aspect of the present disclosure.
  • a terminal device comprising a processor and a memory.
  • the memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the second aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the first aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
  • Fig. 1 illustrate an example communication network in which embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates an example of resource selection with different RA schemes
  • Fig. 3 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure.
  • Fig. 6 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the term “network device” or “base station” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a NodeB in new radio access (gNB) a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
  • NodeB Node B
  • eNodeB or eNB Evolved NodeB
  • gNB NodeB in new radio access
  • RRU Remote Radio Unit
  • RH radio head
  • RRH remote radio head
  • a low power node such as a femto node, a pico node, and the like.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • UE user equipment
  • PDAs personal digital assistants
  • IoT internet of things
  • IoE Internet of Everything
  • MTC machine type communication
  • X means pedestrian, vehicle, or infrastructure/network
  • image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (memories) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • a first information may be transmitted to the terminal device from the first network device and a second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • a terminal device may be directly communicated with another terminal device in a communication network.
  • Information related with configuration for the terminal device may be transmitted from a network device in the communication network or pre-configured.
  • the information may be transmitted via any of the following: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) control element (CE) , Downlink Control Information (DCI) or pre-configuration.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control element
  • DCI Downlink Control Information
  • the terminal device determines an increased target priority of a transmission to be performed by the terminal device. Then, the terminal device set the target priority in SCI. By setting a higher target priority in SCI, other terminal device will not easily preempt resource with the terminal device because of the higher target priority in SCI.
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the network 100 includes a network device 110, terminal devices 120-1, 120-2, 120-3, ..., 120-N served by the network device 110.
  • the serving area of the network device 110 is called as a cell.
  • the terminal devices 120-1, 120-2, 120-3, ..., 120-N may be collectively referred to as “terminal device 120” or individually referred to as “terminal 120” .
  • terminal device 120 or individually referred to as “terminal 120” .
  • the network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
  • the network device 110 can communicate/transmit data and control information to the terminal device 120 and the terminal device 120 can also communicate/transmit data and control information to the network device 110.
  • a link from the network device 110 to the terminal device 120 is referred to as a downlink (DL)
  • a link from the terminal device 120 to the network device 110 is referred to as an uplink (UL) .
  • two terminal devices 120 can communicate/transmit data and control information with each other.
  • a link between the two terminal devices 120 is referred to as a SL.
  • two terminal devices 120 for example, terminal device 120-1 (referred to as a first terminal device hereinafter) and terminal device 120-2 (referred to as a second terminal device hereinafter) may exchange communication data via SL.
  • SL comprises one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , a Physical Sidelink Discovery Channel (PSDCH) , and a Physical Sidelink Broadcast Channel (PSBCH) .
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, NR, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , CDMA2000, and Global System for Mobile Communications (GSM) and the like.
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
  • a SL resource pool may be divided into multiple time units, frequency channels and frequency sub-channels.
  • a time unit may be a time slot or other suitable time unit.
  • the terminal device 120 may be expected to select several slots and sub-channels for transmission of the transport block (TB) .
  • the terminal device 120 may use RA mode 2 to select resource for transmission. In RA mode 2, the terminal device 120 autonomously selects SL resources from a configured or pre-configured SL resource pool (s) .
  • a resource pool is configured with mixed RA schemes.
  • a resource pool may be configured to enable full sensing only, partial sensing only, random resource selection only, or any combination (s) thereof.
  • Fig. 2 shows an example of full sensing only RA, partial sensing only RA, and random resource selection only RA.
  • the terminal device decodes SCI and measures the reference signals received power (RSRP) of all the initial resource candidates (or subchannels) . If the RSRP on a resource candidate is below a threshold, (i.e., this subchannel is not occupied by other SL transmissions) , this subchannel is regarded as a reported resource candidate. Then, the terminal device may select a resource from the reported resource candidates. In partial sensing only 220, the terminal device measures the RSRP of selected initial resource candidates and determines the reported resource candidates based on the measurement. Then, the terminal device may select a resource from the reported resource candidates.
  • RSRP reference signals received power
  • the terminal device may not perform sensing or receiving PSCCH. That is, the terminal device may not measure the RSRP of the any of the initial resource candidates. Thus, all the initial resource candidates will be regarded as the reported resource candidates. In this case, resource for the terminal device performing random resource selection only 230 may often be preempted by other terminal device performing full sensing only 210 or performing partial sensing only 220.
  • the terminal device determines an increased target priority of a transmission to be performed by the terminal device. Then, the terminal device set the target priority in SCI. By setting a higher target priority in SCI, other terminal device will not easily preempt resource with the terminal device because of the higher target priority in SCI.
  • Fig. 3 illustrates a flowchart of an example method 300 in accordance with some embodiments of the present disclosure.
  • the method 300 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 300 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 300 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
  • the terminal device 120 receives a configuration concerning random resource selection.
  • the terminal device 120 may receive a radio resource control (RRC) message comprising the configuration.
  • RRC radio resource control
  • the terminal device 120 may receive a different kind of message from higher layer comprising the configuration.
  • the terminal device 120 performing random resource selection may not perform sensing or receiving PSCCH.
  • the terminal device 120 determines, based on the configuration, a first priority (also referred to as the target priority hereinafter) of a transmission to be performed by the terminal device 120.
  • the target priority is higher than or equal to a second priority in the configuration.
  • the second priority may be configured or pre-configured.
  • the second priority may be indicated or determined by higher layer based on QoS or other conditions.
  • the terminal device 120 may determine a target priority higher than the second priority of a transmission. There are various methods to determine the target priority, which will be discussed in detail later.
  • the terminal device 120 sets the target priority in SCI. For example, the terminal device 120 may set a value of the target priority field in SCI format 1-A. By doing so, the priority of a transmission to be performed by the terminal device 120 may be increased to a higher priority. Thus, other terminal device 120 performing full sensing or partial sensing may not preempt the resource with the terminal device 120 due to the higher priority. In such embodiments, all the random selected resources could be protected. Thus, it will mitigate collision from both full sensing terminal devices and partial sensing terminal devices.
  • the configuration may comprise a third priority.
  • the third priority is higher than or equal to the second priority.
  • the third priority may be configured or pre-configured.
  • the terminal device 120 may determine the target priority to be the third priority.
  • the configuration may comprise a value of a third priority.
  • a smaller value of priority represents a higher priority.
  • a value of 1 may represent the highest priority.
  • the value of the third priority may be set to a small value, such as 1.
  • the target priority may be determined to be a high priority. For example, if the value of third priority is equal to 1, then the target priority would be the highest priority. By doing so, the terminal device 120 may determine a higher priority of the transmission. Thus, all the random selected resources could be protected.
  • the configuration may comprise a third priority.
  • the terminal device 120 may determine a value of the target priority based on a difference between a value of the second priority and a value of the third priority. For example, in the example of a smaller value represents a higher priority, and the value of 1 represents the highest priority.
  • the value of the target priority may be determined by using the following equation (1) :
  • P target denotes the value of the target priority
  • P second denotes the value of the second priority
  • P third denotes the value of the third priority
  • max (X, Y) defines a maximum function which results in a maximum value of X and Y.
  • the configuration may comprise a threshold and at least one value of the second priority.
  • the terminal device 120 may determine whether the at least one value of the second priority is below the threshold. If the at least one value of the second priority is below the threshold, the terminal device 120 may determine a smallest value from the at least one value of the second priority. Then the terminal device 120 may determine a value of the target priority to be the smallest value. For example, if the threshold is equal to 5, and at least one value of the second priority comprises 1, 2, 3 and 4, then the terminal device 120 will determine the value of the target priority to be 1.
  • the terminal device 120 may determine a value of the target priority to be the threshold. For example, if the threshold is equal to 5, and at least one value of the second priority comprises 5, 6, 7 and 8, then the terminal device 120 will determine the value of the target priority to be 5.
  • the terminal device 120 may determine a smallest value from the at least one value of the second priority and the threshold, and determine a value of the target priority to be the smallest value. Similarly, in the case that a smaller value represents a lower priority, the value of the target priority may be determined by a similar method.
  • the random selected resources could be protected based on original priority. Thus, it will be fairer for different transmissions.
  • the terminal device 120 may determine whether the configuration comprises information concerning priority determination. If so, the terminal device 120 may determine the target priority by any of the method discussed above or any other method according to the present disclosure. If not, the terminal device 120 may not determine the target priority. Many methods on how to determine whether the configuration comprises information concerning priority determination will be discussed in detail as follows.
  • the terminal device 120 may determine whether the configuration indicates that reservation for a further transmission is enabled and periodic reservation for the further transmission is enabled. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority.
  • the configuration may comprise a sl-MultiReserveResource field. If the sl-MultiReserveResource is configured with ⁇ enable ⁇ , then reservation for a further transmission (such as another transport block (TB) ) is enabled.
  • the configuration may further comprise a reservation period provided by higher layers. If the reservation period provided by higher layers equals non-zero, then periodic reservation for the further transmission (such as another TB) is enabled.
  • the configuration may further comprise a sl-ResourceReservePeriodList field. If the sl-ResourceReservePeriodList field is not empty, then the periodic reservation for the further transmission is enabled.
  • the terminal device 120 may determine whether the transmission or the traffic is contiguous or periodic. Then the terminal device 120 may determine a higher target priority for this kind of contiguous or periodic transmission. Thus, the common contiguous collisions could be prevented.
  • the terminal device 120 may determine whether the configuration indicates that preemption is enabled. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority.
  • the configuration may comprise a sl-PreemptionEnable field. If the sl-PreemptionEnable is provided and is equal to “enabled” or “pl2” , ..., “pl8” , then the configuration indicates that preemption is enabled. Otherwise, if sl-PreemptionEnable is not provided or provide with “pl1” , then this condition is not satisfied. In this case, if this condition is not satisfied, the terminal device 120 may not determine the target priority.
  • the terminal device 120 may further determine whether the configuration indicates that a priority for a resource pool for the transmission is to be increased. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority. For example, if an enabled RRC parameter PriorityIncrease is configured for a resource pool for the transmission, then the terminal device 120 may determine that the configuration comprises the information and then determine the target priority. Otherwise, if this condition is not satisfied, the terminal device 120 may not determine the priority.
  • the terminal device 120 may further determine whether configuration comprises a threshold channel busy ratio (CBR) less than a CBR of the resource pool for the transmission. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority. For example, if the CBR of the resource pool is greater than a threshold CBR in the configuration, then the terminal device 120 determines that the configuration comprises the information and thus the terminal device 120 will determine the target priority. Otherwise, this condition is not satisfied, and the terminal device 120 may not determine the target priority.
  • CBR channel busy ratio
  • Fig. 4 illustrates a flowchart of an example method 400 in accordance with some embodiments of the present disclosure.
  • the method 400 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 400 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 400 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
  • the terminal device 120 determines a priority of traffic to be transmitted by the terminal device 120. For example, the priority of traffic to be transmitted may be provided or determined by higher layers. In some embodiments, the terminal device 120 may perform random resource selection and may not performing sensing or receiving PSCCH.
  • the terminal device 120 determines a plurality of resource pools (referred to as “candidate resource pools” hereinafter) from a resource pool set supporting at least random resource selection.
  • Each resource pool from the resource pool set supports at least random resource selection.
  • each resource pool from the resource pool set may be configured with or support mixed RA schemes including random resource selection, full sensing and partial sensing.
  • Each resource pool in the plurality of resource pools has a threshold priority less than or equal to the priority of the traffic.
  • the threshold priority for each resource pool may be provided or configured or pre-configured by higher layer.
  • the terminal device 120 may receive a RRC message comprising the respective threshold priority for each resource pool.
  • the terminal device 120 determines, from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
  • the threshold priorities of the plurality of resource pools may be provided or configured or pre-configured by higher layer.
  • the terminal device 120 may receive a RRC message comprising the threshold priorities of the plurality of resource pools.
  • the terminal device 120 may determine a highest priority from the threshold priorities of the plurality of resource pools. Then the terminal device 120 may determine a resource pool with the highest priority as the target pool. In some cases, a smaller value of priority represents a higher priority. Table 1 below shows an example of resource pools and traffic to be transmitted using these resource pools.
  • the terminal device may determine the resource pool with value of threshold priority equal to 8 to be the target resource pool.
  • the terminal device 120 may determine that the resource pools with value of threshold priority equal to 6 or 8 have the threshold priority less than or equal to the priority of the traffic (i.e., the value of the threshold priority greater than or equal to the value of the priority of the traffic) . Then the terminal device 120 may determine a highest priority (or a smallest value of the priority) of the threshold priorities of these three candidate resource pools. In this example, the highest priority is 6. Then, the terminal device may determine the resource pool with value of threshold priority equal to 6 to be the target resource pool.
  • Table 1 shows an example in the case that a smaller value represents a higher priority, it is to be understood that in the situation that a smaller value represents a lower priority, the target resource pool may be determined by using a similar progress.
  • the traffic may use any of the resource pools with a threshold priority less than or equal to the priority of the traffic.
  • the resource pools with lower threshold priorities may be selected by a larger amount of traffic. This will deteriorate the preemption problem in those resource pools.
  • the amount of traffic that can select resource pools with different threshold priorities will be balanced. Therefore, it could realize more flexible resource pool selection and balance the collision problem among the resource pools.
  • the terminal device 120 may determine the target resource pool based on threshold priorities and channel busy rates (CBRs) of the plurality of resource pools. For example, the terminal device 120 may determine a group of resource pools from the plurality of resource pools. Each resource pool in the group of resource pools has a CBR less than a threshold CBR. The threshold CBR may be comprised in a RRC message received by the terminal device 120. Then, the terminal device 120 may determine a highest priority from threshold priorities of the group of resource pools. The terminal device 120 then may determine a resource pool with the highest priority as the target resource pool.
  • CBRs channel busy rates
  • Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure.
  • the method 500 can be regarded as an implementation of block 420.
  • the method 500 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 500 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
  • the terminal device 120 may determine a group of resource pools from the plurality of resource pools determined in block 410. Each resource pool in the group of resource pools has a CBR less than a threshold CBR.
  • the threshold CBR may be comprised in a RRC message received by the terminal device 120.
  • the terminal 120 may determine a highest priority from threshold priorities of the group of resource pools. For example, in the case that a smaller value represents a higher priority, the terminal device 120 may determine a smallest value of priority from threshold priorities of the group of resource pools.
  • the terminal device 120 may select at least one resource pool with the highest priority from the group of resource pools. For example, the terminal device 120 may select at least one resource pool with the smallest value of priority from the group of resource pools.
  • the terminal device 120 may determine, from the at least one resource pool, a resource pool with a smallest CBR as the target resource pool. If there are multiple resource pools from the at least one resource pool with a smallest CBR, the terminal device 120 may select one resource pool with the smallest CBR randomly as the target resource pool. Alternatively or in addition, the terminal device 120 may determine the target resource pool from the multiple resource pools from the at least one resource pool with a smallest CBR based on additional conditions.
  • a terminal device (for example, the terminal device 120) comprises circuitry configured to: receive a configuration concerning random resource selection; determine, based on the configuration, a first priority of a transmission to be performed by the terminal device, the first priority being higher than or equal to a second priority in the configuration; and set the first priority in sidelink control information (SCI) .
  • SCI sidelink control information
  • the configuration comprises a third priority higher than or equal to the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: determine the first priority to be the third priority.
  • the configuration comprises a third priority
  • the circuitry in determining the first priority based on the configuration, is further configured to:determine a value of the first priority based on a difference between a value of the second priority and a value of the third priority.
  • the configuration comprises a threshold and at least one value of the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: in accordance with a determination that the at least one value of the second priority is below the threshold: determine a smallest value from the at least one value of the priority; and determine a value of the first priority to be the smallest value.
  • the configuration comprises a threshold and at least one value of the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: in accordance with a determination that the at least one value of the second priority is greater than or equal to the threshold, determine a value of the first priority to be the threshold.
  • the circuitry in determining the first priority, is further configured to: determine whether the configuration comprises information concerning priority determination; and in accordance with a determination that the configuration comprises the information, determine the first priority.
  • the circuitry in determining whether the configuration comprises the information concerning priority determination, is further configured to perform one of: in accordance with a determination that the configuration indicates that reservation for a further transmission is enabled and periodic reservation for the further transmission is enabled, determining that the configuration comprises the information; in accordance with a determination that the configuration indicates that preemption is enabled, determining that the configuration comprises the information; in accordance with a determination that the configuration indicates that a priority for a resource pool for the transmission is to be increased, determining that the configuration comprises the information; or in accordance with a determination that the configuration comprises a threshold CBR less than a CBR of the resource pool for the transmission, determining that the configuration comprises the information.
  • the circuitry in receiving the configuration, is further configured to: receive a RRC message comprising the configuration.
  • a terminal device (for example, the terminal device 120) comprises circuitry configured to: determine a priority of traffic to be transmitted by the terminal device; determine a plurality of resource pools from a resource pool set supporting at least random resource selection, each resource pool in the plurality of resource pools having a threshold priority less than or equal to the priority of the traffic; and determine from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
  • the circuitry in determining the target resource pool, is further configured to: determine a highest priority from the threshold priorities of the plurality of resource pools; and determine a resource pool with the highest priority as the target resource pool.
  • the circuitry in determining the target resource pool, is further configured to: determine the target resource pool based on the threshold priorities and CBRs of the plurality of resource pools.
  • the circuitry in determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools, is further configured to: determine a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR; determine a highest priority from threshold priorities of the group of resource pools; and determine a resource pool with the highest priority as the target resource pool.
  • the circuitry in determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools, is further configured to: determine a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR; determine a highest priority from threshold priorities of the group of resource pools; select at least one resource pool with the highest priority from the group of resource pools; and determine, from the at least one resource pool, a resource pool with a smallest CBR as the target resource pool.
  • the circuitry is further configured to: receive a radio resource control (RRC) message comprising the threshold priorities.
  • RRC radio resource control
  • terminal device 120 may be combined into a single terminal device 120 or may be designed as two separate terminal devices 120.
  • Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing embodiments of the present disclosure.
  • the device 600 can be considered as a further example implementation of the network device 110 or the terminal device 120 as shown in Fig. 1. Accordingly, the device 600 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
  • the device 600 includes a processor 610, a memory 620 coupled to the processor 610, a suitable transmitter (TX) and receiver (RX) 640 coupled to the processor 610, and a communication interface coupled to the TX/RX 640.
  • the memory 610 stores at least a part of a program 630.
  • the TX/RX 640 is for bidirectional communications.
  • the TX/RX 640 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 630 is assumed to include program instructions that, when executed by the associated processor 610, enable the device 600 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 and 3 to 5.
  • the embodiments herein may be implemented by computer software executable by the processor 610 of the device 600, or by hardware, or by a combination of software and hardware.
  • the processor 610 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 610 and memory 620 may form processing means 650 adapted to implement various embodiments of the present disclosure.
  • the memory 620 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 620 is shown in the device 600, there may be several physically distinct memory modules in the device 600.
  • the processor 610 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 3, Fig. 4 and/or Fig. 5.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices and computer storage media for communication. A terminal device receives a configuration concerning random resource selection. The terminal device determines, based on the configuration, a first priority of a transmission to be performed by the terminal device. The first priority is higher than or equal to a second priority in the configuration. After that, the terminal device sets the first priority in sidelink control information (SCI). As a result, a higher priority is set for the transmission. Thus, random resource selection will be enhanced.

Description

METHODS, DEVICES AND COMPUTER STORAGE MEDIA FOR COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media for random resource selection.
BACKGROUND
Mobile communication involves the transmissions between terminal devices. According to the 3rd Generation Partnership Project (3GPP) , sidelink (SL) transmissions have manifested their crucial roles for transmissions between terminal devices such as vehicle to everything (V2X) services. In 3GPP new radio (NR) , resource allocation (RA) mode 2 mechanism is supported. A resource pool is configured with mixed RA schemes. For example, a resource pool may be configured to support full sensing only, partial sensing only, random resource selection only, or any combination (s) thereof. Random resource selection for transmission by a terminal device such as a user equipment (UE) needs to be enhanced.
SUMMARY
In general, example embodiments of the present disclosure provide methods, devices and computer storage media for random resource selection.
In a first aspect, there is provided a method of communication. The method comprises: receiving, at a terminal device, a configuration concerning random resource selection; determining, based on the configuration, a first priority of a transmission to be performed by the terminal device, the first priority being higher than or equal to a second priority in the configuration; and setting the first priority in sidelink control information (SCI) .
In a second aspect, there is provided a communication method. The method comprises: determining, at a terminal device, a priority of traffic to be transmitted by the terminal device; determining a plurality of resource pools from a resource pool set supporting at least random resource selection, each resource pool in the plurality of  resource pools having a threshold priority less than or equal to the priority of the traffic; and determining, from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
In a third aspect, there is provided a terminal device. The terminal device comprises a processor and a memory. The memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the first aspect of the present disclosure.
In a fourth aspect, there is provided a terminal device. The terminal device comprises a processor and a memory. The memory is coupled to the processor and stores instructions thereon. The instructions, when executed by the processor, cause the terminal device to perform the method according to the second aspect of the present disclosure.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the first aspect of the present disclosure.
In a sixth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 illustrate an example communication network in which embodiments of the present disclosure can be implemented;
Fig. 2 illustrates an example of resource selection with different RA schemes;
Fig. 3 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure; and
Fig. 6 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “network device” or “base station” (BS) refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a NodeB in new radio access (gNB) a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like. For the purpose of discussion, in the following, some embodiments will be described with reference to gNB as examples of the network device.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not  limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (memories) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device. In one embodiment, a first information may be transmitted to the terminal device from the first network device and a second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
In one embodiment, a terminal device may be directly communicated with another terminal device in a communication network. Information related with configuration for the terminal device may be transmitted from a network device in the communication network or pre-configured. The information may be transmitted via any of the following: Radio Resource Control (RRC) signaling, Medium Access Control (MAC) control element (CE) , Downlink Control Information (DCI) or pre-configuration.
When mix of different RA schemes operating in a same resource pool, transmissions from random selection and full/partial sensing will collide since the random selection terminal device is not able to detect collision in advanced and perform resource (re) selection. Several approaches have been proposed to deal with the resource collision problem. However, these approaches cannot achieve a satisfying performance. These conventional approaches and their shortcomings will be discussed below with respect to Fig. 2.
According to embodiments of the present disclosure, there is proposed a solution for random resource selection enhancement to deal with the above mentioned and other potential problems. When receiving a configuration concerning random resource selection,  the terminal device determines an increased target priority of a transmission to be performed by the terminal device. Then, the terminal device set the target priority in SCI. By setting a higher target priority in SCI, other terminal device will not easily preempt resource with the terminal device because of the higher target priority in SCI. To better understand the solution for random resource selection enhancement, some embodiments are now described with reference to Figs. 1 and 3-6.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The network 100 includes a network device 110, terminal devices 120-1, 120-2, 120-3, …, 120-N served by the network device 110. The serving area of the network device 110 is called as a cell. The terminal devices 120-1, 120-2, 120-3, …, 120-N may be collectively referred to as “terminal device 120” or individually referred to as “terminal 120” . It is to be understood that the number of network devices and terminal devices is only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of network devices and terminal devices adapted for implementing embodiments of the present disclosure.
In the communication network 100, the network device 110 can communicate/transmit data and control information to the terminal device 120 and the terminal device 120 can also communicate/transmit data and control information to the network device 110. A link from the network device 110 to the terminal device 120 is referred to as a downlink (DL) , while a link from the terminal device 120 to the network device 110 is referred to as an uplink (UL) .
In the communication network 100, two terminal devices 120 can communicate/transmit data and control information with each other. A link between the two terminal devices 120 is referred to as a SL. In the network 100, two terminal devices 120, for example, terminal device 120-1 (referred to as a first terminal device hereinafter) and terminal device 120-2 (referred to as a second terminal device hereinafter) may exchange communication data via SL. SL comprises one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH) , a Physical Sidelink Shared Channel (PSSCH) , a Physical Sidelink Discovery Channel (PSDCH) , and a Physical Sidelink Broadcast Channel (PSBCH) .
Depending on the communication technologies, the network 100 may be a Code  Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may use conform to any suitable standards including, but not limited to, NR, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , CDMA2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
In the network 100, a SL resource pool may be divided into multiple time units, frequency channels and frequency sub-channels. For example, a time unit may be a time slot or other suitable time unit. The terminal device 120 may be expected to select several slots and sub-channels for transmission of the transport block (TB) . The terminal device 120 may use RA mode 2 to select resource for transmission. In RA mode 2, the terminal device 120 autonomously selects SL resources from a configured or pre-configured SL resource pool (s) .
Conventionally, a resource pool is configured with mixed RA schemes. For example, a resource pool may be configured to enable full sensing only, partial sensing only, random resource selection only, or any combination (s) thereof. Fig. 2 shows an example of full sensing only RA, partial sensing only RA, and random resource selection only RA.
As shown in Fig. 2, in full sensing only 210, the terminal device decodes SCI and measures the reference signals received power (RSRP) of all the initial resource candidates (or subchannels) . If the RSRP on a resource candidate is below a threshold, (i.e., this subchannel is not occupied by other SL transmissions) , this subchannel is regarded as a reported resource candidate. Then, the terminal device may select a resource from the  reported resource candidates. In partial sensing only 220, the terminal device measures the RSRP of selected initial resource candidates and determines the reported resource candidates based on the measurement. Then, the terminal device may select a resource from the reported resource candidates.
However, for a terminal device performing random resource selection only 230, the terminal device may not perform sensing or receiving PSCCH. That is, the terminal device may not measure the RSRP of the any of the initial resource candidates. Thus, all the initial resource candidates will be regarded as the reported resource candidates. In this case, resource for the terminal device performing random resource selection only 230 may often be preempted by other terminal device performing full sensing only 210 or performing partial sensing only 220.
As mentioned above, when mix of different RA schemes (such as full sensing only 210, performing partial sensing only 220 and random resource selection only 230) operating in a same resource pool, if the random selected resource has lower priority than a full/partial sensing terminal device and the random selection terminal device has no capability to perform re-evaluation and preemption checking, transmissions from random selection and full/partial sensing will collide since the random selection terminal device is not able to detect collision in advanced and perform resource (re) selection. Therefore, because re-evaluation and preemption checking of the resource is not supported by the terminal device performing random resource selection only 230, transmission by such terminal device encounters many problems.
To this end, it has been proposed to enhance random resource selection by configuring a priority threshold for the resource pool. However, by simply configuring a threshold priority for the resource pool, those resource pools with low threshold priority suffers worse situation, such as more collisions in those pools.
In addition, it has been proposed to enhance random resource selection by adding an additional field in the SCI indicating that terminal device is performing random resource selection or performing full/partial sensing. Then, a first terminal device will not preempt the resource from a second terminal device if the first terminal device identifies that the second terminal device is performing random resource selection. However, many terminal devices (such as Rel. 16 terminal devices) cannot identify this additional field, thus cannot identify a terminal device performing random resource selection.
Moreover, it has been proposed to enhance random resource selection by increasing the priority for UE with random selection. However, this approach impacts other priority rules such as defining the priority based on the quality of service (QoS) .
As discussed above, it is very challenging to enhance the random resource selection performance. According to embodiments of the present disclosure, there is proposed a solution for random resource selection enhancement to deal with any of the above mentioned problems. When receiving a configuration concerning random resource selection, the terminal device determines an increased target priority of a transmission to be performed by the terminal device. Then, the terminal device set the target priority in SCI. By setting a higher target priority in SCI, other terminal device will not easily preempt resource with the terminal device because of the higher target priority in SCI.
To better understand the solution for random resource selection enhancement, some embodiments are now described with reference to Figs. 3-6.
Fig. 3 illustrates a flowchart of an example method 300 in accordance with some embodiments of the present disclosure. The method 300 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 300 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 300 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
At block 310, the terminal device 120 receives a configuration concerning random resource selection. For example, the terminal device 120 may receive a radio resource control (RRC) message comprising the configuration. Alternatively, the terminal device 120 may receive a different kind of message from higher layer comprising the configuration. In some embodiments, the terminal device 120 performing random resource selection may not perform sensing or receiving PSCCH.
At block 320, the terminal device 120 determines, based on the configuration, a first priority (also referred to as the target priority hereinafter) of a transmission to be performed by the terminal device 120. The target priority is higher than or equal to a second priority in the configuration. In some embodiments, the second priority may be configured or pre-configured. For example, the second priority may be indicated or determined by higher layer based on QoS or other conditions. The terminal device 120  may determine a target priority higher than the second priority of a transmission. There are various methods to determine the target priority, which will be discussed in detail later.
At block 330, the terminal device 120 sets the target priority in SCI. For example, the terminal device 120 may set a value of the target priority field in SCI format 1-A. By doing so, the priority of a transmission to be performed by the terminal device 120 may be increased to a higher priority. Thus, other terminal device 120 performing full sensing or partial sensing may not preempt the resource with the terminal device 120 due to the higher priority. In such embodiments, all the random selected resources could be protected. Thus, it will mitigate collision from both full sensing terminal devices and partial sensing terminal devices.
Now several methods regarding how to determine the target priority will be discussed in details. For example, in some embodiments, the configuration may comprise a third priority. The third priority is higher than or equal to the second priority. In some embodiments, the third priority may be configured or pre-configured. The terminal device 120 may determine the target priority to be the third priority. Alternatively, or in addition, the configuration may comprise a value of a third priority. In some cases, a smaller value of priority represents a higher priority. For example, a value of 1 may represent the highest priority. The value of the third priority may be set to a small value, such as 1. By setting or (pre) -configuring such a small value of the third priority (i.e., a high third priority) , the target priority may be determined to be a high priority. For example, if the value of third priority is equal to 1, then the target priority would be the highest priority. By doing so, the terminal device 120 may determine a higher priority of the transmission. Thus, all the random selected resources could be protected.
In some embodiments, the configuration may comprise a third priority. The terminal device 120 may determine a value of the target priority based on a difference between a value of the second priority and a value of the third priority. For example, in the example of a smaller value represents a higher priority, and the value of 1 represents the highest priority. The value of the target priority may be determined by using the following equation (1) :
P target = max [ (P second –P third) , 1]   (1)
wherein P target denotes the value of the target priority, P second denotes the value of the second priority, P third denotes the value of the third priority, and max (X, Y) defines a maximum  function which results in a maximum value of X and Y. By doing such computation, the value of the target priority could be less than the value of the second priority. Thus, the target priority could be higher than the second priority. It is to be understood that, in the case that a smaller value represents a lower priority, the value of the target priority may be determined by increasing the value of the second priority.
In some embodiments, the configuration may comprise a threshold and at least one value of the second priority. In the case that a smaller value represents a higher priority, and the value of 1 represents the highest priority, the terminal device 120 may determine whether the at least one value of the second priority is below the threshold. If the at least one value of the second priority is below the threshold, the terminal device 120 may determine a smallest value from the at least one value of the second priority. Then the terminal device 120 may determine a value of the target priority to be the smallest value. For example, if the threshold is equal to 5, and at least one value of the second priority comprises 1, 2, 3 and 4, then the terminal device 120 will determine the value of the target priority to be 1.
If the at least one value of the second priority is greater than or equal to the threshold, the terminal device 120 may determine a value of the target priority to be the threshold. For example, if the threshold is equal to 5, and at least one value of the second priority comprises 5, 6, 7 and 8, then the terminal device 120 will determine the value of the target priority to be 5.
Alternatively or in addition, the terminal device 120 may determine a smallest value from the at least one value of the second priority and the threshold, and determine a value of the target priority to be the smallest value. Similarly, in the case that a smaller value represents a lower priority, the value of the target priority may be determined by a similar method.
By determining the target priority based on the threshold and at least one value of the second priority, the random selected resources could be protected based on original priority. Thus, it will be fairer for different transmissions.
In some embodiments, before the terminal device 120 determines the target priority, the terminal device 120 may determine whether the configuration comprises information concerning priority determination. If so, the terminal device 120 may determine the target priority by any of the method discussed above or any other method  according to the present disclosure. If not, the terminal device 120 may not determine the target priority. Many methods on how to determine whether the configuration comprises information concerning priority determination will be discussed in detail as follows.
In some embodiments, the terminal device 120 may determine whether the configuration indicates that reservation for a further transmission is enabled and periodic reservation for the further transmission is enabled. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority.
For example, the configuration may comprise a sl-MultiReserveResource field. If the sl-MultiReserveResource is configured with {enable} , then reservation for a further transmission (such as another transport block (TB) ) is enabled. The configuration may further comprise a reservation period provided by higher layers. If the reservation period provided by higher layers equals non-zero, then periodic reservation for the further transmission (such as another TB) is enabled. Alternatively or in addition, the configuration may further comprise a sl-ResourceReservePeriodList field. If the sl-ResourceReservePeriodList field is not empty, then the periodic reservation for the further transmission is enabled.
By doing such determination, the terminal device 120 may determine whether the transmission or the traffic is contiguous or periodic. Then the terminal device 120 may determine a higher target priority for this kind of contiguous or periodic transmission. Thus, the common contiguous collisions could be prevented.
In some embodiments, the terminal device 120 may determine whether the configuration indicates that preemption is enabled. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority. For example, the configuration may comprise a sl-PreemptionEnable field. If the sl-PreemptionEnable is provided and is equal to “enabled” or “pl2” , …, “pl8” , then the configuration indicates that preemption is enabled. Otherwise, if sl-PreemptionEnable is not provided or provide with “pl1” , then this condition is not satisfied. In this case, if this condition is not satisfied, the terminal device 120 may not determine the target priority.
Alternatively or in addition, the terminal device 120 may further determine whether the configuration indicates that a priority for a resource pool for the transmission is  to be increased. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority. For example, if an enabled RRC parameter PriorityIncrease is configured for a resource pool for the transmission, then the terminal device 120 may determine that the configuration comprises the information and then determine the target priority. Otherwise, if this condition is not satisfied, the terminal device 120 may not determine the priority.
Alternatively or in addition, the terminal device 120 may further determine whether configuration comprises a threshold channel busy ratio (CBR) less than a CBR of the resource pool for the transmission. If so, the terminal device 120 determines that the configuration comprises the information. Then, the terminal device 120 determines the target priority. For example, if the CBR of the resource pool is greater than a threshold CBR in the configuration, then the terminal device 120 determines that the configuration comprises the information and thus the terminal device 120 will determine the target priority. Otherwise, this condition is not satisfied, and the terminal device 120 may not determine the target priority.
Many conditions regarding whether to determine the target priority has been discussed above. With these conditions, it can protect random resource selection under condition. It is more flexible and well-adapted. It is to be understood that these conditions are only exemplary conditions; there would be more conditions that will be applied according to the present application. Those conditions and methods regarding how to determine whether the target priority need to be determined may be performed in any kinds of combinations or be performed separately.
Reference is now made back to Fig. 4. Fig. 4 illustrates a flowchart of an example method 400 in accordance with some embodiments of the present disclosure. The method 400 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 400 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 400 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
At block 410, the terminal device 120 determines a priority of traffic to be transmitted by the terminal device 120. For example, the priority of traffic to be transmitted may be provided or determined by higher layers. In some embodiments, the  terminal device 120 may perform random resource selection and may not performing sensing or receiving PSCCH.
At block 420, the terminal device 120 determines a plurality of resource pools (referred to as “candidate resource pools” hereinafter) from a resource pool set supporting at least random resource selection. Each resource pool from the resource pool set supports at least random resource selection. For example, each resource pool from the resource pool set may be configured with or support mixed RA schemes including random resource selection, full sensing and partial sensing. Each resource pool in the plurality of resource pools has a threshold priority less than or equal to the priority of the traffic. For example, the threshold priority for each resource pool may be provided or configured or pre-configured by higher layer. In some embodiments, the terminal device 120 may receive a RRC message comprising the respective threshold priority for each resource pool.
At block 430, the terminal device 120 determines, from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools. For example, the threshold priorities of the plurality of resource pools may be provided or configured or pre-configured by higher layer. In some embodiments, the terminal device 120 may receive a RRC message comprising the threshold priorities of the plurality of resource pools. There are many methods of determining the target resource pool based on the threshold priorities of the plurality of resource pools, which will be discusses in detail as follows.
In some embodiments, the terminal device 120 may determine a highest priority from the threshold priorities of the plurality of resource pools. Then the terminal device 120 may determine a resource pool with the highest priority as the target pool. In some cases, a smaller value of priority represents a higher priority. Table 1 below shows an example of resource pools and traffic to be transmitted using these resource pools.
Table 1 Example of Resource Pool Determination
Threshold Priority Priority of Traffic
2 1, 2
4 3, 4
6 5, 6
8 7, 8
In the example of Table 1, there are 4 resource pools with value of threshold priority equal to 2, 4, 6 and 8, respectively. For the traffic with the value of priority equal to 7 or 8, only the resource pool with a value of threshold priority equal to 8 has the threshold priority less than or equal to the priority of the traffic (i.e., the value of the threshold priority greater than or equal to the value of the priority of the traffic) . Then, the terminal device may determine the resource pool with value of threshold priority equal to 8 to be the target resource pool.
For another example, for the traffic with the value of priority equal to 5 or 6, the terminal device 120 may determine that the resource pools with value of threshold priority equal to 6 or 8 have the threshold priority less than or equal to the priority of the traffic (i.e., the value of the threshold priority greater than or equal to the value of the priority of the traffic) . Then the terminal device 120 may determine a highest priority (or a smallest value of the priority) of the threshold priorities of these three candidate resource pools. In this example, the highest priority is 6. Then, the terminal device may determine the resource pool with value of threshold priority equal to 6 to be the target resource pool.
Although Table 1 shows an example in the case that a smaller value represents a higher priority, it is to be understood that in the situation that a smaller value represents a lower priority, the target resource pool may be determined by using a similar progress.
In a conventional approach, the traffic may use any of the resource pools with a threshold priority less than or equal to the priority of the traffic. In this case, the resource pools with lower threshold priorities may be selected by a larger amount of traffic. This will deteriorate the preemption problem in those resource pools. By determining a target resource pool from the candidate resource pools, the amount of traffic that can select resource pools with different threshold priorities will be balanced. Therefore, it could realize more flexible resource pool selection and balance the collision problem among the resource pools.
Alternatively or in addition, the terminal device 120 may determine the target resource pool based on threshold priorities and channel busy rates (CBRs) of the plurality of resource pools. For example, the terminal device 120 may determine a group of resource pools from the plurality of resource pools. Each resource pool in the group of resource pools has a CBR less than a threshold CBR. The threshold CBR may be comprised in a RRC message received by the terminal device 120. Then, the terminal  device 120 may determine a highest priority from threshold priorities of the group of resource pools. The terminal device 120 then may determine a resource pool with the highest priority as the target resource pool.
Reference is now made to reference to Fig. 5. Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure. The method 500 can be regarded as an implementation of block 420. The method 500 can be implemented at a terminal device 120 as shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard. For the purpose of discussion, the method 500 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
At block 510, the terminal device 120 may determine a group of resource pools from the plurality of resource pools determined in block 410. Each resource pool in the group of resource pools has a CBR less than a threshold CBR. For example, the threshold CBR may be comprised in a RRC message received by the terminal device 120.
At block 520, the terminal 120 may determine a highest priority from threshold priorities of the group of resource pools. For example, in the case that a smaller value represents a higher priority, the terminal device 120 may determine a smallest value of priority from threshold priorities of the group of resource pools.
At block 530, the terminal device 120 may select at least one resource pool with the highest priority from the group of resource pools. For example, the terminal device 120 may select at least one resource pool with the smallest value of priority from the group of resource pools.
Al block 540, the terminal device 120 may determine, from the at least one resource pool, a resource pool with a smallest CBR as the target resource pool. If there are multiple resource pools from the at least one resource pool with a smallest CBR, the terminal device 120 may select one resource pool with the smallest CBR randomly as the target resource pool. Alternatively or in addition, the terminal device 120 may determine the target resource pool from the multiple resource pools from the at least one resource pool with a smallest CBR based on additional conditions.
By determining a target resource pool based on additional conditions including CBR, it will realize more flexible resource pool situation which can be adapted to different  situations and different requirements. Thus, the random resource selection will be further enhanced.
Details for random resource selection enhancement according to the present disclosure have been described with reference to Figs. 1 and 3-5. Now an example implementation of the terminal device 120 will be discussed below. In some embodiments, a terminal device (for example, the terminal device 120) comprises circuitry configured to: receive a configuration concerning random resource selection; determine, based on the configuration, a first priority of a transmission to be performed by the terminal device, the first priority being higher than or equal to a second priority in the configuration; and set the first priority in sidelink control information (SCI) .
In some embodiments, the configuration comprises a third priority higher than or equal to the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: determine the first priority to be the third priority.
In some embodiments, the configuration comprises a third priority, and in determining the first priority based on the configuration, the circuitry is further configured to:determine a value of the first priority based on a difference between a value of the second priority and a value of the third priority.
In some embodiments, the configuration comprises a threshold and at least one value of the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: in accordance with a determination that the at least one value of the second priority is below the threshold: determine a smallest value from the at least one value of the priority; and determine a value of the first priority to be the smallest value.
In some embodiments, the configuration comprises a threshold and at least one value of the second priority, and in determining the first priority based on the configuration, the circuitry is further configured to: in accordance with a determination that the at least one value of the second priority is greater than or equal to the threshold, determine a value of the first priority to be the threshold.
In some embodiments, in determining the first priority, the circuitry is further configured to: determine whether the configuration comprises information concerning priority determination; and in accordance with a determination that the configuration comprises the information, determine the first priority.
In some embodiments, in determining whether the configuration comprises the information concerning priority determination, the circuitry is further configured to perform one of: in accordance with a determination that the configuration indicates that reservation for a further transmission is enabled and periodic reservation for the further transmission is enabled, determining that the configuration comprises the information; in accordance with a determination that the configuration indicates that preemption is enabled, determining that the configuration comprises the information; in accordance with a determination that the configuration indicates that a priority for a resource pool for the transmission is to be increased, determining that the configuration comprises the information; or in accordance with a determination that the configuration comprises a threshold CBR less than a CBR of the resource pool for the transmission, determining that the configuration comprises the information.
In some embodiments, in receiving the configuration, the circuitry is further configured to: receive a RRC message comprising the configuration.
An example implementation of the terminal device 120 has been described above, from now on another example implementation of the terminal device 120 will be discussed below. In some embodiments, a terminal device (for example, the terminal device 120) comprises circuitry configured to: determine a priority of traffic to be transmitted by the terminal device; determine a plurality of resource pools from a resource pool set supporting at least random resource selection, each resource pool in the plurality of resource pools having a threshold priority less than or equal to the priority of the traffic; and determine from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
In some embodiments, in determining the target resource pool, the circuitry is further configured to: determine a highest priority from the threshold priorities of the plurality of resource pools; and determine a resource pool with the highest priority as the target resource pool.
In some embodiments, in determining the target resource pool, the circuitry is further configured to: determine the target resource pool based on the threshold priorities and CBRs of the plurality of resource pools.
In some embodiments, in determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools, the circuitry is further  configured to: determine a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR; determine a highest priority from threshold priorities of the group of resource pools; and determine a resource pool with the highest priority as the target resource pool.
In some embodiments, in determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools, the circuitry is further configured to: determine a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR; determine a highest priority from threshold priorities of the group of resource pools; select at least one resource pool with the highest priority from the group of resource pools; and determine, from the at least one resource pool, a resource pool with a smallest CBR as the target resource pool.
In some embodiments, the circuitry is further configured to: receive a radio resource control (RRC) message comprising the threshold priorities.
It is to be understood that these two kinds of implementations of terminal device 120 may be combined into a single terminal device 120 or may be designed as two separate terminal devices 120.
Fig. 6 is a simplified block diagram of a device 600 that is suitable for implementing embodiments of the present disclosure. The device 600 can be considered as a further example implementation of the network device 110 or the terminal device 120 as shown in Fig. 1. Accordingly, the device 600 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
As shown, the device 600 includes a processor 610, a memory 620 coupled to the processor 610, a suitable transmitter (TX) and receiver (RX) 640 coupled to the processor 610, and a communication interface coupled to the TX/RX 640. The memory 610 stores at least a part of a program 630. The TX/RX 640 is for bidirectional communications. The TX/RX 640 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a  relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 630 is assumed to include program instructions that, when executed by the associated processor 610, enable the device 600 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 and 3 to 5. The embodiments herein may be implemented by computer software executable by the processor 610 of the device 600, or by hardware, or by a combination of software and hardware. The processor 610 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 610 and memory 620 may form processing means 650 adapted to implement various embodiments of the present disclosure.
The memory 620 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 620 is shown in the device 600, there may be several physically distinct memory modules in the device 600. The processor 610 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 600 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 3, Fig. 4 and/or Fig. 5. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be  understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (18)

  1. A method of communication comprising:
    receiving, at a terminal device, a configuration concerning random resource selection;
    determining, based on the configuration, a first priority of a transmission to be performed by the terminal device, the first priority being higher than or equal to a second priority in the configuration; and
    setting the first priority in sidelink control information (SCI) .
  2. The method of claim 1, wherein the configuration comprises a third priority higher than or equal to the second priority, and wherein determining the first priority based on the configuration comprises:
    determining the first priority to be the third priority.
  3. The method of claim 1, wherein the configuration comprises a third priority, and wherein determining the first priority based on the configuration comprises:
    determining a value of the first priority based on a difference between a value of the second priority and a value of the third priority.
  4. The method of claim 1, wherein the configuration comprises a threshold and at least one value of the second priority, and wherein determining the first priority based on the configuration comprises:
    in accordance with a determination that the at least one value of the second priority is below the threshold:
    determining a smallest value from the at least one value of the second priority; and
    determining a value of the first priority to be the smallest value.
  5. The method of claim 1, wherein the configuration comprises a threshold and at least one value of the second priority, and wherein determining the first priority based on the configuration comprises:
    in accordance with a determination that the at least one value of the second priority  is greater than or equal to the threshold, determining a value of the first priority to be the threshold.
  6. The method of claim 1, wherein determining the first priority comprises:
    determining whether the configuration comprises information concerning priority determination; and
    in accordance with a determination that the configuration comprises the information, determining the first priority.
  7. The method of claim 6, wherein determining whether the configuration comprises the information concerning priority determination comprises one of:
    in accordance with a determination that the configuration indicates that reservation for a further transmission is enabled and periodic reservation for the further transmission is enabled, determining that the configuration comprises the information;
    in accordance with a determination that the configuration indicates that preemption is enabled, determining that the configuration comprises the information;
    in accordance with a determination that the configuration indicates that a priority for a resource pool for the transmission is to be increased, determining that the configuration comprises the information; or
    in accordance with a determination that the configuration comprises a threshold channel busy ratio (CBR) less than a CBR of the resource pool for the transmission, determining that the configuration comprises the information.
  8. The method of claim 1, wherein receiving the configuration comprises:
    receiving a radio resource control (RRC) message comprising the configuration.
  9. A method of communication comprising:
    determining, at a terminal device, a priority of traffic to be transmitted by the terminal device;
    determining a plurality of resource pools from a resource pool set supporting at least random resource selection, each resource pool in the plurality of resource pools having a threshold priority less than or equal to the priority of the traffic; and
    determining, from the plurality of resource pools, a target resource pool based on threshold priorities of the plurality of resource pools.
  10. The method of claim 9, wherein determining the target resource pool comprises:
    determining a highest priority from the threshold priorities of the plurality of resource pools; and
    determining a resource pool with the highest priority as the target resource pool.
  11. The method of claim 9, wherein determining the target resource pool comprises:
    determining the target resource pool based on the threshold priorities and channel busy rates (CBRs) of the plurality of resource pools.
  12. The method of claim 11, wherein determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools comprises:
    determining a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR;
    determining a highest priority from threshold priorities of the group of resource pools; and
    determining a resource pool with the highest priority as the target resource pool.
  13. The method of claim 11, wherein determining the target resource pool based on the threshold priorities and the CBRs of the plurality of resource pools comprises:
    determining a group of resource pools from the plurality of resource pools, each resource pool in the group of resource pools having a CBR less than a threshold CBR;
    determining a highest priority from threshold priorities of the group of resource pools;
    selecting at least one resource pool with the highest priority from the group of resource pools; and
    determining, from the at least one resource pool, a resource pool with a smallest CBR as the target resource pool.
  14. The method of claim 9, further comprising:
    receiving a radio resource control (RRC) message comprising the threshold priorities.
  15. A terminal device comprising:
    circuitry configured to perform the method according to any of claims 1 to 8.
  16. A terminal device comprising:
    circuitry configured to perform the method according to any of claims 9 to 14.
  17. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 1 to 8.
  18. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 9 to 14.
PCT/CN2021/092829 2021-05-10 2021-05-10 Methods, devices and computer storage media for communication WO2022236595A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092829 WO2022236595A1 (en) 2021-05-10 2021-05-10 Methods, devices and computer storage media for communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092829 WO2022236595A1 (en) 2021-05-10 2021-05-10 Methods, devices and computer storage media for communication

Publications (1)

Publication Number Publication Date
WO2022236595A1 true WO2022236595A1 (en) 2022-11-17

Family

ID=84028967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092829 WO2022236595A1 (en) 2021-05-10 2021-05-10 Methods, devices and computer storage media for communication

Country Status (1)

Country Link
WO (1) WO2022236595A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093678A1 (en) * 2018-11-08 2020-05-14 Oppo广东移动通信有限公司 Method for transmitting sidelink data, and terminal device
US20200314915A1 (en) * 2019-03-28 2020-10-01 Mediatek Inc. Methods and apparatus to transmit with resources overlapped
CN112020892A (en) * 2019-03-28 2020-12-01 联发科技股份有限公司 Method and device for managing side link service priority
US20200396701A1 (en) * 2019-06-17 2020-12-17 Yunjung Yi Power Control of Sidelink Operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093678A1 (en) * 2018-11-08 2020-05-14 Oppo广东移动通信有限公司 Method for transmitting sidelink data, and terminal device
US20200314915A1 (en) * 2019-03-28 2020-10-01 Mediatek Inc. Methods and apparatus to transmit with resources overlapped
CN112020892A (en) * 2019-03-28 2020-12-01 联发科技股份有限公司 Method and device for managing side link service priority
US20200396701A1 (en) * 2019-06-17 2020-12-17 Yunjung Yi Power Control of Sidelink Operation

Similar Documents

Publication Publication Date Title
US20230137428A1 (en) Methods and apparatuses for transmitting control information
CN107113836B (en) Scheduling enhancements in wireless communications
EP2556688A1 (en) Method and apparatus for managing inter-cell interference for device-to-device communications
US11569956B2 (en) Methods and apparatuses for phase tracking reference signal configuration
US20220311574A1 (en) Dmrs configuration
US11722998B2 (en) Methods and devices for transmission by selecting between uplink resources
WO2016161835A1 (en) Method and apparatus for requesting scheduling
WO2021258398A1 (en) Method for communications, terminal device, and computer readable medium
US20240196388A1 (en) Transmission processing method and apparatus, and device
US10820309B2 (en) Communications in a wireless system
WO2022141218A1 (en) Methods, apparatuses, and media for indicating listen before talk failure
EP3304961B1 (en) Method and apparatus for cell configuration
WO2023010289A1 (en) Method, device and computer readable medium for communications
WO2022236595A1 (en) Methods, devices and computer storage media for communication
US20230276486A1 (en) Methods, computer readable medium and devices for communication
WO2023159613A1 (en) Pdcch monitoring in carrier aggregation deployment
WO2023279301A1 (en) Method, device and computer readable medium for communication
WO2023283761A1 (en) Method, device and computer readable medium for communication
WO2023000339A1 (en) Method, device and computer readable medium for communications
WO2021258365A1 (en) Methods, devices, and computer readable medium for communication
WO2022193252A1 (en) Communication methods, terminal device, network device and computer-readable medium
US20230050082A1 (en) Methods, devices, and medium for communication
CN116647885A (en) Demodulation performance degradation for autonomous reception beam switching by a UE
WO2019056304A1 (en) Resource configuration for unlicensed band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941171

Country of ref document: EP

Kind code of ref document: A1