WO2019056304A1 - Resource configuration for unlicensed band - Google Patents

Resource configuration for unlicensed band Download PDF

Info

Publication number
WO2019056304A1
WO2019056304A1 PCT/CN2017/102934 CN2017102934W WO2019056304A1 WO 2019056304 A1 WO2019056304 A1 WO 2019056304A1 CN 2017102934 W CN2017102934 W CN 2017102934W WO 2019056304 A1 WO2019056304 A1 WO 2019056304A1
Authority
WO
WIPO (PCT)
Prior art keywords
resources
resource configuration
terminal device
terminal devices
network device
Prior art date
Application number
PCT/CN2017/102934
Other languages
French (fr)
Inventor
Lin Liang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2017/102934 priority Critical patent/WO2019056304A1/en
Publication of WO2019056304A1 publication Critical patent/WO2019056304A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • Implementations of the present disclosure generally relate to the field of telecommunication, and in particular, to methods and apparatuses of resource configuration for unlicensed band.
  • Unlicensed band refers to a portion of the radio frequency spectrum that does not require a license for use and thus can be used by any device to transmit or receive radio frequency signals.
  • the solution for unlicensed band universal terrestrial radio access is well known as Licensed Assisted Access (LAA) .
  • LAA licensed assistance is mandatory.
  • An existing licensed primary cell (Pcell) carries critical control signaling, mobility, and user data to be transmitted with high quality of service.
  • Pcell licensed primary cell
  • eLAA enhanced LAA
  • Unlicensed band usage can involve different regulatory rules which aim at fair and equal spectrum usage for different devices. Those rules may involve limitations related to Occupied Channel Bandwidth (OCB) .
  • Occupied Channel Bandwidth ETSI Standard (ETSI EN 301 893, v.1.7.1) recites that: “The Nominal Channel Bandwidth shall be at least 5 MHz at all times. The Occupied Channel Bandwidth shall be between 80%and 100%of the declared Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement. ”
  • B-IFDMA Block interleaved orthogonal frequency division multiple access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of users (terminal devices) that can be scheduled would be quite limited. Moreover, if OFDM is supported for unlicensed band in NR, OFDM based transmission and B-IDFMA based transmission may not be compatible.
  • example implementations of the present disclosure provide methods and apparatuses of resource configuration for unlicensed band.
  • a method implemented by a network device in a communication system comprises transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band.
  • the resource configuration indicates that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the method further comprises communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
  • a method implemented by a terminal device in a communication system comprises, in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band.
  • the resource configuration indicates that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the first set of resources are included in the second set of resources.
  • the method further comprises communicating with the network device based on the first set of resources.
  • a network device in a third aspect, there is provided a network device.
  • the network device includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform actions.
  • the actions comprise transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band, the resource configuration indicating that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the actions further comprise communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
  • a terminal device in a fourth aspect, includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform actions.
  • the actions comprise in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band, the resource configuration indicating that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold, and the first set of resources being included in the second set of resources.
  • the actions further comprise communicating with the network device based on the first set of resources.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to carry out the method according to the first aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to carry out the method according to the second aspect.
  • a computer program product that is tangibly stored on a computer readable storage medium.
  • the computer program product includes instructions which, when executed on at least one processor, cause the at least one processor to carry out the method according to the first aspect or the second aspect.
  • Fig. 1 shows a block diagram of a communication environment in which implementations of the present disclosure can be implemented
  • Fig. 2 shows a schematic diagram of resource allocation based on B-IFDMA
  • Fig. 3 shows a schematic diagram of resource allocation based on OFDM
  • Fig. 4 shows a conflict between B-IFDMA based resource allocation and OFDM based resource allocation
  • Fig. 5 shows a process 500 for resource allocation according to an embodiment of the present disclosure
  • Figs. 6A-6C show sideband shifting patterns according to some embodiments of the present disclosure
  • Fig. 7 shows a sideband sharing pattern according to some embodiments of the present disclosure
  • Fig. 8 shows an example of the compatibility of B-IFDMA based resource allocation and OFDM based resource allocation according to some embodiments of the present disclosure
  • Fig. 9 shows another example of the compatibility of B-IFDMA based resource allocation and OFDM based resource allocation according to some embodiments of the present disclosure
  • Fig. 10 shows a flowchart of an example method according to some embodiments of the present disclosure
  • Fig. 11 shows a flowchart of an example method according to some embodiments of the present disclosure.
  • Fig. 12 is a simplified block diagram of a device that is suitable for implementing implementations of the present disclosure.
  • the term “network device” or “base station” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, a TRP, and the like.
  • NodeB Node B
  • eNodeB or eNB Evolved NodeB
  • gNB next generation NodeB
  • RRU Remote Radio Unit
  • RH radio head
  • RRH remote radio head
  • a low power node such as a femto node, a pico node, a TRP, and the like.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • UE user equipment
  • PDAs personal digital assistants
  • portable computers image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • Communication discussed in the present disclosure may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the network 100 includes a network device 110 and three terminal devices 120-1 and 120-3 (collectively referred to as terminal devices 120 or individually referred to as terminal device 120) served by the network device 110.
  • the coverage of the network device 110 is also called as a cell 102.
  • the network 100 may include any suitable number of base stations and the terminal devices adapted for implementing embodiments of the present disclosure.
  • the network devices 110 may communicate with the terminal device 120.
  • the communications in the network 100 may conform to any suitable standards including, but not limited to, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • LTE-Advanced LTE-A
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the network device 110 may transmit control information to the terminal device 120 in a downlink.
  • a “downlink (DL) ” refers to a link from a network device to a terminal device
  • an “uplink (UL) ” refers to a link from the terminal device to the network device.
  • the network device 110 may transmit DCI via a PDCCH to the terminal device 120.
  • the DCI may indicate resource allocation for data transmission in a downlink or uplink.
  • the terminal device 120 may perform the uplink and/or downlink data transmission with the network device 110 in the allocated resources.
  • the resource allocation for the terminal device 120 should meet the OCB regulation requirement. That is, the bandwidth occupied by the terminal device 120 should be more than 80%of the system bandwidth.
  • the rules on unlicensed band usage may also include limitations related to maximum power spectral density (PSD) .
  • PSD maximum power spectral density
  • B-IFDMA can be used to meet the above requirement.
  • Fig. 2 shows a schematic diagram of resource allocation based on B-IFDMA.
  • the interlace length can be fixed to 10 RBs.
  • interlace refers to a set of physical resources that forms part of an interlacing pattern.
  • interlace length refers to the number of resources in the interlace. As shown in Fig.
  • each interlace consists of 10 RBs and is associated with a same pattern.
  • Resource allocation for the terminal devices 120-1 and that for the terminal devices 120-2 are represented with different filling patterns. It can be seen that, the bandwidth occupied by the terminal device 120-1 corresponds to 91 RBs (range from the 0 th RB 210 to the 90 th RB 219) , which are more than 89 RBs.
  • the bandwidth occupied by the terminal device 120-1 also corresponds to 91 RBs (from the 3 rd RB 220 to the 93 rd RB 229) .
  • OFDM is introduced to benefit frequency domain scheduling diversity gain in both single-user and multi-user scenarios.
  • the RBs are divided into groups.
  • a group of RBs is referred to as a “Resource Block Group (RBG) ” .
  • RBG Resource Block Group
  • the number of RBs in one RBG also referred to as the “RBG size” , depends on the system bandwidth. For example, if the system bandwidth is 20 MHz, the RBG size P is 4.
  • a bitmap can be used for resource allocation in OFDM, and each bit in the bitmap represents one RBG. That is, if the system bandwidth is 20 MHz, a bitmap with 25 bits can be used for resource allocation, indicating 25 RBGs in total.
  • Fig. 3 shows a schematic diagram of resource allocation based on OFDM.
  • the bandwidth occupied by a terminal device should correspond to at least 89 RBs.
  • the 0 th RBG 310 and the 22 nd RBG 313 are allocated to the terminal device 120-1.
  • the 1 st RBG 311 and the 23 rd RBG 314 are allocated to the terminal device 120-2.
  • the 2 nd RBG 312 and the 24 th RBG 315 are allocated to the terminal device 120-3. It can be seen that, if the OCB regulation requirement is satisfied, up to 3 terminal devices can be scheduled, which may be not enough for some cases.
  • Fig. 4 shows a conflict between B-IFDMA based resource allocation and OFDM based resource allocation.
  • B-IFDMA based resource allocation can be configured for a B-IFDMA based terminal device, which meets the OCB regulation requirement.
  • the available RBGs for OFDM are obviously reduced.
  • resource groups 411 and 412 cannot be indicated by the bitmap. Because the resource groups 411 and 412 each span across two RBGs.
  • a solution for resource allocation in unlicensed band is proposed.
  • shifting and/or sharing of sideband resources are introduced to allow more users to be scheduled. Therefore, more terminal devices can be scheduled with little performance loss on scheduling diversity gain.
  • a new B-IFDMA interlace length instead of the existing fixed length (that is, 10 RBs) in eLAA, can be determined based on RBG size configuration, thereby avoiding allocation conflict. Therefore, OFDM based terminal devices and B-IFDMA based terminal devices can be compatible in one uplink subframe.
  • Fig. 5 shows a process 500 for resource allocation according to an embodiment of the present disclosure.
  • the process 500 will be described with reference to Fig. 1.
  • the process 500 may involve the network device 110 and the terminal device 120 in Fig. 1.
  • the network device 110 transmits 510, to the terminal device 120, a resource configuration for radio access to unlicensed band.
  • the resource configuration may indicate that a set of resources (also referred to as a “first set of resources” in the following) are shared by a plurality of terminal devices (for example, including the terminal devices 120 and some other terminal devices) such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the first set of resources may include a plurality of sideband resources.
  • the predefined threshold may be 80%of the system bandwidth. In other embodiments, the predefined threshold may be another percentage of the system bandwidth.
  • the resource configuration may be determined by the network device 110 based on a predefined shifting pattern.
  • the predefined shifting pattern may be UE specific and indicate that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
  • Fig. 6A shows an example of a predefined shifting pattern 610.
  • horizontal axis represents a plurality of RBGs A-F (that is, the first set of resources)
  • vertical axis represents a shifting period.
  • the RBGs A-F may be sideband RBGs, for example, the 0 th RBG to the 5 th RBG or the 19 th RBG to the 24 th RBG as shown in Fig. 3.
  • the RBGs A-F may not be limited to sideband RBGs.
  • the shifting period may be determined based on a scheduling period of the network device 110.
  • the shifting period may be any of 1ms, 4ms or so on.
  • a shifting period can be divided into a plurality of time intervals, within each of which the mapping of the plurality of RBGs (for example, the RBGs A-F) to physical RBs may be the same.
  • a point of time separating two different time intervals can be referred to as a “shifting time” , at which the shifting of the first set of resources among the plurality of terminal devices may occur.
  • the shifting of the first set of resources among the plurality of terminal devices may occur per symbol, per slot/subframe, or per super-subframe. For example, as shown in Fig. 6A, a shifting period is divided into two time intervals. That is, the shifting of the RBGs A-F may occur twice during one shifting period.
  • the shifting of the RBGs A-F may occur at each shifting time.
  • the mapping of the plurality of RBGs (for example, the RBGs A-F) to a group of physical RBs may be changed based on a predefined shifting pattern.
  • RBG A is mapped to a first group of physical RBs
  • RBG B is mapped to a second group of physical RBs
  • RBG C is mapped to a third group of physical RBs
  • RBG D is mapped to a fourth group of physical RBs
  • RBG E is mapped to a fifth group of physical RBs
  • RBG F is mapped to a sixth group of physical RBs.
  • RBG A will be mapped to the fourth group of physical RBs
  • RBG D will be mapped to the first group of physical RBs. That is, RBG D is mapped to physical RBs corresponding to RBG A at the shifting time.
  • RBG E is mapped to physical RBs corresponding to RBG B
  • RBG F is mapped to physical RBs corresponding to RBG C at the shifting time.
  • RBG B will be mapped to the fifth group of physical RBs
  • RBG C will be mapped to the sixth group of physical RBs
  • RBG E will be mapped to the second group of physical RBs
  • RBG F will be mapped to the third group of physical RBs.
  • the shifting pattern 610 can be applied to sideband RBGs.
  • the shifting pattern 610 can be applied to the 0 th RBG to the 5 th RBG, and the 19 th RBG to the 24 th RBG as shown in Fig. 3, respectively.
  • the 0 th and 19 th RBGs, the 1 st and 20 th RBGs, the 2 nd and 21 st RBGs, the 3 rd and 22 nd RBGs, the 4 th and 23 rd RBGs, and the 5 th and 24 th RBGs can be allocated to 6 different terminal devices respectively.
  • respective bandwidth occupied by each of the 6 terminal devices during each shifting period exceed 80%of the system bandwidth (that is, 89 RBs) . That is, by the shifting of sideband resources based on the shifting pattern 610 as shown in Fig. 6A, up to 6 terminal devices can be scheduled by the network device 110, while satisfying the OCB regulation requirement. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
  • more time intervals can be configured in one shifting period.
  • Fig. 6B shows an example of such embodiments.
  • Fig. 6B shows a shifting pattern 620, which is similar to the shifting pattern 610 as shown in Fig. 6A.
  • the shifting pattern 620 3 time intervals are included in one shifting period. That is, the shifting of RBGs A-I may occur three times during one shifting period. The shifting of the RBGs A-I may occur at each shifting time in a similar way to that as shown in Fig. 6A.
  • the shifting pattern 620 can be applied to the 0 th RBG to the 8 th RBG, and the 15 th RBG to the 24 th RBG as shown in Fig. 3, respectively.
  • up to 9 terminal devices can be scheduled by the network device 110, while satisfying the OCB regulation requirement.
  • the number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
  • the shifting pattern may not be applied to all of the sideband resources.
  • some sideband RBGs can be reserved for other use cases.
  • Fig. 6C shows an example of such embodiments.
  • Fig. 6C shows a shifting pattern 630.
  • the RBGs A-F may be sideband RBGs, for example, corresponding to the 0 th RBG to the 5 th RBG respectively or corresponding to the 19 th RBG to the 24 th RBG respectively as shown in Fig. 3.
  • RBGs A and C are reserved for other use cases. Therefore, the shifting may only occur on RBGs B, D, E and F. Specifically, the mapping from virtual to physical RBs may be shifted between RBGs B and F and between RBGs D and E at the shifting time.
  • the network device 110 may configure the predefined shifting pattern to the terminal device 120 via semi-static signaling, such as Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the predefined shifted pattern may be preconfigured in both the network device 110 and the terminal device 120.
  • the network device 110 may transmit a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern to the terminal device 120 via semi-static signaling (such as, RRC signaling) or dynamic signaling, such as through Medium Access Control (MAC) control element (CE) or DCI.
  • semi-static signaling such as, RRC signaling
  • dynamic signaling such as through Medium Access Control (MAC) control element (CE) or DCI.
  • sideband sharing can be used to multiplex different terminal devices in same RBGs, so as to allow more terminal devices to be scheduled.
  • Sideband sharing is quite different from sideband shifting as described above, which can be implemented based on different multiplexing technologies.
  • the resource configuration for radio access to unlicensed band can be determined by the network device 110 based on different multiplexing technologies. Fig. 7 shows an example of such embodiments.
  • Fig. 7 shows a sharing pattern 700.
  • horizontal axis represents a plurality of RBGs A-C, while vertical axis represents a scheduling period.
  • the RBGs A-C may be sideband RBGs, such as the 0 th RBG to the 2 nd RBG or the 22 nd RBG to the 24 th RBG as shown in Fig. 3.
  • each of the RBGs A, B and C may be shared by two terminal devices.
  • the resource allocation associated with a same RBG may be indicated to two different terminal devices in DCI.
  • the same RBG may be associated with two different sharing types, namely type x and type y.
  • Each of the two different terminal devices can be dynamically indicated with one of the two sharing types, such as type x or type y.
  • the network device 110 may configure the sharing pattern to the terminal device 120 via semi-static signaling (such as, RRC signaling) or dynamic signaling, such as through MAC CE or DCI.
  • the sharing of the sideband RBGs can be based on at least one of time domain, frequency domain and code domain multiplexing technologies.
  • Time domain sharing means different sharing types are associated with different time intervals in the scheduling period.
  • Frequency domain sharing means different sharing types are multiplex in the same RBG based on Frequency Division Multiplexing (FDM) .
  • Code domain sharing means different sharing types are associated with different orthogonal codes.
  • each sharing type may only have half of the resources on the shared RBGs.
  • each of the RBGs A, B and C can be shared by two different terminal devices. That is, by the sharing of sideband resources based on the sharing pattern 710, up to 6 terminal devices can be scheduled by the network device 110, while satisfying the OCB regulation requirement. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
  • OFDM based transmission and B-IDFMA based transmission may not be compatible.
  • a new B-IFDMA interlace length can be determined based on RBG size configuration, thereby avoiding allocation conflict.
  • the plurality of terminal devices may include the terminal device 120-1 supporting B-IFDMA based transmission and the terminal device 120-2 supporting OFDM based transmission.
  • the network device 110 may determine a B-IFDMA interlace length for the terminal device 120-1 based on the RBG size associated with the terminal device 120-2.
  • the B-IDFMA interlace length may be a multiple of the RBG size P.
  • Information on the B-IDFMA interlace length may be indicated to the terminal device 120-1 or specific to the terminal device 120-1.
  • the resource configuration for the terminal device 120-1 can be determined based on the determined B-IFDMA interlace length.
  • Fig. 8 shows an example of such embodiments.
  • the RBG size P is 4, and the B-IDFMA interlace length is 12 RBs, other than the existing fixed length (that is, 10 RBs) in eLAA.
  • the RBs for B-IDFMA based resource allocation and the RBGs for OFDM based resource allocation are not overlapped with each other.
  • sideband shifting and/or sideband sharing as described above can be applied to the RBGs for OFDM based resource allocation, so as to allow more terminal devices to be scheduled.
  • up to 4 B-IFDMA based terminal devices and up to 4 OFDM based terminal devices can be scheduled in total. Meantime, respective bandwidth occupied by each of the 8 terminal devices exceeds 80%of system bandwidth. That is, the OCB regulation requirement can be satisfied.
  • the number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3 or Fig. 4. Moreover, the conflict in Fig. 4 can be eliminated.
  • sideband sharing may not only be applied to OFDM based resource allocation, but also be applied to B-IFDMA based resource allocation. For example, in some cases, with the new B-IDFMA interlace length (such as, 12 RBs) being introduced, the OCB regulation requirement may not be satisfied. In these cases, sideband sharing can be applied to B-IFDMA based resource allocation to solve the problem.
  • Fig. 9 shows an example of such embodiments.
  • the B-IFDMA based resource allocation starting from the 4 th to 7 th RBs may not satisfy the OCB regulation requirement. It can be seen that 8 RBs are remained after the 91 st RB, which are not divisible by 12 RBs. Therefore, the occupied RBs may not exceed 89 RBs in total.
  • special sideband in the remaining part can be defined for B-IFDMA based terminal devices.
  • Fig. 9 shows special sideband 910.
  • the sideband 910 may include the 96 th to 99 th RBs.
  • the sideband 910 can be mapped to corresponding interlaced resources by applying sideband sharing.
  • the RBGs for OFDM based resource allocation are not overlapped with the RBs for B-IFDMA based resource allocation, including the special sideband 910.
  • the terminal device 120 determines 520 a set of resources for communing with the network device 110 in the unlicensed band.
  • the terminal device 120 may be an OFDM based terminal device.
  • the resource configuration may be determined by the network device 110 based on a predefined shifting pattern, and the predefined shifting pattern may be indicated to the terminal device 120 in advance.
  • the terminal device 120 in response to receiving a signal for enabling the shifting of the sideband resources from the network device 110, the terminal device 120 may determine the set of resources for communing with the network device 110 in the unlicensed band based on the predefined shifting pattern.
  • the resource configuration received by the terminal device 120 may indicate the sharing of the sideband resource based on different multiplexing technologies. Specifically, the resource configuration may indicate a specific sharing pattern. In some embodiments, the terminal devices may determine the set of resources for communing with the network device 110 in the unlicensed band based on the received sharing pattern.
  • the terminal device 120 may be a B-IFDMA based terminal device.
  • the resource configuration may indicate a new B-IFDMA interlace length for the terminal device 120.
  • the terminal device 120 may determine the set of resources for communing with the network device 110 in the unlicensed band based on the new B-IFDMA interlace length.
  • the network device 110 may also serve a further OFDM based terminal device.
  • the new B-IFDMA interlace length for the terminal device 120 may be determined by the network device 110 based on the RBG size associated with the further terminal device.
  • the new B-IFDMA interlace length may be a multiple of the RBG size associated with the further terminal device.
  • the network device can communicate 530 with the terminal device 120 in the allocated resources in unlicensed band.
  • the uplink transmission power of the terminal device 120 (corresponding to the bandwidth occupied by the terminal device 120) will be compliant with ETSI regulation requirements.
  • a new B-IFDMA interlace length instead of the existing fixed length (that is, 10 RBs) in eLAA, can be determined based on RBG size configuration, so as to avoid allocation conflicts. Therefore, OFDM based terminal devices and B-IFDMA based terminal devices can be compatible in one uplink subframe.
  • Fig. 10 shows a flowchart of an example method 1000 in accordance with some embodiments of the present disclosure.
  • the method 1000 can be implemented at the network device 110 as shown in Fig. 1.
  • the method 1000 will be described from the perspective of the network device 110 with reference to Fig. 1.
  • the network device 110 transmits, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band.
  • the resource configuration indicates that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the network device 110 communicates with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
  • the first set of resources include a plurality of sideband resources.
  • the predefined threshold is 80%of system bandwidth. In other embodiments, the predefined threshold is another percentage of the system bandwidth.
  • the resource configuration may be determined by the network device 110 based on a predefined shifting pattern.
  • the predefined shifting pattern indicates that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
  • the network device 110 may transmit the resource configuration by transmitting an indication of the predefined shifting pattern and transmitting a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern.
  • the resource configuration may be determined by the network device 110 based on at least one of time domain, frequency domain and code domain multiplexing technologies.
  • the network device 110 may transmit the resource configuration via semi-static signaling or dynamic signaling.
  • the plurality of terminal devices may include a first terminal device supporting B-IFDMA based transmission and a second terminal device supporting OFDM based transmission.
  • the network device 110 may determine, based on a RBG size associated with the second terminal device, a B-IFDMA interlace for the first terminal device.
  • the network device 110 may further determine, at least based on the determined B-IFDMA interlace, the resource configuration for the first terminal device.
  • the first set of resources include a second set of resources for B-IFDMA scheduling and a third set of resources for OFDM scheduling.
  • the second set of resources are separate from the third set of resources.
  • Fig. 11 shows a flowchart of an example method 1100 in accordance with some embodiments of the present disclosure.
  • the method 1100 can be implemented at the terminal device 120 as shown in Fig. 1.
  • the method 1100 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
  • the terminal device 120 determines a first set of resources for communicating with the network device in the unlicensed band.
  • the resource configuration indicates that a second set of resources are shared by a plurality of terminal devices including the first terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold.
  • the first set of resources are included in the second set of resources.
  • the terminal device 120 communicates with the network device based on the first set of resources.
  • the second set of resources include a plurality of sideband resources.
  • the predefined threshold is 80%of system bandwidth. In other embodiments, the predefined threshold is another percentage of the system bandwidth.
  • the terminal device 120 may receive an indication of a predefined shifting pattern from the network device.
  • the predefined shifting pattern may indicate that the second set of resources are shifted among the plurality of terminal devices in a shifting period.
  • the terminal device 120 may determine, in response to receiving a signal for enabling the shifting of the first set of resources from the network device, the first set of resources based on the predefined shifting pattern.
  • the resource configuration may indicate that the second set of resources are shared by the plurality of terminal devices based on at least one of time domain, frequency domain and code domain multiplexing technologies.
  • the terminal device 120 may receive the resource configuration via semi-static signaling or dynamic signaling.
  • the terminal device 120 supports Block Interleaved Frequency Domain Multiplexing (B-IFDMA) based transmission and the resource configuration indicates a B-IFDMA interlace for the terminal device 120.
  • the terminal device 120 may determine the first set of resources based on the B-IFDMA interlace.
  • the plurality of terminal devices may include a further terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission.
  • the B-IFDMA interlace for the terminal device may be determined by the network device 110 based on a RBG size associated with the further terminal device.
  • Fig. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure.
  • the device 1200 can be considered as a further example implementation of a network device 110 or a terminal device 120 as shown in Fig. 1. Accordingly, the device 1200 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
  • the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, a suitable transmitter (TX) and receiver (RX) 1240 coupled to the processor 1210, and a communication interface coupled to the TX/RX 1240.
  • the memory 1220 stores at least a part of a program 1230.
  • the TX/RX 1240 is for bidirectional communications.
  • the TX/RX 1240 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 1230 is assumed to include program instructions that, when executed by the associated processor 1210, enable the device 1200 to operate in accordance with the implementations of the present disclosure, as discussed herein with reference to Figs. 5 to 11.
  • the implementations herein may be implemented by computer software executable by the processor 1210 of the device 1200, or by hardware, or by a combination of software and hardware.
  • the processor 1210 may be configured to implement various implementations of the present disclosure.
  • a combination of the processor 1210 and memory 1220 may form processing means 1250 adapted to implement various implementations of the present disclosure.
  • the memory 1220 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1220 is shown in the device 1200, there may be several physically distinct memory modules in the device 1200.
  • the processor 1210 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various implementations of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of implementations of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 10 or Fig. 11.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various implementations.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Implementations of the present disclosure relate to methods and apparatuses of resource configuration for unlicensed band. In example implementations, a method implemented by a network device in a communication system is provided. The method comprises transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band. The resource configuration indicates that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. The method further comprises communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.

Description

RESOURCE CONFIGURATION FOR UNLICENSED BAND TECHNICAL FIELD
Implementations of the present disclosure generally relate to the field of telecommunication, and in particular, to methods and apparatuses of resource configuration for unlicensed band.
BACKGROUND
Unlicensed band refers to a portion of the radio frequency spectrum that does not require a license for use and thus can be used by any device to transmit or receive radio frequency signals. The solution for unlicensed band universal terrestrial radio access is well known as Licensed Assisted Access (LAA) . In LAA, licensed assistance is mandatory. An existing licensed primary cell (Pcell) carries critical control signaling, mobility, and user data to be transmitted with high quality of service. Furthermore, since LAA only utilizes the unlicensed spectrum to boost downlink through a process of carrier aggregation, enhanced LAA (eLAA) has been proposed to allow uplink streams to take advantage of the unlicensed band as well.
Unlicensed band usage can involve different regulatory rules which aim at fair and equal spectrum usage for different devices. Those rules may involve limitations related to Occupied Channel Bandwidth (OCB) . For example, ETSI Standard (ETSI EN 301 893, v.1.7.1) recites that: “The Nominal Channel Bandwidth shall be at least 5 MHz at all times. The Occupied Channel Bandwidth shall be between 80%and 100%of the declared Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement. ”
In order to meet the above requirements, in eLAA, Block interleaved orthogonal frequency division multiple access (B-IFDMA) can be used. B-IFDMA is a baseline uplink transmission scheme that can be used for uplink transmission in unlicensed band. It is based on Single Carrier-Frequency Division Multiple Access (SC-FDMA) which is applied in Long Term Evolution (LTE) uplink transmission. However, in new radio access (NR) , Orthogonal Frequency Division Multiplexing (OFDM) is introduced to improve frequency domain scheduling diversity gain in both single-user and multi-user scenarios. With the introduction of OFDM, how to meet the OCB regulation requirement would be a  problem. If the OCB regulation requirement is satisfied, the number of users (terminal devices) that can be scheduled would be quite limited. Moreover, if OFDM is supported for unlicensed band in NR, OFDM based transmission and B-IDFMA based transmission may not be compatible.
SUMMARY
In general, example implementations of the present disclosure provide methods and apparatuses of resource configuration for unlicensed band.
In a first aspect, there is provided a method implemented by a network device in a communication system. The method comprises transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band. The resource configuration indicates that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. The method further comprises communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
In a second aspect, there is provided a method implemented by a terminal device in a communication system. The method comprises, in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band. The resource configuration indicates that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. The first set of resources are included in the second set of resources. The method further comprises communicating with the network device based on the first set of resources.
In a third aspect, there is provided a network device. The network device includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform actions. The actions comprise transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band, the resource configuration indicating that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal  devices exceeds a predefined threshold. The actions further comprise communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
In a fourth aspect, there is provided a terminal device. The terminal device includes a processor; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform actions. The actions comprise in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band, the resource configuration indicating that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold, and the first set of resources being included in the second set of resources. The actions further comprise communicating with the network device based on the first set of resources.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to carry out the method according to the first aspect.
In a sixth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to carry out the method according to the second aspect.
In a seventh aspect, there is provided a computer program product that is tangibly stored on a computer readable storage medium. The computer program product includes instructions which, when executed on at least one processor, cause the at least one processor to carry out the method according to the first aspect or the second aspect.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some implementations of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 shows a block diagram of a communication environment in which  implementations of the present disclosure can be implemented;
Fig. 2 shows a schematic diagram of resource allocation based on B-IFDMA;
Fig. 3 shows a schematic diagram of resource allocation based on OFDM;
Fig. 4 shows a conflict between B-IFDMA based resource allocation and OFDM based resource allocation;
Fig. 5 shows a process 500 for resource allocation according to an embodiment of the present disclosure;
Figs. 6A-6C show sideband shifting patterns according to some embodiments of the present disclosure;
Fig. 7 shows a sideband sharing pattern according to some embodiments of the present disclosure;
Fig. 8 shows an example of the compatibility of B-IFDMA based resource allocation and OFDM based resource allocation according to some embodiments of the present disclosure;
Fig. 9 shows another example of the compatibility of B-IFDMA based resource allocation and OFDM based resource allocation according to some embodiments of the present disclosure;
Fig. 10 shows a flowchart of an example method according to some embodiments of the present disclosure;
Fig. 11 shows a flowchart of an example method according to some embodiments of the present disclosure; and
Fig. 12 is a simplified block diagram of a device that is suitable for implementing implementations of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement  the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “network device” or “base station” (BS) refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, a TRP, and the like. For the purpose of discussion, in the following, some embodiments will be described with reference to TRP as examples of the network device.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. For the purpose of discussion, in the following, some embodiments will be described with reference to UE as examples of the terminal device.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “at least in part based on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such  descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
Communication discussed in the present disclosure may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
Fig. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. The network 100 includes a network device 110 and three terminal devices 120-1 and 120-3 (collectively referred to as terminal devices 120 or individually referred to as terminal device 120) served by the network device 110. The coverage of the network device 110 is also called as a cell 102. It is to be understood that the number of base stations and terminal devices is only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of base stations and the terminal devices adapted for implementing embodiments of the present disclosure. Although not shown, it would be appreciated that there may be one or more neighboring cells adjacent to the cell 102 where one or more corresponding network devices provides service for a number of terminal device located therein.
The network devices 110 may communicate with the terminal device 120. The communications in the network 100 may conform to any suitable standards including, but not limited to, Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth  generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
In addition to normal data communications, the network device 110 may transmit control information to the terminal device 120 in a downlink. As used herein, a “downlink (DL) ” refers to a link from a network device to a terminal device, while an “uplink (UL) ” refers to a link from the terminal device to the network device. For example, the network device 110 may transmit DCI via a PDCCH to the terminal device 120. The DCI may indicate resource allocation for data transmission in a downlink or uplink. In response to decoding the DCI successfully, the terminal device 120 may perform the uplink and/or downlink data transmission with the network device 110 in the allocated resources.
As described above, for radio access to unlicensed band, the resource allocation for the terminal device 120 should meet the OCB regulation requirement. That is, the bandwidth occupied by the terminal device 120 should be more than 80%of the system bandwidth. The rules on unlicensed band usage may also include limitations related to maximum power spectral density (PSD) . In eLAA, B-IFDMA can be used to meet the above requirement. For example, Fig. 2 shows a schematic diagram of resource allocation based on B-IFDMA.
In Fig. 2, suppose that the system bandwidth is 20 MHz, which corresponds to 100 resource blocks (RBs) in total. A respective bandwidth of each of the RBs is 180 Hz. In this event, 80%of the system bandwidth may correspond to about 89 RBs (that is 16.02 MHz) . In eLAA, for example, in order to make a tradeoff between the OCB regulation requirement and the available number of terminal devices that can be scheduled, the interlace length can be fixed to 10 RBs. As used herein, the term “interlace” refers to a set of physical resources that forms part of an interlacing pattern. The term “interlace length” refers to the number of resources in the interlace. As shown in Fig. 2, each interlace consists of 10 RBs and is associated with a same pattern. Resource allocation for the terminal devices 120-1 and that for the terminal devices 120-2 are represented with different filling patterns. It can be seen that, the bandwidth occupied by the terminal device 120-1 corresponds to 91 RBs (range from the 0th RB 210 to the 90th RB 219) , which are more than 89 RBs. The bandwidth occupied by the terminal device 120-1 also corresponds to 91 RBs (from the 3rd RB 220 to the 93rd RB 229) .
In NR, OFDM is introduced to benefit frequency domain scheduling diversity  gain in both single-user and multi-user scenarios. In OFDM, the RBs are divided into groups. A group of RBs is referred to as a “Resource Block Group (RBG) ” . The number of RBs in one RBG, also referred to as the “RBG size” , depends on the system bandwidth. For example, if the system bandwidth is 20 MHz, the RBG size P is 4. Specifically, a bitmap can be used for resource allocation in OFDM, and each bit in the bitmap represents one RBG. That is, if the system bandwidth is 20 MHz, a bitmap with 25 bits can be used for resource allocation, indicating 25 RBGs in total.
Fig. 3 shows a schematic diagram of resource allocation based on OFDM. As described above, in order to meet the OCB regulation requirement, the bandwidth occupied by a terminal device should correspond to at least 89 RBs. In this case, as shown in Fig. 3, the 0th RBG 310 and the 22nd RBG 313 are allocated to the terminal device 120-1. The 1st RBG 311 and the 23rd RBG 314 are allocated to the terminal device 120-2. The 2nd RBG 312 and the 24th RBG 315 are allocated to the terminal device 120-3. It can be seen that, if the OCB regulation requirement is satisfied, up to 3 terminal devices can be scheduled, which may be not enough for some cases.
Even worse, if OFDM is supported for unlicensed band in NR, B-IFDMA based resource allocation and OFDM based resource allocation may be not compatible.
Fig. 4 shows a conflict between B-IFDMA based resource allocation and OFDM based resource allocation. As shown in Fig. 4, B-IFDMA based resource allocation can be configured for a B-IFDMA based terminal device, which meets the OCB regulation requirement. However, the available RBGs for OFDM are obviously reduced. Moreover, if a bitmap with 25 bits is still used for indicating different resource groups,  resource groups  411 and 412 cannot be indicated by the bitmap. Because the  resource groups  411 and 412 each span across two RBGs.
In order to solve all of the above problems as well as one or more of other potential problems, a solution for resource allocation in unlicensed band is proposed. With the proposed solution, shifting and/or sharing of sideband resources are introduced to allow more users to be scheduled. Therefore, more terminal devices can be scheduled with little performance loss on scheduling diversity gain. In addition, a new B-IFDMA interlace length, instead of the existing fixed length (that is, 10 RBs) in eLAA, can be determined based on RBG size configuration, thereby avoiding allocation conflict. Therefore, OFDM based terminal devices and B-IFDMA based terminal devices can be  compatible in one uplink subframe.
Principle and implementations of the present disclosure will be described in detail below with reference to Figs. 5-12. In the following descriptions and figures, we suppose that the subcarrier spacing is 15 KHz and the system bandwidth is 20 MHz which corresponds to 100 RBs in total. However, it is to be understood that the above assumptions are only for the purpose of illustration, without suggesting any limitations to the scope of the disclosure. For example, in NR, flexible numerology can be supported. Just for the same subcarrier spacing 15KHz, 110 RBs can be allowed for 20 MHz. In all of these cases, the implementations of the present disclosure are also applicable.
Fig. 5 shows a process 500 for resource allocation according to an embodiment of the present disclosure. For the purpose of discussion, the process 500 will be described with reference to Fig. 1. The process 500 may involve the network device 110 and the terminal device 120 in Fig. 1.
The network device 110 transmits 510, to the terminal device 120, a resource configuration for radio access to unlicensed band. In some embodiments, the resource configuration may indicate that a set of resources (also referred to as a “first set of resources” in the following) are shared by a plurality of terminal devices (for example, including the terminal devices 120 and some other terminal devices) such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. For example, the first set of resources may include a plurality of sideband resources. In some embodiments, the predefined threshold may be 80%of the system bandwidth. In other embodiments, the predefined threshold may be another percentage of the system bandwidth.
In some embodiments, the resource configuration may be determined by the network device 110 based on a predefined shifting pattern. For example, the predefined shifting pattern may be UE specific and indicate that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
Fig. 6A shows an example of a predefined shifting pattern 610. In Fig. 6A, horizontal axis represents a plurality of RBGs A-F (that is, the first set of resources) , while vertical axis represents a shifting period. In one embodiment, the RBGs A-F may be sideband RBGs, for example, the 0th RBG to the 5th RBG or the 19th RBG to the 24th RBG as shown in Fig. 3. In other embodiments, the RBGs A-F may not be limited to sideband  RBGs. The shifting period may be determined based on a scheduling period of the network device 110. For example, the shifting period may be any of 1ms, 4ms or so on.
In one embodiment, a shifting period can be divided into a plurality of time intervals, within each of which the mapping of the plurality of RBGs (for example, the RBGs A-F) to physical RBs may be the same. A point of time separating two different time intervals can be referred to as a “shifting time” , at which the shifting of the first set of resources among the plurality of terminal devices may occur. In some embodiments, the shifting of the first set of resources among the plurality of terminal devices may occur per symbol, per slot/subframe, or per super-subframe. For example, as shown in Fig. 6A, a shifting period is divided into two time intervals. That is, the shifting of the RBGs A-F may occur twice during one shifting period.
As described above, the shifting of the RBGs A-F may occur at each shifting time. In some embodiments, the mapping of the plurality of RBGs (for example, the RBGs A-F) to a group of physical RBs may be changed based on a predefined shifting pattern. Suppose that in the first time interval of a shifting period, RBG A is mapped to a first group of physical RBs, RBG B is mapped to a second group of physical RBs, RBG C is mapped to a third group of physical RBs, RBG D is mapped to a fourth group of physical RBs, RBG E is mapped to a fifth group of physical RBs and RBG F is mapped to a sixth group of physical RBs. According to the shifting pattern 610 as shown in Fig. 6A, in the second time interval of the shifting period, RBG A will be mapped to the fourth group of physical RBs, while RBG D will be mapped to the first group of physical RBs. That is, RBG D is mapped to physical RBs corresponding to RBG A at the shifting time. Similarly, RBG E is mapped to physical RBs corresponding to RBG B and RBG F is mapped to physical RBs corresponding to RBG C at the shifting time. That is, in the second time interval of the shifting period, RBG B will be mapped to the fifth group of physical RBs, RBG C will be mapped to the sixth group of physical RBs, RBG E will be mapped to the second group of physical RBs and RBG F will be mapped to the third group of physical RBs.
The shifting pattern 610 can be applied to sideband RBGs. For example, the shifting pattern 610 can be applied to the 0th RBG to the 5th RBG, and the 19th RBG to the 24th RBG as shown in Fig. 3, respectively. In some embodiments, the 0th and 19th RBGs, the 1st and 20th RBGs, the 2nd and 21st RBGs, the 3rd and 22nd RBGs, the 4th and 23rd RBGs, and the 5th and 24th RBGs can be allocated to 6 different terminal devices respectively. It can be seen that, respective bandwidth occupied by each of the 6 terminal devices during  each shifting period exceed 80%of the system bandwidth (that is, 89 RBs) . That is, by the shifting of sideband resources based on the shifting pattern 610 as shown in Fig. 6A, up to 6 terminal devices can be scheduled by the network device 110, while satisfying the OCB regulation requirement. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
In some embodiments, in order to allow more users (more terminal devices) to be scheduled, more time intervals can be configured in one shifting period. Fig. 6B shows an example of such embodiments.
For example, Fig. 6B shows a shifting pattern 620, which is similar to the shifting pattern 610 as shown in Fig. 6A. However, in the shifting  pattern  620, 3 time intervals are included in one shifting period. That is, the shifting of RBGs A-I may occur three times during one shifting period. The shifting of the RBGs A-I may occur at each shifting time in a similar way to that as shown in Fig. 6A. Particularly, the shifting pattern 620 can be applied to the 0th RBG to the 8th RBG, and the 15th RBG to the 24th RBG as shown in Fig. 3, respectively. In this event, up to 9 terminal devices can be scheduled by the network device 110, while satisfying the OCB regulation requirement. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
In some embodiments, the shifting pattern may not be applied to all of the sideband resources. For example, some sideband RBGs can be reserved for other use cases. Fig. 6C shows an example of such embodiments.
Fig. 6C shows a shifting pattern 630. The RBGs A-F may be sideband RBGs, for example, corresponding to the 0th RBG to the 5th RBG respectively or corresponding to the 19th RBG to the 24th RBG respectively as shown in Fig. 3. For example, RBGs A and C are reserved for other use cases. Therefore, the shifting may only occur on RBGs B, D, E and F. Specifically, the mapping from virtual to physical RBs may be shifted between RBGs B and F and between RBGs D and E at the shifting time.
In some embodiments, the network device 110 may configure the predefined shifting pattern to the terminal device 120 via semi-static signaling, such as Radio Resource Control (RRC) signaling. In some other embodiment, the predefined shifted pattern may be preconfigured in both the network device 110 and the terminal device 120. When the network device 110 want to schedule more terminal devices in an uplink subframe, it may  transmit a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern to the terminal device 120 via semi-static signaling (such as, RRC signaling) or dynamic signaling, such as through Medium Access Control (MAC) control element (CE) or DCI.
In some embodiments, sideband sharing can be used to multiplex different terminal devices in same RBGs, so as to allow more terminal devices to be scheduled. Sideband sharing is quite different from sideband shifting as described above, which can be implemented based on different multiplexing technologies. For example, in some embodiments, the resource configuration for radio access to unlicensed band can be determined by the network device 110 based on different multiplexing technologies. Fig. 7 shows an example of such embodiments.
Fig. 7 shows a sharing pattern 700. In Fig. 7, horizontal axis represents a plurality of RBGs A-C, while vertical axis represents a scheduling period. For example, the RBGs A-C may be sideband RBGs, such as the 0th RBG to the 2nd RBG or the 22nd RBG to the 24th RBG as shown in Fig. 3. In the sharing pattern 700, for example, each of the RBGs A, B and C may be shared by two terminal devices. For example, the resource allocation associated with a same RBG may be indicated to two different terminal devices in DCI. However, the same RBG may be associated with two different sharing types, namely type x and type y. Each of the two different terminal devices can be dynamically indicated with one of the two sharing types, such as type x or type y. In some embodiments, the network device 110 may configure the sharing pattern to the terminal device 120 via semi-static signaling (such as, RRC signaling) or dynamic signaling, such as through MAC CE or DCI. The sharing of the sideband RBGs can be based on at least one of time domain, frequency domain and code domain multiplexing technologies. Time domain sharing means different sharing types are associated with different time intervals in the scheduling period. Frequency domain sharing means different sharing types are multiplex in the same RBG based on Frequency Division Multiplexing (FDM) . Code domain sharing means different sharing types are associated with different orthogonal codes. It should be noted that different resource element (RE) mapping should be defined in this case, since in the example as shown in Fig. 7 each sharing type may only have half of the resources on the shared RBGs. In this way, each of the RBGs A, B and C can be shared by two different terminal devices. That is, by the sharing of sideband resources based on the sharing pattern 710, up to 6 terminal devices can be scheduled by the network  device 110, while satisfying the OCB regulation requirement. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3.
As described above, if OFDM is supported for unlicensed band, OFDM based transmission and B-IDFMA based transmission may not be compatible. In order to support both OFDM based transmission and B-IDFMA based transmission in an uplink subframe, a new B-IFDMA interlace length can be determined based on RBG size configuration, thereby avoiding allocation conflict.
For example, the plurality of terminal devices may include the terminal device 120-1 supporting B-IFDMA based transmission and the terminal device 120-2 supporting OFDM based transmission. In this case, the network device 110 may determine a B-IFDMA interlace length for the terminal device 120-1 based on the RBG size associated with the terminal device 120-2. For example, the B-IDFMA interlace length may be a multiple of the RBG size P. Information on the B-IDFMA interlace length may be indicated to the terminal device 120-1 or specific to the terminal device 120-1. Then, the resource configuration for the terminal device 120-1 can be determined based on the determined B-IFDMA interlace length. Fig. 8 shows an example of such embodiments.
As shown in Fig. 8, the RBG size P is 4, and the B-IDFMA interlace length is 12 RBs, other than the existing fixed length (that is, 10 RBs) in eLAA. The RBs for B-IDFMA based resource allocation and the RBGs for OFDM based resource allocation are not overlapped with each other. Specifically, sideband shifting and/or sideband sharing as described above can be applied to the RBGs for OFDM based resource allocation, so as to allow more terminal devices to be scheduled. In the example as shown in Fig. 8, up to 4 B-IFDMA based terminal devices and up to 4 OFDM based terminal devices can be scheduled in total. Meantime, respective bandwidth occupied by each of the 8 terminal devices exceeds 80%of system bandwidth. That is, the OCB regulation requirement can be satisfied. The number of terminal devices that can be scheduled is greatly increased, as compared with the traditional solution as shown in Fig. 3 or Fig. 4. Moreover, the conflict in Fig. 4 can be eliminated.
In some embodiments, sideband sharing may not only be applied to OFDM based resource allocation, but also be applied to B-IFDMA based resource allocation. For example, in some cases, with the new B-IDFMA interlace length (such as, 12 RBs) being  introduced, the OCB regulation requirement may not be satisfied. In these cases, sideband sharing can be applied to B-IFDMA based resource allocation to solve the problem. Fig. 9 shows an example of such embodiments.
As shown in Fig. 9, with the new interlace length (that is, 12 RBs) being introduced, the B-IFDMA based resource allocation starting from the 4th to 7th RBs may not satisfy the OCB regulation requirement. It can be seen that 8 RBs are remained after the 91st RB, which are not divisible by 12 RBs. Therefore, the occupied RBs may not exceed 89 RBs in total.
In this case, special sideband in the remaining part can be defined for B-IFDMA based terminal devices. For example, Fig. 9 shows special sideband 910. For example, the sideband 910 may include the 96th to 99th RBs. The sideband 910 can be mapped to corresponding interlaced resources by applying sideband sharing. Similarly, the RBGs for OFDM based resource allocation are not overlapped with the RBs for B-IFDMA based resource allocation, including the special sideband 910.
Referring back to Fig. 5, in response to receiving from the network device 110 the resource configuration for radio access to unlicensed band, the terminal device 120 determines 520 a set of resources for communing with the network device 110 in the unlicensed band.
In some cases, for example, the terminal device 120 may be an OFDM based terminal device. The resource configuration may be determined by the network device 110 based on a predefined shifting pattern, and the predefined shifting pattern may be indicated to the terminal device 120 in advance. In this case, in response to receiving a signal for enabling the shifting of the sideband resources from the network device 110, the terminal device 120 may determine the set of resources for communing with the network device 110 in the unlicensed band based on the predefined shifting pattern.
In some cases, for example, the resource configuration received by the terminal device 120 may indicate the sharing of the sideband resource based on different multiplexing technologies. Specifically, the resource configuration may indicate a specific sharing pattern. In some embodiments, the terminal devices may determine the set of resources for communing with the network device 110 in the unlicensed band based on the received sharing pattern.
In some cases, for example, the terminal device 120 may be a B-IFDMA based  terminal device. The resource configuration may indicate a new B-IFDMA interlace length for the terminal device 120. In some embodiments, in this case, the terminal device 120 may determine the set of resources for communing with the network device 110 in the unlicensed band based on the new B-IFDMA interlace length. For example, the network device 110 may also serve a further OFDM based terminal device. In this case, the new B-IFDMA interlace length for the terminal device 120 may be determined by the network device 110 based on the RBG size associated with the further terminal device. For example, the new B-IFDMA interlace length may be a multiple of the RBG size associated with the further terminal device.
Then, the network device can communicate 530 with the terminal device 120 in the allocated resources in unlicensed band. Specifically, the uplink transmission power of the terminal device 120 (corresponding to the bandwidth occupied by the terminal device 120) will be compliant with ETSI regulation requirements.
In view of the above, with the proposed solution of the present disclosure, shifting and/or sharing of sideband resources are introduced to allow more users to be scheduled. Therefore, more terminal devices can be scheduled with little performance loss on scheduling diversity gain. In addition, a new B-IFDMA interlace length, instead of the existing fixed length (that is, 10 RBs) in eLAA, can be determined based on RBG size configuration, so as to avoid allocation conflicts. Therefore, OFDM based terminal devices and B-IFDMA based terminal devices can be compatible in one uplink subframe.
Fig. 10 shows a flowchart of an example method 1000 in accordance with some embodiments of the present disclosure. The method 1000 can be implemented at the network device 110 as shown in Fig. 1. For the purpose of discussion, the method 1000 will be described from the perspective of the network device 110 with reference to Fig. 1.
At block 1010, the network device 110 transmits, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band. The resource configuration indicates that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. At block 1020, the network device 110 communicates with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
In some embodiments, the first set of resources include a plurality of sideband  resources.
In some embodiments, the predefined threshold is 80%of system bandwidth. In other embodiments, the predefined threshold is another percentage of the system bandwidth.
In some embodiments, the resource configuration may be determined by the network device 110 based on a predefined shifting pattern. The predefined shifting pattern indicates that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
In some embodiments, the network device 110 may transmit the resource configuration by transmitting an indication of the predefined shifting pattern and transmitting a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern.
In some embodiments, the resource configuration may be determined by the network device 110 based on at least one of time domain, frequency domain and code domain multiplexing technologies. The network device 110 may transmit the resource configuration via semi-static signaling or dynamic signaling.
In some embodiments, the plurality of terminal devices may include a first terminal device supporting B-IFDMA based transmission and a second terminal device supporting OFDM based transmission. The network device 110 may determine, based on a RBG size associated with the second terminal device, a B-IFDMA interlace for the first terminal device. The network device 110 may further determine, at least based on the determined B-IFDMA interlace, the resource configuration for the first terminal device.
In some embodiments, the first set of resources include a second set of resources for B-IFDMA scheduling and a third set of resources for OFDM scheduling. The second set of resources are separate from the third set of resources.
Fig. 11 shows a flowchart of an example method 1100 in accordance with some embodiments of the present disclosure. The method 1100 can be implemented at the terminal device 120 as shown in Fig. 1. For the purpose of discussion, the method 1100 will be described from the perspective of the terminal device 120 with reference to Fig. 1.
At block 1110, in response to receiving from a network device a resource configuration for radio access to unlicensed band, the terminal device 120 determines a first  set of resources for communicating with the network device in the unlicensed band. The resource configuration indicates that a second set of resources are shared by a plurality of terminal devices including the first terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold. The first set of resources are included in the second set of resources. At block 1120, the terminal device 120 communicates with the network device based on the first set of resources.
In some embodiments, the second set of resources include a plurality of sideband resources.
In some embodiments, the predefined threshold is 80%of system bandwidth. In other embodiments, the predefined threshold is another percentage of the system bandwidth.
In some embodiments, the terminal device 120 may receive an indication of a predefined shifting pattern from the network device. The predefined shifting pattern may indicate that the second set of resources are shifted among the plurality of terminal devices in a shifting period. The terminal device 120 may determine, in response to receiving a signal for enabling the shifting of the first set of resources from the network device, the first set of resources based on the predefined shifting pattern.
In some embodiments, the resource configuration may indicate that the second set of resources are shared by the plurality of terminal devices based on at least one of time domain, frequency domain and code domain multiplexing technologies. The terminal device 120 may receive the resource configuration via semi-static signaling or dynamic signaling.
In some embodiments, the terminal device 120 supports Block Interleaved Frequency Domain Multiplexing (B-IFDMA) based transmission and the resource configuration indicates a B-IFDMA interlace for the terminal device 120. The terminal device 120 may determine the first set of resources based on the B-IFDMA interlace.
In some embodiments, the plurality of terminal devices may include a further terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission. The B-IFDMA interlace for the terminal device may be determined by the network device 110 based on a RBG size associated with the further terminal device.
It is to be understood that all operations and features related to the network device 110 described above with reference to Figs. 5-9 are likewise applicable to the method 1000  and have similar effects. All operations and features related to the terminal device 120 described above with reference to Figs. 5-9 are likewise applicable to the method 1100 and have similar effects. For the purpose of simplification, the details will be omitted.
Fig. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure. The device 1200 can be considered as a further example implementation of a network device 110 or a terminal device 120 as shown in Fig. 1. Accordingly, the device 1200 can be implemented at or as at least a part of the network device 110 or the terminal device 120.
As shown, the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, a suitable transmitter (TX) and receiver (RX) 1240 coupled to the processor 1210, and a communication interface coupled to the TX/RX 1240. The memory 1220 stores at least a part of a program 1230. The TX/RX 1240 is for bidirectional communications. The TX/RX 1240 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 1230 is assumed to include program instructions that, when executed by the associated processor 1210, enable the device 1200 to operate in accordance with the implementations of the present disclosure, as discussed herein with reference to Figs. 5 to 11. The implementations herein may be implemented by computer software executable by the processor 1210 of the device 1200, or by hardware, or by a combination of software and hardware. The processor 1210 may be configured to implement various implementations of the present disclosure. Furthermore, a combination of the processor 1210 and memory 1220 may form processing means 1250 adapted to implement various implementations of the present disclosure.
The memory 1220 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic  memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1220 is shown in the device 1200, there may be several physically distinct memory modules in the device 1200. The processor 1210 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one implementation, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various implementations of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of implementations of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in  program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Fig. 10 or Fig. 11. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various implementations. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be  advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in the context of separate implementations may also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation may also be implemented in multiple implementations separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (28)

  1. A method implemented at a network device, comprising:
    transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band, the resource configuration indicating that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold; and
    communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
  2. The method of Claim 1, wherein the first set of resources include a plurality of sideband resources.
  3. The method of Claim 1, further comprising:
    determining the resource configuration based on a predefined shifting pattern, the predefined shifting pattern indicating that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
  4. The method of Claim 3, wherein transmitting the resource configuration comprises:
    transmitting an indication of the predefined shifting pattern; and
    transmitting a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern.
  5. The method of Claim 1, further comprising:
    determining the resource configuration based on at least one of time domain, frequency domain and code domain multiplexing technologies; and
    wherein transmitting the resource configuration comprises:
    transmitting the resource configuration via semi-static signaling or dynamic signaling.
  6. The method of Claim 1, wherein the plurality of terminal devices include a first terminal device supporting Block Interleaved Frequency Domain Multiplexing Access  (B-IFDMA) based transmission and a second terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission, and the method further comprises:
    determining, based on a Resource Block Group (RBG) size associated with the second terminal device, a B-IFDMA interlace for the first terminal device; and
    determining, at least based on the determined B-IFDMA interlace, the resource configuration for the first terminal device.
  7. The method of Claim 6, wherein the first set of resources include a second set of resources for B-IFDMA scheduling and a third set of resources for OFDM scheduling, and the second set of resources are separate from the third set of resources.
  8. A method implemented at a terminal device, comprising:
    in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band,
    the resource configuration indicating that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold, and the first set of resources being included in the second set of resources; and
    communicating with the network device based on the first set of resources.
  9. The method of Claim 8, wherein the second set of resources include a plurality of sideband resources.
  10. The method of Claim 8, wherein determining the first set of resources comprises:
    receiving an indication of a predefined shifting pattern from the network device, the predefined shifting pattern indicating that the second set of resources are shifted among the plurality of terminal devices in a shifting period; and
    in response to receiving a signal for enabling the shifting of the second set of resources from the network device, determining the first set of resources based on the predefined shifting pattern.
  11. The method of Claim 8, wherein the resource configuration indicates that the second set of resources are shared by the plurality of terminal devices based on at least one of time domain, frequency domain and code domain multiplexing technologies, and receiving the resource configuration comprises:
    receiving the resource configuration via semi-static signaling or dynamic signaling.
  12. The method of Claim 8, wherein the terminal device supports Block Interleaved Frequency Domain Multiplexing (B-IFDMA) based transmission, the resource configuration indicates a B-IFDMA interlace for the terminal device, and determining the first set of resources comprises:
    determining the first set of resources based on the B-IFDMA interlace.
  13. The method of Claim 12, wherein the plurality of terminal devices include a further terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission, and the B-IFDMA interlace for the terminal device is determined by the network device based on a Resource Block Group (RBG) size associated with the further terminal device.
  14. A network device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform actions, the actions comprising:
    transmitting, to at least one of a plurality of terminal devices, a resource configuration for radio access to unlicensed band, the resource configuration indicating that a first set of resources are shared by the plurality of terminal devices such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold; and
    communicating with the at least one of the plurality of terminal devices in the unlicensed band based on the resource configuration.
  15. The network device of Claim 14, wherein the first set of resources include a plurality of sideband resources.
  16. The network device of Claim 14, wherein the actions further comprise:
    determining the resource configuration based on a predefined shifting pattern, the predefined shifting pattern indicating that the first set of resources are shifted among the plurality of terminal devices in a shifting period.
  17. The network device of Claim 16, wherein transmitting the resource configuration comprises:
    transmitting an indication of the predefined shifting pattern; and
    transmitting a signal for enabling the shifting of the first set of resources based on the predefined shifting pattern.
  18. The network device of Claim 14, wherein the actions further comprise:
    determining the resource configuration based on at least one of time domain, frequency domain and code domain multiplexing technologies; and
    wherein transmitting the resource configuration comprises:
    transmitting the resource configuration via semi-static signaling or dynamic signaling.
  19. The network device of Claim 14, wherein the plurality of terminal devices include a first terminal device supporting Block Interleaved Frequency Domain Multiplexing Access (B-IFDMA) based transmission and a second terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission, and the method further comprises:
    determining, based on a Resource Block Group (RBG) size associated with the second terminal device, a B-IFDMA interlace for the first terminal device; and
    determining, at least based on the determined B-IFDMA interlace, the resource configuration for the first terminal device.
  20. The network device of Claim 19, wherein the first set of resources include a second set of resources for B-IFDMA scheduling and a third set of resources for OFDM scheduling, and the second set of resources are separate from the third set of resources.
  21. A terminal device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform actions, the actions comprising:
    in response to receiving from a network device a resource configuration for radio access to unlicensed band, determining a first set of resources for communicating with the network device in the unlicensed band,
    the resource configuration indicating that a second set of resources are shared by a plurality of terminal devices including the terminal device such that respective bandwidth occupied by each of the plurality of terminal devices exceeds a predefined threshold, and the first set of resources being included in the second set of resources; and
    communicating with the network device based on the first set of resources.
  22. The terminal device of Claim 21, wherein the second set of resources include a plurality of sideband resources.
  23. The terminal device of Claim 21, wherein determining the first set of resources comprises:
    receiving an indication of a predefined shifting pattern from the network device, the predefined shifting pattern indicating that the second set of resources are shifted among the plurality of terminal devices in a shifting period; and
    in response to receiving a signal for enabling the shifting of the second set of resources from the network device, determining the first set of resources based on the predefined shifting pattern.
  24. The terminal device of Claim 21, wherein the resource configuration indicates that the second set of resources are shared by the plurality of terminal devices based on at least one of time domain, frequency domain and code domain multiplexing technologies, and receiving the resource configuration comprises:
    receiving the resource configuration via semi-static signaling or dynamic signaling.
  25. The terminal device of Claim 21, wherein the terminal device supports Block Interleaved Frequency Domain Multiplexing (B-IFDMA) based transmission, the resource  configuration indicates a B-IFDMA interlace for the terminal device, and determining the first set of resources comprises:
    determining the first set of resources based on the B-IFDMA interlace.
  26. The terminal device of Claim 25, wherein the plurality of terminal devices include a further terminal device supporting Orthogonal Frequency Division Multiplexing (OFDM) based transmission, and the B-IFDMA interlace for the terminal device is determined by the network device based on a Resource Block Group (RBG) size associated with the further terminal device.
  27. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to any of claims 1 to 7.
  28. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to any of claims 8 to 13.
PCT/CN2017/102934 2017-09-22 2017-09-22 Resource configuration for unlicensed band WO2019056304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102934 WO2019056304A1 (en) 2017-09-22 2017-09-22 Resource configuration for unlicensed band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102934 WO2019056304A1 (en) 2017-09-22 2017-09-22 Resource configuration for unlicensed band

Publications (1)

Publication Number Publication Date
WO2019056304A1 true WO2019056304A1 (en) 2019-03-28

Family

ID=65809973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102934 WO2019056304A1 (en) 2017-09-22 2017-09-22 Resource configuration for unlicensed band

Country Status (1)

Country Link
WO (1) WO2019056304A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556888A (en) * 2013-09-23 2016-05-04 高通股份有限公司 LTE-U uplink waveform and variable multi-subframe scheduling
CN106470474A (en) * 2015-08-17 2017-03-01 上海无线通信研究中心 A kind of different communication network coexists the method using unlicensed band
WO2017078775A1 (en) * 2015-11-05 2017-05-11 Intel IP Corporation Listen before talk for discovery reference signal transmission in unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556888A (en) * 2013-09-23 2016-05-04 高通股份有限公司 LTE-U uplink waveform and variable multi-subframe scheduling
CN106470474A (en) * 2015-08-17 2017-03-01 上海无线通信研究中心 A kind of different communication network coexists the method using unlicensed band
WO2017078775A1 (en) * 2015-11-05 2017-05-11 Intel IP Corporation Listen before talk for discovery reference signal transmission in unlicensed spectrum

Similar Documents

Publication Publication Date Title
US20230137428A1 (en) Methods and apparatuses for transmitting control information
WO2019090774A1 (en) Methods and apparatuses for demodulation reference signal configuration
US20220231813A1 (en) Methods and apparatuses for phase tracking reference signal configuration
US11569956B2 (en) Methods and apparatuses for phase tracking reference signal configuration
WO2021012277A1 (en) Indication of repetition number for physical shared channel
WO2020118686A1 (en) Dmrs configuration
WO2020056591A1 (en) Multi-trp transmission
US20230327843A1 (en) Methods and apparatuses for reference signal allocation
US11395262B2 (en) Methods and devices for transmission by selecting between uplink resources
AU2019474027B2 (en) Methods, devices and computer readable media for communication on unlicensed band
US20220239448A1 (en) Methods, devices and computer storage media for communication
WO2023010289A1 (en) Method, device and computer readable medium for communications
WO2021227067A1 (en) Method, device and computer readable medium for communication
WO2019056304A1 (en) Resource configuration for unlicensed band
WO2021159353A1 (en) Methods, devices and computer storage media of communication
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2023141999A1 (en) Method, device and computer storage medium of communication
WO2023102841A1 (en) Method, device and computer storage medium of communication
WO2023087315A1 (en) Methods, devices, and computer readable medium for communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2024103363A1 (en) Method, device and computer storage medium of communication
WO2024060088A1 (en) Method, device, and medium for communication
WO2024103364A1 (en) Method, device and computer storage medium of communication
WO2023279301A1 (en) Method, device and computer readable medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925665

Country of ref document: EP

Kind code of ref document: A1