WO2022236545A1 - 一种电池系统及控制方法 - Google Patents

一种电池系统及控制方法 Download PDF

Info

Publication number
WO2022236545A1
WO2022236545A1 PCT/CN2021/092680 CN2021092680W WO2022236545A1 WO 2022236545 A1 WO2022236545 A1 WO 2022236545A1 CN 2021092680 W CN2021092680 W CN 2021092680W WO 2022236545 A1 WO2022236545 A1 WO 2022236545A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cluster
voltage
switch
battery module
Prior art date
Application number
PCT/CN2021/092680
Other languages
English (en)
French (fr)
Inventor
周贺
王志刚
吴志鹏
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2021/092680 priority Critical patent/WO2022236545A1/zh
Priority to CN202180069398.2A priority patent/CN116508225A/zh
Priority to EP21941121.2A priority patent/EP4336698A1/en
Publication of WO2022236545A1 publication Critical patent/WO2022236545A1/zh
Priority to US18/505,505 priority patent/US20240088697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits

Definitions

  • the present application relates to the field of electronic technology, in particular to a battery system and a control method.
  • battery systems are widely used in scenarios such as power generation side, grid side, user side (such as industrial and commercial power consumption, residential power consumption, etc.) and micro-grid.
  • the DC voltage levels required in different scenarios are also diverse. For example, the DC voltage level required by commercial power stations on the power generation side is the highest, and the DC voltage level required in industrial and commercial power consumption scenarios is lower than that required by commercial power stations.
  • the DC voltage level required for user-side scenarios is usually the lowest.
  • a battery system can provide a single DC voltage level, which is difficult to adapt to the diverse DC voltage levels required by different scenarios.
  • the present application provides a battery system and a control method, which can provide voltages required by various loads, have a wide range of application scenarios, and have high scene adaptability.
  • the present application provides a battery system, including a first busbar, at least one battery cluster, and a control circuit; each of the battery clusters is connected to the first busbar, and the first busbar is connected to a load;
  • the battery cluster includes a plurality of battery units connected in series; each battery unit includes a battery module, an access switch K1 and an isolation switch K2; the access switch K1 is connected in series with the battery module A first branch is formed, and the isolating switch K2 is connected in parallel with the first branch;
  • the control circuit is connected to the control terminal of the access switch K1 and the isolating switch K2, and is used for: according to the requirements of the load control the access switch K1 and the isolating switch K2 of the N battery units in the battery cluster, so that the battery modules in the N battery units are connected to the first bus for For power supply, the output voltage of the first bus bar meets the first voltage required by the load.
  • the control circuit is connected to the control switch K1 and the isolation switch K2 in each battery unit, and can control each access switch K1 and isolation switch K2 to be in the on state or the off state.
  • the control circuit can connect the battery modules in the battery units to the first bus by controlling the access switch K1 and the isolation switch K2 in each battery unit.
  • the control circuit can adjust the output voltage of the first bus to meet the voltage required by the load by controlling the battery modules in the N battery units in the battery cluster to connect to the first bus to provide power according to the first voltage required by the load. It is more flexible for the control circuit to adjust the output voltage of the first bus bar to the load, and the battery system can be applied to scenarios with different required voltages, which has a wide range of application scenarios and high adaptability to the scenarios.
  • control circuit is further configured to: according to the correspondence between the voltage required by the load and the number of battery cells and the first voltage, determine that the number of battery cells corresponding to the first voltage is the Said N, wherein the correspondence relationship includes a plurality of voltages required by the load.
  • the control circuit may determine the number of battery cells corresponding to the voltage required by the load according to the correspondence between the voltage and the number of battery cells.
  • the control circuit can control the access switch K1 and the isolation switch K2 of the number of battery units in the battery cluster, so that the number of battery modules can be connected to the first bus for power supply, thereby adjusting the output voltage of the first bus.
  • the method for the control circuit to adjust the output voltage of the first bus to meet the voltage required by the load is more flexible.
  • the battery system further includes at least one battery module management circuit; the battery module management circuit is respectively connected to the battery cluster and the control circuit; the battery module management circuit uses Collecting the voltage and current of each battery unit in the connected battery clusters, and determining the SOH parameters of each battery module state of health based on the collected voltages and currents, so that the control circuit selects from the battery clusters according to the SOH parameters of each battery module.
  • the N battery cells are selected.
  • the battery system may include a battery module management circuit, which is used to collect the voltage and current of each battery module to determine the SOH parameters of each battery module, which can facilitate the control circuit according to the SOH parameters of each battery module. Select the battery module connected to the first bus from the battery cluster.
  • control circuit is further configured to: determine the battery module to which The status category of the battery cells; based on the status category of each battery unit in the battery cluster, select the N battery cells from the battery cluster, so that the SOH of each battery module in the battery cluster is balanced.
  • the control circuit can select N battery cells from all the battery cells included in the battery cluster according to the SOH status category of each battery cell and control the selection
  • the battery modules in the output battery units are connected to the first bus to adjust the output voltage of the first bus, which can take into account the SOH state of each battery module and improve the use efficiency of each battery module.
  • the battery module management circuit is specifically configured to periodically collect the voltage and current of each battery unit in the connected battery cluster, and determine the SOH parameters of each battery module based on the collected voltage and current, And provide the SOH parameter of the battery module to the control circuit; the control circuit is also used to: based on the last received SOH parameter of the battery module, update the battery cell to which the battery module belongs status category.
  • the battery module management circuit can periodically determine the SOH of each battery module, and realize dynamic detection of the SOH of each battery module, so that the control circuit can dynamically update the status category of each battery unit, Based on the updated status category of each battery unit, the battery module connected to the first bus for adjusting the output voltage of the first bus is determined.
  • the multiple state categories include a first state category and a second state category, and the SOH parameter range corresponding to the first state category does not overlap with the SOH parameter range corresponding to the second state category .
  • the SOH parameter ranges corresponding to the first state category and the second state category do not overlap, so that the SOH state category of a battery module can be one of the first state category and the second state category, which is convenient for control
  • the circuit manages each battery module.
  • the battery module management circuit is respectively connected to the control terminal of the access switch K1 and the control terminal of the isolation switch K2 in each battery unit in the connected battery cluster;
  • the module management circuit is also used to detect whether the battery module in each battery unit in the connected battery cluster is faulty; and when the battery module in the first battery unit is detected to be faulty, control the The access switch K1 and the isolating switch K2, so that the battery modules in the first battery unit are not connected to the battery modules in other battery units.
  • the battery module management circuit may detect whether a battery module in a connected battery cluster is faulty. In the case of a battery module failure, the battery module management circuit can control the access switch K1 and the isolation switch K2 in the battery unit to which the failed battery module belongs, for example, control the access switch K1 to be in an open circuit state and isolate the The switch K2 is in the conducting state, so that the faulty battery module is isolated from the battery cluster, without affecting the operation of other battery modules in the battery cluster, and improving the availability of the battery system.
  • the battery module management circuit is also used to detect whether the battery module in each battery unit in the connected battery cluster is faulty; and after detecting that the battery module in the first battery unit fails , providing the fault indication information carrying the identification of the first battery unit to the control circuit, so that the control circuit controls the battery modules in the second battery unit and the battery modules in other battery units connected.
  • the battery module management circuit may detect whether a battery module in a connected battery cluster is faulty. When it is determined that the battery module is faulty, the information of the battery unit to which the faulty battery module belongs is provided to the control circuit so that the control circuit controls the access switch K1 and the isolation switch K2 in the battery unit, so that the faulty battery module isolated from the battery cluster. For example, in the case of a serious battery module failure, the battery module management circuit can isolate the failed battery group from the battery cluster in time.
  • control circuit is further configured to: according to the third battery unit identifier in the received fault indication information, control the access switch in the third battery unit corresponding to the third battery unit identifier K1 and the isolating switch K2, so that the battery modules in the third battery unit are disconnected from the battery modules in other battery units.
  • the control circuit can learn the information of the battery unit to which the faulty battery module belongs according to the received fault indication information, and the control circuit can adjust the access switch K1 and the isolation switch in the battery unit to which the faulty battery module belongs K2. For example, control the access switch K1 to be in the off-circuit state, and the isolation switch K2 to be in the on-state, so that the faulty battery module is isolated from the battery cluster, without affecting the operation of other battery modules in the battery cluster, and improving the availability of the battery system. Spend.
  • the battery system further includes at least one high-voltage switch; the at least one battery cluster has a one-to-one correspondence with the at least one high-voltage switch, and the control circuit is connected to the control terminal of the high-voltage switch ;
  • the battery cluster is connected to the corresponding high-voltage switch, the corresponding high-voltage switch is in the on state, the battery cluster is connected to the first bus bar, and the corresponding high-voltage switch is in the off state, the battery A cluster is disconnected from the first bus.
  • control circuit can control the high-voltage switch connected to the battery cluster to be in a conducting state, so that the battery cluster is connected to the first bus bar, and the battery cluster can be discharged or charged through the first bus bar.
  • the control circuit may also control the high-voltage switch connected to the battery cluster to be in an open circuit state, so that the battery cluster is not connected to the first bus.
  • the battery system further includes at least one DC/DC conversion circuit; the at least one DC/DC conversion circuit corresponds to the at least one battery cluster; the battery cluster corresponds to the corresponding DC The first side of the DC/DC conversion circuit is connected, and the other side of the corresponding DC/DC conversion circuit is connected to the first bus; the DC/DC conversion circuit is used to modulate the output voltage of the battery cluster , and transmit the modulated voltage to the first bus.
  • the DC/DC conversion circuit included in the battery system can modulate the output voltage of the battery cluster, and transmit the modulated voltage to the first bus, so as to supply power to the load connected to the first bus.
  • the DC/DC conversion circuit is also used to modulate the voltage at the first bus to a charging voltage, so as to charge the connected battery clusters.
  • the first bus in the battery system is connected to an external power source.
  • Each battery cluster is used to store electrical energy.
  • the DC/DC conversion circuit can modulate the voltage at the first bus to charge the battery cluster connected to it. It can be seen that the battery system can be applied not only to power supply scenarios, but also to backup power scenarios.
  • the battery system further includes at least one high-voltage switch; the at least one battery cluster has a one-to-one correspondence with the at least one high-voltage switch, and the control circuit is connected to the control terminal of the high-voltage switch
  • the battery cluster, the high-voltage switch corresponding to the battery cluster, and the DC/DC conversion circuit corresponding to the battery cluster are sequentially connected in series, the corresponding high-voltage switch is in a conducting state, and the battery cluster and the corresponding The DC/DC conversion circuit is connected, the corresponding high-voltage switch is in an open circuit state, and the battery cluster is not connected to the corresponding DC/DC conversion circuit.
  • control circuit can control the high-voltage switch connected to the battery cluster to be in a conducting state, so that the battery cluster is connected to the corresponding DC/DC conversion circuit, so that the voltage provided by the DC/DC conversion circuit to the battery cluster Modulate and output to the first bus, or modulate the voltage at the first bus with a DC/DC conversion circuit and output to the battery cluster to charge the battery cluster.
  • the control circuit can also control the high-voltage switch connected to the battery cluster to be in an open circuit state, so that the battery cluster is not connected to the corresponding DC/DC conversion circuit.
  • the battery system further includes a DC/AC conversion circuit; the DC/AC conversion circuit is respectively connected to the first bus connection and the load; the DC/AC conversion circuit is used to convert the first The DC power at a bus bar is converted into AC power, and the AC power is provided to the load.
  • the battery system may include a DC/AC conversion circuit, which may be applied in an AC power scenario.
  • the present application provides a control method, which can be applied to a battery system, and the battery system includes a first bus, at least one battery cluster and a control circuit; each of the battery clusters is connected to the first bus respectively, The first bus bar is connected to the load; the battery cluster includes a plurality of battery units connected in series; each battery unit includes a battery module, an access switch K1 and an isolation switch K2; the access The switch K1 is connected in series with the battery module to form a first branch, and the isolation switch K2 is connected in parallel with the first branch; the method includes: controlling the battery according to the first voltage required by the load The access switch K1 and the isolating switch K2 of the N battery units in the cluster, so that the battery modules in the N battery units are connected to the first bus for power supply, and the output voltage of the first bus is meet the first voltage required by the load.
  • the battery system further includes at least one battery module management circuit, the battery module management circuit is connected to the battery cluster, and is used to collect the voltage and current of each battery unit in the connected battery cluster
  • the method further includes: determining the SOH parameters of each battery module state of health based on the collected voltage and current, and the SOH parameters are used to select the N battery cells from the battery cluster.
  • the multiple state categories include a first state category and a second state category, and the SOH parameter range corresponding to the first state category does not overlap with the SOH parameter range corresponding to the second state category .
  • the battery module management circuit is also used to periodically collect the voltage and current of each battery cell in the connected battery cluster; the method further includes: based on the last determined battery module The SOH parameter of the battery module is updated to update the status category of the battery unit to which the battery module belongs.
  • the method further includes: determining the battery unit to which the battery module belongs according to the SOH parameter range corresponding to each state category in the preset multiple state categories and the SOH parameter of the battery module based on the status category of each battery unit in the battery cluster, selecting the N battery cells from the battery cluster to balance the SOH of each battery module in the battery cluster.
  • the method further includes: detecting whether a battery module in each battery unit in the battery cluster is faulty; and when it is detected that a battery module in the first battery unit is faulty, controlling the The access switch K1 and the isolating switch K2 in the first battery unit prevent the battery modules in the first battery unit from communicating with the battery modules in other battery units.
  • the technical effect of the corresponding solution in the second aspect can refer to the technical effect that can be obtained by the corresponding solution in the first aspect, and the repeated parts will not be described in detail.
  • FIG. 1 is a schematic structural diagram of a conventional battery system
  • FIG. 2 is a schematic structural diagram of a battery system
  • Fig. 3 is a schematic diagram of different output voltages of the battery system
  • FIG. 4 is a schematic structural diagram of a battery system
  • Fig. 5 is a structural schematic diagram of a plurality of battery systems with different backup power durations
  • FIG. 6 is a schematic structural diagram of multiple battery systems with different backup power durations.
  • a battery system 1 includes N battery modules connected in series, and the battery system 1 provides a DC voltage VN.
  • the battery system 2 includes M battery modules connected in series, and the battery system 2 provides a DC voltage VM.
  • the number M of battery modules connected in series in the battery system 2 is smaller than the number N of battery modules connected in series in the battery system 1 , so the DC voltage VN is greater than the DC voltage VM.
  • the DC voltage provided by the battery system 1 is higher, and can provide a DC voltage of a high voltage level (or provide a high voltage level).
  • the DC voltage provided by the battery system 2 is relatively low, and can provide a DC voltage of a low voltage level (or provide a low voltage level).
  • a plurality of battery modules connected in series can be called a battery cluster.
  • Each battery system can also include a power conversion system (power conversion system, PCS) that can control the charging and discharging process of the battery cluster, and convert DC current to AC current, or convert AC current to DC current.
  • PCS power conversion system
  • the embodiment of the present application provides a battery system 100 that can provide various DC voltages, has a wide range of application scenarios, and has high adaptability to application scenarios. Embodiments of the present application will be described in detail below in conjunction with the accompanying drawings.
  • the battery system may include a first bus bar and at least one battery cluster 20 .
  • Each battery cluster 20 is respectively coupled to the first bus bar.
  • the first bus bar may include a positive bus bar and a negative bus bar
  • the positive pole of the battery cluster 20 may be connected to the positive bus bar
  • the negative pole of the battery cluster 20 may be connected to the negative bus bar.
  • each battery cluster 20 can output a voltage to the first bus, so the voltage at the first bus is determined based on the voltage output by each battery cluster 20 thereto. If the battery system includes one battery cluster 30 , the voltage at the first bus is the voltage output by the one battery cluster 20 . If the battery system includes multiple battery clusters 30 , the voltage at the first bus can be determined according to the output voltage of each battery cluster 20 .
  • Each battery cluster 20 may include a plurality of battery cells 30 which are sequentially connected in series.
  • the number of battery cells 30 included in each battery cluster 20 may be N, where N is an integer greater than or equal to 2.
  • Each battery unit 30 may include a battery module, an access switch K1 and an isolation switch K2.
  • the access switch K1 is connected in series with the battery module to form a first branch, and the isolation switch K2 is connected in parallel with the first branch.
  • the first end k1a of the access switch K1 is connected to the first end k2a of the isolation switch K2 , which may serve as the first end of the battery unit 30 .
  • the second end k1b of the access switch K1 is connected to the first end a1 of the battery module.
  • the second terminal a2 of the battery module is connected to the second terminal k2b of the isolating switch K2, which can be used as the second terminal of the battery unit 30 .
  • a battery module can also be called a battery module, electrical box or battery pack.
  • a battery module may include multiple cells (energy storage batteries). Multiple cells can be connected in series or in parallel.
  • the battery module may include a single board, a temperature sensor, a voltage sensor and other components for managing the battery module.
  • the battery module can also include a battery management system and the like.
  • the battery module may include a battery state monitoring controller.
  • the battery state monitoring controller can be coupled with each energy storage battery to manage the health status of each energy storage battery.
  • the first terminal a1 of each battery module can be a positive terminal, and the second terminal a2 can be a negative terminal.
  • the first terminal a1 of each battery module can be a negative terminal, and the second terminal a2 can be a positive terminal.
  • the first terminal a1 of each battery module is a positive terminal, and the second terminal a2 is a negative terminal as an example for illustration.
  • a plurality of battery cells 30 may be sequentially connected in series.
  • the second terminal of the previous battery unit 30 is connected to the first terminal of the latter battery unit 30 .
  • the second end of the last battery unit 30 is not connected to other battery units 30 .
  • the first end of the first battery unit 30 is not connected to other battery units 30 .
  • the first terminal of the first battery unit 30 in the battery cluster 20 is also the first terminal of the battery cluster 20
  • the second terminal of the last battery unit 30 is also the second terminal of the battery cluster 20 .
  • the first terminal and the second terminal of the battery cluster 20 are respectively connected to the positive input terminal and the negative input terminal of the load.
  • the battery system 100 may further include a control circuit, and the control circuit may be connected to the control terminal of the access switch K1 and the control terminal of the isolation switch K2 in each battery unit 30 in each battery cluster 20 .
  • the control circuit can control the access switch K1 to be in a conducting state, or to be in a disconnecting state.
  • the control circuit can also control the isolating switch K2 to be in a conducting state, or to be in a disconnecting state.
  • the first bus bar can be connected to a load.
  • the control circuit can adjust the battery cluster 20 to output various voltages to the first bus by controlling the state of the access switch K1 and the isolation switch K2 in each battery unit 30 in the battery cluster 20, so that the battery system 100 can be used as a load Various voltage levels are available. For example, the voltage required by the load is V1, and the control circuit can control the access switch K1 and the isolation switch K2 of the N1 battery units in the battery cluster, so that the battery modules in the N1 battery units can be connected to the first bus for power supply. Make the voltage output from the first bus bar to the load meet the voltage V1 required by the load.
  • the control circuit can control the access switch K1 and the isolation switch K2 of the N2 battery units in the battery cluster, so that the battery modules in the N2 battery units are connected to the first bus for power supply,
  • the voltage output from the first bus to the load can meet the voltage V2 required by the load.
  • the control circuit controls the output voltage of one of the battery clusters included in the battery system 100 .
  • the battery unit 30 communicates with the first end of the battery cluster 20 and communicates with the second end of the battery cluster 20, which can be recorded as that the battery unit 30 is in the online state, that is, the battery
  • the battery modules in unit 30 are connected to the first bus. If the battery unit 30 fails to communicate with the first end of the battery cluster 20, or fails to communicate with the second end of the battery cluster 20, it can be recorded as that the battery unit 30 is in an offline state, that is, the battery module in the battery unit 30 is not connected. into the first bus.
  • the battery modules in the battery unit 30 are in the online state.
  • the battery module in the battery unit 30 is connected to the first bus bar, that is, it is connected to the load of the battery system (such as DC/DC converter, DC/AC converter, power conversion system, power load, power supply device, etc.)
  • the current provided by the battery cell 30 may be transferred to the first end or the second end of the battery pack 20 , or the current at the first end or the second end of the battery pack 20 may be transferred to the battery cell 30 .
  • the battery module in the battery unit 30 is in the offline state.
  • the battery modules in the battery unit 30 are not connected to the loop connected to the load of the battery system, and cannot be charged or discharged through the loop. In other words, the current provided by the battery cells 30 cannot be transferred to the first terminal or the second terminal of the battery cluster 20 , or the current at the first terminal or the second terminal of the battery cluster 20 can be transmitted to the battery cells 30 .
  • control circuit can adjust the state of the battery unit 30 in the online state or the offline state by controlling the state of the access switch K1 and the isolation switch K2 in the battery unit 30, that is, to realize the adjustment of the battery module in the battery unit 30 Connected to the first bus or not connected to the first bus.
  • the control circuit adjusts the battery unit 30 to be in the online state, it can control the access switch K1 in the battery unit 30 to be in the on state, and the isolation switch K2 to be in the off state.
  • the control circuit adjusts that the battery unit 30 is in the offline state, it can control the access switch K1 in the battery unit 30 to be in the off state and the isolating switch K2 to be in the on state.
  • the control circuit can control the access switch K1 and the isolating switch K2 in each battery unit 30 to adjust the number of battery units 30 in the battery cluster 20 connected to the first end and the second end of the battery cluster 20, and also to adjust the number of battery units 30 in the battery cluster 20.
  • the number of battery modules connected to the first bus Because the number of battery cells 30 connected to the first end and the second end of the battery cluster 20 is different, the output voltages of the battery cluster 20 are different. In other words, the number of battery modules connected to the first bus in the battery cluster 20 is different, so that the voltage output from the battery cluster 20 to the first bus can be different.
  • control circuit can adjust the output voltage of the battery cluster 20 by adjusting the number of online battery cells 30 in the battery cluster 20 .
  • the control circuit can adjust the voltage output from the battery cluster 20 to the first bus bar by adjusting the number of battery modules in the battery cluster 20 connected to the first bus bar for power supply.
  • the battery modules of all battery units 30 in the battery cluster 20 are in the online state, that is, all the battery modules in the battery cluster 20 are connected to the first bus for power supply, and the output voltage of the battery cluster 20 is The maximum output voltage of the battery pack 20 .
  • the control circuit can adjust the battery modules in each battery unit 30 in the battery cluster 20 to be in an online state.
  • the control circuit may control the access switch K1 in each battery unit 30 in the battery cluster 20 to be in the ON state, and the isolation switch K2 to be in the OFF state.
  • the voltage between the first terminal and the second terminal of the battery cluster 20 is the maximum output voltage.
  • the battery modules of all the battery units 30 in the battery cluster 20 are offline, that is, all the battery modules in the battery cluster 20 are not connected to the first bus, and the output voltage of the battery cluster 20 is zero.
  • the control circuit can adjust the battery modules in each battery unit 30 in the battery cluster 20 to be offline.
  • the control circuit may control the access switch K1 of each battery unit 30 in the battery cluster 20 to be in the off state, and the isolation switch K2 to be in the on state. In this case, the voltage between the first terminal and the second terminal of the battery cluster 20 is zero.
  • the control circuit can adjust the battery modules in the N1 battery units 30 in the battery cluster 20 to be all online, that is, control the battery modules in the N1 battery units to connect to the first A bus is used to supply power, and the battery modules in the battery cluster 20 other than the battery modules in the N1 battery units 30 are not connected to the first bus, so that the battery cluster can provide the voltage to the first bus, that is, The voltage output by the first bus bar to the load meets the voltage V1 required by the load.
  • the output voltage of the first bus can be adjusted by the control circuit by adjusting the number of battery modules connected to the first bus.
  • control circuit can adjust the battery modules in the N1 battery units 30 in the battery cluster 20 to be all online.
  • the total number of all battery units 30 in the battery cluster 20 can be recorded as P
  • N1 can be an integer in the set A
  • the set A can be [0, P].
  • the control circuit can adjust other battery units in the battery cluster 30 except the aforementioned N1 battery units 30 to be offline, that is, the other P-N1 battery units are offline.
  • the control circuit can control the access switch K1 in the N1 battery units 30 in the battery cluster 20 to be in the on state, the isolation switch K2 to be in the off state, and the access switch K1 in the P-N1 battery units 30 to be in the off state, to isolate
  • the switch K2 is in the ON state, so that the battery modules in the N1 battery units 30 are all connected to the first bus, and the battery modules in the P-N1 battery units 30 are not connected to the first bus.
  • the voltage between the first terminal and the second terminal of the battery cluster 20 is the sum of the voltages provided by the battery modules in the N1 battery units 30 .
  • the control circuit can adjust the voltage provided by the battery cluster 20 to the first bus by adjusting the number of battery modules connected to the first bus for power supply in the battery cluster 20, that is, to adjust the output of the first bus to the load. Voltage.
  • the first bus in the battery system 100 is coupled to the load.
  • the output voltages of each battery cluster are the same, that is, the operating states of each battery cluster are the same. In other words, the number of online battery cells in each battery cluster is the same.
  • the output voltage of each battery cluster is the maximum output voltage
  • the output voltage of the battery system 100 is the maximum total system voltage.
  • the battery system 100 includes at least one DC/DC conversion circuit.
  • the at least one DC/DC conversion circuit 50 is in one-to-one correspondence with the at least one battery cluster.
  • Each battery cluster 20 is connected to the first bus through a corresponding DC/DC conversion circuit 50 .
  • the first end of the battery cluster 20 can be connected to the first end b1 of the corresponding DC/DC conversion circuit 50, and the second end of the battery cluster 20 can be connected to the second terminal b1 of the corresponding DC/DC conversion circuit 50.
  • Terminal b2 is connected.
  • the third terminal C of each DC/DC conversion circuit 50 is coupled to the first bus.
  • the DC/DC conversion circuit 50 can form a charging and discharging circuit with corresponding battery clusters.
  • the DC/DC conversion circuit 50 may include but not limited to one or more of the following circuits: a linear regulated power supply circuit, a step-down (Buck) conversion circuit, a boost (Boost) conversion circuit, a buck-boost (Buck- Boost) conversion circuit, three-level step-down (Buck) conversion circuit, switched capacitor conversion circuit, LLC resonant conversion circuit, dual active full bridge DC-DC (dual active bridge, DAB) conversion circuit, forward
  • a linear regulated power supply circuit a step-down (Buck) conversion circuit, a boost (Boost) conversion circuit, a buck-boost (Buck- Boost) conversion circuit, three-level step-down (Buck) conversion circuit, switched capacitor conversion circuit, LLC resonant conversion circuit, dual active full bridge DC-DC (dual active bridge, DAB) conversion circuit, forward
  • DAB dual active bridge DC-DC
  • the battery system 100 may be used to store electrical energy.
  • each DC/DC conversion circuit 50 can modulate the voltage at the first busbar into a charging voltage and provide it to the connected battery cluster 20 to charge the connected battery cluster 20.
  • Clusters 20 may store electrical energy.
  • the battery system 100 may be used to provide electrical energy.
  • each DC/DC conversion circuit 50 can modulate the voltage output by the connected battery cluster 20, output the modulated voltage to the first bus, and provide it to the load to The battery system 100 is implemented to provide electric energy for loads.
  • the DC/DC conversion circuit 50 modulates the maximum output voltage output by the connected battery cluster 20, and the modulated voltage is the DC/DC conversion
  • the corresponding modulated maximum voltage also referred to as the maximum discharge voltage
  • the output voltage of each DC/DC conversion circuit 50 is the corresponding modulated maximum voltage
  • the output voltage of the battery system 100 is the maximum total system voltage.
  • the control circuit can be connected to the control terminal of the DC/DC conversion circuit 50 , and the DC/DC conversion circuit 50 can perform voltage modulation (conversion).
  • the DC/DC conversion circuit 50 includes one or more switch tubes, and the control terminal of the DC/DC conversion circuit 50 may include control electrodes (gates) of these switch tubes.
  • the control circuit can be a logic circuit with logic operation capability, which can generate a control signal, and through the control signal, each switch tube in the DC/DC conversion circuit 50 is turned on or off, so that the DC/DC conversion circuit 50 realizes voltage conversion.
  • the control circuit can pre-store the output voltage of the battery system 100 (total system voltage, load required voltage, etc.) The corresponding relationship between the number of groups). For example, the total system voltage output by the battery system 100 is U1, and the corresponding number of battery cells is num1. The total system voltage output by the battery system 100 is U2, and the corresponding number of battery cells is num2.
  • the battery system 100 may include a display component, a button, etc., and the voltage adjustment command may be triggered through a button or a menu in a display interface.
  • the voltage adjustment instruction may be sent to the control circuit by an external device (device other than the battery system).
  • the control circuit can receive the voltage adjustment instruction.
  • the voltage adjustment command may carry information used to indicate the voltage required by the load connected to the first bus (referred to as the first voltage for convenience of description).
  • the voltage adjustment command can be used to instruct the control circuit to adjust the number of battery cells in the online state (the included battery modules are connected to the first bus bar) in each battery cluster, so that the output voltage of the first bus bar meets the first voltage, such as The output voltage of the first bus is the first voltage, or close to the first voltage (the load connected to the first bus can operate normally).
  • the first voltage carried by the voltage adjustment command may be a value between the maximum value of the total system voltage output by the battery system 100 and zero.
  • the control circuit may receive a first adjustment instruction (also called a maximum output voltage instruction), which is used to instruct the control circuit to adjust the output voltage of the battery system 100 to the maximum system total voltage of the battery system 100 .
  • a first adjustment instruction also called a maximum output voltage instruction
  • the control circuit can adjust the output voltage of all battery clusters 20 to the maximum output voltage of each battery cluster 20, so that the output voltage of the first bus bar is the maximum output voltage, that is, the voltage provided by the battery system 100 It may be the maximum output voltage of the battery system 100 .
  • control circuit may receive a second adjustment instruction (also called a stop output voltage instruction), the second adjustment instruction is used to instruct the control circuit to adjust the output voltage of the battery system 100 to zero.
  • the control circuit can adjust the output voltages of all battery clusters 20 to be zero, and the voltage at the first bus bar to be zero, that is, the voltage provided by the battery system 100 to be zero.
  • control circuit may receive a third adjustment instruction (also referred to as an output specified voltage instruction), which is used to instruct the control circuit to adjust the output voltage of the battery system 100 to a specified voltage.
  • a third adjustment instruction also referred to as an output specified voltage instruction
  • the control circuit can adjust the number of battery units 30 in the online state in all battery clusters 20 (the number of battery modules connected to the first bus for power supply in all battery clusters 20), so that The output voltage of the first bus bar is a specified voltage.
  • control circuit can be based on pre-storing the output voltage of the battery system 100 (total system voltage, voltage required by the load, etc.)
  • the corresponding relationship is to determine the number of battery cells corresponding to the first voltage.
  • the number of battery cells corresponding to the first voltage is recorded as the first number.
  • the control circuit can select a first number of M battery cells 30 from the first battery cluster, and adjust the selected first number of battery cells 30 to be at online status.
  • the control circuit can control the access switch K1 in the selected first number of battery units 30 to be in the on state, and the isolation switch K2 to be in the off state, so that the batteries in the first number of battery units 30 The module is connected to the first bus.
  • the access switches K1 in the battery units other than the first number of battery units 30 are in an open circuit state, and the isolation switch K2 is in a conductive state, so that all but the first number of battery cells in the first battery cluster
  • the battery modules in the battery units 30 other than the first battery unit 30 are not connected to the first bus.
  • control circuit may randomly select the first number of battery cells from the first battery cluster, or arbitrarily select the first number of battery cells from the first battery cluster.
  • the control circuit can select a first number of battery cells from the first battery cluster according to a preset selection method.
  • the control circuit controls the battery modules in all battery cells 30 in the first battery cluster to access first busbar.
  • the control circuit may control the access switches K1 in all battery units 30 to be in the on state, and the isolation switches K2 to be in the off state.
  • the output voltage of the first battery cluster is In the case of (as shown in part (b) of Figure 3), the control circuit controls the The battery modules in each battery unit 30 are connected to the first bus bar, except the The battery modules in the battery units 30 other than the first battery unit 30 are not connected to the first bus.
  • the control circuit can control the circuit in the first battery cluster
  • the access switch K1 in each battery unit 30 is in the on state, and the isolation switch K2 is in the off state, except the The access switch K1 in the other battery units 30 other than the first battery unit 30 is in the off state, and the isolation switch K2 is in the on state.
  • the output voltage of the first battery cluster is In the situation (as shown in part (c) of Figure 3), the control circuit controls the The battery modules in each battery unit 30 are connected to the first bus bar, except the The battery modules in the battery units 30 other than the first battery unit 30 are not connected to the first bus.
  • the control circuit controls the The access switch K1 in each battery unit 30 is in the on state, and the isolation switch K2 is in the off state, except the The access switch K1 in the other battery units 30 other than the first battery unit 30 is in the off state, and the isolation switch K2 is in the on state.
  • the control circuit can control the battery modules in each battery unit 30 in the first battery cluster to be in the online state (connected to the first bus bar) or offline state (not connected to the first bus bar), so as to realize the adjustment of the first The voltage provided by the battery cluster to the first bus, thereby adjusting the output voltage of the first bus. Therefore, the first battery cluster can be used in application scenarios where the required voltage level does not exceed the maximum output voltage of the first battery cluster. It can be seen that the battery system 100 provided by the embodiment of the present application can satisfy various DC voltage levels required by different scenarios, instead of the scenario where the traditional battery system only applies to a single DC voltage level.
  • the battery system 100 may include at least one high voltage switch 40 .
  • the number of the at least one high voltage switch 40 may be the same as the number of the at least one battery cluster.
  • the at least one high voltage switch 40 may have a one-to-one correspondence with the at least one battery cluster.
  • the battery cluster 20 may be connected to a corresponding one of the high voltage switches 40 .
  • the battery cluster 20 may be connected to the first bus bar via a high voltage switch.
  • the first end of the battery cluster 20 , the corresponding high voltage switch 40 and the first end of the corresponding DC/DC conversion circuit are connected in series in sequence.
  • the second end of the battery pack 20 is connected to the second end of the DC/DC conversion circuit.
  • the third end of the DC/DC conversion circuit is connected to the first bus.
  • the battery system 100 may include a DC/AC conversion circuit, and the battery system 100 may be applied to an AC power consumption scenario.
  • the first bus bar is connected to the input side of the DC/AC conversion circuit, and the output side of the DC/AC conversion circuit is connected to the load.
  • the DC/AC conversion circuit can process the DC power on the first bus into AC power and provide it to the load.
  • the load may be a power conversion system.
  • the battery system 100 may also include one or more battery module management circuits 50 .
  • the battery system 100 includes a battery module management circuit 60, and each battery module in each battery cluster 20 can be coupled with the battery module management circuit 60, and the battery module management circuit 60 It is used to collect the voltage and current of each battery unit 30 in the connected battery cluster, and determine the SOH parameters of each battery module based on the collected voltage and current.
  • the battery module management circuit 60 may adopt any existing method for determining the SOH of the battery module, and determine the SOH parameters of each battery module based on the collected voltage and current.
  • the battery module management circuit 60 may also include a memory for storing the data required for determining the SOH parameters of each battery module, such as the collected data such as the voltage value and current value of the battery module, and may also store the rated parameters of the battery module For example, the internal resistance of the battery module, etc., can also store the historical parameters of the battery module, such as the SOH parameter of the battery module determined last time.
  • the battery system 100 may also include multiple battery module management circuits 60 .
  • the plurality of battery clusters 20 may have a one-to-one correspondence with the plurality of battery module management circuits 60 .
  • the battery pack 20 is coupled with a corresponding battery module management circuit 60 .
  • the battery module management circuit 60 can be coupled with each battery module in the corresponding battery cluster 20, and can collect the voltage and current of each battery unit in the connected battery cluster, and determine the battery module voltage and current based on the collected voltage and current. Health status SOH parameters.
  • the battery system 100 includes multiple battery module management circuits 60 as an example for description.
  • the battery module management circuit 60 can be integrated in the BMS.
  • the battery module management circuit 60 can be a battery management system (battery management system, BMS).
  • BMS battery management system
  • the battery module management circuit 60 can also perform functions other than determining the SOH parameters of each battery module, for example, detecting the temperature of the battery module.
  • the control circuit can be coupled with each battery module management circuit 60 .
  • the control circuit may be connected to the battery module management circuit 60 through a bus, and exchange data or information through the bus.
  • the control circuit may receive the SOH parameters of each battery module provided by each battery module management circuit 60 .
  • the SOH parameters of each battery module determined by the battery module management circuit 60 can be used by the control circuit to select battery cells from the battery cluster according to the SOH parameters of each battery module.
  • the battery module management circuit 60 can periodically determine the SOH parameters of each battery module, and send it to the control circuit, so that the control circuit can periodically obtain the SOH parameters of each battery module.
  • each battery module management circuit 60 can collect the voltage and current of each battery module according to a set period, determine the SOH parameter of each battery module, and send it to the control circuit, so that the control circuit can periodically Obtain the SOH parameters of each battery module.
  • the granularity of the set period may be hours, minutes, seconds and so on.
  • the control circuit can determine the first battery cluster according to the SOH ranges of at least two state categories and the SOH parameters of each battery module in the first battery cluster.
  • the at least two status categories may include a first status category and a second status category
  • the SOH range corresponding to the first status category may be denoted as set B1
  • the SOH range corresponding to the second status category may be denoted as Set B2.
  • set B1 and set B2 have no overlapping elements, so that a battery module has only one status category.
  • the status category of a battery module may be used as the status category of the battery unit to which the battery module belongs.
  • the control circuit can receive (or obtain) the SOH parameters of each battery module in the first battery cluster, and can determine the state category of each battery unit in the first battery cluster according to the SOH range of the at least two state categories, or , to update the status category of each battery cell in the first battery cluster. It can be understood that the status category of a battery module can be changed dynamically, or the status category of a battery unit can be changed dynamically.
  • the control circuit may select the first battery unit from the battery units whose state category is the third state category based on the current state category of each battery unit in the first battery cluster (also the state category of each battery module determined by the control circuit last time). A number of battery cells.
  • the third status category may be the first status category or the second status category. That is, the control circuit can select a first number of battery cells from a state category. For example, a first number of battery cells are selected from all battery cells whose status category is the first status category. Or, select the first number of battery cells from all the battery cells whose state is classified as the second state category.
  • the control circuit may determine the difference dn between num1 and the first number, and obtain The number of selected battery cells of the four state categories (a state category other than the third state category among the plurality of state categories) is the difference value dn battery cells.
  • the control circuit can control all the battery units in the third state category and the battery modules in the difference dn battery units to connect to the first bus, and the battery modules in other battery units are not connected to the first bus.
  • the control circuit is controlling all the battery units in the first battery cluster whose state category is the third state category and the battery modules in the difference dn battery units to connect to the first bus, and the other batteries
  • the battery module management circuit 60 corresponding to the first battery cluster can determine the SOH parameters of each battery module in the first battery cluster, and set the SOH parameters of each battery module to sent to the control circuit.
  • the control circuit can re-determine the status category of each battery module in the first battery cluster, that is, determine the status category of each battery unit.
  • the control circuit may reselect a first number of battery units from the first battery cluster based on the re-determined state category of each battery unit, and control the access of battery modules in the reselected first number of battery units
  • the first bus bar, the battery modules in other battery units in the first battery cluster are not connected to the first bus bar.
  • each battery unit can be controlled to dynamically connect to the first battery cluster, and each battery module can be put into each battery module in turn.
  • the SOH of each battery module is balanced, or the SOH is consistent.
  • the battery module management circuit 60 can also detect whether the battery module in each battery unit 30 in the connected battery cluster is faulty. For example, the battery module management circuit 60 detects at least one of overvoltage fault, overcurrent fault, overtemperature fault, or internal short circuit fault in the battery module.
  • the battery module management circuit 60 can be connected with the access switch K1 and the isolation switch K2 of each battery unit 30 in the connected battery cluster, and controls the on or off state of each switch. If the battery module management circuit 60 detects that the battery module in the first battery unit fails, it can control the access switch K1 in the first battery unit to be in the on state, and the isolating switch K2 to be in the off state, so that the fault occurs. The faulty battery module is isolated from the battery cluster without affecting the operation of other battery modules in the battery cluster, improving the availability of the battery system.
  • the battery module management circuit 60 can send failure indication information including the identification of the failed battery module to the control circuit, so that the control circuit can learn the identification of the failed battery module. For example, sending fault indication information carrying the first battery unit identifier to the control circuit.
  • the battery module management circuit 60 may include multiple sub-management circuits.
  • the multiple sub-management circuits correspond one-to-one to the multiple battery units 30 in the battery cluster connected to the battery module management circuit 60 .
  • the sub-management circuit is connected with the access switch K1 and the isolation switch K2 of the corresponding battery unit 30 to control the on or off state of each switch.
  • the sub-management circuit can be used for whether the battery module in the corresponding battery unit fails. If the sub-management circuit detects that the battery module in the first battery unit fails, it can control the access switch K1 in the first battery unit to be in the on state, and the isolation switch K2 to be in the off state, so that the failed battery can Modules are isolated from battery clusters.
  • the battery module management circuit 60 can also detect whether the battery module in each battery unit 30 in the connected battery cluster is faulty. If a failure of the battery module in the second battery unit is detected, failure indication information may be sent to the control circuit, wherein the failure indication information may include an identification of the second battery unit. After receiving the fault indication information, the control circuit can adjust the battery unit corresponding to the identification in the fault indication information to be in an offline state. For example, the second battery unit is adjusted to be offline. In such a design, the failed battery module is isolated from the battery cluster, which does not affect the operation of other battery modules in the battery cluster and improves the availability of the battery system.
  • the control circuit After the control circuit receives the fault indication information, it may no longer adjust the state of the battery unit corresponding to the identification included in the fault indication information, or no longer control the access switch K1 and the isolation switch K1 in the battery unit to which the faulty battery module belongs. Switch K2. In other words, when the control circuit selects the first number of battery units from the first battery cluster, the selected first number of battery units does not include a failed battery unit.
  • the battery system 100 provided in the embodiment of the present application can not only meet the diversified DC voltage levels required by different scenarios, but also meet the diversified backup power duration required by different scenarios.
  • each battery cluster of the traditional battery system includes k battery modules connected in series, and the maximum output voltage of each battery cluster is Please refer to Figure 5, assuming that s battery clusters can provide 1h backup power, that is, they can be charged with constant power for 1 hour or discharged with constant power for 1 hour. If the traditional battery system includes 2s parallel battery clusters, the traditional battery system can provide 2h backup power. If the traditional battery system includes 4s parallel battery clusters, the traditional battery system can provide 4h backup power.
  • each battery cluster 20 may include P battery cells 30, and each battery cell 30 includes a battery module. Therefore, each battery cluster 20 includes P battery modules. In the embodiment of the present application, P may be 2 times of k.
  • the battery system 100 includes A battery cluster 20 connected in parallel can provide 1h backup power.
  • the battery system 100 includes s battery clusters 20 connected in parallel to provide 2h backup power.
  • the battery system 100 includes 2s battery clusters 20 connected in parallel to provide 4h backup power.
  • the battery clusters in the battery system 100 can output high voltage levels and be applied in scenarios requiring low voltage levels, because each battery cluster 20 has a higher capacity.
  • the battery system 100 provided by the embodiment of the present application can include a smaller number of battery clusters, and thus can reduce the number of high-voltage switches, cables, backup switches, etc. The number of devices achieves a reduction in the cost of the battery system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种电池系统及控制方法,可以提供多种负载所需电压,应用场景广泛,具有较高的场景适应性。包括第一母线、至少一个电池簇和控制电路;每个电池簇分别与第一母线连接,第一母线与负载连接;电池簇包括多个电池单元,多个电池单元串联连接;每个电池单元包括电池模组、接入开关K1和隔离开关K2;接入开关K1与电池模组串联连接形成第一支路,隔离开关K2与第一支路并联;控制电路连接接入开关K1和隔离开关K2的控制端,用于:根据负载所需的第一电压,控制电池簇中N个电池单元的接入开关K1和隔离开关K2,以使N个电池单元中的电池模组接入第一母线进行供电,第一母线输出电压满足负载所需的第一电压。

Description

一种电池系统及控制方法 技术领域
本申请涉及电子技术领域,尤其涉及一种电池系统及控制方法。
背景技术
目前,电池系统在发电侧、电网侧、用户侧(如工商业用电、居民住宅用电等)和微电网等场景中均具有广泛应用。不同场景所需的直流电压等级也是多样化的,例如,发电侧中的商用电站所需直流电压等级最高,工商业用电场景中所需的直流电压等级比商用电站所需直流电压等级低一些,用户侧场景所需直流电压等级通常最低。目前,一个电池系统可以提供单一直流电压等级,难以适应于不同场景所需多样化的直流电压等级。
发明内容
本申请提供一种电池系统及控制方法,可以提供多种负载所需电压,应用场景广泛,具有较高的场景适应性。
第一方面,本申请提供一种电池系统,包括第一母线、至少一个电池簇和控制电路;每个所述电池簇分别与所述第一母线连接,所述第一母线与负载连接;所述电池簇包括多个电池单元,所述多个电池单元串联连接;每个电池单元包括电池模组、接入开关K1和隔离开关K2;所述接入开关K1与所述电池模组串联连接形成第一支路,所述隔离开关K2与所述第一支路并联;所述控制电路连接所述接入开关K1和所述隔离开关K2的控制端,用于:根据所述负载所需的第一电压,控制所述电池簇中N个电池单元的所述接入开关K1和所述隔离开关K2,以使所述N个电池单元中的电池模组接入所述第一母线进行供电,所述第一母线输出电压满足所述负载所需的第一电压。
本申请实施例中,控制电路与各电池单元中的接入开关K1和隔离开关K2的控制连接,可以控制各接入开关K1和隔离开关K2处于导通状态,或者断路状态。控制电路可以通过对各电池单元中的接入开关K1和隔离开关K2的控制,使电池单元中的电池模组接入第一母线。控制电路可以根据负载所需的第一电压,通过控制电池簇中N个电池单元中的电池模组接入第一母线进行供电,实现调整第一母线输出电压可以满足负载所需电压。控制电路调整第一母线向负载输出电压更为灵活,电池系统可以应用于所需电压不同的场景中,具有广泛的应用场景,并且场景适应性高。
一种可能的设计中,所述控制电路还用于:根据所述负载所需的电压与电池单元数量的对应关系和所述第一电压,确定所述第一电压相应的电池单元数量为所述N,其中,所述对应关系中包括多个所述负载所需的电压。
本申请实施例中,负载所需的电压不同的情形中,控制电路可以根据电压与电池单元数量的对应关系,确定与负载所需电压相应的电池单元数量。控制电路可以通过控制电池簇中该数量个电池单元中的接入开关K1和隔离开关K2,使该数量个电池模组接入第一母线供电,实现调整第一母线输出电压。控制电路调整第一母线输出电压满足负载所需电压的方式较为灵活。
一种可能的设计中,所述电池系统还包括至少一个电池模组管理电路;所述电池模组管理电路分别与所述电池簇和所述控制电路连接;所述电池模组管理电路,用于采集连接 的电池簇中各电池单元的电压和电流,基于采集的电压和电流确定各电池模组健康状态SOH参数,以使所述控制电路根据各电池模组SOH参数从所述电池簇中选择所述N个电池单元。
本申请实施例中,电池系统可以包括电池模组管理电路,用于采集各电池模组的电压及电流,以确定各电池模组的SOH参数,可便于控制电路根据各电池模组的SOH参数从电池簇中选择接入第一母线的电池模组。
一种可能的实施方式中,所述控制电路还用于:根据预设的多个状态类别中各状态类别对应的SOH参数范围以及所述电池模组的SOH参数,确定所述电池模组所属的电池单元的状态类别;基于所述电池簇中各电池单元的状态类别,从所述电池簇中选择所述N个电池单元,以使所述电池簇中的各电池模组的SOH均衡。
本申请实施例中,控制电路可以在调整电池簇的输出电压的过程中,根据各电池单元的SOH的状态类别,从电池簇所包括的全部电池单元中,选择出N个电池单元并控制选择出的电池单元中的电池模组接入第一母线,实现调整第一母线输出电压,可以兼顾各电池模组的SOH状态,提升各电池模组的使用效率。
一种可能的设计中,所述电池模组管理电路,具体用于周期性地采集连接的电池簇中各电池单元的电压和电流,基于采集的电压和电流确定各电池模组的SOH参数,并将所述电池模组的SOH参数提供给所述控制电路;所述控制电路还用于:基于最近一次接收的所述电池模组的SOH参数,更新所述电池模组所属的电池单元的状态类别。
本申请实施例中,电池模组管理电路可以周期性地确定各电池模组的SOH,实现对各电池模组的SOH进行动态检测,以便于控制电路可以动态地更新各电池单元的状态类别,基于更新后的各电池单元的状态类别,确定调整第一母线输出电压所接入第一母线的电池模组。
一种可能的设计中,所述多个状态类别包括第一状态类别和第二状态类别,且所述第一状态类别对应的SOH参数范围与所述第二状态类别对应的SOH参数范围不重叠。本申请实施例中,第一状态类别和第二状态类别分别对应的SOH参数范围不重叠,可使一个电池模组的SOH状态类别为第一状态类别和第二状态类别中的一个,便于控制电路对各电池模组进行管理。
一种可能的设计中,所述电池模组管理电路分别与连接的电池簇中的各电池单元中的所述接入开关K1的控制端和所述隔离开关K2的控制端连接;所述电池模组管理电路,还用于检测连接的电池簇中各电池单元中的电池模组是否故障;以及在检测到第一电池单元中的电池模组发生故障时,控制所述第一电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第一电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
本申请实施例中,所述电池模组管理电路可以检测连接的电池簇中的电池模组是否故障。在电池模组发生故障的情形下,所述电池模组管理电路可以控制发生故障的电池模组所属电池单元中的接入开关K1和隔离开关K2,例如控制接入开关K1处于断路状态,隔离开关K2处于导通状态,使发生故障的电池模组从电池簇中隔离出来,不影响电池簇中其它电池模组的运行,提升电池系统的可用度。
一种可能的设计中,所述电池模组管理电路还用于检测连接的电池簇中各电池单元中的电池模组是否故障;以及在检测到第一电池单元中的电池模组发生故障后,将携带所述第一电池单元标识的故障指示信息提供给所述控制电路,以使所述控制电路控制所述第二 电池单元中电池模组与其它电池单元中的电池模组之间不连通。
本申请实施例中,所述电池模组管理电路可以检测连接的电池簇中的电池模组是否故障。在确定电池模组发生故障时,将该故障电池模组所属电池单元信息提供给控制电路以便控制电路对该电池单元中的接入开关K1和隔离开关K2控制,使发生故障的电池模组从电池簇中隔离出来。例如,在电池模组故障较为严重的情形下,电池模组管理电路可以及时地将该故障的电池组从电池簇中隔离出来。
一种可能的设计中,所述控制电路还用于:根据接收的故障指示信息中的第三电池单元标识,控制所述第三电池单元标识对应的第三电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第三电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
本申请实施例中,控制电路可以根据接收的故障指示信息,获知故障电池模组所属电池单元的信息,控制电路可以调整发生故障的电池模组所属的电池单元中的接入开关K1和隔离开关K2。例如,控制接入开关K1处于断路状态,隔离开关K2处于导通状态,使发生故障的电池模组从电池簇中隔离出来,不影响电池簇中其它电池模组的运行,提升电池系统的可用度。
一种可能的设计中,所述电池系统还包括至少一个高压开关;所述至少一个电池簇与所述至少一个高压开关具有一一对应关系,所述控制电路与所述高压开关的控制端连接;所述电池簇与相应的高压开关连接,所述相应的高压开关处于导通状态下,所述电池簇与所述第一母线连通,所述相应的高压开关处于断路状态下,所述电池簇与所述第一母线不连通。
本申请实施中,控制电路可以通过控制电池簇所连接的高压开关处于导通状态,使该电池簇与第一母线连通,该电池簇可以通过第一母线进行放电,或者充电。控制电路也可以控制电池簇所连接的高压开关处于断路状态,使该电池簇与第一母线之间不连通。
一种可能的设计中,所述电池系统还包括至少一个直流/直流变换电路;所述至少一个直流/直流变换电路分别与所述至少一个电池簇一一对应;所述电池簇与对应的直流/直流变换电路的第一侧连接,所述对应的直流/直流变换电路的另一侧与所述第一母线连接;所述直流/直流变换电路用于对所述电池簇的输出电压进行调制,并将调制后的电压并传输至所述第一母线。
本申请实施例中,电池系统所包括的直流/直流变换电路可以对电池簇输出的电压进行调制,并将调制后的电压传输至第一母线处,便于为与第一母线连接的负载供电。
一种可能的设计中,所述直流/直流变换电路还用于将所述第一母线处的电压调制为充电电压,以为连接的电池簇充电。本申请实施例中,电池系统中的第一母线与外部电源连接。各电池簇用于储存电能。直流/直流变换电路可以将第一母线处的电压调制为充电电压,对其连接的电池簇充电。可见,电池系统不仅可以应用于供电场景,还可以应用于备电场景。
一种可能的设计中,所述电池系统还包括至少一个高压开关;所述至少一个电池簇与所述至少一个高压开关具有一一对应关系,所述控制电路与所述高压开关的控制端连接;所述电池簇、所述电池簇对应的高压开关、所述电池簇对应的直流/直流变换电路依次串联连接,所述对应的高压开关处于导通状态下,所述电池簇与所述对应的直流/直流变换电路连通,所述对应的高压开关处于断路状态下,所述电池簇与所述对应的直流/直流变换电路不连通。
本申请实施例中,控制电路可以通过控制电池簇所连接的高压开关处于导通状态,使该电池簇与相应的直流/直流变换电路连通,以为直流/直流变换电路对该电池簇提供的电压进行调制并输出到第一母线,或者以为直流/直流变换电路对第一母线处的电压进行调制并输出到该电池簇,对该电池簇进行充电。控制电路也可以控制电池簇所连接的高压开关处于断路状态,使该电池簇与相应的直流/直流变换电路之间不连通。
一种可能的设计中,所述电池系统还包括直流/交流变换电路;所述直流/交流变换电路分别连接所述第一母线连接和负载;所述直流/交流变换电路用于将所述第一母线处的直流电转换为交流电后,并将所述交流电提供给所述负载。本申请实施例中,电池系统可以包括直流/交流变换电路,可以应用于交流电场景中。
第二方面,本申请提供一种控制方法,可应用于电池系统,所述电池系统包括第一母线、至少一个电池簇和控制电路;每个所述电池簇分别与所述第一母线连接,所述第一母线与负载连接;所述电池簇包括多个电池单元,所述多个电池单元串联连接;每个电池单元包括电池模组、接入开关K1和隔离开关K2;所述接入开关K1与所述电池模组串联连接形成第一支路,所述隔离开关K2与所述第一支路并联;所述方法包括:根据所述负载所需的第一电压,控制所述电池簇中N个电池单元的所述接入开关K1和所述隔离开关K2,以使所述N个电池单元中的电池模组接入所述第一母线进行供电,所述第一母线输出电压满足所述负载所需的第一电压。
一种可能的设计中,所述电池系统还包括至少一个电池模组管理电路,所述电池模组管理电路与所述电池簇连接,用于采集连接的电池簇中各电池单元的电压和电流;所述方法还包括:基于采集的电压和电流确定各电池模组健康状态SOH参数,所述SOH参数用于从所述电池簇中选择所述N个电池单元。
一种可能的设计中,所述多个状态类别包括第一状态类别和第二状态类别,且所述第一状态类别对应的SOH参数范围与所述第二状态类别对应的SOH参数范围不重叠。
一种可能的设计中,所述电池模组管理电路还用于周期性地采集连接的电池簇中各电池单元的电压和电流;所述方法还包括:基于最近一次确定的所述电池模组的SOH参数,更新所述电池模组所属的电池单元的状态类别。
一种可能的设计中,所述方法还包括:根据预设的多个状态类别中各状态类别对应的SOH参数范围以及所述电池模组的SOH参数,确定所述电池模组所属的电池单元的状态类别;基于所述电池簇中各电池单元的状态类别,从所述电池簇中选择所述N个电池单元,以使所述电池簇中的各电池模组的SOH均衡。
一种可能的设计中,所述方法还包括:检测所述电池簇中各电池单元中的电池模组是否故障;以及在检测到第一电池单元中的电池模组发生故障时,控制所述第一电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第一电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
第二方面中相应方案的技术效果可以参照第一方面中对应方案可以得到的技术效果,重复之处不予详述。
附图说明
图1为传统的电池系统的结构示意图;
图2为一种电池系统的结构示意图;
图3为电池系统输出不同电压的示意图;
图4为一种电池系统的结构示意图;
图5为传统的备电时长不同的多个电池系统的结构示意图;
图6为备电时长不同的多个电池系统的结构示意图。
具体实施方式
目前的电池系统仅可以提供一种直流电压等级。对于所需直流电压等级不同的场景中,一般设计开发不同电压等级的独立的电池系统。请参见图1,电池系统1包括串联的N个电池模组,电池系统1提供直流电压VN。电池系统2包括M个串联的电池模组,电池系统2提供直流电压VM。电池系统2中的串联的电池模组数量M小于电池系统1中的串联的电池模组数量N,则直流电压VN大于直流电压VM。两个电池系统中,电池系统1提供的直流电压较高,可以提供高电压等级的直流电压(或称提供高电压等级)。而电池系统2提供的直流电压较低,可以提供低电压等级的直流电压(或称提供低电压等级)。
通常,多个串联的电池模组可称为电池簇。各电池系统还可以包括功率变换系统(power conversion system,PCS)可以控制电池簇的充电和放电过程,进行直流电流转换为交流电流,或者交流电流转换为直流电流。
因目前的一个电池系统仅可以提供一种直流电压等级,难以适应于不同场景所需多样化的直流电压等级。有鉴于此,本申请实施例提供一种电池系统100,可以提供多种直流电压,应用场景广泛,并且应用场景适应性较高。下面将结合附图,对本申请实施例进行详细描述。
请参见图2,电池系统可以包括第一母线和至少一个电池簇20。每个电池簇20分别与第一母线耦合。示例性的,第一母线可以包括正极母线和负极母线,电池簇20的正极可以与正极母线连接,电池簇20的负极可以与负极母线连接。
作为举例,图2中示出了两个电池簇20。应理解的是,电池系统还可以包括两个以上的电池簇20。每个电池簇20可以向第一母线输出电压,因而第一母线处的电压是基于每个电池簇20向其输出的电压确定的。若电池系统包括一个电池簇30,则第一母线处的电压为所述一个电池簇20输出的电压。若电池系统包括多个电池簇30,则第一母线处的电压可以根据各所述电池簇20输出的电压确定。
每个电池簇20可以包括多个电池单元30,所述多个电池单元30依次串联连接。每个电池簇20包括的电池单元30的数量可以为N个,其中N为大于或等于2的整数。每个电池单元30中可以包括电池模组、接入开关K1和隔离开关K2。接入开关K1与电池模组串联形成第一支路,隔离开关K2与第一支路并联。示例性的,如图2所示,接入开关K1的第一端k1a与隔离开关K2的第一端k2a连接,可以作为电池单元30的第一端。接入开关K1的第二端k1b与电池模组的第一端a1连接。电池模组的第二端a2和隔离开关K2的第二端k2b连接,可以作为电池单元30的第二端。
电池模组也可以称为电池模块、电箱或电池包。电池模组可以包括多个电芯(储能电池)。多个电芯可以串联连接或者并联连接。可选地,电池模组可以包括单板、温度传感器、电压传感器等组件,用于对电池模组进行管理。电池模组也可以包括电池管理系统等。可选地,电池模组可以包括电池状态监控控制器。如电池状态监控控制器可以与每个储能电池耦合,用于对管理各储能电池的健康状态。
每个电池模组的第一端a1可以为正极端子,第二端a2可以为负极端子。或者,每个电池模组的第一端a1可以为负极端子,第二端a2可以为正极端子。下面的实施例中,以每个电池模组的第一端a1为正极端子,第二端a2为负极端子作为例子进行说明。
本申请实施例中,多个电池单元30可依次串联连接。相邻的两个电池单元30中,前一电池单元30的第二端与后一电池单元30的第一端连接。其中,最末一个电池单元30的第二端不与其它电池单元30连接。首个电池单元30的第一端不与其它电池单元30连接。电池簇20中的首个电池单元30的第一端也是该电池簇20的第一端,最末一个电池单元30的第二端也是该电池簇20的第二端。电池簇20的第一端和第二端分别与负载的正极输入端和负极输入端连接。
电池系统100还可以包括控制电路,控制电路可以连接各电池簇20中的每个电池单元30中的接入开关K1的控制端和隔离开关K2的控制端。控制电路可以控制接入开关K1处于导通状态,或者处于断路状态。控制电路也可以控制隔离开关K2处于导通状态,或者处于断路状态。
第一母线可以与负载连接。控制电路可以通过控制电池簇20中的各电池单元30中的接入开关K1和隔离开关K2的状态,实现调整电池簇20可以向第一母线输出多种电压,从而使电池系统100可以为负载提供多种电压等级。例如,负载所需电压为V1,控制电路可以控制电池簇中N1个电池单元中的接入开关K1和隔离开关K2,使N1个电池单元中的电池模组接入第一母线进行供电,可使第一母线向负载输出的电压满足负载所需电压V1。又例如,负载所需电压为V2,控制电路可以控制电池簇中N2个电池单元中的接入开关K1和隔离开关K2,使N2个电池单元中的电池模组接入第一母线进行供电,可使第一母线向负载输出的电压满足负载所需电压V2。可见,本申请实施例提供的电池系统100可以应用于不同电压需求的场景中。
下面以控制电路对电池系统100所包括的多个电池簇中的一个电池簇的输出电压进行控制为例。对于一个电池簇20中的一个电池单元30,电池单元30与电池簇20的第一端连通,且与电池簇20的第二端连通,可记为该电池单元30处于在线状态,也即电池单元30中的电池模组接入第一母线。电池单元30未能与电池簇20的第一端连通,或未能与电池簇20的第二端连通,可记为该电池单元30处于离线状态,即电池单元30中的电池模组未接入第一母线。
示例性的,在电池单元30中的接入开关K1处于导通状态,且隔离开关K2处于断路状态时,该电池单元30中的电池模组处于在线状态。该电池单元30中的电池模组接入第一母线,也即接入与电池系统的负载(如直流/直流变换器、直流/交流变换器、功率变换系统、用电负载、电源装置等)连接的回路,可以通过该回路进行充电或者放电过程。换句话说,电池单元30提供的电流可以传输至电池簇20的第一端或第二端,或者电池簇20的第一端处或第二端处的电流可以传输至电池单元30。
示例性的,在电池单元30中的接入开关K1处于断路状态,且隔离开关K2处于导通状态时,该电池单元30中的电池模组处于离线状态。该电池单元30中的电池模组未接入与电池系统的负载连接的回路,也未能通过该回路进行充电或者放电过程。换句话说,电池单元30提供的电流无法传输至电池簇20的第一端或第二端,或者电池簇20的第一端处或第二端处的电流可以传输至电池单元30。
应理解的是,控制电路可以通过控制电池单元30中的接入开关K1和隔离开关K2的 状态,实现调整电池单元30处于在线状态或者离线状态,也即实现调整电池单元30中的电池模组接入第一母线或者未接入第一母线。控制电路调整电池单元30处于在线状态时,可以控制该电池单元30中的接入开关K1处于导通状态,且隔离开关K2处于断路状态。控制电路调整电池单元30处于离线状态时,可以控制该电池单元30中的接入开关K1处于断路状态时,且隔离开关K2处于导通状态。
控制电路可以控制各电池单元30中的接入开关K1和隔离开关K2,调整电池簇20中与电池簇20的第一端及第二端连通的电池单元30的数量,也是调整电池簇20中接入第一母线的电池模组的数量。因电池簇20的第一端和第二端连通的电池单元30的数量不同,使得电池簇20输出的电压不同。或者说,电池簇20中接入第一母线的电池模组的数量不同,可使电池簇20向第一母线输出的电压不同。
可见,控制电路可以通过调整电池簇20中处于在线状态的电池单元30的数量,实现调整电池簇20的输出电压。或者说,控制电路可以通过调整电池簇20中接入第一母线进行供电的电池模组的数量,实现调整电池簇20向第一母线输出的电压。
对于一个电池簇20,电池簇20中的全部电池单元30的电池模组均处于在线状态,即电池簇20中的全部电池模组接入第一母线进行供电,电池簇20的输出电压为该电池簇20的最大输出电压。示例性的,控制电路可以调整所述电池簇20中的各电池单元30中的电池模组均为在线状态。例如,控制电路可以控制电池簇20中各电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态。在此情形下,电池簇20的第一端和第二端之间的电压为最大输出电压。
对于一个电池簇20,电池簇20中的全部电池单元30的电池模组均处于离线状态,即电池簇20中的全部电池模组未接入第一母线,电池簇20的输出电压为零。示例性的,控制电路可以调整所述电池簇20中的各电池单元30中的电池模组均为离线状态。例如,控制电路可以控制电池簇20中各电池单元30中的接入开关K1处于断路状态,隔离开关K2处于导通状态。在此情形下,电池簇20的第一端和第二端之间的电压为零。
对于负载1所需电压为V1的情形下,控制电路可以调整电池簇20中的N1个电池单元30中的电池模组均为在线状态,即控制N1个电池单元中的电池模组接入第一母线进行供电,电池簇20中除了所述N1个电池单元30中的电池模组之外的其它电池模组未接入第一母线,可使电池簇向第一母线提供的电压,也即第一母线向负载输出的电压满足负载所需电压V1。第一母线输出电压可以由控制电路通过调整接入第一母线的电池模组的数量实现调整。
示例性的,控制电路可以调整电池簇20中的N1个电池单元30中的电池模组均为在线状态。其中,电池簇20中的全部电池单元30总数量可记为P个,N1可为集合A中的整数,集合A可为[0,P]。控制电路可以调整电池簇30中除前述N1个电池单元30之外的其它电池单元处于离线状态,也即其它P-N1个电池单元处于离线状态。
控制电路可以控制电池簇20中的N1个电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态,P-N1个电池单元30中的接入开关K1处于断路状态,隔离开关K2处于导通状态,可使所述N1个电池单元30中的电池模组均接入第一母线,所述P-N1个电池单元30中的电池模组均未接入第一母线。在此情形下,电池簇20的第一端和第二端之间的电压为所述N1个电池单元30中的电池模组提供的电压总和。由此可见,控制电路可以通过调整该电池簇20中接入第一母线进行供电的电池模组数量,实现调整该电 池簇20向第一母线提供的电压,即实现调整第一母线向负载输出电压。
一种可能的实施方式中,电池系统100中的第一母线与负载耦合,电池系统100向负载输出电压时,各电池簇的输出电压相同,也即各电池簇的运行状态相同。换句话说,各电池簇中处于在线状态的电池单元的数量相同。在各电池簇输出电压为最大输出电压的情形下,电池系统100输出的电压为最大系统总电压。
又一种可能的实施方式中,电池系统100包括至少一个直流/直流变换电路。所述至少一个直流/直流变换电路50与所述至少一个电池簇一一对应。每个电池簇20通过对应的直流/直流变换电路50与第一母线连接。如图2所示,电池簇20的第一端可以与相应的直流/直流变换电路50的第一端b1连接,电池簇20的第二端可以与相应的直流/直流变换电路50的第二端b2连接。每个直流/直流变换电路50的第三端C与第一母线耦合。直流/直流变换电路50可以与相应的电池簇形成充放电回路。
直流/直流变换电路50可以包括但不限于以下电路中的一个或多个:线性稳压电源电路、降压(Buck)变换电路、升压(Boost)变换电路、降压-升压(Buck-Boost)变换电路、三电平降压(Buck)变换电路、开关电容变换电路、电感电感电容(LLC)谐振变换电路、双主动全桥直流-直流(dual active bridge,DAB)变换电路、正激变换电路、反激变换电路、半桥推挽电路、全桥推挽电路、全桥移相变换电路等等,本申请实施例对此不再一一列举。
电池系统100可以用于储存电能。例如,第一母线与外部电源连接时,每个直流/直流变换电路50可以将第一母线处的电压调制为充电电压,并提供给连接的电池簇20,以为连接的电池簇20充电,电池簇20可以储存电能。
电池系统100可以用于提供电能。例如,第一母线与负载连接时,每个直流/直流变换电路50可以将连接的电池簇20输出的电压进行调制,并将调制后的电压,输出到第一母线上,提供给负载,以实现电池系统100为负载提供电能。直流/直流变换电路50连接的电池簇20输出的电压为最大输出电压时,直流/直流变换电路50对连接的电池簇20输出的最大输出电压进行调制,调制后的电压为该直流/直流变换电路50相应的调制后的最大电压(也可称为最大放电电压)。在每个直流/直流变换电路50输出的电压为相应的调制后的最大电压的情形下,电池系统100输出的电压为最大系统总电压。
控制电路可以与直流/直流变换电路50的控制端连接,可以直流/直流变换电路50进行电压调制(变换)。一般来说,直流/直流变换电路50中包括一个或多个开关管,直流/直流变换电路50的控制端可以包括这些开关管的控制电极(栅极)。控制电路可以是具有逻辑运算能力的逻辑电路,能够产生控制信号,通过控制信号分别直流/直流变换电路50中各个开关管的导通或断开,从而直流/直流变换电路50实现电压变换。
对于前述任意一种电池系统100,控制电路可以预先存储电池系统100的输出电压(系统总电压、负载所需电压等)与电池单元数量(各电池簇中接入第一母线进行供电的电池模组数量)的对应关系。例如,电池系统100输出的系统总电压为U1,对应的电池单元的数量为num1。电池系统100输出的系统总电压为U2,对应的电池单元的数量为num2。
电池系统100可以包括显示组件、按钮等,通过按钮或者显示界面中的菜单可以触发该电压调整指令。可选地,所述电压调整指令可以是外部设备(电池系统之外的设备)发送给控制电路的。控制电路可以接收该电压调整指令。电压调整指令可以携带用于指示第一母线连接的负载所需电压(便于描述,记为第一电压)的信息。该电压调整指令可以用 于指示控制电路调整各电池簇中处于在线状态(所包括的电池模组接入第一母线)的电池单元的数量,以使第一母线输出电压满足第一电压,如第一母线输出电压为第一电压,或者接近第一电压(第一母线所连接的负载可以正常运行)。可选地,电压调整指令携带的第一电压)可以为电池系统100输出的系统总电压最大值与零之间的一个数值。
例如,控制电路可以接收到第一调整指令(也可称最大输出电压指令),该第一调整指令用于指示控制电路调整电池系统100的输出电压为该电池系统100的最大系统总电压。控制电路在接收到第一调整指令后,可以调整全部电池簇20的输出电压为各电池簇20的最大输出电压,使第一母线输出电压为最大输出电压,也即电池系统100所提供的电压可为电池系统100的最大输出电压。
再例如,控制电路可以接收到第二调整指令(也可称停止输出电压指令),该第二调整指令用于指示控制电路调整电池系统100的输出电压为零。控制电路在接收到第二调整指令后,可以调整全部电池簇20的输出电压为零,第一母线处的电压为零,也即电池系统100所提供的电压为零。
又例如,控制电路可以接收到第三调整指令(也可称输出指定电压指令),该第三调整指令用于指示控制电路调整电池系统100的输出电压为指定电压。控制电路可以在接收到第三调整指令后,可以调整全部电池簇20中处于在线状态的电池单元30的数量(全部电池簇20中接入第一母线进行供电的电池模组数量),可使第一母线输出电压为指定电压。
一个示例中,控制电路可以基于预先存储电池系统100的输出电压(系统总电压、负载所需电压等)与电池单元数量(各电池簇中接入第一母线进行供电的电池模组数量)的对应关系,确定第一电压对应的电池单元数量。便于描述,将第一电压对应的电池单元数量记为第一数量。
对于电池系统100中的任意一个电池簇(如第一电池簇),控制电路可以从第一电池簇中选择第一数量M个电池单元30,并调整选出的第一数量个电池单元30处于在线状态。示例性的,控制电路可以控制选择出的第一数量个电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态,以使所述第一数量个电池单元30中的电池模组接入第一母线。而第一电池簇中除所述第一数量个电池单元30之外的电池单元中的接入开关K1处于断路状态,隔离开关K2处于导通状态,以使第一电池簇中除第一数量个电池单元30之外的电池单元30中的电池模组未接入第一母线。
可选地,控制电路可以随机地从第一电池簇中选择出第一数量个电池单元,或者任意地从第一电池簇中选择出第一数量个电池单元。控制电路可以按照预设选择方式,从第一电池簇中选择出第一数量个电池单元。
一个示例中,第一电池簇输出电压为最大输出电压Umax的情形中(如图3中(a)部分所示),控制电路控制第一电池簇中全部电池单元30中的电池模组接入第一母线。示例性的,控制电路可以控制全部电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态。
第一电池簇输出电压为
Figure PCTCN2021092680-appb-000001
的情形中(如图3中(b)部分所示),控制电路控制第一电池簇中
Figure PCTCN2021092680-appb-000002
个电池单元30中的电池模组接入第一母线,除所述
Figure PCTCN2021092680-appb-000003
个电池单元30之外的其它电池单元30中的电池模组未接入第一母线。示例性的,控制电路可以控制电路控制第一电池簇中
Figure PCTCN2021092680-appb-000004
个电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态,除所述
Figure PCTCN2021092680-appb-000005
个电池单元30之外的其它电池单元30中的接入开关K1处于断路状态,隔 离开关K2处于导通状态。
第一电池簇输出电压为
Figure PCTCN2021092680-appb-000006
的情形中(如图3中(c)部分所示),控制电路控制第一电池簇中
Figure PCTCN2021092680-appb-000007
个电池单元30中的电池模组接入第一母线,除所述
Figure PCTCN2021092680-appb-000008
个电池单元30之外的其它电池单元30中的电池模组未接入第一母线。示例性的,控制电路控制第一电池簇中
Figure PCTCN2021092680-appb-000009
个电池单元30中的接入开关K1处于导通状态,隔离开关K2处于断路状态,除所述
Figure PCTCN2021092680-appb-000010
个电池单元30之外的其它电池单元30中的接入开关K1处于断路状态,隔离开关K2处于导通状态。
本申请实施例中,控制电路可以控制第一电池簇中各电池单元30中的电池模组处于在线状态(接入第一母线)或者离线状态(未接入第一母线),实现调整第一电池簇向第一母线提供的电压,从而调整第一母线输出电压。因而,第一电池簇可以应用于所需电压等级不超过该第一电池簇的最大输出电压的应用场景中。可见,本申请实施例提供的电池系统100可以满足不同场景所需多样化的直流电压等级,而非传统电池系统仅适用单一直流电压等级的场景。
一种可能的设计中,如图2所示,电池系统100可以包括至少一个高压开关40。所述至少一个高压开关40的数量可以与所述至少一个电池簇的数量相同。所述至少一个高压开关40与所述至少一个电池簇可以具有一一对应关系。
一个示例中,电池簇20可以与相应的高压开关40中的高压开关连接。电池簇20可以经由高压开关与第一母线连接。又一个示例中,电池簇20的第一端、相应的高压开关40以及相应的直流/直流变换电路的第一端依次串联。电池簇20的第二端与直流/直流变换电路的第二端连接。直流/直流变换电路的第三端与第一母线连接。
一种可能的设计中,电池系统100可以包括直流/交流变换电路,电池系统100可以应用于交流电用电场景。第一母线与直流/交流变换电路的输入侧连接,直流/交流变换电路的输出侧与负载连接。直流/交流变换电路可以将第一母线上的直流电处理为交流电,并提供给所述负载。作为一种举例,负载可以为功率变换系统。
通常,电池系统中的同一电池簇中的各电池模组是同时投入同时退役的,若在退役时电池簇中的部分电池模组仍具有较优的健康状态(state of health,SOH),也即该电池簇中的各电池模组的SOH不一致,则会造成具有较优SOH的电池模组的资源浪费。
为充分使用同一电池簇中各电池模组,使电池簇使用效率最大化,避免资源浪费。电池系统100还可以包括一个或多个电池模组管理电路50。
一个示例中,如图4所示,电池系统100包括一个电池模组管理电路60,每个电池簇20中的各电池模组可以与该电池模组管理电路60耦合,电池模组管理电路60用于采集连接的电池簇中各电池单元30的电压和电流,基于采集的电压和电流确定各电池模组健康状态SOH参数。电池模组管理电路60可以采用现有的任意一种确定电池模组SOH的方法,基于采集的电压和电流确定各电池模组SOH参数。电池模组管理电路60还可以包括存储器,用于存储确定各电池模组SOH参数所需要的数据,例如采集的电池模组的电压值、电流值等数据,也可以存储电池模组的额定参数如电池模组的内阻等,还可以存储电池模组的历史参数,例如前一次确定的电池模组的SOH参数等。
另一个示例中,电池系统100也可以包括多个电池模组管理电路60。多个电池簇20与多个电池模组管理电路60可以具有一一对应的关系。电池簇20与相应的电池模组管理电路60耦合。示例性的,电池模组管理电路60可以与相应电池簇20中的各电池模组耦 合,可以采集连接的电池簇中各电池单元的电压和电流,基于采集的电压和电流确定各电池模组健康状态SOH参数。下面以电池系统100中包括多个电池模组管理电路60作为例子进行说明。
电池模组管理电路60可以集成在BMS中。或者,电池模组管理电路60可为电池管理系统(battery management system,BMS)。还电池模组管理电路60还可以除确定各电池模组的SOH参数之外的功能,例如,电池模组温度检测。
控制电路可以与各电池模组管理电路60耦合。例如,控制电路可以与电池模组管理电路60通过总线连接,并通过该总线交互数据或者信息。示例性的,控制电路可以接收各电池模组管理电路60提供的各电池模组的SOH参数。电池模组管理电路60确定的各电池模组的SOH参数可以用于控制电路根据各电池模组SOH参数从电池簇中选择电池单元。
一种可能的设计中,电池模组管理电路60可以周期性地确定各电池模组的SOH参数,并发送给控制电路,以使控制电路可以周期性地获取各电池模组的SOH参数。可选地,各电池模组管理电路60可以按照设定周期,采集各电池模组的电压和电流,确定各电池模组的SOH参数,并发送给控制电路,以使控制电路可以周期性地获取各电池模组的SOH参数。所述设定周期的粒度可以为小时、分钟、秒等。
对电池系统100中的任意一个电池簇(即第一电池簇),控制电路可以根据至少两个状态类别的SOH范围,以及第一电池簇中各电池模组的SOH参数,确定第一电池簇中各电池模组的状态类别。示例性的,所述至少两个状态类别可包括第一状态类别和第二状态类别,第一状态类别相对应的SOH范围可记为集合B1,第二状态类别相对应的SOH范围可记为集合B2。其中,集合B1和集合B2无重叠元素,以使一个电池模组仅具有一个状态类别。本申请实施例中,一个电池模组的状态类别,可以作为该电池模组所属的电池单元的状态类别。
控制电路可以接收(或者获取)到第一电池簇中各电池模组的SOH参数,可以根据所述至少两个状态类别的SOH范围,确定第一电池簇中各电池单元的状态类别,或者说,更新第一电池簇中各电池单元的状态类别。可以理解的是,一个电池模组的状态类别可以是动态变化的,或者一个电池单元的状态类别可以是动态变化的。
控制电路可以基于第一电池簇中当前各电池单元的状态类别(也是控制电路最近一次确定出的各电池模组的状态类别),从状态类别为第三状态类别的电池单元中选择所述第一数量的电池单元。其中,所述第三状态类别可以为所述第一状态类别或者所述第二状态类别。也即,控制电路可以从一种状态类别中选择出第一数量个电池单元。例如,从状态类别为第一状态类别的全部电池单元中,选择出第一数量个电池单元。或者,从状态了别为第二状态类别的全部电池单元中,选择出第一数量个电池单元。
一种可能的情形中,状态类别为第三状态类别的电池单元的总数量num1小于所述第一数量,控制电路可以确定num1与所述第一数量的差值dn,并从状态类别为第四状态类别(所述多个状态类别中除所述第三状态类别之外的一个状态类别)的电池单元中选择数量为所述差值dn个电池单元。控制电路可以控制状态类别为第三状态类别的全部电池单元以及所述差值dn个电池单元中的电池模组接入第一母线,其它电池单元中的电池模组未接入第一母线。
一种可能的实施方式中,控制电路在控制第一电池簇中状态类别为第三状态类别的全 部电池单元以及所述差值dn个电池单元中的电池模组接入第一母线,其它电池单元中的电池模组未接入第一母线后,第一电池簇相应的电池模组管理电路60可以确定第一电池簇中各电池模组的SOH参数,并将各电池模组的SOH参数发送给控制电路。控制电路可以重新确定第一电池簇中各电池模组的状态类别,也即确定各电池单元的状态类别。控制电路可以基于所述重新确定的各电池单元的状态类别,重新从第一电池簇中选择第一数量个电池单元,并控制重新选择出的第一数量个电池单元中的电池模组接入第一母线,第一电池簇中的其它电池单元中的电池模组未接入第一母线。
这样的设计,可以实现在第一电池簇提供第一电压的情形中,基于各电池模组的SOH,控制各电池单元动态地接入第一电池簇,实现轮流投入各电池模组,可以使各电池模组SOH均衡,或SOH一致。
一种可能的实施方式中,电池模组管理电路60还可以检测连接的电池簇中各电池单元30中的电池模组是否发生故障。例如,电池模组管理电路60检测电池模组发生过压故障,过流故障,过温故障,或者内短路故障等故障情形中的至少一种。
电池模组管理电路60可以与连接的电池簇中各电池单元30中的接入开关K1和隔离开关K2连接,控制各开关的导通或者断路状态。电池模组管理电路60若检测到第一电池单元中的电池模组发生故障,则可以控制第一电池单元中的接入开关K1处于导通状态,以及隔离开关K2处于断路状态,可使发生故障的电池模组从电池簇中隔离出来,不影响电池簇中其它电池模组的运行,提升电池系统的可用度。
电池模组管理电路60可以向控制电路发送包括故障的电池模组标识的故障指示信息,以便控制电路获知发生故障的电池模组标识。例如,向控制电路发送携带第一电池单元标识的故障指示信息。
一种可能的设计中,电池模组管理电路60可以包括多个子管理电路。多个子管理电路与电池模组管理电路60连接的电池簇中的多个电池单元30一一对应。子管理电路与相应的电池单元30中的接入开关K1和隔离开关K2连接,控制各开关的导通或者断路状态。子管理电路可以用于相应的电池单元中的电池模组是否发生故障。子管理电路若检测到第一电池单元中的电池模组发生故障,则可以控制第一电池单元中的接入开关K1处于导通状态,以及隔离开关K2处于断路状态,可使发生故障的电池模组从电池簇中隔离出来。
一种可能的实施方式中,电池模组管理电路60还可以检测连接的电池簇中各电池单元30中的电池模组是否发生故障。若检测到第二电池单元中的电池模组发生故障,则可以向控制电路发送故障指示信息,其中故障指示信息可以包括第二电池单元的标识。控制电路可以在接收到故障指示信息后,调整故障指示信息中的标识对应的电池单元处于离线状态。例如,调整所述第二电池单元处于离线状态。这样的设计中,发生故障的电池模组从电池簇中隔离出来,不影响电池簇中其它电池模组的运行,提升电池系统的可用度。
控制电路在接收该故障指示信息后,可以不再调整故障指示信息所包括的标识对应的电池单元的状态,或者说不再控制发生故障的电池模组所属电池单元中的接入开关K1和隔离开关K2。换句话说,控制电路从所述第一电池簇中选择所述第一数量个电池单元时,所选择的第一数量个电池单元不包括发生故障的电池单元。
本申请实施例提供的电池系统100不仅可以满足不同场景所需多样化的直流电压等级,还可以满足不同场景所需多样化的备电时长。
在电压需求为
Figure PCTCN2021092680-appb-000011
的场景中,传统电池系统的每个电池簇包括串联的k个电池模组, 每个电池簇的最大输出电压为
Figure PCTCN2021092680-appb-000012
请参见图5,假设s个电池簇可以提供1h备电,也即可以恒功率充电1小时或者恒功率放电1小时。若传统电池系统包括2s个并联的电池簇,则传统电池系统可以提供2h备电。若传统电池系统包括4s个并联的电池簇,则传统电池系统可以提供4h备电。
而本申请实施例提供的电池系统100中每个电池簇的最大输出电压为Umax,每个电池簇20可以包括P个电池单元30,每个电池单元30包括一个电池模组。故每个电池簇20中包括P个电池模组。本申请实施例中P可以为k的2倍。在电压需求为
Figure PCTCN2021092680-appb-000013
的场景中,请参见图6,电池系统100包括
Figure PCTCN2021092680-appb-000014
个并联的电池簇20可以供1h备电。或者,电池系统100包括s个并联的电池簇20可以提供2h备电。或者电池系统100包括2s个并联的电池簇20可以提供4h备电。
可见,电池系统100中的电池簇可以输出高电压等级,并应用在需要低电压等级的场景的情形下,因每个电池簇20的容量更高。在构成相同备电小时的电池系统时,相比于传统电池系统,本申请实施例提供的电池系统100可以包括更少数量的电池簇,也因此可以减少高压开关、线缆、备电开关等设备的数量,实现降低电池系统的成本。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种电池系统,其特征在于,包括第一母线、至少一个电池簇和控制电路;每个所述电池簇分别与所述第一母线连接,所述第一母线与负载连接;所述电池簇包括多个电池单元,所述多个电池单元串联连接;每个电池单元包括电池模组、接入开关K1和隔离开关K2;所述接入开关K1与所述电池模组串联连接形成第一支路,所述隔离开关K2与所述第一支路并联;
    所述控制电路连接所述接入开关K1和所述隔离开关K2的控制端,用于:
    根据所述负载所需的第一电压,控制所述电池簇中N个电池单元的所述接入开关K1和所述隔离开关K2,以使所述N个电池单元中的电池模组接入所述第一母线进行供电,所述第一母线输出电压满足所述负载所需的第一电压。
  2. 如权利要求1所述的电池系统,其特征在于,所述控制电路还用于:
    根据所述负载所需的电压与电池单元数量的对应关系和所述第一电压,确定所述第一电压相应的电池单元数量为所述N,其中,所述对应关系中包括多个所述负载所需的电压。
  3. 如权利要求1或2所述的电池系统,其特征在于,所述电池系统还包括至少一个电池模组管理电路;所述电池模组管理电路分别与所述电池簇和所述控制电路连接;
    所述电池模组管理电路,用于采集连接的电池簇中各电池单元的电压和电流,基于采集的电压和电流确定各电池模组健康状态SOH参数,以使所述控制电路根据各电池模组SOH参数从所述电池簇中选择所述N个电池单元。
  4. 如权利要求3所述的电池系统,其特征在于,所述控制电路还用于:
    根据预设的多个状态类别中各状态类别对应的SOH参数范围以及所述电池模组的SOH参数,确定所述电池模组所属的电池单元的状态类别;
    基于所述电池簇中各电池单元的状态类别,从所述电池簇中选择所述N个电池单元,以使所述电池簇中的各电池模组的SOH均衡。
  5. 如权利要求4所述的电池系统,其特征在于,所述电池模组管理电路,具体用于周期性地采集连接的电池簇中各电池单元的电压和电流,基于采集的电压和电流确定各电池模组健康状态SOH参数,以及将所述电池模组健康状态SOH参数提供给所述控制电路;
    所述控制电路,还用于:
    基于最近一次接收的所述电池模组的SOH参数,更新所述电池模组所属的电池单元的状态类别。
  6. 如权利要求3-5中任一所述的电池系统,其特征在于,所述多个状态类别包括第一状态类别和第二状态类别,且所述第一状态类别对应的SOH参数范围与所述第二状态类别对应的SOH参数范围不重叠。
  7. 如权利要求3-6中任一所述的电池系统,其特征在于,所述电池模组管理电路分别与连接的电池簇中的各电池单元中的所述接入开关K1的控制端和所述隔离开关K2的控制端连接;
    所述电池模组管理电路,还用于检测连接的电池簇中各电池单元中的电池模组是否故障;以及在检测到第一电池单元中的电池模组发生故障时,控制所述第一电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第一电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
  8. 如权利要求3-6中任一所述的电池系统,其特征在于,所述电池模组管理电路还用于检测连接的电池簇中各电池单元中的电池模组是否故障;以及在检测到第二电池单元中的电池模组发生故障后,将包括所述第二电池单元标识的故障指示信息提供给所述控制电路,以使所述控制电路控制所述第二电池单元中电池模组与其它电池单元中的电池模组之间不连通。
  9. 如权利要求8所述的电池系统,其特征在于,所述控制电路,还用于:
    根据接收的故障指示信息中的第三电池单元标识,控制所述第三电池单元标识对应的第三电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第三电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
  10. 如权利要求1-9中任一所述的电池系统,其特征在于,还包括至少一个高压开关;所述至少一个电池簇与所述至少一个高压开关具有一一对应关系,所述控制电路与所述高压开关的控制端连接;
    所述电池簇与相应的高压开关连接,所述相应的高压开关处于导通状态下,所述电池簇与所述第一母线连通,所述相应的高压开关处于断路状态下,所述电池簇与所述第一母线不连通。
  11. 如权利要求1-9中任一所述的电池系统,其特征在于,还包括至少一个直流/直流变换电路;所述至少一个直流/直流变换电路分别与所述至少一个电池簇一一对应;
    所述电池簇与对应的直流/直流变换电路的第一侧连接,所述对应的直流/直流变换电路的另一侧与所述第一母线连接;
    所述直流/直流变换电路用于对所述电池簇的输出电压进行调制,并将调制后的电压传输至所述第一母线。
  12. 如权利要求11所述的电池系统,其特征在于,所述直流/直流变换电路还用于将所述第一母线处的电压调制为充电电压,以为连接的电池簇充电。
  13. 如权利要求11或12所述的电池系统,其特征在于,还包括至少一个高压开关;所述至少一个电池簇与所述至少一个高压开关具有一一对应关系,所述控制电路与所述高压开关的控制端连接;
    所述电池簇、所述电池簇对应的高压开关、所述电池簇对应的直流/直流变换电路依次串联连接,所述对应的高压开关处于导通状态下,所述电池簇与所述对应的直流/直流变换电路连通,所述对应的高压开关处于断路状态下,所述电池簇与所述对应的直流/直流变换电路不连通。
  14. 如权利要求1-13中任一所述的电池系统,其特征在于,还包括直流/交流变换电路;所述直流/交流变换电路分别连接所述第一母线和所述负载;
    所述直流/交流变换电路用于将所述第一母线处的直流电转换为交流电后,并将所述交流电提供给所述负载。
  15. 一种控制方法,其特征在于,应用于电池系统,所述电池系统包括第一母线、至少一个电池簇和控制电路;每个所述电池簇分别与所述第一母线连接,所述第一母线与负载连接;所述电池簇包括多个电池单元,所述多个电池单元串联连接;每个电池单元包括电池模组、接入开关K1和隔离开关K2;所述接入开关K1与所述电池模组串联连接形成第一支路,所述隔离开关K2与所述第一支路并联;
    所述方法包括:
    根据所述负载所需的第一电压,控制所述电池簇中N个电池单元的所述接入开关K1和所述隔离开关K2,以使所述N个电池单元中的电池模组接入所述第一母线进行供电,所述第一母线输出电压满足所述负载所需的第一电压。
  16. 如权利要求15所述的方法,其特征在于,所述电池系统还包括至少一个电池模组管理电路,所述电池模组管理电路与所述电池簇连接,用于采集连接的电池簇中各电池单元的电压和电流;
    所述方法还包括:
    基于采集的电压和电流确定各电池模组健康状态SOH参数,所述SOH参数用于从所述电池簇中选择所述N个电池单元。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    根据预设的多个状态类别中各状态类别对应的SOH参数范围以及所述电池模组的SOH参数,确定所述电池模组所属的电池单元的状态类别;
    基于所述电池簇中各电池单元的状态类别,从所述电池簇中选择所述N个电池单元,以使所述电池簇中的各电池模组的SOH均衡。
  18. 如权利要求15或16所述的方法,其特征在于,所述方法还包括:
    检测所述电池簇中各电池单元中的电池模组是否故障;以及在检测到第一电池单元中的电池模组发生故障时,控制所述第一电池单元中的所述接入开关K1和所述隔离开关K2,以使所述第一电池单元中的电池模组与其它电池单元中的电池模组之间不连通。
PCT/CN2021/092680 2021-05-10 2021-05-10 一种电池系统及控制方法 WO2022236545A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/092680 WO2022236545A1 (zh) 2021-05-10 2021-05-10 一种电池系统及控制方法
CN202180069398.2A CN116508225A (zh) 2021-05-10 2021-05-10 一种电池系统及控制方法
EP21941121.2A EP4336698A1 (en) 2021-05-10 2021-05-10 Battery system and control method
US18/505,505 US20240088697A1 (en) 2021-05-10 2023-11-09 Battery System and Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092680 WO2022236545A1 (zh) 2021-05-10 2021-05-10 一种电池系统及控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/505,505 Continuation US20240088697A1 (en) 2021-05-10 2023-11-09 Battery System and Control Method

Publications (1)

Publication Number Publication Date
WO2022236545A1 true WO2022236545A1 (zh) 2022-11-17

Family

ID=84027829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092680 WO2022236545A1 (zh) 2021-05-10 2021-05-10 一种电池系统及控制方法

Country Status (4)

Country Link
US (1) US20240088697A1 (zh)
EP (1) EP4336698A1 (zh)
CN (1) CN116508225A (zh)
WO (1) WO2022236545A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760153A (zh) * 2023-08-17 2023-09-15 中宏科创新能源科技(浙江)有限公司 一种集成电池管理和变流控制的储能系统
CN117375054A (zh) * 2023-12-07 2024-01-09 上海派能能源科技股份有限公司 储能系统高压接入控制方法、储能系统、设备及存储介质
CN117690329A (zh) * 2024-02-02 2024-03-12 深圳风向标教育资源股份有限公司 动力电池管理系统开发实训平台及其布局方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604076A (zh) * 2012-06-14 2015-05-06 罗伯特·博世有限公司 用于电池组的开关装置以及相应的开关方法
CN108377023A (zh) * 2018-05-14 2018-08-07 深圳市华思旭科技有限公司 启动电源
CN111431231A (zh) * 2020-03-31 2020-07-17 清华大学 一种基于柔性连接和冗余的电池成组架构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104604076A (zh) * 2012-06-14 2015-05-06 罗伯特·博世有限公司 用于电池组的开关装置以及相应的开关方法
CN108377023A (zh) * 2018-05-14 2018-08-07 深圳市华思旭科技有限公司 启动电源
CN111431231A (zh) * 2020-03-31 2020-07-17 清华大学 一种基于柔性连接和冗余的电池成组架构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760153A (zh) * 2023-08-17 2023-09-15 中宏科创新能源科技(浙江)有限公司 一种集成电池管理和变流控制的储能系统
CN116760153B (zh) * 2023-08-17 2024-04-16 中宏科创新能源科技(浙江)有限公司 一种集成电池管理和变流控制的储能系统
CN117375054A (zh) * 2023-12-07 2024-01-09 上海派能能源科技股份有限公司 储能系统高压接入控制方法、储能系统、设备及存储介质
CN117375054B (zh) * 2023-12-07 2024-02-27 上海派能能源科技股份有限公司 储能系统高压接入控制方法、储能系统、设备及存储介质
CN117690329A (zh) * 2024-02-02 2024-03-12 深圳风向标教育资源股份有限公司 动力电池管理系统开发实训平台及其布局方法
CN117690329B (zh) * 2024-02-02 2024-05-03 深圳风向标教育资源股份有限公司 动力电池管理系统开发实训平台及其布局方法

Also Published As

Publication number Publication date
CN116508225A (zh) 2023-07-28
EP4336698A1 (en) 2024-03-13
US20240088697A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022236545A1 (zh) 一种电池系统及控制方法
EP2302757B1 (en) Method and system for balancing electrical energy storage cells
KR101483129B1 (ko) 배터리 시스템 및 에너지 저장 시스템
CN105210258B (zh) 用于产生可动态重配置的储能装置的方法和设备
US8963499B2 (en) Battery pack, method of controlling the same, and energy storage system including the battery pack
US9231440B2 (en) Power supply apparatus and controlling method of the same
US8552590B2 (en) Energy management system and grid-connected energy storage system including the energy management system
KR101369633B1 (ko) 전력 저장 시스템 및 그 제어방법
KR20150081731A (ko) 배터리 팩, 배터리 팩을 포함하는 에너지 저장 시스템, 배터리 팩의 작동 방법
CN104184183A (zh) 电池管理系统和驱动该电池管理系统的方法
CN101438479A (zh) 电源系统
CN104821611A (zh) 电池托盘、电池架、储能系统和操作电池托盘的方法
CN102111018A (zh) 储能系统及其控制方法
KR101256077B1 (ko) 전력 제어 시스템 및 전력 제어 방법
JP2013078242A (ja) 電源装置
EP2662943A1 (en) Dc power supply system
KR20180009569A (ko) 배터리 시스템
CN115833404A (zh) 一种储能系统、不间断电源及电池均衡的方法
CN111277009A (zh) 一种电池管理控制系统和控制方法
KR102151652B1 (ko) 척컨버터 토폴로지를 이용한 리튬이온 전지 셀밸런싱 장치
CN111525676B (zh) 直流输出不断电电源供应器
US20140274219A1 (en) Telecommunication Power System
KR20180099277A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
CN109274149B (zh) 电能量交换设备、电池装置及电池维护系统
JP2003289630A (ja) 蓄電装置の電圧均等化装置及び該装置を備えた電力貯蔵システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941121

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180069398.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021941121

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021941121

Country of ref document: EP

Effective date: 20231206

NENP Non-entry into the national phase

Ref country code: DE