WO2022235076A1 - 선반 스퀼러 팁을 갖는 가스터빈 블레이드 - Google Patents

선반 스퀼러 팁을 갖는 가스터빈 블레이드 Download PDF

Info

Publication number
WO2022235076A1
WO2022235076A1 PCT/KR2022/006410 KR2022006410W WO2022235076A1 WO 2022235076 A1 WO2022235076 A1 WO 2022235076A1 KR 2022006410 W KR2022006410 W KR 2022006410W WO 2022235076 A1 WO2022235076 A1 WO 2022235076A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
squealer
gas turbine
lathe
pressure
Prior art date
Application number
PCT/KR2022/006410
Other languages
English (en)
French (fr)
Inventor
김정우
조형희
이주형
방민호
김정주
최승영
김태현
박희승
Original Assignee
국방과학연구소
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소, 연세대학교 산학협력단 filed Critical 국방과학연구소
Publication of WO2022235076A1 publication Critical patent/WO2022235076A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling

Definitions

  • the present invention relates to a gas turbine blade, and to a gas turbine blade having a lathe squealer tip for resolving high temperature fragility.
  • a gas turbine is a rotary heat engine that operates a turbine with high temperature and high pressure combustion gas. is composed
  • the gas turbine blade 10 referenced in FIG. 1 Since the gas turbine blade 10 referenced in FIG. 1 is operated in a high-temperature environment, breakage is frequent among other high-temperature components of the gas turbine. Among them, the blade tip is the most vulnerable part of the gas turbine blade. This is because hot gas passes between the gap between the shroud casing and the blade, creating a high thermal load at the tip. To prevent this, a squealer tip 11 as shown in FIG. 1 is applied to the blade to increase flow resistance like a labyrinth seal, thereby reducing leakage of hot gas.
  • the shelf squealer tip has been applied to the gas turbine blade 20 as shown in FIG. 2 for the purpose of reducing the thermal load and aerodynamic loss of the tip surface.
  • the shelf squealer tip is a form in which the rim (21, rim) of the pressure surface is partially moved to the inside of the tip surface, and there is a membrane cooling hole (23) for cooling the tip surface in the shelf area (22) generated while the rim is moved. This applies.
  • FIG 3 shows the flow of hot flow near the tip face when the lathe squealer tip is applied.
  • the hot flow passes through the rim of the leading edge and is reattached to the inside of the tip face, forming a swirl flow and flowing inside the tip cavity. Due to this, the thermal load of the leading edge, which is the point where the flow is reattached, increases, and the cooling performance is greatly reduced along the leading edge and the pressure surface as the membrane cooling fluid is mixed.
  • FIG. 4 is a heat load (Nusselt number) distribution on the tip surface
  • FIG. 5 is a film cooling efficiency distribution on the tip surface. 4 and 5 , these leading edge heat load concentration and non-uniform cooling characteristics induce thermal stress on the tip surface, which adversely affects the lifespan of the turbine blade.
  • the present invention has been devised to solve the above problems, and the present invention is capable of maximizing the film cooling performance of the tip surface by suppressing the reattachment of the high temperature main flow and the formation of swirl flow on the tip surface, and additionally reducing aerodynamic loss. It is an object to provide a gas turbine blade having a lathe squealer tip.
  • a gas turbine blade having a shelf squealer tip is a squealer tip extending in the longitudinal direction of the blade housing from the edge of the tip surface, which is the end surface of the blade housing and the blade housing, of the airfoil. tip), characterized in that the squealer tip is not formed on a portion of the edge of the tip surface.
  • the squealer tip, the suction surface side squealer tip formed extending from the edge of the suction surface side tip surface of the blade housing and the pressure surface side squealer formed extending from the edge of the pressure surface side tip surface of the blade housing It is characterized in that it includes a tip.
  • the pressure side side squealer tip is not formed on one part of the edge of the pressure side side tip side.
  • the pressure side side squealer tip is characterized in that it is not formed by a certain length from the leading edge end of the blade housing among the edge of the pressure side side tip surface.
  • the pressure side side squealer tip is characterized in that it is formed to be spaced apart from the edge of the tip surface by a predetermined distance.
  • the gas turbine blade having a shelf squeaker tip is a blade housing of an airfoil and a spool extending in the longitudinal direction of the blade housing from the edge of the tip surface, which is the end surface of the blade housing. It includes a squealer tip (squealer tip), and a portion of the squealer tip is characterized in that it is formed to be spaced apart from the edge of the tip surface by a predetermined distance.
  • the squealer tip is not formed on a portion of the edge of the tip surface.
  • the squealer tip is not formed on a portion of the edge of the tip surface of the pressure surface side of the blade housing.
  • the plurality of cooling holes are formed in an area where the squealer tip is not formed and in an area where the squealer tip is spaced apart from the edge of the pressure surface side tip surface among the edge portions of the pressure surface side tip surface. do.
  • the flow entering the blade is not attached to the inside of the tip surface.
  • the flow leaked from the tip gap does not show complicated flow characteristics other than the development of a tip leakage vortex.
  • 1 and 2 show an example of a conventional gas turbine blade.
  • FIG. 6 shows a gas turbine blade having a lathe squealer tip according to the present invention.
  • FIG. 7 shows a plan view of a gas turbine blade having a lathe squealer tip according to the present invention.
  • FIG. 8 is a cross-sectional shape taken along line A-A' of FIG. 7
  • FIG. 9 is a cross-sectional shape taken along line B-B' of FIG. 7 .
  • Figure 10 shows the flow characteristics in the vicinity of the tip face by the gas turbine blade having the lathe squealer tip of the present invention.
  • FIG. 11 is a diagram showing the film cooling efficiency distribution of the tip surface of the gas turbine blade having a lathe squealer tip of the present invention.
  • FIG. 6 shows a gas turbine blade having a lathe squealer tip according to the present invention
  • FIG. 7 shows a planar shape of the gas turbine blade having a lathe squealer tip according to the present invention
  • FIG. 8 is a cross-sectional shape taken along line A-A' of FIG. 7
  • FIG. 9 is a cross-sectional shape taken along line B-B' of FIG. 7 .
  • a gas turbine blade having a lathe squealer tip is formed by a blade housing 110 of an airfoil, a squealer tip 120 extending from the blade housing 110, and a squealer tip 120 . It is configured to include a cooling hole 130 formed in the formed shelf portion 116 .
  • the cooling fluid is discharged through the cooling hole 130 from the cooling fluid chamber (or internal cooling passage) formed inside the blade housing 110, so that the tip surface 113 can be cooled.
  • the shape of the blade housing 110 is not limited to the shape shown in the drawings, and it is preferably an airfoil or a similar shape.
  • leading edge (114, leading edge) has a relatively wide width and the trailing edge (115, trailing edge) has a relatively narrow width.
  • one side of both sides of the blade housing 110 becomes a pressure surface 111, a pressure side, and the other side becomes a suction surface 112, a suction side.
  • the squealer tip 120 is formed to protrude by extending a predetermined height in the longitudinal direction of the blade from the circumference of the tip surface 113 which is the end of the blade housing 110 .
  • a shelf and a cooling hole 130 are configured.
  • the squealer tip 120 is formed to protrude from the edge of the tip surface 113, the suction surface-side squealer tip 121 protruding from the edge of the suction surface 112 side tip surface 113, and pressure It can be distinguished by the pressure side side squealer tip 122 protruding from the side tip side surface 113 edge portion (111) side.
  • the suction surface side squealer tip 121 is protruded to have a length equal to the width of the entire suction surface 112
  • the pressure side side squealer tip 122 only has a length of a certain length from the trailing edge 115 . By protruding so as to have, a short section is formed so that the squealer tip is not formed at the end of the leading edge 114 and a certain length.
  • the pressure surface side squealer tip 122 does not extend from the pressure surface 122, that is, it is formed to protrude at a predetermined distance from the edge of the tip surface 113, and can go upwards based on the tip surface 113. It is formed to protrude in the form of an inclination in the outward direction.
  • the shelf portion 116 is formed on the tip surface 113 on the pressure surface 111 side. That is, the spaced apart space between the short-circuited portion in which the pressure surface side squealer tip 122 is not formed and the pressure surface side squealer tip 122 and the edge of the tip surface 113 as described above becomes the shelf portion 116 . .
  • the present invention maximizes the film cooling performance of the tip surface 113 by suppressing the reattachment of the high temperature main flow and the formation of swirl flow on the tip surface 113, and the pressure surface 111 to further reduce aerodynamic loss. ) with a lathe squealer tip with a short rim applied to the side.
  • the rim near the leading edge 114 of the pressure surface 111 is short-circuited, and the cooling hole 130 is provided in the corresponding portion to protect the exposed leading edge 114 while the rim is short-circuited.
  • the non-short-circuited portion of the pressure surface 111 is in the form of a slanted rim.
  • Figure 10 shows the flow characteristics in the vicinity of the tip face by the gas turbine blade having the lathe squealer tip of the present invention.
  • the flow passes through the rim of the leading edge and is reattached to the inside of the tip face, and then a swirl flow is formed while complex flow characteristics appear inside the tip face.
  • the membrane cooling fluid is injected from the leading edge, the flow entering the blade is not attached to the inside of the tip surface.
  • the flow leaked from the tip gap does not show complicated flow characteristics other than the development of a tip leakage vortex.
  • FIG. 11 is a diagram showing the film cooling efficiency distribution of the tip surface of the gas turbine blade having a lathe squealer tip of the present invention.
  • the high-temperature flow flows into the inside of the tip surface to form a complex vortex such as a swirl flow, and shows low membrane cooling efficiency in most areas except for a part of the suction side.
  • a relatively small amount of high-temperature flow is introduced due to the membrane cooling fluid, thereby exhibiting high membrane cooling performance.
  • the membrane cooling efficiency of the leading edge region, where the most heat load is concentrated on the turbine blade is significantly increased compared to the existing technology.
  • FIG. 12 is a comparison of the area average film cooling efficiency of the tip surface of the prior art and the present invention and the average voltage force loss coefficient of the blade.
  • the average film cooling efficiency of the present invention to which the shorted rim is applied is increased by about 91% compared to the existing technology, and the average voltage force loss coefficient is reduced by 2%. Therefore, when the present invention is applied to a turbine blade, it is expected to contribute to the improvement of the efficiency of the gas turbine by preventing damage to the blade tip area and improving lifespan and reducing aerodynamic loss by improving the cooling performance of the tip surface.
  • the present invention further relates to 1) a range for a length at which the rim is shorted and a location at which the rim is shorted, 2) a range for an angle of an unshorted rim, and 3) a range for the number, location, and angle of film cooling holes disposed in the shelf area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

본 발명은 익형의 블레이드 하우징 및 상기 블레이드 하우징의 끝단면인 팁 면의 가장자리부로부터 연장된 스퀼러 팁(squealer tip)을 포함하고, 상기 스퀼러 팁은 상기 팁 면의 가장자리부 중 일 부분에만 형성된 것을 특징으로 하는 가스터빈 블레이드로서, 본 발명에 의하면, 팁 면에서의 고온 주유동 재부착 및 스월 유동 형성을 억제하여 팁 면의 막냉각 성능을 극대화하고, 추가적으로 공력손실을 저감할 수 있다.

Description

선반 스퀼러 팁을 갖는 가스터빈 블레이드
본 발명은 가스터빈 블레이드에 관한 것으로서, 고온 취약성을 해소하기 위한 선반 스퀼러 팁을 가지는 가스터빈 블레이드에 관한 것이다.
가스터빈은 고온, 고압의 연소가스로 터빈을 가동시키는 회전형 열기관으로서, 압축기와 그 압축기에 의한 압축공기가 유입되는 연소기와, 연소기에 의해 연소된 고온, 고압의 연소가스가 터빈을 회전시키도록 구성된다.
도 1에서 참조되는 가스터빈 블레이드(10)는 고온의 환경에서 작동되기 때문에 가스터빈의 다른 고온 부품 중 파손이 빈번하다. 그 중에서도 블레이드 팁은 가스터빈 블레이드의 가장 파손에 취약한 부분이다. 이는 고온의 가스가 슈라우드 케이싱(shroud casing)과 블레이드와의 간극 사이로 지나가 팁에서 높은 열부하가 발생하기 때문이다. 이를 방지하기 위해 도 1과 같은 스퀼러 팁(11, squealer tip)을 블레이드에 적용하여 레버런스 씰(labyrinth seal)과 같이 유동저항을 증가시켜 고온의 가스가 누설되는 것을 줄인다.
최근에는 팁 면의 열부하 및 공력손실 저감을 목적으로 도 2와 같이 선반 스퀼러 팁(Shelf squealer tip)이 가스터빈 블레이드(20)에 적용되고 있다. 선반 스퀼러 팁은 압력면의 림(21, Rim)이 팁 면 내측으로 일부 이동한 형태이며, 림이 이동하면서 생긴 선반(Shelf) 영역(22)에 팁 표면 냉각을 위한 막냉각 홀(23)이 적용된다.
도 3은 선반 스퀼러 팁 적용 시, 팁 면 근처 고온 유동의 흐름을 나타낸 것이다. 고온 유동은 전연부의 림을 지나 팁 면 내부에 재부착된 뒤, 스월(Swirl) 유동을 형성하여 팁 캐비티 내부를 흐른다. 이로 인해 유동이 재부착되는 지점인 전연부의 열부하가 증가하며, 막냉각 유체가 혼합되어 전연부 및 압력면을 따라 냉각성능이 크게 하락하게 된다.
도 4는 팁 면의 열부하(Nusselt 수) 분포이며, 도 5는 팁 면의 막냉각 효율 분포이다. 도 4 및 도 5에서 참조되는 바와 같이, 이러한 전연부 열부하 집중 및 불균일한 냉각 특성은 팁 면에서의 열응력을 유발하여 터빈 블레이드의 수명에 악영향을 미친다.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.
본 발명은 상술한 문제점을 해결하고자 안출된 것으로서, 본 발명은 팁 면에서의 고온 주유동 재부착 및 스월 유동 형성을 억제하여 팁 면의 막냉각 성능을 극대화하고, 추가적으로 공력손실을 저감할 수 있는 선반 스퀼러 팁을 갖는 가스터빈 블레이드를 제공하는 데 그 목적이 있다.
본 발명의 일 관점에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드는, 익형의 블레이드 하우징 및 상기 블레이드 하우징의 끝단면인 팁 면의 가장자리부로부터 상기 블레이드 하우징의 길이 방향으로 연장된 스퀼러 팁(squealer tip)을 포함하고, 상기 팁 면의 가장자리부 중 일 부분에는 상기 스퀼러 팁이 형성되지 않은 것을 특징으로 한다.
그리고, 상기 스퀼러 팁은, 상기 블레이드 하우징의 흡입면 측 팁 면의 가장자리부로부터 연장 형성된 흡입면 측 스퀼러 팁 및 상기 블레이드 하우징의 압력면 측 팁 면의 가장자리부로부터 연장 형성된 압력면 측 스퀼러 팁을 포함하는 것을 특징으로 한다.
또한, 상기 압력면 측 팁 면의 가장자리부 중 일 부분에는 상기 압력면 측 스퀼러 팁이 형성되지 않은 것을 특징으로 한다.
그리고, 상기 압력면 측 스퀼러 팁은 상기 압력면 측 팁 면의 가장자리부 중 상기 블레이드 하우징의 전연부 끝단으로부터 일정 길이만큼 형성되지 않은 것을 특징으로 한다.
나아가, 상기 압력면 측 스퀼러 팁이 형성되지 않은 상기 팁 면의 가장자리부에는 복수 개의 냉각홀이 형성된 것을 특징으로 한다.
그리고, 상기 압력면 측 스퀼러 팁은 상기 팁 면의 가장자리로부터 일정 간격 이격되어 형성된 것을 특징으로 한다.
또한, 상기 압력면 측 스퀼러 팁과 상기 팁 면의 가장자리와의 이격 공간의 상기 팁 면 상에는 복수 개의 냉각홀이 형성된 것을 특징으로 한다.
다음으로, 본 발명의 다른 일 관점에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드는, 익형의 블레이드 하우징 및 상기 블레이드 하우징의 끝단면인 팁 면의 가장자리부로부터 상기 블레이드 하우징의 길이 방향으로 연장된 스퀼러 팁(squealer tip)을 포함하고, 상기 스퀼러 팁의 일 부분은 상기 팁 면의 가장자리로부터 일정 간격 이격되어 형성된 것을 특징으로 한다.
그리고, 상기 팁 면의 가장자리부 중 일 부분에는 상기 스퀼러 팁이 형성되지 않은 것을 특징으로 한다.
또한, 상기 블레이드 하우징의 압력면 측 팁 면의 가장자리부 중 일 부분에는 상기 스퀼러 팁이 형성되지 않은 것을 특징으로 한다.
그리고, 상기 압력면 측 팁 면의 가장자리부에는 복수 개의 냉각홀이 형성된 것을 특징으로 한다.
또한, 상기 압력면 측 팁 면의 가장자리부 중 상기 스퀼러 팁이 형성되지 않은 영역 및 상기 스퀼러 팁이 상기 압력면 측 팁 면의 가장자리로부터 이격된 영역에 복수 개의 상기 냉각홀이 형성된 것을 특징으로 한다.
본 발명의 선반 스퀼러 팁을 갖는 가스터빈 블레이드에 의하면, 전연부에서 막냉각 유체가 분사됨에 따라 블레이드에 진입한 유동이 팁 면 내부에 부착되지 않는다. 또한, 기존 기술과 달리 팁 간극에서 누설된 유동이 팁 누설 와류로 발달하는 것 이외에 복잡한 유동 특성이 나타나지 않는다.
따라서, 고온 유동이 막냉각 유체로 인해 상대적으로 적게 유입되어 높은 막냉각 성능을 보인다. 특히, 터빈 블레이드에서 가장 많은 열부하가 집중되는 전연부 영역의 막냉각 효율이 기존 기술 대비 대폭 증가한다.
그리고, 팁 면의 냉각성능 개선을 통한 블레이드 팁 영역의 파손 방지 및 수명 향상, 공력손실 저감을 통한 가스터빈의 효율 개선에 기여할 수 있다.
도 1 및 도 2는 종래의 가스터빈 블레이드의 예를 도시한 것이다.
도 3 내지 도 5는 도 2의 종래 가스터빈 블레이드에 의한 해석 결과를 나타낸 것이다.
도 6은 본 발명에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드를 도시한 것이다.
도 7은 본 발명에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드의 평면 형상을 도시한 것이다.
도 8은 도 7의 A-A' 단면 형상이고, 도 9는 도 7의 B-B' 단면 형상이다.
도 10은 본 발명의 선반 스퀼러 팁을 갖는 가스터빈 블레이드에 의한 팁 면 부근의 유동 특성을 나타낸 것이다.
도 11은 본 발명의 선반 스퀼러 팁을 갖는 가스터빈 블레이드의 팁 면 막냉각 효율 분포도를 나타낸 것이다.
도 12는 종래 기술과 본 발명의 팁 면 막냉각 효율 분포도를 비교한 것이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.
본 발명의 바람직한 실시 예를 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지의 기술이나 반복적인 설명은 그 설명을 줄이거나 생략하기로 한다.
도 6은 본 발명에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드를 도시한 것이고, 도 7은 본 발명에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드의 평면 형상을 도시한 것이다. 그리고, 도 8은 도 7의 A-A' 단면 형상이고, 도 9는 도 7의 B-B' 단면 형상이다.
이하, 도 6 내지 도 9를 참조하여 본 발명의 일 실시예에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드를 설명하기로 한다.
본 발명의 일 실시예에 의한 선반 스퀼러 팁을 갖는 가스터빈 블레이드는 익형의 블레이드 하우징(110), 블레이드 하우징(110)으로부터 연장 형성되는 스퀼러 팁(120), 스퀼러 팁(120)에 의해 형성되는 선반부(116)에 형성되는 냉각홀(130)을 포함하여 구성된다.
그래서, 블레이드 하우징(110) 내측에 형성된 냉각 유체 챔버(또는 내부 냉각 유로)로부터 냉각홀(130)을 통해 냉각 유체가 배출됨으로써 팁 면(113)이 냉각될 수 있도록 구성된다.
블레이드 하우징(110)의 형상은 도면에 도시된 형상에만 국한되는 것은 아니며, 익형이나 이와 유사한 형상인 것이 바람직하다.
또한, 전연부(114, 앞전, leading edge)가 상대적으로 폭이 넓고, 후연부(115, 뒷전, trailing edge)가 상대적으로 폭이 좁은 형상인 것이 바람직하다.
그리고, 블레이드 하우징(110)의 양 측면 중 일 측면은 압력면(111, pressure side)이 되고, 타 측면은 흡입면(112, suction side)이 된다.
스퀼러 팁(120)은 블레이드 하우징(110)의 끝단인 팁 면(113)의 둘레로부터 블레이드의 길이 방향으로 일정 높이 연장되어 돌출 형성된다.
이는 팁 간극으로 누설되는 고온 유동을 억제하고 블레이드 팁 면(113)으로 재부착되는 유동을 최소화하기 위한 것으로, 이를 위해 선반부(shelf)와 냉각홀(130)을 구성한다.
즉, 스퀼러 팁(120)은 팁 면(113)의 가장자리부로부터 돌출 형성되되, 흡입면(112) 측 팁 면(113) 가장자리부로부터 돌출된 흡입면 측 스퀼러 팁(121)과, 압력면(111) 측 팁 면(113) 가장자리부로부터 돌출된 압력면 측 스퀼러 팁(122)으로 구분할 수 있다.
흡입면 측 스퀼러 팁(121)은 전체 흡입면(112)의 폭만큼의 길이를 갖도록 돌출 형성되는 반면, 압력면 측 스퀼러 팁(122)은 후연부(115)로부터 일정 길이만큼의 길이만을 갖도록 돌출 형성됨으로써, 전연부(114) 끝단과 일정 길이만큼은 스퀼러 팁이 형성되지 않도록 단락부가 형성되게 한다.
나아가, 압력면 측 스퀼러 팁(122)은 압력면(122)으로부터 연장되지 않고, 즉 팁 면(113)의 가장자리로부터 일정 간격 이격되어 돌출 형성되며, 팁 면(113)을 기준으로 상부로 갈수로 외측 방향으로 경사진 형태로 돌출 형성된다.
그래서, 압력면(111) 측의 팁 면(113) 상에는 선반부(116)가 형성된다. 즉, 앞서 설명한 압력면 측 스퀼러 팁(122)이 형성되지 않은 단락부와, 압력면 측 스퀼러 팁(122)과 팁 면(113) 가장지리와의 이격 공간이 선반부(116)가 된다.
그리고, 이 같은 선반부(116) 상에 복수 개의 냉각홀(130)이 줄지어 배열됨으로써 형성된다.
이와 같이, 본 발명은 팁 면(113)에서의 고온 주유동 재부착 및 스월 유동 형성을 억제하여 팁 면(113)의 막냉각 성능을 극대화하고, 추가적으로 공력손실을 저감할 수 있도록 압력면(111) 측에 단락 림(rim)이 적용된 선반 스퀼러 팁을 가진다.
즉, 본 발명은 기존 기술과 달리 압력면(111)의 전연부(114) 근처 림이 단락되어있으며, 림이 단락되면서 노출된 전연부(114)를 보호하도록 해당 부분에 냉각홀(130)이 추가로 배치된 형태이며, 압력면(111) 측의 단락되지 않은 부분은 경사진 림을 갖는 형태인 것이다.
도 10은 본 발명의 선반 스퀼러 팁을 갖는 가스터빈 블레이드에 의한 팁 면 부근의 유동 특성을 나타낸 것이다.
도 3의 종래 기술과 비교하면, 종래 기술의 경우 앞서 언급한 것과 같이, 유동이 전연부의 림을 지나 팁 면 내부에 재부착된 뒤 스월 유동을 형성하면서 팁 면 내부에서 복잡한 유동 특성이 나타난다. 반면에 본 발명의 경우는, 전연부에서 막냉각 유체가 분사됨에 따라 블레이드에 진입한 유동이 팁 면 내부에 부착되지 않는다. 또한, 기존 기술과 달리 팁 간극에서 누설된 유동이 팁 누설 와류로 발달하는 것 이외에 복잡한 유동 특성이 나타나지 않는다.
도 11은 본 발명의 선반 스퀼러 팁을 갖는 가스터빈 블레이드의 팁 면 막냉각 효율 분포도를 나타낸 것이다.
도 5의 종래 기술과 비교하면, 종래 기술의 경우 고온 유동이 팁 면 내부로 유입되어 스월 유동 등의 복잡한 와류를 형성하여 흡입면 측 일부를 제외하고는 대부분 영역에서 낮은 막냉각 효율을 보인다. 그러나 본 발명의 경우, 고온 유동이 막냉각 유체로 인해 상대적으로 적게 유입되어 높은 막냉각 성능을 보인다. 특히, 터빈 블레이드에서 가장 많은 열부하가 집중되는 전연부 영역의 막냉각 효율이 기존 기술 대비 대폭 증가하였음을 확인할 수 있다.
그리고, 도 12는 종래 기술과 본 발명의 팁 면의 면적 평균 막냉각 효율과 블레이드의 평균 전압력 손실계수를 비교한 것이다. 단락된 림이 적용된 본 발명의 평균 막냉각 효율은 기존 기술 대비 약 91% 상승하였고, 평균 전압력 손실계수는 2% 감소하였다. 따라서 본 발명이 터빈 블레이드에 적용되는 경우 팁 면의 냉각성능 개선을 통한 블레이드 팁 영역의 파손 방지 및 수명 향상, 공력손실 저감을 통한 가스터빈의 효율 개선에 기여할 것으로 예상한다.
본 발명은 추가로 1) 림이 단락되는 길이에 대한 범위 및 단락되는 위치, 2) 단락되지 않은 림의 각도에 대한 범위, 3) 선반 영역에 배치되는 막냉각 홀의 개수, 위치, 각도에 대한 범위를 제안할 수 있다.
이상과 같은 본 발명은 예시된 도면을 참조하여 설명되었지만, 기재된 실시 예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형될 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정 예 또는 변형 예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이며, 본 발명의 권리범위는 첨부된 특허청구범위에 기초하여 해석되어야 할 것이다.
(부호의 설명)
110 : 블레이드 하우징
111 : 압력면 112 : 흡연면
113 : 팁 면
114 : 전연부 115 : 후연부
116 : 선반부
120 : 스퀼러 팁
121 : 흡연면 측 스퀼러 팁
122 : 압력면 측 스퀼러 팁
130 : 냉각홀

Claims (14)

  1. 익형의 블레이드 하우징; 및
    상기 블레이드 하우징의 끝단면인 팁 면의 가장자리부로부터 연장된 스퀼러 팁(squealer tip)을 포함하고,
    상기 스퀼러 팁은 상기 팁 면의 가장자리부 중 일 부분에만 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  2. 청구항 1에 있어서,
    상기 스퀼러 팁은,
    상기 팁 면의 가장자리부 중 상기 블레이드 하우징의 흡입면 측으로부터 연장 형성된 흡입면 측 스퀼러 팁; 및
    상기 팁 면의 가장자리부 중 상기 블레이드 하우징의 압력면 측으로부터 연장 형성된 압력면 측 스퀼러 팁을 포함하는 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  3. 청구항 2에 있어서,
    상기 압력면 측 스퀼러 팁은 상기 팁 면의 압력면 측 일 부분에만 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  4. 청구항 3에 있어서,
    상기 블레이드 하우징의 전연부 끝단으로부터 일정 길이만큼의 상기 팁 면의 압력면 측에는 상기 압력면 측 스퀼러 팁이 형성되지 않는 선반부가 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  5. 청구항 4에 있어서,
    상기 선반부에는 복수 개의 냉각홀이 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  6. 청구항 4에 있어서,
    상기 압력면 측 스퀼러 팁은 상기 팁 면의 압력면 측으로부터 이격되어 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  7. 청구항 6에 있어서,
    상기 압력면 측 스퀼러 팁이 상기 팁 면의 압력면 측으로부터 이격된 구간의 상기 팁 면 상에는 복수 개의 냉각홀이 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  8. 청구항 6에 있어서,
    상기 압력면 측 스퀼러 팁은 상부로 갈수록 상기 압력면 측 방향으로 경사지게 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  9. 익형의 블레이드 하우징; 및
    상기 블레이드 하우징의 끝단면인 팁 면의 가장자리부로부터 연장된 스퀼러 팁(squealer tip)을 포함하고,
    상기 스퀼러 팁의 일 부분은 상기 팁 면의 일 측으로부터 이격되어 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  10. 청구항 9에 있어서,
    상기 스퀼러 팁은 상기 팁 면의 가장자리부 중 일 부분에만 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  11. 청구항 10에 있어서,
    상기 스퀼러 팁은 상기 블레이드 하우징의 압력면 측 팁 면의 일 부분에만 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  12. 청구항 11에 있어서,
    상기 팁 면의 압력면 측에는 복수 개의 냉각홀이 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  13. 청구항 12에 있어서,
    상기 팁 면의 압력면 측에 상기 스퀼러 팁이 형성되지 않은 영역 및 상기 스퀼러 팁이 상기 팁 면의 압력면 측으로부터 이격된 영역에 복수 개의 상기 냉각홀이 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
  14. 청구항 11에 있어서,
    상기 압력면 측 스퀼러 팁은 상부로 갈수록 상기 압력면 측 방향으로 경사지게 형성된 것을 특징으로 하는,
    선반 스퀼러 팁을 갖는 가스터빈 블레이드.
PCT/KR2022/006410 2021-05-04 2022-05-04 선반 스퀼러 팁을 갖는 가스터빈 블레이드 WO2022235076A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210057902A KR102590947B1 (ko) 2021-05-04 2021-05-04 선반 스퀼러 팁을 갖는 가스터빈 블레이드
KR10-2021-0057902 2021-05-04

Publications (1)

Publication Number Publication Date
WO2022235076A1 true WO2022235076A1 (ko) 2022-11-10

Family

ID=83932272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006410 WO2022235076A1 (ko) 2021-05-04 2022-05-04 선반 스퀼러 팁을 갖는 가스터빈 블레이드

Country Status (2)

Country Link
KR (1) KR102590947B1 (ko)
WO (1) WO2022235076A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235503A (ja) * 2001-01-09 2002-08-23 General Electric Co <Ge> タービンブレード先端温度を低下させるための方法及び装置
US20040126236A1 (en) * 2002-12-30 2004-07-01 Ching-Pang Lee Compound tip notched blade
US20060257257A1 (en) * 2005-05-13 2006-11-16 Snecma Hollow rotor blade for the turbine of a gas turbine engine, the blade being fitted with a "bathtub"
US20190368359A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Squealer shelf airfoil tip
CN112240228A (zh) * 2020-10-20 2021-01-19 西北工业大学 一种用于涡轮叶片带横向缝孔的间断凹槽叶顶结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509384B1 (ko) 2014-01-16 2015-04-07 두산중공업 주식회사 가스 터빈의 블레이드 팁 실링 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235503A (ja) * 2001-01-09 2002-08-23 General Electric Co <Ge> タービンブレード先端温度を低下させるための方法及び装置
US20040126236A1 (en) * 2002-12-30 2004-07-01 Ching-Pang Lee Compound tip notched blade
US20060257257A1 (en) * 2005-05-13 2006-11-16 Snecma Hollow rotor blade for the turbine of a gas turbine engine, the blade being fitted with a "bathtub"
US20190368359A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Squealer shelf airfoil tip
CN112240228A (zh) * 2020-10-20 2021-01-19 西北工业大学 一种用于涡轮叶片带横向缝孔的间断凹槽叶顶结构

Also Published As

Publication number Publication date
KR102590947B1 (ko) 2023-10-19
KR20220150657A (ko) 2022-11-11

Similar Documents

Publication Publication Date Title
CN101191424B (zh) 涡轮机叶片及涡轮机叶片冷却系统及方法
CN1288329C (zh) 导板的扇形体结构
KR100533902B1 (ko) 가스 터빈 엔진 및 중공 에어포일 냉각 방법
KR100567693B1 (ko) 가스 터빈 엔진용 블레이드
US7785067B2 (en) Method and system to facilitate cooling turbine engines
US7044710B2 (en) Gas turbine arrangement
CA1292431C (en) Diffusion-cooled blade tip cap
US6189891B1 (en) Gas turbine seal apparatus
US4416585A (en) Blade cooling for gas turbine engine
CA2684779C (en) Turbine blade with pressure side winglets
US4946346A (en) Gas turbine vane
EP0916811B1 (en) Ribbed turbine blade tip
US5290144A (en) Shroud ring for an axial flow turbine
JP2000345804A (ja) オフセットスクイーラ付きのタービン翼端を備えたタービン組立体
KR20000052846A (ko) 가스 터빈 엔진의 에어포일용 냉각 구조체
WO2017217622A1 (ko) 공기유도 캡 및 이를 구비하는 연소 덕트
EP3184743B1 (en) Turbine airfoil with trailing edge cooling circuit
RU2667849C2 (ru) Камера сгорания газотурбинного двигателя, оснащенная средствами отклонения воздуха для уменьшения следа, создаваемого свечой зажигания
CN102191954A (zh) 利用密封槽通道冷却燃气涡轮构件
SE468358B (sv) Kyld turbinskovel
CA2602311C (en) Method and system to facilitate enhanced local cooling of turbine engines
WO2022235076A1 (ko) 선반 스퀼러 팁을 갖는 가스터빈 블레이드
US6176678B1 (en) Apparatus and methods for turbine blade cooling
CA2264076C (en) Gas turbine moving blade tip shroud
GB2115881A (en) Gas turbine engine stator vane assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18557690

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22799119

Country of ref document: EP

Kind code of ref document: A1