WO2022235058A1 - Pcr device - Google Patents

Pcr device Download PDF

Info

Publication number
WO2022235058A1
WO2022235058A1 PCT/KR2022/006350 KR2022006350W WO2022235058A1 WO 2022235058 A1 WO2022235058 A1 WO 2022235058A1 KR 2022006350 W KR2022006350 W KR 2022006350W WO 2022235058 A1 WO2022235058 A1 WO 2022235058A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcr
gold
alumina substrate
barrier rib
alumina
Prior art date
Application number
PCT/KR2022/006350
Other languages
French (fr)
Korean (ko)
Inventor
조규진
정연수
이루크
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2022235058A1 publication Critical patent/WO2022235058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a PCR (polymerase chain reaction) apparatus.
  • PCR Polymerase chain reaction
  • Polymerase chain reaction is a chain reaction of a polymerase to obtain a large amount of copies of a specific helix of a nucleic acid.
  • Polymerase chain reaction is an essential technology that is currently widely applied in medical and biological research, and it is also introduced as a general method for testing coronavirus-19 (SARS-CoV-2), which has recently caused a global pandemic.
  • SARS-CoV-2 coronavirus-19
  • PCR test is used for the purpose of sufficiently obtaining a sample of a specific DNA sequence through nucleic acid (DNA or RNA) amplification technology. This is because it is a technology that replicates a very small amount of DNA and amplifies it as much as you want.
  • the patient's saliva or sputum does not contain enough virus to make a confirmed diagnosis. Therefore, by amplifying the DNA, it is possible to confirm the presence or absence of the coronavirus in the sample by reading it using a nucleotide sequence that can distinguish the coronavirus.
  • the existing PCR apparatus takes a long time of 1 hour or more to complete the nucleic acid amplification reaction by increasing or decreasing the temperature through the conversion of electrical energy to thermal energy.
  • additional accessory devices such as a heating device and a cooling device are required, as the volume of the device increases, it is difficult to apply it to a field requiring rapid disease diagnosis. Due to the inconvenience of portability, expensive equipment price, long detection time, and difficulty in handling, research on portable PCR equipment that is easy to carry and inexpensive is steadily progressing.
  • Another object of the present invention is to provide a PCR apparatus that is portable and can be used quickly in the field by minimizing the volume of the PCR apparatus.
  • Another object of the present invention is to control the structure and formation of gold nanoparticles and gold nanoclusters using alumina nanostructures to generate surface plasmonic resonance to convert light into heat, thereby reducing the temperature rise-fall cycle required in PCR. It is to provide an apparatus in which amplification of nucleic acids occurs by controlling the
  • One aspect of the present invention is a PCR device.
  • the PCR apparatus includes a PCR plate, a plurality of LED light sources disposed on a lower surface of the PCR plate, and a display disposed on an upper portion of the PCR plate, wherein the PCR plate includes a PCR chamber having a plurality of wells and the PCR and an alumina (Al 2 O 3 ) substrate disposed on the lower surface of the chamber and containing nano-aligned, gold nanoparticles and gold nanoclusters.
  • Al 2 O 3 alumina
  • the gold nanoparticles may have different sizes compared to the gold nanoclusters.
  • the LED light source may include a light source irradiating light having a wavelength of 500 nm or more and 600 nm or less and a light source irradiating light having a wavelength of more than 600 nm and 700 nm or less.
  • the alumina substrate is an alumina substrate; a barrier rib structure formed integrally with the alumina substrate on an upper surface of the alumina substrate and formed by crossing a plurality of barrier ribs; the gold nanoparticles integrally formed with the alumina substrate in an empty space within the barrier rib structure;
  • the gold nanoclusters formed on the upper surface of the barrier rib may be included.
  • the upper surface of the partition wall may be curved.
  • the alumina may be a porous anodic aluminum oxide (AAO).
  • the alumina substrate is formed by anodizing and wet etching the aluminum substrate to form a plurality of barrier ribs on the alumina substrate; and forming a barrier rib structure including an empty space formed by crossing the barrier ribs (first step), depositing gold on the barrier rib structure (second step); and heat-treating the barrier rib structure on which gold is deposited (third step).
  • the alumina substrate may be manufactured by performing the first step, the second step, and the third step by a roll-to-roll hybrid manufacturing process.
  • the present invention provides a PCR apparatus capable of performing PCR at high speed by increasing the rate of rise and fall of the temperature required in PCR.
  • the present invention provides a PCR device that is portable and can be used quickly in the field by minimizing the volume of the PCR device.
  • the present invention controls the structure and formation of gold nanoparticles and gold nanoclusters using alumina nanostructures to generate surface plasmonic resonance to convert light into heat, thereby controlling the temperature rise-fall cycle required in PCR with light to control nucleic acid
  • a PCR test apparatus was provided by amplification of the.
  • FIG. 1 is an internal schematic diagram of a portable PCR device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an alumina substrate comprising nano-ordered, gold nanoparticles and gold nanoclusters.
  • FIG. 3 is a schematic diagram of a manufacturing process of an alumina substrate comprising nano-ordered, gold nanoparticles and gold nanoclusters.
  • FIG. 4 is a schematic diagram of a full roll to roll (R2R) hybrid vacuum process for preparing nano-aligned, alumina substrates comprising gold nanoparticles and gold nanogluster.
  • SEM scanning electron microscopy
  • FIG. 6 is a conceptual diagram illustrating an action when light of different wavelengths is irradiated to an alumina substrate including nano-aligned, gold nanoparticles and gold nanoclusters.
  • FIG. 7 shows a state in which the light is irradiated to the alumina substrate by installing the LED light source on the upper part.
  • FIG. 9 is a graph showing the rise and fall of temperature according to time when the LED light source is turned on and off when an LED light source (simultaneous irradiation of light with a wavelength of 530 nm and 660 nm) is irradiated to an alumina substrate including gold nanoparticles and gold nanocluster; to be.
  • FIG. 10 is a graph showing temperature rise and fall according to DNA amplification using a PCR device.
  • 11 is an electrophoretic gel result after amplification of DNA (55 bp and 100 bp) using a PCR device.
  • the present inventors as a means for raising and lowering the sample temperature required in the DNA amplification process in the PCR device, include a plurality of LED light sources irradiating light of different wavelengths, arranged on top of the LED light source, and arranged nano-aligned, Alumina substrates containing gold nanoparticles and gold nanoclusters were used.
  • the PCR device rapidly converts light into heat due to the plasmonic resonance effect caused by the nano-aligned, gold nanoparticles and gold nanoclusters in the substrate by the light of a plurality of wavelengths emitted from the LED light source, thereby increasing the sample temperature and As the descent is repeated rapidly, the PCR reaction can be performed at high speed by increasing the rate of rise and fall of the temperature required for PCR.
  • the plurality of LED light sources have low power consumption and are very inexpensive compared to the existing light sources, so that the PCR device is portable and can be used quickly in the field.
  • the PCR apparatus increases the temperature from room temperature to 90°C to 95°C (denaturation), lowers it from 90°C to 95°C to 60°C to 65°C (annealing), and again from 60°C to 65°C to 70°C to The 75° C. rise (extension) cycle can be repeated.
  • the PCR apparatus of the present invention includes a PCR plate, a plurality of LED light sources disposed on the lower surface of the PCR plate, and a display disposed on the PCR plate, wherein the PCR plate includes one or more sample pretreatment wells and one or more A PCR chamber having a PCR performing well, and an alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters disposed on a lower surface of the PCR chamber.
  • FIG. 1 a PCR apparatus according to an embodiment of the present invention will be described with reference to FIG. 1 .
  • the PCR apparatus includes a PCR plate (S150), LED light sources (S130, S140), a display (S160) and a power supply (S110).
  • the PCR plate (S150), the LED light sources (S130, S140), the display (S160), and the power supply source (S110) are included in the housing (S170).
  • the PCR apparatus of the present invention can be used as a portable device.
  • the PCR device may further include a cooling fan (S120) to further increase the cooling rate when the PCR device is driven.
  • the PCR apparatus may circulate low-temperature air in the PCR apparatus through a chiller (not shown in FIG. 1) to further increase the cooling rate.
  • the PCR plate (S150) is a PCR chamber disposed toward the display (S160); and an alumina substrate disposed on the lower surface of the PCR chamber and disposed toward the LED light sources S130 and S140 and containing nano-aligned, gold nanoparticles and gold nanoclusters.
  • the PCR chamber includes one or more sample preparation wells and one or more PCR performing wells.
  • the sample pretreatment well and the PCR performing well may be included by adopting or modifying the wells that are normally included in the PCR apparatus, respectively.
  • the PCR chamber is not particularly limited, but polydimethylsiloxane (PDMS) wells may be used.
  • a mix of enzymes, biomolecules, and chemicals necessary for cell lysis (Lysis), RNA purification, reverse transcription and PCR is applied in the well. Purification, reverse transcription and PCR can be performed.
  • the enzymes, biomolecules, and chemical agents may employ conventional types known to those skilled in the art that are necessary when performing PCR.
  • the display S160 may confirm the amplification of the nucleic acid by confirming the rise and fall of the temperature of the sample.
  • the display S160 may confirm whether or not the actual nucleic acid is actually amplified by additionally including a fluorescence detector as well as a cycle of increasing and decreasing the temperature.
  • the LED light sources S130 and S140 may emit light of different wavelengths, respectively. When irradiating light of the same wavelength, the effect of increasing the temperature may be insignificant.
  • the LED light source may employ a light source that irradiates light of a wavelength of 500 nm or more and 600 nm or less, and light of a wavelength of 600 nm or more and 700 nm or less, respectively. In the above range, the conversion efficiency from light energy to thermal energy can be maximized.
  • light having a wavelength of 530 nm to 550 nm, more preferably 530 nm and 640 nm to 660 nm, and more preferably 660 nm may be used. This is also explained in detail below with reference to FIG. 8 .
  • the focal length of the two light sources is important. Accordingly, it may further include an adjustment means capable of adjusting the distance and position of the LED light source.
  • LED light sources (S130, S140) are arranged in the lower part of the PCR device. However, as shown in FIG. 7 , the conversion efficiency can be further increased by installing the LED light source ( S130 ) on the top of the PCR plate and irradiating light onto the nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrate ( S240 ). may be
  • an alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters is described.
  • the nano-aligned alumina substrate containing gold nanoparticles and gold nanoclusters includes an alumina substrate S240; a barrier rib structure (S221) formed integrally with the alumina substrate (S240) on the upper surface of the alumina substrate (S240) and formed by crossing a plurality of barrier ribs; gold nanoparticles S320 integrally formed with the alumina substrate S240 in an empty space within the barrier rib structure S221; Among the barrier rib structures S221 , the gold nano-clusters S330 formed in contact with the upper surface of the barrier ribs are included.
  • the gold nanoparticles S320 have a size different from that of the gold nanocluster S330 or include gold particles of a different size. Accordingly, by using the LED light sources S130 and S140 irradiating two different wavelengths of light, the plasmon effect by each light source can be increased, which can further increase the rate of temperature rise.
  • the gold nanoparticles S320 formed on the alumina substrate S240 are irradiated with light S400 from the LED light source, light energy can be converted into thermal energy, and the emitted thermal energy is the sample. can increase the rate of temperature rise.
  • light is irradiated, light is absorbed by the gold nanoparticles, and at this time, electrons move rapidly and generate heat. Then, when the light irradiation is stopped, the temperature rapidly drops as the plasmon effect disappears.
  • the gold nanoclusters S330 formed on the alumina substrate S240 are irradiated with light S410 of a wavelength different from that of the light S400 from the LED light source, light energy can be converted into thermal energy, The released thermal energy may further increase the rate of temperature increase of the sample.
  • the present invention converts light emitted from different wavelength bands into thermal energy by the gold nanoparticles S320 and the gold nanocluster S330 to maximize conversion efficiency, thereby increasing the rate of temperature increase of the sample.
  • the alumina substrate S240 cools quickly, so that the temperature of the sample can be rapidly decreased. In this way, by increasing the rate of rise and fall of the temperature required for PCR by the nano-aligned, gold nanoparticles, gold nanoclusters, and alumina substrates, it is possible to perform a PCR reaction at high speed and quickly.
  • the gold nanoparticles S320 and the gold nanoclusters S330 are disposed to face the LED light sources S130 and S140, so that the gold nanoparticles S320 and the gold nanoclusters (S320) and the gold nanoclusters ( S330) may directly receive the light emitted from the LED light sources (S130, S140).
  • the gold nanoparticles S320 are formed integrally with the alumina substrate in an empty space where the barrier ribs cross each other and are spaced apart from the barrier rib.
  • the gold nanoparticles S320 may have a particle diameter of 50 nm to 70 nm, specifically 60 nm to 70 nm. Within the above range, it may be easy to prepare gold nanoparticles, and it may be easy to implement the effects of the present invention.
  • the gold nanoparticles S320 are spaced apart from each other at the same distance from each other on the alumina substrate S240 and are formed in nano-alignment. Through this, it may be easier to implement the effects of the present invention.
  • the gold nanoparticles S320 are nano-aligned, and the separation distance between the gold nanoparticles S320 may be 0.001 nm to 1000 nm. In the above range, the rate of rise and fall of the temperature may be faster when the LED light source of the present invention is irradiated.
  • the gold nanocluster S330 is formed in direct contact with the upper surface of the barrier rib, and fine gold particles form a cluster.
  • the gold nanoclusters S330 may have an average particle diameter of 5 nm or less, specifically 5 nm to 10 nm. Within the above range, it may be easy to implement the effects of the present invention.
  • the gold nanoclusters S330 are also nano-aligned, and as shown in FIG. 2 , they are combined in a regular hexagonal shape with a side length of 0.001 nm to 1000 nm.
  • the barrier rib structure S221 includes a plurality of barrier ribs; and an empty space in which the partition walls intersect each other.
  • the barrier rib structure S221 is formed by aligning the barrier rib with the empty space, thereby increasing the rate of temperature increase due to the plasmon effect.
  • the barrier rib structure S221 has an outermost barrier rib, so that it can be easily mounted on a PCR plate.
  • alumina can be made porous as anodic aluminum oxide (AAO) by anodization.
  • AAO anodic aluminum oxide
  • the upper surface of the partition wall ( S222 in FIG. 3 ) may be curved.
  • the curved surface allows the gold nanoclusters to be stably formed compared to the plane, the effect of the present invention can be further enhanced, and an additional plasmonic effect can be provided.
  • the height of the barrier rib may be adjusted according to the size of the PCR apparatus, the PCR plate and/or the type of light source included in the PCR apparatus.
  • the height of the barrier rib may be 1 mm to 3 mm. Within the above range, it may be easy to implement the effects of the present invention.
  • the barrier rib may form a barrier rib structure while regular hexagons are joined to each other to have a honeycomb structure.
  • the empty space formed by crossing the barrier ribs may have a predetermined cross-sectional shape.
  • it may have a regular hexagonal cross section as shown in FIG. 2 , but is not limited thereto.
  • An alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters was formed by anodizing and wet etching an aluminum substrate to form a plurality of barrier ribs on the alumina substrate; and forming a barrier rib structure including an empty space formed by crossing the barrier ribs (step 1), depositing gold on the barrier rib structure (step 2); It may be manufactured by a method comprising the step of heat-treating the barrier structure on which gold is deposited (step 3).
  • an aluminum substrate S210 is prepared.
  • the aluminum substrate S210 may be an aluminum substrate having a purity of 99.99% or more, for example, 99.99% to 100%. Within the purity range, the arrangement of empty spaces among the finally formed barrier rib structures may be aligned.
  • the aluminum substrate S210 may be used without additional processing. However, for the rapid increase and decrease of the temperature and the manufacturing yield of the nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrate of the present invention, the aluminum substrate S210 is surface treated to remove impurities on the surface of the aluminum substrate. may be subjected to a pretreatment process.
  • the pretreatment process may include electrolytic polishing of the surface of the aluminum substrate. Electropolishing is performed by impregnating an aluminum substrate in a mixed solution of HClO 4 and ethanol in a volume ratio of 1:1 to 10:1, preferably 3:1 to 5:1, more preferably 4:1, and then 10 It can be carried out by applying a direct current voltage of 10V to 30V, preferably 20V under the condition of °C to 20°C, preferably 15°C.
  • a plurality of barrier ribs are formed on the alumina substrate S240 from the aluminum substrate S210; and a barrier rib structure S221 including an empty space formed by crossing the barrier ribs with each other.
  • the upper surface of the barrier rib of the barrier rib structure S221 may be a curved surface S222 .
  • the barrier rib structure may be performed by anodization and wet etching.
  • the anodization and wet etching may each be performed once, in order to facilitate the formation of the barrier rib structure of the present invention and to form a nano-ordered structure well, the first anodization process, the first wet etching process, and the second An anodization process and a second wet etching process may be performed in the order of the process.
  • the second wet etching process may be omitted.
  • the aluminum substrate (S210) is impregnated in 0.1 to 0.5M, preferably 0.3M of oxalic acid, and under a DC voltage of 10V to 100V, preferably 60V, 1 hour to 20 hours, preferably 12 hours. It can be done by proceeding. Through this, an aluminum oxide (alumina) film may be formed on the aluminum substrate S210 .
  • the first wet etching process is a process of removing the formed aluminum oxide.
  • the first wet etching process includes impregnating an aluminum substrate in a mixed solution of phosphoric acid and chromic acid.
  • Phosphoric acid: chromic acid may be included in a weight ratio of 1:1 to 10, preferably 4:1.
  • the mixed solution 1 to 10% by weight of phosphoric acid and 1 to 5% by weight of chromic acid may be included.
  • the first wet etching process is preferably performed at a high temperature of 50°C to 100°C, preferably 60°C.
  • the first wet etching process may be performed at a high temperature for 1 hour to 10 hours, preferably for 6 hours.
  • the second anodization process and the second wet etching process include an aligned, plurality of barrier ribs; and a barrier rib structure including an empty space formed by crossing the barrier ribs with each other.
  • the second anodization process is substantially the same as the first anodization process described above, but may be performed for a shorter time than the first anodization process in order to control the height of the barrier rib.
  • the second wet etching process may be performed at 20° C. to 30° C., preferably at 28° C. in 0.01 to 1 M, preferably 0.1 M phosphoric acid.
  • gold is deposited on the barrier rib structure S221 to obtain a structure in which gold S310 is deposited on the empty space of the barrier rib structure S221 and the upper surface of the barrier rib.
  • a method of depositing gold may be performed by a conventional method known to those skilled in the art. For example, it may be performed using a typical deposition apparatus (E-BEAM, THERMAL EVAPORATOR).
  • the thickness of the deposited gold may be between 5 nm and 10 nm, preferably 7 nm. Within the above range, gold nanoparticles are efficiently formed, and as shown in FIGS. 2 and 3 , gold nanoparticles and gold nanoclusters can be formed to have a 3D flower shape.
  • the barrier rib structure S221 and nano-aligned, gold nanoparticles S320 and gold nanocluster S330 are formed on the alumina substrate S240 by heat-treating the barrier rib structure on which gold is deposited. do.
  • the heat treatment causes the gold deposited in the empty space of the barrier rib structure to form gold nanoparticles, and the gold deposited on the upper surface of the barrier rib to form gold nanoclusters.
  • Gold deposited in the empty space has a larger deposition area compared to gold deposited on the upper surface of the barrier rib, so that gold nanoparticles can be formed with a relatively large particle diameter compared to gold nanoclusters.
  • the heat treatment may be performed at 300° C. to 600° C., preferably at 500° C. for 1 hour to 5 hours, preferably 3 hours.
  • the heat treatment may be performed by a conventional method.
  • the nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrates can be manufactured through the above process in a roll-to-roll (R2R) manner to increase the manufacturing processability.
  • Figure 4 shows the overall R2R hybrid vacuum process for preparing nano-ordered, gold nanoparticles and gold nanoclusters containing alumina substrates.
  • an alumina substrate containing nano-aligned gold nanoparticles and gold nanoclusters is prepared through an R2R hybrid vacuum process.
  • the present invention proposes a roll-to-roll hybrid vacuum process along with the existing process.
  • a vacuum deposition apparatus and a dryer capable of drying at a high temperature may be used.
  • high-purity aluminum foil purity: 99.99% or more, thickness 0.1-0.5 mm
  • thickness 0.1-0.5 mm is preferred, which directly affects the arrangement of the porous holes to be finally formed.
  • electrolytic polishing is performed to remove impurities on the surface of the aluminum substrate.
  • a mixed solution of HClO 4 and ethanol 4:1 may be used, and the process may be performed by immersing it in a chamber.
  • Impurities on the aluminum surface can be removed by applying a DC voltage of 20 V under the temperature of 15-25°C.
  • the alumina oxide film is removed through the wet etching (S230) process, and a mixed solution of 6 wt% phosphoric acid and 1.5 wt% chromic acid is used.
  • a temperature higher than room temperature is required, and in some cases, the process is performed at a high temperature of 60° C. for 1 minute.
  • porous alumina is formed through the secondary anodization process (S240).
  • a DC voltage is applied for a short time (several seconds to several minutes) to control the height of the porous pores.
  • an alumina plate including aligned porous alumina can be obtained through a secondary wet etching process.
  • 0.1 M phosphoric acid is used for the etching process, and depending on the given temperature (optionally 28°C is required), alumina with various types of porous pores can be prepared. It may optionally be introduced as an additional process.
  • the prepared alumina substrate S240 with porous pores is determined according to the applied DC voltage value, the applied time, the moving speed of the web, the concentration of the acid used, and the purity of the aluminum plate, and preferably the A size of 50-100 nm is preferred.
  • Gold is the preferred metallic material for light-to-heat conversion efficiency.
  • representative deposition equipment e-beam, thermal evaporator, etc. can be used to coat gold with a thickness of several nano nm.
  • a hybrid type vacuum deposition equipment S250
  • gold deposition with a thickness of 5-7 nm is required to form efficient gold nanoparticles and have a 3D flower structure.
  • gold nanoparticles and gold nanoclusters may be formed through a heat treatment process ( S260 ).
  • FIG. 5 is an SEM photograph of the upper surface of the alumina substrate S240 on which the barrier rib structure is formed, the alumina substrate S240 on which gold is deposited on the barrier rib structure, and the alumina substrate S240 in which gold nanoparticles and gold nanoclusters are aligned. will be.
  • gold is deposited in the empty space and the upper surface of the barrier rib, and gold nanoparticles and gold nanoclusters are formed.
  • the degree of temperature increase according to the irradiation time according to the LED wavelength is shown in FIG. 8 .
  • the nano-aligned, alumina substrate including gold nanoparticles and gold nanoclusters of the present invention exhibits different efficiencies according to the wavelength band of the LED used.
  • a light source of preferably a wavelength band of 530 nm to 550 nm, more preferably a wavelength band of 530 nm and 640 nm to 660 nm, more preferably 660 nm.
  • the 530nm LED causes a rapid temperature rise (from room temperature to 90°C) within a given time, and the 520nm LED with the same 500nm wavelength shows low thermal conversion efficiency.
  • LEDs having two different wavelength bands are preferred because a desired temperature cannot be obtained within a short time by using only a short wavelength band.
  • FIG. 10 shows graphs of actual temperature rise and fall according to DNA amplification using a PCR apparatus having an alumina substrate including nano-aligned, gold nanoparticles and gold nanoclusters of the present invention.
  • a PCR device is configured to prepare a mix of biomolecules and chemicals for cell lysis (Lysis), RNA purification, and trans reverse transcription, and nano-arranged, gold nanoparticles including a PDMS well chamber Put about 1 ⁇ l of an alumina substrate containing particles and gold nanoclusters, add about 2 ⁇ l of oil to prevent evaporation, and perform PCR.
  • the execution time ranges from 300 seconds to 500 seconds, which may vary depending on the size of the target DNA and the design of the primer.
  • amplification is performed using DNA having a length of 55 bp (or 100 bp)
  • about 300 seconds are consumed, and it can be confirmed that the time is significantly reduced compared to the existing PCR apparatus.
  • Amplification of DNA was performed using a PCR apparatus having an alumina substrate including nano-aligned, gold nanoparticles and gold nano-clusters of the present invention, followed by electrophoresis gel. The results are shown in FIG. 11 . .
  • DNA (S510) having a length of 55 bp and DNA having a length of 100 bp (S520) are also amplified in the PCR apparatus of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Provided is a PCR device comprising: a PCR plate; a plurality of LED light sources disposed on a lower surface of the PCR plate; and a display disposed above the PCR plate, wherein the PCR plate includes: a PCR chamber having a plurality of wells; and an alumina substrate disposed on a lower surface of the PCR chamber, and containing nano-structured gold nanoparticles and gold nanoclusters.

Description

PCR 장치PRC device
본 발명은 PCR(polymerase chain reaction) 장치에 관한 것이다.The present invention relates to a PCR (polymerase chain reaction) apparatus.
중합 효소 연쇄 반응(polymerase chain reaction, PCR)은 중합 효소(polymerase)의 연쇄 반응(chain reaction)으로서, 핵산의 특정 나선의 복제본을 다량으로 획득하는 것이다. 중합 효소 연쇄 반응은 현재 의학 및 생물 연구에서 다양하게 응용되는 필수적인 기술이며 근래 전세계적인 팬더믹을 몰고온 코로나바이러스-19(SARS-CoV-2)를 검사하는 범용적인 방법으로 도입되는 방법이기도 하다. 코로나바이러스-19 검사에서 PCR 검사는 핵산(DNA 혹은 RNA) 증폭 기술을 통한 특정 DNA서열의 시료를 충분히 얻어내기 위한 목적으로 사용된다. 이것은 아주 미량의 DNA를 복제해 원하는 만큼 증폭을 해내는 기술이기 때문이다. 특히 환자의 침 혹은 가래에는 확진 판정을 내릴 만큼 충분한 바이러스가 포함되어 있지 않다. 따라서, DNA를 증폭함으로써 코로나 바이러스를 구분할 수 있는 염기 서열을 이용하여 판독함으로써 해당 시료 내에 코로나바이러스의 존재 유무를 확인할 수 있다. Polymerase chain reaction (PCR) is a chain reaction of a polymerase to obtain a large amount of copies of a specific helix of a nucleic acid. Polymerase chain reaction is an essential technology that is currently widely applied in medical and biological research, and it is also introduced as a general method for testing coronavirus-19 (SARS-CoV-2), which has recently caused a global pandemic. In the COVID-19 test, PCR test is used for the purpose of sufficiently obtaining a sample of a specific DNA sequence through nucleic acid (DNA or RNA) amplification technology. This is because it is a technology that replicates a very small amount of DNA and amplifies it as much as you want. In particular, the patient's saliva or sputum does not contain enough virus to make a confirmed diagnosis. Therefore, by amplifying the DNA, it is possible to confirm the presence or absence of the coronavirus in the sample by reading it using a nucleotide sequence that can distinguish the coronavirus.
그러나, 통상의 PCR 검사에는 약 1 내지 2일 정도 걸림에 따라 신속 정확하게 현장에서 코로나 바이러스를 진단하기 어렵다는 단점을 가진다. 이는 PCR의 기본적인 동작 원리인 변성(denaturation), 결합(annealing), 신장(extension)의 3단계 과정으로 설명될 수 있으며 각 단계에 적합한 온도를 조절하여 신속하게 온도를 상승 혹은 하강하도록 하는 것이 이러한 전체 반응 시간을 단축시키는데 중요하다.However, as it takes about 1 to 2 days for a conventional PCR test, it is difficult to quickly and accurately diagnose the corona virus in the field. This can be explained as a three-step process of denaturation, annealing, and extension, which are the basic operating principles of PCR. It is important to shorten the reaction time.
하지만 기존 PCR 장치는 전기 에너지의 열 에너지로의 변환을 통하여 온도를 상승하거나 하강함으로써 핵산 증폭 반응을 완료하는데 있어 1시간 이상의 긴 시간이 소요된다. 또한, 발열 장비 및 냉각 장치 등의 추가적인 부속 장치들이 필요로 하기 때문에 장비의 부피가 커짐에 따라 신속한 질병의 진단을 요구하는 현장에 적용하기가 어렵다는 단점을 가진다. 이러한 휴대의 불편함, 고가의 장비 가격, 오랜 검출 시간 및 다루기 힘들다는 이유로 인하여 휴대가 간편하면서 저렴한 휴대용 PCR 장비에 대한 연구가 꾸준히 진행되고 있다.However, the existing PCR apparatus takes a long time of 1 hour or more to complete the nucleic acid amplification reaction by increasing or decreasing the temperature through the conversion of electrical energy to thermal energy. In addition, since additional accessory devices such as a heating device and a cooling device are required, as the volume of the device increases, it is difficult to apply it to a field requiring rapid disease diagnosis. Due to the inconvenience of portability, expensive equipment price, long detection time, and difficulty in handling, research on portable PCR equipment that is easy to carry and inexpensive is steadily progressing.
본 발명의 배경 기술은 한국등록특허 제10-1768146호 등에 개시되어 있다.Background art of the present invention is disclosed in Korean Patent No. 10-1768146 and the like.
본 발명의 목적은 PCR에서 요구되는 온도의 상승 속도 및 하강 속도를 높여 PCR을 고속으로 수행하게 하는 PCR 장치를 제공하는 것이다.It is an object of the present invention to provide a PCR apparatus capable of performing PCR at high speed by increasing the rate of rise and fall of the temperature required in PCR.
본 발명의 다른 목적은 PCR 장치의 부피를 최소화시켜 휴대용으로 현장에서 신속하게 사용 가능한 PCR 장치를 제공하는 것이다.Another object of the present invention is to provide a PCR apparatus that is portable and can be used quickly in the field by minimizing the volume of the PCR apparatus.
본 발명의 또 다른 목적은 금 나노입자 및 금 나노클러스터의 구조 및 형성을 알루미나 나노 구조를 사용하여 제어함으로써 표면 플라즈모닉 공명을 생성시켜 광을 열로 전환시켜 PCR에서 필요한 온도의 상승-하강 사이클을 광으로 제어하여 핵산의 증폭이 일어나는 장치를 제공하는 것이다.Another object of the present invention is to control the structure and formation of gold nanoparticles and gold nanoclusters using alumina nanostructures to generate surface plasmonic resonance to convert light into heat, thereby reducing the temperature rise-fall cycle required in PCR. It is to provide an apparatus in which amplification of nucleic acids occurs by controlling the
본 발명의 일 관점은 PCR 장치이다.One aspect of the present invention is a PCR device.
1.PCR 장치는 PCR 플레이트, 상기 PCR 플레이트의 하부면에 배치된 복수의 LED 광원 및 상기 PCR 플레이트의 상부에 배치된 디스플레이를 포함하고, 상기 PCR 플레이트는 복수 개의 웰을 구비하는 PCR 챔버 및 상기 PCR 챔버의 하부면에 배치되고 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나(Al2O3) 기판을 포함한다.1. The PCR apparatus includes a PCR plate, a plurality of LED light sources disposed on a lower surface of the PCR plate, and a display disposed on an upper portion of the PCR plate, wherein the PCR plate includes a PCR chamber having a plurality of wells and the PCR and an alumina (Al 2 O 3 ) substrate disposed on the lower surface of the chamber and containing nano-aligned, gold nanoparticles and gold nanoclusters.
2.1에서, 상기 금 나노입자는 상기 금 나노클러스터 대비 다른 크기를 가질 수 있다.In 2.1, the gold nanoparticles may have different sizes compared to the gold nanoclusters.
3.1-2에서, 상기 LED 광원은 500nm 이상 600nm 이하의 파장의 광을 조사하는 광원 및 600nm 초과 700nm 이하의 파장의 광을 조사하는 광원을 포함할 수 있다.In 3.1-2, the LED light source may include a light source irradiating light having a wavelength of 500 nm or more and 600 nm or less and a light source irradiating light having a wavelength of more than 600 nm and 700 nm or less.
4.1-3에서, 상기 알루미나 기판은 알루미나 기판; 상기 알루미나 기판의 상부면에 상기 알루미나 기판과 일체로 형성되고 복수 개의 격벽이 서로 교차하여 형성된 격벽 구조물; 상기 격벽 구조물 내의 빈 공간에 상기 알루미나 기판과 일체로 형성된 상기 금 나노입자; 상기 격벽 구조물 중 격벽 상부 표면에 형성된 상기 금 나노클러스터를 포함할 수 있다.In 4.1-3, the alumina substrate is an alumina substrate; a barrier rib structure formed integrally with the alumina substrate on an upper surface of the alumina substrate and formed by crossing a plurality of barrier ribs; the gold nanoparticles integrally formed with the alumina substrate in an empty space within the barrier rib structure; Among the barrier rib structures, the gold nanoclusters formed on the upper surface of the barrier rib may be included.
5.4에서, 상기 격벽의 상부 표면은 곡면일 수 있다.In 5.4, the upper surface of the partition wall may be curved.
6.1-5에서, 상기 알루미나는 다공성의 양극 산화에 의한 알루미늄 산화물(AAO, anodic aluminum oxide)일 수 있다.In 6.1-5, the alumina may be a porous anodic aluminum oxide (AAO).
7.1-6에서, 상기 알루미나 기판은 알루미늄 기재를 양극 산화 및 습식 에칭시켜, 알루미나 기판 상에 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하는 격벽 구조물을 형성하는 단계(제1 단계), 상기 격벽 구조물 상에 금을 증착하는 단계(제2 단계); 및 금이 증착된 상기 격벽 구조물을 열처리하는 단계(제3 단계)를 포함하는 방법에 의해 제조될 수 있다.In 7.1-6, the alumina substrate is formed by anodizing and wet etching the aluminum substrate to form a plurality of barrier ribs on the alumina substrate; and forming a barrier rib structure including an empty space formed by crossing the barrier ribs (first step), depositing gold on the barrier rib structure (second step); and heat-treating the barrier rib structure on which gold is deposited (third step).
8.7에서, 상기 알루미나 기판은 상기 제1 단계, 상기 제2 단계 및 상기 제3 단계를 롤 투 롤 하이브리드 제조 공정에 의해 수행하여 제조될 수 있다.In 8.7, the alumina substrate may be manufactured by performing the first step, the second step, and the third step by a roll-to-roll hybrid manufacturing process.
본 발명은 PCR에서 요구되는 온도의 상승 속도 및 하강 속도를 높여 PCR을 고속으로 수행하게 하는 PCR 장치를 제공하였다.The present invention provides a PCR apparatus capable of performing PCR at high speed by increasing the rate of rise and fall of the temperature required in PCR.
본 발명은 PCR 장치의 부피를 최소화시켜 휴대용으로 현장에서 신속하게 사용 가능한 PCR 장치를 제공하였다.The present invention provides a PCR device that is portable and can be used quickly in the field by minimizing the volume of the PCR device.
본 발명은 금 나노입자 및 금 나노클러스터의 구조 및 형성을 알루미나 나노 구조를 사용하여 제어함으로써 표면 플라즈모닉 공명을 생성시켜 광을 열로 전환시켜 PCR에서 필요한 온도의 상승-하강 사이클을 광으로 제어하여 핵산의 증폭이 이루어짐으로써 PCR 검사 장치를 제공하였다.The present invention controls the structure and formation of gold nanoparticles and gold nanoclusters using alumina nanostructures to generate surface plasmonic resonance to convert light into heat, thereby controlling the temperature rise-fall cycle required in PCR with light to control nucleic acid A PCR test apparatus was provided by amplification of the.
도 1은 본 발명 일 실시예의 휴대용 PCR 장치의 내부 개략도이다.1 is an internal schematic diagram of a portable PCR device according to an embodiment of the present invention.
도 2는 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판의 개략도이다.2 is a schematic diagram of an alumina substrate comprising nano-ordered, gold nanoparticles and gold nanoclusters.
도 3은 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판의 제조 공정의 개략도이다.3 is a schematic diagram of a manufacturing process of an alumina substrate comprising nano-ordered, gold nanoparticles and gold nanoclusters.
도 4는 나노 정렬된, 금 나노입자 및 금 나노글러스터를 포함하는 알루미나 기판을 제조하기 위한 전체 롤 투 롤(R2R) 하이브리드 진공 공정의 개략도이다.4 is a schematic diagram of a full roll to roll (R2R) hybrid vacuum process for preparing nano-aligned, alumina substrates comprising gold nanoparticles and gold nanogluster.
도 5는 도 3의 각 단계에서 제조된 대상체 및 해당 대상체의 상부면의 SEM(scanning electron microscopy) 이미지이다.5 is a scanning electron microscopy (SEM) image of an object manufactured in each step of FIG. 3 and an upper surface of the object.
도 6은 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판에 서로 다른 파장의 광이 조사되는 경우의 작용을 보여주는 개념도이다.6 is a conceptual diagram illustrating an action when light of different wavelengths is irradiated to an alumina substrate including nano-aligned, gold nanoparticles and gold nanoclusters.
도 7은 LED 광원을 상부에 설치하여 광을 알루미나 기판에 조사하는 모습을 보여준다.7 shows a state in which the light is irradiated to the alumina substrate by installing the LED light source on the upper part.
도 8은 LED 파장 및 조사 시간(X축, 단위: 분)에 따른 온도 상승(Y축, 단위:℃)을 나타낸 것이다.8 shows the temperature rise (Y-axis, unit: °C) according to the LED wavelength and irradiation time (X-axis, unit: minutes).
도 9는 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판에 대해 LED 광원(파장 530nm 및 660nm의 광을 동시 조사)을 조사하였을 때 LED 광원의 온, 오프시 시간에 따른 온도의 상승 및 하강 그래프이다.9 is a graph showing the rise and fall of temperature according to time when the LED light source is turned on and off when an LED light source (simultaneous irradiation of light with a wavelength of 530 nm and 660 nm) is irradiated to an alumina substrate including gold nanoparticles and gold nanocluster; to be.
도 10은 PCR 장치를 이용한 DNA 증폭에 따른 온도 상승 및 하강 그래프이다.10 is a graph showing temperature rise and fall according to DNA amplification using a PCR device.
도 11은 PCR 장치를 이용한 DNA(55bp 및 100bp)의 증폭을 수행한 후의 전기 영동 겔 결과이다.11 is an electrophoretic gel result after amplification of DNA (55 bp and 100 bp) using a PCR device.
첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.With reference to the accompanying drawings, the embodiments will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts not related to the description are omitted.
본 발명자는 PCR 장치 중 DNA의 증폭 과정에서 요구되는 시료 온도의 상승 및 하강을 위한 수단으로서, 서로 다른 파장의 광을 조사하는 복수의 LED 광원과, 상기 LED 광원의 상부에 배치되며 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 사용하였다.The present inventors, as a means for raising and lowering the sample temperature required in the DNA amplification process in the PCR device, include a plurality of LED light sources irradiating light of different wavelengths, arranged on top of the LED light source, and arranged nano-aligned, Alumina substrates containing gold nanoparticles and gold nanoclusters were used.
이를 통해, PCR 장치는 LED 광원으로부터 나오는 복수개의 파장의 광에 의해 상기 기판 중 나노 정렬된, 금 나노입자 및 금 나노클러스터에 의한 플라즈모닉 공명 효과로 인하여 광이 열로 빠르게 전환함으로써 시료 온도의 상승 및 하강이 빠르게 반복되어 PCR에서 요구되는 온도의 상승 속도 및 하강 속도를 높여 PCR 반응을 고속으로 수행할 수 있다. 또한, 복수의 LED 광원은 기존 광원 대비 소비 전력이 낮고 매우 저렴하여 PCR 장치를 휴대용으로 현장에서 신속하게 사용할 수 있게 하였다.Through this, the PCR device rapidly converts light into heat due to the plasmonic resonance effect caused by the nano-aligned, gold nanoparticles and gold nanoclusters in the substrate by the light of a plurality of wavelengths emitted from the LED light source, thereby increasing the sample temperature and As the descent is repeated rapidly, the PCR reaction can be performed at high speed by increasing the rate of rise and fall of the temperature required for PCR. In addition, the plurality of LED light sources have low power consumption and are very inexpensive compared to the existing light sources, so that the PCR device is portable and can be used quickly in the field.
일 구체예에서, PCR 장치는 상온에서 90℃ 내지 95℃까지 온도가 상승(변성), 90℃ 내지 95℃에서 60℃ 내지 65℃로 하강(어닐링), 다시 60℃ 내지 65℃에서 70℃ 내지 75℃의 상승(신장) 사이클을 반복할 수 있다.In one embodiment, the PCR apparatus increases the temperature from room temperature to 90°C to 95°C (denaturation), lowers it from 90°C to 95°C to 60°C to 65°C (annealing), and again from 60°C to 65°C to 70°C to The 75° C. rise (extension) cycle can be repeated.
본 발명의 PCR 장치는 PCR 플레이트, 상기 PCR 플레이트의 하부면에 배치된 복수의 LED 광원 및 상기 PCR 플레이트의 상부에 배치된 디스플레이를 포함하고, 상기 PCR 플레이트는 1개 이상의 시료 전처리 웰 및 1개 이상의 PCR 수행 웰을 구비하는 PCR 챔버, 및 상기 PCR 챔버의 하부면에 배치되고 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 포함한다.The PCR apparatus of the present invention includes a PCR plate, a plurality of LED light sources disposed on the lower surface of the PCR plate, and a display disposed on the PCR plate, wherein the PCR plate includes one or more sample pretreatment wells and one or more A PCR chamber having a PCR performing well, and an alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters disposed on a lower surface of the PCR chamber.
이하, 도 1을 참고하여, 본 발명의 일 실시예에 따른 PCR 장치를 설명한다.Hereinafter, a PCR apparatus according to an embodiment of the present invention will be described with reference to FIG. 1 .
도 1을 참고하면, PCR 장치는 PCR 플레이트(S150), LED 광원(S130, S140), 디스플레이(S160) 및 전력 공급원(S110)을 포함한다.Referring to Figure 1, the PCR apparatus includes a PCR plate (S150), LED light sources (S130, S140), a display (S160) and a power supply (S110).
PCR 플레이트(S150), LED 광원(S130, S140), 디스플레이(S160) 및 전력 공급원(S110)은 하우징(S170) 내에 포함된다. 본 발명의 PCR 장치는 휴대용으로 사용할 수 있다. PCR 장치는 PCR 장치 구동시 냉각 속도를 더 높이기 위해 냉각 팬(S120)을 더 포함할 수 있다. 또는 PCR 장치는 냉각 속도를 더 높이기 위하여 칠러(도 1에서 도시되지 않음)를 통해 낮은 온도의 공기를 PCR 장치 내에서 순환시킬 수도 있다.The PCR plate (S150), the LED light sources (S130, S140), the display (S160), and the power supply source (S110) are included in the housing (S170). The PCR apparatus of the present invention can be used as a portable device. The PCR device may further include a cooling fan (S120) to further increase the cooling rate when the PCR device is driven. Alternatively, the PCR apparatus may circulate low-temperature air in the PCR apparatus through a chiller (not shown in FIG. 1) to further increase the cooling rate.
도 1에서 도시되지 않았지만, PCR 플레이트(S150)는 디스플레이(S160)를 향해 배치된 PCR 챔버; 및 PCR 챔버의 하부면에 배치되고 LED 광원(S130, S140)을 향해 배치되며 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 포함한다.Although not shown in Figure 1, the PCR plate (S150) is a PCR chamber disposed toward the display (S160); and an alumina substrate disposed on the lower surface of the PCR chamber and disposed toward the LED light sources S130 and S140 and containing nano-aligned, gold nanoparticles and gold nanoclusters.
PCR 챔버는 1개 이상의 시료 전처리 웰(well) 및 1개 이상의 PCR 수행 웰을 구비한다. 시료 전처리 웰, PCR 수행 웰은 각각 PCR 장치에서 통상적으로 포함되는 웰을 그대로 채용하거나 변형시켜 포함될 수 있다. 상기 PCR 챔버는 특별히 제한되지 않지만 폴리디메틸실록산(PDMS) 웰을 사용할 수 있다.The PCR chamber includes one or more sample preparation wells and one or more PCR performing wells. The sample pretreatment well and the PCR performing well may be included by adopting or modifying the wells that are normally included in the PCR apparatus, respectively. The PCR chamber is not particularly limited, but polydimethylsiloxane (PDMS) wells may be used.
웰 내에는 세포의 용해(Lysis), RNA 정제, 역전사 및 PCR 수행에 필요한, 효소, 바이오 분자 및 화학 약품을 혼합한 믹스가 도포되어 있어, 시료가 도입되면 하나의 웰 내에서 세포의 용해, RNA 정제, 역전사 및 PCR이 수행되도록 할 수 있다. 상기 효소, 바이오 분자 및 화학 약품은 PCR을 수행할 때 필요하다고 당업자에게 알려진 통상의 종류를 채용할 수 있다.A mix of enzymes, biomolecules, and chemicals necessary for cell lysis (Lysis), RNA purification, reverse transcription and PCR is applied in the well. Purification, reverse transcription and PCR can be performed. The enzymes, biomolecules, and chemical agents may employ conventional types known to those skilled in the art that are necessary when performing PCR.
디스플레이(S160)는 시료의 온도의 상승 및 하강을 확인함으로써 핵산의 증폭을 확인하게 할 수 있다. 디스플레이(S160)는 단순히 온도의 상승 및 하강 사이클뿐만 아니라 형광 검출기를 추가로 포함함으로써 실질적인 핵산의 증폭 여부를 확인할 수 있게 할 수 있다.The display S160 may confirm the amplification of the nucleic acid by confirming the rise and fall of the temperature of the sample. The display S160 may confirm whether or not the actual nucleic acid is actually amplified by additionally including a fluorescence detector as well as a cycle of increasing and decreasing the temperature.
LED 광원(S130, S140)은 각각 서로 다른 파장의 광을 조사할 수 있다. 동일한 파장의 광을 조사하는 경우 온도 상승 효과가 미미할 수 있다. 일 구체예에서, LED 광원은 각각 500nm 이상 600nm 이하의 파장의 광, 600nm 초과 700nm 이하의 파장의 광을 조사하는 광원을 채용할 수 있다. 상기 범위에서, 광 에너지로부터 열 에너지로의 전환 효율이 극대화될 수 있다. 바람직하게는, 530nm내지 550nm의 파장대, 더 바람직하게는 530nm 및 640nm 내지 660nm 파장대, 더 바람직하게는 660nm 파장의 광을 사용할 수 있다. 이것은 하기에도 도 8을 참조하여 상세하게 설명된다.The LED light sources S130 and S140 may emit light of different wavelengths, respectively. When irradiating light of the same wavelength, the effect of increasing the temperature may be insignificant. In one embodiment, the LED light source may employ a light source that irradiates light of a wavelength of 500 nm or more and 600 nm or less, and light of a wavelength of 600 nm or more and 700 nm or less, respectively. In the above range, the conversion efficiency from light energy to thermal energy can be maximized. Preferably, light having a wavelength of 530 nm to 550 nm, more preferably 530 nm and 640 nm to 660 nm, and more preferably 660 nm may be used. This is also explained in detail below with reference to FIG. 8 .
LED 광원(S130, S140)은 서로 다른 파장의 광을조사하는 만큼, 2 광원의 초점 거리가 중요하다. 따라서, LED 광원의 거리, 위치를 조절할 수 있는 조절 수단을 더 포함할 수 있다.As the LED light sources S130 and S140 irradiate light of different wavelengths, the focal length of the two light sources is important. Accordingly, it may further include an adjustment means capable of adjusting the distance and position of the LED light source.
LED 광원(S130, S140)은 PCR 장치 중 하부에 배치된다. 그러나, 도7에서 보여지는 바와 같이, LED 광원(S130)을 PCR 플레이트의 상부에 설치하여 광을 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판(S240)에 조사함으로써 변환 효율을 더 높일 수도 있다.LED light sources (S130, S140) are arranged in the lower part of the PCR device. However, as shown in FIG. 7 , the conversion efficiency can be further increased by installing the LED light source ( S130 ) on the top of the PCR plate and irradiating light onto the nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrate ( S240 ). may be
도 2를 참조하여, 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 설명한다.With reference to FIG. 2 , an alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters is described.
도 2와 도 3을 참조하면, 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판은 알루미나 기판(S240); 알루미나 기판(S240)의 상부면에 알루미나 기판(S240)과 일체로 형성되고 복수 개의 격벽이 서로 교차하여 형성된 격벽 구조물(S221); 격벽 구조물(S221) 내의 빈 공간에 알루미나 기판(S240)과 일체로 형성된 금 나노입자(S320); 격벽 구조물(S221) 중 격벽의 상부 표면에 접촉하여 형성된 금 나노클러스터(S330)를 포함한다.2 and 3 , the nano-aligned alumina substrate containing gold nanoparticles and gold nanoclusters includes an alumina substrate S240; a barrier rib structure (S221) formed integrally with the alumina substrate (S240) on the upper surface of the alumina substrate (S240) and formed by crossing a plurality of barrier ribs; gold nanoparticles S320 integrally formed with the alumina substrate S240 in an empty space within the barrier rib structure S221; Among the barrier rib structures S221 , the gold nano-clusters S330 formed in contact with the upper surface of the barrier ribs are included.
금 나노입자(S320)는 금 나노클러스터(S330) 대비 다른 크기를 갖거나 다른 크기의 금 입자를 포함한다. 따라서, 2개의 서로 다른 파장의 광을 조사하는 LED 광원(S130, S140)을 사용함으로써 각각의 광원에 의한 플라즈몬 효과를 높일 수 있고, 이것은 온도의 상승 속도를 더 높일 수 있다.The gold nanoparticles S320 have a size different from that of the gold nanocluster S330 or include gold particles of a different size. Accordingly, by using the LED light sources S130 and S140 irradiating two different wavelengths of light, the plasmon effect by each light source can be increased, which can further increase the rate of temperature rise.
도 5를 참조하면, 알루미나 기판(S240)에 형성된 금 나노입자(S320)에 LED 광원으로부터 나오는 광(S400)을 조사하게 되면, 광 에너지를 열 에너지로 변환할 수 있고, 방출된 열 에너지는 시료의 온도 상승 속도를 높일 수 있다. 광 을 조사하면 금 나노입자에 광이 흡수되며 이때 전자가 빠르게 이동하면서 열을 발생하게 된다. 그러다가, 광 조사를 멈추면 플라즈몬 효과가 없어짐에 따라 온도가 급속도로 하강하게 된다. Referring to FIG. 5 , when the gold nanoparticles S320 formed on the alumina substrate S240 are irradiated with light S400 from the LED light source, light energy can be converted into thermal energy, and the emitted thermal energy is the sample. can increase the rate of temperature rise. When light is irradiated, light is absorbed by the gold nanoparticles, and at this time, electrons move rapidly and generate heat. Then, when the light irradiation is stopped, the temperature rapidly drops as the plasmon effect disappears.
한편, 알루미나 기판(S240)에 형성된 금 나노클러스터(S330)는 LED 광원으로부터 나오되 광(S400)과는 다른 파장의 광(S410)을 조사하게 되면, 광 에너지를 열 에너지로 변환할 수 있고, 방출된 열 에너지는 시료의 온도 상승 속도를 더 높일 수 있다.On the other hand, when the gold nanoclusters S330 formed on the alumina substrate S240 are irradiated with light S410 of a wavelength different from that of the light S400 from the LED light source, light energy can be converted into thermal energy, The released thermal energy may further increase the rate of temperature increase of the sample.
본 발명은 금 나노입자(S320)과 금 나노클러스터(S330)에 의해 서로 다른 파장 대에서 나오는 광을 열 에너지로 변환시킴으로써 변환 효율을 극대화함으로써 시료의 온도 상승 속도를 높일 수 있다. 광원으로부터 광 조사를 멈추게 되면, 알루미나 기판(S240)은 빠르게 식음으로써 시료의 온도 하강을 빠르게 할 수 있다. 이와 같이, 나노 정렬된, 금 나노입자와 금 나노클러스터 및 알루미나 기판에 의해 PCR에 요구되는 온도의 상승 속도 및 하강 속도를 높여 고속으로 신속하게 PCR 반응을 수행할 수 있게 한다.The present invention converts light emitted from different wavelength bands into thermal energy by the gold nanoparticles S320 and the gold nanocluster S330 to maximize conversion efficiency, thereby increasing the rate of temperature increase of the sample. When the light irradiation from the light source is stopped, the alumina substrate S240 cools quickly, so that the temperature of the sample can be rapidly decreased. In this way, by increasing the rate of rise and fall of the temperature required for PCR by the nano-aligned, gold nanoparticles, gold nanoclusters, and alumina substrates, it is possible to perform a PCR reaction at high speed and quickly.
바람직하게는, 도 5에서 보여지는 바와 같이, 금 나노입자(S320) 및 금 나노클러스터(S330)는 LED 광원(S130, S140) 쪽으로 대향하여 배치됨으로써, 금 나노입자(S320) 및 금 나노클러스터(S330)는 LED 광원(S130, S140)으로부터 나오는 광을 직접적으로 받을 수 있다.Preferably, as shown in FIG. 5 , the gold nanoparticles S320 and the gold nanoclusters S330 are disposed to face the LED light sources S130 and S140, so that the gold nanoparticles S320 and the gold nanoclusters (S320) and the gold nanoclusters ( S330) may directly receive the light emitted from the LED light sources (S130, S140).
다시 도 3를 참조하면, 금 나노입자(S320)는 격벽이 서로 교차하여 형성되는 빈 공간 내에 알루미나 기판과 일체로 형성되되 격벽으로부터 이격되어 형성되어 있다.Referring back to FIG. 3 , the gold nanoparticles S320 are formed integrally with the alumina substrate in an empty space where the barrier ribs cross each other and are spaced apart from the barrier rib.
금 나노입자(S320)는 입경이 50nm 내지 70nm, 구체적으로 60nm 내지 70nm가 될 수 있다. 상기 범위에서, 금 나노입자의 제조가 용이하고, 본 발명의 효과 구현에 용이할 수 있다. 금 나노입자(S320)는 알루미나 기판(S240)에 서로 동일한 거리로 서로 이격되며 나노 정렬되어 형성되어 있다. 이를 통해, 본 발명의 효과 구현이 더 용이할 수 있다.The gold nanoparticles S320 may have a particle diameter of 50 nm to 70 nm, specifically 60 nm to 70 nm. Within the above range, it may be easy to prepare gold nanoparticles, and it may be easy to implement the effects of the present invention. The gold nanoparticles S320 are spaced apart from each other at the same distance from each other on the alumina substrate S240 and are formed in nano-alignment. Through this, it may be easier to implement the effects of the present invention.
일 구체예에서, 금 나노입자(S320)는 나노 정렬되어 있는데, 금 나노입자(S320) 간의 이격 거리는 0.001nm 내지 1000nm가 될 수 있다. 상기 범위에서, 본 발명의 LED 광원 조사시 온도의 상승 및 하강 속도가 더 빨라질 수 있다.In one embodiment, the gold nanoparticles S320 are nano-aligned, and the separation distance between the gold nanoparticles S320 may be 0.001 nm to 1000 nm. In the above range, the rate of rise and fall of the temperature may be faster when the LED light source of the present invention is irradiated.
금 나노클러스터(S330)는 격벽의 상부 표면에 직접적으로 접촉하여 형성되며 미세한 금 입자들이 클러스터를 형성한 것이다. 금 나노클러스터(S330)는 평균 입경이 5nm 이하, 구체적으로 5nm 내지 10nm가 될 수 있다. 상기 범위에서, 본 발명의 효과 구현에 용이할 수 있다.The gold nanocluster S330 is formed in direct contact with the upper surface of the barrier rib, and fine gold particles form a cluster. The gold nanoclusters S330 may have an average particle diameter of 5 nm or less, specifically 5 nm to 10 nm. Within the above range, it may be easy to implement the effects of the present invention.
금 나노클러스터(S330)도 나노 정렬되어 있는데, 도 2에서 도시되는 바와 같이 1변의 길이가 0.001nm 내지 1000nm인 정육각형 모양으로 결합되어 있다.The gold nanoclusters S330 are also nano-aligned, and as shown in FIG. 2 , they are combined in a regular hexagonal shape with a side length of 0.001 nm to 1000 nm.
격벽 구조물(S221)은 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하고 있다. 격벽 구조물(S221)은 격벽과 빈 공간이 정렬되어 형성됨으로써 플라즈몬 효과에 의한 온도의 상승 속도를 높일 수 있다. 격벽 구조물(S221)은 최 외곽이 격벽으로 되어 있어 PCR 플레이트에 장착을 용이하게 할 수 있다.The barrier rib structure S221 includes a plurality of barrier ribs; and an empty space in which the partition walls intersect each other. The barrier rib structure S221 is formed by aligning the barrier rib with the empty space, thereby increasing the rate of temperature increase due to the plasmon effect. The barrier rib structure S221 has an outermost barrier rib, so that it can be easily mounted on a PCR plate.
격벽 구조물(S221) 및 격벽은 알루미나로 형성됨으로써, 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판의 제조 공정성을 높일 수 있고, 시료의 온도 하강 속도를 높일 수 있다. 일 구체예에서, 알루미나는 양극 산화에 의한 알루미늄 산화물(AAO, anodic aluminum oxide)로서 다공성이 될 수 있다. 알루미나의 다공성은 본 발명의 금 나노입자 및 금 나노클러스터의 형성을 용이하게 할 수 있다.Since the barrier rib structure S221 and the barrier rib are formed of alumina, the manufacturing processability of the nano-aligned alumina substrate containing gold nanoparticles and gold nanoclusters may be increased, and the temperature drop rate of the sample may be increased. In one embodiment, alumina can be made porous as anodic aluminum oxide (AAO) by anodization. The porosity of alumina can facilitate the formation of gold nanoparticles and gold nanoclusters of the present invention.
격벽의 상부 표면(도 3의 S222)은 곡면이 될 수 있다. 곡면은 평면 대비 금 나노클러스터가 안정적으로 형성되도록 하며, 본 발명의 효과를 더 높일 수 있고, 추가적인 플라즈몬 효과를 제공할 수 있다. The upper surface of the partition wall ( S222 in FIG. 3 ) may be curved. The curved surface allows the gold nanoclusters to be stably formed compared to the plane, the effect of the present invention can be further enhanced, and an additional plasmonic effect can be provided.
격벽의 높이는 PCR 장치의 크기, PCR 플레이트 및/또는 PCR 장치에 포함되는 광원의 종류에 따라 조절될 수 있다. 예를 들면, 격벽의 높이는 1mm 내지 3mm가 될 수 있다. 상기 범위에서, 본 발명의 효과 구현이 용이할 수 있다. 격벽은 정육각형이 서로 접합되어 허니콤 구조를 가지면서 격벽 구조물을 형성할 수 있다.The height of the barrier rib may be adjusted according to the size of the PCR apparatus, the PCR plate and/or the type of light source included in the PCR apparatus. For example, the height of the barrier rib may be 1 mm to 3 mm. Within the above range, it may be easy to implement the effects of the present invention. The barrier rib may form a barrier rib structure while regular hexagons are joined to each other to have a honeycomb structure.
격벽이 서로 교차하여 형성된 빈 공간은 소정의 단면 형상을 가질 수 있다. 예를 들면, 도 2에서 보여지는 바와 같이 정육각형 단면이 될 수 있지만, 이에 제한되지 않는다.The empty space formed by crossing the barrier ribs may have a predetermined cross-sectional shape. For example, it may have a regular hexagonal cross section as shown in FIG. 2 , but is not limited thereto.
나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판의 제조 과정을 도 3, 도 4를 참조하여 설명한다.The manufacturing process of the nano-aligned alumina substrate containing gold nanoparticles and gold nanoclusters will be described with reference to FIGS. 3 and 4 .
나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판은 알루미늄 기재를 양극 산화 및 습식 에칭시켜, 알루미나 기판 상에 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하는 격벽 구조물을 형성하는 단계(단계 1), 상기 격벽 구조물 상에 금을 증착하는 단계(단계 2); 금이 증착된 상기 격벽 구조물을 열 처리하는 단계(단계 3)를 포함하는 방법에 의해 제조될 수 있다.An alumina substrate containing nano-aligned, gold nanoparticles and gold nanoclusters was formed by anodizing and wet etching an aluminum substrate to form a plurality of barrier ribs on the alumina substrate; and forming a barrier rib structure including an empty space formed by crossing the barrier ribs (step 1), depositing gold on the barrier rib structure (step 2); It may be manufactured by a method comprising the step of heat-treating the barrier structure on which gold is deposited (step 3).
도 3을 참조하면, 알루미늄 기재(S210)를 준비한다.Referring to FIG. 3 , an aluminum substrate S210 is prepared.
알루미늄 기재(S210)는 순도가 99.99% 이상, 예를 들면 99.99 내지 100%인 알루미늄 기재일 수 있다. 상기 순도 범위에서, 최종적으로 형성되는 격벽 구조물 중 빈 공간의 배열을 정렬시킬 수 있다.The aluminum substrate S210 may be an aluminum substrate having a purity of 99.99% or more, for example, 99.99% to 100%. Within the purity range, the arrangement of empty spaces among the finally formed barrier rib structures may be aligned.
알루미늄 기재(S210)는 추가적인 처리 없이 사용해도 좋다. 그러나, 본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판의 제조 수율, 온도의 상승 및 하강의 신속을 위하여, 알루미늄 기재(S210)는 표면 처리되어 알루미늄 기재의 표면의 불순물을 제거하는 전처리 공정을 거칠 수 있다.The aluminum substrate S210 may be used without additional processing. However, for the rapid increase and decrease of the temperature and the manufacturing yield of the nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrate of the present invention, the aluminum substrate S210 is surface treated to remove impurities on the surface of the aluminum substrate. may be subjected to a pretreatment process.
전처리 공정은 알루미늄 기재의 표면을 전해 연마하는 것을 포함할 수 있다. 전해 연마는 HClO4와 에탄올을 1:1 내지 10:1, 바람직하게는 3:1 내지 5:1, 더 바람직하게는 4:1의 부피비로 혼합한 혼합 용액 내에 알루미늄 기재를 함침시킨 다음, 10℃ 내지 20℃, 바람직하게는 15℃의 조건에서 10V 내지 30V, 바람직하게는 20V의 직류 전압을 걸어줌으로써 수행될 수 있다.The pretreatment process may include electrolytic polishing of the surface of the aluminum substrate. Electropolishing is performed by impregnating an aluminum substrate in a mixed solution of HClO 4 and ethanol in a volume ratio of 1:1 to 10:1, preferably 3:1 to 5:1, more preferably 4:1, and then 10 It can be carried out by applying a direct current voltage of 10V to 30V, preferably 20V under the condition of ℃ to 20℃, preferably 15℃.
다음으로, 도 3을 참조하면, 알루미늄 기재(S210)로부터 알루미나 기판(S240) 상에 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하는 격벽 구조물(S221)을 형성한다. 격벽 구조물(S221)의 격벽의 상부 표면은 곡면(S222)이 될 수 있다.Next, referring to FIG. 3 , a plurality of barrier ribs are formed on the alumina substrate S240 from the aluminum substrate S210; and a barrier rib structure S221 including an empty space formed by crossing the barrier ribs with each other. The upper surface of the barrier rib of the barrier rib structure S221 may be a curved surface S222 .
격벽 구조물은 양극 산화 및 습식 에칭에 의해 수행될 수 있다. 양극 산화, 습식 에칭은 각각 1회 수행될 수 있지만, 본 발명의 격벽 구조물의 형성을 용이하게 하고, 나노 정렬된 구조를 잘 형성하기 위하여, 제1 양극 산화 공정, 제1 습식 에칭 공정, 제2 양극 산화 공정 및 제2 습식 에칭 공정의 순서로 수행될 수 있다. 제2 습식 에칭 공정은 생략될 수도 있다.The barrier rib structure may be performed by anodization and wet etching. Although the anodization and wet etching may each be performed once, in order to facilitate the formation of the barrier rib structure of the present invention and to form a nano-ordered structure well, the first anodization process, the first wet etching process, and the second An anodization process and a second wet etching process may be performed in the order of the process. The second wet etching process may be omitted.
제1 양극 산화 공정은 알루미늄 기재(S210)를 0.1 내지 0.5M, 바람직하게는 0.3M의 옥살산 내에 함침하고 10V 내지 100V, 바람직하게는 60V의 직류 전압 하에서 1시간 내지 20시간, 바람직하게는 12시간 진행하여 수행할 수 있다. 이를 통해 알루미늄 기재(S210) 상에 알루미늄 산화물(알루미나) 막을 형성할 수 있다.In the first anodization process, the aluminum substrate (S210) is impregnated in 0.1 to 0.5M, preferably 0.3M of oxalic acid, and under a DC voltage of 10V to 100V, preferably 60V, 1 hour to 20 hours, preferably 12 hours. It can be done by proceeding. Through this, an aluminum oxide (alumina) film may be formed on the aluminum substrate S210 .
제1 습식 에칭 공정은 상기 형성된 알루미늄 산화물을 제거하는 공정이다. 제1 습식 에칭 공정은 인산(phosphoric acid)과 크롬산(chromic acid)의 혼합 용액 내에 알루미늄 기재를 함침하는 단계를 포함한다. 인산: 크롬산은 1:1 내지 10, 바람직하게는 4:1의 중량비로 포함될 수 있다. 상기 혼합 용액 중 인산은 1 내지 10중량%, 크롬산은 1 내지 5중량%로 포함될 수 있다. 효율적으로 알루미늄 산화물을 제거하기 위하여, 제1 습식 에칭 공정은 50℃ 내지 100℃, 바람직하게는 60℃의 고온에서 수행하는 것이 바람직하다. 효율적으로 알루미늄 산화물을 제거하기 위하여 제1 습식 에칭 공정은 고온에서 1시간 내지 10시간, 바람직하게는 6시간 동안 수행될 수 있다.The first wet etching process is a process of removing the formed aluminum oxide. The first wet etching process includes impregnating an aluminum substrate in a mixed solution of phosphoric acid and chromic acid. Phosphoric acid: chromic acid may be included in a weight ratio of 1:1 to 10, preferably 4:1. In the mixed solution, 1 to 10% by weight of phosphoric acid and 1 to 5% by weight of chromic acid may be included. In order to efficiently remove aluminum oxide, the first wet etching process is preferably performed at a high temperature of 50°C to 100°C, preferably 60°C. In order to efficiently remove aluminum oxide, the first wet etching process may be performed at a high temperature for 1 hour to 10 hours, preferably for 6 hours.
제2 양극 산화 공정 및 제2 습식 에칭 공정은 정렬된, 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하는 격벽 구조물을 형성한다. The second anodization process and the second wet etching process include an aligned, plurality of barrier ribs; and a barrier rib structure including an empty space formed by crossing the barrier ribs with each other.
제2 양극 산화 공정은 상술한 제1 양극 산화 공정과 실질적으로 동일하되, 격벽의 높이를 제어하기 위하여 제1 양극 산화 공정 대비 짧은 시간 동안 수행될 수 있다.The second anodization process is substantially the same as the first anodization process described above, but may be performed for a shorter time than the first anodization process in order to control the height of the barrier rib.
제2 습식 에칭 공정은 0.01 내지 1M, 바람직하게는 0.1M의 인산에서 20℃ 내지 30℃, 바람직하게는 28℃에서 수행될 수 있다.The second wet etching process may be performed at 20° C. to 30° C., preferably at 28° C. in 0.01 to 1 M, preferably 0.1 M phosphoric acid.
다음으로, 도 3을 참조하면, 격벽 구조물(S221)에 금을 증착하여, 격벽 구조물(S221)의 빈 공간 및 격벽의 상부 표면에 금(S310)이 증착된 구조물을 얻는다.Next, referring to FIG. 3 , gold is deposited on the barrier rib structure S221 to obtain a structure in which gold S310 is deposited on the empty space of the barrier rib structure S221 and the upper surface of the barrier rib.
금을 증착하는 방법은 당업자에게 알려진 통상의 방법으로 수행될 수 있다. 예를 들면, 대표적인 증착 장치(E-BEAM, THERMAL EVAPORATOR)를 사용하여 수행될 수 있다. 증착된 금의 두께는 5nm 내지 10nm, 바람직하게는 7nm가 될 수 있다. 상기 범위에서, 금 나노입자를 효율적으로 형성하고, 도 2 및 도 3에서 보여지는 바와 같이, 금 나노입자와 금 나노클러스터가 3D 꽃(flower) 형상을 갖도록 형성될 수 있다. A method of depositing gold may be performed by a conventional method known to those skilled in the art. For example, it may be performed using a typical deposition apparatus (E-BEAM, THERMAL EVAPORATOR). The thickness of the deposited gold may be between 5 nm and 10 nm, preferably 7 nm. Within the above range, gold nanoparticles are efficiently formed, and as shown in FIGS. 2 and 3 , gold nanoparticles and gold nanoclusters can be formed to have a 3D flower shape.
다음으로, 도 3을 참조하면, 금이 증착된 격벽 구조물을 열처리함으로써, 알루미나 기판(S240)에 격벽 구조물(S221) 및 나노 정렬된, 금 나노입자(S320) 및 금 나노클러스터(S330)를 형성한다.Next, referring to FIG. 3 , the barrier rib structure S221 and nano-aligned, gold nanoparticles S320 and gold nanocluster S330 are formed on the alumina substrate S240 by heat-treating the barrier rib structure on which gold is deposited. do.
열처리는 격벽 구조물 중 빈 공간에 증착된 금이 금 나노입자를 형성하도록 하고, 격벽의 상부 표면에 증착된 금이 금 나노클러스터를 형성하도록 한다. 빈 공간에 증착된 금은 격벽의 상부 표면에 증착된 금 대비 증착 면적이 넓어서 금 나노클러스터 대비 상대적으로 큰 입경으로 금 나노입자를 형성할 수 있다. The heat treatment causes the gold deposited in the empty space of the barrier rib structure to form gold nanoparticles, and the gold deposited on the upper surface of the barrier rib to form gold nanoclusters. Gold deposited in the empty space has a larger deposition area compared to gold deposited on the upper surface of the barrier rib, so that gold nanoparticles can be formed with a relatively large particle diameter compared to gold nanoclusters.
열처리는 300℃ 내지 600℃, 바람직하게는 500℃에서 1시간 내지 5시간, 바람직하게는 3시간 동안 수행될 수 있다. 열처리는 통상의 방법으로 수행될 수 있다.The heat treatment may be performed at 300° C. to 600° C., preferably at 500° C. for 1 hour to 5 hours, preferably 3 hours. The heat treatment may be performed by a conventional method.
알루미나 기판 형성 시 열처리를 진행하지 않을 경우 동일 파장대의 LED혹은 다른 파장대의 LED를 사용하더라도 PCR에 적합한 90℃ 이상의 온도에 빠르게 도달하지 못하므로 적합하지 않다. 따라서 본 발명에서는 열처리를 통하여 나노 구조로 디웻팅(dewetting)됨에 따라 PCR에 적합한 빠른 온도 상승을 유도하였다.If heat treatment is not performed when forming an alumina substrate, it is not suitable because it cannot quickly reach a temperature of 90°C or higher suitable for PCR even if an LED of the same wavelength band or an LED of a different wavelength band is used. Therefore, in the present invention, a rapid temperature rise suitable for PCR was induced by dewetting into a nanostructure through heat treatment.
나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판은 롤-투-롤(roll to roll, R2R)로 상술 과정을 거침으로써 제조 공정성을 높일 수도 있다.The nano-aligned, gold nanoparticles and gold nanoclusters-containing alumina substrates can be manufactured through the above process in a roll-to-roll (R2R) manner to increase the manufacturing processability.
이와 관련하여, 도 4를 참조하여 설명한다.In this regard, it will be described with reference to FIG. 4 .
도 4는 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 제조하기 위한 전체 R2R 하이브리드 진공 공정을 보여준다. PCR 증폭의 경우, 빠른 시간내에 많은 사람들을 대상으로 실시하여야 하기 때문에 본 발명에서는 R2R 하이브리드 진공 공정을 통하여 나노 정렬 금 나노입자 및 금 나노클러스터 함유 알루미나 기판을 제작하고자 한다.Figure 4 shows the overall R2R hybrid vacuum process for preparing nano-ordered, gold nanoparticles and gold nanoclusters containing alumina substrates. In the case of PCR amplification, since it should be carried out for a large number of people within a short time, in the present invention, an alumina substrate containing nano-aligned gold nanoparticles and gold nanoclusters is prepared through an R2R hybrid vacuum process.
다공성 알루미나 제작에 대해서는 기존 알려진 제조 공정은 한단계 한단계을 거치며 제작을 해야 되기 때문에 매우 정열된 다공성 구멍을 얻을 수 있는 반면, 고비용과 시간이 오래 걸리는 단점을 가진다. 이에 본 발명에서는 기존 공정과 함께 롤 투 롤 하이브리드 진공 공정을 제안하였다. 일반적인 롤 투 롤 공정에서는 순도가 높은 금을 증착하기 어려우며, 높은 고온에서 열처리가 불가하기 때문에 진공 증착 기기와 고온 건조가 가능한 건조기가 사용될 수 있다 바람직하게는 알루미늄 기재(S210)로서는 순도가 높은 알루미늄 호일(순도: 99.99% 이상, 두께 0.1-0.5 mm)이 선호되며 이는 최종적으로 형성되는 다공성 홀의 배열에 직접적으로 영향을 준다. For the production of porous alumina, the existing known manufacturing process has to go through one step at a time, so it is possible to obtain highly ordered porous pores, but it has the disadvantages of high cost and long time. Accordingly, the present invention proposes a roll-to-roll hybrid vacuum process along with the existing process. In a general roll-to-roll process, it is difficult to deposit high-purity gold, and since heat treatment at a high temperature is impossible, a vacuum deposition apparatus and a dryer capable of drying at a high temperature may be used. Preferably, as the aluminum substrate (S210), high-purity aluminum foil (purity: 99.99% or more, thickness 0.1-0.5 mm) is preferred, which directly affects the arrangement of the porous holes to be finally formed.
우선 알루미늄 기재의 표면의 불순물을 제거하기 위한 전해 연마를 수행한다. 전해 연마는 HClO4와 ethanol 4:1 혼합 용액이 사용될 수 있으며 이를 챔버에 담그어 해당 공정을 진행할 수 있다. 온도는 15-25℃ 조건으로 20 V의 직류 전압을 걸어 줌으로써 알루미늄 표면의 불순물을 제거할 수 있다. First, electrolytic polishing is performed to remove impurities on the surface of the aluminum substrate. For electropolishing, a mixed solution of HClO 4 and ethanol 4:1 may be used, and the process may be performed by immersing it in a chamber. Impurities on the aluminum surface can be removed by applying a DC voltage of 20 V under the temperature of 15-25°C.
다공성 구멍을 만들기 위하여 1차 양극 산화 공정(S220)을 거치며 이에 0.3 M의 oxalic acid를 사용하여 60V의 직류 전압 하에서 12시간(롤 투 롤 공정시에는 1분) 진행시 제조될 수 있다. 상기 제안하는 롤 투 롤 공정에서는 충분한 연마 공정과 양극 산화를 위해서 웹 이동 속도는 0.1-0.5mm/s를 장력은 5-7kg이 선호된다. 빠른 제조 공정을 위해서 10-50mm/s가 될 수 있으며 이는 주어진 공정 및 용액 조건에 따라 상이할 수 있다. In order to make a porous hole, it undergoes a primary anodization process (S220), and 0.3 M of oxalic acid can be used for 12 hours (1 minute in the roll-to-roll process) under a direct current voltage of 60V. In the roll-to-roll process proposed above, 0.1-0.5 mm/s of web moving speed and 5-7 kg of tension are preferred for sufficient polishing and anodization. For a fast manufacturing process it can be 10-50 mm/s, which can be different depending on the given process and solution conditions.
wet etching(S230) 공정을 통하여 알루미나 산화막을 제거하게 되며 이때 6wt% phosphoric acid에 1.5 wt% chromic acid 혼합 용액을 사용한다. 효율적인 알루미나 산화막을 제거하기 위하여 상온 보다 고온의 온도가 필요하여 경우에 따라서 60℃의 고온에서 1분동안 진행한다. The alumina oxide film is removed through the wet etching (S230) process, and a mixed solution of 6 wt% phosphoric acid and 1.5 wt% chromic acid is used. In order to efficiently remove the alumina oxide film, a temperature higher than room temperature is required, and in some cases, the process is performed at a high temperature of 60° C. for 1 minute.
이후 2차 양극 산화 공정(S240)을 통하여 다공성 알루미나가 형성하게 되며 이때 1차 양극 산화 조건과 같으며 다공성 구멍의 높이를 제어하기 위해 짧은 시간(수초 내지 수분)의 직류 전압을 걸어준다. Thereafter, porous alumina is formed through the secondary anodization process (S240). At this time, the same as the primary anodization conditions, a DC voltage is applied for a short time (several seconds to several minutes) to control the height of the porous pores.
이후 2차 wet etching 공정을 통하여 정렬된 다공성 알루미나를 포함한 알루미나 판을 얻을 수 있다. 0.1 M phosphoric acid가 에칭 공정을 위해 사용되며 이때 주어진 온도(선택적으로 28℃가 요구된다)에 따라 다양한 형태의 다공성 구멍을 가진 알루미나를 제조할 수 있다. 이는 추가적인 공정으로 선택적으로 도입될 수 있다. Thereafter, an alumina plate including aligned porous alumina can be obtained through a secondary wet etching process. 0.1 M phosphoric acid is used for the etching process, and depending on the given temperature (optionally 28°C is required), alumina with various types of porous pores can be prepared. It may optionally be introduced as an additional process.
제조된 다공성 구멍을 가진 알루미나 기판(S240)은 걸어준 직류 전압값, 걸어준 시간, 웹의 이동속도, 사용하는 산의 농도 및 알루미늄의 판의 순도에 따라 결정되며 바람직하게는 형성되는 다공성 구멍의 사이즈는 50-100 nm로 선호된다. The prepared alumina substrate S240 with porous pores is determined according to the applied DC voltage value, the applied time, the moving speed of the web, the concentration of the acid used, and the purity of the aluminum plate, and preferably the A size of 50-100 nm is preferred.
광에 의한 열 전환 효율을 위한 금속 물질로 금이 선호된다. 본 발명에서는 수나노 nm의 두께의 금을 코팅하기 위하여 대표적인 증착 장비 (e-beam, thermal evaporator)등이 사용할 수 있다. 롤 투 롤 공정에서는 하이브리드 형태의 진공 증착 장비(S250)가 선호되며 기존 증착 장비와 동일한 조건에서 수행할 수 있다. 효율적인 금 나노 입자를 형성하고 3D 플라워 구조를 갖도록 이상적으로는 5-7nm의 두께의 금 증착이 요구된다.Gold is the preferred metallic material for light-to-heat conversion efficiency. In the present invention, representative deposition equipment (e-beam, thermal evaporator), etc. can be used to coat gold with a thickness of several nano nm. In the roll-to-roll process, a hybrid type vacuum deposition equipment (S250) is preferred and can be performed under the same conditions as the existing deposition equipment. Ideally, gold deposition with a thickness of 5-7 nm is required to form efficient gold nanoparticles and have a 3D flower structure.
그런 다음, 열 처리 공정(S260)을 통해 금 나노입자 및 금 나노클러스터가 형성될 수 있다.Then, gold nanoparticles and gold nanoclusters may be formed through a heat treatment process ( S260 ).
도 5는 격벽 구조물이 형성된 알루미나 기판(S240), 격벽 구조물에 금이 증착된 알루미나 기판(S240), 금 나노입자 및 금 나노클러스터가 정렬되어 형성된 알루미나 기판(S240)의 상부 표면의 SEM 사진을 보여주는 것이다.5 is an SEM photograph of the upper surface of the alumina substrate S240 on which the barrier rib structure is formed, the alumina substrate S240 on which gold is deposited on the barrier rib structure, and the alumina substrate S240 in which gold nanoparticles and gold nanoclusters are aligned. will be.
도 5를 참조하면, 빈 공간 및 격벽의 상부 표면에 금이 증착되는 것, 금 나노입자와 금 나노클러스터가 형성되었음을 확인할 수 있다.Referring to FIG. 5 , it can be seen that gold is deposited in the empty space and the upper surface of the barrier rib, and gold nanoparticles and gold nanoclusters are formed.
본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판에 LED 파장을 조사하였을 때, LED 파장에 따라 조사 시간에 따른 온도 상승 정도를 도 8에 나타내었다.When the LED wavelength was irradiated to the nano-aligned alumina substrate containing the nano-aligned, gold nanoparticles and gold nanoclusters of the present invention, the degree of temperature increase according to the irradiation time according to the LED wavelength is shown in FIG. 8 .
도 8을 참조하면, 본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판은 사용되어지는 LED의 파장대에 따라서 서로 다른 효율을 보인다.Referring to FIG. 8 , the nano-aligned, alumina substrate including gold nanoparticles and gold nanoclusters of the present invention exhibits different efficiencies according to the wavelength band of the LED used.
바람직하게는 530nm내지 550nm의 파장대, 더 바람직하게는 530nm 및 640nm 내지 660nm 파장대, 더 바람직하게는 660nm의 광원을 사용하는 것이 유리하다. It is advantageous to use a light source of preferably a wavelength band of 530 nm to 550 nm, more preferably a wavelength band of 530 nm and 640 nm to 660 nm, more preferably 660 nm.
530nm 대의 LED는 주어진 시간 내에서 빠르게 온도 상승(상온에서 90℃까지)을 가져오며 같은 500nm 대의 파장을 가지는 520nm LED는 낮은 열 전환 효율을 보여준다. 그렇지만 단 파장대만을 사용함에 따라서 빠른 시간 내에 원하는 온도를 얻지 못함에 따라 본 발명에서는 두 가지 서로 다른 파장대를 가지는 LED가 선호된다. The 530nm LED causes a rapid temperature rise (from room temperature to 90℃) within a given time, and the 520nm LED with the same 500nm wavelength shows low thermal conversion efficiency. However, in the present invention, LEDs having two different wavelength bands are preferred because a desired temperature cannot be obtained within a short time by using only a short wavelength band.
본 발명에서 제안하는 나노 정렬된, 금 나노입자의 경우 두가지 크기를 가지는 금 나노입자가 존재함에 따라서 두가지 이상의 파장대의 LED를 사용함으로써 열 전환 효율을 극대화할 수 있다. 본 발명에서는 바람직하게 530nm내지 550nm의 파장대의 LED와 640nm 내지 660nm 파장대 의 LED를 사용함으로써 극대화된 열전환 효율을 얻을 수 있다.In the case of nano-aligned, gold nanoparticles proposed in the present invention, since gold nanoparticles having two sizes exist, heat conversion efficiency can be maximized by using LEDs of two or more wavelength bands. In the present invention, it is possible to obtain maximized heat conversion efficiency by preferably using the LED of the wavelength band of 530 nm to 550 nm and the LED of the 640 nm to 660 nm wavelength band.
본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판에 대해 LED 광원(파장 530nm 및 660nm의 동시 조사)을 조사하였을 때 시간에 따른 온도의 상승 및 하강 그래프를 도 9에 나타내었다. 9 shows graphs of temperature rise and fall over time when an LED light source (simultaneous irradiation of wavelengths 530 nm and 660 nm) is irradiated with an alumina substrate including nano-aligned, gold nanoparticles and gold nanoclusters of the present invention It was.
도 9을 참조하면, 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판의 경우 PCR 증폭에 사용되는 변성(denaturation), 결합(annealing), 신장(extension)의 3단계에 해당되는 62℃ 내지 94℃의 온도 범위에서 30 사이클 (DNA를 충분히 증폭할 수 있는 사이클)를 반복하였을 경우 3분 이내에 도달 할 수 있다. 이는 고속 PCR 구현을 위한 필수적인 요인으로 단시간 내에 PCR를 수행할 수 있게 한다.Referring to FIG. 9 , in the case of an alumina substrate containing nano-aligned gold nanoparticles and gold nanoclusters, denaturation, annealing, and extension are used for PCR amplification. If 30 cycles (a cycle capable of sufficiently amplifying DNA) are repeated in the temperature range of 94°C, it can be reached within 3 minutes. This is an essential factor for implementing high-speed PCR, allowing PCR to be performed in a short time.
본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판을 구비하는 PCR 장치를 이용한 DNA 증폭에 따른 실제 온도 상승 및 하강 그래프를 도 10에 나타내었다.10 shows graphs of actual temperature rise and fall according to DNA amplification using a PCR apparatus having an alumina substrate including nano-aligned, gold nanoparticles and gold nanoclusters of the present invention.
도 10을 참조하면, PCR 장치를 구성하여 세포의 용해(Lysis), RNA정제 및 Trans Reverse Transcription을 위한 바이오 분자 및 화학 약품을 혼합한 믹스를 준비하고, PDMS웰 챔버를 포함한 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나 기판에 약 1 μl를 넣고, 증발을 막기 위한 오일 약 2 μl를 넣고 PCR를 수행한다. 이때 수행 시간은 300초에서 500초로 목표 DNA의 크기와 프라이머의 디자인에 따라 달라질 수 있다. 55 bp (혹은 100 bp)의 길이를 가진 DNA를 이용하여 증폭을 진행하였을 경우 약 300 초정도가 소모되며 이는 기존 PCR 수행장치에 비해 월등하게 시간이 단축됨을 확인 할 수 있다.Referring to FIG. 10 , a PCR device is configured to prepare a mix of biomolecules and chemicals for cell lysis (Lysis), RNA purification, and trans reverse transcription, and nano-arranged, gold nanoparticles including a PDMS well chamber Put about 1 μl of an alumina substrate containing particles and gold nanoclusters, add about 2 μl of oil to prevent evaporation, and perform PCR. In this case, the execution time ranges from 300 seconds to 500 seconds, which may vary depending on the size of the target DNA and the design of the primer. When amplification is performed using DNA having a length of 55 bp (or 100 bp), about 300 seconds are consumed, and it can be confirmed that the time is significantly reduced compared to the existing PCR apparatus.
본 발명의 나노 정렬된, 금 나노입자 및 금 나노클러스터를 포함하는 알루미나 기판을 구비하는 PCR 장치를 이용한 DNA(55bp 및 100bp)의 증폭을 수행한 다음 전기 영동 겔을 한 결과를 도 11에 나타내었다.Amplification of DNA (55 bp and 100 bp) was performed using a PCR apparatus having an alumina substrate including nano-aligned, gold nanoparticles and gold nano-clusters of the present invention, followed by electrophoresis gel. The results are shown in FIG. 11 . .
도 11을 참조하면, 55bp의 길이를 가진 DNA(S510) 및 100bp의 길이를 가진 DNA(S520)에 대해서도 본 발명의 PCR 장치에서 증폭이 됨을 확인할 수 있다. Referring to FIG. 11 , it can be confirmed that DNA (S510) having a length of 55 bp and DNA having a length of 100 bp (S520) are also amplified in the PCR apparatus of the present invention.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다. Simple modifications or changes of the present invention can be easily carried out by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (8)

  1. PCR 플레이트, 상기 PCR 플레이트의 하부면에 배치된 복수의 LED 광원 및 상기 PCR 플레이트의 상부에 배치된 디스플레이를 포함하고, A PCR plate, a plurality of LED light sources disposed on the lower surface of the PCR plate, and a display disposed on the top of the PCR plate,
    상기 PCR 플레이트는 복수 개의 웰을 구비하는 PCR 챔버; 및 상기 PCR 챔버의 하부면에 배치되고 나노 정렬된, 금 나노입자 및 금 나노클러스터 함유 알루미나(Al2O3) 기판을 포함하는 것인, PCR 장치.The PCR plate includes a PCR chamber having a plurality of wells; and an alumina (Al 2 O 3 ) substrate disposed on the lower surface of the PCR chamber and nano-aligned, containing gold nanoparticles and gold nanoclusters.
  2. 제1항에 있어서, 상기 금 나노입자는 상기 금 나노클러스터 대비 다른 크기를 갖는 것인, PCR 장치.The PCR apparatus according to claim 1, wherein the gold nanoparticles have a size different from that of the gold nanoclusters.
  3. 제1항에 있어서, 상기 LED 광원은 500nm 이상 600nm 이하의 파장의 광을 조사하는 광원 및 600nm 초과 700nm 이하의 파장의 광을 조사하는 광원을 포함하는 것인, PCR 장치.The PCR apparatus according to claim 1, wherein the LED light source comprises a light source irradiating light with a wavelength of 500 nm or more and 600 nm or less and a light source irradiating light with a wavelength of more than 600 nm and 700 nm or less.
  4. 제1항에 있어서, 상기 알루미나 기판은 알루미나 기판; 상기 알루미나 기판의 상부면에 상기 알루미나 기판과 일체로 형성되고 복수 개의 격벽이 서로 교차하여 형성된 격벽 구조물; 상기 격벽 구조물 내의 빈 공간에 상기 알루미나 기판과 일체로 형성된 상기 금 나노입자; 상기 격벽 구조물 중 격벽 상부 표면에 형성된 상기 금 나노클러스터를 포함하는 것인, PCR 장치.According to claim 1, wherein the alumina substrate is an alumina substrate; a barrier rib structure formed integrally with the alumina substrate on an upper surface of the alumina substrate and formed by crossing a plurality of barrier ribs; the gold nanoparticles integrally formed with the alumina substrate in an empty space within the barrier rib structure; The PCR apparatus comprising the gold nanoclusters formed on the upper surface of the barrier ribs among the barrier rib structures.
  5. 제4항에 있어서, 상기 격벽의 상부 표면은 곡면인 것인, PCR 장치.The PCR apparatus according to claim 4, wherein the upper surface of the partition wall is curved.
  6. 제1항에 있어서, 상기 알루미나는 다공성의 양극 산화에 의한 알루미늄 산화물(AAO, anodic aluminum oxide)인 것인, PCR 장치.The PCR apparatus according to claim 1, wherein the alumina is aluminum oxide (AAO, anodic aluminum oxide) by anodic oxidation of porosity.
  7. 제1항에 있어서, 상기 알루미나 기판은 According to claim 1, wherein the alumina substrate is
    알루미늄 기재를 양극 산화 및 습식 에칭시켜, 알루미나 기판 상에 복수 개의 격벽; 및 격벽이 서로 교차하여 형성된 빈 공간을 포함하는 격벽 구조물을 형성하는 단계(제1 단계), A plurality of barrier ribs on the alumina substrate by anodizing and wet etching the aluminum substrate; and forming a barrier rib structure including an empty space formed by intersecting barrier ribs (first step);
    상기 격벽 구조물 상에 금을 증착하는 단계(제2 단계); 및 depositing gold on the barrier rib structure (second step); and
    금이 증착된 상기 격벽 구조물을 열처리하는 단계(제3 단계)를 포함하는 방법에 의해 제조되는 것인, PCR 장치.The PCR apparatus, which is manufactured by a method comprising the step (third step) of heat-treating the barrier rib structure on which gold is deposited.
  8. 제7항에 있어서, 상기 알루미나 기판은 상기 제1 단계, 상기 제2 단계 및 상기 제3 단계를 롤 투 롤 하이브리드 제조 공정에 의해 수행하여 제조되는 것인, PCR 장치.The PCR apparatus according to claim 7, wherein the alumina substrate is manufactured by performing the first step, the second step, and the third step by a roll-to-roll hybrid manufacturing process.
PCT/KR2022/006350 2021-05-03 2022-05-03 Pcr device WO2022235058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0057518 2021-05-03
KR1020210057518A KR102597565B1 (en) 2021-05-03 2021-05-03 Pcr apparatus

Publications (1)

Publication Number Publication Date
WO2022235058A1 true WO2022235058A1 (en) 2022-11-10

Family

ID=83932868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006350 WO2022235058A1 (en) 2021-05-03 2022-05-03 Pcr device

Country Status (2)

Country Link
KR (1) KR102597565B1 (en)
WO (1) WO2022235058A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302353B1 (en) * 2012-02-29 2013-09-06 케이맥(주) Automatic analysis device of molecular diagnosis for performing both real-time pcr detecting quantitatively gene and dna microarray for gene analysis
KR101365737B1 (en) * 2012-08-28 2014-02-20 한정헌 Porous solid matter for rapid isolation of biological molecule for nucleic acid amplification reaction from biological sample and uses thereof
KR101768146B1 (en) * 2014-11-12 2017-08-16 고려대학교 산학협력단 nanoplasmonic sensor for detecting of beta-amyloid and detecting method beta-amyloid using the sensor
US20190283032A1 (en) * 2018-03-15 2019-09-19 Kryptos Biotechnologies, Inc. Method and system for performing heat assisted biochemical reactions
US20190390252A1 (en) * 2018-06-21 2019-12-26 Genomic Health, Inc. Systems and methods for pre-analytical substrate processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014073A (en) * 1972-05-15 1977-07-19 Improved Machinery Contrarotating drum filter with fluid biased baffles
US7419846B2 (en) * 2004-04-13 2008-09-02 The Trustees Of Princeton University Method of fabricating an optoelectronic device having a bulk heterojunction
KR20110056168A (en) * 2009-11-20 2011-05-26 삼성전자주식회사 Microfluidic device, light irradiation apparatus, microfluidic system comprising the same and method for driving the system
WO2011152460A1 (en) 2010-06-03 2011-12-08 株式会社Si-Nano Photoelectric converter element and method of manufacturing same
WO2016115542A1 (en) * 2015-01-16 2016-07-21 The Regents Of The University Of California Led driven plasmonic heating apparatus for nucleic acids amplification
EP3996846A4 (en) * 2019-07-09 2023-10-18 Kryptos Biotechnologies, Inc. Microfluidic reaction vessel array with patterned films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101302353B1 (en) * 2012-02-29 2013-09-06 케이맥(주) Automatic analysis device of molecular diagnosis for performing both real-time pcr detecting quantitatively gene and dna microarray for gene analysis
KR101365737B1 (en) * 2012-08-28 2014-02-20 한정헌 Porous solid matter for rapid isolation of biological molecule for nucleic acid amplification reaction from biological sample and uses thereof
KR101768146B1 (en) * 2014-11-12 2017-08-16 고려대학교 산학협력단 nanoplasmonic sensor for detecting of beta-amyloid and detecting method beta-amyloid using the sensor
US20190283032A1 (en) * 2018-03-15 2019-09-19 Kryptos Biotechnologies, Inc. Method and system for performing heat assisted biochemical reactions
US20190390252A1 (en) * 2018-06-21 2019-12-26 Genomic Health, Inc. Systems and methods for pre-analytical substrate processing

Also Published As

Publication number Publication date
KR20220150502A (en) 2022-11-11
KR102597565B1 (en) 2023-11-06

Similar Documents

Publication Publication Date Title
US11885012B2 (en) Graphene synthesis
WO2012074203A2 (en) Microfluidic filter using carbon nanotube 3d network and preparation method thereof
WO2014092453A1 (en) Aseptic and odorless nitric oxide generator
CN1841652A (en) Load fixing device, processing system and method
WO2011112031A2 (en) Air-purifying module
WO2018159909A1 (en) Heating system and heating element
JP2006073504A (en) Method of manufacturing field emitter electrode using self-assembling of carbon nanotube and field emitter electrode manufactured thereby
Wang et al. Preparation and characterization of ordered semiconductor CdO nanowire arrays
WO2022235058A1 (en) Pcr device
WO2011040679A1 (en) High field anodizing apparatus
Yuan et al. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization
WO2014126298A1 (en) Method of manufacturing graphene film and graphene film manufactured thereby
Stojadinovic et al. The effect of annealing on the photoluminescent and optical properties of porous anodic alumina films formed in sulfamic acid
EP3019445A1 (en) Electrochemical method for transferring graphene
JP3939452B2 (en) Electron emitting device and manufacturing method thereof
JP4744671B2 (en) Single wafer processing equipment
CN108918620B (en) Photoelectrochemical DNA detection method based on single-double-stranded DNA adsorption difference of cobalt phosphide nanowire
JP2009028632A (en) Gas cleaning apparatus and gas cleaning method
JP2000277002A (en) Manufacture of electron emission element
Neupane et al. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution
KR102496166B1 (en) Substrate Processing Apparatus having Electrostatic chuck
WO2018088701A1 (en) Separation plate for fuel cell and fuel cell using same
CN100497162C (en) Heater-integrated negatively charged oxygen atom generator
WO2011096754A2 (en) Method and apparatus for bottom-up processing of a structure using an adhesion system having fine ciliary
CN109383087B (en) A method of preparing multilayer self-supporting carbon film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22799101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22799101

Country of ref document: EP

Kind code of ref document: A1