WO2022234832A1 - Power conversion device and power conversion method - Google Patents

Power conversion device and power conversion method Download PDF

Info

Publication number
WO2022234832A1
WO2022234832A1 PCT/JP2022/019424 JP2022019424W WO2022234832A1 WO 2022234832 A1 WO2022234832 A1 WO 2022234832A1 JP 2022019424 W JP2022019424 W JP 2022019424W WO 2022234832 A1 WO2022234832 A1 WO 2022234832A1
Authority
WO
WIPO (PCT)
Prior art keywords
dead time
power
output voltage
power conversion
turn
Prior art date
Application number
PCT/JP2022/019424
Other languages
French (fr)
Japanese (ja)
Inventor
正登 安東
徹郎 児島
邦晃 大塚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022234832A1 publication Critical patent/WO2022234832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and a power conversion method, and is suitable mainly for power conversion for railway vehicles and the like.
  • a power conversion device converts DC power into AC power or vice versa by switching operation of a semiconductor device, and is applied in many fields such as railways, automobiles, and elevators.
  • the semiconductor elements of the upper and lower arms that make up the power conversion device perform switching operations alternately. If these semiconductor elements are turned on simultaneously due to operation delays, an excessive short-circuit current exceeding the rated current of the semiconductor elements is generated. It leads to failure of the power converter. Therefore, in order to prevent the semiconductor elements of the upper and lower arms from being turned on at the same time, a dead time is provided during which the semiconductor elements of the upper and lower arms are turned off at the same time.
  • a power converter includes a gate signal generation unit that generates a temporary gate signal from a voltage command value, and a dead time that generates a gate signal by inserting a dead time into the temporary gate signal.
  • One or more switching element groups in which an insertion portion and a switching element that can be switched between an on state and an off state by a gate signal are connected in series, are connected in parallel with a DC power supply to convert DC power output from the DC power supply into AC power.
  • a bridge circuit, a current detection unit that detects the output current of the bridge circuit, and a dead current value detected by the current detection unit with reference to the characteristics of the turn-on delay time and the turn-off delay time with respect to the current value flowing through the switching element. and a variable dead time generator for calculating the time” see abstract).
  • Patent Document 1 can provide an optimum dead time according to the output current, if the dead time becomes short due to an output current detection error, a short-circuit current may occur and the power conversion device may fail. be.
  • dead time compensation is performed by moving forward or backward by the dead time the ON command or OFF command for the semiconductor element according to the positive or negative of the output current.
  • the semiconductor element is an ideal switch with no operation delay, the output voltage command and the output voltage will match and no error will occur in the output voltage. The voltage command and the output voltage do not match, causing an error in the output voltage.
  • the operation delay of the semiconductor element described above changes according to the current flowing through the semiconductor element, the temperature of the semiconductor element, and the voltage applied to the semiconductor element, the error in the output voltage described above must be minimized. , it is necessary to set the deadtime and deadtime compensation to take these physical properties into account.
  • An object of the present invention is to provide a power conversion device that performs dead time compensation in consideration of the physical characteristics of the semiconductor elements described above.
  • a typical configuration of the power conversion device is to connect at least one set of at least two semiconductor elements connected in series to a DC power supply, and to connect the at least two semiconductor elements connected in series.
  • a switching unit that connects the connection point of the upper and lower arms to an AC load to convert the DC power from the DC power supply into AC power, and a PWM signal generation that generates a gate signal for PWM-controlling the semiconductor element that constitutes the switching unit a dead time generator for generating a dead time in which both at least two semiconductor elements connected in series are turned off; and a dead time compensator for compensating for the dead time, wherein the dead time generator is configured to reduce the dead time. It is characterized in that the dead time compensator compensates for an operation delay associated with turn-on and turn-off of the semiconductor device.
  • the error between the output voltage command and the output voltage of the power converter can be minimized by performing dead time compensation in consideration of the electrical characteristics of the semiconductor elements that make up the power converter.
  • FIG. 1 is a diagram showing a schematic configuration of a railway vehicle to which an embodiment according to the present invention is applied; It is a figure which shows the circuit structure of the drive system containing the power converter device which concerns on a present Example.
  • FIG. 10 is a diagram showing a timing chart when the current is in the forward direction in the conventional power converter.
  • FIG. 4 is a diagram showing a timing chart when the current is in the positive direction in the power conversion device according to the embodiment;
  • FIG. 4 is a diagram showing motor current dependency in the output voltage waveform of the power converter according to the embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a railway vehicle (hereinafter also simply referred to as "vehicle") to which an embodiment of the present invention is applied.
  • the vehicle 8 rotates the wheels 3 by driving the electric motor 5 to move forward or backward.
  • the electric motor 5 is an induction motor
  • one power converter drives a plurality of electric motors (induction motors)
  • the electric motor 5 is a permanent magnet synchronous motor
  • one power converter drives one motor.
  • motor permanent magnet synchronous motor
  • the vehicle 8 In the power running operation, the vehicle 8 is accelerated by driving the electric motor 5 that receives power from the overhead wire 1 via the current collector 7 . Further, during a braking operation for decelerating the vehicle 8, power regeneration is performed by using the function of the electric motor 5 as a generator. The regenerated electric power generated by the electric motor 5 is returned to the overhead wire 1 via the power conversion device 6, the filter reactor 13, the contactor 11 (see FIG. 2) and the circuit breaker 9, and is supplied to another vehicle via the overhead wire 1. (not shown) is consumed as power for running. As electrical ground, the low potential side of power converter 6 is connected to rail 2 via wheels 3 . The electric motor 5 is mounted on a truck 4 which supports a vehicle 8 .
  • the power conversion device 6, the circuit breaker 9, and the filter reactor 13 are housed in separate boxes and arranged under the floor as electrical components for driving the vehicle 8. On the other hand, some or all of these electrical components may be housed in a single box to increase the mounting density.
  • the voltage of the overhead line 1 is DC 600V, DC 750V, DC 1500V, DC 3000V, or AC 20kV, 25kV, or the like. In the embodiment, the voltage of the overhead wire 1 is DC.
  • FIG. 2 is a diagram showing a circuit configuration of a drive system including the power conversion device 6 according to this embodiment.
  • the power conversion device 6 constitutes a main part of a drive system that drives the electric motor 5 .
  • This drive system is composed of a circuit breaker 9 capable of appropriately interrupting DC power supplied from the overhead wire 1, a filter reactor 13, and a power conversion device 6.
  • FIG. 9 is a diagram showing a circuit configuration of a drive system including the power conversion device 6 according to this embodiment.
  • the power conversion device 6 constitutes a main part of a drive system that drives the electric motor 5 .
  • This drive system is composed of a circuit breaker 9 capable of appropriately interrupting DC power supplied from the overhead wire 1, a filter reactor 13, and a power conversion device 6.
  • the power conversion device 6 converts DC power into AC power to drive the electric motor 5 .
  • the power conversion device 6 includes a contactor 11, a contactor 10 and a resistor 12 for initial charging, a filter capacitor 14, switching elements Q1 to Q6, gate drive circuits 101 to 106, antiparallel diodes D1 to D6, and a current detection circuit 117a. 117c and the control unit 100.
  • FIG. 1 A contactor 11, a contactor 10 and a resistor 12 for initial charging, a filter capacitor 14, switching elements Q1 to Q6, gate drive circuits 101 to 106, antiparallel diodes D1 to D6, and a current detection circuit 117a. 117c and the control unit 100.
  • the control unit 100 generates gate commands for the gate drive circuits 101-106.
  • a group of switching elements Q1-Q2 are connected in series to form a U-phase
  • a group of switching elements Q3-Q4 are connected in series to form a V-phase
  • a group of switching elements Q5-Q6 are connected in series to form a W-phase.
  • FIG. 2 shows a circuit diagram of a three-phase inverter as an example, it may be a half-bridge inverter composed only of U-phases or a full-bridge inverter composed of U-phases and V-phases.
  • MOSFETs, IGBTs, or multi-gate IGBTs can be used as the switching elements Q1 to Q6.
  • the switching elements Q1 to Q are IGBTs (Insulated Gate Bipolar Transistors), antiparallel freewheeling diodes (hereinafter simply referred to as "diodes") connected in antiparallel to the main terminals of the respective switching elements. ) D1 to D6 are required.
  • Each of the diodes D1-D6 allows a return current to flow when each of the switching elements Q1-Q6 is turned off.
  • MOSFET body diodes may be used as the diodes D1 to D6.
  • MOSFET body diodes may be used as a freewheeling diode without connecting the diode in anti-parallel with each of the switching elements Q1 to Q6.
  • the chips of the diodes D1 to D6 can be reduced, and the power conversion device 6 can be miniaturized.
  • the two switching elements (for example, Q1 and Q2) connected in series may be housed in the same package and formed into a 2-in-1 package.
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • the power conversion device 6 outputs pulsed AC power via the filter capacitor 14 by PWM (Pulse Width Modulation) control of the switching elements Q1 to Q6.
  • PWM Pulse Width Modulation
  • This AC power is supplied to the electric motor 5 and converted into mechanical energy, thereby causing the vehicle 8 to move forward or backward.
  • the initial charging of the filter capacitor 14 is performed using the contactor 10 and the resistor 12, which are charging circuits. That is, the contactor 10 is turned on while the contactor 11 is open, and the filter capacitor 14 is initially charged through the resistor 12 .
  • the filter capacitor 14 and the filter reactor 13 constitute a filter circuit and reduce noise current flowing from the power converter 6 to the overhead wire 1 .
  • Current detection circuits 117a to 117 measure currents of U-phase, V-phase and W-phase of electric motor 5, respectively.
  • the current detection circuit may measure any two phases among the U phase, V phase and W phase, and calculate the value of the remaining one phase from those values. As a result, the number of current detection circuits can be reduced from three to two, and the size and cost of the power conversion device 6 can be reduced.
  • a voltage detection circuit 118 measures the voltage of the filter capacitor 14 .
  • Control unit 100 generates gate signals for switching elements Q1-Q6 from the output voltage command of power conversion device 6, and outputs the gate signals to gate drive circuits 101-106.
  • the switching elements Q1-Q6 switch between an ON state and an OFF state according to gate signals from the gate drive circuits 101-106.
  • a group of switching elements Q1-Q2 forms upper and lower arms by connecting main terminals of switching elements Q1 and Q2 in series.
  • a group of switching elements Q3-Q4 and a group of switching elements Q5-Q6 have the same configuration.
  • the power conversion device 6 exemplifies switching element groups Q1-Q2 of a two-level circuit consisting of two switching elements Q1 and Q2. It is also possible to construct a group of switching elements Q1 to Qx of a level circuit.
  • the ON state or OFF state of the switching elements Q1 to Q6 is controlled by the ON or OFF PWM signal output from the control unit 100.
  • FIG. This PWM signal is input to each gate drive circuit 101 to 106 and amplified.
  • amplified gate signals are input between the respective gates and emitters of the switching elements Q1-Q6 (between the gate and source when the switching elements Q1-Q6 are MOSFETs).
  • the PWM signal controls the switching elements Q1 and Q2 having a pair of main terminals connected in series between the positive and negative sides of the filter capacitor 14, which is a DC power supply. have. In this way, a dead time is provided for each of the PWM signals that control the series-connected pairs of switching elements Q1-Q2 group, switching element Q3-Q4 group, and switching element Q5-Q6 group. .
  • the dead time is not provided, for example, there may be a timing when the switching elements Q1 and Q2 are turned on at the same time due to the operation delay time of the switching elements Q1 and Q2. In this case, the filter capacitor 14 is short-circuited by the switching elements Q1 and Q2 that are turned on at the same time.
  • the control section 100 is composed of a PWM signal generation section 111, a dead time storage section 112, a dead time provision section 113, a dead time compensation storage section 114, a dead time compensation section 115 and an element temperature detection section .
  • the element temperature detection unit 116 the values obtained by measuring the temperatures of the switching elements Q1 to Q6 and the diodes D1 to D6 with a temperature detector (not shown) such as a thermistor, the switching elements Q1 to Q6 and the diodes D1 to The temperature of a cooler (not shown) that cools D6 may be measured and the element temperature estimated based on the operating state of power converter 6 may be used.
  • the PWM signal generation unit 111 generates a reference PWM signal with no dead time so that a desired voltage is output based on an output voltage command to the power conversion device 6 .
  • the dead time imparting section 113 imparts dead time to the PWM signal generating section 111 using the value stored in the dead time storage section 112 .
  • the value stored in the dead time storage unit 112 is a fixed value that does not depend on the current value of the electric motor 5, the element temperature, and the voltage of the filter capacitor 14. FIG. For example, it is a value such as 10 ⁇ s.
  • the dead time compensation storage unit 114 stores dead time compensation for the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection value of the motor 5 from the current detection circuits 117a to 117c. remember the quantity.
  • the dead time compensation amount may be calculated using at least one of these three detection values (motor current detection value, element temperature detection value, and filter capacitor voltage detection value).
  • the dead time compensation unit 115 performs dead time compensation using the dead time compensation amount calculated by the dead time compensation storage unit 114 on the PWM signal to which the dead time is added calculated by the dead time adding unit 113 .
  • the dead time compensation amount calculated by the dead time compensation storage unit 114 is 8 ⁇ s
  • FIG. 3 is a diagram showing a timing chart when the current is in the forward direction in the power converter according to the prior art
  • FIG. 4 is a diagram showing a timing chart when the current is in the forward direction in the power converter according to the present embodiment. be.
  • the horizontal axis indicates time [s]
  • the vertical axis indicates, from top to bottom, the output voltage command, the gate signal of switching element Q1 after dead time compensation, and the signal of switching element Q2 after dead time compensation.
  • the gate signal, the gate signal of Q1 after the dead time is given, the gate signal of the switching element Q2 after the dead time is given, the ideal output voltage, and the output voltage considering the operation delay of the semiconductor element and the like are shown.
  • FIGS. 3 and 4 are the same, and the waveforms shown in FIGS. 3 and 4 focus on the operation of the switching elements Q1 and Q2 forming the U phase.
  • the current flowing through the electric motor 5 is directed from the power conversion device 6 to the electric motor 5 .
  • the output voltage command generated by the PWM signal generator 111 corresponds to the gate signal of the switching element Q1 in the switching elements Q1 and Q2 that constitute the upper and lower arms.
  • the switching element Q1 When the output voltage command becomes High, the switching element Q1 is turned on and the output voltage becomes High.
  • the voltage of the filter capacitor 14 is DC 1500V
  • the switching element Q1 when the switching element Q1 is turned on, the output voltage is 1500V
  • the switching element Q1 is turned off, the output voltage is Low.
  • the voltage is about several volts.
  • the output voltage during dead time depends on the polarity of the current flowing through the motor 5 .
  • the diode D2 of the lower arm becomes conductive during the dead time period, so the output voltage becomes Low.
  • the diode D1 of the upper arm becomes conductive during the dead time period, so the output voltage becomes High. For this reason, it is necessary to perform dead time compensation according to the polarity of the current flowing through the electric motor 5 .
  • the polarity of the current flowing through the electric motor 5 in FIGS. 3 and 4 is the direction from the power conversion device 6 to the electric motor 5.
  • the output voltage is Low during the dead time period, the output voltage is insufficient for the output voltage command. Therefore, by performing dead time compensation for advancing the rise of the gate signal of the switching element Q1, the ON time of the switching element Q1 is lengthened and the error in the output voltage is reduced.
  • the dead time compensation amount is TD.
  • Dead time compensation amount TD is stored in dead time compensation storage unit 114 .
  • the gate signal of the switching element Q2 after dead time compensation is a signal obtained by inverting the High/Low of the gate signal of the switching element Q1. This dead time compensation is performed by dead time compensation section 115, and dead time is given to switching elements Q1 and Q2 subjected to dead time compensation.
  • FIG. 3 is a diagram showing a timing chart when the current is in the positive direction in the conventional power converter.
  • the dead time is TD
  • this dead time TD has the same value as the dead time compensation amount TD.
  • the dead time compensation amount TD is 10 ⁇ s
  • the dead time TD is also 10 ⁇ s.
  • the dead time delays the rise of the gate signals of switching elements Q1 and Q2 by the dead time. As a result, it is possible to provide a period during which both switching elements Q1 and Q2 are turned off at the same time.
  • This dead time is imparted by the dead time imparting section 113 using the numerical value of the dead time stored in the dead time storage section 112 .
  • the dead time is given after the dead time compensation, but the order may be reversed.
  • the switching elements Q1 and Q2 are both turned off at the dead time TD.
  • the output voltage becomes Low because the diode D2 of the lower arm is in a conductive state.
  • the switching element Q1 when the switching element Q1 is turned on, the output voltage becomes High. After that, the switching element Q1 is turned off, and when the dead time TD in which both the switching elements Q1 and Q2 are turned off, the diode D2 becomes conductive and the output voltage becomes Low.
  • the delay time on the turn-on side is referred to as turn-on delay time TON
  • the delay time on the turn-off side is referred to as turn-off delay time TOFF.
  • the pulse width at which the output voltage becomes High considering the turn-on delay time TON and the turn-off delay time TOFF is T-TON+TOFF using the output voltage command T, the turn-on delay time TON and the turn-off delay time TOFF.
  • FIG. 4 is a diagram showing a timing chart when the current is in the positive direction in the power conversion device 6 according to this embodiment. An operation mode of the dead time compensator 115 using the dead time compensation storage unit 114, which is newly employed in this embodiment, will be described.
  • the dead time compensation unit 115 refers to the value of the dead time compensation storage unit 114 and calculates the amount of dead time compensation. For example, in FIG. 4, at least one of the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection value of the electric motor 5 detected by the current detection circuits 117a to 117c. , for example, the turn-on delay time TON is calculated to be 1 ⁇ s, and the turn-off delay time TOFF is calculated to be 3 ⁇ s.
  • the dead time compensator 115 uses the dead time TD (eg, 10 ⁇ s) stored in advance in the dead time storage unit 112 to calculate the dead time compensation amount TD+TON-TOFF.
  • the dead time compensator 115 advances the rise of the switching element Q1 using the dead time compensation amount TD+TON-TOFF calculated by itself. For example, as shown in FIG. 4, the rise of the switching element Q1 is advanced by 8 ⁇ s with respect to the output voltage command. Also, the gate signal of the switching element Q2 is a signal obtained by inverting the High/Low of the gate signal of the switching element Q1.
  • the dead time imparting section 113 imparts the dead time TD to the gate signals of the switching elements Q1 and Q2 using the value of the dead time storage section 112.
  • This dead time TD delays the rise of each of switching elements Q1 and Q2.
  • the dead time TD is assumed to be 10 ⁇ s.
  • the ideal output voltage of the power conversion device 6 is a high voltage when the gate signal of the switching element Q1 is high after the dead time is given, and is low when the gate signal of the switching element Q1 is low after the dead time is given. voltage. That is, the pulse width at which the ideal output voltage becomes High coincides with the gate signal of the switching element Q1 after the dead time is given.
  • the pulse width of the high output voltage command is 50 ⁇ s
  • a turn-on delay time TON and a turn-off delay time TOFF occur in the output voltage of the actual power conversion device 6 .
  • a turn-on delay time TON occurs when the gate signal of the switching element Q1 after the dead time is switched from Low to High
  • a turn-off delay time TOFF occurs when it switches from High to Low.
  • the actual output voltage will have a low period 1 ⁇ s longer and a high period 3 ⁇ s longer, resulting in a total high period 2 ⁇ s longer.
  • the pulse width at which the gate signal of the switching element Q1 becomes High after the dead time is given was 48 ⁇ s as described above, but the pulse width at which the output voltage of the actual device becomes High is 2 ⁇ s longer than 48 ⁇ s. Therefore, it becomes 50 ⁇ s. Therefore, the pulse width of the high output voltage command is 50 ⁇ s, and the output voltage error can be brought infinitely close to zero.
  • the dead time compensation storage unit 114 is newly provided in consideration of the characteristics of the turn-on delay time TON and the turn-off delay time TOFF of the gate drive circuits 101-106 and the switching elements Q1-Q6.
  • the dead time compensation storage unit 114 stores at least a voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, a temperature detection value from the element temperature detection unit 116, and a current detection value of the motor 5 from the current detection circuits 117a to 117c.
  • the dead time storage unit 112 depends on the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection values of the motor 5 from the current detection circuits 117a to 117c. A fixed value that does not apply. Since each of these detection circuits includes a detection error, if the dead time is insufficient due to the detection error, a short-circuit current may occur and the power converter 6 may fail. Therefore, the dead time storage unit 112 stores a fixed value and the dead time imparting unit 113 imparts the dead time TD so that the short-circuit current does not occur within the operating range of the power conversion device 6 .
  • the delay time of the output voltage of the actual machine is the time until the output voltage reaches 50% of the voltage value at which it becomes High.
  • the output voltage command corresponds to the gate signal of the switching element Q1 in the U phase.
  • FIG. 5 is a diagram showing the motor current dependence (hereinafter simply referred to as “current dependence”) in the output voltage waveform of the power converter according to the present embodiment.
  • current dependence the motor current dependence
  • the motor current flowing through the switching element Q1 will be described below as an example.
  • the other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
  • the turn-on delay and turn-off delay of the gate drive circuit 101 and the switching element Q1 depend on the current flowing through the switching element Q1.
  • the current flowing through the switching element Q1 can be detected by using the detected value of the current flowing through the electric motor 5 and the gate signal of the switching element Q1.
  • the turn-on delay time TON the turn-on delay time when the current flowing through the switching element Q1 is small is TON1, and the turn-on delay time when the current is large is TON2. Since the turn-on delay time TON has a characteristic of being shorter as the current is smaller and longer as the current is larger, TON2>TON1.
  • the turn-off delay time TOFF is TOFF1 when the current flowing through the switching element Q1 is small, and the turn-off delay time is TOFF2 when the current is large. Since the turn-off delay time TOFF has a characteristic that it becomes longer as the current is smaller and shorter as the current is larger, TOFF1>TOFF2.
  • an output voltage error of (TOFF-TON) occurs with respect to the output voltage command.
  • This output voltage error is (TOFF1-TON1) for a small current and ( TOFF2-TON2).
  • TOFF1>TOFF2 the turn-off delay time
  • TON2>TON1 the turn-on delay time
  • FIG. 6 is a diagram showing an example of current dependence data of an output voltage error stored in the dead time compensation storage unit 114 of the power converter according to this embodiment.
  • the horizontal axis is the current [A]
  • the vertical axis is the output voltage error [ ⁇ s]. According to the characteristics shown in FIG. 5, the output voltage error becomes larger when the current is small, and becomes smaller as the current increases.
  • the dead time compensation storage unit 114 refers to this current dependency data to calculate the dead time compensation amount.
  • the dead time TD of the dead time storage unit 112 is used in addition to the output voltage error TOFF1-TON1 calculated by the dead time compensation calculation unit 114. Calculate the amount of time compensation.
  • dead time compensation is performed using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF2-TON2 calculated by the dead time compensation calculation unit 114. Calculate quantity.
  • the current dependency of the output voltage error shown in FIG. 6 may be presented using a line graph, an approximation function, or table values.
  • this current dependency is a function that reduces the voltage error with respect to the current in FIG. 6, it may be a non-linear function with respect to the current.
  • turn-on delay times TON1 and TON2 and the turn-off delay times TOFF1 and TOFF2 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
  • the dead time compensation amount may be zero, that is, a process of stopping the compensation of the output voltage error may be incorporated.
  • the dead time compensation amount is calculated and the dead time compensation is performed, so that the power that changes from moment to moment The output voltage error can be reduced according to the current of the converter 6 .
  • FIG. 7 is a diagram showing element temperature dependence (hereinafter simply referred to as "temperature dependence") in the output voltage waveform of the power converter according to the present embodiment.
  • the element temperature of the switching element Q1 will be described below as an example from among the element temperatures of the switching elements Q1 to Q6.
  • the other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
  • the turn-on delay and turn-off delay of the gate drive circuit 101 and the switching element Q1 depend on the element temperature of the switching element Q1.
  • the temperature of the switching element Q1 is measured by a temperature detector (not shown) such as a thermistor, or by measuring the temperature of a cooler (not shown) that cools the switching elements Q1 to Q6 and the diodes D1 to D6.
  • a temperature detector such as a thermistor
  • An element temperature estimated based on the operating state of the conversion device 6 may be used.
  • the switching element Q1 has a turn-on delay time TON3 when the temperature is low and a turn-on delay time TON4 when the temperature is high. Since the turn-on delay time TON has a characteristic of being shorter as the temperature is lower and longer as the temperature is higher, TON4>TON3.
  • the switching element Q1 has a turn-off delay time TOFF3 at low temperatures and a turn-off delay time TOFF4 at high temperatures.
  • the turn-off delay time TOFF has a characteristic that the higher the temperature, the longer the turn-off delay time TOFF, and the lower the temperature, the shorter the turn-off delay time TOFF4>TOFF3.
  • an output voltage error of (TOFF-TON) occurs with respect to the output voltage command.
  • This output voltage error is (TOFF3-TON3) at low temperatures, and ( TOFF4-TON4).
  • the turn-off delay time is TOFF4>TOFF3
  • the turn-on delay time is TON4>TON3, so the output voltage error increases as the temperature rises.
  • FIG. 8 is a diagram showing an example of temperature dependence data of output voltage error stored in the dead time compensation storage unit 14 of the power converter according to the present embodiment.
  • the horizontal axis is temperature [° C.]
  • the vertical axis is output voltage error [ ⁇ s]. According to the characteristics shown in FIG. 7, the output voltage error increases as the temperature increases.
  • the dead time compensation storage unit 114 refers to this temperature dependent data to calculate the amount of dead time compensation.
  • the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF3-TON3 calculated by the dead time compensation calculation unit 114.
  • the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF4-TON4 calculated by the dead time compensation calculation unit 114. do.
  • the temperature dependence of the output voltage error shown in FIG. 8 may be presented using a line graph, approximate function, or table values. Also, although this temperature dependence is a function in which the voltage error increases with respect to temperature in FIG. 8, it may be a nonlinear function with respect to temperature.
  • turn-on delay times TON3 and TON4 and the turn-off delay times TOFF3 and TOFF4 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
  • the amount of dead time compensation is calculated and the dead time compensation is performed, thereby realizing power that changes from moment to moment.
  • the output voltage error can be reduced according to the temperature of the conversion device 6 .
  • FIG. 9 is a diagram showing the voltage dependency of the filter capacitor 14 in the output voltage waveform of the power converter according to this embodiment (hereinafter simply referred to as "voltage dependency"). From among the voltage dependencies of the switching elements Q1 to Q6 with respect to the voltage of the filter capacitor 14, the voltage dependence of the switching element Q1 will be described below as an example. The other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
  • the turn-on and turn-off delays of gate drive circuit 101 and switching element Q1 depend on the voltage of filter capacitor .
  • the voltage detected by the voltage detection circuit 118 is used as the voltage of the filter capacitor 14 .
  • the turn-on delay time TON the turn-on delay time of the switching element Q1 when the voltage of the filter capacitor 14 is low is TON5
  • the turn-on delay time when the voltage is high is TON6
  • the turn-on delay time TON has a characteristic that the lower the voltage, the shorter the turn-on delay time TON, and the higher the voltage, the longer the turn-on delay time TON.
  • the turn-off delay time TOFF the turn-off delay time of the switching element Q1 when the voltage of the filter capacitor 14 is low is TOFF5, and the turn-off delay time when it is high is TOFF6. Since the turn-off delay time TOFF has a characteristic that the higher the voltage, the longer it is, and the lower the voltage, the shorter it is, TOFF6>TOFF5.
  • an output voltage error of (TOFF-TON) occurs with respect to the output voltage command, but this output voltage error is (TOFF5-TON5) at low voltage and becomes (TOFF6-TON6).
  • the turn-off delay time is TOFF6>TOFF5
  • the turn-on delay time is TON6>TON5
  • FIG. 10 is a diagram showing an example of voltage dependence data of an output voltage error stored in the dead time compensation storage unit 14 of the power converter according to this embodiment.
  • the horizontal axis is the voltage [V]
  • the vertical axis is the output voltage error [ ⁇ s]. Due to the characteristics shown in FIG. 9, the output voltage error increases as the voltage increases.
  • the dead time compensation storage unit 114 refers to this voltage-dependent data to calculate the amount of dead time compensation.
  • the dead time is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF5-TON5 calculated by the dead time compensation calculation unit 114. Calculate the amount of compensation.
  • the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF6-TON6 calculated by the dead time compensation calculation unit 114. to calculate
  • the voltage dependence of the output voltage error shown in FIG. 10 may be presented using a line graph, an approximation function, or table values. Also, although this voltage dependence is a function in which the voltage error increases with voltage in FIG. 10, it may be a nonlinear function with respect to voltage.
  • turn-on delay times TON1 and TON2 and the turn-off delay times TOFF1 and TOFF2 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
  • the amount of dead time compensation is calculated and the dead time compensation is performed, whereby the power that changes from moment to moment The output voltage error can be reduced according to the voltage of the filter capacitor 14 of the converter 6 .
  • the present invention is not limited to the above examples, and includes various modifications.
  • the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

In order to perform dead time compensation with consideration given to the electrical characteristics of a semiconductor element constituting a power conversion device, and minimize the error between an output voltage command and the output voltage of the power conversion device, provided is a power conversion device comprising: a switching unit that connects, to a DC power source, at least one set of at least two semiconductor elements connected in series, connects, to an AC load, a connection point of upper and lower arms constituting the at least two semiconductor elements connected in series, and converts DC power from the DC power source into AC power; a PWM signal generation unit that generates a gate signal for PWM control of a semiconductor element constituting the switching unit; a dead time generation unit that generates a dead time in which at least two semiconductor elements connected in series are in an off state; and a dead time compensation unit which compensates for the dead time, wherein the dead time generation unit generates the dead time to be a preset fixed value, and the dead time compensation unit compensates for operation delay occurring along with turning on and off semiconductor elements.

Description

電力変換装置および電力変換方法Power conversion device and power conversion method
 本発明は、電力変換装置および電力変換方法に関し、主に鉄道車両等に対する電力変換に好適である。 The present invention relates to a power conversion device and a power conversion method, and is suitable mainly for power conversion for railway vehicles and the like.
 電力変換装置は、半導体素子のスイッチング動作によって、直流電力を交流電力にもしくはその逆方向に、電力変換するもので、鉄道、自動車、エレベータなど多分野に適用されている。電力変換装置を構成する上下アームの半導体素子は、互いに交互にスイッチング動作するが、この半導体素子等の動作遅延により同時にオン状態になると、半導体素子の定格電流を超過する過大な短絡電流が発生し電力変換装置の故障に繋がる。
 そこで、上下アームの半導体素子が同時にオン状態となることを防止するため、上下アームの半導体素子が同時にオフ状態となるデッドタイムが設けられている。
2. Description of the Related Art A power conversion device converts DC power into AC power or vice versa by switching operation of a semiconductor device, and is applied in many fields such as railways, automobiles, and elevators. The semiconductor elements of the upper and lower arms that make up the power conversion device perform switching operations alternately. If these semiconductor elements are turned on simultaneously due to operation delays, an excessive short-circuit current exceeding the rated current of the semiconductor elements is generated. It leads to failure of the power converter.
Therefore, in order to prevent the semiconductor elements of the upper and lower arms from being turned on at the same time, a dead time is provided during which the semiconductor elements of the upper and lower arms are turned off at the same time.
 先行技術文献として、特許文献1には、「電力変換装置は、電圧指令値から仮ゲート信号を生成するゲート信号生成部と、仮ゲート信号にデッドタイムを挿入してゲート信号を生成するデッドタイム挿入部と、ゲート信号によりオン状態とオフ状態を切り替えられるスイッチング素子を直列に接続した1以上のスイッチング素子群を直流電源と並列に接続し、直流電源が出力する直流電力を交流電力に変換するブリッジ回路と、ブリッジ回路の出力電流を検出する電流検出部と、スイッチング素子に流れる電流値に対するターンオン遅延時間及びターンオフ遅延時間の特性を参照して電流検出部により検出された電流値に応じてデッドタイムを算出する可変デッドタイム生成部と、を備える」旨が記載されている(要約、参照)。 As a prior art document, in Patent Document 1, "A power converter includes a gate signal generation unit that generates a temporary gate signal from a voltage command value, and a dead time that generates a gate signal by inserting a dead time into the temporary gate signal. One or more switching element groups, in which an insertion portion and a switching element that can be switched between an on state and an off state by a gate signal are connected in series, are connected in parallel with a DC power supply to convert DC power output from the DC power supply into AC power. A bridge circuit, a current detection unit that detects the output current of the bridge circuit, and a dead current value detected by the current detection unit with reference to the characteristics of the turn-on delay time and the turn-off delay time with respect to the current value flowing through the switching element. and a variable dead time generator for calculating the time” (see abstract).
特開2017-93073号公報JP 2017-93073 A
 特許文献1に記載の電力変換装置では、出力電流に応じて最適なデッドタイムを提供できる反面、出力電流の検出誤差によりデッドタイムが短くなると短絡電流が発生し電力変換装置が故障する可能性がある。 Although the power conversion device described in Patent Document 1 can provide an optimum dead time according to the output current, if the dead time becomes short due to an output current detection error, a short-circuit current may occur and the power conversion device may fail. be.
 また、デッドタイム期間における電力変換装置の出力電圧は、出力電流の正負に依存しているため、この出力電圧と出力電圧指令との間に誤差が生じる。そこで、この誤差電圧を低減するために、出力電流の正負に応じて半導体素子のオン指令またはオフ指令に対して、デッドタイム分だけ前倒しまたは後倒しするデッドタイム補償が施される。ただし、半導体素子が動作遅延のない理想的なスイッチである場合には、出力電圧指令と出力電圧は一致し出力電圧に誤差は生じないが、実際の半導体素子には動作遅延があるため、出力電圧指令と出力電圧とは一致せず出力電圧に誤差が生じる。 Also, since the output voltage of the power converter during the dead time period depends on the positive or negative of the output current, an error occurs between this output voltage and the output voltage command. Therefore, in order to reduce the error voltage, dead time compensation is performed by moving forward or backward by the dead time the ON command or OFF command for the semiconductor element according to the positive or negative of the output current. However, if the semiconductor element is an ideal switch with no operation delay, the output voltage command and the output voltage will match and no error will occur in the output voltage. The voltage command and the output voltage do not match, causing an error in the output voltage.
 更に、上述した半導体素子の動作遅延は、半導体素子に流れる電流、半導体素子の温度および半導体素子に印加される電圧、に応じて変化するため、上述した出力電圧の誤差を最大限低減するには、これらの物理特性を考慮に入れてデッドタイムとデッドタイム補償を設定する必要がある。 Furthermore, since the operation delay of the semiconductor element described above changes according to the current flowing through the semiconductor element, the temperature of the semiconductor element, and the voltage applied to the semiconductor element, the error in the output voltage described above must be minimized. , it is necessary to set the deadtime and deadtime compensation to take these physical properties into account.
 本発明の目的は、上述した半導体素子の物理特性も考慮してデッドタイム補償を施した電力変換装置を提供することである。 An object of the present invention is to provide a power conversion device that performs dead time compensation in consideration of the physical characteristics of the semiconductor elements described above.
 上記した課題を解決するために、本発明に係る電力変換装置の代表的な構成は、直列接続した少なくとも2つの半導体素子の少なくとも1組を直流電源に接続し当該直列接続した少なくとも2つの半導体素子で構成する上下アームの接続点を交流負荷に接続して直流電源からの直流電力を交流電力に変換するスイッチング部と、スイッチング部を構成する半導体素子をPWM制御するゲート信号を生成するPWM信号生成部と、直列接続した少なくとも2つの半導体素子を共にオフ状態とするデッドタイムを生成するデッドタイム生成部と、デッドタイムを補償するデッドタイム補償部とを備え、デッドタイム生成部は、デッドタイムを予め設定した固定値で生成し、デッドタイム補償部は、半導体素子のターンオンおよびターンオフに伴う動作遅延を補償することを特徴とする。 In order to solve the above-described problems, a typical configuration of the power conversion device according to the present invention is to connect at least one set of at least two semiconductor elements connected in series to a DC power supply, and to connect the at least two semiconductor elements connected in series. A switching unit that connects the connection point of the upper and lower arms to an AC load to convert the DC power from the DC power supply into AC power, and a PWM signal generation that generates a gate signal for PWM-controlling the semiconductor element that constitutes the switching unit a dead time generator for generating a dead time in which both at least two semiconductor elements connected in series are turned off; and a dead time compensator for compensating for the dead time, wherein the dead time generator is configured to reduce the dead time. It is characterized in that the dead time compensator compensates for an operation delay associated with turn-on and turn-off of the semiconductor device.
 本発明によれば、電力変換装置を構成する半導体素子の電気特性を考慮してデッドタイム補償を施すことで、出力電圧指令と電力変換装置の出力電圧との誤差を最小化することができる。 According to the present invention, the error between the output voltage command and the output voltage of the power converter can be minimized by performing dead time compensation in consideration of the electrical characteristics of the semiconductor elements that make up the power converter.
本発明に係る実施例の適用対象である鉄道車両の概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic configuration of a railway vehicle to which an embodiment according to the present invention is applied; 本実施例に係る電力変換装置を含めた駆動システムの回路構成を示す図である。It is a figure which shows the circuit structure of the drive system containing the power converter device which concerns on a present Example. 従来技術に係る電力変換装置において電流が正方向時のタイミングチャートを示す図である。FIG. 10 is a diagram showing a timing chart when the current is in the forward direction in the conventional power converter. 本実施例に係る電力変換装置において電流が正方向時のタイミングチャートを示す図である。FIG. 4 is a diagram showing a timing chart when the current is in the positive direction in the power conversion device according to the embodiment; 本実施例に係る電力変換装置の出力電圧波形における電動機電流依存性を示す図である。FIG. 4 is a diagram showing motor current dependency in the output voltage waveform of the power converter according to the embodiment. 本実施例に係る電力変換装置のデッドタイム補償記憶部に格納された出力電圧誤差の電流依存性のデータの一例を示す図である。It is a figure which shows an example of the data of the current dependence of the output voltage error stored in the dead time compensation memory|storage part of the power converter device which concerns on a present Example. 本実施例に係る電力変換装置の出力電圧波形における素子温度依存性を示す図である。It is a figure which shows the element temperature dependence in the output voltage waveform of the power converter device which concerns on a present Example. 本実施例に係る電力変換装置のデッドタイム補償記憶部に格納された出力電圧誤差の温度依存性のデータの一例を示す図である。It is a figure which shows an example of the data of the temperature dependence of the output voltage error stored in the dead time compensation memory|storage part of the power converter device which concerns on a present Example. 本実施例に係る電力変換装置の出力電圧波形におけるフィルタキャパシタの電圧依存性を示す図である。It is a figure which shows the voltage dependence of the filter capacitor in the output voltage waveform of the power converter device which concerns on a present Example. 本実施例に係る電力変換装置のデッドタイム補償記憶部に格納された出力電圧誤差の電圧依存性のデータの一例を示す図である。It is a figure which shows an example of the data of the voltage dependence of the output voltage error stored in the dead time compensation memory|storage part of the power converter device which concerns on a present Example.
 以下、本発明を実施するための形態として、本発明に係る実施例を、図面を用いて説明する。 Hereinafter, as a form for carrying out the present invention, an example according to the present invention will be described using the drawings.
 図1は、本発明に係る実施例の適用対象である鉄道車両(以下、単に「車両」ともいう)の概略構成を示す図である。
 車両8は、電動機5の駆動により車輪3を回転させて、前進または後進する。電動機5が誘導電動機の場合には、1台の電力変換装置で複数台の電動機(誘導電動機)が駆動され、電動機5が永久磁石同期電動機の場合には、1台の電力変換装置で1台の電動機(永久磁石同期電動機)が駆動される。
FIG. 1 is a diagram showing a schematic configuration of a railway vehicle (hereinafter also simply referred to as "vehicle") to which an embodiment of the present invention is applied.
The vehicle 8 rotates the wheels 3 by driving the electric motor 5 to move forward or backward. When the electric motor 5 is an induction motor, one power converter drives a plurality of electric motors (induction motors), and when the electric motor 5 is a permanent magnet synchronous motor, one power converter drives one motor. motor (permanent magnet synchronous motor) is driven.
 車両8は、力行動作において、架線1から集電装置7を介して電力の供給を受けた電動機5の駆動により加速する。また、車両8を減速するブレーキ動作時には、電動機5の機能を発電機とすることで電力回生を行う。電動機5が発電した回生電力は、電力変換装置6、フィルタリアクトル13、接触器11(図2、参照)および遮断器9を経由して架線1へ戻され、この架線1を介して他の車両(図示せず)の力行電力として消費される。電気的なグラウンドとして、電力変換装置6の低電位側は、車輪3を介してレール2に接続されている。電動機5は台車4に搭載され、その台車4は車両8を支持している。 In the power running operation, the vehicle 8 is accelerated by driving the electric motor 5 that receives power from the overhead wire 1 via the current collector 7 . Further, during a braking operation for decelerating the vehicle 8, power regeneration is performed by using the function of the electric motor 5 as a generator. The regenerated electric power generated by the electric motor 5 is returned to the overhead wire 1 via the power conversion device 6, the filter reactor 13, the contactor 11 (see FIG. 2) and the circuit breaker 9, and is supplied to another vehicle via the overhead wire 1. (not shown) is consumed as power for running. As electrical ground, the low potential side of power converter 6 is connected to rail 2 via wheels 3 . The electric motor 5 is mounted on a truck 4 which supports a vehicle 8 .
 図1では、車両8を駆動する電装品として、電力変換装置6、遮断器9およびフィルタリアクトル13を、各々別の箱に格納して床下に配設している。他方で、これら電装品の一部もしくは全てを一体の箱に格納することにより、実装密度を高密度化して配設してもよい。 In FIG. 1, the power conversion device 6, the circuit breaker 9, and the filter reactor 13 are housed in separate boxes and arranged under the floor as electrical components for driving the vehicle 8. On the other hand, some or all of these electrical components may be housed in a single box to increase the mounting density.
 また、架線1の電圧は、直流600V、直流750V、直流1500V、直流3000V、もしくは、交流20kV、25kV等である。なお、実施例では、架線1の電圧は直流としている。 Also, the voltage of the overhead line 1 is DC 600V, DC 750V, DC 1500V, DC 3000V, or AC 20kV, 25kV, or the like. In the embodiment, the voltage of the overhead wire 1 is DC.
 図2は、本実施例に係る電力変換装置6を含めた駆動システムの回路構成を示す図である。
 電力変換装置6は、電動機5を駆動する駆動システムの主要部を構成する。この駆動システムとしては、架線1から供給される直流電力を適宜に遮断可能な遮断器9、フィルタリアクトル13および電力変換装置6で構成されている。
FIG. 2 is a diagram showing a circuit configuration of a drive system including the power conversion device 6 according to this embodiment.
The power conversion device 6 constitutes a main part of a drive system that drives the electric motor 5 . This drive system is composed of a circuit breaker 9 capable of appropriately interrupting DC power supplied from the overhead wire 1, a filter reactor 13, and a power conversion device 6. FIG.
 電力変換装置6は、直流電力を交流電力に変換し、電動機5を駆動する。電力変換装置6は、接触器11,初期充電用の接触器10と抵抗器12、フィルタキャパシタ14、スイッチング素子Q1~Q6、ゲート駆動回路101~106、逆並列ダイオードD1~D6、電流検出回路117a~117cおよび制御部100で構成されている。 The power conversion device 6 converts DC power into AC power to drive the electric motor 5 . The power conversion device 6 includes a contactor 11, a contactor 10 and a resistor 12 for initial charging, a filter capacitor 14, switching elements Q1 to Q6, gate drive circuits 101 to 106, antiparallel diodes D1 to D6, and a current detection circuit 117a. 117c and the control unit 100. FIG.
 制御部100は、ゲート駆動回路101~106のゲート指令を生成する。スイッチング素子Q1-Q2群は直列接続されてU相を、スイッチング素子Q3-Q4群は直列接続されてV相を、スイッチング素子Q5-Q6群は直列接続されてW相を、それぞれ構成している。なお、図2は、三相インバータの回路図を一例として記載しているが、U相のみで構成されたハーフブリッジインバータや、U相とV相で構成されたフルブリッジインバータでもよい。 The control unit 100 generates gate commands for the gate drive circuits 101-106. A group of switching elements Q1-Q2 are connected in series to form a U-phase, a group of switching elements Q3-Q4 are connected in series to form a V-phase, and a group of switching elements Q5-Q6 are connected in series to form a W-phase. . Although FIG. 2 shows a circuit diagram of a three-phase inverter as an example, it may be a half-bridge inverter composed only of U-phases or a full-bridge inverter composed of U-phases and V-phases.
 スイッチング素子Q1~Q6としては、MOSFET、IGBTまたはマルチゲートIGBTを用いることができる。
 スイッチング素子Q1~QをIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)とする場合には、各スイッチング素子の主端子にそれぞれ逆並列に接続される逆並列還流ダイオード(以下、単に「ダイオード」ともいう)D1~D6が必要である。ダイオードD1~D6それぞれは、スイッチング素子Q1~Q6それぞれのオフ時に還流電流を流す。
MOSFETs, IGBTs, or multi-gate IGBTs can be used as the switching elements Q1 to Q6.
When the switching elements Q1 to Q are IGBTs (Insulated Gate Bipolar Transistors), antiparallel freewheeling diodes (hereinafter simply referred to as "diodes") connected in antiparallel to the main terminals of the respective switching elements. ) D1 to D6 are required. Each of the diodes D1-D6 allows a return current to flow when each of the switching elements Q1-Q6 is turned off.
 これに対し、スイッチング素子Q1~Q6をMOSFET(Metal Oxide Semiconductor Field Effect Transistor:電界効果トランジスタ)とする場合は、ダイオードD1~D6として、MOSFETのボディダイオードを用いてもよい。このように、ボディダイオードを有する場合、各スイッチング素子Q1~Q6と逆並列にダイオードを接続せず、MOSFETのボディダイオードを環流ダイオードとして使用する。これにより、ダイオードD1~D6のチップを削減でき、電力変換装置6を小型化できる。 On the other hand, if the switching elements Q1 to Q6 are MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), MOSFET body diodes may be used as the diodes D1 to D6. Thus, when a body diode is provided, the body diode of the MOSFET is used as a freewheeling diode without connecting the diode in anti-parallel with each of the switching elements Q1 to Q6. As a result, the chips of the diodes D1 to D6 can be reduced, and the power conversion device 6 can be miniaturized.
 また、直列接続された2つのスイッチング素子(例えば、Q1とQ2)は、同一パッケージに収納されて、2in1のパッケージに形成されたものを用いてもよい。 Also, the two switching elements (for example, Q1 and Q2) connected in series may be housed in the same package and formed into a 2-in-1 package.
 スイッチング素子Q1~Q6およびダイオードD1~D6の半導体材料としては、Si(シリコン)またはSiよりもバンドギャップが広い半導体であるSiC(炭化ケイ素)やGaN(窒化ガリウム)を用いることができる。これらのワイドバンドギャップ半導体は、Siに比べて発生損失を低減できるため、電力変換装置6を小型化できる。 As a semiconductor material for the switching elements Q1 to Q6 and the diodes D1 to D6, Si (silicon) or SiC (silicon carbide) or GaN (gallium nitride), which is a semiconductor with a wider bandgap than Si, can be used. Since these wide bandgap semiconductors can reduce the generated loss compared to Si, the power conversion device 6 can be miniaturized.
 電力変換装置6は、スイッチング素子Q1~Q6をPWM(Pulse Width Modulation)制御することでフィルタキャパシタ14を介してパルス状の交流電力を出力する。この交流電力は、電動機5に供給され機械エネルギーに変換されることで、車両8を前進または後進させる。 The power conversion device 6 outputs pulsed AC power via the filter capacitor 14 by PWM (Pulse Width Modulation) control of the switching elements Q1 to Q6. This AC power is supplied to the electric motor 5 and converted into mechanical energy, thereby causing the vehicle 8 to move forward or backward.
 なお、フィルタキャパシタ14の初期充電は、充電回路である接触器10および抵抗器12を用いて行われる。即ち、接触器11を開放状態にて接触器10を投入し、抵抗器12を介してフィルタキャパシタ14を初期充電する。 The initial charging of the filter capacitor 14 is performed using the contactor 10 and the resistor 12, which are charging circuits. That is, the contactor 10 is turned on while the contactor 11 is open, and the filter capacitor 14 is initially charged through the resistor 12 .
 フィルタキャパシタ14およびフィルタリアクトル13は、フィルタ回路を構成し、電力変換装置6から架線1に流れるノイズ電流を低減している。 The filter capacitor 14 and the filter reactor 13 constitute a filter circuit and reduce noise current flowing from the power converter 6 to the overhead wire 1 .
 電流検出回路117a~117は、それぞれ電動機5のU相、V相およびW相の電流を測定する。なお、電流検出回路は、U相、V相およびW相の内の何れか二相を測定し、それらの値から残りの一相の値を算出してもよい。これにより、電流検出回路の数を3台から2台に削減でき、電力変換装置6の小型化および低コスト化が可能となる。
 電圧検出回路118は、フィルタキャパシタ14の電圧を測定している。
Current detection circuits 117a to 117 measure currents of U-phase, V-phase and W-phase of electric motor 5, respectively. The current detection circuit may measure any two phases among the U phase, V phase and W phase, and calculate the value of the remaining one phase from those values. As a result, the number of current detection circuits can be reduced from three to two, and the size and cost of the power conversion device 6 can be reduced.
A voltage detection circuit 118 measures the voltage of the filter capacitor 14 .
 次に、デッドタイム生成およびデッドタイムを補償する機能について説明する。
 制御部100は、電力変換装置6の出力電圧指令からスイッチング素子Q1~Q6のゲート信号を生成し、ゲート駆動回路101~106へ出力する。スイッチング素子Q1~Q6は、ゲート駆動回路101~106からのゲート信号によりオン状態とオフ状態を切り替える。スイッチング素子Q1-Q2群は、スイッチング素子Q1およびQ2をそれぞれの主端子を直列に接続して上下アームを構成する。スイッチング素子Q3-Q4群およびスイッチング素子Q5-Q6群についても、同様の構成である。
Next, dead time generation and dead time compensation functions will be described.
Control unit 100 generates gate signals for switching elements Q1-Q6 from the output voltage command of power conversion device 6, and outputs the gate signals to gate drive circuits 101-106. The switching elements Q1-Q6 switch between an ON state and an OFF state according to gate signals from the gate drive circuits 101-106. A group of switching elements Q1-Q2 forms upper and lower arms by connecting main terminals of switching elements Q1 and Q2 in series. A group of switching elements Q3-Q4 and a group of switching elements Q5-Q6 have the same configuration.
 また、図2では、電力変換装置6は、スイッチング素子Q1およびQ2の2素子から成る2レベル回路のスイッチング素子群Q1-Q2を例示しているが、スイッチング素子が4素子または6素子から成る3レベル回路のスイッチング素子群Q1~Qxとして構成することも可能である。 In FIG. 2, the power conversion device 6 exemplifies switching element groups Q1-Q2 of a two-level circuit consisting of two switching elements Q1 and Q2. It is also possible to construct a group of switching elements Q1 to Qx of a level circuit.
 スイッチング素子Q1~Q6のオン状態またはオフ状態は、制御部100から出力されるオンまたはオフのPWM信号により制御される。このPWM信号は、各ゲート駆動回路101~106に入力されて増幅される。スイッチング素子Q1~Q6では、増幅されたゲート信号が、スイッチング素子Q1~Q6それぞれのゲートとエミッタ間(スイッチング素子Q1~Q6がMOSFETの場合は、ゲートとソース間)に入力される。 The ON state or OFF state of the switching elements Q1 to Q6 is controlled by the ON or OFF PWM signal output from the control unit 100. FIG. This PWM signal is input to each gate drive circuit 101 to 106 and amplified. In the switching elements Q1-Q6, amplified gate signals are input between the respective gates and emitters of the switching elements Q1-Q6 (between the gate and source when the switching elements Q1-Q6 are MOSFETs).
 ここで、PWM信号は、直流電源であるフィルタキャパシタ14の正負間に一対の主端子が直列接続されたスイッチング素子Q1およびQ2を制御するが、スイッチング素子Q1およびQ2が同時にオフ状態となるデッドタイムを有している。このように、直列接続された一対のスイッチング素子Q1-Q2群、スイッチング素子Q3-Q4群およびスイッチング素子Q5-Q6群に対し、これらを制御するPWM信号のいずれにもデッドタイムが設けられている。 Here, the PWM signal controls the switching elements Q1 and Q2 having a pair of main terminals connected in series between the positive and negative sides of the filter capacitor 14, which is a DC power supply. have. In this way, a dead time is provided for each of the PWM signals that control the series-connected pairs of switching elements Q1-Q2 group, switching element Q3-Q4 group, and switching element Q5-Q6 group. .
 デッドタイムを設けないとなると、例えば、スイッチング素子Q1およびQ2の動作遅延時間により、スイッチング素子Q1およびQ2が同時にオン状態となるタイミングが生じる場合がある。この場合、同時にオンしたスイッチング素子Q1およびQ2によりフィルタキャパシタ14が短絡され、この短絡電流により電力変換装置6が故障する異常事態となるケースが生じる。 If the dead time is not provided, for example, there may be a timing when the switching elements Q1 and Q2 are turned on at the same time due to the operation delay time of the switching elements Q1 and Q2. In this case, the filter capacitor 14 is short-circuited by the switching elements Q1 and Q2 that are turned on at the same time.
 制御部100は、PWM信号生成部111、デッドタイム記憶部112、デッドタイム付与部113、デッドタイム補償記憶部114、デッドタイム補償部115および素子温度検出部116から構成されている。ここで、素子温度検出部116としては、スイッチング素子Q1~Q6やダイオードD1~D6の温度をサーミスタ等の温度検出器(図示せず)で測定した値や、スイッチング素子Q1~Q6およびダイオードD1~D6を冷却する冷却器(図示せず)の温度を測定し電力変換装置6の動作状態に基づいて推定した素子温度を用いてもよい。 The control section 100 is composed of a PWM signal generation section 111, a dead time storage section 112, a dead time provision section 113, a dead time compensation storage section 114, a dead time compensation section 115 and an element temperature detection section . Here, as the element temperature detection unit 116, the values obtained by measuring the temperatures of the switching elements Q1 to Q6 and the diodes D1 to D6 with a temperature detector (not shown) such as a thermistor, the switching elements Q1 to Q6 and the diodes D1 to The temperature of a cooler (not shown) that cools D6 may be measured and the element temperature estimated based on the operating state of power converter 6 may be used.
 PWM信号生成部111は、電力変換装置6に対する出力電圧指令に基づいて所望の電圧を出力するように、デッドタイムが付与されていない基準となるPWM信号を生成する。 The PWM signal generation unit 111 generates a reference PWM signal with no dead time so that a desired voltage is output based on an output voltage command to the power conversion device 6 .
 デッドタイム付与部113は、PWM信号生成部111に対してデッドタイム記憶部112に格納された値を用いてデッドタイムを付与する。このデッドタイム記憶部112に格納された値は、電動機5の電流値、素子温度およびフィルタキャパシタ14の電圧に依存しない固定値とする。例えば、10μsなどの値である。 The dead time imparting section 113 imparts dead time to the PWM signal generating section 111 using the value stored in the dead time storage section 112 . The value stored in the dead time storage unit 112 is a fixed value that does not depend on the current value of the electric motor 5, the element temperature, and the voltage of the filter capacitor 14. FIG. For example, it is a value such as 10 μs.
 デッドタイム補償記憶部114は、電圧検出回路118からのフィルタキャパシタ14の電圧検出値、素子温度検出部116の温度検出値および電流検出回路117a~117cからの電動機5の電流検出値に対するデッドタイム補償量を記憶している。ここで、デッドタイム補償量は、これら3つの検出値(電動機電流検出値、素子温度検出値およびフィルタキャパシタ電圧検出値)の内、少なくとも1つの検出値を用いて演算すればよい。 The dead time compensation storage unit 114 stores dead time compensation for the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection value of the motor 5 from the current detection circuits 117a to 117c. remember the quantity. Here, the dead time compensation amount may be calculated using at least one of these three detection values (motor current detection value, element temperature detection value, and filter capacitor voltage detection value).
 デッドタイム補償部115は、デッドタイム付与部113で演算するデッドタイム付与後のPWM信号に対して、デッドタイム補償記憶部114で演算したデッドタイム補償量を用いてデッドタイム補償を行う。例えば、デッドタイム補償記憶部114で演算したデッドタイム補償量が8μsの場合、電流検出回路117a~117cの正負に応じてデッドタイム付与部113で演算するデッドタイム付与後のPWM信号の立上りもしくは立下りを8μs前倒しする。 The dead time compensation unit 115 performs dead time compensation using the dead time compensation amount calculated by the dead time compensation storage unit 114 on the PWM signal to which the dead time is added calculated by the dead time adding unit 113 . For example, when the dead time compensation amount calculated by the dead time compensation storage unit 114 is 8 μs, the rise or fall of the PWM signal after the dead time given by the dead time giving unit 113 calculated according to the positive or negative of the current detection circuits 117a to 117c. Move down by 8 μs.
 図3および図4により、従来技術および本発明における電力変換装置6の出力に関するタイミングチャートについて説明する。図3は、従来技術に係る電力変換装置における電流が正方向時のタイミングチャートを示す図で、図4は、本実施例に係る電力変換装置における電流が正方向時のタイミングチャートを示す図である。 A timing chart regarding the output of the power converter 6 in the prior art and the present invention will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a diagram showing a timing chart when the current is in the forward direction in the power converter according to the prior art, and FIG. 4 is a diagram showing a timing chart when the current is in the forward direction in the power converter according to the present embodiment. be.
 図3および図4において、横軸は時間[s]を示し、縦軸は、上から順に、出力電圧指令、デッドタイム補償後のスイッチング素子Q1のゲート信号、デッドタイム補償後のスイッチング素子Q2のゲート信号、デッドタイム付与後のQ1のゲート信号、デッドタイム付与後のスイッチング素子Q2のゲート信号、理想的な出力電圧および半導体素子等の動作遅延を考慮した出力電圧を示している。 3 and 4, the horizontal axis indicates time [s], and the vertical axis indicates, from top to bottom, the output voltage command, the gate signal of switching element Q1 after dead time compensation, and the signal of switching element Q2 after dead time compensation. The gate signal, the gate signal of Q1 after the dead time is given, the gate signal of the switching element Q2 after the dead time is given, the ideal output voltage, and the output voltage considering the operation delay of the semiconductor element and the like are shown.
 また、図3および図4の各諸元は同様で、図3および図4に示す波形は、U相を構成しているスイッチング素子Q1およびQ2の動作に着目したものである。ここで、電動機5を流れる電流は、電力変換装置6から電動機5への向きと想定している。 Also, the specifications of FIGS. 3 and 4 are the same, and the waveforms shown in FIGS. 3 and 4 focus on the operation of the switching elements Q1 and Q2 forming the U phase. Here, it is assumed that the current flowing through the electric motor 5 is directed from the power conversion device 6 to the electric motor 5 .
 PWM信号生成部111にて生成される出力電圧指令は、上下アームを構成するスイッチング素子Q1およびQ2におけるスイッチング素子Q1のゲート信号に相当する。出力電圧指令がHighになるとスイッチング素子Q1はオン状態となり、出力電圧はHighとなる。例えば、フィルタキャパシタ14の電圧が直流1500Vの場合、スイッチング素子Q1がオン状態になると、出力電圧は1500V、スイッチング素子Q1がオフ状態になると、出力電圧はLow、即ちスイッチング素子Q2またはダイオードD2のオン電圧である数V程度となる。 The output voltage command generated by the PWM signal generator 111 corresponds to the gate signal of the switching element Q1 in the switching elements Q1 and Q2 that constitute the upper and lower arms. When the output voltage command becomes High, the switching element Q1 is turned on and the output voltage becomes High. For example, when the voltage of the filter capacitor 14 is DC 1500V, when the switching element Q1 is turned on, the output voltage is 1500V, and when the switching element Q1 is turned off, the output voltage is Low. The voltage is about several volts.
 しかし、スイッチング素子Q1およびQ2が同時にオン状態とならないように、スイッチング素子Q1およびQ2が同時にオフ状態となるデッドタイムを設ける必要がある。デッドタイムにおける出力電圧は、電動機5に流れる電流の極性に依存する。例えば、電動機5に流れる電流が電力変換装置6から電動機5への向きである場合、デッドタイム期間中は下アームのダイオードD2が導通状態となるため、出力電圧はLowとなる。一方、電動機5に流れる電流が電動機5から電力変換装置6への向きである場合、デッドタイム期間中は上アームのダイオードD1が導通状態となるため、出力電圧はHighとなる。このため、電動機5に流れる電流の極性に応じてデッドタイム補償を施す必要がある。 However, it is necessary to provide a dead time during which the switching elements Q1 and Q2 are turned off at the same time so that the switching elements Q1 and Q2 are not turned on at the same time. The output voltage during dead time depends on the polarity of the current flowing through the motor 5 . For example, when the current flowing through the electric motor 5 is directed from the power conversion device 6 to the electric motor 5, the diode D2 of the lower arm becomes conductive during the dead time period, so the output voltage becomes Low. On the other hand, when the current flowing through the electric motor 5 is directed from the electric motor 5 to the power conversion device 6, the diode D1 of the upper arm becomes conductive during the dead time period, so the output voltage becomes High. For this reason, it is necessary to perform dead time compensation according to the polarity of the current flowing through the electric motor 5 .
 図3および図4における電動機5を流れる電流の極性は、電力変換装置6から電動機5の向きとしている。この場合、デッドタイム期間中は、出力電圧はLowとなるため、出力電圧指令に対して出力電圧が不足する。そこで、スイッチング素子Q1のゲート信号の立上りを前倒しするデッドタイム補償を施すことにより、スイッチング素子Q1のオン時間を長くして出力電圧の誤差を低減する。 The polarity of the current flowing through the electric motor 5 in FIGS. 3 and 4 is the direction from the power conversion device 6 to the electric motor 5. In this case, since the output voltage is Low during the dead time period, the output voltage is insufficient for the output voltage command. Therefore, by performing dead time compensation for advancing the rise of the gate signal of the switching element Q1, the ON time of the switching element Q1 is lengthened and the error in the output voltage is reduced.
 図3および図4では、デッドタイム補償量をTDとする。デッドタイム補償量TDは、デッドタイム補償記憶部114に格納されている。デッドタイム補償後のスイッチング素子Q2のゲート信号は、スイッチング素子Q1のゲート信号のHigh/Lowを反転した信号となる。
 このデッドタイム補償は、デッドタイム補償部115で実行され、デッドタイム補償が施されたスイッチング素子Q1およびQ2に対してデッドタイムが付与される。
3 and 4, the dead time compensation amount is TD. Dead time compensation amount TD is stored in dead time compensation storage unit 114 . The gate signal of the switching element Q2 after dead time compensation is a signal obtained by inverting the High/Low of the gate signal of the switching element Q1.
This dead time compensation is performed by dead time compensation section 115, and dead time is given to switching elements Q1 and Q2 subjected to dead time compensation.
 図3は、従来技術に係る電力変換装置において電流が正方向時のタイミングチャートを示す図である。図3に示す従来技術では、デッドタイムをTDとし、このデッドタイムTDは、デッドタイム補償量TDと同一の値としている。例えば、デッドタイム補償量TDが10μsとすると、デッドタイムTDも10μsとしている。デッドタイムは、スイッチング素子Q1およびQ2のゲート信号の立上りをデッドタイム分だけ遅らせる。その結果、スイッチング素子Q1およびQ2の両方が同時にオフとなる期間を設けることができる。このデッドタイム付与は、デッドタイム記憶部112に記憶されたデッドタイムの数値を用いてデッドタイム付与部113で実行される。なお、図2に示す実施例に係る構成では、デッドタイム補償を施したのちにデッドタイムを付与しているが、その順番は逆でもよい。 FIG. 3 is a diagram showing a timing chart when the current is in the positive direction in the conventional power converter. In the prior art shown in FIG. 3, the dead time is TD, and this dead time TD has the same value as the dead time compensation amount TD. For example, if the dead time compensation amount TD is 10 μs, the dead time TD is also 10 μs. The dead time delays the rise of the gate signals of switching elements Q1 and Q2 by the dead time. As a result, it is possible to provide a period during which both switching elements Q1 and Q2 are turned off at the same time. This dead time is imparted by the dead time imparting section 113 using the numerical value of the dead time stored in the dead time storage section 112 . In the configuration according to the embodiment shown in FIG. 2, the dead time is given after the dead time compensation, but the order may be reversed.
 次に、図3により、理想的な出力電圧を、デッドタイム補償とデッドタイムを付与した後のスイッチング素子Q1およびQ2のゲート信号を用いて説明する。
 時刻0sにおいて、スイッチング素子Q2がオン状態、スイッチング素子Q1がオフ状態である。この場合、下アームのダイオードD2が導通状態となるため出力電圧はLowとなる。
Next, referring to FIG. 3, an ideal output voltage will be described using gate signals of switching elements Q1 and Q2 after dead time compensation and dead time.
At time 0s, the switching element Q2 is on and the switching element Q1 is off. In this case, the diode D2 of the lower arm becomes conductive, so the output voltage becomes Low.
 次に、スイッチング素子Q1およびQ2が共にオフ状態のデッドタイムTDになる。この場合にも下アームのダイオードD2が導通状態となるため出力電圧はLowとなる。 Next, the switching elements Q1 and Q2 are both turned off at the dead time TD. In this case also, the output voltage becomes Low because the diode D2 of the lower arm is in a conductive state.
 次に、スイッチング素子Q1がオン状態になると出力電圧はHighになる。
 その後、スイッチング素子Q1がターンオフし、スイッチング素子Q1およびQ2が共にオフのデッドタイムTDになるとダイオードD2が導通状態となり、出力電圧はLowになる。
Next, when the switching element Q1 is turned on, the output voltage becomes High.
After that, the switching element Q1 is turned off, and when the dead time TD in which both the switching elements Q1 and Q2 are turned off, the diode D2 becomes conductive and the output voltage becomes Low.
 以上より、出力電圧指令のオンパルス幅をTとすると理想的な出力電圧がHighとなるパルス幅もTとなり、両者が一致し、出力電圧誤差は生じないことが分かる。 From the above, it can be seen that if the on-pulse width of the output voltage command is T, the pulse width at which the ideal output voltage becomes High is also T, and both match, and no output voltage error occurs.
 一方、スイッチング素子Q1~Q6にゲート信号が入力されても、ゲート駆動回路101~106やスイッチング素子Q1~Q6にそれ自体の動作遅延が生じるため、実機の電力変換装置6における出力電圧は、図3に示す理想的な出力電圧とは異なる。 On the other hand, even if the gate signals are input to the switching elements Q1 to Q6, the gate drive circuits 101 to 106 and the switching elements Q1 to Q6 have their own operation delays. 3 is different from the ideal output voltage.
 ここで、ゲート駆動回路101~106およびスイッチング素子Q1~Q6に起因する遅延時間として、ターンオン側の遅延時間をターンオン遅延時間TONとし、ターンオフ側の遅延時間をターンオフ遅延時間TOFFとする。 Here, as delay times caused by the gate drive circuits 101 to 106 and the switching elements Q1 to Q6, the delay time on the turn-on side is referred to as turn-on delay time TON, and the delay time on the turn-off side is referred to as turn-off delay time TOFF.
 図3において、理想的な出力電圧に対して、ターンオン遅延時間TONとターンオフ遅延時間TOFFを考慮すると、出力電圧がLowの期間がターンオン遅延時間TONだけ長くなり、また、出力電圧がHighの期間がターンオフ遅延時間TOFFだけ長くなる。 In FIG. 3, considering the turn-on delay time TON and the turn-off delay time TOFF with respect to the ideal output voltage, the period during which the output voltage is Low is lengthened by the turn-on delay time TON, and the period during which the output voltage is High is It is lengthened by the turn-off delay time TOFF.
 即ち、ターンオン遅延時間TONとターンオフ遅延時間TOFFを考慮した出力電圧がHighとなるパルス幅は、出力電圧指令T、ターンオン遅延時間TONおよびターンオフ遅延時間TOFFを用いると、T-TON+TOFFとなる。例えば、出力電圧指令Tが50μs、ターンオン遅延時間TONが1μs、ターンオフ遅延時間TOFFが3μsとすると、実機の出力電圧がHighとなるパルス幅は、52μs(=50μs-1μs+3μs)となる。 That is, the pulse width at which the output voltage becomes High considering the turn-on delay time TON and the turn-off delay time TOFF is T-TON+TOFF using the output voltage command T, the turn-on delay time TON and the turn-off delay time TOFF. For example, if the output voltage command T is 50 μs, the turn-on delay time TON is 1 μs, and the turn-off delay time TOFF is 3 μs, the pulse width at which the output voltage of the actual machine goes High is 52 μs (=50 μs−1 μs+3 μs).
 一方、実機では、出力電圧指令Tの50μsに対して2μsの出力電圧誤差となるため、改善する必要があることになる。 On the other hand, in the actual machine, there is an output voltage error of 2 μs against the output voltage command T of 50 μs, so it is necessary to improve it.
 図4は、本実施例に係る電力変換装置6において電流が正方向時のタイミングチャートを示す図である。
 本実施例で新たに採用した構成である、デッドタイム補償記憶部114を用いたデッドタイム補償部115の動作態様について説明する。
FIG. 4 is a diagram showing a timing chart when the current is in the positive direction in the power conversion device 6 according to this embodiment.
An operation mode of the dead time compensator 115 using the dead time compensation storage unit 114, which is newly employed in this embodiment, will be described.
 デッドタイム補償部115は、デッドタイム補償記憶部114の値を参照してデッドタイム補償量を演算する。例えば、図4において、電圧検出回路118からのフィルタキャパシタ14の電圧検出値、素子温度検出部116からの温度検出値および電流検出回路117a~117cで検出した電動機5の電流検出値の少なくともいずれかに基づいて、例えば、ターンオン遅延時間TONは1μs、ターンオフ遅延時間TOFFは3μsと演算される。 The dead time compensation unit 115 refers to the value of the dead time compensation storage unit 114 and calculates the amount of dead time compensation. For example, in FIG. 4, at least one of the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection value of the electric motor 5 detected by the current detection circuits 117a to 117c. , for example, the turn-on delay time TON is calculated to be 1 μs, and the turn-off delay time TOFF is calculated to be 3 μs.
 さらに、デッドタイム補償部115は、デッドタイム記憶部112にて予め記憶されたデッドタイムTD(例えば、10μs)を用いて、デッドタイム補償量TD+TON-TOFFを演算する。この例では、デッドタイム補償部115で演算されたデッドタイム補償量の最終値は8μs(=10μs+1μs-3μs)となる。 Furthermore, the dead time compensator 115 uses the dead time TD (eg, 10 μs) stored in advance in the dead time storage unit 112 to calculate the dead time compensation amount TD+TON-TOFF. In this example, the final value of the dead time compensation amount calculated by dead time compensation section 115 is 8 μs (=10 μs+1 μs−3 μs).
 デッドタイム補償部115は、自らが演算したデッドタイム補償量TD+TON-TOFFを用いて、スイッチング素子Q1の立上りを前倒しする。例えば、図4に示すように、出力電圧指令に対してスイッチング素子Q1の立上りを8μs前倒しする。また、スイッチング素子Q2のゲート信号は、スイッチング素子Q1のゲート信号のHigh/Lowを反転した信号である。 The dead time compensator 115 advances the rise of the switching element Q1 using the dead time compensation amount TD+TON-TOFF calculated by itself. For example, as shown in FIG. 4, the rise of the switching element Q1 is advanced by 8 μs with respect to the output voltage command. Also, the gate signal of the switching element Q2 is a signal obtained by inverting the High/Low of the gate signal of the switching element Q1.
 デッドタイム付与部113は、スイッチング素子Q1およびQ2のゲート信号に対してデッドタイム記憶部112の値を用いてデッドタイムTDを付与する。このデッドタイムTDにより、スイッチング素子Q1およびQ2のそれぞれ立上りは遅延する。例えば、図4では、デッドタイムTDは10μsとする。 The dead time imparting section 113 imparts the dead time TD to the gate signals of the switching elements Q1 and Q2 using the value of the dead time storage section 112. This dead time TD delays the rise of each of switching elements Q1 and Q2. For example, in FIG. 4, the dead time TD is assumed to be 10 μs.
 電力変換装置6の理想的な出力電圧は、デッドタイム付与後のスイッチング素子Q1のゲート信号がHighのときにHighの電圧となり、デッドタイム付与後のスイッチング素子Q1のゲート信号がLowのときにLowの電圧となる。即ち、理想的な出力電圧がHighとなるパルス幅は、デッドタイム付与後のスイッチング素子Q1のゲート信号と一致する。 The ideal output voltage of the power conversion device 6 is a high voltage when the gate signal of the switching element Q1 is high after the dead time is given, and is low when the gate signal of the switching element Q1 is low after the dead time is given. voltage. That is, the pulse width at which the ideal output voltage becomes High coincides with the gate signal of the switching element Q1 after the dead time is given.
 例えば、出力電圧指令がHighのパルス幅が50μsとすると、図4に示す、デッドタイム付与後のスイッチング素子Q1のゲート信号がHighとなるパルス幅は、48μs(=50μs+8μs(デッドタイム補償量TD+TON-TOFF)-10μs(デッドタイムTD))となる。即ち、出力電圧指令と理想的な電力変換装置6の出力電圧とには、2μsの電圧誤差が生じる。 For example, if the pulse width of the high output voltage command is 50 μs, the pulse width of the high gate signal of the switching element Q1 after the dead time is given is 48 μs (=50 μs+8 μs (dead time compensation amount TD+TON− TOFF)-10 μs (dead time TD)). That is, a voltage error of 2 μs occurs between the output voltage command and the ideal output voltage of the power converter 6 .
 一方で、実機の電力変換装置6の出力電圧には、ターンオン遅延時間TONおよびターンオフ遅延時間TOFFが生じる。具体的には、デッドタイム付与後のスイッチング素子Q1のゲート信号が、LowからHighに切り替わる際にターンオン遅延時間TONが生じ、また、HighからLowに切り替わる際にターンオフ遅延時間TOFFが生じる。 On the other hand, a turn-on delay time TON and a turn-off delay time TOFF occur in the output voltage of the actual power conversion device 6 . Specifically, a turn-on delay time TON occurs when the gate signal of the switching element Q1 after the dead time is switched from Low to High, and a turn-off delay time TOFF occurs when it switches from High to Low.
 例えば、ターンオン遅延時間TONが1μs、ターンオフ遅延時間TOFFが3μsとすると、実機の出力電圧では、Lowの期間が1μs長く、Highの期間が3μs長くなるため、合計でHighの期間が2μs長くなることを意味する。即ち、デッドタイム付与後のスイッチング素子Q1のゲート信号がHighとなるパルス幅は、上述したように48μsであったが、実機の出力電圧がHighとなるパルス幅は、48μsに対して2μs長くなるため50μsとなる。従って、出力電圧指令がHighのパルス幅が50μsであることと一致し、出力電圧誤差を限りなくゼロに近づけることができる。 For example, if the turn-on delay time TON is 1 μs and the turn-off delay time TOFF is 3 μs, the actual output voltage will have a low period 1 μs longer and a high period 3 μs longer, resulting in a total high period 2 μs longer. means That is, the pulse width at which the gate signal of the switching element Q1 becomes High after the dead time is given was 48 μs as described above, but the pulse width at which the output voltage of the actual device becomes High is 2 μs longer than 48 μs. Therefore, it becomes 50 μs. Therefore, the pulse width of the high output voltage command is 50 μs, and the output voltage error can be brought infinitely close to zero.
 以上のように、本実施例では、ゲート駆動回路101~106やスイッチング素子Q1~Q6のターンオン遅延時間TONやターンオフ遅延時間TOFFの特性を鑑みて、新たに、デッドタイム補償記憶部114を備える。このデッドタイム補償記憶部114は、電圧検出回路118からのフィルタキャパシタ14の電圧検出値、素子温度検出部116からの温度検出値および電流検出回路117a~117cからの電動機5の電流検出値の少なくともいずれかに基づいて、デッドタイム補償部115にてデッドタイム補償を施すことにより、出力電圧誤差を限りなくゼロに近づけることを可能にするものである。 As described above, in this embodiment, the dead time compensation storage unit 114 is newly provided in consideration of the characteristics of the turn-on delay time TON and the turn-off delay time TOFF of the gate drive circuits 101-106 and the switching elements Q1-Q6. The dead time compensation storage unit 114 stores at least a voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, a temperature detection value from the element temperature detection unit 116, and a current detection value of the motor 5 from the current detection circuits 117a to 117c. By performing dead time compensation in the dead time compensator 115 based on either of them, it is possible to bring the output voltage error infinitely close to zero.
 なお、デッドタイム記憶部112は、電圧検出回路118からのフィルタキャパシタ14の電圧検出値、素子温度検出部116からの温度検出値および電流検出回路117a~117cからの電動機5の電流検出値に依存しない固定値とする。これら各検出回路には検出誤差が含まれるため、検出誤差によりデッドタイムが不足すると短絡電流が発生し、電力変換装置6が故障する可能性がある。そこで、電力変換装置6の動作範囲内で短絡電流が発生しないように、デッドタイム記憶部112は固定値を記憶し、デッドタイム付与部113でデッドタイムTDを付与する。 The dead time storage unit 112 depends on the voltage detection value of the filter capacitor 14 from the voltage detection circuit 118, the temperature detection value from the element temperature detection unit 116, and the current detection values of the motor 5 from the current detection circuits 117a to 117c. A fixed value that does not apply. Since each of these detection circuits includes a detection error, if the dead time is insufficient due to the detection error, a short-circuit current may occur and the power converter 6 may fail. Therefore, the dead time storage unit 112 stores a fixed value and the dead time imparting unit 113 imparts the dead time TD so that the short-circuit current does not occur within the operating range of the power conversion device 6 .
 次に、図5~10を用いて、本実施例に係る電力変換装置の出力電圧波形における、電動機電流依存性(図5および6)、素子温度依存性(図7および8)およびフィルタキャパシタ電圧依存性(図9および10)について、説明する。以下では、スイッチング素子Q1~Q6からU相のスイッチング素子Q1を例に取り上げる。 Next, using FIGS. 5 to 10, motor current dependence (FIGS. 5 and 6), element temperature dependence (FIGS. 7 and 8), and filter capacitor voltage in the output voltage waveform of the power converter according to this embodiment. Dependencies (FIGS. 9 and 10) are described. In the following, the U-phase switching element Q1 is taken as an example from the switching elements Q1 to Q6.
 それぞれの依存性の説明においては、出力電圧指令と実機の出力電圧との差、即ち出力電圧誤差を説明するために、デッドタイム補償およびデッドタイムは無視している。なお、実機の出力電圧の遅延時間については、出力電圧がHighとなる電圧値の50%に至るまでの時間とする。 In the explanation of each dependence, dead time compensation and dead time are ignored in order to explain the difference between the output voltage command and the output voltage of the actual machine, that is, the output voltage error. It should be noted that the delay time of the output voltage of the actual machine is the time until the output voltage reaches 50% of the voltage value at which it becomes High.
 また、電動機5を流れる電流の極性は電力変換装置6から電動機5への向きとしているため、出力電圧指令はU相におけるスイッチング素子Q1のゲート信号に相当する。 Also, since the polarity of the current flowing through the electric motor 5 is directed from the power converter 6 to the electric motor 5, the output voltage command corresponds to the gate signal of the switching element Q1 in the U phase.
(1)電動機電流依存性
 図5は、本実施例に係る電力変換装置の出力電圧波形における電動機電流依存性(以下、単に「電流依存性」という)を示す図である。以下では、スイッチング素子Q1からQ6に流れる電動機電流の内から、スイッチング素子Q1に流れる電動機電流を例にして説明する。他のスイッチング素子Q2からQ6についても、以下で説明するスイッチング素子Q1の場合と同様である。
(1) Motor Current Dependency FIG. 5 is a diagram showing the motor current dependence (hereinafter simply referred to as “current dependence”) in the output voltage waveform of the power converter according to the present embodiment. Among the motor currents flowing through the switching elements Q1 to Q6, the motor current flowing through the switching element Q1 will be described below as an example. The other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
 ゲート駆動回路101およびスイッチング素子Q1のターンオン遅延およびターンオフ遅延は、スイッチング素子Q1に流れる電流に依存する。スイッチング素子Q1に流れる電流は、電動機5を流れる電流の検出値とスイッチング素子Q1のゲート信号を用いることで検出することができる。 The turn-on delay and turn-off delay of the gate drive circuit 101 and the switching element Q1 depend on the current flowing through the switching element Q1. The current flowing through the switching element Q1 can be detected by using the detected value of the current flowing through the electric motor 5 and the gate signal of the switching element Q1.
 ここで、ターンオン遅延時間TONに関して、スイッチング素子Q1に流れる電流が、小電流時のターンオン遅延時間をTON1とし、大電流時のターンオン遅延時間をTON2とする。ターンオン遅延時間TONは、電流が小さいほど短く、電流が大きいほど長くなる特性を有しているため、TON2>TON1となる。 Here, regarding the turn-on delay time TON, the turn-on delay time when the current flowing through the switching element Q1 is small is TON1, and the turn-on delay time when the current is large is TON2. Since the turn-on delay time TON has a characteristic of being shorter as the current is smaller and longer as the current is larger, TON2>TON1.
 一方、ターンオフ遅延時間TOFFに関して、スイッチング素子Q1に流れる電流が、小電流時のターンオフ遅延時間をTOFF1とし、大電流時のターンオフ遅延時間をTOFF2とする。ターンオフ遅延時間TOFFは、電流が小さいほど長く、電流が大きいほど短くなる特性を有しているため、TOFF1>TOFF2となる。 On the other hand, regarding the turn-off delay time TOFF, the turn-off delay time is TOFF1 when the current flowing through the switching element Q1 is small, and the turn-off delay time is TOFF2 when the current is large. Since the turn-off delay time TOFF has a characteristic that it becomes longer as the current is smaller and shorter as the current is larger, TOFF1>TOFF2.
 実機の出力電圧については、出力電圧指令に対して(TOFF-TON)の出力電圧誤差が発生するが、この出力電圧誤差は、小電流の場合は(TOFF1-TON1)、大電流の場合は(TOFF2-TON2)となる。ここで上述したように、ターンオフ遅延時間はTOFF1>TOFF2、ターンオン遅延時間はTON2>TON1となるため、出力電圧誤差は、小電流時ほど大きくなる。 Regarding the output voltage of the actual machine, an output voltage error of (TOFF-TON) occurs with respect to the output voltage command. This output voltage error is (TOFF1-TON1) for a small current and ( TOFF2-TON2). As described above, the turn-off delay time is TOFF1>TOFF2, and the turn-on delay time is TON2>TON1, so the output voltage error increases as the current decreases.
 図6は、本実施例に係る電力変換装置のデッドタイム補償記憶部114に格納された出力電圧誤差の電流依存性のデータの一例を示す図である。横軸は電流[A]、縦軸は出力電圧誤差[μs]である。図5に示す特性により、出力電圧誤差は、小電流時ほど大きく、電流が増えるとは小さくなっていく。デッドタイム補償記憶部114は、この電流依存性のデータを参照して、デッドタイム補償量を演算する。 FIG. 6 is a diagram showing an example of current dependence data of an output voltage error stored in the dead time compensation storage unit 114 of the power converter according to this embodiment. The horizontal axis is the current [A], and the vertical axis is the output voltage error [μs]. According to the characteristics shown in FIG. 5, the output voltage error becomes larger when the current is small, and becomes smaller as the current increases. The dead time compensation storage unit 114 refers to this current dependency data to calculate the dead time compensation amount.
 具体的には、スイッチング素子Q1に流れる電流が小電流の場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF1-TON1に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。同様に、スイッチング素子Q1に流れる電流が大電流の場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF2-TON2に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。 Specifically, when the current flowing through the switching element Q1 is small, the dead time TD of the dead time storage unit 112 is used in addition to the output voltage error TOFF1-TON1 calculated by the dead time compensation calculation unit 114. Calculate the amount of time compensation. Similarly, when the current flowing through the switching element Q1 is large, dead time compensation is performed using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF2-TON2 calculated by the dead time compensation calculation unit 114. Calculate quantity.
 ここで、図6に示す出力電圧誤差の電流依存性は、折れ線グラフ、近似関数またはテーブル値を用いて提示してもよい。また、この電流依存性は、図6では電流に対して電圧誤差が低減する関数となっているが、電流に対して非線形な関数としてもよい。 Here, the current dependency of the output voltage error shown in FIG. 6 may be presented using a line graph, an approximation function, or table values. In addition, although this current dependency is a function that reduces the voltage error with respect to the current in FIG. 6, it may be a non-linear function with respect to the current.
 さらに、ターンオン遅延時間TON1およびTON2、ターンオフ遅延時間TOFF1およびTOFF2は、スイッチング素子Q1の遅延時間で説明したが、ゲート駆動回路101などを含めた出力電圧指令から実機の出力電圧を介する経路も含めた遅延時間の和としてもよい。 Furthermore, although the turn-on delay times TON1 and TON2 and the turn-off delay times TOFF1 and TOFF2 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
 また、スイッチング素子に流れる電流が設定値以下になると、デッドタイム補償量はゼロ、即ち、出力電圧誤差の補償を中止する処理を組み入れてもよい。 Also, when the current flowing through the switching element becomes equal to or less than the set value, the dead time compensation amount may be zero, that is, a process of stopping the compensation of the output voltage error may be incorporated.
 以上のように、ゲート駆動回路101~106およびスイッチング素子Q1~Q6の出力電圧誤差の電流依存性を鑑みて、デッドタイム補償量を演算しデッドタイム補償を施すことにより、時々刻々と変化する電力変換装置6の電流に応じて出力電圧誤差を低減できる。 As described above, in view of the current dependency of the output voltage errors of the gate drive circuits 101 to 106 and the switching elements Q1 to Q6, the dead time compensation amount is calculated and the dead time compensation is performed, so that the power that changes from moment to moment The output voltage error can be reduced according to the current of the converter 6 .
(2)素子温度依存性
 図7は、本実施例に係る電力変換装置の出力電圧波形における素子温度依存性(以下、単に「温度依存性」という)を示す図である。以下では、スイッチング素子Q1からQ6の素子温度の内から、スイッチング素子Q1の素子温度を例にして説明する。他のスイッチング素子Q2からQ6についても、以下で説明するスイッチング素子Q1の場合と同様である。
(2) Element Temperature Dependency FIG. 7 is a diagram showing element temperature dependence (hereinafter simply referred to as "temperature dependence") in the output voltage waveform of the power converter according to the present embodiment. The element temperature of the switching element Q1 will be described below as an example from among the element temperatures of the switching elements Q1 to Q6. The other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
 ゲート駆動回路101およびスイッチング素子Q1のターンオン遅延およびターンオフ遅延は、スイッチング素子Q1の素子温度に依存する。スイッチング素子Q1の温度は、サーミスタ等の温度検出器(図示せず)で測定した値や、スイッチング素子Q1~Q6およびダイオードD1~D6を冷却する冷却器(図示せず)の温度を測定し電力変換装置6の動作状態に基づいて推定した素子温度を用いてもよい。 The turn-on delay and turn-off delay of the gate drive circuit 101 and the switching element Q1 depend on the element temperature of the switching element Q1. The temperature of the switching element Q1 is measured by a temperature detector (not shown) such as a thermistor, or by measuring the temperature of a cooler (not shown) that cools the switching elements Q1 to Q6 and the diodes D1 to D6. An element temperature estimated based on the operating state of the conversion device 6 may be used.
 ここで、ターンオン遅延時間TONに関して、スイッチング素子Q1が、低温時のターンオン遅延時間をTON3、高温時のターンオン遅延時間をTON4とする。ターンオン遅延時間TONは、温度が低いほど短く、温度が高いほど長くなる特性を有しているため、TON4>TON3となる。 Here, regarding the turn-on delay time TON, the switching element Q1 has a turn-on delay time TON3 when the temperature is low and a turn-on delay time TON4 when the temperature is high. Since the turn-on delay time TON has a characteristic of being shorter as the temperature is lower and longer as the temperature is higher, TON4>TON3.
 一方、ターンオフ遅延時間TOFFに関して、スイッチング素子Q1が、低温時のターンオフ遅延時間をTOFF3、高温時のターンオフ遅延時間をTOFF4とする。ターンオフ遅延時間TOFFは、温度が高いほど長く、温度が低いほど短くなる特性を有しているため、TOFF4>TOFF3となる。 On the other hand, regarding the turn-off delay time TOFF, the switching element Q1 has a turn-off delay time TOFF3 at low temperatures and a turn-off delay time TOFF4 at high temperatures. The turn-off delay time TOFF has a characteristic that the higher the temperature, the longer the turn-off delay time TOFF, and the lower the temperature, the shorter the turn-off delay time TOFF4>TOFF3.
 実機の出力電圧については、出力電圧指令に対して(TOFF-TON)の出力電圧誤差が発生するが、この出力電圧誤差は、低温時の場合は(TOFF3-TON3)、高温時の場合は(TOFF4-TON4)となる。ここで上述したように、ターンオフ遅延時間はTOFF4>TOFF3、ターンオン遅延時間はTON4>TON3であるため、出力電圧誤差は、高温時ほど大きくなる。 Regarding the output voltage of the actual machine, an output voltage error of (TOFF-TON) occurs with respect to the output voltage command. This output voltage error is (TOFF3-TON3) at low temperatures, and ( TOFF4-TON4). As described above, the turn-off delay time is TOFF4>TOFF3, and the turn-on delay time is TON4>TON3, so the output voltage error increases as the temperature rises.
 図8は、本実施例に係る電力変換装置のデッドタイム補償記憶部14に格納された出力電圧誤差の温度依存性のデータの一例を示す図である。横軸は温度[℃]、縦軸は出力電圧誤差[μs]である。図7に示す特性により、出力電圧誤差は、高温時ほど大きくなっている。デッドタイム補償記憶部114は、この温度依存性のデータを参照して、デッドタイム補償量を演算する。 FIG. 8 is a diagram showing an example of temperature dependence data of output voltage error stored in the dead time compensation storage unit 14 of the power converter according to the present embodiment. The horizontal axis is temperature [° C.], and the vertical axis is output voltage error [μs]. According to the characteristics shown in FIG. 7, the output voltage error increases as the temperature increases. The dead time compensation storage unit 114 refers to this temperature dependent data to calculate the amount of dead time compensation.
 具体的には、スイッチング素子Q1の温度が低い場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF3-TON3に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。同様に、スイッチング素子Q1の温度が高い場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF4-TON4に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。 Specifically, when the temperature of the switching element Q1 is low, the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF3-TON3 calculated by the dead time compensation calculation unit 114. to calculate Similarly, when the temperature of the switching element Q1 is high, the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF4-TON4 calculated by the dead time compensation calculation unit 114. do.
 ここで、図8に示す出力電圧誤差の温度依存性は、折れ線グラフ、近似関数またはテーブル値を用いて提示してもよい。また、この温度依存性は、図8では温度に対して電圧誤差が増加する関数となっているが、温度に対して非線形な関数としてもよい。 Here, the temperature dependence of the output voltage error shown in FIG. 8 may be presented using a line graph, approximate function, or table values. Also, although this temperature dependence is a function in which the voltage error increases with respect to temperature in FIG. 8, it may be a nonlinear function with respect to temperature.
 さらに、ターンオン遅延時間TON3およびTON4、ターンオフ遅延時間TOFF3およびTOFF4は、スイッチング素子Q1の遅延時間で説明したが、ゲート駆動回路101などを含めた出力電圧指令から実機の出力電圧を介する経路も含めた遅延時間の和としてもよい。 Furthermore, although the turn-on delay times TON3 and TON4 and the turn-off delay times TOFF3 and TOFF4 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
 以上のように、ゲート駆動回路101~106およびスイッチング素子Q1~Q6の出力電圧誤差の温度依存性を鑑みて、デッドタイム補償量を演算しデッドタイム補償を施すことにより、時々刻々と変化する電力変換装置6の温度に応じて出力電圧誤差を低減できる。 As described above, considering the temperature dependence of the output voltage errors of the gate drive circuits 101 to 106 and the switching elements Q1 to Q6, the amount of dead time compensation is calculated and the dead time compensation is performed, thereby realizing power that changes from moment to moment. The output voltage error can be reduced according to the temperature of the conversion device 6 .
(3)フィルタキャパシタ電圧依存性
 図9は、本実施例に係る電力変換装置の出力電圧波形におけるフィルタキャパシタ14の電圧依存性(以下、単に「電圧依存性」という)を示す図である。以下では、フィルタキャパシタ14の電圧に対するスイッチング素子Q1からQ6の電圧依存性の内から、スイッチング素子Q1の電圧依存性を例にして説明する。他のスイッチング素子Q2からQ6についても、以下で説明するスイッチング素子Q1の場合と同様である。
(3) Filter Capacitor Voltage Dependency FIG. 9 is a diagram showing the voltage dependency of the filter capacitor 14 in the output voltage waveform of the power converter according to this embodiment (hereinafter simply referred to as "voltage dependency"). From among the voltage dependencies of the switching elements Q1 to Q6 with respect to the voltage of the filter capacitor 14, the voltage dependence of the switching element Q1 will be described below as an example. The other switching elements Q2 to Q6 are similar to the switching element Q1 described below.
 ゲート駆動回路101およびスイッチング素子Q1のターンオン遅延およびターンオフ遅延は、フィルタキャパシタ14の電圧に依存する。フィルタキャパシタ14の電圧は、電圧検出回路118の検出値を用いる。 The turn-on and turn-off delays of gate drive circuit 101 and switching element Q1 depend on the voltage of filter capacitor . The voltage detected by the voltage detection circuit 118 is used as the voltage of the filter capacitor 14 .
 ここで、ターンオン遅延時間TONに関して、フィルタキャパシタ14の電圧が、低電圧時のスイッチング素子Q1のターンオン遅延時間をTON5とし、高電圧時のターンオン遅延時間をTON6とする。ターンオン遅延時間TONは、電圧が低いほど短く、電圧が高いほど長くなる特性を有しているため、TON6>TON5となる。 Here, regarding the turn-on delay time TON, the turn-on delay time of the switching element Q1 when the voltage of the filter capacitor 14 is low is TON5, and the turn-on delay time when the voltage is high is TON6. The turn-on delay time TON has a characteristic that the lower the voltage, the shorter the turn-on delay time TON, and the higher the voltage, the longer the turn-on delay time TON.
 一方、ターンオフ遅延時間TOFFに関して、フィルタキャパシタ14の電圧が、低電圧時のスイッチング素子Q1のターンオフ遅延時間をTOFF5、高電圧時のターンオフ遅延時間をTOFF6とする。ターンオフ遅延時間TOFFは、電圧が高いほど長く、電圧が低いほど短くなる特性を有しているため、TOFF6>TOFF5となる。 On the other hand, regarding the turn-off delay time TOFF, the turn-off delay time of the switching element Q1 when the voltage of the filter capacitor 14 is low is TOFF5, and the turn-off delay time when it is high is TOFF6. Since the turn-off delay time TOFF has a characteristic that the higher the voltage, the longer it is, and the lower the voltage, the shorter it is, TOFF6>TOFF5.
 実機の出力電圧については、出力電圧指令に対して(TOFF-TON)の出力電圧誤差が発生するが、この出力電圧誤差は、低電圧時の場合は(TOFF5-TON5)、高電圧時の場合は(TOFF6-TON6)となる。ここで上述したように、ターンオフ遅延時間はTOFF6>TOFF5、ターンオン遅延時間はTON6>TON5であるため、出力電圧誤差は、高電圧時ほど大きくなる。 Regarding the output voltage of the actual machine, an output voltage error of (TOFF-TON) occurs with respect to the output voltage command, but this output voltage error is (TOFF5-TON5) at low voltage and becomes (TOFF6-TON6). As described above, the turn-off delay time is TOFF6>TOFF5, and the turn-on delay time is TON6>TON5, so the output voltage error increases as the voltage increases.
 図10は、本実施例に係る電力変換装置のデッドタイム補償記憶部14に格納された出力電圧誤差の電圧依存性のデータの一例を示す図である。横軸は電圧[V]、縦軸は出力電圧誤差[μs]である。図9に示す特性により、高電圧時ほど出力電圧誤差が大きくなっていく。デッドタイム補償記憶部114は、この電圧依存性のデータを参照して、デッドタイム補償量を演算する。 FIG. 10 is a diagram showing an example of voltage dependence data of an output voltage error stored in the dead time compensation storage unit 14 of the power converter according to this embodiment. The horizontal axis is the voltage [V], and the vertical axis is the output voltage error [μs]. Due to the characteristics shown in FIG. 9, the output voltage error increases as the voltage increases. The dead time compensation storage unit 114 refers to this voltage-dependent data to calculate the amount of dead time compensation.
 具体的には、フィルタキャパシタ14の電圧が低電圧の場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF5-TON5に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。同様に、フィルタキャパシタ14の電圧が高電圧の場合、デッドタイム補償演算部114で演算された出力電圧誤差TOFF6-TON6に加えて、デッドタイム記憶部112のデッドタイムTDを用いてデッドタイム補償量を演算する。 Specifically, when the voltage of the filter capacitor 14 is low, the dead time is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF5-TON5 calculated by the dead time compensation calculation unit 114. Calculate the amount of compensation. Similarly, when the voltage of the filter capacitor 14 is high, the dead time compensation amount is calculated using the dead time TD of the dead time storage unit 112 in addition to the output voltage error TOFF6-TON6 calculated by the dead time compensation calculation unit 114. to calculate
 ここで、図10に示す出力電圧誤差の電圧依存性は、折れ線グラフ、近似関数またはテーブル値を用いて提示してもよい。また、この電圧依存性は、図10では電圧に対して電圧誤差が増加する関数となっているが、電圧に対して非線形な関数としてもよい。 Here, the voltage dependence of the output voltage error shown in FIG. 10 may be presented using a line graph, an approximation function, or table values. Also, although this voltage dependence is a function in which the voltage error increases with voltage in FIG. 10, it may be a nonlinear function with respect to voltage.
 さらに、ターンオン遅延時間TON1およびTON2、ターンオフ遅延時間TOFF1およびTOFF2は、スイッチング素子Q1の遅延時間で説明したが、ゲート駆動回路101などを含めた出力電圧指令から実機の出力電圧を介する経路も含めた遅延時間の和としてもよい。 Furthermore, although the turn-on delay times TON1 and TON2 and the turn-off delay times TOFF1 and TOFF2 have been described as the delay times of the switching element Q1, they also include paths from the output voltage command including the gate drive circuit 101 and the output voltage of the actual machine. It may be the sum of the delay times.
 以上のように、ゲート駆動回路101~106およびスイッチング素子Q1~Q6の出力電圧誤差の電圧依存性を鑑みて、デッドタイム補償量を演算しデッドタイム補償を施すことにより、時々刻々と変化する電力変換装置6のフィルタキャパシタ14の電圧に応じて出力電圧誤差を低減できる。 As described above, in view of the voltage dependence of the output voltage errors of the gate drive circuits 101 to 106 and the switching elements Q1 to Q6, the amount of dead time compensation is calculated and the dead time compensation is performed, whereby the power that changes from moment to moment The output voltage error can be reduced according to the voltage of the filter capacitor 14 of the converter 6 .
 ここまでは、電動機5に流れる電流が、電力変換装置6から電動機5へ流れる場合で説明したが、電動機5から電力変換装置6へ流れる場合も、出力電圧誤差およびデッドタイムの極性を考慮することにより、同様に出力電圧誤差を低減することができる。 Up to this point, the case where the current flowing in the electric motor 5 flows from the electric power conversion device 6 to the electric motor 5 has been described. However, even when the electric current flows from the electric motor 5 to the electric power conversion device 6, the polarity of the output voltage error and the dead time must be considered. , the output voltage error can be similarly reduced.
 なお、本発明は、以上の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、以上の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above examples, and includes various modifications. For example, the above embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
1 架線、2 レール、3 車輪、4 台車、5 電動機、6 電力変換装置、7 集電装置、8 車両、9 遮断器、10,11 接触器、12 抵抗器、13 フィルタリアクトル、14 フィルタキャパシタ、Q1~Q6 スイッチング素子、D1~D6 ダイオード、100 制御部、101~106 ゲート駆動回路、111 PWM信号生成部、112 デッドタイム記憶部、113 デッドタイム付与部、114 デッドタイム補償記憶部、115 デッドタイム補償部、116 素子温度検出部、117a~117c 電流検出回路、118 電圧検出回路 1 overhead line, 2 rail, 3 wheel, 4 bogie, 5 electric motor, 6 power converter, 7 current collector, 8 vehicle, 9 circuit breaker, 10, 11 contactor, 12 resistor, 13 filter reactor, 14 filter capacitor, Q1 to Q6 switching element, D1 to D6 diode, 100 control section, 101 to 106 gate drive circuit, 111 PWM signal generation section, 112 dead time storage section, 113 dead time giving section, 114 dead time compensation storage section, 115 dead time Compensation section, 116 element temperature detection section, 117a to 117c current detection circuit, 118 voltage detection circuit

Claims (11)

  1.  直列接続した少なくとも2つの半導体素子の少なくとも一組を直流電源に接続し当該直列接続した少なくとも2つの半導体素子で構成する上下アームの接続点を交流負荷に接続して前記直流電源からの直流電力を交流電力に変換するスイッチング部と、
     前記スイッチング部を構成する前記半導体素子をPWM制御するゲート信号を生成するPWM信号生成部と、
     前記直列接続した少なくとも2つの半導体素子を共にオフ状態とするデッドタイムを生成するデッドタイム生成部と、
     前記デッドタイムを補償するデッドタイム補償部と
    を備え、
     前記デッドタイム生成部は、前記デッドタイムを予め設定した固定値で生成し、
     前記デッドタイム補償部は、前記半導体素子のターンオンおよびターンオフに伴う動作遅延を補償する
    ことを特徴とする電力変換装置。
    At least one set of at least two semiconductor elements connected in series is connected to a DC power supply, and a connection point between upper and lower arms composed of the at least two semiconductor elements connected in series is connected to an AC load to supply DC power from the DC power supply. a switching unit that converts to alternating current power;
    a PWM signal generation unit that generates a gate signal for PWM-controlling the semiconductor element that constitutes the switching unit;
    a dead time generator for generating a dead time in which both of the at least two semiconductor elements connected in series are turned off;
    A dead time compensator for compensating for the dead time,
    The dead time generator generates the dead time with a preset fixed value,
    The power converter, wherein the dead time compensator compensates for an operation delay associated with turn-on and turn-off of the semiconductor element.
  2.  請求項1に記載の電力変換装置であって、
     前記交流負荷に流れる電流を検出する電流検出回路と、
     前記半導体素子の温度を検出する温度検出回路と、
     前記直流電源の電圧を検出する電圧検出回路と
    を有し、
     前記デッドタイム補償部は、前記電流検出回路、前記温度検出回路および前記電圧検出回路からの少なくとも1つの検出値を用いて前記動作遅延を補償する
    ことを特徴とする電力変換装置。
    The power converter according to claim 1,
    a current detection circuit that detects the current flowing through the AC load;
    a temperature detection circuit that detects the temperature of the semiconductor element;
    and a voltage detection circuit that detects the voltage of the DC power supply,
    The power converter, wherein the dead time compensator compensates for the operation delay using at least one detected value from the current detection circuit, the temperature detection circuit, and the voltage detection circuit.
  3.  請求項2に記載の電力変換装置であって、
     前記デッドタイム補償部は、前記検出値に対する前記動作遅延の特性を示す、折れ線グラフ、近似関数およびテーブルのいずれかを格納する記憶部を有し、当該記憶部に格納した前記動作遅延の特性に基づいて前記動作遅延を補償する
    ことを特徴とする電力変換装置。
    The power converter according to claim 2,
    The dead time compensating unit has a storage unit that stores one of a line graph, an approximation function, and a table showing the characteristics of the operation delay with respect to the detection value, and the characteristics of the operation delay stored in the storage unit and compensating for the operation delay based on the power converter.
  4.  請求項2または3に記載の電力変換装置であって、
     前記デッドタイム補償部は、前記検出値が前記電流検出回路からの電流検出値である場合に、当該電流検出値が予め設定する値以下になると前記動作遅延の補償を中止する
    ことを特徴とする電力変換装置。
    The power converter according to claim 2 or 3,
    The dead time compensating unit is characterized in that, when the detected value is the current detected value from the current detection circuit, the operation delay compensation is stopped when the current detected value becomes equal to or less than a preset value. Power converter.
  5.  請求項1から4のいずれか一項に記載の電力変換装置であって、
     前記スイッチング部を構成する前記半導体素子は、シリコンまたは当該シリコンよりバンドギャップが広い半導体材料を母材とする
    ことを特徴とする電力変換装置。
    The power converter according to any one of claims 1 to 4,
    A power converter, wherein the semiconductor element forming the switching unit is made of silicon or a semiconductor material having a wider bandgap than silicon as a base material.
  6.  請求項1から5のいずれか一項に記載の電力変換装置であって、
     前記スイッチング部を構成する前記半導体素子は、電圧駆動型の、MOSFET、IGBTおよびマルチゲートIGBTのいずれかである
    ことを特徴とする電力変換装置。
    The power converter according to any one of claims 1 to 5,
    A power conversion device, wherein the semiconductor element constituting the switching unit is any one of a voltage-driven MOSFET, an IGBT, and a multi-gate IGBT.
  7.  請求項1から6のいずれか一項に記載の電力変換装置を搭載する鉄道車両。 A railway vehicle equipped with the power converter according to any one of claims 1 to 6.
  8.  直列接続した少なくとも2つの半導体素子の少なくとも1組を直流電源に接続し、当該直列接続した少なくとも2つの半導体素子で構成する上下アームの接続点を交流負荷に接続するスイッチング部を構成する前記半導体素子をPWM制御して前記直流電源からの直流電力を交流電力に変換する電力変換方法であって、
     前記直列接続した少なくとも2つの半導体素子を共にオフ状態とするデッドタイムを予め設定した固定値で生成すると共に、
     前記半導体素子のターンオンおよびターンオフに伴う動作遅延を補償する
    ことを特徴とする電力変換方法。
    At least one set of at least two semiconductor elements connected in series is connected to a DC power supply, and the semiconductor element constitutes a switching section that connects a connection point between upper and lower arms composed of the at least two semiconductor elements connected in series to an AC load. is PWM-controlled to convert the DC power from the DC power supply to AC power,
    generating a dead time with a preset fixed value for turning off both the at least two semiconductor elements connected in series;
    A power conversion method, comprising: compensating for an operation delay accompanying turn-on and turn-off of the semiconductor element.
  9.  請求項8に記載の電力変換方法であって、
     前記動作遅延を、前記交流負荷に流れる電流の電流検出値、前記半導体素子の温度検出値および前記直流電源の電圧検出値の少なくとも1つの検出値を用いて補償する
    ことを特徴とする電力変換方法。
    The power conversion method according to claim 8,
    A power conversion method, wherein the operation delay is compensated for by using at least one detected value of the current flowing through the AC load, the temperature detected value of the semiconductor element, and the voltage detected value of the DC power supply. .
  10.  請求項9に記載の電力変換方法であって、
     前記動作遅延を、前記少なくとも1つの検出値に対する前記動作遅延の特性を示す、折れ線グラフ、近似関数およびテーブルのいずれかに基づいて補償する
    ことを特徴とする電力変換方法。
    The power conversion method according to claim 9,
    A power conversion method, comprising: compensating for the operating delay based on one of a line graph, an approximation function, and a table showing characteristics of the operating delay with respect to the at least one sensed value.
  11.  請求項9または10に記載の電力変換方法であって、
     前記電流検出値を用いて前記動作遅延を補償する場合に、当該電流検出値が予め設定する値以下になると前記動作遅延の補償を中止する
    ことを特徴とする電力変換方法。
    The power conversion method according to claim 9 or 10,
    A power conversion method, wherein when the operation delay is compensated using the current detection value, the operation delay compensation is stopped when the current detection value becomes equal to or less than a preset value.
PCT/JP2022/019424 2021-05-07 2022-04-28 Power conversion device and power conversion method WO2022234832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079223 2021-05-07
JP2021079223 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234832A1 true WO2022234832A1 (en) 2022-11-10

Family

ID=83932749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019424 WO2022234832A1 (en) 2021-05-07 2022-04-28 Power conversion device and power conversion method

Country Status (1)

Country Link
WO (1) WO2022234832A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127951A (en) * 1997-07-02 1999-01-29 Hitachi Ltd Pwm inverter controller
JP2005223991A (en) * 2004-02-04 2005-08-18 Mitsubishi Heavy Ind Ltd Inverter controller
JP2014176253A (en) * 2013-03-12 2014-09-22 Aisin Seiki Co Ltd Power converter
WO2016185924A1 (en) * 2015-05-20 2016-11-24 三菱電機株式会社 Power conversion device and vehicle drive system to which same is applied
JP2017093073A (en) * 2015-11-05 2017-05-25 東洋電機製造株式会社 Power conversion apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127951A (en) * 1997-07-02 1999-01-29 Hitachi Ltd Pwm inverter controller
JP2005223991A (en) * 2004-02-04 2005-08-18 Mitsubishi Heavy Ind Ltd Inverter controller
JP2014176253A (en) * 2013-03-12 2014-09-22 Aisin Seiki Co Ltd Power converter
WO2016185924A1 (en) * 2015-05-20 2016-11-24 三菱電機株式会社 Power conversion device and vehicle drive system to which same is applied
JP2017093073A (en) * 2015-11-05 2017-05-25 東洋電機製造株式会社 Power conversion apparatus

Similar Documents

Publication Publication Date Title
US6678180B2 (en) Power semiconductor module
AU2010356426B2 (en) Power semiconductor module, electricity transformer device, and railway car
US9553540B2 (en) Power converter with pre-compensation for dead-time insertion
JP4483749B2 (en) Control device for power conversion circuit
CN105827136B (en) Power converter with selective dead time insertion
US20130038140A1 (en) Switching circuit
KR20190116545A (en) How the drive system works to reduce the drive system and DC link current ripple
JP5683760B2 (en) Power converter
US10576828B2 (en) Variable voltage converter modulation obtaining lower minimum boost ratio
US9960726B1 (en) Electric drive power converter with low distortion dead-time insertion
US20200180451A1 (en) Power conversion device
JP2016103897A (en) Power conversion device and railway vehicle having the same
WO2019030966A1 (en) Power conversion device and power conversion method
JP6165216B2 (en) Method for manufacturing motor drive device
Wang et al. Comparative analysis of 2-level and 3-level voltage source inverters in traction applications
WO2013054741A1 (en) Power converter and method for controlling power converter
JP2011091952A (en) Power supply system
WO2019167244A1 (en) Power conversion device and electric motor system
WO2022234832A1 (en) Power conversion device and power conversion method
CN114008901A (en) Current measuring device and power conversion device
US9853572B2 (en) Bridge leg circuit
JPH05308778A (en) Inverter for driving electric car
JP2022118982A (en) Power conversion device and gate signal adjustment method
US20240048140A1 (en) Method for driving a topological semiconductor switch for a power electronics system
WO2023272727A1 (en) Electric traction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798936

Country of ref document: EP

Kind code of ref document: A1