WO2022234781A1 - Base station and communication control method - Google Patents

Base station and communication control method Download PDF

Info

Publication number
WO2022234781A1
WO2022234781A1 PCT/JP2022/018693 JP2022018693W WO2022234781A1 WO 2022234781 A1 WO2022234781 A1 WO 2022234781A1 JP 2022018693 W JP2022018693 W JP 2022018693W WO 2022234781 A1 WO2022234781 A1 WO 2022234781A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpac
information
failure information
cell
failure
Prior art date
Application number
PCT/JP2022/018693
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 前本
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022234781A1 publication Critical patent/WO2022234781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to base stations and communication control methods used in mobile communication systems.
  • the user equipment can use the radio resources provided by the master node that manages the master cell group and the secondary node that manages the secondary cell group.
  • Dual Connectivity when the conditions related to radio quality are satisfied in the user equipment, the user equipment changes the primary cell of the secondary cell group in the secondary node without the involvement of the master node (so-called intra -SN CPC (Conditional PS Cell Change)) is defined (see, for example, Non-Patent Document 1).
  • 3GPP registered trademark; the same shall apply hereinafter
  • 3GPP which is a standardization project for mobile communication systems
  • inter-SN CPC an operation to change from the primary cell of one secondary node to the primary cell of another secondary node
  • CPA Conditional PS Cell Addition
  • a base station as the master node in a dual access scheme in which user equipment can use radio resources provided from a master node that manages a master cell group and a secondary node that manages a secondary cell group A working base station.
  • the base station includes a radio communication unit that transmits CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment when a condition regarding radio quality is satisfied, and based on the CPAC setting information.
  • a control unit that acquires CPAC failure information about the failure of adding or changing the primary cell from the user equipment, generates failure information based on the CPAC failure information, and transmits the failure information to one or more other base stations. and a network communication unit.
  • a communication control method is a dual connection scheme in which a user device can use radio resources provided by a master node that manages a master cell group and a secondary node that manages a secondary cell group.
  • This is a communication control method executed in a base station that operates as a The communication control method includes transmitting CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment when a condition regarding radio quality is satisfied; Obtaining from the user equipment CPAC failure information about a failure to add or change a primary cell, generating failure information based on the CPAC failure information, and transmitting the failure information to one or more other base stations. and have
  • FIG. 1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure
  • FIG. 1 is a diagram showing a configuration example of a protocol stack of a system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a UE according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram illustrating a configuration example of a BS according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a diagram showing an operation example 1 of the mobile communication system according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing an example of information included in a message according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing an operation example 2 of the mobile communication system according to the embodiment of the present disclosure
  • the setting of the primary cell of the secondary cell group to the user equipment is , a base station acting as a secondary node or a candidate secondary node that may act as a secondary node.
  • the user equipment may fail to add or change the primary cell in CPAC. If a base station operating as a secondary node or a candidate secondary node cannot detect failures in addition or change of primary cells, it may always generate the same configuration, resulting in frequent failures in addition or change of primary cells.
  • one object of the present disclosure is to provide a base station and a communication control method that allow a base station that operates as a secondary node or a candidate secondary node to recognize a failure to add or change a primary cell in a secondary cell group in CPAC. do.
  • the system 1 is, for example, a mobile communication system conforming to Technical Specifications (TS) of 3GPP, which is a standardization project for mobile communication systems.
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • 5GS 5th Generation System
  • NR New Radio
  • the system 1 is not limited to this example.
  • the system 1 may be a TS-compliant system, either LTE (Long Term Evolution) or another generation system (eg, 6th generation) of the 3GPP standard.
  • LTE Long Term Evolution
  • 6th generation 3GPP standard
  • the system 1 may be a system conforming to a TS of standards other than the 3GPP standards.
  • the system 1 includes a 5G radio access network (so-called Next Generation Radio Access Network: NG-RAN) 20, a 5G core network (5G Core Network: 5GC) 30, a user device (User Equipment: UE) 100 and
  • 5G radio access network so-called Next Generation Radio Access Network: NG-RAN
  • 5G Core Network 5G Core Network: 5GC
  • UE User Equipment
  • the NG-RAN 20 includes a base station (BS) 200, which is a node of the radio access network.
  • BS200 is a radio
  • BS200 manages one or more cells.
  • the BS 200 performs radio communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer.
  • the base station 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like.
  • RRM radio resource management
  • data user data
  • a "cell” is used as a term indicating the minimum unit of a wireless communication area.
  • a “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 .
  • One cell belongs to one carrier frequency.
  • FIG. 1 shows an example in which BS 201 manages cell C1 and BS 202 manages cell C2.
  • the UE 100 is located in the overlapping area of cell C1 and cell C2.
  • the BS 200 communicates with the UE 100 using, for example, the RAN protocol stack.
  • the protocol stack includes, for example, an RRC (Radio Resource Control) layer, an SDAP (Service Data Adaptation Protocol) layer, a PDCP (Packet Data Convergence Protocol) layer, an RLC (Radio Link Control) layer, a MAC (Medium Control) layer and a physical layer ( Physical: PHY) layer.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Control
  • Physical: PHY Physical: Physical: PHY
  • the BS 200 is, for example, a gNB that provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
  • the BS 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards the UE 100, eg in LTE.
  • the BS 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • the BS 200 may be one of multiple units and may be connected to other units of the multiple units. Also, the BS 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 may be a device that supports the control plane, and may be a device that performs various types of mobility management for the UE 100 .
  • the core network device 300 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 resides.
  • Core network device 300 performs paging through base station 200 in order to notify UE 100 of an incoming call.
  • the core network device 300 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
  • the core network device 300 is a device that supports the user plane, and is a device that performs data transfer control for the UE 100 .
  • the core network device 300 may be a 5G/NR UPF (User Plane Function) or a 4G/LTE S-GW (Serving Gateway).
  • the core network device 300 may include AMF and/or UPF, for example.
  • Core network device 300 is connected to BS 200 via an NG interface.
  • UE 100 can communicate with BS 200 when located within the coverage area of BS 200.
  • UE 100 can communicate with BS 200 using the protocol stacks described above.
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • the UE 100 may be any device that is used by a user.
  • the UE 100 is, for example, a portable wireless communication device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided in the vehicle (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, an aircraft, etc.) or a device (eg, an Aerial UE) provided in a transport body other than a vehicle (eg, a device provided in an aircraft). Also, the UE 100 may be a sensor or a device provided in the sensor. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer and RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . If there is an RRC connection between the RRC of UE 100 and the RRC of base station 200 (that is, the RRC connection is established), UE 100 is in the RRC connected state. When there is no RRC connection between the RRC of UE 100 and the RRC of base station 200 (ie, no RRC connection is established), UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • the UE 100 in the RRC connected state uses radio resources provided by the base stations 200 located in two different BSs 200. Configured. These base stations 200 are connected via non-ideal backhauls and have different schedulers for allocating the radio resources to the UE 100 .
  • One base station 200 operates as a master node that manages a master cell group (hereinafter MCG), and the other base station 200 operates as a secondary node that manages a secondary cell group (hereinafter SCG). Therefore, the UE 100 can use radio resources provided by the master node and secondary nodes.
  • MCG master cell group
  • SCG secondary cell group
  • a master node is a radio access node that provides control plane connectivity to the core network 30 .
  • a master node may be referred to as a master eNB, a master ng-eNB, or a master gNB.
  • Secondary nodes have no control plane connection to the core network 30 and provide additional radio resources to the UE 100 .
  • a secondary node may be referred to as an en-gNB, a secondary ng-eNB, or a secondary gNB.
  • the master node and/or secondary node are logical entities.
  • the base station 200 may correspond to a master node and/or a secondary node. That is, the base station 200 may be replaced with a master node and/or a secondary node.
  • An MCG is a group of serving cells associated with a master node.
  • the MCG consists of a primary cell (referred to as Sp-Cell or P-Cell) and optionally one or more secondary cells (referred to as S-Cells).
  • a SCG is a group of serving cells associated with a secondary node.
  • the SCG consists of a primary cell (referred to as Sp-Cell or PS-Cell) and optionally one or more secondary cells (referred to as S-Cells). Therefore, the Sp cell is the primary cell of the MCG or SCG.
  • UE 100 is configured with one MAC entity for MCG and one MAC entity for SCG.
  • a conditional SCG primary cell (or PS cell) change is performed.
  • the conditional SCG primary cell change when the radio quality condition is satisfied in the UE 100, the UE 100 changes the SCG primary cell in the secondary node without the involvement of the master node (so-called intra-SN CPC (Conditional PS Cell Change)) is performed.
  • intra-SN CPC Consumer PS Cell Change
  • the conditional primary cell change when the radio quality condition is satisfied in the UE 100, from the primary cell of the SCG of the secondary node that has already provided the radio resource to the UE 100 to the primary cell of the SCG of another secondary node A changing operation (so-called inter-SN CPC) may be performed.
  • conditional SCG primary cell or PS cell
  • an operation of adding an SCG primary cell may be performed when a condition related to radio quality is satisfied in the UE 100.
  • conditional SCG primary cell addition or change operation may be referred to as CPAC (Conditional PS Cell Addition/Change).
  • the UE 100 has an antenna 101, a communication section 120, and a control section .
  • the communication unit 120 communicates with other communication devices by transmitting and receiving signals via the antenna 101.
  • the communication unit 120 receives radio signals from the BS200 and transmits radio signals to the BS200.
  • the communication unit 120 may, for example, receive radio signals from other UEs and transmit radio signals to other UEs.
  • the antenna 101 may be provided outside the UE 100 .
  • the communication unit 120 has a receiving unit 121 and a transmitting unit 122.
  • Receiving section 121 converts a radio signal received by antenna 101 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 130 .
  • Transmitter 122 performs signal processing on a transmission signal, which is a baseband signal output from controller 130 , converts the signal into a radio signal, and transmits the radio signal from antenna 101 .
  • the receiving unit 121 may include one or more receivers.
  • Transmitter 122 may include one or more transmitters.
  • the receiver and transmitter may be configured by one transceiver.
  • the antenna 101 may be used for both reception and transmission.
  • the control unit 130 performs various controls in the UE 100.
  • the control unit 130 controls communication with the BS 200 or another UE 100 via the communication unit 120, for example.
  • the operation of the UE 100 which will be described later, may be an operation under the control of the control unit 130.
  • the control unit 130 may include one or more processors capable of executing programs and a memory that stores the programs. One or more processors may execute programs to perform the operations of controller 130 .
  • the program may be a program for causing a processor to execute the operation of control unit 130 .
  • the processor performs digital processing of signals transmitted and received via the antenna 101 and the RF circuit.
  • the digital processing includes processing of the protocol stack of the RAN.
  • a processor may be a single processor.
  • a processor may include multiple processors.
  • the multiple processors may include a baseband processor for digital processing and one or more processors for other processing.
  • the memory stores programs executed by the processor, parameters for the programs, and data for the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the operation of the functional units included in the UE 100 may be described as the operation of the UE 100.
  • BS 200 has antenna 211 , radio communication section 212 , network communication section 213 and control section 214 .
  • the wireless communication unit 212 communicates with the UE 100 via the antenna 211.
  • the wireless communication unit 212 has a receiving unit 212a and a transmitting unit 212b.
  • the receiving unit 212 a converts a radio signal received by the antenna 211 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to the control unit 214 .
  • the transmission unit 212 b performs signal processing on a transmission signal, which is a baseband signal output from the control unit 214 , converts the signal into a radio signal, and transmits the radio signal from the antenna 211 .
  • the network communication unit 213 is connected to the core network device 300.
  • the network communication unit 213 performs network communication with the core network device 300 under the control of the control unit 214 .
  • the control unit 214 controls the wireless communication unit 212 and performs various controls in the base station 200 .
  • Control unit 214 includes at least one processor and at least one memory.
  • the memory stores programs executed by the processor and information used for processing by the processor.
  • the memory may include at least one of ROM, EPROM, EEPROM, RAM and flash memory.
  • the processor may include a digital signal processor (DSP), which performs digital processing of digital signals, and a central processing unit (CPU), which executes programs. Note that part of the memory may be provided in the wireless communication unit 212 . Also, the DSP may be provided in the wireless communication unit 212 .
  • DSP digital signal processor
  • the radio communication unit 212 transmits to the UE100 CPAC setting information for adding or changing the primary cell of the SCG when the condition regarding radio quality is satisfied.
  • the control unit 214 acquires CPAC failure information regarding the failure of addition or change of the primary cell based on the CPAC configuration information from the UE 100, and generates failure information based on the CPAC failure information.
  • Network communication unit 213 transmits failure information to one or more other BSs 200 . This allows other BSs 200 to grasp the failure of adding or changing the primary cell of SCG in CPAC based on the failure information. Other BSs 200 may decide to set the primary cell for the SCG, for example, based on perceived failures.
  • One or more other BSs 200 may include BSs 200 operating as secondary nodes. Thereby, BS200 which operates as a secondary node can grasp failure of addition or change of the primary cell of SCG in CPAC.
  • the network communication unit 213 may receive from one or a plurality of other BSs 200 information regarding the configuration of candidate primary cells that can become primary cells to be included in the CPAC configuration information.
  • One or more other BSs 200 may include base stations acting as candidate secondary nodes that may become secondary nodes. This allows the BS 200 operating as a candidate secondary node to grasp the failure of adding or changing the primary cell of the SCG in the CPAC.
  • the control unit 214 may generate individual failure information for each of the plurality of other BSs 200 based on the CPAC failure information.
  • the network communication unit 213 may transmit individual failure information to each of the other BSs 200 .
  • each of the plurality of other BSs 200 can grasp the failure of adding or changing the primary cell of SCG in CPAC.
  • the amount of information transmitted between BS200 can be reduced.
  • the CPAC configuration information may include identifiers of one or more candidate primary cells that can become primary cells of the SCG.
  • the control unit 214 may generate individual failure information for each candidate primary cell.
  • the network communication unit 213 may transmit individual failure information corresponding to the candidate primary cells managed by the other BSs 200 to each of the one or more other BSs 200 managing the candidate primary cells. This allows other BSs 200 to grasp the failure of addition or change of SCG primary cells in CPAC for each candidate primary cell. Moreover, compared with the case where common failure information of all other BS200 is transmitted to all other BS200, the amount of information transmitted between BS200 can be reduced.
  • the failure information may include information indicating the cause of the failure to add or change the primary cell. This allows the BS 200 to grasp the cause of the failure in adding or changing the primary cell.
  • the BS 200 can, for example, decide to set the primary cell for the SCG based on the cause of the failure.
  • the failure information includes identification information of detected cells detected by the UE 100 in cells other than the candidate primary cells, and the results of measurements performed by the UE 100 on the detected cells. This allows other BSs 200 to determine the setting of the primary cell of the SCG, for example, based on the measurement results of the detected cells.
  • the operation of the functional units included in the BS 200 may be described as the operation of the BS 200.
  • Operation example 1 Operation example 1 of the UE 100 and the BS 200 (BS 201, BS 202, BS 203) according to the embodiment of the present disclosure will be described with reference to FIGS.
  • the UE 100 has established an RRC connection with the BS 201.
  • UE 100 is in the RRC connected state.
  • BS201 BS202 and BS203 are neighboring base stations.
  • BS201 is BS200 which operates as a master node.
  • Step S101 The control unit 214 of the BS 201 determines to perform conditional SCG primary cell addition (hereinafter referred to as CPA as appropriate).
  • the control unit 214 of the BS201 may determine the CPA based on the measurement results obtained from the UE100.
  • the measurement result is the measurement result of the radio quality measured by the UE 100.
  • the wireless communication unit 212 of the BS 201 receives the measurement result from the UE 100, so that the control unit 214 of the BS 201 can acquire the measurement result.
  • the control unit 214 of the BS 201 determines candidate secondary nodes that may become secondary nodes based on the measurement results. Specifically, control section 214 of BS 201 determines BS 200 that manages a cell with good radio quality as a candidate secondary node. In this operation example, the control unit 214 of the BS201 determines the BS202 as the candidate secondary node. Also, the control unit 214 of the BS 201 may determine the BS 203 as a candidate secondary node. Note that a candidate secondary node may be referred to as a target secondary node.
  • Step S102 Network communication unit 213 of BS 201 transmits an SN addition request message to the candidate secondary node. Specifically, network communication section 213 of BS 201 transmits an SN addition request message to BS 202 . Network communication unit 213 of BS 202 receives the SN addition request message. Network communication section 213 of BS 201 may send an SN addition request message to BS 203 . Network communication unit 213 of BS 203 may receive the SN addition request message.
  • the SN addition request message may be a message requesting to operate as a secondary node in the dual access scheme, or a message requesting addition of the SCG primary cell in the dual access scheme, It may be a message requesting the addition of a conditional SCG primary cell in a dual access scheme.
  • the SN addition request message may contain the measurement result.
  • Step S103 Control unit 214 of BS 202 determines whether to approve the request from BS 201 . Controller 214 of BS 202 may decide whether to approve the request based on the measurement results. In this operation example, the control unit 214 of the BS 202 determines to approve the CPA.
  • the control unit 214 of the BS 202 may generate SCG setting information regarding SCG settings.
  • the SCG setting information is information included in the CPAC setting described later.
  • the SCG configuration information includes information about the configuration of candidate primary cells that can become primary cells (Sp cells or PS cells) of the SCG.
  • the information may include, for example, identifiers of candidate primary cells.
  • the SCG configuration information may include information regarding the configuration of candidate secondary cells that may become secondary cells of the SCG.
  • the information may include, for example, identifiers of candidate secondary cells.
  • Step S104 Network communication unit 213 of BS202 transmits an SN addition request approval message to BS201.
  • Network communication unit 213 of BS 201 receives the SN addition request acknowledge message.
  • the SN addition request approval message is a message that approves the request from the BS201.
  • the controller 214 of the BS 202 may include the SCG configuration information in the SN addition request acknowledge message.
  • the control unit 214 of BS201 grasps that BS203 operates as a candidate secondary node for UE100.
  • the control unit 214 of the BS 201 generates CPAC setting information for adding or changing the primary cell of the SCG when the radio quality condition is satisfied.
  • the CPAC configuration information indicates the configuration for adding the SCG primary cell.
  • the CPAC configuration information may include identifiers of one or more candidate primary cells that may become primary cells for the SCG. If the control unit 214 of the BS 201 has acquired the SCG setting information from the BS 202, it may include the SCG setting information in the CPAC setting information.
  • the control unit 214 of the BS 201 may generate execution condition information indicating execution conditions for the UE 100 to start CPAC.
  • the execution condition information may indicate a condition (eg, an event) related to radio quality that triggers initiation of CPAC. Radio quality, for example, received power (RSRP: Reference Signal Received Power), received quality (RSRQ: Reference Signal Received Quality), signal-to-interference plus noise power ratio (SINR: Signal-to-Interference plus Noise Power Ratio) at least any or
  • the control unit 214 of the BS 201 may include the execution condition information in the CPAC setting information.
  • Step S105 Control section 214 of BS 203 determines whether or not to approve the request from BS 201 in response to receiving the SN addition request message. In this operation example, the control unit 214 of the BS 203 decides not to approve the CPA, that is, to reject it.
  • Step S106 Network communication section 213 of BS203 transmits an SN addition request rejection message to BS201.
  • Network communication unit 213 of BS 201 receives the SN addition request rejection message.
  • the SN addition request rejection message is a message rejecting the request from BS201.
  • the control unit 214 of BS201 grasps that BS203 does not operate as a secondary node for UE100.
  • Step S107 Radio communication section 212 of BS 201 transmits the RRC reconfiguration message to UE 100 .
  • Communication unit 120 of UE 100 receives the RRC reconfiguration message.
  • the RRC reset message is a message for resetting radio resource control.
  • the RRC reconfiguration message contains CPAC configuration information.
  • radio communication section 212 of BS 201 transmits the CPAC setting information to UE 100 .
  • the communication unit 120 of the UE 100 receives the CPAC setting information.
  • the control unit 130 of the UE 100 applies settings based on the CPAC setting information.
  • Step S108 After applying the configuration based on the CPAC configuration information, communication section 120 of UE 100 transmits an RRC reconfiguration complete message to BS 201 . Radio communication section 212 of BS 201 receives the RRC reconfiguration complete message.
  • Step S109 The control unit 130 of the UE 100 evaluates execution conditions based on the execution condition information. Specifically, control section 130 of UE 100 measures the radio quality of candidate primary cells. The UE 100 determines whether the radio quality measurement results (eg, received power (RSRP), received quality (RSRQ), signal-to-interference-plus-noise ratio (SINR), etc.) for candidate primary cells satisfy execution conditions.
  • RSRP received power
  • RSS received quality
  • SINR signal-to-interference-plus-noise ratio
  • UE 100 may execute a random access procedure for establishing an RRC connection with BS 200 that manages the candidate primary cell when the measurement result of the candidate primary cell satisfies the execution conditions.
  • Step S110 Control unit 130 of UE 100 determines that CPAC has failed.
  • the control unit 130 of the UE 100 determines that CPAC has failed in any of the following cases.
  • step S111 When the control unit 130 of the UE 100 determines that CPAC has failed, the process of step S111 is executed.
  • the control unit 130 of the UE 100 executes communication using the dual connection method with the BS 201 as the master node and the BS 202 as the secondary node.
  • Step S111 Communication section 120 of UE 100 transmits CPAC failure information to BS 201 .
  • Radio communication section 212 of BS 201 receives the CPAC failure information.
  • CPAC failure information is information about a failure to add or change a primary cell based on CPAC setting information.
  • the information is related to the failure to add the primary cell based on the CPAC setting information.
  • the CPAC failure information may include cause information (eg, cpac-FailureCause) that indicates the cause of the failure of adding or changing the primary cell of the SCG.
  • the cause information may include, for example, information indicating that the candidate primary cell could not be detected (eg, noPSCellDetected).
  • the cause information may also include, for example, information (eg, noEventFulfilled) indicating that there was no candidate primary cell that satisfies the execution condition. In this case, it may include a list of detected candidate primary cell identifiers (eg, physical cell identifiers).
  • the cause information may also include, for example, information indicating that the random access procedure has failed (eg, rach-Failure). In this case, it may include a list of candidate primary cell identities (eg, physical cell identities) that satisfy the execution condition.
  • the CPAC failure information may include identification information of detected cells other than the candidate primary cell configured in UE 100 and the results of measurements performed on the detected cells by UE 100.
  • CPAC failure information may include, for example, a list (eg, otherDetectedCellList) of identities of detected cells (eg, carrierFreq) and measurement results (eg, measResultCellList).
  • the identity of the detected cell may be, for example, the physical cell identifier of the candidate primary cell or the frequency identifier (eg, absolute radio frequency channel number (ARFCN)) of the detected cell.
  • the control unit 214 of the BS 201 acquires CPAC failure information from the UE 100.
  • the control unit 214 of the BS 201 generates failure information based on the CPAC failure information.
  • the failure information may include at least part of the information included in the CPAC failure information.
  • the failure information may include cause information, and may include identification information of detected cells and measurement results.
  • the control unit 214 of the BS 201 may generate failure information common to a plurality of BSs 200, for example.
  • the control unit 214 of the BS201 may generate individual failure information corresponding to each of the plurality of BS200.
  • the control unit 214 of the BS 201 for example, for each BS 200 that manages the cell indicated by the identifier of the candidate primary cell and/or the identification information of the detected cell included in the CPAC failure information, information associated with the identifier or identification information ( For example, individual failure information including cause information, measurement results, etc.) may be generated.
  • control unit 214 of the BS 201 may generate individual failure information for each cell.
  • controller 214 of BS 201 may generate individual failure information for each candidate primary cell.
  • the control unit 214 of the BS 201 for example, for each cell indicated by the identifier of the candidate primary cell and/or the identification information of the detected cell included in the CPAC failure information, information associated with the identifier (for example, cause information, measurement result etc.) may be generated.
  • control unit 214 of the BS 201 may generate individual failure information for each detected cell.
  • the control unit 214 of the BS 201 for example, for each cell indicated by the identification information of the detected cell included in the CPAC failure information, generates individual failure information including information associated with the identification information (for example, measurement results). You can
  • Step S112 Network communication unit 213 of BS201 transmits failure information to BS202.
  • Network communication unit 213 of BS 202 receives the failure information.
  • Network communication section 213 of BS201 may transmit failure information to BS203.
  • Network communication unit 213 of BS 203 may receive the failure information.
  • the network communication unit 213 of the BS 201 may transmit common failure information or individual failure information to each of the plurality of BSs 200 . As shown in FIG. 6, network communication section 213 of BS 201 may transmit failure information using a cell group configuration information (CG-ConfigInfo) message.
  • CG-ConfigInfo cell group configuration information
  • network communication section 213 of BS 201 transmits individual failure information corresponding to BS 202 to BS 202, and transmits individual failure information corresponding to BS 203 to BS 203. Send. Also, when individual failure information is generated for each cell, network communication section 213 of BS 201 transmits corresponding individual failure information to BS 200 that manages each cell for which individual failure information is generated.
  • control unit 214 of the BS 201 selects, for example, (a) the BS 200 that is the transmission source of the information regarding the configuration of the candidate primary cell, (b) the BS 200 that is the transmission source of the SN addition request approval message, and (c) the transmission destination of the failure information. (d) the BS 200 managing the candidate primary cell indicated by the identifier included in the CPAC failure information; (e) the detection indicated by the identifier or identification information included in the CPAC failure information. At least one of the BSs 200 managing the cell may be determined.
  • the control unit 214 of the BS 202 can grasp the failure based on the CPAC setting based on the failure information.
  • the controller 214 of the BS 202 can consider the failed SCG setup information and generate the SCG setup information upon subsequent CPAC requests.
  • the control unit 214 of the BS 202 may, for example, make it difficult for a candidate primary cell that could not be detected to be set as the next candidate primary cell.
  • Operation example 2 Operation example 2 of the UE 100 and the BS 200 according to the embodiment of the present disclosure will be described with reference to FIG. Differences from the contents described above will be mainly described.
  • operation example 2 a secondary node-to-secondary node CPC (SN initiated inter-SN CPC) triggered by a secondary node will be described.
  • the BS201 operates as the master node of the UE100 and the BS202 operates as the secondary node of the UE100 in the dual access scheme.
  • BS 203 acts as a target secondary node (candidate secondary node).
  • UE 100 has established RRC connections with BS 201 and BS 202 .
  • the UE 100 communicates with the BS 201 via the MCG primary cell managed by the BS 201 , and communicates with the BS 202 via the SCG primary cell managed by the BS 202 .
  • Step S201 Network communication unit 213 of BS 202 transmits an SN Change Required message to BS 201 .
  • Network communication section 213 of BS 201 receives the SN change request message.
  • the SN change request message may be a message requesting to change the BS 200 operating as a secondary node in the dual access scheme, or a message requesting to change the primary cell of the SCG in the dual access scheme. Alternatively, it may be a message requesting a conditional SCG primary cell change in a dual access scheme.
  • the SN change request message may contain the measurement results.
  • the control unit 214 of the BS 202 decides to request a conditional SCG primary cell change (hereinafter referred to as CPC as appropriate).
  • the control unit 214 of the BS 202 may determine the CPC request based on the measurement results obtained from the UE 100 .
  • the control unit 214 of the BS202 may perform control to transmit an SN change request message to the BS201 when the CPC request is determined.
  • the measurement result is the measurement result of the radio quality measured by the UE 100.
  • the wireless communication unit 212 of the BS 202 receives the measurement result from the UE 100, so that the control unit 214 of the BS 202 can acquire the measurement result.
  • the control unit 214 of the BS 202 may generate execution condition information indicating execution conditions for the UE 100 to start CPAC (CPC in this operation example).
  • the control unit 214 of the BS 202 may include execution condition information in the SN change request message.
  • the execution condition information is the same information as in the first operation example.
  • Step S202 The control unit 214 of the BS 201 determines candidate secondary nodes that may become secondary nodes based on the measurement results. Specifically, control section 214 of BS 201 determines BS 200 that manages a cell with good radio quality as a candidate secondary node. In this operation example, the control unit 214 of the BS201 determines the BS203 as the candidate secondary node (target secondary node).
  • Step S203 Network communication unit 213 of BS201 transmits a CPC trigger message to BS203.
  • Network communication unit 213 of BS 203 receives the CPC trigger message.
  • the CPC trigger message may be a message that triggers CPC in BS203.
  • the CPC trigger message may contain measurement results.
  • the control unit 214 of the BS 203 may generate SCG setting information related to SCG settings in response to receiving the CPC trigger message.
  • the control unit 214 of the BS 203 may generate SCG setting information as in step S103.
  • Step S204 Network communication section 213 of BS 203 transmits a CPC Confirmation message, which is a response to the CPC trigger message, to BS 201 .
  • Network communication unit 213 of BS 201 receives the CPC confirmation message.
  • Controller 214 of BS 203 may include the SCG configuration information in the CPC confirmation message.
  • Steps S205 to S210 This corresponds to steps S107 to S112 in Operation Example 1.
  • the control unit 214 of the BS 201 may determine the transmission destination of the failure information to be the BS 200, which is the transmission source of the execution condition information, in addition to the above (a) to (e). This allows the control unit 214 of the BS 202 to generate execution condition information in consideration of the failed execution condition information when transmitting the SN change request message thereafter.
  • the control unit 214 of the BS 202 may generate execution condition information based on the measurement result included in the failure information.
  • the UE 100 transmits the CPAC failure information to the master node, but this is not the only option.
  • the UE 100 may send CPAC failure information to the secondary node.
  • the secondary node may keep track of failures based on CPAC configuration based on the CPAC failure information.
  • the secondary node may send CPAC failure information to the master node.
  • a master node may generate failure information based on the CPAC failure information.
  • each of the operation examples described above is not limited to being implemented separately and independently, and can be implemented by appropriately combining each operation example.
  • the steps in the processes described herein do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams. For example, steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel. Also, some of the steps in the process may be deleted and additional steps may be added to the process.
  • each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided. Such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure. Also, at least part of the UE 100 or at least part of the BS 200 may be a chipset or SoC (System on Chip) in which circuits for executing each process performed by the UE 100 or the BS 200 are integrated.
  • SoC System on Chip
  • transmit may mean performing processing of at least one layer in the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. may mean to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.

Abstract

A base station (200, 201) according to an embodiment of the present disclosure operates as a master node in a dual-connection scheme in which a user equipment (100) can utilize wireless resources provided from a master node managing a master cell group and a secondary node managing a secondary cell group, the base station (200, 201) comprising: a wireless communication unit (212) for transmitting to the user equipment (100) CPAC configuration information for adding or changing a primary cell of the secondary cell group if a condition concerning wireless quality is satisfied; a control unit (214) for acquiring from the user equipment (100) CPAC failure information regarding a failure to add or change the primary cell on the basis of the CPAC configuration information, and generating failure information based on the CPAC failure information; and a network communication unit (213) for transmitting the failure information to one or a plurality of other base stations (200, 202, 203).

Description

基地局及び通信制御方法Base station and communication control method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年5月7日に出願された特許出願番号2021-079076号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-079076, filed May 7, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる基地局及び通信制御方法に関する。 The present disclosure relates to base stations and communication control methods used in mobile communication systems.
 第5世代(5G)の移動通信システム(5Gシステム)では、マスターセルグループを管理するマスターノードとセカンダリセルグループを管理するセカンダリノードとから提供される無線リソースをユーザ装置が利用できる二重接続方式(いわゆる、Dual Connectivity)において、ユーザ装置において無線品質に関する条件が満たされた場合に、マスターノードが関与せずに、ユーザ装置がセカンダリノードにおいてセカンダリセルグループのプライマリセルを変更する動作(いわゆる、intra-SN CPC(Conditional PSCell Change))が規定されている(例えば、非特許文献1参照)。 In the fifth generation (5G) mobile communication system (5G system), the user equipment can use the radio resources provided by the master node that manages the master cell group and the secondary node that manages the secondary cell group. In (so-called Dual Connectivity), when the conditions related to radio quality are satisfied in the user equipment, the user equipment changes the primary cell of the secondary cell group in the secondary node without the involvement of the master node (so-called intra -SN CPC (Conditional PS Cell Change)) is defined (see, for example, Non-Patent Document 1).
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)では、二重接続方式において、ユーザ装置において無線品質に関する条件が満たされた場合に、ユーザ装置へ無線リソースを既に提供しているセカンダリノードのプライマリセルから別のセカンダリノードのプライマリセルへ変更する動作(いわゆる、inter-SN CPC)を5Gシステムで導入することが検討されている(例えば、非特許文献2参照)。また、ユーザ装置において無線品質に関する条件が満たされた場合に、セカンダリセルグループのプライマリセルを追加する動作(いわゆる、CPA(Conditional PSCell Addition))を5Gシステムで導入することが検討されている(例えば、非特許文献3参照)。 In recent years, 3GPP (registered trademark; the same shall apply hereinafter), which is a standardization project for mobile communication systems, has already provided radio resources to user equipments in a dual access scheme when the user equipments have satisfied the conditions regarding radio quality. The introduction of an operation (so-called inter-SN CPC) to change from the primary cell of one secondary node to the primary cell of another secondary node (so-called inter-SN CPC) is being considered in the 5G system (see, for example, Non-Patent Document 2). In addition, when the conditions related to radio quality are satisfied in the user equipment, the operation of adding the primary cell of the secondary cell group (so-called CPA (Conditional PS Cell Addition)) is being considered to be introduced in the 5G system (for example, , Non-Patent Document 3).
 本開示の一態様に係る基地局は、マスターセルグループを管理するマスターノードとセカンダリセルグループを管理するセカンダリノードとから提供される無線リソースをユーザ装置が利用できる二重接続方式において前記マスターノードとして動作する基地局である。前記基地局は、無線品質に関する条件が満たされた場合に前記セカンダリセルグループのプライマリセルを追加又は変更するためのCPAC設定情報を前記ユーザ装置へ送信する無線通信部と、前記CPAC設定情報に基づく前記プライマリセルの追加又は変更の失敗に関するCPAC失敗情報を前記ユーザ装置から取得し、前記CPAC失敗情報に基づく失敗情報を生成する制御部と、前記失敗情報を1又は複数の他の基地局へ送信するネットワーク通信部と、を備える。 A base station according to an aspect of the present disclosure, as the master node in a dual access scheme in which user equipment can use radio resources provided from a master node that manages a master cell group and a secondary node that manages a secondary cell group A working base station. The base station includes a radio communication unit that transmits CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment when a condition regarding radio quality is satisfied, and based on the CPAC setting information. A control unit that acquires CPAC failure information about the failure of adding or changing the primary cell from the user equipment, generates failure information based on the CPAC failure information, and transmits the failure information to one or more other base stations. and a network communication unit.
 本開示の一態様に係る通信制御方法は、マスターセルグループを管理するマスターノードとセカンダリセルグループを管理するセカンダリノードとから提供される無線リソースをユーザ装置が利用できる二重接続方式において前記マスターノードとして動作する基地局で実行される通信制御方法である。前記通信制御方法は、無線品質に関する条件が満たされた場合に前記セカンダリセルグループのプライマリセルを追加又は変更するためのCPAC設定情報を前記ユーザ装置へ送信するステップと、前記CPAC設定情報に基づく前記プライマリセルの追加又は変更の失敗に関するCPAC失敗情報を前記ユーザ装置から取得し、前記CPAC失敗情報に基づく失敗情報を生成するステップと、前記失敗情報を1又は複数の他の基地局へ送信するステップと、を有する。 A communication control method according to an aspect of the present disclosure is a dual connection scheme in which a user device can use radio resources provided by a master node that manages a master cell group and a secondary node that manages a secondary cell group. This is a communication control method executed in a base station that operates as a The communication control method includes transmitting CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment when a condition regarding radio quality is satisfied; Obtaining from the user equipment CPAC failure information about a failure to add or change a primary cell, generating failure information based on the CPAC failure information, and transmitting the failure information to one or more other base stations. and have
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 本開示の実施形態に係るシステムのプロトコルスタックの構成例を示す図である。 本開示の実施形態に係るUEの構成例を示す図である。 本開示の実施形態に係るBSの構成例を示す図である。 本開示の実施形態の移動通信システムの動作例1を示す図である。 本開示の実施形態に係るメッセージに含まれる情報の一例を示す図である。 本開示の実施形態の移動通信システムの動作例2を示す図である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
1 is an explanatory diagram showing an example of a schematic configuration of a system according to an embodiment of the present disclosure; FIG. 1 is a diagram showing a configuration example of a protocol stack of a system according to an embodiment of the present disclosure; FIG. FIG. 2 is a diagram illustrating a configuration example of a UE according to an embodiment of the present disclosure; FIG. FIG. 2 is a diagram illustrating a configuration example of a BS according to an embodiment of the present disclosure; FIG. FIG. 2 is a diagram showing an operation example 1 of the mobile communication system according to the embodiment of the present disclosure; FIG. 4 is a diagram showing an example of information included in a message according to an embodiment of the present disclosure; FIG. FIG. 4 is a diagram showing an operation example 2 of the mobile communication system according to the embodiment of the present disclosure;
 以下、添付の図面を参照して本開示の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一又は類似の符号を付することにより重複説明が省略され得る。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in the present specification and drawings, elements that can be described in the same manner can be omitted from redundant description by assigning the same or similar reference numerals.
 このようなユーザ装置において無線品質に関する条件が満たされた場合にセカンダリセルグループのプライマリセルの追加又は変更(以下、CPAC)が行わるケースでは、ユーザ装置へのセカンダリセルグループのプライマリセルの設定は、セカンダリノード又はセカンダリノードとして動作する可能性がある候補セカンダリノードとして動作する基地局が生成することが想定されている。 In the case where the primary cell of the secondary cell group is added or changed (hereinafter referred to as CPAC) when the conditions related to radio quality are satisfied in such a user equipment, the setting of the primary cell of the secondary cell group to the user equipment is , a base station acting as a secondary node or a candidate secondary node that may act as a secondary node.
 ここで、ユーザ装置が、CPACにおいて、プライマリセルの追加又は変更を失敗することがある。セカンダリノード又は候補セカンダリノードとして動作する基地局がプライマリセルの追加又は変更の失敗を把握できない場合、常に同じ設定を生成してしまって、プライマリセルの追加又は変更の失敗が多発する恐れがある。 Here, the user equipment may fail to add or change the primary cell in CPAC. If a base station operating as a secondary node or a candidate secondary node cannot detect failures in addition or change of primary cells, it may always generate the same configuration, resulting in frequent failures in addition or change of primary cells.
 そこで、本開示は、セカンダリノード又は候補セカンダリノードとして動作する基地局がCPACにおけるセカンダリセルグループのプライマリセルの追加又は変更の失敗を把握できる基地局及び通信制御方法を提供することを目的の一つとする。 Therefore, one object of the present disclosure is to provide a base station and a communication control method that allow a base station that operates as a secondary node or a candidate secondary node to recognize a failure to add or change a primary cell in a secondary cell group in CPAC. do.
 (1)システムの構成
 (1.1)システム概要
 図1を参照して、本開示の実施形態に係るシステム1の構成の例を説明する。システム1は、例えば、移動通信システムの標準化プロジェクトである3GPPの技術仕様(Technical Specification:TS)に準拠した移動通信システムである。以下において、システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。なお、システム1は、この例に限定されない。システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
(1) System Configuration (1.1) System Overview An example configuration of a system 1 according to an embodiment of the present disclosure will be described with reference to FIG. The system 1 is, for example, a mobile communication system conforming to Technical Specifications (TS) of 3GPP, which is a standardization project for mobile communication systems. In the following, as the system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example. Note that the system 1 is not limited to this example. The system 1 may be a TS-compliant system, either LTE (Long Term Evolution) or another generation system (eg, 6th generation) of the 3GPP standard. The system 1 may be a system conforming to a TS of standards other than the 3GPP standards.
 図1に示すように、システム1は、5Gの無線アクセスネットワーク(いわゆる、Next Generation Radio Access Network:NG-RAN)20と、5Gのコアネットワーク(5G Core Network:5GC)30と、ユーザ装置(User Equipment:UE)100と、を含む。 As shown in FIG. 1, the system 1 includes a 5G radio access network (so-called Next Generation Radio Access Network: NG-RAN) 20, a 5G core network (5G Core Network: 5GC) 30, a user device (User Equipment: UE) 100 and
 NG-RAN20は、無線アクセスネットワークのノードである基地局(Base Station:BS)200を含む。BS200は、UE100との無線通信を行う無線通信装置である。BS200は、1又は複数のセルを管理する。BS200は、自セルとの無線リソース制御(RRC)レイヤにおける接続を確立したUE100との無線通信を行う。基地局200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。図1において、BS201がセルC1を管理し、BS202がセルC2を管理する一例を示している。UE100は、セルC1及びセルC2の重複領域に位置している。 The NG-RAN 20 includes a base station (BS) 200, which is a node of the radio access network. BS200 is a radio|wireless communication apparatus which performs radio|wireless communication with UE100. BS200 manages one or more cells. The BS 200 performs radio communication with the UE 100 that has established a connection with its own cell in the radio resource control (RRC) layer. The base station 200 has a radio resource management (RRM) function, a user data (hereinafter simply referred to as “data”) routing function, a measurement control function for mobility control/scheduling, and the like. A "cell" is used as a term indicating the minimum unit of a wireless communication area. A “cell” is also used as a term indicating a function or resource for radio communication with the UE 100 . One cell belongs to one carrier frequency. FIG. 1 shows an example in which BS 201 manages cell C1 and BS 202 manages cell C2. The UE 100 is located in the overlapping area of cell C1 and cell C2.
 BS200は、例えば、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックは、例えば、RRC(Radio Resource Control)レイヤ、SDAP(Service Data Adaptation Protocol)レイヤ、PDCP(Packet Data Convergence Protocol)レイヤ、RLC(Radio Link Control)レイヤ、MAC(Medium Access Control)レイヤ及び物理(Physical:PHY)レイヤを含む。但し、LTEの場合、SDAPレイヤが存在しなくてよい。 The BS 200 communicates with the UE 100 using, for example, the RAN protocol stack. The protocol stack includes, for example, an RRC (Radio Resource Control) layer, an SDAP (Service Data Adaptation Protocol) layer, a PDCP (Packet Data Convergence Protocol) layer, an RLC (Radio Link Control) layer, a MAC (Medium Control) layer and a physical layer ( Physical: PHY) layer. However, in the case of LTE, the SDAP layer does not have to exist.
 BS200は、例えば、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続されるgNBである。なお、BS200は、例えばLTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。 The BS 200 is, for example, a gNB that provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface. Note that the BS 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards the UE 100, eg in LTE.
 BS200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。BS200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、BS200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 The BS 200 may include multiple units. The plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack. The upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer. The first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit). The plurality of units may include a third unit that performs processing below the PHY layer. The second unit may perform processing above the PHY layer. The third unit may be an RU (Radio Unit). The BS 200 may be one of multiple units and may be connected to other units of the multiple units. Also, the BS 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、制御プレーンに対応した装置であって、UE100に対する各種モビリティ管理を行う装置であってよい。コアネットワーク装置300は、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信し、UE100が在圏するトラッキングエリアの情報を管理する。コアネットワーク装置300は、UE100に対して着信を通知するために、基地局200を通じてページングを行う。コアネットワーク装置300は、5G/NRのAMF(Access and Mobility Management Function)、又は4G/LTEのMME(Mobility Management Entity)であってもよい。 The 5GC 30 includes a core network device 300. The core network device 300 may be a device that supports the control plane, and may be a device that performs various types of mobility management for the UE 100 . The core network device 300 communicates with the UE 100 using NAS (Non-Access Stratum) signaling, and manages information on the tracking area in which the UE 100 resides. Core network device 300 performs paging through base station 200 in order to notify UE 100 of an incoming call. The core network device 300 may be a 5G/NR AMF (Access and Mobility Management Function) or a 4G/LTE MME (Mobility Management Entity).
 コアネットワーク装置300は、ユーザプレーンに対応した装置であって、UE100のデータの転送制御を行う装置である。コアネットワーク装置300は、5G/NRのUPF(User Plane Function)、又は4G/LTEのS-GW(Serving Gateway)であってもよい。 The core network device 300 is a device that supports the user plane, and is a device that performs data transfer control for the UE 100 . The core network device 300 may be a 5G/NR UPF (User Plane Function) or a 4G/LTE S-GW (Serving Gateway).
 コアネットワーク装置300は、例えば、AMF及び/又はUPFを含んでよい。コアネットワーク装置300は、NGインターフェイスを介してBS200と接続される。 The core network device 300 may include AMF and/or UPF, for example. Core network device 300 is connected to BS 200 via an NG interface.
 UE100は、BS200のカバレッジエリア内に位置する場合に、BS200と通信できる。UE100は、上述のプロトコルスタックを使用してBS200と通信できる。  UE 100 can communicate with BS 200 when located within the coverage area of BS 200. UE 100 can communicate with BS 200 using the protocol stacks described above.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であればよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な無線通信装置である。また、UE100は、車両(例えば、車、電車など)又は車両に設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機、飛行体など)又は車両以外の輸送機体(例えば、飛行体に設けられる装置)に設けられる装置(例えば、Aerial UE)であってよい。また、UE100は、センサ又はセンサに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. The UE 100 may be any device that is used by a user. The UE 100 is, for example, a portable wireless communication device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. Also, the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided in the vehicle (eg, Vehicle UE). The UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, an aircraft, etc.) or a device (eg, an Aerial UE) provided in a transport body other than a vehicle (eg, a device provided in an aircraft). Also, the UE 100 may be a sensor or a device provided in the sensor. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
 (1.2)プロトコルスタックの構成例
 図2を参照して、システム1のプロトコルスタックの構成例について説明する。図2に示すように、UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
(1.2) Configuration Example of Protocol Stack A configuration example of the protocol stack of the system 1 will be described with reference to FIG. As shown in FIG. 2, the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer and RRC (Radio Resource Control) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある(すなわち、RRC接続が確立されている)場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない(すなわち、RRC接続が確立されていない)場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . If there is an RRC connection between the RRC of UE 100 and the RRC of base station 200 (that is, the RRC connection is established), UE 100 is in the RRC connected state. When there is no RRC connection between the RRC of UE 100 and the RRC of base station 200 (ie, no RRC connection is established), UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 (1.3)二重接続方式
 二重接続方式(いわゆる、Dual Connectivity)では、RRCコネクティッド状態にあるUE100が2つの異なるBS200に位置する基地局200により提供される無線リソースを利用するように構成される。これらの基地局200は、非理想的なバックホールを介して接続されており、当該無線リソースをUE100に割り当てるための互いに異なるスケジューラを有する。一方の基地局200は、マスターセルグループ(以下、MCG)を管理するマスターノードとして動作し、他方の基地局200は、セカンダリセルグループ(以下、SCG)を管理するセカンダリノードとして動作する。従って、UE100は、マスターノードとセカンダリノードとから提供される無線リソースを利用できる。
(1.3) Dual Connection Method In the dual connection method (so-called Dual Connectivity), the UE 100 in the RRC connected state uses radio resources provided by the base stations 200 located in two different BSs 200. Configured. These base stations 200 are connected via non-ideal backhauls and have different schedulers for allocating the radio resources to the UE 100 . One base station 200 operates as a master node that manages a master cell group (hereinafter MCG), and the other base station 200 operates as a secondary node that manages a secondary cell group (hereinafter SCG). Therefore, the UE 100 can use radio resources provided by the master node and secondary nodes.
 マスターノードは、コアネットワーク30への制御プレーン接続を提供する無線アクセスノードである。マスターノードは、マスターeNB、マスターng-eNB、又はマスターgNBと称されてよい。セカンダリノードは、コアネットワーク30への制御プレーン接続がなく、UE100へ追加的な無線リソースを提供する。セカンダリノードは、en-gNB、セカンダリng-eNB、又はセカンダリgNBと称されてよい。ここで、マスターノード及び/又はセカンダリノードは、論理的なエンティティ(logical entity)である。本実施形態において、基地局200は、マスターノード及び/又はセカンダリノードに対応してもよい。すなわち、基地局200は、マスターノード及び/又はセカンダリノードに置き換えられてもよい。 A master node is a radio access node that provides control plane connectivity to the core network 30 . A master node may be referred to as a master eNB, a master ng-eNB, or a master gNB. Secondary nodes have no control plane connection to the core network 30 and provide additional radio resources to the UE 100 . A secondary node may be referred to as an en-gNB, a secondary ng-eNB, or a secondary gNB. Here, the master node and/or secondary node are logical entities. In this embodiment, the base station 200 may correspond to a master node and/or a secondary node. That is, the base station 200 may be replaced with a master node and/or a secondary node.
 MCGは、マスターノードに関連付けられているサービングセルのグループである。MCGは、プライマリセル(Spセル又はPセルと称される)と、オプションで1以上のセカンダリセル(Sセルと称される)で構成される。SCGは、セカンダリノードに関連付けられているサービングセルのグループである。SCGは、プライマリセル(Spセル又はPSセルと称される)と、オプションで1以上のセカンダリセル(Sセルと称される)で構成される。従って、Spセルは、MCG又はSCGのプライマリセルである。なお、UE100には、MCG用の1つのMACエンティティとSCG用の1つのMACエンティティとが設定される。 An MCG is a group of serving cells associated with a master node. The MCG consists of a primary cell (referred to as Sp-Cell or P-Cell) and optionally one or more secondary cells (referred to as S-Cells). A SCG is a group of serving cells associated with a secondary node. The SCG consists of a primary cell (referred to as Sp-Cell or PS-Cell) and optionally one or more secondary cells (referred to as S-Cells). Therefore, the Sp cell is the primary cell of the MCG or SCG. UE 100 is configured with one MAC entity for MCG and one MAC entity for SCG.
 二重接続方式では、条件付きのSCGのプライマリセル(又はPSセル)変更が行われる。条件付きSCGのプライマリセル変更では、UE100において無線品質に関する条件が満たされた場合に、マスターノードが関与せずに、UE100がセカンダリノードにおいてSCGのプライマリセルを変更する動作(いわゆる、intra-SN CPC(Conditional PSCell Change))が行われる。また、条件付きプライマリセル変更では、UE100において無線品質に関する条件が満たされた場合に、UE100へ無線リソースを既に提供しているセカンダリノードのSCGのプライマリセルから別のセカンダリノードのSCGのプライマリセルへ変更する動作(いわゆる、inter-SN CPC)が行われてよい。 In the dual connection method, a conditional SCG primary cell (or PS cell) change is performed. In the conditional SCG primary cell change, when the radio quality condition is satisfied in the UE 100, the UE 100 changes the SCG primary cell in the secondary node without the involvement of the master node (so-called intra-SN CPC (Conditional PS Cell Change)) is performed. Further, in the conditional primary cell change, when the radio quality condition is satisfied in the UE 100, from the primary cell of the SCG of the secondary node that has already provided the radio resource to the UE 100 to the primary cell of the SCG of another secondary node A changing operation (so-called inter-SN CPC) may be performed.
 また、二重接続方式では、条件付きSCGのプライマリセル(又はPSセル)追加が行われる。条件付きSCGのプライマリセル追加では、UE100において無線品質に関する条件が満たされた場合に、SCGのプライマリセルを追加する動作(いわゆる、CPA(Conditional PSCell Addition))が行われてよい。 Also, in the dual connection method, a conditional SCG primary cell (or PS cell) is added. In the conditional SCG primary cell addition, an operation of adding an SCG primary cell (so-called CPA (Conditional PS Cell Addition)) may be performed when a condition related to radio quality is satisfied in the UE 100.
 このような条件付きのSCGのプライマリセルの追加又は変更する動作は、CPAC(Conditional PSCell Addition/Change)と称されてよい。 Such a conditional SCG primary cell addition or change operation may be referred to as CPAC (Conditional PS Cell Addition/Change).
 (1.4)UEの構成
 図3を参照して、UE100の構成例について説明する。図3に示すように、UE100は、アンテナ101と、通信部120と、制御部130とを有する。
(1.4) Configuration of UE A configuration example of the UE 100 will be described with reference to FIG. As shown in FIG. 3, the UE 100 has an antenna 101, a communication section 120, and a control section .
 通信部120は、制御部130の制御下で、アンテナ101を介して信号を送受信することによって他の通信装置との通信を行う。通信部120は、例えば、BS200からの無線信号を受信し、BS200への無線信号を送信する。また、通信部120は、例えば、他のUEからの無線信号を受信し、他のUEへの無線信号を送信してよい。なお、アンテナ101は、UE100の外部に設けられてよい。 Under the control of the control unit 130, the communication unit 120 communicates with other communication devices by transmitting and receiving signals via the antenna 101. The communication unit 120, for example, receives radio signals from the BS200 and transmits radio signals to the BS200. Also, the communication unit 120 may, for example, receive radio signals from other UEs and transmit radio signals to other UEs. Note that the antenna 101 may be provided outside the UE 100 .
 通信部120は、受信部121と送信部122とを有する。受信部121は、アンテナ101が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部130に出力する。送信部122は、制御部130が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ101から送信する。 The communication unit 120 has a receiving unit 121 and a transmitting unit 122. Receiving section 121 converts a radio signal received by antenna 101 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to control section 130 . Transmitter 122 performs signal processing on a transmission signal, which is a baseband signal output from controller 130 , converts the signal into a radio signal, and transmits the radio signal from antenna 101 .
 なお、受信部121は、1つ又は複数の受信機を含んでよい。送信部122は、1つ又は複数の送信機を含んでよい。受信機と送信機とは、1つの送受信機により構成されてよい。また、アンテナ101は、受信と送信とで兼用されてよい。 Note that the receiving unit 121 may include one or more receivers. Transmitter 122 may include one or more transmitters. The receiver and transmitter may be configured by one transceiver. Also, the antenna 101 may be used for both reception and transmission.
 制御部130は、UE100における各種の制御を行う。制御部130は、例えば、通信部120を介したBS200又は他のUE100との通信を制御する。後述のUE100の動作は、制御部130の制御による動作であってよい。 The control unit 130 performs various controls in the UE 100. The control unit 130 controls communication with the BS 200 or another UE 100 via the communication unit 120, for example. The operation of the UE 100, which will be described later, may be an operation under the control of the control unit 130.
 制御部130は、プログラムを実行可能な1つ以上のプロセッサ及びプログラムを記憶するメモリを含んでよい。1つ以上のプロセッサは、プログラムを実行して、制御部130の動作を行ってもよい。プログラムは、制御部130の動作をプロセッサに実行させるためのプログラムであってもよい。 The control unit 130 may include one or more processors capable of executing programs and a memory that stores the programs. One or more processors may execute programs to perform the operations of controller 130 . The program may be a program for causing a processor to execute the operation of control unit 130 .
 プロセッサは、アンテナ101及びRF回路を介して送受信される信号のデジタル処理を行う。当該デジタル処理は、RANのプロトコルスタックの処理を含む。プロセッサは、単一のプロセッサであってよい。プロセッサは、複数のプロセッサを含んでもよい。当該複数のプロセッサは、デジタル処理を行うベースバンドプロセッサと、他の処理を行う1つ以上のプロセッサとを含んでもよい。メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The processor performs digital processing of signals transmitted and received via the antenna 101 and the RF circuit. The digital processing includes processing of the protocol stack of the RAN. A processor may be a single processor. A processor may include multiple processors. The multiple processors may include a baseband processor for digital processing and one or more processors for other processing. The memory stores programs executed by the processor, parameters for the programs, and data for the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
 なお、以下において、UE100が備える機能部(具体的には、通信部120及び制御部130)の動作を、UE100の動作として説明することがある。 In addition, hereinafter, the operation of the functional units (specifically, the communication unit 120 and the control unit 130) included in the UE 100 may be described as the operation of the UE 100.
 (1.4)BSの構成
 図4を参照して、BS200の構成例について説明する。図4に示すように、BS200は、アンテナ211と、無線通信部212と、ネットワーク通信部213と、制御部214とを有する。
(1.4) Configuration of BS A configuration example of the BS 200 will be described with reference to FIG. As shown in FIG. 4 , BS 200 has antenna 211 , radio communication section 212 , network communication section 213 and control section 214 .
 無線通信部212は、制御部214の制御下で、アンテナ211を介してUE100との通信を行う。無線通信部212は、受信部212aと、送信部212bとを有する。受信部212aは、アンテナ211が受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部214に出力する。送信部212bは、制御部214が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナ211から送信する。 Under the control of the control unit 214, the wireless communication unit 212 communicates with the UE 100 via the antenna 211. The wireless communication unit 212 has a receiving unit 212a and a transmitting unit 212b. The receiving unit 212 a converts a radio signal received by the antenna 211 into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to the control unit 214 . The transmission unit 212 b performs signal processing on a transmission signal, which is a baseband signal output from the control unit 214 , converts the signal into a radio signal, and transmits the radio signal from the antenna 211 .
 ネットワーク通信部213は、コアネットワーク装置300と接続される。ネットワーク通信部213は、制御部214の制御下で、コアネットワーク装置300とのネットワーク通信を行う。 The network communication unit 213 is connected to the core network device 300. The network communication unit 213 performs network communication with the core network device 300 under the control of the control unit 214 .
 制御部214は、無線通信部212を制御するとともに、基地局200における各種の制御を行う。制御部214は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。メモリは、ROM、EPROM、EEPROM、RAM及びフラッシュメモリの少なくとも1つを含んでもよい。プロセッサは、デジタル信号のデジタル処理を行うデジタル信号プロセッサ(DSP)と、プログラムを実行する中央演算処理装置(CPU)とを含んでもよい。なお、メモリの一部は無線通信部212に設けられていてもよい。また、DSPは、無線通信部212に設けられていてもよい。 The control unit 214 controls the wireless communication unit 212 and performs various controls in the base station 200 . Control unit 214 includes at least one processor and at least one memory. The memory stores programs executed by the processor and information used for processing by the processor. The memory may include at least one of ROM, EPROM, EEPROM, RAM and flash memory. The processor may include a digital signal processor (DSP), which performs digital processing of digital signals, and a central processing unit (CPU), which executes programs. Note that part of the memory may be provided in the wireless communication unit 212 . Also, the DSP may be provided in the wireless communication unit 212 .
 このように構成されたBS200では、無線通信部212は、無線品質に関する条件が満たされた場合にSCGのプライマリセルを追加又は変更するためのCPAC設定情報をUE100へ送信する。制御部214は、CPAC設定情報に基づくプライマリセルの追加又は変更の失敗に関するCPAC失敗情報をUE100から取得し、CPAC失敗情報に基づく失敗情報を生成する。ネットワーク通信部213は、失敗情報を1又は複数の他のBS200へ送信する。これにより、他のBS200は、失敗情報に基づいて、CPACにおけるSCGのプライマリセルの追加又は変更の失敗を把握できる。他のBS200は、例えば、把握した失敗に基づいて、SCGのプライマリセルの設定を決めることができる。 In the BS200 configured in this way, the radio communication unit 212 transmits to the UE100 CPAC setting information for adding or changing the primary cell of the SCG when the condition regarding radio quality is satisfied. The control unit 214 acquires CPAC failure information regarding the failure of addition or change of the primary cell based on the CPAC configuration information from the UE 100, and generates failure information based on the CPAC failure information. Network communication unit 213 transmits failure information to one or more other BSs 200 . This allows other BSs 200 to grasp the failure of adding or changing the primary cell of SCG in CPAC based on the failure information. Other BSs 200 may decide to set the primary cell for the SCG, for example, based on perceived failures.
 1又は複数の他のBS200は、セカンダリノードとして動作しているBS200を含んでよい。これにより、セカンダリノードとして動作するBS200は、CPACにおけるSCGのプライマリセルの追加又は変更の失敗を把握できる。 One or more other BSs 200 may include BSs 200 operating as secondary nodes. Thereby, BS200 which operates as a secondary node can grasp failure of addition or change of the primary cell of SCG in CPAC.
 ネットワーク通信部213は、CPAC設定情報に含めるプライマリセルになりうる候補プライマリセルの設定に関する情報を1又は複数の他のBS200から受信してよい。1又は複数の他のBS200は、セカンダリノードになる可能性がある候補セカンダリノードとして動作する基地局を含んでよい。これにより、候補セカンダリノードとして動作するBS200は、CPACにおけるSCGのプライマリセルの追加又は変更の失敗を把握できる。 The network communication unit 213 may receive from one or a plurality of other BSs 200 information regarding the configuration of candidate primary cells that can become primary cells to be included in the CPAC configuration information. One or more other BSs 200 may include base stations acting as candidate secondary nodes that may become secondary nodes. This allows the BS 200 operating as a candidate secondary node to grasp the failure of adding or changing the primary cell of the SCG in the CPAC.
 制御部214は、CPAC失敗情報に基づいて、複数の他のBS200のそれぞれに個別の失敗情報を生成してよい。ネットワーク通信部213は、複数の他のBS200のそれぞれに、個別の失敗情報を送信してよい。これにより、複数の他のBS200のそれぞれは、CPACにおけるSCGのプライマリセルの追加又は変更の失敗を把握できる。また、全ての他のBS200の共通の失敗情報を全ての他のBS200へ送信する場合と比較して、BS200間で送信される情報量を低減できる。 The control unit 214 may generate individual failure information for each of the plurality of other BSs 200 based on the CPAC failure information. The network communication unit 213 may transmit individual failure information to each of the other BSs 200 . Thereby, each of the plurality of other BSs 200 can grasp the failure of adding or changing the primary cell of SCG in CPAC. Moreover, compared with the case where common failure information of all other BS200 is transmitted to all other BS200, the amount of information transmitted between BS200 can be reduced.
 CPAC設定情報は、SCGのプライマリセルになり得る1又は複数の候補プライマリセルの識別子を含んでよい。制御部214は、候補プライマリセル毎の個別の失敗情報を生成してよい。ネットワーク通信部213は、候補プライマリセルを管理する1又は複数の他のBS200のそれぞれに、当該他のBS200が管理する候補プライマリセルに対応する個別の失敗情報を送信してよい。これにより、他のBS200は、候補プライマリセル毎に、CPACにおけるSCGのプライマリセルの追加又は変更の失敗を把握できる。また、全ての他のBS200の共通の失敗情報を全ての他のBS200へ送信する場合と比較して、BS200間で送信される情報量を低減できる。 The CPAC configuration information may include identifiers of one or more candidate primary cells that can become primary cells of the SCG. The control unit 214 may generate individual failure information for each candidate primary cell. The network communication unit 213 may transmit individual failure information corresponding to the candidate primary cells managed by the other BSs 200 to each of the one or more other BSs 200 managing the candidate primary cells. This allows other BSs 200 to grasp the failure of addition or change of SCG primary cells in CPAC for each candidate primary cell. Moreover, compared with the case where common failure information of all other BS200 is transmitted to all other BS200, the amount of information transmitted between BS200 can be reduced.
 失敗情報は、プライマリセルの追加又は変更が失敗した原因を示す情報を含んでよい。これにより、BS200は、プライマリセルの追加又は変更が失敗した原因を把握できる。BS200は、例えば、失敗した原因に基づいて、SCGのプライマリセルの設定を決めることができる。 The failure information may include information indicating the cause of the failure to add or change the primary cell. This allows the BS 200 to grasp the cause of the failure in adding or changing the primary cell. The BS 200 can, for example, decide to set the primary cell for the SCG based on the cause of the failure.
 失敗情報は、候補プライマリセル以外のセルでUE100が検出した検出セルの識別情報と、UE100が検出セルに対して行った測定の結果と、を含む。これにより、他のBS200は、例えば、検出セルの測定の結果に基づいて、SCGのプライマリセルの設定を決めることができる。 The failure information includes identification information of detected cells detected by the UE 100 in cells other than the candidate primary cells, and the results of measurements performed by the UE 100 on the detected cells. This allows other BSs 200 to determine the setting of the primary cell of the SCG, for example, based on the measurement results of the detected cells.
 なお、以下において、BS200が備える機能部(具体的には、無線通信部212と、ネットワーク通信部213と、及び制御部214)の動作を、BS200の動作として説明することがある。 In addition, hereinafter, the operation of the functional units (specifically, the wireless communication unit 212, the network communication unit 213, and the control unit 214) included in the BS 200 may be described as the operation of the BS 200.
 (2)システムの動作
 (2.1)動作例1
 図5及び図6を参照して、本開示の実施形態に係るUE100及びBS200(BS201、BS202、BS203)の動作例1を説明する。
(2) System operation (2.1) Operation example 1
Operation example 1 of the UE 100 and the BS 200 (BS 201, BS 202, BS 203) according to the embodiment of the present disclosure will be described with reference to FIGS.
 本動作例において、UE100は、BS201とRRC接続を確立している。UE100は、RRCコネクティッド状態である。BS201にとって、BS202及びBS203は、隣接基地局である。BS201は、マスターノードとして動作するBS200である。 In this operation example, the UE 100 has established an RRC connection with the BS 201. UE 100 is in the RRC connected state. For BS201, BS202 and BS203 are neighboring base stations. BS201 is BS200 which operates as a master node.
 ステップS101:
 BS201の制御部214は、条件付きのSCGのプライマリセル追加(以下、CPAと適宜称する)を行うことを決定する。BS201の制御部214は、UE100から取得した測定結果に基づいて、CPAを決定してよい。
Step S101:
The control unit 214 of the BS 201 determines to perform conditional SCG primary cell addition (hereinafter referred to as CPA as appropriate). The control unit 214 of the BS201 may determine the CPA based on the measurement results obtained from the UE100.
 なお、測定結果は、UE100が測定した無線品質の測定結果である。BS201の無線通信部212がUE100から測定結果を受信することで、BS201の制御部214は、測定結果を取得できる。 Note that the measurement result is the measurement result of the radio quality measured by the UE 100. The wireless communication unit 212 of the BS 201 receives the measurement result from the UE 100, so that the control unit 214 of the BS 201 can acquire the measurement result.
 BS201の制御部214は、測定結果に基づいて、セカンダリノードになる可能性がある候補セカンダリノードを決定する。具体的には、BS201の制御部214は、無線品質が良好であるセルを管理するBS200を候補セカンダリノードとして決定する。本動作例では、BS201の制御部214は、BS202を候補セカンダリノードとして決定する。また、BS201の制御部214は、BS203を候補セカンダリノードとして決定してよい。なお、候補セカンダリノードは、ターゲットセカンダリノードと称されてよい。 The control unit 214 of the BS 201 determines candidate secondary nodes that may become secondary nodes based on the measurement results. Specifically, control section 214 of BS 201 determines BS 200 that manages a cell with good radio quality as a candidate secondary node. In this operation example, the control unit 214 of the BS201 determines the BS202 as the candidate secondary node. Also, the control unit 214 of the BS 201 may determine the BS 203 as a candidate secondary node. Note that a candidate secondary node may be referred to as a target secondary node.
 ステップS102:
 BS201のネットワーク通信部213は、SN追加要求メッセージを候補セカンダリノードへ送信する。具体的には、BS201のネットワーク通信部213は、SN追加要求メッセージをBS202へ送信する。BS202のネットワーク通信部213は、SN追加要求メッセージを受信する。BS201のネットワーク通信部213は、SN追加要求メッセージをBS203へ送信してもよい。BS203のネットワーク通信部213は、SN追加要求メッセージを受信してもよい。
Step S102:
Network communication unit 213 of BS 201 transmits an SN addition request message to the candidate secondary node. Specifically, network communication section 213 of BS 201 transmits an SN addition request message to BS 202 . Network communication unit 213 of BS 202 receives the SN addition request message. Network communication section 213 of BS 201 may send an SN addition request message to BS 203 . Network communication unit 213 of BS 203 may receive the SN addition request message.
 SN追加要求メッセージは、二重接続方式においてセカンダリノードとして動作することを要求するメッセージであってもよいし、二重接続方式においてSCGのプライマリセルの追加を要求するメッセージであってもよいし、二重接続方式において条件付きのSCGのプライマリセルの追加を要求するメッセージであってもよい。SN追加要求メッセージは、測定結果を含んでよい。 The SN addition request message may be a message requesting to operate as a secondary node in the dual access scheme, or a message requesting addition of the SCG primary cell in the dual access scheme, It may be a message requesting the addition of a conditional SCG primary cell in a dual access scheme. The SN addition request message may contain the measurement result.
 ステップS103:
 BS202の制御部214は、BS201からの要求を承認するか否かを決定する。BS202の制御部214は、測定結果に基づいて、要求を承認するか否かを決定してもよい。本動作例では、BS202の制御部214は、CPAを承認すると決定する。
Step S103:
Control unit 214 of BS 202 determines whether to approve the request from BS 201 . Controller 214 of BS 202 may decide whether to approve the request based on the measurement results. In this operation example, the control unit 214 of the BS 202 determines to approve the CPA.
 BS202の制御部214は、SCGの設定に関するSCG設定情報を生成してよい。SCG設定情報は、後述のCPAC設定に含める情報である。SCG設定情報は、SCGのプライマリセル(Spセル又はPSセル)となり得る候補プライマリセルの設定に関する情報を含む。当該情報は、例えば、候補プライマリセルの識別子を含んでよい。また、SCG設定情報は、SCGのセカンダリセルとなり得る候補セカンダリセルの設定に関する情報を含んでよい。当該情報は、例えば、候補セカンダリセルの識別子を含んでよい。 The control unit 214 of the BS 202 may generate SCG setting information regarding SCG settings. The SCG setting information is information included in the CPAC setting described later. The SCG configuration information includes information about the configuration of candidate primary cells that can become primary cells (Sp cells or PS cells) of the SCG. The information may include, for example, identifiers of candidate primary cells. Also, the SCG configuration information may include information regarding the configuration of candidate secondary cells that may become secondary cells of the SCG. The information may include, for example, identifiers of candidate secondary cells.
 ステップS104:
 BS202のネットワーク通信部213は、SN追加要求承認メッセージをBS201へ送信する。BS201のネットワーク通信部213は、SN追加要求承認メッセージを受信する。
Step S104:
Network communication unit 213 of BS202 transmits an SN addition request approval message to BS201. Network communication unit 213 of BS 201 receives the SN addition request acknowledge message.
 SN追加要求承認メッセージは、BS201からの要求を承認するメッセージである。BS202の制御部214は、SCG設定情報をSN追加要求承認メッセージに含めてよい。 The SN addition request approval message is a message that approves the request from the BS201. The controller 214 of the BS 202 may include the SCG configuration information in the SN addition request acknowledge message.
 BS201の制御部214は、SN追加要求承認メッセージに基づいて、UE100に対して、BS203が候補セカンダリノードとして動作すると把握する。 Based on the SN addition request approval message, the control unit 214 of BS201 grasps that BS203 operates as a candidate secondary node for UE100.
 BS201の制御部214は、無線品質に関する条件が満たされた場合にSCGのプライマリセルを追加又は変更するためのCPAC設定情報を生成する。本動作例では、CPAC設定情報は、SCGのプライマリセルを追加するための設定を示す。CPAC設定情報は、SCGのプライマリセルになり得る1又は複数の候補プライマリセルの識別子を含んでよい。BS201の制御部214は、BS202からSCG設定情報を取得している場合、SCG設定情報をCPAC設定情報に含めてよい。 The control unit 214 of the BS 201 generates CPAC setting information for adding or changing the primary cell of the SCG when the radio quality condition is satisfied. In this operation example, the CPAC configuration information indicates the configuration for adding the SCG primary cell. The CPAC configuration information may include identifiers of one or more candidate primary cells that may become primary cells for the SCG. If the control unit 214 of the BS 201 has acquired the SCG setting information from the BS 202, it may include the SCG setting information in the CPAC setting information.
 BS201の制御部214は、UE100がCPACを開始するための実行条件を示す実行条件情報を生成してよい。実行条件情報は、CPACを開始するためのトリガとなる無線品質に関する条件(例えば、イベント)を示してよい。無線品質は、例えば、受信電力(RSRP:Reference Signal Received Power)、受信品質(RSRQ:Reference Signal Received Quality)、信号対干渉ノイズ比(SINR:Signal-to-Interference plus Noise power Ratio)などの少なくともいずれかである。BS201の制御部214は、実行条件情報をCPAC設定情報に含めてよい。 The control unit 214 of the BS 201 may generate execution condition information indicating execution conditions for the UE 100 to start CPAC. The execution condition information may indicate a condition (eg, an event) related to radio quality that triggers initiation of CPAC. Radio quality, for example, received power (RSRP: Reference Signal Received Power), received quality (RSRQ: Reference Signal Received Quality), signal-to-interference plus noise power ratio (SINR: Signal-to-Interference plus Noise Power Ratio) at least any or The control unit 214 of the BS 201 may include the execution condition information in the CPAC setting information.
 ステップS105:
 BS203の制御部214は、SN追加要求メッセージの受信に応じて、BS201からの要求を承認するか否かを決定する。本動作例では、BS203の制御部214は、CPAを承認しない、すなわち、拒絶すると決定する。
Step S105:
Control section 214 of BS 203 determines whether or not to approve the request from BS 201 in response to receiving the SN addition request message. In this operation example, the control unit 214 of the BS 203 decides not to approve the CPA, that is, to reject it.
 ステップS106:
 BS203のネットワーク通信部213は、SN追加要求拒絶メッセージをBS201へ送信する。BS201のネットワーク通信部213は、SN追加要求拒絶メッセージを受信する。SN追加要求拒絶メッセージは、BS201からの要求を拒絶するメッセージである。
Step S106:
Network communication section 213 of BS203 transmits an SN addition request rejection message to BS201. Network communication unit 213 of BS 201 receives the SN addition request rejection message. The SN addition request rejection message is a message rejecting the request from BS201.
 BS201の制御部214は、SN追加要求拒絶メッセージに基づいて、UE100に対して、BS203がセカンダリノードとして動作しないと把握する。 Based on the SN addition request rejection message, the control unit 214 of BS201 grasps that BS203 does not operate as a secondary node for UE100.
 ステップS107:
 BS201の無線通信部212は、RRC再設定メッセージをUE100へ送信する。UE100の通信部120は、RRC再設定メッセージを受信する。
Step S107:
Radio communication section 212 of BS 201 transmits the RRC reconfiguration message to UE 100 . Communication unit 120 of UE 100 receives the RRC reconfiguration message.
 RRC再設定メッセージは、無線リソース制御を再設定するためのメッセージである。RRC再設定メッセージは、CPAC設定情報を含む。これにより、BS201の無線通信部212は、CPAC設定情報をUE100へ送信する。UE100の通信部120は、CPAC設定情報を受信する。UE100の制御部130は、CPAC設定情報に基づく設定を適用する。 The RRC reset message is a message for resetting radio resource control. The RRC reconfiguration message contains CPAC configuration information. Thereby, radio communication section 212 of BS 201 transmits the CPAC setting information to UE 100 . The communication unit 120 of the UE 100 receives the CPAC setting information. The control unit 130 of the UE 100 applies settings based on the CPAC setting information.
 ステップS108:
 UE100の通信部120は、CPAC設定情報に基づく設定を適用した後、RRC再設定完了メッセージをBS201へ送信する。BS201の無線通信部212は、RRC再設定完了メッセージを受信する。
Step S108:
After applying the configuration based on the CPAC configuration information, communication section 120 of UE 100 transmits an RRC reconfiguration complete message to BS 201 . Radio communication section 212 of BS 201 receives the RRC reconfiguration complete message.
 ステップS109:
 UE100の制御部130は、実行条件情報に基づいて、実行条件の評価を行う。具体的には、UE100の制御部130は、候補プライマリセルに対して無線品質の測定を行う。UE100は、候補プライマリセルに対する無線品質の測定結果(例えば、受信電力(RSRP)、受信品質(RSRQ)、信号対干渉ノイズ比(SINR)など)が実行条件を満たすか否かを判定する。
Step S109:
The control unit 130 of the UE 100 evaluates execution conditions based on the execution condition information. Specifically, control section 130 of UE 100 measures the radio quality of candidate primary cells. The UE 100 determines whether the radio quality measurement results (eg, received power (RSRP), received quality (RSRQ), signal-to-interference-plus-noise ratio (SINR), etc.) for candidate primary cells satisfy execution conditions.
 UE100は、候補プライマリセルの測定結果が実行条件を満たした場合、当該候補プライマリセルを管理するBS200とRRC接続を確立するためのランダムアクセス手順を実行してよい。  UE 100 may execute a random access procedure for establishing an RRC connection with BS 200 that manages the candidate primary cell when the measurement result of the candidate primary cell satisfies the execution conditions.
 ステップS110:
 UE100の制御部130は、CPACが失敗したと判定する。UE100の制御部130は、以下のいずれかの場合に、CPACが失敗したと判定する。
 (a)候補プライマリセルを検出できなかった。
 (b)候補プライマリセルを検出できたが、測定結果が実行条件を満たさなかった。実行条件を満たす候補セルが存在しなかった。
 (c)測定結果が実行条件を満たしたが、ランダムアクセス手順を失敗した。
Step S110:
Control unit 130 of UE 100 determines that CPAC has failed. The control unit 130 of the UE 100 determines that CPAC has failed in any of the following cases.
(a) No candidate primary cell could be detected.
(b) A candidate primary cell could be detected, but the measurement result did not satisfy the execution conditions. There were no candidate cells that met the execution conditions.
(c) The measurement result satisfies the execution condition, but the random access procedure fails.
 UE100の制御部130が、CPACが失敗したと判定した場合、ステップS111の処理が実行される。 When the control unit 130 of the UE 100 determines that CPAC has failed, the process of step S111 is executed.
 なお、UE100の制御部130は、測定結果が実行条件を満たして、ランダムアクセス手順が成功した場合、BS201をマスターノードとして、BS202をセカンダリノードとして二重接続方式による通信を実行する。 When the measurement result satisfies the execution condition and the random access procedure succeeds, the control unit 130 of the UE 100 executes communication using the dual connection method with the BS 201 as the master node and the BS 202 as the secondary node.
 ステップS111:
 UE100の通信部120は、CPAC失敗情報をBS201へ送信する。BS201の無線通信部212は、CPAC失敗情報を受信する。
Step S111:
Communication section 120 of UE 100 transmits CPAC failure information to BS 201 . Radio communication section 212 of BS 201 receives the CPAC failure information.
 CPAC失敗情報は、CPAC設定情報に基づくプライマリセルの追加又は変更の失敗に関する情報である。本動作例では、CPAC設定情報に基づくプライマリセルの追加の失敗に関する情報である。  CPAC failure information is information about a failure to add or change a primary cell based on CPAC setting information. In this operation example, the information is related to the failure to add the primary cell based on the CPAC setting information.
 CPAC失敗情報は、SCGのプライマリセルが追加又は変更が失敗した原因を示す原因情報(例えば、cpac-FailureCause)を含んでよい。原因情報は、例えば、候補プライマリセルが検出できなかったことを示す情報(例えば、noPSCellDetected)を含んでよい。また、原因情報は、例えば、実行条件を満たす候補プライマリセルが存在しなかったことを示す情報(例えば、noEventFulfilled)を含んでよい。この場合、検出された候補プライマリセルの識別子(例えば、物理セル識別子)のリストを含んでよい。また、原因情報は、例えば、ランダムアクセス手順が失敗したことを示す情報(例えば、rach-Failure)を含んでよい。この場合、実行条件を満たした候補プライマリセルの識別子(例えば、物理セル識別子)のリストを含んでよい。 The CPAC failure information may include cause information (eg, cpac-FailureCause) that indicates the cause of the failure of adding or changing the primary cell of the SCG. The cause information may include, for example, information indicating that the candidate primary cell could not be detected (eg, noPSCellDetected). The cause information may also include, for example, information (eg, noEventFulfilled) indicating that there was no candidate primary cell that satisfies the execution condition. In this case, it may include a list of detected candidate primary cell identifiers (eg, physical cell identifiers). The cause information may also include, for example, information indicating that the random access procedure has failed (eg, rach-Failure). In this case, it may include a list of candidate primary cell identities (eg, physical cell identities) that satisfy the execution condition.
 CPAC失敗情報は、UE100に設定された候補プライマリセル以外の検出された検出セルの識別情報と、UE100が検出セルに対して行った測定の結果とを含んでよい。CPAC失敗情報は、例えば、検出セルの識別情報(例えば、carrierFreq)と測定の結果(例えば、measResultCellList)とのリスト(例えば、otherDetectedCellList)を含んでよい。検出セルの識別情報は、例えば、候補プライマリセルの物理セル識別子であってよいし、検出セルの周波数の識別子(例えば、絶対無線周波数チャネル番号(ARFCN))であってよい。 The CPAC failure information may include identification information of detected cells other than the candidate primary cell configured in UE 100 and the results of measurements performed on the detected cells by UE 100. CPAC failure information may include, for example, a list (eg, otherDetectedCellList) of identities of detected cells (eg, carrierFreq) and measurement results (eg, measResultCellList). The identity of the detected cell may be, for example, the physical cell identifier of the candidate primary cell or the frequency identifier (eg, absolute radio frequency channel number (ARFCN)) of the detected cell.
 BS201の制御部214は、CPAC失敗情報をUE100から取得する。BS201の制御部214は、CPAC失敗情報に基づく失敗情報を生成する。失敗情報は、CPAC失敗情報に含まれる情報の少なくとも一部を含んでよい。失敗情報は、原因情報を含んでよいし、検出セルの識別情報と測定の結果とを含んでよい。BS201の制御部214は、例えば、複数のBS200に共通の失敗情報を生成してもよい。 The control unit 214 of the BS 201 acquires CPAC failure information from the UE 100. The control unit 214 of the BS 201 generates failure information based on the CPAC failure information. The failure information may include at least part of the information included in the CPAC failure information. The failure information may include cause information, and may include identification information of detected cells and measurement results. The control unit 214 of the BS 201 may generate failure information common to a plurality of BSs 200, for example.
 BS201の制御部214は、複数のBS200のそれぞれに対応する個別の失敗情報を生成してもよい。BS201の制御部214は、例えば、CPAC失敗情報に含まれる候補プライマリセルの識別子及び/又は検出セルの識別情報により示されるセルを管理するBS200毎に、当該識別子又は識別情報に関連付けられた情報(例えば、原因情報、測定結果など)を含む個別の失敗情報を生成してよい。 The control unit 214 of the BS201 may generate individual failure information corresponding to each of the plurality of BS200. The control unit 214 of the BS 201, for example, for each BS 200 that manages the cell indicated by the identifier of the candidate primary cell and/or the identification information of the detected cell included in the CPAC failure information, information associated with the identifier or identification information ( For example, individual failure information including cause information, measurement results, etc.) may be generated.
 また、BS201の制御部214は、セル毎の個別の失敗情報を生成してもよい。例えば、BS201の制御部214は、候補プライマリセル毎の個別の失敗情報を生成してもよい。BS201の制御部214は、例えば、CPAC失敗情報に含まれる候補プライマリセルの識別子及び/又は検出セルの識別情報により示されるセル毎に、当該識別子に関連付けられた情報(例えば、原因情報、測定結果など)を含む個別の失敗情報を生成してよい。 Also, the control unit 214 of the BS 201 may generate individual failure information for each cell. For example, controller 214 of BS 201 may generate individual failure information for each candidate primary cell. The control unit 214 of the BS 201, for example, for each cell indicated by the identifier of the candidate primary cell and/or the identification information of the detected cell included in the CPAC failure information, information associated with the identifier (for example, cause information, measurement result etc.) may be generated.
 また、BS201の制御部214は、検出セル毎の個別の失敗情報を生成してもよい。BS201の制御部214は、例えば、CPAC失敗情報に含まれる検出セルの識別情報により示されるセル毎に、当該識別情報に関連付けられた情報(例えば、測定結果など)を含む個別の失敗情報を生成してよい。 Also, the control unit 214 of the BS 201 may generate individual failure information for each detected cell. The control unit 214 of the BS 201, for example, for each cell indicated by the identification information of the detected cell included in the CPAC failure information, generates individual failure information including information associated with the identification information (for example, measurement results). You can
 ステップS112:
 BS201のネットワーク通信部213は、失敗情報をBS202へ送信する。BS202のネットワーク通信部213は、失敗情報を受信する。BS201のネットワーク通信部213は、失敗情報をBS203へ送信してもよい。BS203のネットワーク通信部213は、失敗情報を受信してもよい。BS201のネットワーク通信部213は、複数のBS200のそれぞれに、共通の失敗情報を送信してもよく、個別の失敗情報を送信してもよい。図6に示すように、BS201のネットワーク通信部213は、セルグループ設定情報(CG-ConfigInfo)メッセージにより、失敗情報を送信してもよい。
Step S112:
Network communication unit 213 of BS201 transmits failure information to BS202. Network communication unit 213 of BS 202 receives the failure information. Network communication section 213 of BS201 may transmit failure information to BS203. Network communication unit 213 of BS 203 may receive the failure information. The network communication unit 213 of the BS 201 may transmit common failure information or individual failure information to each of the plurality of BSs 200 . As shown in FIG. 6, network communication section 213 of BS 201 may transmit failure information using a cell group configuration information (CG-ConfigInfo) message.
 BS201のネットワーク通信部213は、複数のBS200のそれぞれに個別の失敗情報が生成された場合、BS202に対応する個別の失敗情報を、BS202へ送信し、BS203に対応する個別の失敗情報をBS203へ送信する。また、BS201のネットワーク通信部213は、セル毎の個別の失敗情報が生成された場合、個別の失敗情報が生成された各セルを管理するBS200へ、対応する個別の失敗情報を送信する。 When individual failure information is generated for each of a plurality of BSs 200, network communication section 213 of BS 201 transmits individual failure information corresponding to BS 202 to BS 202, and transmits individual failure information corresponding to BS 203 to BS 203. Send. Also, when individual failure information is generated for each cell, network communication section 213 of BS 201 transmits corresponding individual failure information to BS 200 that manages each cell for which individual failure information is generated.
 なお、BS201の制御部214は、失敗情報の送信先を、例えば、(a)候補プライマリセルの設定に関する情報の送信元のBS200、(b)SN追加要求承認メッセージの送信元のBS200、(c)SN追加要求拒絶メッセージの送信元のBS200、(d)CPAC失敗情報に含まれる識別子により示される候補プライマリセルを管理するBS200、(e)CPAC失敗情報に含まれる識別子又は識別情報により示される検出セルを管理するBS200の少なくともいずれかに決定してよい。 Note that the control unit 214 of the BS 201 selects, for example, (a) the BS 200 that is the transmission source of the information regarding the configuration of the candidate primary cell, (b) the BS 200 that is the transmission source of the SN addition request approval message, and (c) the transmission destination of the failure information. (d) the BS 200 managing the candidate primary cell indicated by the identifier included in the CPAC failure information; (e) the detection indicated by the identifier or identification information included in the CPAC failure information. At least one of the BSs 200 managing the cell may be determined.
 BS202の制御部214は、失敗情報に基づいて、CPAC設定に基づく失敗を把握することができる。BS202の制御部214は、失敗したSCG設定情報を考慮して、その後にCPACの要求を受けた場合にSCG設定情報を生成することができる。BS202の制御部214は、例えば、検出できなかった候補プライマリセルを次回の候補プライマリセルとして設定され難くしてもよい。 The control unit 214 of the BS 202 can grasp the failure based on the CPAC setting based on the failure information. The controller 214 of the BS 202 can consider the failed SCG setup information and generate the SCG setup information upon subsequent CPAC requests. The control unit 214 of the BS 202 may, for example, make it difficult for a candidate primary cell that could not be detected to be set as the next candidate primary cell.
 (2.2)動作例2
 図7を参照して、本開示の実施形態に係るUE100及びBS200の動作例2を説明する。上述した内容との相違点を主として説明する。動作例2では、セカンダリノードがトリガとなるセカンダリノード間CPC(SN initiated inter-SN CPC)について説明する。
(2.2) Operation example 2
Operation example 2 of the UE 100 and the BS 200 according to the embodiment of the present disclosure will be described with reference to FIG. Differences from the contents described above will be mainly described. In operation example 2, a secondary node-to-secondary node CPC (SN initiated inter-SN CPC) triggered by a secondary node will be described.
 本動作例では、二重接続方式において、BS201がUE100のマスターノードとして動作し、BS202がUE100のセカンダリノードとして動作する。BS203は、ターゲットセカンダリノード(候補セカンダリノード)として動作する。UE100は、BS201及びBS202とRRC接続を確立している。UE100は、BS201が管理するMCGのプライマリセルを介してBS201と通信を行っており、BS202が管理するSCGのプライマリセルを介してBS202と通信を行っている。 In this operation example, the BS201 operates as the master node of the UE100 and the BS202 operates as the secondary node of the UE100 in the dual access scheme. BS 203 acts as a target secondary node (candidate secondary node). UE 100 has established RRC connections with BS 201 and BS 202 . The UE 100 communicates with the BS 201 via the MCG primary cell managed by the BS 201 , and communicates with the BS 202 via the SCG primary cell managed by the BS 202 .
 ステップS201:
 BS202のネットワーク通信部213は、SN変更要求(SN Change Required)メッセージをBS201へ送信する。BS201のネットワーク通信部213は、SN変更要求メッセージを受信する。
Step S201:
Network communication unit 213 of BS 202 transmits an SN Change Required message to BS 201 . Network communication section 213 of BS 201 receives the SN change request message.
 SN変更要求メッセージは、二重接続方式においてセカンダリノードとして動作するBS200を変更することを要求するメッセージであってもよいし、二重接続方式においてSCGのプライマリセルの変更を要求するメッセージであってもよいし、二重接続方式において条件付きのSCGのプライマリセルの変更を要求するメッセージであってもよい。SN変更要求メッセージは、測定結果を含んでよい。 The SN change request message may be a message requesting to change the BS 200 operating as a secondary node in the dual access scheme, or a message requesting to change the primary cell of the SCG in the dual access scheme. Alternatively, it may be a message requesting a conditional SCG primary cell change in a dual access scheme. The SN change request message may contain the measurement results.
 BS202の制御部214は、条件付きのSCGのプライマリセル変更(以下、CPCと適宜称する)を要求することを決定する。BS202の制御部214は、UE100から取得した測定結果に基づいて、CPCの要求を決定してよい。BS202の制御部214は、CPCの要求を決定した場合に、SN変更要求メッセージをBS201へ送信する制御を実行してよい。 The control unit 214 of the BS 202 decides to request a conditional SCG primary cell change (hereinafter referred to as CPC as appropriate). The control unit 214 of the BS 202 may determine the CPC request based on the measurement results obtained from the UE 100 . The control unit 214 of the BS202 may perform control to transmit an SN change request message to the BS201 when the CPC request is determined.
 なお、測定結果は、UE100が測定した無線品質の測定結果である。BS202の無線通信部212がUE100から測定結果を受信することで、BS202の制御部214は、測定結果を取得できる。 Note that the measurement result is the measurement result of the radio quality measured by the UE 100. The wireless communication unit 212 of the BS 202 receives the measurement result from the UE 100, so that the control unit 214 of the BS 202 can acquire the measurement result.
 BS202の制御部214は、UE100がCPAC(本動作例では、CPC)を開始するための実行条件を示す実行条件情報を生成してよい。BS202の制御部214は、実行条件情報をSN変更要求メッセージに含めてよい。実行条件情報は、動作例1と同様の情報である。 The control unit 214 of the BS 202 may generate execution condition information indicating execution conditions for the UE 100 to start CPAC (CPC in this operation example). The control unit 214 of the BS 202 may include execution condition information in the SN change request message. The execution condition information is the same information as in the first operation example.
 ステップS202:
 BS201の制御部214は、測定結果に基づいて、セカンダリノードになる可能性がある候補セカンダリノードを決定する。具体的には、BS201の制御部214は、無線品質が良好であるセルを管理するBS200を候補セカンダリノードとして決定する。本動作例では、BS201の制御部214は、BS203を候補セカンダリノード(ターゲットセカンダリノード)として決定する。
Step S202:
The control unit 214 of the BS 201 determines candidate secondary nodes that may become secondary nodes based on the measurement results. Specifically, control section 214 of BS 201 determines BS 200 that manages a cell with good radio quality as a candidate secondary node. In this operation example, the control unit 214 of the BS201 determines the BS203 as the candidate secondary node (target secondary node).
 ステップS203:
 BS201のネットワーク通信部213は、CPCトリガメッセージをBS203へ送信する。BS203のネットワーク通信部213は、CPCトリガメッセージを受信する。
Step S203:
Network communication unit 213 of BS201 transmits a CPC trigger message to BS203. Network communication unit 213 of BS 203 receives the CPC trigger message.
 CPCトリガメッセージは、BS203においてCPCのトリガとなるメッセージであってよい。CPCトリガメッセージは、測定結果を含んでよい。 The CPC trigger message may be a message that triggers CPC in BS203. The CPC trigger message may contain measurement results.
 BS203の制御部214は、CPCトリガメッセージの受信に応じて、SCGの設定に関するSCG設定情報を生成してよい。BS203の制御部214は、ステップS103と同様に、SCG設定情報を生成してよい。 The control unit 214 of the BS 203 may generate SCG setting information related to SCG settings in response to receiving the CPC trigger message. The control unit 214 of the BS 203 may generate SCG setting information as in step S103.
 ステップS204:
 BS203のネットワーク通信部213は、CPCトリガメッセージに対する応答であるCPC確認(CPC Confirmation)メッセージをBS201へ送信する。BS201のネットワーク通信部213は、CPC確認メッセージを受信する。BS203の制御部214は、SCG設定情報をCPC確認メッセージに含めてよい。
Step S204:
Network communication section 213 of BS 203 transmits a CPC Confirmation message, which is a response to the CPC trigger message, to BS 201 . Network communication unit 213 of BS 201 receives the CPC confirmation message. Controller 214 of BS 203 may include the SCG configuration information in the CPC confirmation message.
 ステップS205からS210:
 動作例1のステップS107からS112に対応する。
Steps S205 to S210:
This corresponds to steps S107 to S112 in Operation Example 1.
 なお、ステップS210において、BS201の制御部214は、失敗情報の送信先を、上述の(a)~(e)の他に、実行条件情報の送信元のBS200に決定してもよい。これにより、BS202の制御部214は、その後、SN変更要求メッセージを送信する際に、失敗した実行条件情報を考慮して、実行条件情報を生成することができる。BS202の制御部214は、失敗情報に含まれる測定結果に基づいて、実行条件情報を生成してよい。 In addition, in step S210, the control unit 214 of the BS 201 may determine the transmission destination of the failure information to be the BS 200, which is the transmission source of the execution condition information, in addition to the above (a) to (e). This allows the control unit 214 of the BS 202 to generate execution condition information in consideration of the failed execution condition information when transmitting the SN change request message thereafter. The control unit 214 of the BS 202 may generate execution condition information based on the measurement result included in the failure information.
 (その他の実施形態)
 本開示の実施形態を説明したが、本開示は実施形態に限定されるものではない。例えば、マスターノードがトリガとなるセカンダリノード間CPC(MN initiated inter-SN CPC)において、上述と同様の動作が行われてよい。また、intra-SN CPCにおいて、上述と同様の動作が行われてよい。
(Other embodiments)
Although embodiments of the disclosure have been described, the disclosure is not limited to the embodiments. For example, in a CPC between secondary nodes (MN initiated inter-SN CPC) triggered by the master node, the same operation as described above may be performed. Also, in the intra-SN CPC, the same operation as described above may be performed.
 また、上述の動作例では、UE100は、CPAC失敗情報をマスターノードに送信していたが、これに限られない。UE100は、CPAC失敗情報をセカンダリノードに送信してもよい。セカンダリノードは、CPAC失敗情報に基づいて、CPAC設定に基づく失敗を把握してもよい。セカンダリノードは、CPAC失敗情報をマスターノードに送信してもよい。マスターノードは、CPAC失敗情報に基づいて失敗情報を生成してもよい。 Also, in the operation example described above, the UE 100 transmits the CPAC failure information to the master node, but this is not the only option. The UE 100 may send CPAC failure information to the secondary node. The secondary node may keep track of failures based on CPAC configuration based on the CPAC failure information. The secondary node may send CPAC failure information to the master node. A master node may generate failure information based on the CPAC failure information.
 また、上述の各動作例は、別個独立して実施する場合に限らず、各動作例を適宜組み合わせて実施可能である。また、例えば、本明細書に記載されている処理におけるステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。さらに、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 In addition, each of the operation examples described above is not limited to being implemented separately and independently, and can be implemented by appropriately combining each operation example. Also, for example, the steps in the processes described herein do not necessarily have to be executed in chronological order according to the order described in the flowcharts or sequence diagrams. For example, steps in a process may be performed in an order different from that depicted in a flowchart or sequence diagram, or in parallel. Also, some of the steps in the process may be deleted and additional steps may be added to the process. Furthermore, each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 例えば、本明細書において説明した装置の1つ以上の構成要素の動作を含む方法が提供されてもよく、上記構成要素の動作をコンピュータに実行させるためのプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非遷移的実体的記録媒体が提供されてもよい。このような方法、プログラム、及びコンピュータに読み取り可能な非遷移的実体的記録媒体(non-transitory tangible computer-readable storage medium)も、本開示に含まれる。また、UE100の少なくとも一部又はBS200の少なくとも一部は、UE100又はBS200が行う各処理を実行する回路が集積化されたチップセット又はSoC(System on Chip)であってよい。 For example, a method may be provided that includes the operation of one or more components of the apparatus described herein, and a program may be provided for causing a computer to perform the operation of the components. Further, a computer-readable non-transitional tangible recording medium recording the program may be provided. Such methods, programs, and computer-readable non-transitory tangible computer-readable storage mediums are also included in the present disclosure. Also, at least part of the UE 100 or at least part of the BS 200 may be a chipset or SoC (System on Chip) in which circuits for executing each process performed by the UE 100 or the BS 200 are integrated.
 本開示において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。 In this disclosure, "transmit" may mean performing processing of at least one layer in the protocol stack used for transmission, or physically transmitting a signal wirelessly or by wire. may mean to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (8)

  1.  マスターセルグループを管理するマスターノードとセカンダリセルグループを管理するセカンダリノードとから提供される無線リソースをユーザ装置(100)が利用できる二重接続方式において前記マスターノードとして動作する基地局(200、201)であって、
     無線品質に関する条件が満たされた場合に前記セカンダリセルグループのプライマリセルを追加又は変更するためのCPAC設定情報を前記ユーザ装置(100)へ送信する無線通信部(212)と、
     前記CPAC設定情報に基づく前記プライマリセルの追加又は変更の失敗に関するCPAC失敗情報を前記ユーザ装置(100)から取得し、前記CPAC失敗情報に基づく失敗情報を生成する制御部(214)と、
     前記失敗情報を1又は複数の他の基地局(200、202、203)へ送信するネットワーク通信部(213)と、を備える基地局。
    Base stations (200, 201) operating as master nodes in a dual access scheme in which a user equipment (100) can use radio resources provided by a master node that manages a master cell group and a secondary node that manages a secondary cell group. ) and
    a radio communication unit (212) that transmits CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment (100) when a condition regarding radio quality is satisfied;
    A control unit (214) that acquires CPAC failure information related to the failure of adding or changing the primary cell based on the CPAC configuration information from the user equipment (100) and generates failure information based on the CPAC failure information;
    a network communication unit (213) for transmitting said failure information to one or more other base stations (200, 202, 203).
  2.  前記1又は複数の他の基地局(200、202、203)は、前記セカンダリノードとして動作している基地局(200、202)を含む
     請求項1に記載の基地局。
    Base station according to claim 1, wherein said one or more other base stations (200, 202, 203) comprise a base station (200, 202) acting as said secondary node.
  3.  前記ネットワーク通信部(213)は、前記CPAC設定情報に含める前記プライマリセルになりうる候補プライマリセルの設定に関する情報を前記1又は複数の他の基地局(200、202、203)から受信し、
     前記1又は複数の他の基地局(200、202、203)は、前記セカンダリノードになる可能性がある候補セカンダリノードとして動作する基地局(200、202、203)を含む
     請求項1又は2に記載の基地局。
    The network communication unit (213) receives from the one or more other base stations (200, 202, 203) information on configuration of candidate primary cells that can be the primary cell to be included in the CPAC configuration information,
    3. The method of claim 1 or 2, wherein said one or more other base stations (200, 202, 203) comprise base stations (200, 202, 203) acting as candidate secondary nodes to potentially become said secondary nodes. Listed base station.
  4.  前記制御部(214)は、前記CPAC失敗情報に基づいて、前記複数の他の基地局(200、202、203)のそれぞれに個別の失敗情報を生成し、
     前記ネットワーク通信部(213)は、前記複数の他の基地局(200、202、203)のそれぞれに、前記個別の失敗情報を送信する
     請求項1から3のいずれか1項に記載の基地局。
    The control unit (214) generates individual failure information for each of the plurality of other base stations (200, 202, 203) based on the CPAC failure information,
    The base station according to any one of claims 1 to 3, wherein said network communication unit (213) transmits said individual failure information to each of said plurality of other base stations (200, 202, 203). .
  5.  前記CPAC設定情報は、前記セカンダリセルグループの前記プライマリセルになり得る1又は複数の候補プライマリセルの識別子を含み、
     前記制御部(214)は、前記候補プライマリセル毎の個別の失敗情報を生成し、
     前記ネットワーク通信部(213)は、前記候補プライマリセルを管理する前記1又は複数の他の基地局(200、202、203)のそれぞれに、当該他の基地局(200、202、203)が管理する前記候補プライマリセルに対応する前記個別の失敗情報を送信する
     請求項1から4のいずれか1項に記載の基地局。
    The CPAC configuration information includes identifiers of one or more candidate primary cells that can be the primary cells of the secondary cell group;
    The control unit (214) generates individual failure information for each of the candidate primary cells,
    The network communication unit (213) provides each of the one or more other base stations (200, 202, 203) managing the candidate primary cells with 5. The base station according to any one of claims 1 to 4, which transmits the individual failure information corresponding to the candidate primary cells that
  6.  前記失敗情報は、前記プライマリセルの追加又は変更が失敗した原因を示す情報を含む
     請求項1から5のいずれか1項に記載の基地局。
    The base station according to any one of claims 1 to 5, wherein the failure information includes information indicating a cause of failure in addition or change of the primary cell.
  7.  前記失敗情報は、前記セカンダリセルグループの前記プライマリセルになり得る候補プライマリセル以外のセルで前記ユーザ装置(100)が検出した検出セルの識別情報と、前記ユーザ装置(100)が前記検出セルに対して行った測定の結果と、を含む
     請求項1から6のいずれか1項に記載の基地局。
    The failure information includes identification information of a detected cell detected by the user equipment (100) in a cell other than the candidate primary cell that can be the primary cell of the secondary cell group, and identification information of the detected cell detected by the user equipment (100) in the detected cell. 7. A base station according to any one of claims 1 to 6, comprising the results of measurements performed on the base station.
  8.  マスターセルグループを管理するマスターノードとセカンダリセルグループを管理するセカンダリノードとから提供される無線リソースをユーザ装置(100)が利用できる二重接続方式において前記マスターノードとして動作する基地局(200、201)で実行される通信制御方法であって、
     無線品質に関する条件が満たされた場合に前記セカンダリセルグループのプライマリセルを追加又は変更するためのCPAC設定情報を前記ユーザ装置(100)へ送信するステップと、
     前記CPAC設定情報に基づく前記プライマリセルの追加又は変更の失敗に関するCPAC失敗情報を前記ユーザ装置(100)から取得し、前記CPAC失敗情報に基づく失敗情報を生成するステップと、
     前記失敗情報を1又は複数の他の基地局(200、202、203)へ送信するステップと、を有する
     通信制御方法。
     
    Base stations (200, 201) operating as master nodes in a dual access scheme in which a user equipment (100) can use radio resources provided by a master node that manages a master cell group and a secondary node that manages a secondary cell group. ) is a communication control method executed in
    a step of transmitting CPAC setting information for adding or changing a primary cell of the secondary cell group to the user equipment (100) when a condition regarding radio quality is satisfied;
    obtaining from the user equipment (100) CPAC failure information related to the failure of adding or changing the primary cell based on the CPAC configuration information, and generating failure information based on the CPAC failure information;
    and transmitting the failure information to one or more other base stations (200, 202, 203).
PCT/JP2022/018693 2021-05-07 2022-04-25 Base station and communication control method WO2022234781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079076A JP2022172824A (en) 2021-05-07 2021-05-07 Base station and communication control method
JP2021-079076 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234781A1 true WO2022234781A1 (en) 2022-11-10

Family

ID=83932165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018693 WO2022234781A1 (en) 2021-05-07 2022-04-25 Base station and communication control method

Country Status (2)

Country Link
JP (1) JP2022172824A (en)
WO (1) WO2022234781A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "CPA and MN initiated Inter-SN CPC procedures: preparation and execution phases", 3GPP DRAFT; R2-2101872, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974734 *

Also Published As

Publication number Publication date
JP2022172824A (en) 2022-11-17

Similar Documents

Publication Publication Date Title
US11576080B2 (en) Radio access network node, core network node, radio terminal, and methods therefor
US10412652B2 (en) Apparatus and method for routing data packet to user equipment in LTE-WLAN aggregation system
US20150131578A1 (en) Communication method and apparatus in network environment where terminal may have dual connectivity to multiple base stations
US20220159771A1 (en) Communication control method and relay apparatus
EP4110008A1 (en) Communication control method
WO2022052851A1 (en) Quality of service (qos) monitoring method
US20210337516A1 (en) Communication control method
JP2023040220A (en) Communication control method
US20230091236A1 (en) Communication control method and user equipment
WO2023048089A1 (en) User device, communication device, and communication method
WO2022234781A1 (en) Base station and communication control method
US20240064588A1 (en) Base station, and communication control method
WO2022230701A1 (en) User equipment and communication control method
US20230262826A1 (en) Communication control method
WO2023048091A1 (en) Communication device and communication method
WO2023048088A1 (en) Communication device and communication method
WO2023149490A1 (en) Communication method, user device, and base station
WO2023038111A1 (en) Communication device, location management device, and communication method
WO2023068356A1 (en) Communication device, base station, and communication method
WO2023068350A1 (en) Communication device, base station, and communication method
WO2024011375A1 (en) METHODS FOR INTER-gNB HANDOVER WITH L2 U2N RELAY
WO2023068353A1 (en) Communication device, base station, and communication method
WO2023204171A1 (en) Slice support existence confirmation method and user device
WO2022027633A1 (en) Measurement reporting method and apparatus, computer device, and storage medium
WO2015005255A1 (en) Mobile communication system, user terminals and network devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE