WO2023048091A1 - Communication device and communication method - Google Patents

Communication device and communication method Download PDF

Info

Publication number
WO2023048091A1
WO2023048091A1 PCT/JP2022/034791 JP2022034791W WO2023048091A1 WO 2023048091 A1 WO2023048091 A1 WO 2023048091A1 JP 2022034791 W JP2022034791 W JP 2022034791W WO 2023048091 A1 WO2023048091 A1 WO 2023048091A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
target
prs
communication
communication device
Prior art date
Application number
PCT/JP2022/034791
Other languages
French (fr)
Japanese (ja)
Inventor
美沙 原田
秀明 ▲高▼橋
辰吾 清水
秀雄 姫野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023048091A1 publication Critical patent/WO2023048091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to communication devices and communication methods.
  • Non-Patent Document 1 In a mobile communication system that conforms to the technical specifications of 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, sidelink communication (for example, V2X (Vehicle to Everything) sidelink communication) Supported (for example, Non-Patent Document 1).
  • V2X Vehicle to Everything
  • Non-Patent Document 2 In recent years, for example, it is possible to perform positioning using sidelink communication in order to enable positioning of a communication device outside the coverage of a base station or to enable tracking of the relative position of a communication device with low delay. proposed (for example, Non-Patent Document 2).
  • the communication device performs positioning (position estimation) using sidelink positioning reference signals from other communication devices around the communication device.
  • the communication device includes a communication unit that transmits a sidelink positioning reference signal to another communication device or receives from the other communication device, and based on the measurement result for the positioning reference signal, the communication a controller for estimating the position of the device.
  • the controller maintains one or more pre-defined settings pre-defined for the positioning reference signals.
  • the communication unit transmits or receives the positioning reference signal based on a pre-defined setting selected from the held one or more pre-defined settings.
  • a communication method is a communication method executed by a communication device.
  • the communication method includes a step of transmitting a sidelink positioning reference signal to or receiving from another communication device, and estimating the position of the communication device based on a measurement result for the positioning reference signal. and maintaining one or more predefined settings for the positioning reference signals.
  • the receiving step transmits or receives the positioning reference signal based on a pre-defined setting selected from the one or more retained pre-defined settings.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram showing a configuration example of a UE protocol stack in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing the configuration of the UE according to the embodiment.
  • FIG. 5 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 6 is a diagram showing the configuration of the location management device according to the embodiment.
  • FIG. 7 is a sequence diagram for explaining a first operation example according to one embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment.
  • FIG. 3 is a diagram showing a configuration example of a UE protocol stack in the mobile communication system according to the embodiment.
  • FIG. 8 is a sequence diagram for explaining a second operation example according to one embodiment.
  • FIG. 9 is a sequence diagram for explaining a third operation example according to one embodiment.
  • FIG. 10 is a sequence diagram for explaining a fourth operation example according to one embodiment.
  • FIG. 11 is a sequence diagram for explaining a fifth operation example according to one embodiment.
  • FIG. 12 is a sequence diagram for explaining a sixth operation example according to one embodiment.
  • the current 3GPP technical specifications do not define specific operations for a communication device to perform position estimation using a sidelink positioning reference signal. Therefore, there is a possibility that the communication device cannot appropriately perform position estimation using the positioning reference signal for the sidelink. Therefore, one object of the present disclosure is to provide a communication device and a communication method that enable appropriate position estimation using positioning reference signals for sidelinks.
  • the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the 5GC 30 includes a location management device 400.
  • the location manager 400 may manage support for location services for the UE (target UE) 100 .
  • the location management device 400 may manage overall coordination and scheduling of resources required for the location of the UE 100 .
  • the location management device 400 is sometimes called an LMF (Location Management Function).
  • the LMF is connected with the AMF via the NL1 interface.
  • the NL1 interface is only used as transport link for Long Term Evolution (LTE) Positioning Protocol (LPP) and NR Positioning Protocol A (NRPPa).
  • LTE Long Term Evolution
  • LPP Positioning Protocol
  • NRPPa NR Positioning Protocol A
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • the UE 100 may be called, for example, a road-side unit (RSU) installed on a road or a vulnerable road user (VRU).
  • RSU road-side unit
  • VRU vulnerable road user
  • the UEs 100 may perform sidelink communication, which is communication via an interface between the UEs 100.
  • the interface between UEs 100 may be referred to as the PC5 interface.
  • NR sidelink communication may include NR sidelink communication and V2X sidelink communication.
  • NR sidelink communication is an AS (Autonomous System) feature that enables at least V2X communication between two or more nearby UEs 100 using NR technology without going through a network node.
  • V2X sidelink communication is an AS feature that enables V2X communication between two or more nearby UEs 100 without going through a network node using E-UTRA (Evolved Universal Terrestrial Radio Access) technology.
  • Support for Vehicle to everything (V2X) services over the PC5 interface can be provided by NR sidelink communications and/or V2X sidelink communications.
  • NR sidelink communication may be used to support services other than V2X services.
  • Sidelink communication (that is, sidelink transmission and reception) is, regardless of which RRC (Radio Resource Control) state the UE 100 is in, when the UE 100 is within NG-RAN coverage (eg, within a cell), and when the UE 100 is It may be supported both when outside NG-RAN coverage (eg, outside a cell).
  • RRC Radio Resource Control
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC (Radio Resource Control) layer, and LPP (LTE Positioning Protocol) layer.
  • PHY Physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • LPP LTE Positioning Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
  • a frame may consist of 10 ms and may include 10 subframes of 1 ms.
  • a subframe can include a number of slots corresponding to the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs.
  • UE 100 transmits and receives data and control signals on the active BWP.
  • BWP bandwidth part
  • Up to four BWPs can be set in the UE 100, for example.
  • Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive.
  • UE 100 may be configured with up to 12 CORESETs on the serving cell.
  • Each CORESET has an index from 0 to 11.
  • a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, hybrid ARQ (HARQ) retransmission processing, random access procedures, and so on. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the LPP layer which is located above the RRC layer, exchanges positioning capabilities, transmits assistance data, transmits location information, transmits positioning measurements (positioning reference signal measurement results), and/or position estimation (position estimation result), error handling, and/or abort.
  • LPP signaling LPP messages is transmitted between the LPP layer of the UE 100 and the LPP layer of the location management device 400 (LPP).
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • the protocol for the radio section between UEs 100 may have a physical layer, a MAC layer, an RLC layer, a PDCP layer, and an RRC layer.
  • the protocol may be the control plane protocol stack for the sidelink control channel (SCCH) of RRC on the PC5 interface.
  • SCCH sidelink control channel
  • the control plane protocol for the sidelink broadcast channel (SBCCH) may comprise a physical layer, a MAC layer, an RLC layer, an RRC layer, and omit the PDCP layer.
  • the protocol for the radio section between UEs 100 may include a physical layer, MAC layer, RLC layer, PDCP layer, RRC layer, and PC5-S layer.
  • the protocol may be used in the control plane for the sidelink control channel (SCCH) of PC5-S.
  • SCCH sidelink control channel
  • the PHY layer has the same functions as above. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the UE 100 via physical channels.
  • the MAC layer includes radio resource selection, packet filtering, priority processing between uplink and sidelink transmission, sidelink CSI (Channel State Information) as services and functions via the PC5 interface. ) reporting, etc.
  • the RLC layer has the same functions as above. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the UE 100 via logical channels.
  • the PDCP layer has the same functionality as above, with some restrictions (eg, restrictions on Out-of-order delivery, duplication, etc.).
  • the RRC layer transfers PC5-RRC messages between peer UEs, maintains and releases PC5-RRC connections between two UEs, detects sidelink radio link failures for PC5-RRC connections, etc.
  • a PC5-RRC connection is a logical connection between two UEs for a pair of Source Layer-2 ID and Destination Layer-2 ID. The logical connection is considered established after the corresponding PC5 unicast link is established.
  • the PC5-S layer transfers PC5-S signaling (eg, PC5-S messages).
  • the UE 100 may have layers other than the layers described above.
  • the current 3GPP technical specifications do not define specific operations for UE 100 to perform position estimation using sidelink positioning reference signals. Therefore, there is a possibility that the UE 100 cannot appropriately perform position estimation using the sidelink positioning reference signal. In one embodiment described later, an operation for enabling the UE 100 to appropriately perform position estimation using the sidelink positioning reference signal will be described.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the communication unit 110 transmits to or receives from the other UE 100 the positioning reference signal for the sidelink.
  • the control unit 120 performs position estimation of the UE 100 based on the measurement result for the positioning reference signal.
  • the control unit 120 holds one or a plurality of setting candidates indicating preset settings for positioning reference signals.
  • the communication unit 110 transmits or receives the positioning reference signal based on the setting selected from the held setting candidates.
  • the operation of the functional units provided in the UE 100 (specifically, at least one of the communication unit 110 (the transmission unit 111 and/or the reception unit 112) and the control unit 120) will be described as the operation of the UE 100.
  • Base station configuration A configuration of the base station 200 according to the embodiment will be described with reference to FIG.
  • Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 also controls communication with nodes (for example, adjacent base stations, the core network device 300, the location management device 400, etc.) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the operation of the functional unit (specifically, at least one of the transmitting unit 211, the receiving unit 212, the network interface 220, and the control unit 230) included in the base station 200 will be described as the operation of the base station 200.
  • the functional unit specifically, at least one of the transmitting unit 211, the receiving unit 212, the network interface 220, and the control unit 230 included in the base station 200 will be described as the operation of the base station 200.
  • Location management device 400 has network interface 420 and control unit 430 .
  • the network interface 420 transmits and receives signals to and from the network.
  • the network interface 420 receives signals from, for example, an AMF connected via an NL1 interface, which is an AMF-location management device interface, and transmits signals to the AMF.
  • the network interface 420 may have a transmitter 421 that transmits signals and a receiver 422 that receives signals.
  • the control unit 430 performs various controls in the position management device 400 .
  • the control unit 430 controls communication with a node (for example, AMF) via the network interface 420, for example.
  • the operations of the location management device 400 described above and later may be operations controlled by the control unit 430 .
  • the control unit 430 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 430 .
  • the memory stores programs to be executed by the processor, parameters relating to the programs, and data relating to the programs. All or part of the memory may be included within the processor.
  • the control unit 230 generates control information regarding positioning reference signals for sidelinks.
  • the transmitting unit 421 transmits control information to the UE 100 that transmits or receives positioning reference signals.
  • the control information includes a request to enable or disable the transmission or reception of positioning reference signals, the type of signal to use as positioning reference signals, and whether the UE 100 is the source or destination of the positioning reference signals. and/or information that specifies By this means, the UE 100 that has received the control information can control the transmission or reception of the positioning reference signal based on the request for enabling or disabling the transmission or reception of the positioning reference signal. Also, the UE 100 can control transmission or reception of the positioning reference signal based on the type of signal used as the positioning reference signal.
  • the control unit 120 of the UE 100 can control transmission or reception of the positioning reference signal based on information specifying whether the UE 100 is the source or destination of the positioning reference signal. As a result, the UE 100 can appropriately perform position estimation using the positioning reference signal.
  • the operation of the functional units (specifically, at least one of the network interface 420 (the transmitting unit 421 and the receiving unit 422) and the control unit 430) included in the location management device 400 will be referred to as the operation of the location management device 400.
  • the operation of the location management device 400 can be described as
  • a target UE 101 may be a UE 100 that performs a position estimation procedure in order to know its own position.
  • the target UE 101 may be outside the cell managed by the base station 200 (ie, outside NG-RAN coverage). In this case, the target UE 101 is in RRC idle state or RRC inactive state.
  • the target UE 101 may be within a cell managed by the base station 200 (ie within NG-RAN coverage). In this case, the target UE 101 is in RRC connected state.
  • the anchor UE 102 may be a UE 100 that performs a location estimation procedure in order for the target UE 101 to know its own location.
  • the anchor UE 102 may be outside the cell managed by the base station 200 (ie, outside NG-RAN coverage). In this case, the anchor UE 102 is in RRC idle state or RRC inactive state.
  • the anchor UE 102 may be within a cell managed by the base station 200 (ie, within NG-RAN coverage). In this case, the anchor UE 102 is in RRC Connected state.
  • a plurality of UEs 100 around the target UE 101 may serve as the anchor UE 102 . Since each anchor UE 102 operates in the same manner, one anchor UE 102 will be described as a representative in this operation example. Multiple anchor UEs 102 may perform the following operations.
  • the target UE 101 (control unit 120) holds one or more pre-defined settings for the sidelink positioning reference signal (hereinafter referred to as SL-PRS (Sidelink Positioning Reference Signal)).
  • SL-PRS Segment Positioning Reference Signal
  • Predefined settings may include, for example, time-frequency resources for transmission and reception of SL-PRS.
  • the time/frequency resource is, for example, at least one of the SL-PRS transmission period, the SL-PRS transmission and/or reception bandwidth, the SL-PRS transmission start time, and the SL-PRS transmission end time. may contain.
  • the pre-defined settings may include a signal sequence for SL-PRS.
  • the target UE 101 may retain one or more pre-defined settings by setting one or more pre-defined settings by the time of shipment.
  • the target UE 101 (control unit 120) may also obtain one or more pre-defined settings from the network 10.
  • the target UE 101 (control unit 120) may obtain one or more predefined settings from the location management device 400, for example.
  • the target UE 101 may hold a setting identifier associated with each of one or more predefined settings.
  • a configuration identifier may be, for example, an index.
  • the target UE 101 (control unit 120) may have a list consisting of sets of pre-defined settings and setting identifiers associated with the pre-defined settings.
  • the anchor UE 102 may hold one or more pre-defined settings. Also, the anchor UE 102 (control unit 120) may hold a configuration identifier.
  • the pre-defined settings held in the target UE 101 and the anchor UE 102 may be commonly defined. Alternatively, the pre-defined settings held in the target UE 101 and the anchor UE 102 may be defined independently. In this case, some of the pre-defined settings held in the target UE 101 and the anchor UE 102 may be different.
  • step S101 the target UE 101 (control unit 120) selects a preset setting to be applied from one or a plurality of stored preset settings.
  • the target UE 101 (control unit 120) may, for example, initiate the selection of pre-defined settings according to the need to know the location of the target UE 101 itself.
  • the target UE 101 (control unit 120) may initiate selection of the pre-defined settings, for example, based on the user's operation.
  • the target UE 101 may determine the source of the SL-PRS (ie, the transmitting entity that transmits the SL-PRS).
  • the target UE 101 may determine the transmission source of the SL-PRS to be the target UE 101 itself or the anchor UE 102. In this operation example, the target UE 101 (control unit 120) determines the transmission source of the SL-PRS to be the target UE 101 itself.
  • the target UE 101 may determine the destination of the SL-PRS (that is, the receiving entity that receives the SL-PRS).
  • the target UE 101 may determine the transmission destination of the SL-PRS to the target UE 101 itself or to the anchor UE 102.
  • the target UE 101 may determine the type of signal to be used as SL-PRS.
  • the target UE 101 may determine the type of signal to be used as SL-PRS when the mobile communication system 1 supports multiple signals as signals that can be used as SL-PRS.
  • Signals that can be used as SL-PRS are, for example, channel state information reference signals for sidelinks (SL-CSI-RS), sounding reference signals for sidelinks (SL-SRS), demodulation reference signals for sidelinks ( SL-DMRS) and/or synchronization signals and physical broadcast channel blocks for sidelinks (SL-SSB).
  • the target UE 101 may determine SL-PRS measurement report targets.
  • Target UE 101 for example, as a measurement report target of SL-PRS, for example, received power of SL-PRS (for example, RSRP (Reference Signal Received Power)), reception time of SL-PRS, etc. You may decide whether
  • step S102 the target UE 101 (communication unit 110) transmits to the anchor UE 102 the setting identifier associated with the selected predefined setting.
  • Anchor UE 102 (communication unit 110 ) receives the configuration identifier from target UE 101 .
  • the target UE 101 may generate control information including the setting identifier.
  • the target UE 101 (communication unit 110) may transmit the generated control information.
  • the control information is control information related to SL-PRS.
  • Control information related to SL-PRS includes sidelink control information (SCI) defined in the physical layer, MAC control elements (MAC CE), RRC messages defined in the RRC layer, and PC5-S defined in the PC5-S layer. message, and messages defined in other layers.
  • SCI sidelink control information
  • MAC CE MAC control elements
  • RRC messages defined in the RRC layer
  • PC5-S defined in the PC5-S layer.
  • message and messages defined in other layers.
  • Other layers may be, for example, LPP (SL-LPP) layers for sidelinks.
  • the control information may include information indicating SL-PRS measurement report targets.
  • the control information may also include, for example, the type of signal to use as SL-PRS.
  • the control information may also include designation information that designates whether the anchor UE 102 is the source or destination of the SL-PRS.
  • the designation information may indicate that the anchor UE 102 is the source of the SL-PRS, may indicate that the anchor UE 102 is the destination of the SL-PRS, or indicates that the target UE 101 is the transmission of the SL-PRS. It may indicate that the target UE 101 is the source, or that the target UE 101 is the destination of the SL-PRS.
  • Anchor UE 102 may determine whether to transmit or receive SL-PRS based on the designation information. If the designation information indicates that the anchor UE 102 is the SL-PRS transmission source or indicates that the target UE 101 is the SL-PRS transmission destination, the anchor UE 102 (control unit 120) transmits the SL-PRS may be determined to be transmitted. In this case, the anchor UE 102 (controller 120) may perform operations to transmit the SL-PRS. On the other hand, if the designation information indicates that the anchor UE 102 is the SL-PRS transmission destination or indicates that the target UE 101 is the SL-PRS transmission source, the anchor UE 102 (control unit 120) It may be determined to receive the SL-PRS. In this case, the anchor UE 102 (controller 120) may perform operations to receive the SL-PRS.
  • the anchor UE 102 may apply the predefined settings associated with the setting identifier.
  • the pre-defined configuration associated with the configuration identifier may force the anchor UE 102 to apply. Therefore, the target UE 101 (control unit 120) may unilaterally determine the pre-defined settings.
  • the anchor UE 102 may determine whether to approve the predefined setting associated with the setting identifier.
  • the anchor UE 102 may apply the pre-defined settings when approving the pre-defined settings.
  • the anchor UE 102 may determine to apply the pre-defined configuration associated with the configuration identifier. Therefore, the preset settings may be determined through negotiation by exchanging signals regarding settings between the target UE 101 (control unit 120) and the anchor UE 102 (control unit 120) (see step S103).
  • the anchor UE 102 may execute the process of step S103 when applying the pre-defined setting, or may execute the process of step S103 when the above determination is made.
  • the process of step S103 may be omitted.
  • the anchor UE 102 may transmit a response to step S102 to the target UE 101.
  • the target UE 101 may receive the response from the anchor UE 102.
  • the response may contain information indicating approval or rejection of the pre-defined configuration associated with the configuration identifier received from the target UE 101.
  • the anchor UE 102 (control unit 120) may include information indicating approval of the pre-defined setting in the response when approving the pre-defined setting.
  • the anchor UE 102 (control unit 120) may include information indicating rejection of the predefined settings in the response.
  • the target UE 101 (communication unit 110) may receive from the anchor UE 102 information indicating approval or rejection of the predefined configuration associated with the configuration identifier in response to the transmission of the configuration identifier.
  • the anchor UE 102 controls one or more pre-configured settings held by the anchor UE 102.
  • a pre-defined setting may be selected from among the defined settings to substitute for the rejected pre-defined setting, and the response may include a setting identifier associated with the selected pre-defined setting.
  • step S104 If the response includes information indicating approval of the pre-defined settings, the process of step S104 or step S105 may be performed.
  • the target UE 101 may return to the process of step S101.
  • the target UE 101 may select a new pre-defined setting from one or more pre-defined settings held.
  • the target UE 101 may also apply the alternative pre-defined setting if the response contains a setting identifier associated with a pre-defined setting that replaces the rejected pre-defined setting.
  • the target UE 101 may return to the process of step S101 when rejecting the alternative pre-defined setting.
  • step S104 the target UE 101 (communication unit 110) transmits to the anchor UE 102 an SL-PRS measurement request requesting SL-PRS measurement.
  • Anchor UE 102 (communication unit 110 ) receives the SL-PRS measurement request from target UE 101 .
  • the target UE 101 may include the SL-PRS measurement request in the control information regarding SL-PRS.
  • the target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102.
  • the anchor UE 102 (communication unit 110) may receive control information from the target UE 101 including the SL-PRS measurement request.
  • the target UE 101 may transmit an SL-PRS measurement request to the anchor UE 102 before starting transmission of SL-PRS.
  • Anchor UE 102 (communication unit 110) may initiate an operation to measure SL-PRS in response to receiving the SL-PRS measurement request.
  • the target UE 101 may transmit a reception activation request for enabling (activating) reception of SL-PRS to the anchor UE 102.
  • the target UE 101 may transmit the reception activation request instead of the SL-PRS measurement request, or may transmit it separately from the SL-PRS measurement request.
  • the target UE 101 may include the reception activation request in the control information regarding SL-PRS.
  • the target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102.
  • the anchor UE 102 (communication unit 110) may receive control information including a reception activation request from the target UE 101.
  • Anchor UE 102 (communication unit 110) enables reception of SL-PRS based on reception of the reception activation request.
  • Anchor UE 102 (communication unit 110) may initiate an operation to receive SL-PRS in response to receiving the reception activation request.
  • Anchor UE 102 (communication unit 110) that has enabled reception of SL-PRS may start reception of SL-PRS or start waiting for reception as the operation.
  • step S104 may be omitted.
  • step S105 the target UE 101 (communication unit 110) transmits SL-PRS to the anchor UE 102.
  • Anchor UE 102 (communication unit 110 ) receives the SL-PRS from target UE 101 .
  • the target UE 101 transmits SL-PRS to the anchor UE 102 based on a pre-defined setting selected from one or more held pre-defined settings. For example, the target UE 101 (communication unit 110) may transmit SL-PRS using time-frequency resources included in the selected pre-defined configuration. Also, the target UE 101 (communication unit 110) may transmit a signal corresponding to the determined signal type as SL-PRS.
  • the target UE 101 may transmit the SL-PRS singly, or may transmit it periodically or aperiodically.
  • the anchor UE 102 receives the SL-PRS from the target UE 101 based on a pre-defined setting selected from one or more held pre-defined settings.
  • Anchor UE 102 (control unit 120) may control reception of SL-PRS based on control information regarding SL-PRS.
  • the anchor UE 102 (communication unit 110) may receive the signal corresponding to the determined signal type as the SL-PRS.
  • the anchor UE 102 measures SL-PRS.
  • the anchor UE 102 may measure at least one of SL-PRS reception power (eg, RSRP), SL-PRS reception time, and the like.
  • the anchor UE 102 may perform measurement based on, for example, information indicating SL-PRS measurement report targets.
  • step S107 the anchor UE 102 (communication unit 110) transmits a measurement report including measurement results to the target UE 101.
  • the target UE 101 receives the measurement report from the anchor UE 102.
  • the target UE 101 receives the measurement result for the SL-PRS from the anchor UE 102.
  • the measurement result is, for example, at least one of the SL-PRS received power (eg, RSRP), SL-PRS reception time (arrival time), SL-PRS reception angle (arrival angle), and the like.
  • SL-PRS received power eg, RSRP
  • SL-PRS reception time arrival time
  • SL-PRS reception angle arrival angle
  • the measurement report may contain other information in addition to the measurement results for SL-PRS.
  • the measurement report may include information indicating the geographic coordinates of the anchor UE 102 (communication unit 110).
  • the target UE 101 performs position estimation based on the measurement result and/or the information indicating the geographical coordinates.
  • the target UE 101 (control unit 120) may perform position measurement using, for example, a method similar to the UL-TDOA (Uplink time difference of arrival) positioning method.
  • a method similar to the UL-TDOA positioning method may be referred to as the SL-TDOA positioning method.
  • the target UE 101 (control unit 120) may perform position measurement, for example, based on the arrival time difference (difference in reception time) when SL-PRSs arrive at multiple anchor UEs 102.
  • the anchor UE 102 may disable SL-PRS reception in response to transmission of the measurement report. Also, the anchor UE 102 (control unit 120) may release the SL-PRS setting in response to transmission of the measurement report.
  • the target UE 101 and the anchor UE 102 may periodically or aperiodically execute the processes from step S105 to step S108 after the process of step S108 is performed, for example.
  • the target UE 101 may transmit a reception deactivation request for disabling reception of SL-PRS in response to reception of the measurement report.
  • the request may be included in the control information for SL-PRS.
  • Anchor UE 102 (control unit 120) may disable (deactivate) reception of SL-PRS in response to receiving the request.
  • Anchor UE 102 (control unit 120) may release the SL-PRS configuration upon receiving the request.
  • the target UE 101 (control unit 120) holds one or more predefined settings.
  • the target UE 101 (communication unit 110) transmits SL-PRS based on a pre-defined setting selected from one or more pre-defined settings. Since the predefined settings are predefined settings for SL-PRS, the target UE 101 (control unit 120) can appropriately perform position estimation using SL-PRS.
  • the target UE 101 (communication unit 110) transmits to the anchor UE 102 a setting identifier associated with the selected pre-defined setting. This allows the selected pre-defined settings to be communicated from the target UE 101 to the anchor UE 102 with a smaller amount of information compared to sending the selected pre-defined settings themselves to the anchor UE 102 .
  • the target UE 101 receives from the anchor UE 102 information indicating approval or rejection of the predefined setting associated with the setting identifier in response to the transmission of the setting identifier. This allows the target UE 101 (communication unit 110) to know whether the pre-defined setting has been approved or rejected by the anchor UE 102.
  • the target UE 101 can transmit SL-PRS based on appropriate pre-defined settings, so that position estimation using SL-PRS can be performed properly.
  • the target UE 101 (communication unit 110) transmits the SL-PRS to the anchor UE 102 based on the selected predefined settings.
  • the target UE 101 receives the measurement result for SL-PRS from the anchor UE 102.
  • the target UE 101 (control unit 120) performs position estimation of the target UE 101 based on the measurement result. This eliminates the need for the target UE 101 to measure the SL-PRS from each of the multiple anchor UEs 102, so the processing load on the target UE 101 can be reduced.
  • target UE 101 (communication unit 110) transmits a reception activation request for enabling reception of SL-PRS to anchor UE 102 before starting transmission of SL-PRS.
  • the anchor UE 102 can disable reception of the SL-PRS until the request is received, and the power of the anchor UE 102 can be saved. Also, the anchor UE 102 can avoid failing to receive the SL-PRS.
  • the anchor UE 102 receives control information regarding SL-PRS from the target UE 101.
  • Anchor UE 102 controls reception of SL-PRS based on the control information.
  • the control information may include a request to enable or disable reception of SL-PRS (reception activation request/reception deactivation request). This allows the anchor UE 102 (control unit 120) to enable or disable SL-PRS reception based on the request. Power saving of the anchor UE 102 can be achieved.
  • control information may be sidelink control information (SCI) defined in the physical layer. This enables real-time control.
  • control information may be MAC CE. As a result, a large amount of information can be transmitted to the anchor UE 102 compared to when the control information is SCI, so advanced control becomes possible.
  • control information when the control information is MAC CE, dynamic control becomes possible compared to when the control information is an RRC message.
  • the control information may be an RRC message. As a result, a greater amount of information can be transmitted to the anchor UE 102 compared to when the control information is MAC CE, enabling advanced control.
  • the control information may also include the type of signal used as the SL-PRS. This allows the anchor UE 102 to receive signals based on that type as SL-PRS and report appropriate measurements to the target UE 101 .
  • the control information may also include designation information that designates whether the anchor UE 102 is the source or destination of the SL-PRS.
  • Anchor UE 102 (control unit 120) can determine whether to transmit or receive SL-PRS based on the designation information. This ensures proper transmission and reception of SL-PRS. As a result, the target UE 101 (control unit 120) can appropriately perform position estimation using SL-PRS.
  • Second Operation Example With reference to FIG. 8, a second operation example will be described, mainly focusing on differences from the above-described operation example.
  • the target UE 101 selects the pre-defined settings and the anchor UE 102 sends the SL-PRS.
  • steps S201 to S203 are the same as steps S101 to S103.
  • the explanation proceeds assuming that the anchor UE 102 transmits the SL-PRS.
  • the target UE 101 causes a plurality of anchor UEs 102 to transmit SL-PRS
  • the target UE 101 makes different settings for transmission to each anchor UE 102 so that the anchor UE 102 uses different time/frequency resources for SL-PRS transmission. You may choose an identifier.
  • the target UE 101 may determine a plurality of signal sequences as SL-PRS signal sequences.
  • the target UE 101 may include information indicating each of a plurality of signal sequences in control information so that each anchor UE 102 uses a different signal sequence.
  • step S204 the target UE 101 (communication unit 110) transmits to the anchor UE 102 a transmission activation request for enabling transmission of SL-PRS.
  • Anchor UE 102 (communication unit 110 ) receives the transmission activation request from target UE 101 .
  • the target UE 101 may include the transmission activation request in the control information regarding SL-PRS.
  • the target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102.
  • the anchor UE 102 (communication unit 110) may receive control information including a transmission activation request from the target UE 101.
  • the target UE 101 (communication unit 110) may start operation for receiving the SL-PRS in response to transmission of the transmission activation request.
  • Anchor UE 102 (communication unit 110) enables transmission of SL-PRS based on the reception of the transmission activation request.
  • Anchor UE 102 (communication unit 110) may initiate operations to transmit SL-PRS in response to receiving the transmission activation request.
  • Anchor UE 102 (communication unit 110) that has enabled transmission of SL-PRS may start transmission of SL-PRS or start waiting for transmission as the operation.
  • step S204 may be omitted.
  • step S205 the anchor UE 102 (communication unit 110) transmits SL-PRS to the target UE 101.
  • the target UE 101 receives the SL-PRS from the anchor UE 102.
  • the anchor UE 102 (communication unit 110) transmits the SL-PRS to the target UE 101 based on the pre-defined settings selected by the target UE 101. For example, anchor UE 102 (communication unit 110) may transmit SL-PRS using the determined time/frequency resource. Anchor UE 102 (communication unit 110) may transmit a signal corresponding to the determined signal type as SL-PRS.
  • the target UE 101 receives the SL-PRS from the anchor UE 102 based on the pre-defined settings selected by the target UE 101. For example, the target UE 101 (communication unit 110) may receive the SL-PRS using the determined time/frequency resource. The target UE 101 (communication unit 110) may receive the signal corresponding to the determined signal type as the SL-PRS.
  • the anchor UE 102 (communication unit 110) may transmit information indicating the geographical coordinates of the anchor UE 102 to the target UE 101.
  • the target UE 101 (communication unit 110) may receive the SL-PRS from the anchor UE 102.
  • step S206 the target UE 101 (control unit 120) measures SL-PRS.
  • Target UE 101 for example, received power of SL-PRS (eg, RSRP), reception time of SL-PRS, angle of arrival of SL-PRS (AoA) and angle of departure of SL-PRS (AoD), etc. may be measured. Also, the target UE 101 (control unit 120) may perform measurement based on, for example, information indicating SL-PRS measurement report targets.
  • SL-PRS eg, RSRP
  • reception time of SL-PRS reception time of SL-PRS
  • AoA angle of arrival of SL-PRS
  • AoD angle of departure of SL-PRS
  • the target UE 101 (control unit 120) receives SL-PRS from each of a plurality of anchor UEs 102, it measures each SL-PRS.
  • the target UE 101 performs position estimation based on the measurement result.
  • the target UE 101 may perform position measurement using a method similar to the DL-AoD (Downlink Angle-of-Departure) positioning method, for example.
  • a method similar to the DL-AoD positioning method may be referred to as the SL-AoD positioning method.
  • the target UE 101 (control unit 120) may perform position measurements based on angles of launch (AoD) of SL-PRS from multiple anchor UEs 102, for example.
  • the target UE 101 control unit 120
  • the received power of DL-PRS from a plurality of anchor UE 102 specifically, RSRP (Reference Signal Received Power) measured value
  • SL-PRS spatial information and multiple , the location of the UE 100 may be estimated based on the knowledge of the geographic coordinates of the transmission/reception points (ie, the plurality of anchor UEs 102) (information indicating the geographic coordinates of the anchor UEs 102).
  • the target UE 101 may perform position estimation each time SL-PRS is measured.
  • the target UE 101 may transmit a transmission deactivation request for disabling transmission of SL-PRS according to execution of position estimation.
  • the request may be included in the control information for SL-PRS.
  • Anchor UE 102 (control unit 120) may disable (deactivate) transmission of SL-PRS in response to receiving the request.
  • Anchor UE 102 (control unit 120) may release the pre-defined configuration in response to receiving the request.
  • the target UE 101 holds one or more predefined settings.
  • the target UE 101 transmits to the anchor UE 102 a configuration identifier associated with a pre-defined setting selected from one or more pre-defined settings.
  • the target UE 101 receives the SL-PRS based on the selected pre-defined settings.
  • the anchor UE 102 can know the pre-defined settings selected by the target UE 101 and can send the SL-PRS.
  • the target UE 101 (communication unit 110) can receive SL-PRS based on selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
  • target UE 101 (communication unit 110) transmits a transmission activation request for enabling transmission of SL-PRS to anchor UE 102.
  • the anchor UE 102 can disable transmission of the SL-PRS until the request is received, and the power of the anchor UE 102 can be saved.
  • the target UE 101 can avoid failing to receive the SL-PRS.
  • the anchor UE 102 receives control information regarding SL-PRS from the target UE 101.
  • Anchor UE 102 controls reception of SL-PRS based on the control information.
  • the control information may include a request to enable or disable transmission of SL-PRS (transmission activation request/transmission deactivation request). This allows anchor UE 102 (control unit 120) to enable or disable SL-PRS transmission based on the request. Power saving of the anchor UE 102 can be achieved.
  • step S301 the anchor UE 102 (control unit 120) selects a preset setting to be applied from one or a plurality of stored preset settings.
  • the anchor UE 102 (control unit 120) performs the same operation as the target UE 101 in step S101.
  • anchor UE 102 (communication unit 110) may receive signaling that triggers step S301 from the target UE 101.
  • Anchor UE 102 (controller 120) may initiate selection of a pre-defined configuration in response to receiving this signaling.
  • the target UE 101 may transmit an anchor UE request requesting to become an anchor UE to the anchor UE 102.
  • Anchor UE 102 receives the anchor UE request from target UE 101 .
  • the anchor UE 102 (control unit 120) may perform the process of step S302 upon receiving the anchor UE request.
  • the anchor UE 102 may determine whether or not to approve becoming an anchor UE.
  • the anchor UE 102 (control unit 120) may perform the process of step S302 when approving to become the anchor UE.
  • the anchor UE 102 may transmit information indicating rejection of becoming an anchor UE to the target UE 101 .
  • the target UE 101 may transmit information that triggers step S302 to the anchor UE 102 instead of the anchor UE request. Such information may be included in the control information for SL-PRS.
  • Anchor UE 102 (control unit 120) may execute the process of step S302 upon receiving the information.
  • the anchor UE 102 may receive signaling from the network 10 that triggers step S301.
  • the triggering signaling may be, for example, signaling such as a request or instruction from the base station 200 or signaling such as a message from the location management device 400 .
  • step S302 the anchor UE 102 (communication unit 110) transmits the setting identifier associated with the selected predefined setting to the target UE 101.
  • the target UE 101 receives the configuration identifier from the anchor UE 102.
  • the anchor UE 102 (communication unit 110) performs the same operation as the target UE 101 in step S102.
  • the target UE 101 (communication unit 110) performs the same operation as the anchor UE 102 in step S102.
  • the target UE 101 may perform the same operation as the anchor UE 102 in step S103, and the anchor UE 102 may perform the same operation as the target UE 101 in step S103.
  • Steps S303 to S307 are the same as steps S104 to S108.
  • the anchor UE 102 (control unit 120) holds one or more predefined settings.
  • Anchor UE 102 (control unit 120) selects a pre-defined setting to apply from among one or more pre-defined settings.
  • the anchor UE 102 (communication unit 110) sends the configuration identifier associated with the selected pre-defined configuration to the target UE 101.
  • the target UE 101 (communication unit 110) receives from the anchor UE 102 the configuration identifier associated with the pre-defined configuration selected by the anchor UE 102. This allows the selected pre-defined settings to be conveyed from the anchor UE 102 to the target UE 101 with a smaller amount of information compared to transmitting the selected pre-defined settings themselves to the target UE 101 .
  • the target UE 101 (communication unit 110) can know the pre-defined settings selected by the anchor UE 102 and can receive the SL-PRS based on the selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
  • a fourth operation example will be described with reference to FIG. 10, mainly focusing on differences from the above-described operation example.
  • the anchor UE 102 selects the pre-defined settings and the anchor UE 102 transmits the SL-PRS.
  • steps S401 and S402 are similar to steps S301 and S302.
  • Steps S403 to S406 are the same as S204 to S207.
  • the anchor UE 102 selects a pre-defined setting to apply from one or more pre-defined settings.
  • the anchor UE 102 sends the configuration identifier associated with the selected pre-defined configuration to the target UE 101.
  • Anchor UE 102 (communication unit 110) performs SL-PRS transmission based on the selected pre-defined settings.
  • the target UE 101 receives from the anchor UE 102 the configuration identifier associated with the pre-defined configuration selected by the anchor UE 102.
  • the target UE 101 (communication unit 110) receives the SL-PRS from the anchor UE 102 based on the pre-defined configuration associated with the configuration identifier.
  • the target UE 101 can know the pre-defined settings selected by the anchor UE 102 and can receive the SL-PRS based on the selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
  • the fifth operation example will be described mainly with respect to the differences from the above-described operation example.
  • the target UE 101 performs position estimation based on the position information from the position management device 400 .
  • the target UE 101 and the anchor UE 102 are within the cell managed by the base station 200 (that is, within the NG-RAN coverage).
  • the target UE 101 and the anchor UE 102 are in RRC connected state.
  • the target UE 101 and the anchor UE 102 may be in RRC idle state or RRC inactive state.
  • the target UE 101 and the anchor UE 102 may transition to the RRC connected state when communicating with the location management device 400 .
  • step S501 the target UE 101 (communication unit 110) transmits a location service request to the location management device 400.
  • the location management device 400 receives a location service request from the target UE 101 .
  • a location service request may request information used to determine SL-PRS settings.
  • a request for location services may be included, for example, in any of MO-LR request messages, UL NAS transport messages, LPP messages, and the like.
  • the location service request (including a message) includes, for example, at least one of information indicating location estimation accuracy, SL-PRS measurement accuracy, location service (LCS) quality of service (QoS), and the like. can be
  • UE 100 and location management device 400 communicate (transmit and/or receive) via base station 200 (cell) and AMF. (cell) and AMF may be omitted.
  • step S ⁇ b>502 the location management device 400 transmits location assistance information (eg, AssistanceData) to the target UE 101 .
  • the target UE 101 (communication unit 110 ) receives location assistance information from the location management device 400 .
  • the location assistance information may be included in, for example, the MO-LR response message, the DL NAS transport message, the LPP message, or the like.
  • Location assistance information may include information used to determine pre-defined settings.
  • the location assistance information may also include information indicating candidate types of signals to be used as SL-PRS.
  • the location assistance information may include information of each UE 100 existing around the target UE 101.
  • Location assistance information may include anchor UE 102 information.
  • the location assistance information may include, for example, the identifier of the anchor UE 102, the location information of the anchor UE 102, and the like.
  • the location management device 400 may transmit location assistance information to each UE 100 (anchor UE 102) existing around the target UE 101.
  • the location assistance information may include, for example, the identifier of the target UE 101 and the location information of the target UE 101 .
  • step S503 a position estimation procedure is performed.
  • the position estimation procedure may include any of the steps described in the above first to fourth operation examples.
  • step S503 the target UE 101 may execute the process of step S506 without estimating the position. Also, the anchor UE 102 may perform the process of step S504 without sending the measurement report to the target UE 101 .
  • step S503 if the anchor UE 102 selects the preset setting, the location management device 400 may send the anchor UE request instead of the target UE 101.
  • Anchor UE 102 may initiate selection of a pre-defined configuration in response to receiving an anchor UE request from location management device 400 .
  • step S504 the anchor UE 102 (communication unit 110) transmits the SL-PRS measurement report to the location management device 400.
  • Location management device 400 receives measurement reports from anchor UE 102 . Note that the measurement report for SL-PRS is the same as the operation example described above.
  • Anchor UE 102 (communication unit 110) may include the measurement report in either a UL NAS transport message, an LPP message, or the like and transmit it to location management device 400.
  • Anchor UE 102 (communication unit 110) sends a measurement report on SL-PRS to base station 200 using a measurement report, a UE auxiliary information message, etc. used for reporting communication quality from adjacent base stations adjacent to base station 200. may be sent to The base station 200 may transmit the SL-PRS measurement report to the location management device 400 via AMF.
  • the target UE 101 may transmit the measurement report to the location management device 400.
  • a measurement report may be sent from the target UE 101 to the location management device 400 .
  • Location management device 400 receives measurement reports from anchor UE 102 .
  • step S505 the location management device 400 performs location estimation based on the measurement report.
  • the position management device 400 can perform position estimation in the same manner as in the operation example described above.
  • the target UE 101 may transmit a location service request to the location management device 400 .
  • the location management device 400 transmits a request for location information of the target UE 101 to the location management device 400 .
  • the location management device 400 may receive a request for location information from the target UE 101 .
  • a request for location information may be included in, for example, a MO-LR request message, a UL NAS transport message, an LPP message, or the like.
  • the (message containing) location information request includes, for example, at least one of information indicating location estimation accuracy, SL-PRS measurement accuracy, location service (LCS) quality of service (QoS), and the like.
  • LCS location service
  • QoS quality of service
  • step S507 the location management device 400 transmits the location information to the target UE101.
  • Target UE 101 (communication unit 110 ) receives location information from location management device 400 .
  • the location information indicates the location of the target UE 101 estimated by the location management device 400.
  • Location information may be included in, for example, MO-LR response messages, UL NAS transport messages, LPP messages, or the like.
  • the sixth operation example will be described mainly with respect to the differences from the above-described operation example.
  • the base station 200 transmits control information regarding SL-PRS.
  • the RRC states of the target UE 101 and the anchor UE 102 are the same as in the fifth operation example.
  • step S601 the target UE 101 (communication unit 110) transmits to the base station 200 a request for control information regarding SL-PRS.
  • the base station 200 receives the request for control information from the target UE 101 .
  • step S602 the base station 200 (communication unit 210) transmits control information regarding SL-PRS to the target UE101.
  • the target UE 101 receives control information from the base station 200 .
  • the base station 200 may generate control information in response to receiving a request for control information.
  • the control information may be downlink control information (DCI) defined by the physical layer, MAC CE, or RRC message.
  • DCI downlink control information
  • step S603 a position estimation procedure is performed.
  • the position estimation procedure may be any one of the first to fourth operation examples described above.
  • the target UE 101 (communication unit 110) receives control information regarding SL-PRS from the base station 200. This allows the base station 200 to control the position estimation procedure.
  • the target UE 101 or the anchor UE 102 transmitted configuration identifiers associated with each of one or more pre-defined configurations, but this is not the only option.
  • the target UE 101 or anchor UE 102 may send control information containing pre-defined settings.
  • the location management device 400 may perform location estimation based on the SL-PRS measurement results.
  • the target UE 101 may perform position estimation based on the SL-PRS measurement results, or may not perform position estimation based on the SL-PRS measurement results.
  • the target UE 101 may receive the position information of the target UE 101 from the position management device 400 that has performed the position estimation.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disc Read Only Memory) good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • the control unit (120) holds a setting identifier associated with each of the one or more predefined settings, The control unit (120) selects a pre-defined setting to be applied from among the one or more pre-defined settings, The communication device (100, 101) according to appendix 1, wherein the communication unit (110) transmits a setting identifier associated with the selected predefined setting to the other communication device (100, 102).
  • the communication unit (110) receives, from the other communication devices (100, 102), information indicating approval or rejection of the predefined setting associated with the setting identifier in response to the transmission of the setting identifier.
  • the communication device (100, 101) according to appendix 2.
  • the control unit (120) holds a setting identifier associated with each of the one or more predefined settings, 1.
  • Said communication unit (110) receives from said other communication device (100, 102) a setting identifier associated with a predefined setting selected by said other communication device (100, 102) communication device (100, 101).
  • the communication unit (110) in response to receiving the setting identifier, transmits information indicating approval or rejection of the pre-defined setting associated with the setting identifier to the other communication devices (100, 102).
  • the communication device (100, 101) according to appendix 4.
  • the communication unit (110) transmitting the positioning reference signal to the other communication device (100, 102) based on the selected pre-defined configuration; 6.
  • the communication device (100, 101) according to any one of appendices 1 to 5, wherein the measurement result for the positioning reference signal is received from the other communication device (100, 102).
  • the communication unit (110) transmits a request to enable reception of the positioning reference signal to the other communication devices (100, 102) before starting transmission of the positioning reference signal.
  • the communication unit (110) receives the positioning reference signal from the other communication device (100, 102) based on the selected pre-defined configuration; 6.
  • the communication device (100, 101) according to any one of appendices 1 to 5, wherein the control unit (120) measures the positioning reference signal received from the other communication device (100, 102).
  • the communication unit (110) sending a request to the other communication device (100, 102) to enable transmission of the positioning reference signal; 9.

Abstract

A communication device (100, 101) comprises: a communication unit (110) that transmits or receives a positioning reference signal for a side link to or from an other communication device (100, 102); and a control unit (120) that estimates the position of the communication device (100, 101) on the basis of the measurement result for the positioning reference signal. The control unit (120) holds one or more predefined settings for the positioning reference signal. The communication unit (110) transmits or receives the positioning reference signal on the basis of a predefined setting selected from among the one or more predefined settings being held.

Description

[規則26に基づく補充 03.10.2022] 通信装置及び通信方法[Supplementation under Rule 26 03.10.2022] Communication device and communication method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年9月22日に出願された特許出願番号2021-154814号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-154814, filed September 22, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、通信装置及び通信方法に関する。 The present disclosure relates to communication devices and communication methods.
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)の技術仕様に準拠する移動通信システムにおいて、サイドリンク通信(例えば、V2X(Vehicle to everything)サイドリンク通信)がサポートされている(例えば、非特許文献1)。近年、例えば、基地局のカバレッジ外での通信装置の測位を可能としたり、低遅延で相対的な通信装置の位置の追跡を可能としたりするべく、サイドリンク通信を用いて測位を行うことが提案されている(例えば、非特許文献2)。具体的には、通信装置は、通信装置の周囲の他の通信装置からのサイドリンク用の測位参照信号によって、通信装置が測位(位置推定)を行うことが想定されている。 In a mobile communication system that conforms to the technical specifications of 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, sidelink communication (for example, V2X (Vehicle to Everything) sidelink communication) Supported (for example, Non-Patent Document 1). In recent years, for example, it is possible to perform positioning using sidelink communication in order to enable positioning of a communication device outside the coverage of a base station or to enable tracking of the relative position of a communication device with low delay. proposed (for example, Non-Patent Document 2). Specifically, it is assumed that the communication device performs positioning (position estimation) using sidelink positioning reference signals from other communication devices around the communication device.
 第1の態様に係る通信装置は、サイドリンク用の測位参照信号を他の通信装置に送信又は前記他の通信装置から受信する通信部と、前記測位参照信号に対する測定結果に基づいて、前記通信装置の位置推定を行う制御部と、を備える。前記制御部は、前記測位参照信号について予め規定された1又は複数の事前規定設定を保持する。前記通信部は、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う。 The communication device according to the first aspect includes a communication unit that transmits a sidelink positioning reference signal to another communication device or receives from the other communication device, and based on the measurement result for the positioning reference signal, the communication a controller for estimating the position of the device. The controller maintains one or more pre-defined settings pre-defined for the positioning reference signals. The communication unit transmits or receives the positioning reference signal based on a pre-defined setting selected from the held one or more pre-defined settings.
 第2の態様に係る通信方法は、通信装置で実行される通信方法である。当該通信方法は、サイドリンク用の測位参照信号を他の通信装置に送信又は前記他の通信装置から受信するステップと、前記測位参照信号に対する測定結果に基づいて、前記通信装置の位置推定を行うステップと、前記測位参照信号について予め規定された1又は複数の事前規定設定を保持するステップと、を備える。前記受信するステップでは、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う。 A communication method according to the second aspect is a communication method executed by a communication device. The communication method includes a step of transmitting a sidelink positioning reference signal to or receiving from another communication device, and estimating the position of the communication device based on a measurement result for the positioning reference signal. and maintaining one or more predefined settings for the positioning reference signals. The receiving step transmits or receives the positioning reference signal based on a pre-defined setting selected from the one or more retained pre-defined settings.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図である。 図3は、実施形態に係る移動通信システムにおけるUEのプロトコルスタックの構成例を示す図である。 図4は、実施形態に係るUEの構成を示す図である。 図5は、実施形態に係る基地局の構成を示す図である。 図6は、実施形態に係る位置管理装置の構成を示す図である。 図7は、一実施形態に係る第1動作例を説明するためのシーケンス図である。 図8は、一実施形態に係る第2動作例を説明するためのシーケンス図である。 図9は、一実施形態に係る第3動作例を説明するためのシーケンス図である。 図10は、一実施形態に係る第4動作例を説明するためのシーケンス図である。 図11は、一実施形態に係る第5動作例を説明するためのシーケンス図である。 図12は、一実施形態に係る第6動作例を説明するためのシーケンス図である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram showing a configuration example of a protocol stack in the mobile communication system according to the embodiment. FIG. 3 is a diagram showing a configuration example of a UE protocol stack in the mobile communication system according to the embodiment. FIG. 4 is a diagram showing the configuration of the UE according to the embodiment. FIG. 5 is a diagram showing the configuration of a base station according to the embodiment. FIG. 6 is a diagram showing the configuration of the location management device according to the embodiment. FIG. 7 is a sequence diagram for explaining a first operation example according to one embodiment. FIG. 8 is a sequence diagram for explaining a second operation example according to one embodiment. FIG. 9 is a sequence diagram for explaining a third operation example according to one embodiment. FIG. 10 is a sequence diagram for explaining a fourth operation example according to one embodiment. FIG. 11 is a sequence diagram for explaining a fifth operation example according to one embodiment. FIG. 12 is a sequence diagram for explaining a sixth operation example according to one embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 現状の3GPP技術仕様書には、通信装置がサイドリンク用の測位参照信号を用いて位置推定を行うための具体的な動作について規定されていない。従って、通信装置がサイドリンク用の測位参照信号を用いた位置推定を適切に行うことができない虞がある。そこで、本開示は、サイドリンク用の測位参照信号を用いた位置推定を適切に行うことを可能とする通信装置及び通信方法を提供することを目的の一つとする。 The current 3GPP technical specifications do not define specific operations for a communication device to perform position estimation using a sidelink positioning reference signal. Therefore, there is a possibility that the communication device cannot appropriately perform position estimation using the positioning reference signal for the sidelink. Therefore, one object of the present disclosure is to provide a communication device and a communication method that enable appropriate position estimation using positioning reference signals for sidelinks.
 (移動通信システムの構成)
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
(Configuration of mobile communication system)
A configuration of a mobile communication system 1 according to an embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS). Hereinafter, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。 NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 5GC30は、位置管理装置400を含む。位置管理装置400は、UE(ターゲットUE)100の位置サービスのサポートを管理してよい。位置管理装置400は、UE100の位置に関して必要なリソースの全体的な調整及びスケジューリングを管理してよい。位置管理装置400は、LMF(Location Management Function)と称されることがある。LMFは、NL1インターフェイスを介してAMFと接続される。NL1インターフェイスは、LTE(Long Term Evolution)ポジショニングプロトコル(LPP)及びNRポジショニングプロトコルA(NRPPa)用のトランスポートリンクとしてのみ使用される。 The 5GC 30 includes a location management device 400. The location manager 400 may manage support for location services for the UE (target UE) 100 . The location management device 400 may manage overall coordination and scheduling of resources required for the location of the UE 100 . The location management device 400 is sometimes called an LMF (Location Management Function). The LMF is connected with the AMF via the NL1 interface. The NL1 interface is only used as transport link for Long Term Evolution (LTE) Positioning Protocol (LPP) and NR Positioning Protocol A (NRPPa).
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。また、UE100は、例えば、道路に設置されたロードサイドユニット(Road-Side Unit:RSU)、脆弱な道路ユーザ(Vulnerable Road User:VRU)と称されてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. UE 100 may be a device used by a user. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein. The UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon. The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit. Also, the UE 100 may be called, for example, a road-side unit (RSU) installed on a road or a vulnerable road user (VRU).
 UE100は、UE100間のインターフェイスを介した通信であるサイドリンク通信を行ってよい。UE100間のインターフェイスは、PC5インターフェイスと称されてよい。 The UEs 100 may perform sidelink communication, which is communication via an interface between the UEs 100. The interface between UEs 100 may be referred to as the PC5 interface.
 サイドリンク通信は、NRサイドリンク通信と、V2Xサイドリンク通信とを含んでよい。NRサイドリンク通信は、ネットワークノードを通らずにNR技術を用いて2以上の近くのUE100間で少なくともV2X通信を可能にするAS(Autonomous System)機能である。V2Xサイドリンク通信は、ネットワークノードを通らずにE-UTRA(Evolved Universal Terrestrial Radio Access)技術を用いて2以上の近くのUE100間でV2X通信を可能にするAS機能である。PC5インターフェイスを介したV2X(Vehicle to everything)サービスのサポートは、NRサイドリンク通信及び/又はV2Xサイドリンク通信によって提供できる。NRサイドリンク通信は、V2Xサービス以外のサービスをサポートするために用いられてよい。 Sidelink communication may include NR sidelink communication and V2X sidelink communication. NR sidelink communication is an AS (Autonomous System) feature that enables at least V2X communication between two or more nearby UEs 100 using NR technology without going through a network node. V2X sidelink communication is an AS feature that enables V2X communication between two or more nearby UEs 100 without going through a network node using E-UTRA (Evolved Universal Terrestrial Radio Access) technology. Support for Vehicle to everything (V2X) services over the PC5 interface can be provided by NR sidelink communications and/or V2X sidelink communications. NR sidelink communication may be used to support services other than V2X services.
 サイドリンク通信(すなわち、サイドリンク送信及び受信)は、UE100がどのRRC(Radio Resource Control)状態にあるかに関係なくUE100がNG-RANカバレッジ内(例えば、セル内)にある場合と、UE100がNG-RANカバレッジ外(例えば、セル外)にある場合と、にサポートされてよい。 Sidelink communication (that is, sidelink transmission and reception) is, regardless of which RRC (Radio Resource Control) state the UE 100 is in, when the UE 100 is within NG-RAN coverage (eg, within a cell), and when the UE 100 is It may be supported both when outside NG-RAN coverage (eg, outside a cell).
 図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。 A configuration example of a protocol stack in the mobile communication system 1 according to the embodiment will be described with reference to FIG.
 図2に示すように、UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤと、LPP(LTE Positioning Protocol)レイヤと、を有する。 As shown in FIG. 2, the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC (Radio Resource Control) layer, and LPP (LTE Positioning Protocol) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 物理チャネルは、時間領域における複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。 A physical channel is composed of multiple OFDM (Orthogonal Frequency Division Multiplexing) symbols in the time domain and multiple subcarriers in the frequency domain. One subframe consists of a plurality of OFDM symbols in the time domain. A resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers. A frame may consist of 10 ms and may include 10 subframes of 1 ms. A subframe can include a number of slots corresponding to the subcarrier spacing.
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。 Among physical channels, the physical downlink control channel (PDCCH) plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRBからなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。 In NR, the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth). The base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs. UE 100 transmits and receives data and control signals on the active BWP. Up to four BWPs can be set in the UE 100, for example. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(CORESET:control resource set)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。 For example, the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell. CORESET is a radio resource for control information that the UE 100 should receive. UE 100 may be configured with up to 12 CORESETs on the serving cell. Each CORESET has an index from 0 to 11. For example, a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, hybrid ARQ (HARQ) retransmission processing, random access procedures, and so on. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
 RRCレイヤの上位に位置するLPPレイヤは、ポジショニング能力の交換、補助データ(assistance data)の伝送、ロケーション情報の伝送、ポジショニング測定(ポジショニング参照信号の測定結果)の伝送、及び/又は位置推定(位置推定結果)の伝送、エラー処理(Error handling)、及び/又は中断(Abort)などを行う。UE100のLPPレイヤと位置管理装置400(LPP)のLPPレイヤとの間ではLPPシグナリング(LPPメッセージ)が伝送される。 The LPP layer, which is located above the RRC layer, exchanges positioning capabilities, transmits assistance data, transmits location information, transmits positioning measurements (positioning reference signal measurement results), and/or position estimation (position estimation result), error handling, and/or abort. LPP signaling (LPP messages) is transmitted between the LPP layer of the UE 100 and the LPP layer of the location management device 400 (LPP).
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 図3に示すように、UE100間の無線区間のプロトコルは、物理レイヤと、MACレイヤと、RLCレイヤと、PDCPレイヤと、RRCレイヤと、を有してよい。当該プロトコルは、PC5インターフェイスでのRRCのサイドリンク制御チャネル(SCCH)用の制御プレーンのプロトコルスタックであってよい。一方で、サイドリンクブロードキャストチャネル(SBCCH)用の制御プレーンのプロトコルは、物理レイヤと、MACレイヤと、RLCレイヤと、RRCレイヤと、を有し、PDCPレイヤが省略されたものであってよい。 As shown in FIG. 3, the protocol for the radio section between UEs 100 may have a physical layer, a MAC layer, an RLC layer, a PDCP layer, and an RRC layer. The protocol may be the control plane protocol stack for the sidelink control channel (SCCH) of RRC on the PC5 interface. On the other hand, the control plane protocol for the sidelink broadcast channel (SBCCH) may comprise a physical layer, a MAC layer, an RLC layer, an RRC layer, and omit the PDCP layer.
 また、図3に示すように、UE100間の無線区間のプロトコルは、物理レイヤと、MACレイヤと、RLCレイヤと、PDCPレイヤと、RRCレイヤと、PC5-Sレイヤと、を有してよい。当該プロトコルは、PC5-Sのサイドリンク制御チャネル(SCCH)用の制御プレーンで用いられてよい。 Also, as shown in FIG. 3, the protocol for the radio section between UEs 100 may include a physical layer, MAC layer, RLC layer, PDCP layer, RRC layer, and PC5-S layer. The protocol may be used in the control plane for the sidelink control channel (SCCH) of PC5-S.
 PHYレイヤは、上述と同様の機能を有する。UE100のPHYレイヤとUE100のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer has the same functions as above. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the UE 100 via physical channels.
 MACレイヤは、上述と同様の機能に加えて、PC5インターフェイスを介したサービス及び機能として、無線リソース選択、パケットフィルタリング、上りリンクとサイドリンク送信との間の優先処理、サイドリンクCSI(Channel State Information)レポーティング等を行う。 In addition to the functions similar to those described above, the MAC layer includes radio resource selection, packet filtering, priority processing between uplink and sidelink transmission, sidelink CSI (Channel State Information) as services and functions via the PC5 interface. ) reporting, etc.
 RLCレイヤは、上述と同様の機能を有する。UE100のRLCレイヤとUE100のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer has the same functions as above. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the UE 100 via logical channels.
 PDCPレイヤは、いくつかの制限(例えば、アウトオブオーダー配信(Out-of-order delivery)、デュプリケーション等に関する制限)付きで上述と同様の機能を有する。 The PDCP layer has the same functionality as above, with some restrictions (eg, restrictions on Out-of-order delivery, duplication, etc.).
 RRCレイヤは、ピアUE間でPC5-RRCメッセージの転送、2つのUE間でのPC5-RRC接続の保守及び解放、PC5-RRC接続用のサイドリンク無線リンク障害の検出等を行う。なお、PC5-RRC接続は、発信元レイヤ2識別子(Source Layer-2 ID)と発信先レイヤ2識別子(Destination Layer-2 ID)とのペアに対する2つのUE間の論理接続である。当該論理接続は、対応するPC5ユニキャストリンクが確立された後に確立されたとみなされる。 The RRC layer transfers PC5-RRC messages between peer UEs, maintains and releases PC5-RRC connections between two UEs, detects sidelink radio link failures for PC5-RRC connections, etc. Note that a PC5-RRC connection is a logical connection between two UEs for a pair of Source Layer-2 ID and Destination Layer-2 ID. The logical connection is considered established after the corresponding PC5 unicast link is established.
 PC5-Sレイヤは、PC5-Sシグナリング(例えば、PC5-Sメッセージ)の転送等を行う。 The PC5-S layer transfers PC5-S signaling (eg, PC5-S messages).
 なお、UE100は、上述にて説明したレイヤ以外のレイヤを有してもよい。 Note that the UE 100 may have layers other than the layers described above.
 (想定シナリオ)
 実施形態に係る移動通信システム1における想定シナリオについて説明する。移動通信システム1の標準化プロジェクトである3GPP(3rd Generation Partnership Project)の技術仕様に準拠する移動通信システム1において、サイドリンク通信を用いて測位を行うことが提案されている。具体的には、UE100は、当該UE100の周囲の他のUE100からのサイドリンク用の測位参照信号によって、UE100が測位(位置推定)を行うことが想定されている。
(Assumed scenario)
An assumed scenario in the mobile communication system 1 according to the embodiment will be described. In a mobile communication system 1 conforming to technical specifications of 3GPP (3rd Generation Partnership Project), which is a standardization project for the mobile communication system 1, positioning using sidelink communication has been proposed. Specifically, it is assumed that the UE 100 performs positioning (position estimation) using sidelink positioning reference signals from other UEs 100 around the UE 100 .
 しかしながら、現状の3GPP技術仕様書には、UE100がサイドリンク用の測位参照信号を用いて位置推定を行うための具体的な動作について規定されていない。従って、UE100がサイドリンク用の測位参照信号を用いた位置推定を適切に行うことができない虞がある。後述の一実施形態において、UE100がサイドリンク用の測位参照信号を用いた位置推定を適切に行うことを可能とするための動作について説明する。 However, the current 3GPP technical specifications do not define specific operations for UE 100 to perform position estimation using sidelink positioning reference signals. Therefore, there is a possibility that the UE 100 cannot appropriately perform position estimation using the sidelink positioning reference signal. In one embodiment described later, an operation for enabling the UE 100 to appropriately perform position estimation using the sidelink positioning reference signal will be described.
 (ユーザ装置の構成)
 図4を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
(Configuration of user device)
A configuration of the UE 100 according to the embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
 このように構成されたUE100において、通信部110は、サイドリンク用の測位参照信号を他のUE100に送信又は他のUE100から受信する。制御部120は、測位参照信号に対する測定結果に基づいて、UE100の位置推定を行う。制御部120は、測位参照信号について予め規定された設定を示す1又は複数の設定候補を保持する。通信部110は、保持されている設定候補の中から選択された設定に基づいて、測位参照信号の送信又は受信を行う。 In the UE 100 configured in this way, the communication unit 110 transmits to or receives from the other UE 100 the positioning reference signal for the sidelink. The control unit 120 performs position estimation of the UE 100 based on the measurement result for the positioning reference signal. The control unit 120 holds one or a plurality of setting candidates indicating preset settings for positioning reference signals. The communication unit 110 transmits or receives the positioning reference signal based on the setting selected from the held setting candidates.
 なお、以下において、UE100が備える機能部(具体的には、通信部110(送信部111及び/又は受信部112)及び制御部120の少なくともいずれか)の動作を、UE100の動作として説明することがある。 In the following, the operation of the functional units provided in the UE 100 (specifically, at least one of the communication unit 110 (the transmission unit 111 and/or the reception unit 112) and the control unit 120) will be described as the operation of the UE 100. There is
 (基地局の構成)
 図5を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
(Base station configuration)
A configuration of the base station 200 according to the embodiment will be described with reference to FIG. Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an RF circuit. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network interface 220 transmits and receives signals to and from the network. The network interface 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300、位置管理装置400など)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. The control unit 230 also controls communication with nodes (for example, adjacent base stations, the core network device 300, the location management device 400, etc.) via the network interface 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 なお、以下において、基地局200が備える機能部(具体的には、送信部211、受信部212、ネットワークインターフェイス220及び制御部230の少なくともいずれか)の動作を、基地局200の動作として説明することがある。 In the following, the operation of the functional unit (specifically, at least one of the transmitting unit 211, the receiving unit 212, the network interface 220, and the control unit 230) included in the base station 200 will be described as the operation of the base station 200. Sometimes.
 (位置管理装置の構成)
 図6を参照して、実施形態に係る位置管理装置400の構成について説明する。位置管理装置400は、ネットワークインターフェイス420と、制御部430とを有する。
(Configuration of position management device)
The configuration of the location management device 400 according to the embodiment will be described with reference to FIG. Location management device 400 has network interface 420 and control unit 430 .
 ネットワークインターフェイス420は、信号をネットワークと送受信する。ネットワークインターフェイス420は、例えば、AMF-位置管理装置間インターフェイスであるNL1インターフェイスを介して接続されたAMFから信号を受信し、AMFへ信号を送信する。ネットワークインターフェイス420は、信号を送信する送信部421と、信号を受信する受信部422と、を有してよい。 The network interface 420 transmits and receives signals to and from the network. The network interface 420 receives signals from, for example, an AMF connected via an NL1 interface, which is an AMF-location management device interface, and transmits signals to the AMF. The network interface 420 may have a transmitter 421 that transmits signals and a receiver 422 that receives signals.
 制御部430は、位置管理装置400における各種の制御を行う。制御部430は、例えば、ネットワークインターフェイス420を介したノード(例えば、AMF)との通信を制御する。上述及び後述の位置管理装置400の動作は、制御部430の制御による動作であってよい。制御部430は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部430の動作を行ってもよい。当なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 430 performs various controls in the position management device 400 . The control unit 430 controls communication with a node (for example, AMF) via the network interface 420, for example. The operations of the location management device 400 described above and later may be operations controlled by the control unit 430 . The control unit 430 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 430 . It should be noted that the memory stores programs to be executed by the processor, parameters relating to the programs, and data relating to the programs. All or part of the memory may be included within the processor.
 このように構成された位置管理装置400において、制御部230は、サイドリンク用の測位参照信号に関する制御情報を生成する。送信部421は、測位参照信号を送信又は受信するUE100へ制御情報を送信する。制御情報は、測位参照信号の送信又は受信を有効又は無効にするための要求、測位参照信号として使用する信号のタイプ、及び、UE100が測位参照信号の送信元であるか又は送信先であるかを指定する情報、の少なくともいずれかを含む。これにより、制御情報を受信したUE100は、測位参照信号の送信又は受信を有効又は無効にするための要求に基づいて、測位参照信号の送信又は受信を制御できる。また、UE100は、測位参照信号として使用する信号のタイプに基づいて、測位参照信号の送信又は受信を制御できる。UE100は、制御部120は、UE100が測位参照信号の送信元であるか又は送信先であるかを指定する情報に基づいて、測位参照信号の送信又は受信を制御できる。その結果、UE100は、測位参照信号を用いた位置推定を適切に行うことができる。 In the position management device 400 configured as described above, the control unit 230 generates control information regarding positioning reference signals for sidelinks. The transmitting unit 421 transmits control information to the UE 100 that transmits or receives positioning reference signals. The control information includes a request to enable or disable the transmission or reception of positioning reference signals, the type of signal to use as positioning reference signals, and whether the UE 100 is the source or destination of the positioning reference signals. and/or information that specifies By this means, the UE 100 that has received the control information can control the transmission or reception of the positioning reference signal based on the request for enabling or disabling the transmission or reception of the positioning reference signal. Also, the UE 100 can control transmission or reception of the positioning reference signal based on the type of signal used as the positioning reference signal. The control unit 120 of the UE 100 can control transmission or reception of the positioning reference signal based on information specifying whether the UE 100 is the source or destination of the positioning reference signal. As a result, the UE 100 can appropriately perform position estimation using the positioning reference signal.
 なお、以下において、位置管理装置400が備える機能部(具体的には、ネットワークインターフェイス420(送信部421及び受信部422)及び制御部430の少なくともいずれか)の動作を、位置管理装置400の動作として説明することがある。 In the following description, the operation of the functional units (specifically, at least one of the network interface 420 (the transmitting unit 421 and the receiving unit 422) and the control unit 430) included in the location management device 400 will be referred to as the operation of the location management device 400. can be described as
 (移動通信システムの動作)
 (1)第1動作例
 図7を参照して、移動通信システム1の第1動作例について説明する。以下において、位置推定を行うUE100をターゲットUE101と称する。ターゲットUE101は、自身の位置を知るために、位置推定手順を実行するUE100であってよい。ターゲットUE101は、基地局200が管理するセル外(すなわち、NG-RANカバレッジ外)にあってよい。この場合、ターゲットUE101は、RRCアイドル状態又はRRCインアクティブ状態にある。或いは、ターゲットUE101は、基地局200が管理するセル内(すなわち、NG-RANカバレッジ内)にあってよい。この場合、ターゲットUE101は、RRCコネクティッド状態にある。
(Operation of mobile communication system)
(1) First Operation Example A first operation example of the mobile communication system 1 will be described with reference to FIG. The UE 100 that performs position estimation is hereinafter referred to as a target UE 101 . A target UE 101 may be a UE 100 that performs a position estimation procedure in order to know its own position. The target UE 101 may be outside the cell managed by the base station 200 (ie, outside NG-RAN coverage). In this case, the target UE 101 is in RRC idle state or RRC inactive state. Alternatively, the target UE 101 may be within a cell managed by the base station 200 (ie within NG-RAN coverage). In this case, the target UE 101 is in RRC connected state.
 また、ターゲットUE101の位置推定をサポートするUE100をアンカーUE102と称する。アンカーUE102は、ターゲットUE101がターゲットUE101自身の位置を知るために、位置推定手順を行うUE100であってよい。本動作例では、アンカーUE102は、基地局200が管理するセル外(すなわち、NG-RANカバレッジ外)にあってよい。この場合、アンカーUE102は、RRCアイドル状態又はRRCインアクティブ状態にある。或いは、アンカーUE102は、基地局200が管理するセル内(すなわち、NG-RANカバレッジ内)にあってよい。この場合、アンカーUE102は、RRCコネクティッド状態にある。 Also, the UE 100 that supports position estimation of the target UE 101 is called an anchor UE 102. The anchor UE 102 may be a UE 100 that performs a location estimation procedure in order for the target UE 101 to know its own location. In this operational example, the anchor UE 102 may be outside the cell managed by the base station 200 (ie, outside NG-RAN coverage). In this case, the anchor UE 102 is in RRC idle state or RRC inactive state. Alternatively, the anchor UE 102 may be within a cell managed by the base station 200 (ie, within NG-RAN coverage). In this case, the anchor UE 102 is in RRC Connected state.
 ターゲットUE101の周囲の複数のUE100がアンカーUE102となってよい。各アンカーUE102は、同様の動作であるため、本動作例では、1つのアンカーUE102を代表として説明する。複数のアンカーUE102が以下の動作を実行してよい。 A plurality of UEs 100 around the target UE 101 may serve as the anchor UE 102 . Since each anchor UE 102 operates in the same manner, one anchor UE 102 will be described as a representative in this operation example. Multiple anchor UEs 102 may perform the following operations.
 ターゲットUE101(制御部120)は、サイドリンク用の測位参照信号(以下、SL-PRS(Sidelink Positioning Reference Signal)と称する)について予め規定された1又は複数の事前規定設定を保持している。 The target UE 101 (control unit 120) holds one or more pre-defined settings for the sidelink positioning reference signal (hereinafter referred to as SL-PRS (Sidelink Positioning Reference Signal)).
 事前規定設定は、例えば、SL-PRSの送信及び受信するための時間・周波数リソースを含んでよい。時間・周波数リソースは、例えば、SL-PRSの送信周期、SL-PRSの送信及び/又は受信用の帯域幅、SL-PRSの送信開始時間、及びSL-PRSの送信終了時間の少なくともいずれかを含んでよい。また、事前規定設定は、SL-PRSの信号系列を含んでよい。 Predefined settings may include, for example, time-frequency resources for transmission and reception of SL-PRS. The time/frequency resource is, for example, at least one of the SL-PRS transmission period, the SL-PRS transmission and/or reception bandwidth, the SL-PRS transmission start time, and the SL-PRS transmission end time. may contain. Also, the pre-defined settings may include a signal sequence for SL-PRS.
 ターゲットUE101(制御部120)は、1又は複数の事前規定設定を出荷時までに設定されることで、1又は複数の事前規定設定を保持していてもよい。また、ターゲットUE101(制御部120)は、1又は複数の事前規定設定をネットワーク10から取得してもよい。ターゲットUE101(制御部120)は、例えば、1又は複数の事前規定設定を位置管理装置400から取得してもよい。 The target UE 101 (control unit 120) may retain one or more pre-defined settings by setting one or more pre-defined settings by the time of shipment. The target UE 101 (control unit 120) may also obtain one or more pre-defined settings from the network 10. The target UE 101 (control unit 120) may obtain one or more predefined settings from the location management device 400, for example.
 ターゲットUE101(制御部120)は、1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を保持してよい。設定識別子は、例えばインデックスであってよい。ターゲットUE101(制御部120)は、事前規定設定と当該事前規定設定に対応付けられた設定識別子とのセットにより構成されるリストを有してもよい。 The target UE 101 (control unit 120) may hold a setting identifier associated with each of one or more predefined settings. A configuration identifier may be, for example, an index. The target UE 101 (control unit 120) may have a list consisting of sets of pre-defined settings and setting identifiers associated with the pre-defined settings.
 アンカーUE102(制御部120)は、ターゲットUE101と同様に、1又は複数の事前規定設定を保持してよい。また、アンカーUE102(制御部120)は、設定識別子を保持してよい。 The anchor UE 102 (control unit 120), like the target UE 101, may hold one or more pre-defined settings. Also, the anchor UE 102 (control unit 120) may hold a configuration identifier.
 ターゲットUE101とアンカーUE102とに保持される事前規定設定は、共通に規定されたものであってよい。或いは、ターゲットUE101とアンカーUE102とに保持される事前規定設定は、独立して規定されたものであってもよい。この場合、ターゲットUE101とアンカーUE102とに保持される事前規定設定の一部は、異なっていてもよい。 The pre-defined settings held in the target UE 101 and the anchor UE 102 may be commonly defined. Alternatively, the pre-defined settings held in the target UE 101 and the anchor UE 102 may be defined independently. In this case, some of the pre-defined settings held in the target UE 101 and the anchor UE 102 may be different.
 ステップS101において、ターゲットUE101(制御部120)は、保持されている1又は複数の事前規定設定の中から適用する事前規定設定を選択する。ターゲットUE101(制御部120)は、例えば、ターゲットUE101自身の位置が知る必要があることに応じて、事前規定設定の選択を開始してよい。ターゲットUE101(制御部120)は、例えば、ユーザの操作に基づいて、事前規定設定の選択を開始してもよい。 In step S101, the target UE 101 (control unit 120) selects a preset setting to be applied from one or a plurality of stored preset settings. The target UE 101 (control unit 120) may, for example, initiate the selection of pre-defined settings according to the need to know the location of the target UE 101 itself. The target UE 101 (control unit 120) may initiate selection of the pre-defined settings, for example, based on the user's operation.
 ターゲットUE101(制御部120)は、SL-PRSの送信元(すなわち、SL-PRSを送信する送信エンティティ)を決定してよい。ターゲットUE101(制御部120)は、SL-PRSの送信元をターゲットUE101自身に決定してもよく、アンカーUE102に決定してもよい。本動作例では、ターゲットUE101(制御部120)が、SL-PRSの送信元をターゲットUE101自身に決定したとして説明を進める。 The target UE 101 (control unit 120) may determine the source of the SL-PRS (ie, the transmitting entity that transmits the SL-PRS). The target UE 101 (control unit 120) may determine the transmission source of the SL-PRS to be the target UE 101 itself or the anchor UE 102. In this operation example, the target UE 101 (control unit 120) determines the transmission source of the SL-PRS to be the target UE 101 itself.
 また、ターゲットUE101(制御部120)は、SL-PRSの送信先(すなわち、SL-PRSを受信する受信エンティティ)を決定してよい。ターゲットUE101(制御部120)は、SL-PRSの送信先をターゲットUE101自身に決定してもよく、アンカーUE102に決定してもよい。 Also, the target UE 101 (control unit 120) may determine the destination of the SL-PRS (that is, the receiving entity that receives the SL-PRS). The target UE 101 (control unit 120) may determine the transmission destination of the SL-PRS to the target UE 101 itself or to the anchor UE 102. FIG.
 また、ターゲットUE101(制御部120)は、SL-PRSとして使用する信号のタイプを決定してよい。ターゲットUE101(制御部120)は、移動通信システム1においてSL-PRSとして使用可能な信号として複数の信号がサポートされている場合、SL-PRSとして使用する信号のタイプを決定してよい。SL-PRSとして使用可能な信号は、例えば、サイドリンク用のチャネル状態情報参照信号(SL-CSI-RS)、サイドリンク用のサウンディング参照信号(SL-SRS)、サイドリンク用の復調参照信号(SL-DMRS)、及び、サイドリンク用の同期信号及び物理ブロードキャストチャネルブロック(SL-SSB)の少なくともいずれかであってよい。 Also, the target UE 101 (control unit 120) may determine the type of signal to be used as SL-PRS. The target UE 101 (control unit 120) may determine the type of signal to be used as SL-PRS when the mobile communication system 1 supports multiple signals as signals that can be used as SL-PRS. Signals that can be used as SL-PRS are, for example, channel state information reference signals for sidelinks (SL-CSI-RS), sounding reference signals for sidelinks (SL-SRS), demodulation reference signals for sidelinks ( SL-DMRS) and/or synchronization signals and physical broadcast channel blocks for sidelinks (SL-SSB).
 また、ターゲットUE101(制御部120)は、SL-PRSの測定報告対象を決定してよい。ターゲットUE101(制御部120)は、例えば、SL-PRSの測定報告対象として、例えば、SL-PRSの受信電力(例えば、RSRP(Reference Signal Received Power))、SL-PRSの受信時間等の少なくともいずれかを決定してよい。 Also, the target UE 101 (control unit 120) may determine SL-PRS measurement report targets. Target UE 101 (control unit 120), for example, as a measurement report target of SL-PRS, for example, received power of SL-PRS (for example, RSRP (Reference Signal Received Power)), reception time of SL-PRS, etc. You may decide whether
 ステップS102において、ターゲットUE101(通信部110)は、選択された事前規定設定に対応付けられた設定識別子をアンカーUE102に送信する。アンカーUE102(通信部110)は、設定識別子をターゲットUE101から受信する。 In step S102, the target UE 101 (communication unit 110) transmits to the anchor UE 102 the setting identifier associated with the selected predefined setting. Anchor UE 102 (communication unit 110 ) receives the configuration identifier from target UE 101 .
 ターゲットUE101(制御部120)は、設定識別子を含む制御情報を生成してよい。ターゲットUE101(通信部110)は、生成した制御情報を送信してもよい。制御情報は、SL-PRSに関する制御情報である。SL-PRSに関する制御情報は、物理レイヤで規定されるサイドリンク制御情報(SCI)、MAC制御要素(MAC CE)、RRCレイヤで規定されるRRCメッセージ、PC5-Sレイヤで規定されるPC5-Sメッセージ、及びその他のレイヤで規定されるメッセージのいずれかであってよい。その他のレイヤは、例えば、サイドリンク用のLPP(SL-LPP)レイヤであってよい。 The target UE 101 (control unit 120) may generate control information including the setting identifier. The target UE 101 (communication unit 110) may transmit the generated control information. The control information is control information related to SL-PRS. Control information related to SL-PRS includes sidelink control information (SCI) defined in the physical layer, MAC control elements (MAC CE), RRC messages defined in the RRC layer, and PC5-S defined in the PC5-S layer. message, and messages defined in other layers. Other layers may be, for example, LPP (SL-LPP) layers for sidelinks.
 制御情報は、SL-PRSの測定報告対象を示す情報を含んでよい。 The control information may include information indicating SL-PRS measurement report targets.
 また、制御情報は、例えば、SL-PRSとして使用する信号のタイプを含んでよい。また、制御情報は、アンカーUE102がSL-PRSの送信元であるか又は送信先であるかを指定する指定情報を含んでよい。指定情報は、アンカーUE102がSL-PRSの送信元であることを示してもよいし、アンカーUE102がSL-PRSの送信先であることを示してもよいし、ターゲットUE101がSL-PRSの送信元であることを示してもよいし、ターゲットUE101がSL-PRSの送信先であることを示してもよい。 The control information may also include, for example, the type of signal to use as SL-PRS. The control information may also include designation information that designates whether the anchor UE 102 is the source or destination of the SL-PRS. The designation information may indicate that the anchor UE 102 is the source of the SL-PRS, may indicate that the anchor UE 102 is the destination of the SL-PRS, or indicates that the target UE 101 is the transmission of the SL-PRS. It may indicate that the target UE 101 is the source, or that the target UE 101 is the destination of the SL-PRS.
 アンカーUE102(制御部120)は、指定情報に基づいて、SL-PRSを送信するか受信するかを判定してよい。指定情報が、アンカーUE102がSL-PRSの送信元であることを示したり、ターゲットUE101がSL-PRSの送信先であることを示したりする場合、アンカーUE102(制御部120)は、SL-PRSを送信すると判定してよい。この場合、アンカーUE102(制御部120)は、SL-PRSを送信するための動作を実行してよい。一方で、指定情報が、アンカーUE102がSL-PRSの送信先であることを示したり、ターゲットUE101がSL-PRSの送信元であることを示したりする場合、アンカーUE102(制御部120)は、SL-PRSを受信すると判定してよい。この場合、アンカーUE102(制御部120)は、SL-PRSを受信するための動作を実行してよい。 Anchor UE 102 (control unit 120) may determine whether to transmit or receive SL-PRS based on the designation information. If the designation information indicates that the anchor UE 102 is the SL-PRS transmission source or indicates that the target UE 101 is the SL-PRS transmission destination, the anchor UE 102 (control unit 120) transmits the SL-PRS may be determined to be transmitted. In this case, the anchor UE 102 (controller 120) may perform operations to transmit the SL-PRS. On the other hand, if the designation information indicates that the anchor UE 102 is the SL-PRS transmission destination or indicates that the target UE 101 is the SL-PRS transmission source, the anchor UE 102 (control unit 120) It may be determined to receive the SL-PRS. In this case, the anchor UE 102 (controller 120) may perform operations to receive the SL-PRS.
 アンカーUE102(制御部120)は、設定識別子に対応付けられた事前規定設定を適用してよい。設定識別子に対応付けられた事前規定設定は、アンカーUE102に強制的に適用させるものであってもよい。従って、ターゲットUE101(制御部120)が事前規定設定を一方的に決定してよい。 The anchor UE 102 (control unit 120) may apply the predefined settings associated with the setting identifier. The pre-defined configuration associated with the configuration identifier may force the anchor UE 102 to apply. Therefore, the target UE 101 (control unit 120) may unilaterally determine the pre-defined settings.
 或いは、アンカーUE102(制御部120)は、設定識別子に対応付けられた事前規定設定を承認するか否かを判定してもよい。アンカーUE102(制御部120)は、事前規定設定を承認する場合に、事前規定設定を適用してよい。一方で、アンカーUE102(制御部120)は、例えば、受信した設定識別子に対応する設定識別子を保持していない場合、すなわち、受信した設定識別子に対応する事前規定設定を保持していない場合、事前規定設定を拒否してもよい。このように、設定識別子に対応付けられた事前規定設定の適用をアンカーUE102に判定させてもよい。従って、ターゲットUE101(制御部120)とアンカーUE102(制御部120)との間で設定に関する信号のやり取りによるネゴシエーションにより事前規定設定を決定してもよい(ステップS103参照)。 Alternatively, the anchor UE 102 (control unit 120) may determine whether to approve the predefined setting associated with the setting identifier. The anchor UE 102 (control unit 120) may apply the pre-defined settings when approving the pre-defined settings. On the other hand, if the anchor UE 102 (control unit 120) does not hold a configuration identifier corresponding to the received configuration identifier, that is, if it does not hold a predefined configuration corresponding to the received configuration identifier, You may reject the default settings. In this manner, the anchor UE 102 may determine to apply the pre-defined configuration associated with the configuration identifier. Therefore, the preset settings may be determined through negotiation by exchanging signals regarding settings between the target UE 101 (control unit 120) and the anchor UE 102 (control unit 120) (see step S103).
 アンカーUE102(制御部120)は、例えば、事前規定設定を適用する場合に、ステップS103の処理が実行されてもよく、上記判定した場合にステップS103の処理が実行されてもよい。ステップS103の処理は、省略されてもよい。 For example, the anchor UE 102 (control unit 120) may execute the process of step S103 when applying the pre-defined setting, or may execute the process of step S103 when the above determination is made. The process of step S103 may be omitted.
 ステップS103において、アンカーUE102(通信部110)は、ステップS102に対する応答をターゲットUE101に送信してもよい。ターゲットUE101(通信部110)は、応答をアンカーUE102から受信してもよい。 In step S103, the anchor UE 102 (communication unit 110) may transmit a response to step S102 to the target UE 101. The target UE 101 (communication unit 110) may receive the response from the anchor UE 102.
 応答は、ターゲットUE101から受信した設定識別子に対応付けられた事前規定設定の承認又は拒否を示す情報を含んでよい。アンカーUE102(制御部120)は、事前規定設定を承認する場合に、事前規定設定の承認を示す情報を応答に含めてよい。アンカーUE102(制御部120)は、事前規定設定を拒否する場合に、事前規定設定の拒否を示す情報を応答に含めてよい。ターゲットUE101(通信部110)は、設定識別子の送信に応じて、設定識別子に対応付けられた事前規定設定の承認又は拒否を示す情報をアンカーUE102から受信してもよい。 The response may contain information indicating approval or rejection of the pre-defined configuration associated with the configuration identifier received from the target UE 101. The anchor UE 102 (control unit 120) may include information indicating approval of the pre-defined setting in the response when approving the pre-defined setting. When rejecting the predefined settings, the anchor UE 102 (control unit 120) may include information indicating rejection of the predefined settings in the response. The target UE 101 (communication unit 110) may receive from the anchor UE 102 information indicating approval or rejection of the predefined configuration associated with the configuration identifier in response to the transmission of the configuration identifier.
 アンカーUE102(制御部120)は、ターゲットUE101から受信した設定識別子に対応付けられた事前規定設定を拒否する場合、アンカーUE102(制御部120)は、アンカーUE102が保持している1又は複数の事前規定設定の中から拒否する事前規定設定の代わりとなる事前規定設定を選択し、選択した事前規定設定に対応付けられた設定識別子を応答に含めてもよい。 If the anchor UE 102 (control unit 120) rejects the pre-defined configuration associated with the configuration identifier received from the target UE 101, the anchor UE 102 (control unit 120) controls one or more pre-configured settings held by the anchor UE 102. A pre-defined setting may be selected from among the defined settings to substitute for the rejected pre-defined setting, and the response may include a setting identifier associated with the selected pre-defined setting.
 応答が事前規定設定の承認を示す情報を含む場合、ステップS104又はステップS105の処理が実行されてよい。 If the response includes information indicating approval of the pre-defined settings, the process of step S104 or step S105 may be performed.
 一方で、応答が事前規定設定の拒否を示す情報を含む場合、ターゲットUE101(制御部120)は、ステップS101の処理に戻ってもよい。ターゲットUE101(制御部120)は、保持されている1又は複数の事前規定設定の中から新たな事前規定設定を選択してもよい。また、応答が拒否する事前規定設定の代わりとなる事前規定設定に対応付けられた設定識別子を含む場合、ターゲットUE101(制御部120)は、代わりの事前規定設定を適用してもよい。ターゲットUE101(制御部120)は、代わりの事前規定設定を拒否する場合、ステップS101の処理に戻ってもよい。 On the other hand, if the response includes information indicating rejection of the pre-defined setting, the target UE 101 (control unit 120) may return to the process of step S101. The target UE 101 (control unit 120) may select a new pre-defined setting from one or more pre-defined settings held. The target UE 101 (control unit 120) may also apply the alternative pre-defined setting if the response contains a setting identifier associated with a pre-defined setting that replaces the rejected pre-defined setting. The target UE 101 (control unit 120) may return to the process of step S101 when rejecting the alternative pre-defined setting.
 ステップS104において、ターゲットUE101(通信部110)は、SL-PRSに対する測定を要求するSL-PRS測定要求をアンカーUE102に送信する。アンカーUE102(通信部110)は、SL-PRS測定要求をターゲットUE101から受信する。 In step S104, the target UE 101 (communication unit 110) transmits to the anchor UE 102 an SL-PRS measurement request requesting SL-PRS measurement. Anchor UE 102 (communication unit 110 ) receives the SL-PRS measurement request from target UE 101 .
 ターゲットUE101(制御部120)は、SL-PRS測定要求をSL-PRSに関する制御情報に含めてもよい。ターゲットUE101(通信部110)は、当該制御情報をアンカーUE102に送信してもよい。アンカーUE102(通信部110)は、SL-PRS測定要求を含む制御情報をターゲットUE101から受信してもよい。 The target UE 101 (control unit 120) may include the SL-PRS measurement request in the control information regarding SL-PRS. The target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102. The anchor UE 102 (communication unit 110) may receive control information from the target UE 101 including the SL-PRS measurement request.
 ターゲットUE101(通信部110)は、SL-PRSの送信を開始する前に、SL-PRS測定要求をアンカーUE102に送信してよい。アンカーUE102(通信部110)は、SL-PRS測定要求の受信に応じて、SL-PRSを測定するための動作を開始してもよい。 The target UE 101 (communication unit 110) may transmit an SL-PRS measurement request to the anchor UE 102 before starting transmission of SL-PRS. Anchor UE 102 (communication unit 110) may initiate an operation to measure SL-PRS in response to receiving the SL-PRS measurement request.
 なお、ターゲットUE101(通信部110)は、SL-PRSの受信を有効にする(アクティブ化する)ための受信アクティベーション要求をアンカーUE102に送信してよい。ターゲットUE101(通信部110)は、受信アクティベーション要求を、SL-PRS測定要求の代わりに送信してもよく、SL-PRS測定要求とは別に送信してもよい。 Note that the target UE 101 (communication unit 110) may transmit a reception activation request for enabling (activating) reception of SL-PRS to the anchor UE 102. The target UE 101 (communication unit 110) may transmit the reception activation request instead of the SL-PRS measurement request, or may transmit it separately from the SL-PRS measurement request.
 ターゲットUE101(制御部120)は、受信アクティベーション要求をSL-PRSに関する制御情報に含めてもよい。ターゲットUE101(通信部110)は、当該制御情報をアンカーUE102に送信してもよい。アンカーUE102(通信部110)は、受信アクティベーション要求を含む制御情報をターゲットUE101から受信してもよい。 The target UE 101 (control unit 120) may include the reception activation request in the control information regarding SL-PRS. The target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102. The anchor UE 102 (communication unit 110) may receive control information including a reception activation request from the target UE 101.
 アンカーUE102(通信部110)は、受信アクティベーション要求の受信に基づいて、SL-PRSの受信を有効(アクティブ)にする。アンカーUE102(通信部110)は、受信アクティベーション要求の受信に応じて、SL-PRSを受信するための動作を開始してもよい。SL-PRSの受信を有効にしたアンカーUE102(通信部110)は、当該動作として、SL-PRSの受信を開始してもよいし、受信待機を開始してよい。 Anchor UE 102 (communication unit 110) enables reception of SL-PRS based on reception of the reception activation request. Anchor UE 102 (communication unit 110) may initiate an operation to receive SL-PRS in response to receiving the reception activation request. Anchor UE 102 (communication unit 110) that has enabled reception of SL-PRS may start reception of SL-PRS or start waiting for reception as the operation.
 なお、ステップS104は、省略されてもよい。 Note that step S104 may be omitted.
 ステップS105において、ターゲットUE101(通信部110)は、SL-PRSをアンカーUE102に送信する。アンカーUE102(通信部110)は、SL-PRSをターゲットUE101から受信する。 In step S105, the target UE 101 (communication unit 110) transmits SL-PRS to the anchor UE 102. Anchor UE 102 (communication unit 110 ) receives the SL-PRS from target UE 101 .
 ターゲットUE101(通信部110)は、保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、SL-PRSをアンカーUE102に送信する。例えば、ターゲットUE101(通信部110)は、選択された事前規定設定に含まれる時間・周波数リソースを用いて、SL-PRSを送信してよい。また、ターゲットUE101(通信部110)は、決定された信号のタイプに対応する信号をSL-PRSとして送信してもよい。 The target UE 101 (communication unit 110) transmits SL-PRS to the anchor UE 102 based on a pre-defined setting selected from one or more held pre-defined settings. For example, the target UE 101 (communication unit 110) may transmit SL-PRS using time-frequency resources included in the selected pre-defined configuration. Also, the target UE 101 (communication unit 110) may transmit a signal corresponding to the determined signal type as SL-PRS.
 なお、ターゲットUE101(通信部110)は、SL-PRSを単発で送信してもよいし、周期的又は非周期的に送信してもよい。 Note that the target UE 101 (communication unit 110) may transmit the SL-PRS singly, or may transmit it periodically or aperiodically.
 アンカーUE102(通信部110)は、保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、SL-PRSをターゲットUE101から受信する。アンカーUE102(制御部120)は、SL-PRSに関する制御情報に基づいて、SL-PRSの受信を制御してよい。例えば、アンカーUE102(通信部110)は、決定された信号のタイプに対応する信号をSL-PRSとして受信してもよい。 The anchor UE 102 (communication unit 110) receives the SL-PRS from the target UE 101 based on a pre-defined setting selected from one or more held pre-defined settings. Anchor UE 102 (control unit 120) may control reception of SL-PRS based on control information regarding SL-PRS. For example, the anchor UE 102 (communication unit 110) may receive the signal corresponding to the determined signal type as the SL-PRS.
 ステップS106において、アンカーUE102(制御部120)は、SL-PRSに対する測定を行う。アンカーUE102(制御部120)は、例えば、SL-PRSの受信電力(例えば、RSRP)、SL-PRSの受信時間等の少なくともいずれかを測定してよい。また、アンカーUE102(制御部120)は、例えば、SL-PRSの測定報告対象を示す情報に基づいて、測定を行ってよい。 In step S106, the anchor UE 102 (control unit 120) measures SL-PRS. For example, the anchor UE 102 (control unit 120) may measure at least one of SL-PRS reception power (eg, RSRP), SL-PRS reception time, and the like. Also, the anchor UE 102 (control unit 120) may perform measurement based on, for example, information indicating SL-PRS measurement report targets.
 ステップS107において、アンカーUE102(通信部110)は、測定結果を含む測定報告をターゲットUE101に送信する。ターゲットUE101(通信部110)は、測定報告をアンカーUE102から受信する。これにより、ターゲットUE101(通信部110)は、SL-PRSに対する測定結果をアンカーUE102から受信する。 In step S107, the anchor UE 102 (communication unit 110) transmits a measurement report including measurement results to the target UE 101. The target UE 101 (communication unit 110) receives the measurement report from the anchor UE 102. Thereby, the target UE 101 (communication unit 110) receives the measurement result for the SL-PRS from the anchor UE 102.
 測定結果は、例えば、SL-PRSの受信電力(例えば、RSRP)、SL-PRSの受信時間(到着時間)、SL-PRSの受信角(到着角)等の少なくともいずれかの測定値である。 The measurement result is, for example, at least one of the SL-PRS received power (eg, RSRP), SL-PRS reception time (arrival time), SL-PRS reception angle (arrival angle), and the like.
 測定報告は、SL-PRSに対する測定結果に加えて、他の情報を含んでよい。例えば、測定報告は、アンカーUE102(通信部110)の地理座標を示す情報を含んでよい。 The measurement report may contain other information in addition to the measurement results for SL-PRS. For example, the measurement report may include information indicating the geographic coordinates of the anchor UE 102 (communication unit 110).
 ステップS108において、ターゲットUE101(制御部120)は、測定結果及び/又は地理座標を示す情報に基づいて、位置推定を行う。ターゲットUE101(制御部120)は、例えば、UL-TDOA(Uplink time difference of arrival)ポジショニング方法と同様の方法を用いて位置測定を行ってよい。ここで、UL-TDOAポジショニング方法と同様の方法は、SL-TDOAポジショニング方法と称されてよい。ターゲットUE101(制御部120)は、例えば、複数のアンカーUE102へSL-PRSが到着した到着時間差(受信時間の差)に基づいて、位置測定を行ってよい。 In step S108, the target UE 101 (control unit 120) performs position estimation based on the measurement result and/or the information indicating the geographical coordinates. The target UE 101 (control unit 120) may perform position measurement using, for example, a method similar to the UL-TDOA (Uplink time difference of arrival) positioning method. Here, a method similar to the UL-TDOA positioning method may be referred to as the SL-TDOA positioning method. The target UE 101 (control unit 120) may perform position measurement, for example, based on the arrival time difference (difference in reception time) when SL-PRSs arrive at multiple anchor UEs 102. FIG.
 なお、アンカーUE102(制御部120)は、測定報告の送信に応じて、SL-PRSの受信を無効にしてもよい。また、アンカーUE102(制御部120)は、測定報告の送信に応じて、SL-PRS設定を解放してもよい。 Note that the anchor UE 102 (control unit 120) may disable SL-PRS reception in response to transmission of the measurement report. Also, the anchor UE 102 (control unit 120) may release the SL-PRS setting in response to transmission of the measurement report.
 また、ターゲットUE101とアンカーUE102とは、例えば、ステップS108の処理が行われた後、ステップS105からステップS108の処理を周期的又は非周期的に実行してもよい。 Also, the target UE 101 and the anchor UE 102 may periodically or aperiodically execute the processes from step S105 to step S108 after the process of step S108 is performed, for example.
 また、ターゲットUE101(通信部110)は、測定報告の受信に応じて、SL-PRSの受信を無効にするための受信非アクティベーション要求を送信してもよい。当該要求は、SL-PRSに関する制御情報に含まれていてもよい。アンカーUE102(制御部120)は、当該要求の受信に応じて、SL-PRSの受信を無効(非アクティブ)にしてもよい。アンカーUE102(制御部120)は、当該要求の受信に応じて、SL-PRS設定を解放してもよい。 Also, the target UE 101 (communication unit 110) may transmit a reception deactivation request for disabling reception of SL-PRS in response to reception of the measurement report. The request may be included in the control information for SL-PRS. Anchor UE 102 (control unit 120) may disable (deactivate) reception of SL-PRS in response to receiving the request. Anchor UE 102 (control unit 120) may release the SL-PRS configuration upon receiving the request.
 以上のように、ターゲットUE101(制御部120)は、1又は複数の事前規定設定を保持している。ターゲットUE101(通信部110)は、1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、SL-PRSの送信を行う。事前規定設定は、SL-PRSについて予め規定された設定であるため、ターゲットUE101(制御部120)は、SL-PRSを用いた位置推定を適切に行うことができる。 As described above, the target UE 101 (control unit 120) holds one or more predefined settings. The target UE 101 (communication unit 110) transmits SL-PRS based on a pre-defined setting selected from one or more pre-defined settings. Since the predefined settings are predefined settings for SL-PRS, the target UE 101 (control unit 120) can appropriately perform position estimation using SL-PRS.
 また、ターゲットUE101(通信部110)は、選択された事前規定設定に対応付けられた設定識別子をアンカーUE102に送信する。これにより、選択された事前規定設定自体をアンカーUE102に送信する場合と比較して、少ない情報量でターゲットUE101からアンカーUE102へ選択された事前規定設定を伝えることができる。 Also, the target UE 101 (communication unit 110) transmits to the anchor UE 102 a setting identifier associated with the selected pre-defined setting. This allows the selected pre-defined settings to be communicated from the target UE 101 to the anchor UE 102 with a smaller amount of information compared to sending the selected pre-defined settings themselves to the anchor UE 102 .
 また、ターゲットUE101(通信部110)は、設定識別子の送信に応じて、設定識別子に対応付けられた事前規定設定の承認又は拒否を示す情報をアンカーUE102から受信する。これにより、ターゲットUE101(通信部110)は、アンカーUE102から事前規定設定が承認又は拒否されたかを知ることができる。ターゲットUE101は、適切な事前規定設定に基づいて、SL-PRSを送信できるため、SL-PRSを用いた位置推定を適切に行うことができる。 In addition, the target UE 101 (communication unit 110) receives from the anchor UE 102 information indicating approval or rejection of the predefined setting associated with the setting identifier in response to the transmission of the setting identifier. This allows the target UE 101 (communication unit 110) to know whether the pre-defined setting has been approved or rejected by the anchor UE 102. The target UE 101 can transmit SL-PRS based on appropriate pre-defined settings, so that position estimation using SL-PRS can be performed properly.
 また、ターゲットUE101(通信部110)は、選択された事前規定設定に基づいて、SL-PRSをアンカーUE102へ送信する。ターゲットUE101(通信部110)は、SL-PRSに対する測定結果をアンカーUE102から受信する。ターゲットUE101(制御部120)は、測定結果に基づいて、ターゲットUE101の位置推定を行う。これにより、ターゲットUE101が複数のアンカーUE102のそれぞれからのSL-PRSに対する測定を行わずに済むため、ターゲットUE101の処理負荷を低減できる。 Also, the target UE 101 (communication unit 110) transmits the SL-PRS to the anchor UE 102 based on the selected predefined settings. The target UE 101 (communication unit 110) receives the measurement result for SL-PRS from the anchor UE 102. The target UE 101 (control unit 120) performs position estimation of the target UE 101 based on the measurement result. This eliminates the need for the target UE 101 to measure the SL-PRS from each of the multiple anchor UEs 102, so the processing load on the target UE 101 can be reduced.
 また、ターゲットUE101(通信部110)は、SL-PRSの送信を開始する前に、SL-PRSの受信を有効にするための受信アクティベーション要求をアンカーUE102へ送信する。これにより、アンカーUE102は、当該要求を受信するまでSL-PRSの受信を無効にすることができ、アンカーUE102の省電力を図ることができる。また、アンカーUE102が、SL-PRSの受信に失敗することを避けることができる。 Also, target UE 101 (communication unit 110) transmits a reception activation request for enabling reception of SL-PRS to anchor UE 102 before starting transmission of SL-PRS. As a result, the anchor UE 102 can disable reception of the SL-PRS until the request is received, and the power of the anchor UE 102 can be saved. Also, the anchor UE 102 can avoid failing to receive the SL-PRS.
 また、アンカーUE102(通信部110)は、SL-PRSに関する制御情報をターゲットUE101から受信する。アンカーUE102(通信部110)は、制御情報に基づいて、SL-PRSの受信を制御する。制御情報は、SL-PRSの受信を有効又は無効にするための要求(受信アクティベーション要求/受信非アクティベーション要求)を含んでよい。これにより、アンカーUE102(制御部120)は、当該要求に基づいて、SL-PRSの受信を有効又は無効にできる。アンカーUE102の省電力を図ることができる。 Also, the anchor UE 102 (communication unit 110) receives control information regarding SL-PRS from the target UE 101. Anchor UE 102 (communication unit 110) controls reception of SL-PRS based on the control information. The control information may include a request to enable or disable reception of SL-PRS (reception activation request/reception deactivation request). This allows the anchor UE 102 (control unit 120) to enable or disable SL-PRS reception based on the request. Power saving of the anchor UE 102 can be achieved.
 また、制御情報は、物理レイヤで規定されるサイドリンク制御情報(SCI)であってよい。これにより、リアルタイム制御が可能となる。また、制御情報は、MAC CEであってよい。これにより、制御情報がSCIである場合と比較して、多くの情報量をアンカーUE102へ伝えることができるため、高度な制御が可能となる。また、制御情報がMAC CEである場合、制御情報がRRCメッセージである場合と比較して、動的な制御が可能となる。また、制御情報は、RRCメッセージであってよい。これにより、制御情報がMAC CEである場合と比較して、多くの情報量をアンカーUE102へ伝えることができるため、高度な制御が可能となる。 Also, the control information may be sidelink control information (SCI) defined in the physical layer. This enables real-time control. Also, the control information may be MAC CE. As a result, a large amount of information can be transmitted to the anchor UE 102 compared to when the control information is SCI, so advanced control becomes possible. Also, when the control information is MAC CE, dynamic control becomes possible compared to when the control information is an RRC message. Also, the control information may be an RRC message. As a result, a greater amount of information can be transmitted to the anchor UE 102 compared to when the control information is MAC CE, enabling advanced control.
 また、制御情報は、SL-PRSとして使用する信号のタイプを含んでよい。これにより、アンカーUE102は、当該タイプに基づく信号をSL-PRSとして受信でき、適切な測定結果をターゲットUE101に報告できる。 The control information may also include the type of signal used as the SL-PRS. This allows the anchor UE 102 to receive signals based on that type as SL-PRS and report appropriate measurements to the target UE 101 .
 また、制御情報は、アンカーUE102がSL-PRSの送信元であるか又は送信先であるかを指定する指定情報を含んでよい。アンカーUE102(制御部120)は、指定情報に基づいて、SL-PRSを送信するか受信するかを判定できる。これにより、SL-PRSが適切に送信及び受信される。その結果、ターゲットUE101(制御部120)は、SL-PRSを用いた位置推定を適切に行うことができる。 The control information may also include designation information that designates whether the anchor UE 102 is the source or destination of the SL-PRS. Anchor UE 102 (control unit 120) can determine whether to transmit or receive SL-PRS based on the designation information. This ensures proper transmission and reception of SL-PRS. As a result, the target UE 101 (control unit 120) can appropriately perform position estimation using SL-PRS.
 (2)第2動作例
 図8を参照して、第2動作例について、上述の動作例との相違点を主として説明する。第2動作例では、ターゲットUE101が事前規定設定を選択し、アンカーUE102がSL-PRSを送信する。
(2) Second Operation Example With reference to FIG. 8, a second operation example will be described, mainly focusing on differences from the above-described operation example. In a second operational example, the target UE 101 selects the pre-defined settings and the anchor UE 102 sends the SL-PRS.
 図8に示すように、ステップS201からS203は、ステップS101からS103と同様である。本動作例において、アンカーUE102がSL-PRSを送信するとして説明を進める。 As shown in FIG. 8, steps S201 to S203 are the same as steps S101 to S103. In this operational example, the explanation proceeds assuming that the anchor UE 102 transmits the SL-PRS.
 ターゲットUE101(制御部120)は、複数のアンカーUE102にSL-PRSを送信させる場合、アンカーUE102がSL-PRSの送信に用いる時間・周波数リソースが異なるように、各アンカーUE102へ送信する別々の設定識別子を選択してよい。また、ターゲットUE101(制御部120)は、各アンカーUE102へ同じ設定識別子を送信する場合、SL-PRSの信号系列として複数の信号系列を決定してよい。ターゲットUE101(制御部120)は、各アンカーUE102が使用する信号系列が異なるように、複数の信号系列のそれぞれを示す情報を制御情報に含めてよい。 When the target UE 101 (control unit 120) causes a plurality of anchor UEs 102 to transmit SL-PRS, the target UE 101 makes different settings for transmission to each anchor UE 102 so that the anchor UE 102 uses different time/frequency resources for SL-PRS transmission. You may choose an identifier. Also, when transmitting the same configuration identifier to each anchor UE 102, the target UE 101 (control unit 120) may determine a plurality of signal sequences as SL-PRS signal sequences. The target UE 101 (control unit 120) may include information indicating each of a plurality of signal sequences in control information so that each anchor UE 102 uses a different signal sequence.
 ステップS204において、ターゲットUE101(通信部110)は、SL-PRSの送信を有効にするための送信アクティベーション要求をアンカーUE102に送信する。アンカーUE102(通信部110)は、送信アクティベーション要求をターゲットUE101から受信する。 In step S204, the target UE 101 (communication unit 110) transmits to the anchor UE 102 a transmission activation request for enabling transmission of SL-PRS. Anchor UE 102 (communication unit 110 ) receives the transmission activation request from target UE 101 .
 ターゲットUE101(制御部120)は、送信アクティベーション要求をSL-PRSに関する制御情報に含めてもよい。ターゲットUE101(通信部110)は、当該制御情報をアンカーUE102に送信してもよい。アンカーUE102(通信部110)は、送信アクティベーション要求を含む制御情報をターゲットUE101から受信してもよい。 The target UE 101 (control unit 120) may include the transmission activation request in the control information regarding SL-PRS. The target UE 101 (communication unit 110) may transmit the control information to the anchor UE 102. The anchor UE 102 (communication unit 110) may receive control information including a transmission activation request from the target UE 101.
 ターゲットUE101(通信部110)は、送信アクティベーション要求の送信に応じて、SL-PRSを受信するための動作を開始してもよい。 The target UE 101 (communication unit 110) may start operation for receiving the SL-PRS in response to transmission of the transmission activation request.
 アンカーUE102(通信部110)は、送信アクティベーション要求の受信に基づいて、SL-PRSの送信を有効(アクティブ)にする。アンカーUE102(通信部110)は、送信アクティベーション要求の受信に応じて、SL-PRSを送信するための動作を開始してもよい。SL-PRSの送信を有効にしたアンカーUE102(通信部110)は、当該動作として、SL-PRSの送信を開始してもよいし、送信待機を開始してよい。 Anchor UE 102 (communication unit 110) enables transmission of SL-PRS based on the reception of the transmission activation request. Anchor UE 102 (communication unit 110) may initiate operations to transmit SL-PRS in response to receiving the transmission activation request. Anchor UE 102 (communication unit 110) that has enabled transmission of SL-PRS may start transmission of SL-PRS or start waiting for transmission as the operation.
 なお、ステップS204は、省略されてもよい。 Note that step S204 may be omitted.
 ステップS205において、アンカーUE102(通信部110)は、SL-PRSをターゲットUE101に送信する。ターゲットUE101(通信部110)は、SL-PRSをアンカーUE102から受信する。 In step S205, the anchor UE 102 (communication unit 110) transmits SL-PRS to the target UE 101. The target UE 101 (communication unit 110) receives the SL-PRS from the anchor UE 102.
 アンカーUE102(通信部110)は、ターゲットUE101によって選択された事前規定設定に基づいて、SL-PRSをターゲットUE101に送信する。例えば、アンカーUE102(通信部110)は、決定された時間・周波数リソースを用いて、SL-PRSを送信してよい。アンカーUE102(通信部110)は、決定された信号のタイプに対応する信号をSL-PRSとして送信してもよい。 The anchor UE 102 (communication unit 110) transmits the SL-PRS to the target UE 101 based on the pre-defined settings selected by the target UE 101. For example, anchor UE 102 (communication unit 110) may transmit SL-PRS using the determined time/frequency resource. Anchor UE 102 (communication unit 110) may transmit a signal corresponding to the determined signal type as SL-PRS.
 ターゲットUE101(通信部110)は、ターゲットUE101によって選択された事前規定設定に基づいて、SL-PRSをアンカーUE102から受信する。例えば、ターゲットUE101(通信部110)は、決定された時間・周波数リソースを用いて、SL-PRSを受信してよい。ターゲットUE101(通信部110)は、決定された信号のタイプに対応する信号をSL-PRSとして受信してもよい。 The target UE 101 (communication unit 110) receives the SL-PRS from the anchor UE 102 based on the pre-defined settings selected by the target UE 101. For example, the target UE 101 (communication unit 110) may receive the SL-PRS using the determined time/frequency resource. The target UE 101 (communication unit 110) may receive the signal corresponding to the determined signal type as the SL-PRS.
 なお、アンカーUE102(通信部110)は、アンカーUE102の地理座標を示す情報をターゲットUE101に送信してもよい。ターゲットUE101(通信部110)は、SL-PRSをアンカーUE102から受信してよい。 Note that the anchor UE 102 (communication unit 110) may transmit information indicating the geographical coordinates of the anchor UE 102 to the target UE 101. The target UE 101 (communication unit 110) may receive the SL-PRS from the anchor UE 102.
 ステップS206において、ターゲットUE101(制御部120)は、SL-PRSに対する測定を行う。 In step S206, the target UE 101 (control unit 120) measures SL-PRS.
 ターゲットUE101(制御部120)は、例えば、SL-PRSの受信電力(例えば、RSRP)、SL-PRSの受信時間、SL-PRSの到来角(AoA)及びSL-PRSの発射角(AoD)等の少なくともいずれかを測定してよい。また、ターゲットUE101(制御部120)は、例えば、SL-PRSの測定報告対象を示す情報に基づいて、測定を行ってよい。 Target UE 101 (control unit 120), for example, received power of SL-PRS (eg, RSRP), reception time of SL-PRS, angle of arrival of SL-PRS (AoA) and angle of departure of SL-PRS (AoD), etc. may be measured. Also, the target UE 101 (control unit 120) may perform measurement based on, for example, information indicating SL-PRS measurement report targets.
 なお、ターゲットUE101(制御部120)は、複数のアンカーUE102のそれぞれからSL-PRSを受信した場合、各SL-PRSに対する測定を行う。 Note that when the target UE 101 (control unit 120) receives SL-PRS from each of a plurality of anchor UEs 102, it measures each SL-PRS.
 ステップS207において、ターゲットUE101(制御部120)は、測定結果に基づいて、位置推定を行う。ターゲットUE101(制御部120)は、例えば、DL-AoD(Downlink Angle-of-Departure)ポジショニング方法と同様の方法を用いて位置測定を行ってよい。ここで、DL-AoDポジショニング方法と同様の方法は、SL-AoDポジショニング方法と称されてよい。ターゲットUE101(制御部120)は、例えば、複数のアンカーUE102からのSL-PRSの発射角(AoD)に基づいて、位置測定を行ってよい。 In step S207, the target UE 101 (control unit 120) performs position estimation based on the measurement result. The target UE 101 (control unit 120) may perform position measurement using a method similar to the DL-AoD (Downlink Angle-of-Departure) positioning method, for example. Here, a method similar to the DL-AoD positioning method may be referred to as the SL-AoD positioning method. The target UE 101 (control unit 120) may perform position measurements based on angles of launch (AoD) of SL-PRS from multiple anchor UEs 102, for example.
 また、ターゲットUE101(制御部120)は、複数のアンカーUE102からのDL-PRSの受信電力(具体的には、RSRP(Reference Signal Received Power))の測定値と、SL-PRSの空間情報及び複数の送受信ポイント(すなわち、複数のアンカーUE102)の地理座標の知識(アンカーUE102の地理座標を示す情報)とに基づいて、UE100の位置を推定してよい。 In addition, the target UE 101 (control unit 120), the received power of DL-PRS from a plurality of anchor UE 102 (specifically, RSRP (Reference Signal Received Power)) measured value, SL-PRS spatial information and multiple , the location of the UE 100 may be estimated based on the knowledge of the geographic coordinates of the transmission/reception points (ie, the plurality of anchor UEs 102) (information indicating the geographic coordinates of the anchor UEs 102).
 なお、アンカーUE102がSL-PRSを周期的又は非周期的に送信する場合、ターゲットUE101(制御部120)は、SL-PRSの測定を行う度に、位置推定を行ってもよい。 Note that when the anchor UE 102 periodically or aperiodically transmits SL-PRS, the target UE 101 (control unit 120) may perform position estimation each time SL-PRS is measured.
 また、ターゲットUE101(通信部110)は、位置推定の実行に応じて、SL-PRSの送信を無効にするための送信非アクティベーション要求を送信してもよい。当該要求は、SL-PRSに関する制御情報に含まれていてもよい。アンカーUE102(制御部120)は、当該要求の受信に応じて、SL-PRSの送信を無効(非アクティブ)にしてもよい。アンカーUE102(制御部120)は、当該要求の受信に応じて、事前規定設定を解放してもよい。 Also, the target UE 101 (communication unit 110) may transmit a transmission deactivation request for disabling transmission of SL-PRS according to execution of position estimation. The request may be included in the control information for SL-PRS. Anchor UE 102 (control unit 120) may disable (deactivate) transmission of SL-PRS in response to receiving the request. Anchor UE 102 (control unit 120) may release the pre-defined configuration in response to receiving the request.
 以上のように、ターゲットUE101(通信部110)は、1又は複数の事前規定設定を保持している。ターゲットUE101(通信部110)は、1又は複数の事前規定設定の中から選択された事前規定設定に対応付けられた設定識別子をアンカーUE102に送信する。ターゲットUE101(通信部110)は、選択された事前規定設定に基づいて、SL-PRSの受信を行う。一方で、アンカーUE102が、ターゲットUE101によって選択された事前規定設定を知ることができ、SL-PRSを送信することができる。ターゲットUE101(通信部110)は、選択された事前規定設定に基づいて、SL-PRSを受信できる。これにより、ターゲットUE101(制御部120)は、SL-PRSを用いた位置推定を適切に行うことができる。 As described above, the target UE 101 (communication unit 110) holds one or more predefined settings. The target UE 101 (communication unit 110) transmits to the anchor UE 102 a configuration identifier associated with a pre-defined setting selected from one or more pre-defined settings. The target UE 101 (communication unit 110) receives the SL-PRS based on the selected pre-defined settings. On the one hand, the anchor UE 102 can know the pre-defined settings selected by the target UE 101 and can send the SL-PRS. The target UE 101 (communication unit 110) can receive SL-PRS based on selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
 また、ターゲットUE101(通信部110)は、SL-PRSの送信を有効にするための送信アクティベーション要求をアンカーUE102へ送信する。これにより、アンカーUE102は、当該要求を受信するまでSL-PRSの送信を無効にすることができ、アンカーUE102の省電力を図ることができる。また、ターゲットUE101が、SL-PRSの受信に失敗することを避けることができる。 Also, target UE 101 (communication unit 110) transmits a transmission activation request for enabling transmission of SL-PRS to anchor UE 102. As a result, the anchor UE 102 can disable transmission of the SL-PRS until the request is received, and the power of the anchor UE 102 can be saved. Also, the target UE 101 can avoid failing to receive the SL-PRS.
 また、アンカーUE102(通信部110)は、SL-PRSに関する制御情報をターゲットUE101から受信する。アンカーUE102(通信部110)は、制御情報に基づいて、SL-PRSの受信を制御する。制御情報は、SL-PRSの送信を有効又は無効にするための要求(送信アクティベーション要求/送信非アクティベーション要求)を含んでよい。これにより、アンカーUE102(制御部120)は、当該要求に基づいて、SL-PRSの送信を有効又は無効にできる。アンカーUE102の省電力を図ることができる。 Also, the anchor UE 102 (communication unit 110) receives control information regarding SL-PRS from the target UE 101. Anchor UE 102 (communication unit 110) controls reception of SL-PRS based on the control information. The control information may include a request to enable or disable transmission of SL-PRS (transmission activation request/transmission deactivation request). This allows anchor UE 102 (control unit 120) to enable or disable SL-PRS transmission based on the request. Power saving of the anchor UE 102 can be achieved.
 (3)第3動作例
 図9を参照して、第3動作例について、上述の動作例との相違点を主として説明する。第3動作例では、アンカーUE102が事前規定設定を選択し、ターゲットUE101がSL-PRSを送信する。
(3) Third Operation Example A third operation example will be described with reference to FIG. 9, mainly focusing on differences from the above-described operation example. In a third operational example, the anchor UE 102 selects the pre-defined settings and the target UE 101 transmits the SL-PRS.
 図9に示すように、ステップS301において、アンカーUE102(制御部120)は、保持されている1又は複数の事前規定設定の中から適用する事前規定設定を選択する。アンカーUE102(制御部120)は、ステップS101におけるターゲットUE101と同様の動作を行う。 As shown in FIG. 9, in step S301, the anchor UE 102 (control unit 120) selects a preset setting to be applied from one or a plurality of stored preset settings. The anchor UE 102 (control unit 120) performs the same operation as the target UE 101 in step S101.
 なお、アンカーUE102(通信部110)は、ステップS301のトリガとなるシグナリングをターゲットUE101から受信してもよい。アンカーUE102(制御部120)は、当該シグナリングの受信に応じて、事前規定設定の選択を開始してもよい。 Note that the anchor UE 102 (communication unit 110) may receive signaling that triggers step S301 from the target UE 101. Anchor UE 102 (controller 120) may initiate selection of a pre-defined configuration in response to receiving this signaling.
 例えば、ターゲットUE101(通信部110)は、アンカーUEとなることを要求するアンカーUE要求をアンカーUE102に送信してもよい。アンカーUE102(通信部110)は、アンカーUE要求をターゲットUE101から受信する。アンカーUE102(制御部120)は、アンカーUE要求の受信に応じて、ステップS302の処理を実行してもよい。或いは、アンカーUE102(制御部120)は、アンカーUEになることを承認するか否かを判定してもよい。アンカーUE102(制御部120)は、アンカーUEになることを承認する場合に、ステップS302の処理を実行してもよい。アンカーUE102(制御部120)は、アンカーUEになることを拒否する場合に、アンカーUEになることの拒否を示す情報をターゲットUE101へ送信してもよい。 For example, the target UE 101 (communication unit 110) may transmit an anchor UE request requesting to become an anchor UE to the anchor UE 102. Anchor UE 102 (communication unit 110 ) receives the anchor UE request from target UE 101 . The anchor UE 102 (control unit 120) may perform the process of step S302 upon receiving the anchor UE request. Alternatively, the anchor UE 102 (control unit 120) may determine whether or not to approve becoming an anchor UE. The anchor UE 102 (control unit 120) may perform the process of step S302 when approving to become the anchor UE. When rejecting becoming an anchor UE, the anchor UE 102 (control unit 120) may transmit information indicating rejection of becoming an anchor UE to the target UE 101 .
 ターゲットUE101(通信部110)は、アンカーUE要求の代わりに、ステップS302のトリガとなる情報をアンカーUE102に送信してもよい。当該情報は、SL-PRSに関する制御情報に含まれてよい。アンカーUE102(制御部120)は、当該情報の受信に応じて、ステップS302の処理を実行してもよい。 The target UE 101 (communication unit 110) may transmit information that triggers step S302 to the anchor UE 102 instead of the anchor UE request. Such information may be included in the control information for SL-PRS. Anchor UE 102 (control unit 120) may execute the process of step S302 upon receiving the information.
 アンカーUE102がセル内に位置する場合、アンカーUE102(通信部110)は、ステップS301のトリガとなるシグナリングをネットワーク10から受信してもよい。当該トリガとなるシグナリングは、例えば、基地局200からの要求、指示等のシグナリングであってもよいし、位置管理装置400からのメッセージ等のシグナリングであってもよい。 If the anchor UE 102 is located within the cell, the anchor UE 102 (communication unit 110) may receive signaling from the network 10 that triggers step S301. The triggering signaling may be, for example, signaling such as a request or instruction from the base station 200 or signaling such as a message from the location management device 400 .
 ステップS302において、アンカーUE102(通信部110)は、選択された事前規定設定に対応付けられた設定識別子をターゲットUE101に送信する。ターゲットUE101(通信部110)は、設定識別子をアンカーUE102から受信する。 In step S302, the anchor UE 102 (communication unit 110) transmits the setting identifier associated with the selected predefined setting to the target UE 101. The target UE 101 (communication unit 110) receives the configuration identifier from the anchor UE 102.
 アンカーUE102(通信部110)は、ステップS102におけるターゲットUE101と同様の動作を行う。ターゲットUE101(通信部110)は、ステップS102におけるアンカーUE102と同様の動作を行う。また、ターゲットUE101は、ステップS103におけるアンカーUE102と同様の動作を行い、アンカーUE102は、ステップS103におけるターゲットUE101と同様の動作を行ってよい。 The anchor UE 102 (communication unit 110) performs the same operation as the target UE 101 in step S102. The target UE 101 (communication unit 110) performs the same operation as the anchor UE 102 in step S102. Also, the target UE 101 may perform the same operation as the anchor UE 102 in step S103, and the anchor UE 102 may perform the same operation as the target UE 101 in step S103.
 ステップS303からS307は、ステップS104からS108と同様である。 Steps S303 to S307 are the same as steps S104 to S108.
 以上のように、アンカーUE102(制御部120)は、1又は複数の事前規定設定を保持している。アンカーUE102(制御部120)は、1又は複数の事前規定設定の中から適用する事前規定設定を選択する。アンカーUE102(通信部110)は、選択された事前規定設定に対応付けられた設定識別子をターゲットUE101に送信する。ターゲットUE101(通信部110)は、アンカーUE102によって選択された事前規定設定に対応付けられた設定識別子をアンカーUE102から受信する。これにより、選択された事前規定設定自体をターゲットUE101に送信する場合と比較して、少ない情報量でアンカーUE102からターゲットUE101へ選択された事前規定設定を伝えることができる。また、ターゲットUE101(通信部110)は、アンカーUE102によって選択された事前規定設定を知ることができ、選択された事前規定設定に基づいて、SL-PRSを受信できる。これにより、ターゲットUE101(制御部120)は、SL-PRSを用いた位置推定を適切に行うことができる。 As described above, the anchor UE 102 (control unit 120) holds one or more predefined settings. Anchor UE 102 (control unit 120) selects a pre-defined setting to apply from among one or more pre-defined settings. The anchor UE 102 (communication unit 110) sends the configuration identifier associated with the selected pre-defined configuration to the target UE 101. The target UE 101 (communication unit 110) receives from the anchor UE 102 the configuration identifier associated with the pre-defined configuration selected by the anchor UE 102. This allows the selected pre-defined settings to be conveyed from the anchor UE 102 to the target UE 101 with a smaller amount of information compared to transmitting the selected pre-defined settings themselves to the target UE 101 . Also, the target UE 101 (communication unit 110) can know the pre-defined settings selected by the anchor UE 102 and can receive the SL-PRS based on the selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
 (4)第4動作例
 図10を参照して、第4動作例について、上述の動作例との相違点を主として説明する。第4動作例では、アンカーUE102が事前規定設定を選択し、アンカーUE102がSL-PRSを送信する。
(4) Fourth Operation Example A fourth operation example will be described with reference to FIG. 10, mainly focusing on differences from the above-described operation example. In a fourth operational example, the anchor UE 102 selects the pre-defined settings and the anchor UE 102 transmits the SL-PRS.
 図10に示すように、ステップS401及びS402は、ステップS301及びS302と同様である。ステップS403からS406は、S204からS207と同様である。 As shown in FIG. 10, steps S401 and S402 are similar to steps S301 and S302. Steps S403 to S406 are the same as S204 to S207.
 アンカーUE102(制御部120)は、1又は複数の事前規定設定の中から適用する事前規定設定を選択する。アンカーUE102(通信部110)は、選択された事前規定設定に対応付けられた設定識別子をターゲットUE101に送信する。アンカーUE102(通信部110)は、選択された事前規定設定に基づいて、SL-PRSの送信を行う。ターゲットUE101(通信部110)は、アンカーUE102によって選択された事前規定設定に対応付けられた設定識別子をアンカーUE102から受信する。ターゲットUE101(通信部110)は、設定識別子に対応付けられた事前規定設定に基づいて、SL-PRSをアンカーUE102から受信する。このように、ターゲットUE101が、アンカーUE102によって選択された事前規定設定を知ることができ、選択された事前規定設定に基づいて、SL-PRSを受信できる。これにより、ターゲットUE101(制御部120)は、SL-PRSを用いた位置推定を適切に行うことができる。 The anchor UE 102 (control unit 120) selects a pre-defined setting to apply from one or more pre-defined settings. The anchor UE 102 (communication unit 110) sends the configuration identifier associated with the selected pre-defined configuration to the target UE 101. Anchor UE 102 (communication unit 110) performs SL-PRS transmission based on the selected pre-defined settings. The target UE 101 (communication unit 110) receives from the anchor UE 102 the configuration identifier associated with the pre-defined configuration selected by the anchor UE 102. The target UE 101 (communication unit 110) receives the SL-PRS from the anchor UE 102 based on the pre-defined configuration associated with the configuration identifier. In this way, the target UE 101 can know the pre-defined settings selected by the anchor UE 102 and can receive the SL-PRS based on the selected pre-defined settings. This allows the target UE 101 (control unit 120) to appropriately perform position estimation using SL-PRS.
 (5)第5動作例 
 図11を参照して、第5動作例について、上述の動作例との相違点を主として説明する。第5動作例では、ターゲットUE101は、位置管理装置400からの位置情報に基づいて位置推定を行う。
(5) Fifth operation example
With reference to FIG. 11, the fifth operation example will be described mainly with respect to the differences from the above-described operation example. In the fifth operation example, the target UE 101 performs position estimation based on the position information from the position management device 400 .
 本動作例では、ターゲットUE101とアンカーUE102は、基地局200が管理するセル内(すなわち、NG-RANカバレッジ内)にある。ターゲットUE101とアンカーUE102は、RRCコネクティッド状態にある。或いは、ターゲットUE101とアンカーUE102は、RRCアイドル状態又はRRCインアクティブ状態にあってよい。ターゲットUE101とアンカーUE102は、位置管理装置400と通信を行う場合に、RRCコネクティッド状態に遷移してもよい。 In this operation example, the target UE 101 and the anchor UE 102 are within the cell managed by the base station 200 (that is, within the NG-RAN coverage). The target UE 101 and the anchor UE 102 are in RRC connected state. Alternatively, the target UE 101 and the anchor UE 102 may be in RRC idle state or RRC inactive state. The target UE 101 and the anchor UE 102 may transition to the RRC connected state when communicating with the location management device 400 .
 図11に示すように、ステップS501において、ターゲットUE101(通信部110)は、位置サービスの要求を位置管理装置400へ送信する。位置管理装置400は、位置サービスの要求をターゲットUE101から受信する。 As shown in FIG. 11, in step S501, the target UE 101 (communication unit 110) transmits a location service request to the location management device 400. The location management device 400 receives a location service request from the target UE 101 .
 位置サービスの要求は、SL-PRS設定を決定するために用いられる情報を要求するものであってよい。位置サービスの要求は、例えば、MO-LR要求メッセージ、UL NASトランスポートメッセージ、LPPメッセージ等のいずれかに含まれてよい。位置サービスの要求(を含むメッセージ)は、例えば、位置推定の精度、SL-PRSの測定精度、位置サービス(LCS)についての品質(QoS:Quality of Service)を示す情報等の少なくともいずれかを含んでいてよい。 A location service request may request information used to determine SL-PRS settings. A request for location services may be included, for example, in any of MO-LR request messages, UL NAS transport messages, LPP messages, and the like. The location service request (including a message) includes, for example, at least one of information indicating location estimation accuracy, SL-PRS measurement accuracy, location service (LCS) quality of service (QoS), and the like. can be
 なお、UE100と位置管理装置400とは、基地局200(セル)及びAMFを介して通信(送信及び/又は受信)を行うが、以下において、UE100と位置管理装置400との通信が基地局200(セル)及びAMFを介した通信であるとの説明を省略することがある。 UE 100 and location management device 400 communicate (transmit and/or receive) via base station 200 (cell) and AMF. (cell) and AMF may be omitted.
 ステップS502において、位置管理装置400は、位置補助情報(例えば、補助データ(AssistanceData))をターゲットUE101へ送信する。ターゲットUE101(通信部110)は、位置補助情報を位置管理装置400から受信する。 In step S<b>502 , the location management device 400 transmits location assistance information (eg, AssistanceData) to the target UE 101 . The target UE 101 (communication unit 110 ) receives location assistance information from the location management device 400 .
 位置補助情報は、例えば、MO-LR応答メッセージ、DL NASトランスポートメッセージ、LPPメッセージ等のいずれかに含まれてよい。位置補助情報は、事前規定設定を決定するために用いられる情報を含んでよい。また、位置補助情報は、SL-PRSとして使用する信号のタイプの候補を示す情報を含んでよい。 The location assistance information may be included in, for example, the MO-LR response message, the DL NAS transport message, the LPP message, or the like. Location assistance information may include information used to determine pre-defined settings. The location assistance information may also include information indicating candidate types of signals to be used as SL-PRS.
 位置補助情報は、ターゲットUE101の周囲に存在する各UE100の情報を含んでよい。位置補助情報は、アンカーUE102の情報を含んでよい。位置補助情報は、例えば、アンカーUE102の識別子、アンカーUE102の位置情報等を含んでいてよい。 The location assistance information may include information of each UE 100 existing around the target UE 101. Location assistance information may include anchor UE 102 information. The location assistance information may include, for example, the identifier of the anchor UE 102, the location information of the anchor UE 102, and the like.
 なお、位置管理装置400は、位置補助情報をターゲットUE101の周囲に存在する各UE100(アンカーUE102)へ送信してもよい。位置補助情報は、例えば、ターゲットUE101の識別子、ターゲットUE101の位置情報を含んでいてよい。 Note that the location management device 400 may transmit location assistance information to each UE 100 (anchor UE 102) existing around the target UE 101. The location assistance information may include, for example, the identifier of the target UE 101 and the location information of the target UE 101 .
 ステップS503において、位置推定手順が行われる。位置推定手順は、上述の第1動作例から第4動作例に記載のいずれかのステップが含まれてよい。 In step S503, a position estimation procedure is performed. The position estimation procedure may include any of the steps described in the above first to fourth operation examples.
 なお、ステップS503において、ターゲットUE101は、位置推定を行わずにステップS506の処理を実行してよい。また、アンカーUE102は、測定報告をターゲットUE101に送信せずに、ステップS504の処理を実行してもよい。 Note that in step S503, the target UE 101 may execute the process of step S506 without estimating the position. Also, the anchor UE 102 may perform the process of step S504 without sending the measurement report to the target UE 101 .
 また、ステップS503において、アンカーUE102が事前規定設定を選択する場合、ターゲットUE101の代わりに、位置管理装置400がアンカーUE要求を送信してもよい。アンカーUE102は、位置管理装置400からのアンカーUE要求の受信に応じて、事前規定設定の選択を開始してもよい。 Also, in step S503, if the anchor UE 102 selects the preset setting, the location management device 400 may send the anchor UE request instead of the target UE 101. Anchor UE 102 may initiate selection of a pre-defined configuration in response to receiving an anchor UE request from location management device 400 .
 ステップS504において、アンカーUE102(通信部110)は、SL-PRSについての測定報告を位置管理装置400に送信する。位置管理装置400は、測定報告をアンカーUE102から受信する。なお、SL-PRSについての測定報告は、上述の動作例と同様である。 In step S504, the anchor UE 102 (communication unit 110) transmits the SL-PRS measurement report to the location management device 400. Location management device 400 receives measurement reports from anchor UE 102 . Note that the measurement report for SL-PRS is the same as the operation example described above.
 アンカーUE102(通信部110)は、測定報告をUL NASトランスポートメッセージ、LPPメッセージ等のいずれかに含めて、位置管理装置400へ送信してもよい。 Anchor UE 102 (communication unit 110) may include the measurement report in either a UL NAS transport message, an LPP message, or the like and transmit it to location management device 400.
 アンカーUE102(通信部110)は、SL-PRSについての測定報告を、基地局200に隣接する隣接基地局からの通信品質を報告するために用いられるメジャメントレポート、UE補助情報メッセージ等により基地局200に送信してもよい。基地局200は、SL-PRSについての測定報告を、AMFを経由して位置管理装置400へ送信してもよい。 Anchor UE 102 (communication unit 110) sends a measurement report on SL-PRS to base station 200 using a measurement report, a UE auxiliary information message, etc. used for reporting communication quality from adjacent base stations adjacent to base station 200. may be sent to The base station 200 may transmit the SL-PRS measurement report to the location management device 400 via AMF.
 なお、ターゲットUE101(通信部110)が、測定報告を位置管理装置400へ送信してもよい。例えば、ターゲットUE101において、SL-PRS測定が実行された場合、ターゲットUE101から位置管理装置400へ測定報告が送信されてもよい。位置管理装置400は、測定報告をアンカーUE102から受信する。 Note that the target UE 101 (communication unit 110) may transmit the measurement report to the location management device 400. For example, when SL-PRS measurements are performed in the target UE 101 , a measurement report may be sent from the target UE 101 to the location management device 400 . Location management device 400 receives measurement reports from anchor UE 102 .
 ステップS505において、位置管理装置400は、測定報告に基づいて、位置推定を行う。位置管理装置400は、上述の動作例と同様に位置推定を行うことができる。 In step S505, the location management device 400 performs location estimation based on the measurement report. The position management device 400 can perform position estimation in the same manner as in the operation example described above.
 ステップS506において、ターゲットUE101(通信部110)は、位置サービスの要求を位置管理装置400へ送信してよい。位置管理装置400は、ターゲットUE101の位置情報の要求を位置管理装置400へ送信する。位置管理装置400は、位置情報の要求をターゲットUE101から受信してよい。 In step S<b>506 , the target UE 101 (communication unit 110 ) may transmit a location service request to the location management device 400 . The location management device 400 transmits a request for location information of the target UE 101 to the location management device 400 . The location management device 400 may receive a request for location information from the target UE 101 .
 位置情報の要求は、例えば、MO-LR要求メッセージ、UL NASトランスポートメッセージ、LPPメッセージ等のいずれかに含まれてよい。位置情報の要求(を含むメッセージ)は、例えば、位置推定の精度、SL-PRSの測定精度、位置サービス(LCS)についての品質(QoS:Quality of Service)を示す情報等の少なくともいずれかを含んでいてよい。 A request for location information may be included in, for example, a MO-LR request message, a UL NAS transport message, an LPP message, or the like. The (message containing) location information request includes, for example, at least one of information indicating location estimation accuracy, SL-PRS measurement accuracy, location service (LCS) quality of service (QoS), and the like. can be
 ステップS507において、位置管理装置400は、位置情報をターゲットUE101へ送信する。ターゲットUE101(通信部110)は、位置情報を位置管理装置400から受信する。 In step S507, the location management device 400 transmits the location information to the target UE101. Target UE 101 (communication unit 110 ) receives location information from location management device 400 .
 位置情報は、位置管理装置400により推定されたターゲットUE101の位置を示す。位置情報は、例えば、MO-LR応答メッセージ、UL NASトランスポートメッセージ、LPPメッセージ等のいずれかに含まれてよい。 The location information indicates the location of the target UE 101 estimated by the location management device 400. Location information may be included in, for example, MO-LR response messages, UL NAS transport messages, LPP messages, or the like.
 (6)第6動作例 
 図12を参照して、第6動作例について、上述の動作例との相違点を主として説明する。第6動作例では、基地局200がSL-PRSに関する制御情報を送信する。ターゲットUE101とアンカーUE102のRRC状態は、第5動作例と同様である。
(6) Sixth operation example
With reference to FIG. 12, the sixth operation example will be described mainly with respect to the differences from the above-described operation example. In the sixth operation example, the base station 200 transmits control information regarding SL-PRS. The RRC states of the target UE 101 and the anchor UE 102 are the same as in the fifth operation example.
 ステップS601において、ターゲットUE101(通信部110)は、SL-PRSに関する制御情報の要求を基地局200に送信する。基地局200(通信部210)は、制御情報の要求をターゲットUE101から受信する。 In step S601, the target UE 101 (communication unit 110) transmits to the base station 200 a request for control information regarding SL-PRS. The base station 200 (communication unit 210 ) receives the request for control information from the target UE 101 .
 ステップS602において、基地局200(通信部210)は、SL-PRSに関する制御情報をターゲットUE101へ送信する。ターゲットUE101(通信部110)は、制御情報を基地局200から受信する。 In step S602, the base station 200 (communication unit 210) transmits control information regarding SL-PRS to the target UE101. The target UE 101 (communication unit 110 ) receives control information from the base station 200 .
 基地局200(通信部210)は、制御情報の要求の受信に応じて、制御情報を生成してよい。制御情報は、物理レイヤで規定される下りリンク制御情報(DCI)、MAC CE、RRCメッセージのいずれかであってよい。 The base station 200 (communication unit 210) may generate control information in response to receiving a request for control information. The control information may be downlink control information (DCI) defined by the physical layer, MAC CE, or RRC message.
 ステップS603において、位置推定手順が行われる。位置推定手順は、上述の第1動作例から第4動作例のいずれかであってよい。 In step S603, a position estimation procedure is performed. The position estimation procedure may be any one of the first to fourth operation examples described above.
 以上のように、ターゲットUE101(通信部110)は、基地局200から、SL-PRSに関する制御情報を受信する。これにより、基地局200が、位置推定手順を制御することができる。 As described above, the target UE 101 (communication unit 110) receives control information regarding SL-PRS from the base station 200. This allows the base station 200 to control the position estimation procedure.
 (その他の実施形態)
 上述の実施形態において、ターゲットUE101又はアンカーUE102は、1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を送信していたが、これに限られない。ターゲットUE101又はアンカーUE102は、事前規定設定を含む制御情報を送信してもよい。
(Other embodiments)
In the above embodiments, the target UE 101 or the anchor UE 102 transmitted configuration identifiers associated with each of one or more pre-defined configurations, but this is not the only option. The target UE 101 or anchor UE 102 may send control information containing pre-defined settings.
 上述の実施形態の動作例5に示すように、位置管理装置400が、SL-PRSに対する測定結果に基づいて位置推定を行ってよい。この場合、ターゲットUE101は、SL-PRSに対する測定結果に基づいて位置推定を行ってもよいし、SL-PRSに対する測定結果に基づいて位置推定を行わなくてもよい。ターゲットUE101は、位置推定を行わない場合、位置推定を行った位置管理装置400から、ターゲットUE101の位置情報を受信してよい。 As shown in Operation Example 5 of the above-described embodiment, the location management device 400 may perform location estimation based on the SL-PRS measurement results. In this case, the target UE 101 may perform position estimation based on the SL-PRS measurement results, or may not perform position estimation based on the SL-PRS measurement results. When the target UE 101 does not perform position estimation, the target UE 101 may receive the position information of the target UE 101 from the position management device 400 that has performed the position estimation.
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。
コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium.
A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited. For example, a recording medium such as a CD-ROM (Compact Disk Read Only Memory) or a DVD-ROM (Digital Versatile Disc Read Only Memory) good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, references to "based on" and "depending on/in response to" are used unless otherwise specified. does not mean The phrase "based on" means both "based only on" and "based at least in part on." Similarly, the phrase "depending on" means both "only depending on" and "at least partially depending on." Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first," "second," etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in plural unless the context clearly indicates otherwise. shall include things.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 通信装置(100、101)であって、
 サイドリンク用の測位参照信号を他の通信装置(100、102)に送信又は前記他の通信装置(100、102)から受信する通信部(110)と、
 前記測位参照信号に対する測定結果に基づいて、前記通信装置(100、101)の位置推定を行う制御部(120)と、を備え、
 前記制御部(120)は、前記測位参照信号について予め規定された1又は複数の事前規定設定を保持し、
 前記通信部(110)は、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う
 通信装置(100、101)。
(Appendix 1)
A communication device (100, 101),
A communication unit (110) that transmits a sidelink positioning reference signal to another communication device (100, 102) or receives it from the other communication device (100, 102);
a control unit (120) for estimating the position of the communication device (100, 101) based on the measurement result for the positioning reference signal;
the control unit (120) maintains one or more predefined settings for the positioning reference signal;
The communication unit (110) transmits or receives the positioning reference signal based on a pre-defined setting selected from the held one or more pre-defined settings. Communication devices (100, 101) .
 (付記2)
 前記制御部(120)は、前記1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を保持しており、
 前記制御部(120)は、前記1又は複数の事前規定設定の中から適用する事前規定設定を選択し、
 前記通信部(110)は、前記選択された事前規定設定に対応付けられた設定識別子を前記他の通信装置(100、102)へ送信する
 付記1に記載の通信装置(100、101)。
(Appendix 2)
The control unit (120) holds a setting identifier associated with each of the one or more predefined settings,
The control unit (120) selects a pre-defined setting to be applied from among the one or more pre-defined settings,
The communication device (100, 101) according to appendix 1, wherein the communication unit (110) transmits a setting identifier associated with the selected predefined setting to the other communication device (100, 102).
 (付記3)
 前記通信部(110)は、前記設定識別子の送信に応じて、前記設定識別子に対応付けられた前記事前規定設定の承認又は拒否を示す情報を前記他の通信装置(100、102)から受信する
 付記2に記載の通信装置(100、101)。
(Appendix 3)
The communication unit (110) receives, from the other communication devices (100, 102), information indicating approval or rejection of the predefined setting associated with the setting identifier in response to the transmission of the setting identifier. The communication device (100, 101) according to appendix 2.
 (付記4)
 前記制御部(120)は、前記1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を保持しており、
 前記通信部(110)は、前記他の通信装置(100、102)によって選択された事前規定設定に対応付けられた設定識別子を前記他の通信装置(100、102)から受信する
 付記1に記載の通信装置(100、101)。
(Appendix 4)
The control unit (120) holds a setting identifier associated with each of the one or more predefined settings,
1. Said communication unit (110) receives from said other communication device (100, 102) a setting identifier associated with a predefined setting selected by said other communication device (100, 102) communication device (100, 101).
 (付記5)
 前記通信部(110)は、前記設定識別子の受信に応じて、前記設定識別子に対応付けられた前記事前規定設定の承認又は拒否を示す情報を前記他の通信装置(100、102)へ送信する
 付記4に記載の通信装置(100、101)。
(Appendix 5)
The communication unit (110), in response to receiving the setting identifier, transmits information indicating approval or rejection of the pre-defined setting associated with the setting identifier to the other communication devices (100, 102). The communication device (100, 101) according to appendix 4.
 (付記6)
 前記通信部(110)は、
  前記選択された事前規定設定に基づいて、前記測位参照信号を前記他の通信装置(100、102)へ送信し、
  前記測位参照信号に対する前記測定結果を前記他の通信装置(100、102)から受信する
 付記1から5のいずれか1項に記載の通信装置(100、101)。
(Appendix 6)
The communication unit (110)
transmitting the positioning reference signal to the other communication device (100, 102) based on the selected pre-defined configuration;
6. The communication device (100, 101) according to any one of appendices 1 to 5, wherein the measurement result for the positioning reference signal is received from the other communication device (100, 102).
 (付記7)
 前記通信部(110)は、前記測位参照信号の送信を開始する前に、前記測位参照信号の受信を有効にするための要求を前記他の通信装置(100、102)へ送信する
 付記6に記載の通信装置(100、101)。
(Appendix 7)
The communication unit (110) transmits a request to enable reception of the positioning reference signal to the other communication devices (100, 102) before starting transmission of the positioning reference signal. A communication device (100, 101) as described.
 (付記8)
 前記通信部(110)は、前記選択された事前規定設定に基づいて、前記測位参照信号を前記他の通信装置(100、102)から受信し、
 前記制御部(120)は、前記他の通信装置(100、102)から受信した前記測位参照信号に対する測定を行う
 付記1から5のいずれか1項に記載の通信装置(100、101)。
(Appendix 8)
the communication unit (110) receives the positioning reference signal from the other communication device (100, 102) based on the selected pre-defined configuration;
6. The communication device (100, 101) according to any one of appendices 1 to 5, wherein the control unit (120) measures the positioning reference signal received from the other communication device (100, 102).
 (付記9)
 前記通信部(110)は、
  前記測位参照信号の送信を有効にするための要求を前記他の通信装置(100、102)へ送信し、
  前記要求の送信に応じて、前記測位参照信号を受信するための動作を開始する
 付記8に記載の通信装置(100、101)。
(Appendix 9)
The communication unit (110)
sending a request to the other communication device (100, 102) to enable transmission of the positioning reference signal;
9. The communication device (100, 101) of claim 8, initiating an operation to receive the positioning reference signal in response to sending the request.
 (付記10)
 通信装置(100、101)で実行される通信方法あって、
 サイドリンク用の測位参照信号を他の通信装置(100、102)に送信又は前記他の通信装置(100、102)から受信するステップと、
 前記測位参照信号に対する測定結果に基づいて、前記通信装置(100、101)の位置推定を行うステップと、
 前記測位参照信号について予め規定された1又は複数の事前規定設定を保持するステップと、を備え、
 前記受信するステップでは、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う
 通信方法。
 
(Appendix 10)
A communication method executed in a communication device (100, 101), comprising:
A step of transmitting or receiving a sidelink positioning reference signal to another communication device (100, 102) from the other communication device (100, 102);
estimating the position of the communication device (100, 101) based on the measurement result for the positioning reference signal;
retaining one or more predefined settings for the positioning reference signal;
wherein the receiving step comprises transmitting or receiving the positioning reference signal based on a pre-defined setting selected from the retained one or more pre-defined settings.

Claims (10)

  1.  通信装置(100、101)であって、
     サイドリンク用の測位参照信号を他の通信装置(100、102)に送信又は前記他の通信装置(100、102)から受信する通信部(110)と、
     前記測位参照信号に対する測定結果に基づいて、前記通信装置(100、101)の位置推定を行う制御部(120)と、を備え、
     前記制御部(120)は、前記測位参照信号について予め規定された1又は複数の事前規定設定を保持し、
     前記通信部(110)は、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う
     通信装置(100、101)。
    A communication device (100, 101),
    A communication unit (110) that transmits a sidelink positioning reference signal to another communication device (100, 102) or receives it from the other communication device (100, 102);
    a control unit (120) for estimating the position of the communication device (100, 101) based on the measurement result for the positioning reference signal;
    the control unit (120) maintains one or more predefined settings for the positioning reference signal;
    The communication unit (110) transmits or receives the positioning reference signal based on a pre-defined setting selected from the held one or more pre-defined settings. Communication devices (100, 101) .
  2.  前記制御部(120)は、前記1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を保持しており、
     前記制御部(120)は、前記1又は複数の事前規定設定の中から適用する事前規定設定を選択し、
     前記通信部(110)は、前記選択された事前規定設定に対応付けられた設定識別子を前記他の通信装置(100、102)へ送信する
     請求項1に記載の通信装置(100、101)。
    The control unit (120) holds a setting identifier associated with each of the one or more predefined settings,
    The control unit (120) selects a pre-defined setting to be applied from among the one or more pre-defined settings,
    The communication device (100, 101) according to claim 1, wherein said communication unit (110) transmits a setting identifier associated with said selected predefined setting to said other communication device (100, 102).
  3.  前記通信部(110)は、前記設定識別子の送信に応じて、前記設定識別子に対応付けられた前記事前規定設定の承認又は拒否を示す情報を前記他の通信装置(100、102)から受信する
     請求項2に記載の通信装置(100、101)。
    The communication unit (110) receives, from the other communication devices (100, 102), information indicating approval or rejection of the predefined setting associated with the setting identifier in response to the transmission of the setting identifier. A communication device (100, 101) according to claim 2.
  4.  前記制御部(120)は、前記1又は複数の事前規定設定のそれぞれに対応付けられた設定識別子を保持しており、
     前記通信部(110)は、前記他の通信装置(100、102)によって選択された事前規定設定に対応付けられた設定識別子を前記他の通信装置(100、102)から受信する
     請求項1に記載の通信装置(100、101)。
    The control unit (120) holds a setting identifier associated with each of the one or more predefined settings,
    2. The communication unit (110) of claim 1, wherein the communication unit (110) receives from the other communication device (100, 102) a setting identifier associated with a pre-defined setting selected by the other communication device (100, 102). A communication device (100, 101) as described.
  5.  前記通信部(110)は、前記設定識別子の受信に応じて、前記設定識別子に対応付けられた前記事前規定設定の承認又は拒否を示す情報を前記他の通信装置(100、102)へ送信する
     請求項4に記載の通信装置(100、101)。
    The communication unit (110), in response to receiving the setting identifier, transmits information indicating approval or rejection of the pre-defined setting associated with the setting identifier to the other communication devices (100, 102). A communication device (100, 101) according to claim 4.
  6.  前記通信部(110)は、
      前記選択された事前規定設定に基づいて、前記測位参照信号を前記他の通信装置(100、102)へ送信し、
      前記測位参照信号に対する前記測定結果を前記他の通信装置(100、102)から受信する
     請求項1から5のいずれか1項に記載の通信装置(100、101)。
    The communication unit (110)
    transmitting the positioning reference signal to the other communication device (100, 102) based on the selected pre-defined configuration;
    6. The communication device (100, 101) according to any one of claims 1 to 5, wherein the measurement result for the positioning reference signal is received from the other communication device (100, 102).
  7.  前記通信部(110)は、前記測位参照信号の送信を開始する前に、前記測位参照信号の受信を有効にするための要求を前記他の通信装置(100、102)へ送信する
     請求項6に記載の通信装置(100、101)。
    6. The communication unit (110) transmits a request to enable reception of the positioning reference signal to the other communication device (100, 102) before starting transmission of the positioning reference signal. A communication device (100, 101) according to claim 1.
  8.  前記通信部(110)は、前記選択された事前規定設定に基づいて、前記測位参照信号を前記他の通信装置(100、102)から受信し、
     前記制御部(120)は、前記他の通信装置(100、102)から受信した前記測位参照信号に対する測定を行う
     請求項1から5のいずれか1項に記載の通信装置(100、101)。
    the communication unit (110) receives the positioning reference signal from the other communication device (100, 102) based on the selected pre-defined configuration;
    The communication device (100, 101) according to any one of claims 1 to 5, wherein the control unit (120) performs measurements on the positioning reference signals received from the other communication devices (100, 102).
  9.  前記通信部(110)は、
      前記測位参照信号の送信を有効にするための要求を前記他の通信装置(100、102)へ送信し、
      前記要求の送信に応じて、前記測位参照信号を受信するための動作を開始する
     請求項8に記載の通信装置(100、101)。
    The communication unit (110)
    sending a request to the other communication device (100, 102) to enable transmission of the positioning reference signal;
    9. A communication device (100, 101) according to claim 8, wherein in response to transmitting said request, it initiates an operation for receiving said positioning reference signal.
  10.  通信装置(100、101)で実行される通信方法あって、
     サイドリンク用の測位参照信号を他の通信装置(100、102)に送信又は前記他の通信装置(100、102)から受信するステップと、
     前記測位参照信号に対する測定結果に基づいて、前記通信装置(100、101)の位置推定を行うステップと、
     前記測位参照信号について予め規定された1又は複数の事前規定設定を保持するステップと、を備え、
     前記受信するステップでは、前記保持されている1又は複数の事前規定設定の中から選択された事前規定設定に基づいて、前記測位参照信号の送信又は受信を行う
     通信方法。
     
    A communication method executed in a communication device (100, 101), comprising:
    A step of transmitting or receiving a sidelink positioning reference signal to another communication device (100, 102) from the other communication device (100, 102);
    estimating the position of the communication device (100, 101) based on the measurement result for the positioning reference signal;
    retaining one or more predefined settings for the positioning reference signal;
    wherein the receiving step comprises transmitting or receiving the positioning reference signal based on a pre-defined setting selected from the retained one or more pre-defined settings.
PCT/JP2022/034791 2021-09-22 2022-09-16 Communication device and communication method WO2023048091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021154814A JP2023046104A (en) 2021-09-22 2021-09-22 User equipment and communication method
JP2021-154814 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023048091A1 true WO2023048091A1 (en) 2023-03-30

Family

ID=85720724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034791 WO2023048091A1 (en) 2021-09-22 2022-09-16 Communication device and communication method

Country Status (2)

Country Link
JP (1) JP2023046104A (en)
WO (1) WO2023048091A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE INC.: "On Rel-18 Positioning", 3GPP DRAFT; RP-212368, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050343 *

Also Published As

Publication number Publication date
JP2023046104A (en) 2023-04-03

Similar Documents

Publication Publication Date Title
US9848455B2 (en) User terminal, processor, and base station
JP6687452B2 (en) Mobile communication system, user terminal, processor, storage medium and program
JPWO2018084199A1 (en) Communication method
US9655155B2 (en) Method and apparatus for establishing device-to-device connection in wireless communication system
US10425881B2 (en) User terminal, network apparatus, and processor
JP6770643B2 (en) Network nodes and methods for configuring PDCP for wireless devices
JPWO2014129450A1 (en) Mobile communication system, base station, user terminal and processor
JP2016174361A (en) User terminal and processor
JP6028038B2 (en) Mobile communication system, base station, processor
EP4128984A1 (en) Methods, apparatuses and computer-readable medium for device-to-device communication
WO2023048089A1 (en) User device, communication device, and communication method
CN115707036A (en) Method and device for transmitting data
WO2015029952A1 (en) Network device and user terminal
WO2023048091A1 (en) Communication device and communication method
WO2023048088A1 (en) Communication device and communication method
KR20230124693A (en) Positioning setting method and electronic device
JP2014233012A (en) User terminal, base station, and processor
WO2023048090A1 (en) Communication device and communication method
WO2023038111A1 (en) Communication device, location management device, and communication method
WO2023068353A1 (en) Communication device, base station, and communication method
WO2023054448A1 (en) Communication device, network device, and communication method
WO2023068355A1 (en) Communication device, base station, and communication method
WO2023068356A1 (en) Communication device, base station, and communication method
US9955496B2 (en) Mobile communication system, user terminal, and network apparatus
WO2023068350A1 (en) Communication device, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872845

Country of ref document: EP

Kind code of ref document: A1