WO2022234751A1 - Analysis method and analysis device for membrane-occluding substance, and chemical-solution injection control method and chemical-solution injection control device for separation membrane - Google Patents

Analysis method and analysis device for membrane-occluding substance, and chemical-solution injection control method and chemical-solution injection control device for separation membrane Download PDF

Info

Publication number
WO2022234751A1
WO2022234751A1 PCT/JP2022/016068 JP2022016068W WO2022234751A1 WO 2022234751 A1 WO2022234751 A1 WO 2022234751A1 JP 2022016068 W JP2022016068 W JP 2022016068W WO 2022234751 A1 WO2022234751 A1 WO 2022234751A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
film
substance
visible light
reflection intensity
Prior art date
Application number
PCT/JP2022/016068
Other languages
French (fr)
Japanese (ja)
Inventor
卓 木田
勇規 中村
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to JP2023518644A priority Critical patent/JP7579439B2/en
Publication of WO2022234751A1 publication Critical patent/WO2022234751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a method and apparatus for analyzing a membrane clogging substance that clogs a separation membrane, and a method and apparatus for controlling chemical injection of the separation membrane.
  • a washing chemical such as an acid or an alkali is used to dissolve and remove the membrane clogging substances, thereby restoring the separation membrane to its initial state.
  • the conditions for washing the separation membrane using the washing chemical are determined according to the progress of membrane clogging, the type of membrane clogging substance, and the like.
  • the degree of membrane clogging and the type of membrane clogging material can be determined, for example, by stopping the operation of the water treatment system and removing the clogged separation membrane, or by replacing it with an unused separation membrane and analyzing the clogged separation membrane. can be considered.
  • a method has the problem that it takes time and effort to remove the separation membrane, reinstall it after cleaning, or replace the separation membrane, and it takes time to obtain analysis results. Therefore, techniques for estimating the degree of progress of membrane occlusion and techniques for identifying the type of membrane occlusion substance are being studied.
  • the monitoring separation membrane describes a technique for estimating the degree of clogging of a separation membrane based on the absolute value of the differential pressure of the concentrated water before and after permeation or the rate of change thereof.
  • a membrane separation device equipped with a separation membrane is configured with a transparent resin or the like, and the membrane surface of the separation membrane is observed over time with a color sensor to detect membrane clogging that adheres to the membrane surface. Specifying the type of substance is described.
  • Patent Document 1 proposes a technique for estimating the progress of membrane clogging, and does not specify the type of membrane clogging substance adhering to the membrane surface of the separation membrane. Therefore, the technique described in Patent Document 1 has a problem that an appropriate chemical solution cannot be selected according to the type of membrane blocking substance.
  • the present invention has been made to solve the problems of the background art as described above, and is a method and apparatus for analyzing a membrane-blocking substance that can identify more types of membrane-blocking substances, and the analysis method. It is an object of the present invention to provide a separation membrane chemical injection control method and a chemical injection control device using an analyzer.
  • the method for analyzing a membrane clogging substance of the present invention comprises irradiating a monitoring separation membrane through which test water is passed with visible light, measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer; A method for identifying a membrane blocking substance based on the measured reflection intensity of the visible light.
  • the apparatus for analyzing a membrane clogging substance of the present invention comprises a monitoring separation membrane through which test water is passed; a visible light spectrophotometer for irradiating the monitoring separation film with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation film; a computing device that identifies a film blocking substance based on the measured reflection intensity of the visible light; have
  • the water to be treated is separated into permeated water and concentrated water by the separation membrane, Part of the concentrated water is passed through a monitoring separation membrane as test water, irradiating the monitoring separation membrane through which the test water is passed with visible light; measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer; identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light;
  • This is a method of injecting a chemical solution for dissolving and removing the specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into the water flow line of the separation membrane.
  • the chemical dosing control device for a separation membrane of the present invention includes a membrane separation device equipped with a separation membrane that separates water to be treated into permeated water and concentrated water, a monitoring separation membrane through which part of the concentrated water is passed as test water; a visible light spectrophotometer for irradiating the monitoring separation membrane through which the test water is passed with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation membrane; an arithmetic device for identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light; a control device for injecting a chemical solution for dissolving and removing the specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into the water flow line of the separation membrane; have
  • FIG. 1 is a block diagram showing one configuration example of a chemical feeding control device for a separation membrane according to the present invention
  • FIG. FIG. 2 is a side sectional view showing one configuration example of the analysis device shown in FIG. 1
  • FIG. 3 is a block diagram showing a modification of the chemical feeding control device for the separation membrane of the present invention
  • 4 is a graph showing an example of changes in the spectrum of a membrane blocking substance
  • 4 is a graph showing an example of changes in the spectrum of a membrane blocking substance
  • FIG. 6 is a table showing an example of spectral data of assumed substances shown in FIGS. 4 and 5
  • FIG. FIG. 6 is a table showing parameters used in the method for analyzing a membrane blocking substance of an example obtained from the spectral data shown in FIGS. 4 and 5
  • FIG. 4 is a flow chart showing an example of a processing procedure according to an embodiment
  • FIG. 6 is a table showing parameters used in a comparative method for analyzing a membrane blocking substance obtained from the spectral data shown in
  • membrane blockage means a state in which a membrane blockage substance adheres to at least a part of the membrane surface, and does not limit the progress of membrane blockage.
  • the extent to which membrane clogging progresses before starting cleaning of the separation membrane may be set according to the purpose of water treatment, the type of water to be treated, the components contained in the water to be treated, the purity of the permeated water, and the like.
  • Separation membranes to which the present invention can be applied include, for example, reverse osmosis membranes, microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, forward osmosis membranes, deaeration membranes, and decarbonation membranes.
  • FIG. 1 is a block diagram showing one configuration example of the separation membrane chemical feeding control device of the present invention
  • FIG. 2 is a side sectional view showing one configuration example of the analyzer shown in FIG.
  • FIG. 3 is a block diagram showing a modification of the chemical feeding control device for the separation membrane of the present invention.
  • the separation membrane chemical dosing control device of the present invention shown in FIGS. 1 to 3 constitutes a part of a water treatment system for treating water to be treated using a separation membrane.
  • the separation membrane chemical dosing control device of the present invention includes a raw water tank 1 that stores water to be treated, and separates the water to be treated supplied from the raw water tank 1 into concentrated water and permeated water.
  • a membrane separation device 2 equipped with a separation membrane, and an analysis device 3 for identifying the type of membrane clogging substance adhering to the separation membrane, to which part of the concentrated water separated by the membrane separation device 2 is supplied as test water.
  • a chemical liquid tank 4 for storing a cleaning chemical liquid for cleaning the separation membrane
  • a control device 5 for controlling the operation of the entire chemical injection control device for the separation membrane.
  • the separation-membrane chemical-feeding control device may be configured to have a plurality of chemical tanks 4 . In that case, different types of chemical liquids may be stored in the plurality of chemical liquid tanks 4 .
  • the separation membrane chemical feeding control device shown in FIG. It is equipped with a chemical injection pump 12 for injecting a chemical solution and a plurality of valves 13 arranged in a water flow line for discharging the concentrated water separated by the membrane separation device 2 to the outside.
  • the separation membrane chemical feeding control device may include a plurality of chemical feeding pumps 12 according to the number of chemical liquid tanks 4 .
  • a first valve 13A arranged in the water flow line between the membrane separation device 2 and the analysis device 3, and a water flow line between the analysis device 3 and the raw water tank 1 and a third valve 13C for discharging the concentrated water separated by the membrane separation device 2 that is not sent to the analysis device 3 to the outside.
  • the second valve 13B is provided to return the chemical solution to the raw water tank 1 through the water line for the concentrated water separated by the membrane separator 2 when the chemical solution is injected (chemical injection).
  • a second valve 13B may also be used to return concentrated water to the raw water tank 1 during normal operation.
  • the separation membrane chemical feeding control device of the present invention does not need to be configured to return the concentrated water or the chemical solution to the raw water tank 1 .
  • the plurality of valves 13 may be appropriately provided according to the configuration and operation of the chemical injection control device for the separation membrane.
  • the plurality of pumps are not limited to the raw water pump 11 and the chemical injection pump 12, and may be appropriately provided according to the configuration and operation of the chemical injection control device for the separation membrane.
  • the water to be treated stored in the raw water tank 1 is supplied to the membrane separation device 2 by the raw water pump 11 .
  • the membrane separation device 2 separates the water to be treated into permeated water containing substances that permeate the separation membrane and concentrated water containing substances that do not permeate the separation membrane.
  • the permeated water is discharged as treated water.
  • the permeated water is treated by another membrane separation device, ion exchange device, or the like, and discharged as treated water.
  • the concentrated water is discharged as waste water.
  • the concentrated water is treated with another membrane separation device, a biological treatment device, a solid-liquid separation device, or the like, and discharged.
  • the chemical liquid stored in the chemical liquid tank 4 is injected into the water passage line of the separation membrane provided in the membrane separation device 2 .
  • the chemical solution may be injected into the raw water tank 1, or may be injected into the water flow line between the raw water pump 11 and the membrane separator 2, and the membrane separator 2 and the analyzer 3 may be injected. may be injected into the flow line of the concentrate between
  • the chemical liquid stored in the chemical liquid tank 4 is selected according to the type and properties of the membrane blocking substances expected to be generated based on the type of the water to be treated, the components contained in the water to be treated, and the like.
  • Types of chemical solutions include acidic chemical solutions, alkaline chemical solutions, surfactants, and the like, which are used to dissolve and remove membrane clogging substances and wash separation membranes.
  • a slime control agent, a scale dispersant, or the like used for suppressing (delaying) membrane clogging caused by a membrane clogging substance may be used.
  • the control device 5 controls the operation of the entire separation membrane chemical injection control device of the present invention by controlling the raw water pump 11, the chemical injection pump 12, and the plurality of valves 13, respectively. In addition, based on the analysis result of the analyzer 3, the control device 5 injects the chemical liquid stored in the chemical liquid tank 4 into the water flow line of the separation membrane.
  • the control device 5 controls a plurality of types of chemical liquid stored in the plurality of chemical liquid tanks 4 according to the type of the membrane clogging substance identified by the analyzer 3. A chemical liquid selected from the chemical liquids may be injected into the water flow line of the separation membrane.
  • control device 5 may open the first valve 13A and the second valve 13B and close the third valve 13C to circulate the chemical solution.
  • the control device 5 can be realized by, for example, a well-known PLC (Programmable Logic Controller).
  • the control device 5 may be realized by a known information processing device (computer) including a CPU (Central Processing Unit), a storage device, an I/O interface, a communication device, and the like.
  • the analyzer 3 includes a raw water chamber 31, a permeated water chamber 32, a monitoring separation membrane 33, a visible light spectrophotometer 34, and an arithmetic unit 35.
  • the monitoring separation membrane 33 It is provided so as to separate the chamber 31 and the permeated water chamber 32 .
  • the raw water chamber 31 , the permeated water chamber 32 and the monitoring separation membrane 33 constitute the monitoring cell 30 .
  • a part of the concentrated water separated by the membrane separation device 2 is supplied to the monitoring separation membrane 33 as test water, and the test water is further separated into concentrated water and permeated water.
  • the monitoring separation membrane 33 it is preferable to use the same kind of separation membrane as the separation membrane provided in the membrane separation device 2.
  • FIG. Furthermore, it is more preferable to use a membrane manufactured by the same manufacturer as the separation membrane provided in the membrane separation device 2 for the monitoring separation membrane 33 .
  • the raw water chamber 31 is supplied with the test water and discharges concentrated water containing substances that do not permeate the monitoring separation membrane 33 .
  • Permeated water containing substances that have permeated the monitoring separation membrane 33 is discharged from the permeated water chamber 32 .
  • the raw water chamber 31 and the permeated water chamber 32 are each composed of a member that transmits visible light, and a visible light spectrophotometer 34 is arranged on the outer wall surface of the raw water chamber 31 facing the film surface of the separation membrane 33 for monitoring.
  • the raw water chamber 31 and the permeated water chamber 32 may be composed of any member as long as it transmits visible light, and may be composed of, for example, an acrylic plate, a glass plate, quartz, plastic, or the like. .
  • the raw water chamber 31 and the permeated water chamber 32 may be formed individually or integrally.
  • the visible light spectrophotometer 34 includes an illumination unit that irradiates visible light and a measurement unit that measures the reflection intensity of each wavelength of visible light. , the reflection intensity for each wavelength of the visible light reflected by the film surface is measured by the measurement unit.
  • the measurement unit of the visible light spectrophotometer 34 should be able to measure the reflection intensity of light of at least four wavelengths in the visible light region of 400 to 800 nm.
  • the measurement unit may measure the reflection intensity of at least one or more wavelengths of light in the wavelength regions of 400 to 450 nm, 450 to 500 nm, 600 to 700 nm, and 700 to 800 nm.
  • the illumination unit may have any known configuration as long as it can irradiate light with a wavelength in the visible light region.
  • the visible light spectrophotometer 34 measures the reflection intensity of the visible light reflected by the film surface of the monitoring separation film 33 at predetermined intervals, and transmits the measured data to the arithmetic device 35 .
  • the arithmetic device 35 Upon receiving the measurement data of the reflection intensity from the visible light spectrophotometer 34, the arithmetic device 35 estimates the type of substance adhering to the film surface of the monitoring separation membrane 33 based on the measurement data, and separates the estimated substance. It is notified to the controller 5 as a membrane clogging substance. At this time, the computing device 35 may estimate the progress of membrane clogging of the monitoring separation membrane 33 and transmit the estimation result to the control device 5 together. The calculation device 35 or the control device 5 outputs the estimation result of the membrane clogging substance, the estimation result of the degree of membrane clogging, etc. to the water supply including the separation membrane chemical injection control device of the present invention using an output device such as a display device. The administrator of the processing system or the like may be notified.
  • the separation membrane chemical dosing control device shown in FIGS. 1 and 2 shows a configuration example in which part of the concentrated water separated by the membrane separation device 2 is supplied to the monitoring cell 30 as test water.
  • the separation membrane chemical feeding control device of the present invention may be configured to supply part of the water to be treated stored in the raw water tank 1 to the monitoring cell 30 as test water.
  • the first valve 13A may be moved to, for example, the water flow line between the raw water pump 11 and the analyzer 3 as shown in FIG.
  • one or more membrane clogging substances (hereinafter referred to as , called hypothetical substances) are selected, and data (spectral data) of reflection intensity in visible light for each hypothetical substance is measured in advance.
  • the slope (first slope) which is the difference in reflection intensity with respect to the difference in wavelength light for each of the unused film and assumed substance, and the value of the reflection intensity for light of a specific wavelength, calculated from the spectral data, are calculated by the computing device. 35 storage devices, respectively.
  • the computing device 35 collects previously measured reflection intensity data for each wavelength light of the unused membrane and assumed substance, and the monitoring separation membrane through which the test water is passed when the water treatment system is operated (hereinafter referred to as By comparing the reflection intensity data for each wavelength light of the monitored film), the film blocking substance is specified. More specifically, the computing device 35 measures reflection intensity data for each of four or more wavelengths of light in the visible light region for the unused film and assumed substance, and obtains the unused The reflection intensity and the slope are stored for each film and assumed substance. In addition, discrimination conditions for discriminating a film clogging substance, which are set based on the reflection intensity and inclination for each of the unused film and assumed substance, are stored. When the visible light spectrophotometer 34 measures the reflection intensity for each wavelength of the monitored film, the determination condition is used to specify the film blocking substance from the measured data of the monitored film.
  • the computing device 35 When estimating the degree of progress of membrane clogging, the computing device 35, for example, the absolute value of the permeation amount of concentrated water in the monitoring separation membrane 33 or its change rate, the monitoring separation A method of estimating the degree of clogging of the separation membrane based on the absolute value of the differential pressure of the concentrated water before and after permeation through the membrane 33 or its rate of change may be used.
  • the computing device 35 may be realized by an information processing device (computer) including, for example, a CPU, a storage device, an I/O interface, a communication device, and the like. If the control device 5 is implemented by an information processing device (computer), the functions of the arithmetic device 35 may be implemented by the control device 5 . In that case, the visible light spectrophotometer 34 may transmit the measurement data of the reflection intensity for each wavelength light to the control device 5 .
  • the communication means between the visible light spectrophotometer 34 and the arithmetic device 35 (or the control device 5) and the communication means between the arithmetic device 35 and the control device 5 may be known wired communication means or wireless communication means. Any well-known standard may be used as the communication standard.
  • the control device 5 injects the chemical liquid stored in the chemical liquid tank 4 into the water flow line of the separation membrane based on the membrane clogging substance identified by the analyzer 3 .
  • the membrane blocking substance is identified as calcium scale, an acidic chemical solution is injected, and when the membrane blocking substance is identified as silica or biofouling, an alkaline chemical solution is injected.
  • the control device 5 may use pure water or the like to flush each water flow line provided in the chemical injection control device for the separation membrane of the present invention before injecting the chemical solution.
  • control device 5 may inject a chemical solution for the purpose of suppressing (delaying) the occurrence of clogging of the separation membrane into the water flow line of the separation membrane.
  • a chemical solution for the purpose of suppressing (delaying) the occurrence of clogging of the separation membrane into the water flow line of the separation membrane.
  • a slime control agent is injected, and when the membrane clogging substance is identified as an inorganic substance such as calcium fluoride (CaF 2 ) or silica. can be injected with a scale dispersant.
  • the membrane clogging substance is a substance that can suppress the occurrence of membrane clogging by controlling the pH, such as calcium carbonate (CaCO 3 )
  • the occurrence of membrane clogging can be suppressed by injecting an acidic or alkaline chemical. good.
  • the water treatment system can be operated stably for a relatively long period of time.
  • the reflection intensity data for each of four or more wavelengths in the visible light region are measured, and the unused film and the assumed substance obtained from the measurement data The reflection intensity and the slope are saved. Further, discrimination conditions for discriminating a membrane blocking substance, which are set in advance based on the reflection intensity and inclination of each unused film and assumed substance, are stored.
  • the visible light spectrophotometer 34 measures the reflection intensity data for each wavelength light of the monitored film
  • the determination condition is used to identify the film blocking substance from the measured data of the monitored film. Therefore, it becomes possible to identify more types of membrane-occlusive substances.
  • 4 and 5 are graphs showing an example of changes in the spectrum of the assumed substance.
  • the visible light spectrophotometer 34 a hyperspectral camera (Pika L manufactured by RESONON) with a measurement wavelength range of 400 to 1000 nm was used.
  • the reflection intensity was measured in the range of 450 to 600 nm wavelength light for the blocking film with calcium carbonate, calcium fluoride, and silica adhered together with the unused film.
  • the graph of FIG. 4 shows the reflection intensity (spectrum) for each wavelength light of these separation films.
  • the reflection intensity of the biofouled clogging membrane was measured together with the unused membrane in the wavelength range of 400 to 1000 nm.
  • the graph of FIG. 5 shows the reflection intensity (spectrum) for each wavelength light of these separation films.
  • the measurement range of wavelength light is different between the blocking film to which calcium carbonate, calcium fluoride, and silica are attached and the blocking film to which biofouling is applied. It may be set so that the spectrum of each assumed substance can be identified, and may be appropriately set within the visible light region of 400 to 800 nm according to the properties of the unused film and the assumed substance.
  • FIG. 6 is a table showing an example of spectral data of the hypothetical substance shown in FIGS. 4 and 5
  • FIG. 7 is a method for analyzing a membrane blocking substance of the example obtained from the spectral data shown in FIGS. It is a table showing parameters used in.
  • FIG. 6 extracts the measurement data of light at five wavelengths of 400 nm, 450 nm, 600 nm, 700 nm, and 800 nm from the measurement data (spectrum data) of the reflection intensity of the unused film and the closed film shown in FIGS. is shown.
  • FIG. 7 shows the sum of the reflection intensities at wavelengths of 400 and 450 nm and the wavelength of 400 for the unused film and assumed material, calculated from the measurement data of the reflection intensity of the unused film and the blocking film shown in FIGS. and 450 nm, and the slopes at wavelengths of 600 and 800 nm, respectively.
  • whether or not the film to be monitored is clogged can be determined by comparing the reflection intensity of the unused film and the reflection intensity of the film to be monitored at wavelengths of light of 400 to 450 nm or 700 to 800 nm.
  • the difference is so small that it is difficult to distinguish between the reflection intensities of light of only one wavelength. Therefore, in this embodiment, the sum of the reflection intensities of the two wavelength lights of 400 nm and 450 nm shown in FIG. 7 is used to determine whether or not the film to be monitored is clogged.
  • the slope (first slope) in the unused film and assumed material is the difference in the reflection intensity of the wavelength light with respect to the wavelength light difference, that is, the difference in the reflection intensity of the two wavelength lights divided by the wavelength difference. You can find it with For example, the slope for light with wavelengths of 600 and 800 nm can be obtained by the following formula.
  • Tilt (600nm, 800nm) (reflection intensity 800 nm-reflection intensity 600 nm)/(800 nm-600 nm)
  • FIG. 8 is a flowchart showing an example of the processing procedure of the embodiment. It is assumed that the calculation device 35 stores the total reflection intensity value and the slope value calculated from the measurement data of the reflection intensity for each of the unused film and assumed material (see FIG. 7). Further, it is assumed that the computing device 35 stores respective determination conditions for specifying membrane blocking substances. As a determination condition, as will be described later, for example, the inclination of the monitored film at wavelengths of 600 and 800 nm is twice or more the inclination of the unused film, or the inclination of the monitored film at wavelengths of 400 and 450 nm is unused.
  • a determination condition as will be described later, for example, the inclination of the monitored film at wavelengths of 600 and 800 nm is twice or more the inclination of the unused film, or the inclination of the monitored film at wavelengths of 400 and 450 nm is unused.
  • the tilt of the monitored film is 1.5 times or more the tilt of the film, or whether the tilt of the monitored film at wavelengths of 400 and 450 nm is 0.5 times or less than the tilt of the unused film.
  • the determination conditions are not limited to these, and the slope (first slope) of light of each wavelength for each unused film and assumed substance is determined so that the substance adhering to the monitored film (membrane blocking substance) can be determined. can be set in advance based on
  • the calculation device 35 when the calculation device 35 receives the measurement data of the reflection intensity of the monitored film from the visible light spectrophotometer 34, it calculates the total value of the reflection intensity of the monitored film at wavelengths of 400 and 450 nm. (Step S1), it is determined whether or not membrane occlusion has occurred in the membrane to be monitored (Step S2). As described above, the computing device 35 determines that film clogging occurs in the monitored film when the total value of the reflection intensities of the monitored film at wavelengths of 400 and 450 nm is smaller than the total value of the reflection intensities of the unused film. It should be determined that
  • the arithmetic device 35 When it is determined that the membrane to be monitored is not blocked, the arithmetic device 35 returns to step S1 and repeats the processing from step S1. On the other hand, when it is determined that the monitored film is blocked, the arithmetic device 35 shifts to the process of step S3 and calculates the tilt of the monitored film for the wavelength light of 600 and 800 nm.
  • the computing device 35 determines whether or not the tilt of the film to be monitored at wavelengths of 600 and 800 nm is greater than the tilt of the unused film (eg, twice or more) (step S4).
  • the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is biofouling (step S5), returns to the processing of step S1, and repeats the processing from step S1. .
  • the control device 5 When the control device 5 is notified from the arithmetic device 35 that the membrane clogging substance is biofouling, in the case of cleaning the separation membrane, an alkaline chemical is injected to clean the separation membrane (monitoring separation membrane 33). do. Also, when suppressing the occurrence of membrane blockage, the dosage of the slime control agent is increased.
  • step S4 if the tilt of the monitored film at wavelengths of 600 and 800 nm is less than twice the tilt of the unused film, the film blocking substance is calcium carbonate, silica, or calcium fluoride, as shown in FIG. Very likely.
  • the arithmetic unit 35 shifts to the process of step S6 and calculates the tilt of the monitored film for the wavelength light of 400 and 450 nm.
  • the arithmetic device 35 determines whether or not the tilt of the film to be monitored at wavelengths 400 and 450 nm is greater than the tilt of the unused film (for example, 1.5 times or more) (step S7).
  • the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is calcium carbonate (step S8), returns to the processing of step S1, and repeats the processing from step S1.
  • control device 5 When the control device 5 is notified by the computing device 35 that the membrane clogging substance is calcium carbonate, when cleaning the separation membrane, it injects an acidic chemical solution to clean the separation membrane (monitoring separation membrane). In addition, when suppressing the occurrence of membrane clogging, the occurrence of membrane clogging is suppressed by injecting an acidic chemical solution or an alkaline chemical solution to control the pH.
  • step S7 if the tilt of the monitored film at wavelengths of 400 and 450 nm is less than 1.5 times the tilt of the unused film, the film blocking substance may be silica or calcium fluoride, as shown in FIG. is high.
  • the arithmetic unit 35 shifts to the process of step S9, and determines whether or not the tilt of the film to be monitored at wavelengths of 400 and 450 nm is smaller than the tilt of the unused film (for example, 0.5 times or less). judge.
  • the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is silica (step S10), returns to the processing of step S1, and repeats the processing from step S1.
  • control device 5 When the control device 5 is notified by the computing device 35 that the membrane clogging substance is silica, when cleaning the separation membrane, it injects an alkaline chemical solution to clean the separation membrane (monitoring separation membrane 33). Also, in order to suppress the occurrence of membrane clogging, the dosage of the scale dispersant is increased.
  • the control device 5 may control the pH by injecting an acidic chemical solution or an alkaline chemical solution to suppress the occurrence of membrane clogging.
  • the arithmetic unit 35 transmits information notifying that the membrane blocking substance is calcium fluoride to the control unit 5 (step S11), returns to the process of step S1, and repeats the process from step S1.
  • control device 5 When the control device 5 is notified by the arithmetic device 35 that the membrane blocking substance is calcium fluoride, the control device 5 injects an acidic chemical solution to clean the separation membrane (monitoring separation membrane) when cleaning the separation membrane. . Also, in order to suppress the occurrence of membrane clogging, the dosage of the scale dispersant is increased.
  • the control device 5 may control the pH by injecting an acidic chemical solution or an alkaline chemical solution to suppress the occurrence of membrane clogging.
  • the reflection intensity for each of four or more wavelengths of light is measured in advance for each substance, and the total reflection intensity for each substance and the specific wavelength are calculated as shown in FIG.
  • the inclination of the light may be obtained and used to identify the membrane blocking substance.
  • the reflection intensities of light of four or more wavelengths in the visible light of these substances are measured in advance, and as shown in FIG. Then, the sum of the reflection intensities for each substance and the gradient for light of a specific wavelength may be obtained and used to identify the film blocking substance.
  • FIG. 9 is a table showing the parameters used in the analysis method of the membrane blocking substance of the comparative example obtained from the spectral data shown in FIGS.
  • FIG. 9 shows the above implementation for red (R: light with a wavelength of 466 nm), green (G: light with a wavelength of 532 nm), and blue (B: light with a wavelength of 630 nm), which are the three primary colors of light measurable by the color sensor used in Patent Document 2.
  • R light with a wavelength of 466 nm
  • G light with a wavelength of 532 nm
  • B light with a wavelength of 630 nm
  • the separation membrane can be washed. or suppress the occurrence of membrane occlusion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

This analysis method for a membrane-occluding substance includes: projecting visible light onto a monitoring-use separation membrane through which test water has been passed; measuring, using a visible light spectrophotometer, the reflection intensity of the visible light reflected by the monitoring-use separation membrane; and identifying the occluding substance in the membrane on the basis of the reflection intensity of the visible light which was measured.

Description

膜閉塞物質の分析方法及び分析装置、並びに分離膜の薬注制御方法及び薬注制御装置Membrane clogging substance analysis method and analysis device, separation membrane chemical injection control method and chemical injection control device
 本発明は、分離膜を閉塞させる膜閉塞物質の分析方法及び分析装置、並びに分離膜の薬注制御方法及び薬注制御装置に関する。 The present invention relates to a method and apparatus for analyzing a membrane clogging substance that clogs a separation membrane, and a method and apparatus for controlling chemical injection of the separation membrane.
 分離膜を用いて被処理水を処理する水処理システムでは、被処理水に含まれる膜閉塞物質によって分離膜が徐々に閉塞することが知られている。分離膜の閉塞が進行すると水処理の効率が低下するため、一般的には酸やアルカリ等の洗浄薬液を用いて膜閉塞物質を溶解除去し、分離膜を初期状態へと回復させる。洗浄薬液を用いた分離膜の洗浄条件(洗浄薬液の種類、濃度、洗浄流速、水温等)は、膜閉塞の進行度や膜閉塞物質の種類等に応じて決定される。 In a water treatment system that uses a separation membrane to treat water to be treated, it is known that the membrane is gradually clogged by membrane clogging substances contained in the water to be treated. As the clogging of the separation membrane progresses, the efficiency of water treatment decreases. Therefore, generally, a washing chemical such as an acid or an alkali is used to dissolve and remove the membrane clogging substances, thereby restoring the separation membrane to its initial state. The conditions for washing the separation membrane using the washing chemical (type, concentration, washing flow rate, water temperature, etc.) of the washing chemical are determined according to the progress of membrane clogging, the type of membrane clogging substance, and the like.
 膜閉塞の進行度や膜閉塞物質の種類等は、例えば、水処理システムの運転を停止して閉塞した分離膜を取り外す、あるいは未使用の分離膜に交換し、閉塞した分離膜を分析することで判定する方法が考えられる。しかしながら、そのような方法は、分離膜の取り外し、洗浄後の再組み込み、あるいは分離膜の交換等の手間が発生すると共に、分析結果が得られるまでに時間を要するという課題がある。そこで、膜閉塞の進行度を推定するための技術や膜閉塞物質の種類を特定するための技術が検討されている。 The degree of membrane clogging and the type of membrane clogging material can be determined, for example, by stopping the operation of the water treatment system and removing the clogged separation membrane, or by replacing it with an unused separation membrane and analyzing the clogged separation membrane. can be considered. However, such a method has the problem that it takes time and effort to remove the separation membrane, reinstall it after cleaning, or replace the separation membrane, and it takes time to obtain analysis results. Therefore, techniques for estimating the degree of progress of membrane occlusion and techniques for identifying the type of membrane occlusion substance are being studied.
 例えば、特許文献1には、分離膜で分離された濃縮水の一部を監視用分離膜へ送水し、監視用分離膜における濃縮水の透過量の絶対値またはその変化率、監視用分離膜の透過前後における濃縮水の差圧の絶対値またはその変化率等に基づいて、分離膜の膜閉塞の進行度を推定する技術が記載されている。 For example, in Patent Document 1, part of the concentrated water separated by the separation membrane is sent to the monitoring separation membrane, and the absolute value of the permeation amount of the concentrated water in the monitoring separation membrane or its change rate, the monitoring separation membrane describes a technique for estimating the degree of clogging of a separation membrane based on the absolute value of the differential pressure of the concentrated water before and after permeation or the rate of change thereof.
 また、特許文献2には、分離膜を備える膜分離装置を透明な樹脂等で構成し、該分離膜の膜面をカラーセンサで経時的に観測することで、該膜面に付着する膜閉塞物質の種類を特定することが記載されている。 Further, in Patent Document 2, a membrane separation device equipped with a separation membrane is configured with a transparent resin or the like, and the membrane surface of the separation membrane is observed over time with a color sensor to detect membrane clogging that adheres to the membrane surface. Specifying the type of substance is described.
 上述した特許文献1は、膜閉塞の進行度を推定するための技術を提案したものであり、分離膜の膜面に付着した膜閉塞物質の種類を特定するものではない。したがって、特許文献1に記載された技術は、膜閉塞物質の種類に応じて適切な薬液を選択することができないという課題がある。 The above-mentioned Patent Document 1 proposes a technique for estimating the progress of membrane clogging, and does not specify the type of membrane clogging substance adhering to the membrane surface of the separation membrane. Therefore, the technique described in Patent Document 1 has a problem that an appropriate chemical solution cannot be selected according to the type of membrane blocking substance.
 一方、特許文献2に記載された水処理システムでは、カラーセンサで観測された膜面の色から膜閉塞物質を特定するため、判別可能な膜閉塞物質の種類が限定されてしまうという課題がある。 On the other hand, in the water treatment system described in Patent Document 2, since the membrane clogging substance is identified from the color of the membrane surface observed by the color sensor, there is a problem that the types of discriminable membrane clogging substances are limited. .
特開2012-130823号公報JP 2012-130823 A 特開2019-166463号公報JP 2019-166463 A
 本発明は上述したような背景技術が有する課題を解決するためになされたものであり、より多くの膜閉塞物質の種類の特定が可能な膜閉塞物質の分析方法及び分析装置、並びに該分析方法及び分析装置を用いる分離膜の薬注制御方法及び薬注制御装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the background art as described above, and is a method and apparatus for analyzing a membrane-blocking substance that can identify more types of membrane-blocking substances, and the analysis method. It is an object of the present invention to provide a separation membrane chemical injection control method and a chemical injection control device using an analyzer.
 上記目的を達成するため本発明の膜閉塞物質の分析方法は、試験水が通水された監視用分離膜に可視光を照射し、
 前記監視用分離膜で反射した前記可視光の反射強度を可視光分光光度計で測定し、
 測定した前記可視光の前記反射強度に基づいて膜の閉塞物質を特定する方法である。
In order to achieve the above object, the method for analyzing a membrane clogging substance of the present invention comprises irradiating a monitoring separation membrane through which test water is passed with visible light,
measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer;
A method for identifying a membrane blocking substance based on the measured reflection intensity of the visible light.
 本発明の膜閉塞物質の分析装置は、試験水が通水される監視用分離膜と、
 前記監視用分離膜に可視光を照射し、前記監視用分離膜で反射した前記可視光の反射強度を測定する可視光分光光度計と、
 測定した前記可視光の前記反射強度に基づいて膜の閉塞物質を特定する演算装置と、
を有する。
The apparatus for analyzing a membrane clogging substance of the present invention comprises a monitoring separation membrane through which test water is passed;
a visible light spectrophotometer for irradiating the monitoring separation film with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation film;
a computing device that identifies a film blocking substance based on the measured reflection intensity of the visible light;
have
 本発明の分離膜の薬注制御方法は、被処理水を分離膜により透過水と濃縮水とに分離し、
 前記濃縮水の一部を試験水として監視用分離膜に通水し、
 前記試験水が通水された前記監視用分離膜に可視光を照射し、
 前記監視用分離膜で反射した可視光の反射強度を可視光分光光度計で測定し、
 測定した前記可視光の前記反射強度に基づいて前記分離膜を閉塞させる膜閉塞物質を特定し、
 特定された膜閉塞物質を溶解除去する薬液、または特定された膜閉塞物質による膜閉塞を抑制する薬液を、前記分離膜の通水ラインに薬注する方法である。
In the separation membrane chemical injection control method of the present invention, the water to be treated is separated into permeated water and concentrated water by the separation membrane,
Part of the concentrated water is passed through a monitoring separation membrane as test water,
irradiating the monitoring separation membrane through which the test water is passed with visible light;
measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer;
identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light;
This is a method of injecting a chemical solution for dissolving and removing the specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into the water flow line of the separation membrane.
 本発明の分離膜の薬注制御装置は、被処理水を透過水と濃縮水とに分離する分離膜を備えた膜分離装置と、
 前記濃縮水の一部が試験水として通水される監視用分離膜と、
 前記試験水が通水された前記監視用分離膜に可視光を照射し、前記監視用分離膜で反射した可視光の反射強度を測定する可視光分光光度計と、
 測定した前記可視光の前記反射強度に基づいて前記分離膜を閉塞させる膜閉塞物質を特定する演算装置と、
 特定された膜閉塞物質を溶解除去する薬液、または特定された膜閉塞物質による膜閉塞を抑制する薬液を、前記分離膜の通水ラインに薬注する制御装置と、
を有する。
The chemical dosing control device for a separation membrane of the present invention includes a membrane separation device equipped with a separation membrane that separates water to be treated into permeated water and concentrated water,
a monitoring separation membrane through which part of the concentrated water is passed as test water;
a visible light spectrophotometer for irradiating the monitoring separation membrane through which the test water is passed with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation membrane;
an arithmetic device for identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light;
a control device for injecting a chemical solution for dissolving and removing the specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into the water flow line of the separation membrane;
have
本発明の分離膜の薬注制御装置の一構成例を示すブロック図である。1 is a block diagram showing one configuration example of a chemical feeding control device for a separation membrane according to the present invention; FIG. 図1に示した分析装置の一構成例を示す側断面図である。FIG. 2 is a side sectional view showing one configuration example of the analysis device shown in FIG. 1; 本発明の分離膜の薬注制御装置の変形例を示すブロック図である。FIG. 3 is a block diagram showing a modification of the chemical feeding control device for the separation membrane of the present invention; 膜閉塞物質のスペクトルの変化の一例を示すグラフである。4 is a graph showing an example of changes in the spectrum of a membrane blocking substance; 膜閉塞物質のスペクトルの変化の一例を示すグラフである。4 is a graph showing an example of changes in the spectrum of a membrane blocking substance; 図4及び5で示した想定物質のスペクトルデータの一例を示す表である。FIG. 6 is a table showing an example of spectral data of assumed substances shown in FIGS. 4 and 5; FIG. 図4及び5で示したスペクトルデータから求めた、実施例の膜閉塞物質の分析方法で用いるパラメータを示す表である。FIG. 6 is a table showing parameters used in the method for analyzing a membrane blocking substance of an example obtained from the spectral data shown in FIGS. 4 and 5; FIG. 実施例の処理手順の一例を示すフローチャートである。4 is a flow chart showing an example of a processing procedure according to an embodiment; 図4及び5で示したスペクトルデータから求めた、比較例の膜閉塞物質の分析方法で用いるパラメータを示す表である。FIG. 6 is a table showing parameters used in a comparative method for analyzing a membrane blocking substance obtained from the spectral data shown in FIGS. 4 and 5. FIG.
 次に本発明について図面を用いて説明する。 Next, the present invention will be explained using the drawings.
 本発明において、「膜閉塞」が生じているとは、膜面の少なくとも一部に膜閉塞物質が付着している状態を意味し、膜閉塞の進行度を限定するものではない。膜閉塞がどの程度進行したら分離膜の洗浄を開始するかは、水処理の目的、被処理水の種類、被処理水の含有成分、透過水の純度等に応じて設定すればよい。本発明が適用可能な分離膜としては、例えば、逆浸透膜、精密ろ過膜、限外ろ過膜、ナノろ過膜、正浸透膜、脱気膜、脱炭酸膜等がある。 In the present invention, "membrane blockage" means a state in which a membrane blockage substance adheres to at least a part of the membrane surface, and does not limit the progress of membrane blockage. The extent to which membrane clogging progresses before starting cleaning of the separation membrane may be set according to the purpose of water treatment, the type of water to be treated, the components contained in the water to be treated, the purity of the permeated water, and the like. Separation membranes to which the present invention can be applied include, for example, reverse osmosis membranes, microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, forward osmosis membranes, deaeration membranes, and decarbonation membranes.
 図1は、本発明の分離膜の薬注制御装置の一構成例を示すブロック図であり、図2は、図1に示した分析装置の一構成例を示す側断面図である。図3は、本発明の分離膜の薬注制御装置の変形例を示すブロック図である。図1~図3で示す本発明の分離膜の薬注制御装置は、分離膜を用いて被処理水を処理する水処理システムの一部を構成するものである。 FIG. 1 is a block diagram showing one configuration example of the separation membrane chemical feeding control device of the present invention, and FIG. 2 is a side sectional view showing one configuration example of the analyzer shown in FIG. FIG. 3 is a block diagram showing a modification of the chemical feeding control device for the separation membrane of the present invention. The separation membrane chemical dosing control device of the present invention shown in FIGS. 1 to 3 constitutes a part of a water treatment system for treating water to be treated using a separation membrane.
 図1で示すように、本発明の分離膜の薬注制御装置は、被処理水を貯留する原水タンク1と、原水タンク1から供給される被処理水を濃縮水と透過水とに分離する分離膜を備えた膜分離装置2と、膜分離装置2で分離された濃縮水の一部が試験水として供給される、分離膜に付着した膜閉塞物質の種類を特定するための分析装置3と、分離膜を洗浄するための洗浄薬液等を貯留する薬液タンク4と、分離膜の薬注制御装置全体の動作を制御する制御装置5とを有する。図1では、分離膜の薬注制御装置が1つの薬液タンク4を備える構成例を示しているが、分離膜の薬注制御装置は、複数の薬液タンク4を有する構成であってもよい。その場合、複数の薬液タンク4には、それぞれ異なる種類の薬液を貯留してもよい。 As shown in FIG. 1, the separation membrane chemical dosing control device of the present invention includes a raw water tank 1 that stores water to be treated, and separates the water to be treated supplied from the raw water tank 1 into concentrated water and permeated water. A membrane separation device 2 equipped with a separation membrane, and an analysis device 3 for identifying the type of membrane clogging substance adhering to the separation membrane, to which part of the concentrated water separated by the membrane separation device 2 is supplied as test water. , a chemical liquid tank 4 for storing a cleaning chemical liquid for cleaning the separation membrane, and a control device 5 for controlling the operation of the entire chemical injection control device for the separation membrane. Although FIG. 1 shows a configuration example in which the separation-membrane chemical-feeding control device includes one chemical tank 4 , the separation-membrane chemical-feeding control device may be configured to have a plurality of chemical tanks 4 . In that case, different types of chemical liquids may be stored in the plurality of chemical liquid tanks 4 .
 図1で示す分離膜の薬注制御装置は、上記の構成に加えて、原水タンク1から膜分離装置2に被処理水を供給するための原水ポンプ11と、薬液タンク4から水処理システムに薬液を注入するための薬注ポンプ12と、膜分離装置2で分離された濃縮水を外部へ排水するための通水ラインに配置される複数のバルブ13とを備えている。分離膜の薬注制御装置が複数の薬液タンク4を有する場合、該分離膜の薬注制御装置は、薬液タンク4の数に応じて複数の薬注ポンプ12を備えていてもよい。図1では、複数のバルブ13として、膜分離装置2と分析装置3との間の通水ラインに配置される第1のバルブ13Aと、分析装置3と原水タンク1との間の通水ラインに配置される第2のバルブ13Bと、分析装置3へ送水されない膜分離装置2で分離された濃縮水を外部へ排水するための第3のバルブ13Cとを備える構成例を示している。第2のバルブ13Bは、薬液の注入(薬注)時に、膜分離装置2で分離された濃縮水の通水ラインを介して該薬液を原水タンク1へ戻すために設けられている。第2のバルブ13Bは、通常運転時に、濃縮水を原水タンク1へ戻すために用いられることもある。本発明の分離膜の薬注制御装置は、濃縮水または薬液を原水タンク1に戻す構成である必要はない。複数のバルブ13は、分離膜の薬注制御装置の構成や動作に応じて適宜備えていればよい。同様に、複数のポンプは、原水ポンプ11及び薬注ポンプ12に限定されるものではなく、分離膜の薬注制御装置の構成や動作に応じて適宜備えていればよい。 In addition to the above configuration, the separation membrane chemical feeding control device shown in FIG. It is equipped with a chemical injection pump 12 for injecting a chemical solution and a plurality of valves 13 arranged in a water flow line for discharging the concentrated water separated by the membrane separation device 2 to the outside. When the separation membrane chemical feeding control device has a plurality of chemical liquid tanks 4 , the separation membrane chemical feeding control device may include a plurality of chemical feeding pumps 12 according to the number of chemical liquid tanks 4 . In FIG. 1, as the plurality of valves 13, a first valve 13A arranged in the water flow line between the membrane separation device 2 and the analysis device 3, and a water flow line between the analysis device 3 and the raw water tank 1 and a third valve 13C for discharging the concentrated water separated by the membrane separation device 2 that is not sent to the analysis device 3 to the outside. The second valve 13B is provided to return the chemical solution to the raw water tank 1 through the water line for the concentrated water separated by the membrane separator 2 when the chemical solution is injected (chemical injection). A second valve 13B may also be used to return concentrated water to the raw water tank 1 during normal operation. The separation membrane chemical feeding control device of the present invention does not need to be configured to return the concentrated water or the chemical solution to the raw water tank 1 . The plurality of valves 13 may be appropriately provided according to the configuration and operation of the chemical injection control device for the separation membrane. Similarly, the plurality of pumps are not limited to the raw water pump 11 and the chemical injection pump 12, and may be appropriately provided according to the configuration and operation of the chemical injection control device for the separation membrane.
 原水タンク1に貯留された被処理水は、原水ポンプ11によって膜分離装置2へ供給される。膜分離装置2は、被処理水を、分離膜を透過する物質を含む透過水と、該分離膜を透過しない物質を含む濃縮水とに分離する。透過水は、処理水として排出される。または、透過水は、さらに別の膜分離装置あるいはイオン交換装置等で処理されて処理水として排出される。濃縮水は、排水として放流される。または、濃縮水は、さらに別の膜分離装置、あるいは生物処理装置、固液分離装置等で処理されて排出される。 The water to be treated stored in the raw water tank 1 is supplied to the membrane separation device 2 by the raw water pump 11 . The membrane separation device 2 separates the water to be treated into permeated water containing substances that permeate the separation membrane and concentrated water containing substances that do not permeate the separation membrane. The permeated water is discharged as treated water. Alternatively, the permeated water is treated by another membrane separation device, ion exchange device, or the like, and discharged as treated water. The concentrated water is discharged as waste water. Alternatively, the concentrated water is treated with another membrane separation device, a biological treatment device, a solid-liquid separation device, or the like, and discharged.
 図1で示すように、薬液タンク4に貯留された薬液は、膜分離装置2が備える分離膜の通水ラインに薬注される。薬液は、例えば、原水タンク1に注入されてもよく、原水ポンプ11と膜分離装置2との間の被処理水の通水ラインに注入されてもよく、膜分離装置2と分析装置3との間の濃縮水の通水ラインに注入されてもよい。薬液タンク4に貯留される薬液は、被処理水の種類、被処理水の含有成分等に基づいて、発生が予想される膜閉塞物質の種類や性状等に応じて選定される。薬液の種類としては、膜閉塞物質を溶解除去して分離膜を洗浄するために用いられる酸性薬液、アルカリ性薬液、界面活性剤等がある。薬液には、膜閉塞物質による膜閉塞を抑制する(膜閉塞を遅らせる)ために用いるスライムコントロール剤、スケール分散剤等を用いてもよい。 As shown in FIG. 1, the chemical liquid stored in the chemical liquid tank 4 is injected into the water passage line of the separation membrane provided in the membrane separation device 2 . For example, the chemical solution may be injected into the raw water tank 1, or may be injected into the water flow line between the raw water pump 11 and the membrane separator 2, and the membrane separator 2 and the analyzer 3 may be injected. may be injected into the flow line of the concentrate between The chemical liquid stored in the chemical liquid tank 4 is selected according to the type and properties of the membrane blocking substances expected to be generated based on the type of the water to be treated, the components contained in the water to be treated, and the like. Types of chemical solutions include acidic chemical solutions, alkaline chemical solutions, surfactants, and the like, which are used to dissolve and remove membrane clogging substances and wash separation membranes. As the chemical liquid, a slime control agent, a scale dispersant, or the like used for suppressing (delaying) membrane clogging caused by a membrane clogging substance may be used.
 制御装置5は、原水ポンプ11、薬注ポンプ12及び複数のバルブ13をそれぞれ制御することで本発明の分離膜の薬注制御装置全体の動作を制御する。また、制御装置5は、分析装置3の分析結果に基づいて、薬液タンク4に貯留された薬液を分離膜の通水ラインに注入する。分離膜の薬注制御装置が複数の薬液タンク4を有する場合、制御装置5は、分析装置3で特定された膜閉塞物質の種類に応じて、複数の薬液タンク4で貯留された複数種類の薬液から選択した薬液を分離膜の通水ラインに注入してもよい。分離膜の通水ラインに対する薬注時、制御装置5は、上記第1のバルブ13A及び第2のバルブ13Bを開き、第3のバルブ13Cを閉じることで、薬液を循環させてもよい。制御装置5は、例えば、周知のPLC(Programmable Logic Controller)で実現できる。制御装置5は、CPU(Central Processing Unit)、記憶装置、I/Oインタフェース、通信装置等を備えた周知の情報処理装置(コンピュータ)で実現してもよい。 The control device 5 controls the operation of the entire separation membrane chemical injection control device of the present invention by controlling the raw water pump 11, the chemical injection pump 12, and the plurality of valves 13, respectively. In addition, based on the analysis result of the analyzer 3, the control device 5 injects the chemical liquid stored in the chemical liquid tank 4 into the water flow line of the separation membrane. When the separation membrane chemical dosing control device has a plurality of chemical liquid tanks 4, the control device 5 controls a plurality of types of chemical liquid stored in the plurality of chemical liquid tanks 4 according to the type of the membrane clogging substance identified by the analyzer 3. A chemical liquid selected from the chemical liquids may be injected into the water flow line of the separation membrane. At the time of chemical injection to the water passage line of the separation membrane, the control device 5 may open the first valve 13A and the second valve 13B and close the third valve 13C to circulate the chemical solution. The control device 5 can be realized by, for example, a well-known PLC (Programmable Logic Controller). The control device 5 may be realized by a known information processing device (computer) including a CPU (Central Processing Unit), a storage device, an I/O interface, a communication device, and the like.
 図1及び図2で示すように、分析装置3は、原水室31、透過水室32、監視用分離膜33、可視光分光光度計34及び演算装置35を備え、監視用分離膜33が原水室31と透過水室32とを隔てるように設けられた構成である。原水室31、透過水室32及び監視用分離膜33は、監視用セル30を構成する。 As shown in FIGS. 1 and 2, the analyzer 3 includes a raw water chamber 31, a permeated water chamber 32, a monitoring separation membrane 33, a visible light spectrophotometer 34, and an arithmetic unit 35. The monitoring separation membrane 33 It is provided so as to separate the chamber 31 and the permeated water chamber 32 . The raw water chamber 31 , the permeated water chamber 32 and the monitoring separation membrane 33 constitute the monitoring cell 30 .
 監視用分離膜33は、膜分離装置2で分離された濃縮水の一部が試験水として供給され、該試験水をさらに濃縮水と透過水とに分離する。監視用分離膜33には、膜分離装置2が備える分離膜と同じ種類の分離膜を用いることが好ましい。さらに、監視用分離膜33には、膜分離装置2が備える分離膜と製造メーカが同じ膜を用いることがより好ましい。 A part of the concentrated water separated by the membrane separation device 2 is supplied to the monitoring separation membrane 33 as test water, and the test water is further separated into concentrated water and permeated water. For the monitoring separation membrane 33, it is preferable to use the same kind of separation membrane as the separation membrane provided in the membrane separation device 2. FIG. Furthermore, it is more preferable to use a membrane manufactured by the same manufacturer as the separation membrane provided in the membrane separation device 2 for the monitoring separation membrane 33 .
 原水室31は、上記試験水が供給され、監視用分離膜33を透過しない物質を含む濃縮水を排出する。監視用分離膜33を透過した物質を含む透過水は透過水室32から排出される。原水室31及び透過水室32は、可視光を透過させる部材でそれぞれ構成され、監視用分離膜33の膜面と対向する原水室31の外壁面に可視光分光光度計34が配置される。原水室31及び透過水室32は、可視光を透過させる部材であれば、どのような部材で構成してもよく、例えば、アクリル板、ガラス板、石英、プラスチック等を用いて構成すればよい。原水室31及び透過水室32は、個別に形成されていてもよく、一体的に形成されていてもよい。 The raw water chamber 31 is supplied with the test water and discharges concentrated water containing substances that do not permeate the monitoring separation membrane 33 . Permeated water containing substances that have permeated the monitoring separation membrane 33 is discharged from the permeated water chamber 32 . The raw water chamber 31 and the permeated water chamber 32 are each composed of a member that transmits visible light, and a visible light spectrophotometer 34 is arranged on the outer wall surface of the raw water chamber 31 facing the film surface of the separation membrane 33 for monitoring. The raw water chamber 31 and the permeated water chamber 32 may be composed of any member as long as it transmits visible light, and may be composed of, for example, an acrylic plate, a glass plate, quartz, plastic, or the like. . The raw water chamber 31 and the permeated water chamber 32 may be formed individually or integrally.
 可視光分光光度計34は、可視光を照射する照明部と可視光の波長毎の反射強度を測定する測定部とを備え、照明部から監視用分離膜33の膜面に可視光を照射し、該膜面で反射した可視光の波長毎の反射強度を測定部でそれぞれ測定する。可視光分光光度計34の測定部は、400~800nmの可視光領域のうち、少なくとも4つ以上の波長光の反射強度を測定できればよい。例えば、測定部は、波長光400~450nm、450~500nm、600~700nm、700~800nmの領域から、それぞれ少なくとも1つ以上の波長光の反射強度を測定すればよい。照明部は、可視光領域の波長光を照射できればよく、周知のどのような構成でもよい。可視光分光光度計34は、予め設定された所定の周期毎に監視用分離膜33の膜面で反射した可視光の反射強度を測定し、その測定データを演算装置35へ送信する。 The visible light spectrophotometer 34 includes an illumination unit that irradiates visible light and a measurement unit that measures the reflection intensity of each wavelength of visible light. , the reflection intensity for each wavelength of the visible light reflected by the film surface is measured by the measurement unit. The measurement unit of the visible light spectrophotometer 34 should be able to measure the reflection intensity of light of at least four wavelengths in the visible light region of 400 to 800 nm. For example, the measurement unit may measure the reflection intensity of at least one or more wavelengths of light in the wavelength regions of 400 to 450 nm, 450 to 500 nm, 600 to 700 nm, and 700 to 800 nm. The illumination unit may have any known configuration as long as it can irradiate light with a wavelength in the visible light region. The visible light spectrophotometer 34 measures the reflection intensity of the visible light reflected by the film surface of the monitoring separation film 33 at predetermined intervals, and transmits the measured data to the arithmetic device 35 .
 演算装置35は、可視光分光光度計34から反射強度の測定データを受信すると、該測定データに基づいて監視用分離膜33の膜面に付着した物質の種類を推定し、推定した物質を分離膜の膜閉塞物質として制御装置5へ通知する。このとき、演算装置35は、監視用分離膜33の膜閉塞の進行度を推定し、その推定結果も併せて制御装置5へ送信してもよい。演算装置35または制御装置5は、膜閉塞物質の推定結果や膜閉塞の進行度の推定結果等を、ディスプレイ装置等の出力装置を用いて、本発明の分離膜の薬注制御装置を含む水処理システムの管理者等に通知してもよい。 Upon receiving the measurement data of the reflection intensity from the visible light spectrophotometer 34, the arithmetic device 35 estimates the type of substance adhering to the film surface of the monitoring separation membrane 33 based on the measurement data, and separates the estimated substance. It is notified to the controller 5 as a membrane clogging substance. At this time, the computing device 35 may estimate the progress of membrane clogging of the monitoring separation membrane 33 and transmit the estimation result to the control device 5 together. The calculation device 35 or the control device 5 outputs the estimation result of the membrane clogging substance, the estimation result of the degree of membrane clogging, etc. to the water supply including the separation membrane chemical injection control device of the present invention using an output device such as a display device. The administrator of the processing system or the like may be notified.
 なお、図1及び2で示す分離膜の薬注制御装置は、膜分離装置2で分離された濃縮水の一部を試験水として監視用セル30に供給する構成例を示している。本発明の分離膜の薬注制御装置は、図3で示すように、原水タンク1に貯留された被処理水の一部を試験水として監視用セル30に供給する構成としてもよい。その場合、第1のバルブ13Aは、例えば、図3で示すように原水ポンプ11と分析装置3との間の通水ラインに移動させてもよい。 The separation membrane chemical dosing control device shown in FIGS. 1 and 2 shows a configuration example in which part of the concentrated water separated by the membrane separation device 2 is supplied to the monitoring cell 30 as test water. As shown in FIG. 3, the separation membrane chemical feeding control device of the present invention may be configured to supply part of the water to be treated stored in the raw water tank 1 to the monitoring cell 30 as test water. In that case, the first valve 13A may be moved to, for example, the water flow line between the raw water pump 11 and the analyzer 3 as shown in FIG.
 本発明では、水処理システムの目的、被処理水の種類、被処理水の含有成分等に基づいて、分離膜で発生が予想される(想定される)1つあるいは複数の膜閉塞物質(以下、想定物質と称す)を選出し、該想定物質毎の可視光における反射強度のデータ(スペクトルデータ)を予め測定する。また、未使用の監視用分離膜(=分離膜、以下、未使用膜と称す)の可視光における反射強度のデータも予め測定する。そして、それらのスペクトルデータから算出された、未使用膜及び想定物質毎の波長光の差に対する反射強度の差である傾き(第1の傾き)及び特定の波長光における反射強度の値を演算装置35の記憶装置でそれぞれ保存しておく。 In the present invention, one or more membrane clogging substances (hereinafter referred to as , called hypothetical substances) are selected, and data (spectral data) of reflection intensity in visible light for each hypothetical substance is measured in advance. In addition, the data of the reflection intensity of the unused monitoring separation film (=separation film, hereinafter referred to as the unused film) in visible light is also measured in advance. Then, the slope (first slope), which is the difference in reflection intensity with respect to the difference in wavelength light for each of the unused film and assumed substance, and the value of the reflection intensity for light of a specific wavelength, calculated from the spectral data, are calculated by the computing device. 35 storage devices, respectively.
 演算装置35は、予め測定された未使用膜及び想定物質の波長光毎の反射強度のデータと、水処理システムが運転されることで、試験水が通水された監視用分離膜(以下、被監視膜と称す)の波長光毎の反射強度のデータとを比較することで膜閉塞物質を特定する。より具体的には、演算装置35は、未使用膜及び想定物質に関して、可視光領域における4つ以上の波長光毎の反射強度のデータをそれぞれ測定し、それらの測定データから求めた、未使用膜及び想定物質毎の反射強度や上記傾きを保存しておく。また、未使用膜及び想定物質毎の反射強度や傾きに基づいて設定された、膜閉塞物質を判別するための判別条件をそれぞれ保存しておく。そして、可視光分光光度計34で被監視膜の波長光毎の反射強度が測定されると、該判別条件を用いて被監視膜の測定データから膜閉塞物質を特定する。 The computing device 35 collects previously measured reflection intensity data for each wavelength light of the unused membrane and assumed substance, and the monitoring separation membrane through which the test water is passed when the water treatment system is operated (hereinafter referred to as By comparing the reflection intensity data for each wavelength light of the monitored film), the film blocking substance is specified. More specifically, the computing device 35 measures reflection intensity data for each of four or more wavelengths of light in the visible light region for the unused film and assumed substance, and obtains the unused The reflection intensity and the slope are stored for each film and assumed substance. In addition, discrimination conditions for discriminating a film clogging substance, which are set based on the reflection intensity and inclination for each of the unused film and assumed substance, are stored. When the visible light spectrophotometer 34 measures the reflection intensity for each wavelength of the monitored film, the determination condition is used to specify the film blocking substance from the measured data of the monitored film.
 なお、膜閉塞の進行度を推定する場合、演算装置35は、例えば、上記特許文献1に記載された、監視用分離膜33における濃縮水の透過量の絶対値またはその変化率、監視用分離膜33の透過前後における濃縮水の差圧の絶対値またはその変化率等に基づいて、分離膜の膜閉塞の進行度を推定する方法を用いればよい。 When estimating the degree of progress of membrane clogging, the computing device 35, for example, the absolute value of the permeation amount of concentrated water in the monitoring separation membrane 33 or its change rate, the monitoring separation A method of estimating the degree of clogging of the separation membrane based on the absolute value of the differential pressure of the concentrated water before and after permeation through the membrane 33 or its rate of change may be used.
 反射強度の測定には、可視光領域のうち、400~450nmまたは700~800nmの波長光を必ず含めるようにすることが望ましい。発明者らは、分離膜(監視用分離膜33)の膜面に膜閉塞物質が付着している場合、これらの波長光域における反射強度が、未使用膜のそれよりも低下することを実験等で確認している。したがって、400~450nmまたは700~800nmの波長光を反射強度の測定に含めることで、被監視膜で膜閉塞が生じているか否かを判別できる。  It is desirable to always include light with a wavelength of 400 to 450 nm or 700 to 800 nm in the visible light region in the measurement of reflection intensity. The inventors conducted an experiment that when a membrane-occluding substance adheres to the membrane surface of the separation membrane (monitoring separation membrane 33), the reflection intensity in these wavelength light ranges is lower than that of an unused membrane. etc. is confirmed. Therefore, by including the wavelength light of 400 to 450 nm or 700 to 800 nm in the reflection intensity measurement, it is possible to determine whether or not the film to be monitored is clogged.
 演算装置35は、例えば、CPU、記憶装置、I/Oインタフェース、通信装置等を備えた情報処理装置(コンピュータ)で実現すればよい。制御装置5が情報処理装置(コンピュータ)で実現されている場合、演算装置35の機能は制御装置5で実現してもよい。その場合、可視光分光光度計34は、波長光毎の反射強度の測定データを制御装置5へ送信すればよい。可視光分光光度計34と演算装置35(または制御装置5)との通信手段、並びに演算装置35と制御装置5との通信手段は、周知の有線通信手段または無線通信手段のどちらを用いてもよく、その通信規格も周知のどのような規格を用いてもよい。 The computing device 35 may be realized by an information processing device (computer) including, for example, a CPU, a storage device, an I/O interface, a communication device, and the like. If the control device 5 is implemented by an information processing device (computer), the functions of the arithmetic device 35 may be implemented by the control device 5 . In that case, the visible light spectrophotometer 34 may transmit the measurement data of the reflection intensity for each wavelength light to the control device 5 . The communication means between the visible light spectrophotometer 34 and the arithmetic device 35 (or the control device 5) and the communication means between the arithmetic device 35 and the control device 5 may be known wired communication means or wireless communication means. Any well-known standard may be used as the communication standard.
 上述したように、制御装置5は、分析装置3で特定された膜閉塞物質に基づいて、薬液タンク4に貯留された薬液を分離膜の通水ラインに注入する。例えば、膜閉塞物質がカルシウムスケールであると特定された場合は酸性薬液を注入し、膜閉塞物質がシリカやバイオファウリングであると特定された場合はアルカリ性薬液を注入する。このように膜閉塞物質の種類に応じて適切な洗浄薬液を用いて分離膜を洗浄すれば、該分離膜の機能を回復させることができる。制御装置5は、薬液を注入する前に、純水等を用いて本発明の分離膜の薬注制御装置が備える各通水ラインをそれぞれフラッシングしてもよい。 As described above, the control device 5 injects the chemical liquid stored in the chemical liquid tank 4 into the water flow line of the separation membrane based on the membrane clogging substance identified by the analyzer 3 . For example, when the membrane blocking substance is identified as calcium scale, an acidic chemical solution is injected, and when the membrane blocking substance is identified as silica or biofouling, an alkaline chemical solution is injected. By washing the separation membrane using an appropriate washing chemical according to the type of membrane clogging substance, the function of the separation membrane can be recovered. The control device 5 may use pure water or the like to flush each water flow line provided in the chemical injection control device for the separation membrane of the present invention before injecting the chemical solution.
 また、制御装置5は、分離膜の膜閉塞の発生を抑制する(遅らせる)ことを目的とする薬液を分離膜の通水ラインに注入してもよい。例えば、膜閉塞物質がバイオファウリングによるスライムであると特定された場合はスライムコントロール剤を薬注し、膜閉塞物質がフッ化カルシウム(CaF)やシリカ等の無機物であると特定された場合はスケール分散剤を薬注すればよい。膜閉塞物質が炭酸カルシウム(CaCO)のようにpHを制御することで膜閉塞の発生を抑制できる物質であれば、酸性薬液やアルカリ性薬液を注入することで膜閉塞の発生を抑制してもよい。 Further, the control device 5 may inject a chemical solution for the purpose of suppressing (delaying) the occurrence of clogging of the separation membrane into the water flow line of the separation membrane. For example, when the membrane clogging substance is identified as slime by biofouling, a slime control agent is injected, and when the membrane clogging substance is identified as an inorganic substance such as calcium fluoride (CaF 2 ) or silica. can be injected with a scale dispersant. If the membrane clogging substance is a substance that can suppress the occurrence of membrane clogging by controlling the pH, such as calcium carbonate (CaCO 3 ), the occurrence of membrane clogging can be suppressed by injecting an acidic or alkaline chemical. good.
 このように水処理システムの稼働時に適切な薬液を注入して分離膜の閉塞を抑制すれば、水処理システムを比較的長い期間にわたって安定して運転することができる。また、膜閉塞物質の発生が抑制されていることが確認された場合は、スライムコントロール剤やスケール分散剤等の注入量を低減することで、水処理システムのランニングコストを低減することも可能である。 In this way, by injecting an appropriate chemical solution during operation of the water treatment system to suppress clogging of the separation membrane, the water treatment system can be operated stably for a relatively long period of time. In addition, if it is confirmed that the generation of membrane clogging substances is suppressed, it is possible to reduce the running cost of the water treatment system by reducing the amount of slime control agent, scale dispersant, etc. injected. be.
 本発明によれば、未使用膜及び想定物質に関して、可視光領域における4つ以上の波長光毎の反射強度のデータをそれぞれ測定し、それらの測定データから求めた未使用膜及び想定物質毎の反射強度や上記傾きを保存しておく。また、未使用膜及び想定物質毎の反射強度や傾きに基づいて予め設定された、膜閉塞物質を判別するための判別条件をそれぞれ保存しておく。そして、可視光分光光度計34で被監視膜の波長光毎の反射強度のデータが測定されると、該判別条件を用いて被監視膜の測定データから膜閉塞物質を特定する。そのため、より多くの膜閉塞物質の種類の特定が可能になる。 According to the present invention, with respect to the unused film and the assumed substance, the reflection intensity data for each of four or more wavelengths in the visible light region are measured, and the unused film and the assumed substance obtained from the measurement data The reflection intensity and the slope are saved. Further, discrimination conditions for discriminating a membrane blocking substance, which are set in advance based on the reflection intensity and inclination of each unused film and assumed substance, are stored. When the visible light spectrophotometer 34 measures the reflection intensity data for each wavelength light of the monitored film, the determination condition is used to identify the film blocking substance from the measured data of the monitored film. Therefore, it becomes possible to identify more types of membrane-occlusive substances.
 次に本発明の実施例について図面を用いて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
 図4及び5は、想定物質のスペクトルの変化の一例を示すグラフである。 4 and 5 are graphs showing an example of changes in the spectrum of the assumed substance.
 本実施例では、上記想定物質を意図的に付着させた複数の分離膜(=監視用分離膜33、以下、閉塞膜と称す)と上記未使用膜とを用意し、可視光分光光度計34を用いて未使用膜及び閉塞膜の波長光毎の反射強度をそれぞれ測定した。可視光分光光度計34には、測定波長範囲が400~1000nmのハイパースペクトルカメラ(RESONON社製、Pika L)を用いた。 In this embodiment, a plurality of separation membranes (=monitoring separation membranes 33, hereinafter referred to as blocking membranes) to which the assumed substance is intentionally adhered and the unused membranes are prepared, and the visible light spectrophotometer 34 was used to measure the reflection intensity of the unused film and the blocking film for each wavelength of light. As the visible light spectrophotometer 34, a hyperspectral camera (Pika L manufactured by RESONON) with a measurement wavelength range of 400 to 1000 nm was used.
 閉塞膜には、炭酸カルシウム(CaCO3)、フッ化カルシウム(CaF)、シリカ(SiO)を付着させた分離膜、並びにバイオファウリングさせた分離膜をそれぞれ用意した。そして、稼働ステージ上に未使用膜及び複数の閉塞膜をそれぞれ配置し、未使用膜及び閉塞膜に可視光を照射し、それぞれの膜面で反射した波長光毎の反射強度を上記ハイパースペクトルカメラで測定した。 Separation membranes to which calcium carbonate (CaCO3), calcium fluoride (CaF 2 ) and silica (SiO 2 ) were adhered, and biofouled separation membranes were prepared as the blocking membranes. Then, an unused film and a plurality of blocking films are respectively arranged on the operating stage, visible light is irradiated to the unused film and the blocking film, and the reflection intensity of each wavelength light reflected by each film surface is measured by the hyperspectral camera. measured in
 なお、炭酸カルシウム、フッ化カルシウム、シリカを付着させた閉塞膜については、未使用膜と共に波長光450~600nmの範囲で反射強度を測定した。図4のグラフはこれらの分離膜の波長光毎の反射強度(スペクトル)を示している。また、バイオファウリングさせた閉塞膜については、未使用膜と共に波長光400~1000nmの範囲で反射強度を測定した。図5のグラフはこれらの分離膜の波長光毎の反射強度(スペクトル)を示している。ここでは、炭酸カルシウム、フッ化カルシウム、シリカを付着させた閉塞膜と、バイオファウリングさせた閉塞膜とで波長光の測定範囲を変えているが、波長光の測定範囲は、未使用膜と想定物質毎のスペクトルが識別できるように設定すればよく、未使用膜及び想定物質の性状に応じて400~800nmの可視光領域内で適宜設定すればよい。 In addition, the reflection intensity was measured in the range of 450 to 600 nm wavelength light for the blocking film with calcium carbonate, calcium fluoride, and silica adhered together with the unused film. The graph of FIG. 4 shows the reflection intensity (spectrum) for each wavelength light of these separation films. In addition, the reflection intensity of the biofouled clogging membrane was measured together with the unused membrane in the wavelength range of 400 to 1000 nm. The graph of FIG. 5 shows the reflection intensity (spectrum) for each wavelength light of these separation films. Here, the measurement range of wavelength light is different between the blocking film to which calcium carbonate, calcium fluoride, and silica are attached and the blocking film to which biofouling is applied. It may be set so that the spectrum of each assumed substance can be identified, and may be appropriately set within the visible light region of 400 to 800 nm according to the properties of the unused film and the assumed substance.
 次に、上記未使用膜及び閉塞膜の反射強度の測定データ(スペクトルデータ)に基づいて、膜閉塞物質を特定するための分析方法について説明する。 Next, an analysis method for identifying the membrane blocking substance based on the measurement data (spectrum data) of the reflection intensity of the unused membrane and the blocking membrane will be described.
 図6は、図4及び5で示した想定物質のスペクトルデータの一例を示す表であり、図7は、図4及び5で示したスペクトルデータから求めた、実施例の膜閉塞物質の分析方法で用いるパラメータを示す表である。 FIG. 6 is a table showing an example of spectral data of the hypothetical substance shown in FIGS. 4 and 5, and FIG. 7 is a method for analyzing a membrane blocking substance of the example obtained from the spectral data shown in FIGS. It is a table showing parameters used in.
 図6は、図4及び5で示した未使用膜及び閉塞膜の反射強度の測定データ(スペクトルデータ)のうち、400nm、450nm、600nm、700nm、800nmの5点の波長光の測定データを抜き出して示している。 FIG. 6 extracts the measurement data of light at five wavelengths of 400 nm, 450 nm, 600 nm, 700 nm, and 800 nm from the measurement data (spectrum data) of the reflection intensity of the unused film and the closed film shown in FIGS. is shown.
 図7は、図4及び5で示した未使用膜及び閉塞膜の反射強度の測定データから算出した、未使用膜及び想定物質に関する、波長光400及び450nmにおける反射強度の合計値、波長光400及び450nmにおける傾き、波長光600及び800nmにおける傾きをそれぞれ示している。 FIG. 7 shows the sum of the reflection intensities at wavelengths of 400 and 450 nm and the wavelength of 400 for the unused film and assumed material, calculated from the measurement data of the reflection intensity of the unused film and the blocking film shown in FIGS. and 450 nm, and the slopes at wavelengths of 600 and 800 nm, respectively.
 上述したように、被監視膜で膜閉塞が生じているか否かは、波長光400~450nmまたは700~800nmにおける未使用膜の反射強度と被監視膜の反射強度とを比較すればよい。但し、1つの波長光の反射強度だけでは差が小さく、判別し難い可能性もある。そこで、本実施例では、図7で示す2つの波長光400及び450nmの反射強度の合計値を用いて、被監視膜で膜閉塞が生じているか否かを判定する。 As described above, whether or not the film to be monitored is clogged can be determined by comparing the reflection intensity of the unused film and the reflection intensity of the film to be monitored at wavelengths of light of 400 to 450 nm or 700 to 800 nm. However, there is a possibility that the difference is so small that it is difficult to distinguish between the reflection intensities of light of only one wavelength. Therefore, in this embodiment, the sum of the reflection intensities of the two wavelength lights of 400 nm and 450 nm shown in FIG. 7 is used to determine whether or not the film to be monitored is clogged.
 未使用膜及び想定物質における傾き(第1の傾き)は、波長光の差に対する該波長光の反射強度の差、すなわち2つの波長光の反射強度の差を該波長光の差で除算することで求めればよい。例えば、波長光600及び800nmにおける傾きは、以下の式で求めればよい。 The slope (first slope) in the unused film and assumed material is the difference in the reflection intensity of the wavelength light with respect to the wavelength light difference, that is, the difference in the reflection intensity of the two wavelength lights divided by the wavelength difference. You can find it with For example, the slope for light with wavelengths of 600 and 800 nm can be obtained by the following formula.
 傾き(600nm、800nm)
 =(反射強度800nm-反射強度600nm)/(800nm-600nm)
 次に、本実施例の膜閉塞物質の分析方法について、フローチャートを用いて説明する。
Tilt (600nm, 800nm)
= (reflection intensity 800 nm-reflection intensity 600 nm)/(800 nm-600 nm)
Next, a method for analyzing membrane blocking substances according to the present embodiment will be described with reference to a flow chart.
 図8は、実施例の処理手順の一例を示すフローチャートである。なお、演算装置35は、未使用膜及び想定物質毎の反射強度の測定データから算出された、反射強度の合計値及び傾きの値をそれぞれ保存しているものとする(図7参照)。また、演算装置35は、膜閉塞物質を特定するための判別条件をそれぞれ保存しているものとする。判別条件としては、後述するように、例えば波長光600及び800nmにおける被監視膜の傾きが未使用膜の傾きの2倍以上であるか、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの1.5倍以上であるか、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの0.5倍以下であるか等がある。判別条件は、これらに限定されるものではなく、被監視膜に付着した物質(膜閉塞物質)が判別できるように、未使用膜及び想定物質毎の各波長光における傾き(第1の傾き)に基づいて予め設定しておけばよい。 FIG. 8 is a flowchart showing an example of the processing procedure of the embodiment. It is assumed that the calculation device 35 stores the total reflection intensity value and the slope value calculated from the measurement data of the reflection intensity for each of the unused film and assumed material (see FIG. 7). Further, it is assumed that the computing device 35 stores respective determination conditions for specifying membrane blocking substances. As a determination condition, as will be described later, for example, the inclination of the monitored film at wavelengths of 600 and 800 nm is twice or more the inclination of the unused film, or the inclination of the monitored film at wavelengths of 400 and 450 nm is unused. For example, whether the tilt of the monitored film is 1.5 times or more the tilt of the film, or whether the tilt of the monitored film at wavelengths of 400 and 450 nm is 0.5 times or less than the tilt of the unused film. The determination conditions are not limited to these, and the slope (first slope) of light of each wavelength for each unused film and assumed substance is determined so that the substance adhering to the monitored film (membrane blocking substance) can be determined. can be set in advance based on
 図8で示すように、演算装置35は、可視光分光光度計34から被監視膜の反射強度の測定データを受信すると、波長光400及び450nmにおける被監視膜の反射強度の合計値を算出し(ステップS1)、被監視膜で膜閉塞が生じているか否かを判定する(ステップS2)。上述したように、演算装置35は、波長光400及び450nmにおける被監視膜の反射強度の合計値が、未使用膜の反射強度の合計値よりも小さい場合に、被監視膜で膜閉塞が生じていると判定すればよい。 As shown in FIG. 8, when the calculation device 35 receives the measurement data of the reflection intensity of the monitored film from the visible light spectrophotometer 34, it calculates the total value of the reflection intensity of the monitored film at wavelengths of 400 and 450 nm. (Step S1), it is determined whether or not membrane occlusion has occurred in the membrane to be monitored (Step S2). As described above, the computing device 35 determines that film clogging occurs in the monitored film when the total value of the reflection intensities of the monitored film at wavelengths of 400 and 450 nm is smaller than the total value of the reflection intensities of the unused film. It should be determined that
 被監視膜で膜閉塞が生じていないと判定した場合、演算装置35は、ステップS1に戻ってステップS1からの処理を繰り返す。一方、被監視膜で膜閉塞が生じていると判定した場合、演算装置35は、ステップS3の処理に移行して、波長光600及び800nmにおける被監視膜の傾きを算出する。 When it is determined that the membrane to be monitored is not blocked, the arithmetic device 35 returns to step S1 and repeats the processing from step S1. On the other hand, when it is determined that the monitored film is blocked, the arithmetic device 35 shifts to the process of step S3 and calculates the tilt of the monitored film for the wavelength light of 600 and 800 nm.
 続いて、演算装置35は、波長光600及び800nmにおける被監視膜の傾きが未使用膜の傾きよりも大きいか(例えば、2倍以上であるか)否かを判定する(ステップS4)。 Subsequently, the computing device 35 determines whether or not the tilt of the film to be monitored at wavelengths of 600 and 800 nm is greater than the tilt of the unused film (eg, twice or more) (step S4).
 波長光600及び800nmにおける被監視膜の傾きが未使用膜の傾きの2倍以上である場合、図7で示すように膜閉塞物質はバイオファウリングである可能性が高い。この場合、演算装置35は、制御装置5に膜閉塞物質がバイオファウリングである旨を通知するための情報を送信し(ステップS5)、ステップS1の処理に戻ってステップS1からの処理を繰り返す。 When the slope of the monitored membrane at wavelengths of 600 and 800 nm is more than twice the slope of the unused membrane, it is highly likely that the membrane clogging material is biofouling, as shown in FIG. In this case, the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is biofouling (step S5), returns to the processing of step S1, and repeats the processing from step S1. .
 制御装置5は、演算装置35から膜閉塞物質がバイオファウリングである旨が通知されると、分離膜を洗浄する場合は、アルカリ性薬液を注入して分離膜(監視用分離膜33)を洗浄する。また、膜閉塞の発生を抑制する場合は、スライムコントロール剤の薬注量を増加させる。 When the control device 5 is notified from the arithmetic device 35 that the membrane clogging substance is biofouling, in the case of cleaning the separation membrane, an alkaline chemical is injected to clean the separation membrane (monitoring separation membrane 33). do. Also, when suppressing the occurrence of membrane blockage, the dosage of the slime control agent is increased.
 一方、ステップS4において、波長光600及び800nmにおける被監視膜の傾きが未使用膜の傾きの2倍よりも小さい場合、図7で示すように膜閉塞物質は炭酸カルシウム、シリカまたはフッ化カルシウムである可能性が高い。この場合、演算装置35は、ステップS6の処理に移行して、波長光400及び450nmにおける被監視膜の傾きを算出する。 On the other hand, in step S4, if the tilt of the monitored film at wavelengths of 600 and 800 nm is less than twice the tilt of the unused film, the film blocking substance is calcium carbonate, silica, or calcium fluoride, as shown in FIG. Very likely. In this case, the arithmetic unit 35 shifts to the process of step S6 and calculates the tilt of the monitored film for the wavelength light of 400 and 450 nm.
 続いて、演算装置35は、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きよりも大きいか(例えば、1.5倍以上であるか)否かを判定する(ステップS7)。 Subsequently, the arithmetic device 35 determines whether or not the tilt of the film to be monitored at wavelengths 400 and 450 nm is greater than the tilt of the unused film (for example, 1.5 times or more) (step S7). .
 波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの1.5倍以上である場合、図7で示すように膜閉塞物質は炭酸カルシウムである可能性が高い。この場合、演算装置35は、制御装置5に膜閉塞物質が炭酸カルシウムである旨を通知するための情報を送信し(ステップS8)、ステップS1の処理に戻ってステップS1からの処理を繰り返す。 If the slope of the monitored film at wavelengths of 400 and 450 nm is 1.5 times or more than the slope of the unused film, it is highly likely that the film blocking substance is calcium carbonate, as shown in FIG. In this case, the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is calcium carbonate (step S8), returns to the processing of step S1, and repeats the processing from step S1.
 制御装置5は、演算装置35から膜閉塞物質が炭酸カルシウムである旨が通知されると、分離膜を洗浄する場合は、酸性薬液を注入して分離膜(監視用分離膜)を洗浄する。また、膜閉塞の発生を抑制する場合は、酸性薬液またはアルカリ性薬液を注入してpHを制御することで膜閉塞の発生を抑制する。 When the control device 5 is notified by the computing device 35 that the membrane clogging substance is calcium carbonate, when cleaning the separation membrane, it injects an acidic chemical solution to clean the separation membrane (monitoring separation membrane). In addition, when suppressing the occurrence of membrane clogging, the occurrence of membrane clogging is suppressed by injecting an acidic chemical solution or an alkaline chemical solution to control the pH.
 ステップS7において、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの1.5倍よりも小さい場合、図7で示すように膜閉塞物質はシリカまたはフッ化カルシウムである可能性が高い。この場合、演算装置35は、ステップS9の処理に移行して、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きよりも小さいか(例えば、0.5倍以下)否かを判定する。 In step S7, if the tilt of the monitored film at wavelengths of 400 and 450 nm is less than 1.5 times the tilt of the unused film, the film blocking substance may be silica or calcium fluoride, as shown in FIG. is high. In this case, the arithmetic unit 35 shifts to the process of step S9, and determines whether or not the tilt of the film to be monitored at wavelengths of 400 and 450 nm is smaller than the tilt of the unused film (for example, 0.5 times or less). judge.
 波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの0.5倍以下である場合、図7で示すように膜閉塞物質はシリカである可能性が高い。この場合、演算装置35は、制御装置5に膜閉塞物質がシリカである旨を通知するための情報を送信し(ステップS10)、ステップS1の処理に戻ってステップS1からの処理を繰り返す。 If the slope of the monitored film at wavelengths of 400 and 450 nm is less than 0.5 times the slope of the unused film, it is highly possible that the film blocking substance is silica, as shown in FIG. In this case, the arithmetic device 35 transmits information for notifying the control device 5 that the membrane blocking substance is silica (step S10), returns to the processing of step S1, and repeats the processing from step S1.
 制御装置5は、演算装置35から膜閉塞物質がシリカである旨が通知されると、分離膜を洗浄する場合は、アルカリ性薬液を注入して分離膜(監視用分離膜33)を洗浄する。また、膜閉塞の発生を抑制する場合は、スケール分散剤の薬注量を増加させる。制御装置5は、酸性薬液またはアルカリ性薬液を注入してpHを制御することで膜閉塞の発生を抑制してもよい。 When the control device 5 is notified by the computing device 35 that the membrane clogging substance is silica, when cleaning the separation membrane, it injects an alkaline chemical solution to clean the separation membrane (monitoring separation membrane 33). Also, in order to suppress the occurrence of membrane clogging, the dosage of the scale dispersant is increased. The control device 5 may control the pH by injecting an acidic chemical solution or an alkaline chemical solution to suppress the occurrence of membrane clogging.
 一方、波長光400及び450nmにおける被監視膜の傾きが未使用膜の傾きの0.5倍よりも大きい場合、図7で示すように膜閉塞物質はフッ化カルシウムである可能性が高い。この場合、演算装置35は、制御装置5に膜閉塞物質がフッ化カルシウムである旨を通知する情報を送信し(ステップS11)、ステップS1の処理に戻ってステップS1からの処理を繰り返す。 On the other hand, if the slope of the monitored film at wavelengths of 400 and 450 nm is greater than 0.5 times the slope of the unused film, it is highly likely that the film blocking substance is calcium fluoride, as shown in FIG. In this case, the arithmetic unit 35 transmits information notifying that the membrane blocking substance is calcium fluoride to the control unit 5 (step S11), returns to the process of step S1, and repeats the process from step S1.
 制御装置5は、演算装置35から膜閉塞物質がフッ化カルシウムである旨が通知されると、分離膜を洗浄する場合は、酸性薬液を注入して分離膜(監視用分離膜)を洗浄する。また、膜閉塞の発生を抑制する場合は、スケール分散剤の薬注量を増加させる。制御装置5は、酸性薬液またはアルカリ性薬液を注入してpHを制御することで膜閉塞の発生を抑制してもよい。 When the control device 5 is notified by the arithmetic device 35 that the membrane blocking substance is calcium fluoride, the control device 5 injects an acidic chemical solution to clean the separation membrane (monitoring separation membrane) when cleaning the separation membrane. . Also, in order to suppress the occurrence of membrane clogging, the dosage of the scale dispersant is increased. The control device 5 may control the pH by injecting an acidic chemical solution or an alkaline chemical solution to suppress the occurrence of membrane clogging.
 本実施例では、上記想定物質が、炭酸カルシウム、フッ化カルシウム、シリカ及びバイオファウリングである場合の膜閉塞物質を特定するための一例を示した。想定物質が上記以外にも考えられる場合、それらの物質毎に予め4つ以上の波長光毎の反射強度を測定し、図7で示したように物質毎の反射強度の合計値や特定の波長光における傾きを求めて膜閉塞物質の特定に用いればよい。例えば、想定物質として、バリウム塩、カルシウム塩、マグネシウム塩、金属錯体等が考えられる場合、予めそれらの物質の可視光における4つ以上の波長光の反射強度を測定し、図7で示したように物質毎の反射強度の合計値や特定の波長光における傾きを求めて、膜閉塞物質の特定に用いればよい。 In this example, an example for identifying membrane blocking substances when the assumed substances are calcium carbonate, calcium fluoride, silica, and biofouling is shown. If the hypothetical substances other than those mentioned above are conceivable, the reflection intensity for each of four or more wavelengths of light is measured in advance for each substance, and the total reflection intensity for each substance and the specific wavelength are calculated as shown in FIG. The inclination of the light may be obtained and used to identify the membrane blocking substance. For example, when barium salts, calcium salts, magnesium salts, metal complexes, etc. are considered as assumed substances, the reflection intensities of light of four or more wavelengths in the visible light of these substances are measured in advance, and as shown in FIG. Then, the sum of the reflection intensities for each substance and the gradient for light of a specific wavelength may be obtained and used to identify the film blocking substance.
比較例Comparative example
 本比較例では、上記実施例で示した膜閉塞物質の特定方法と上記特許文献2が示す膜閉塞物質の特定方法とを比較した結果について説明する。 In this comparative example, the results of comparing the method for specifying a membrane blocking substance shown in the above example and the method for specifying a membrane blocking substance shown in Patent Document 2 above will be described.
 図9は、図4及び5で示したスペクトルデータから求めた、比較例の膜閉塞物質の分析方法で用いるパラメータを示す表である。 FIG. 9 is a table showing the parameters used in the analysis method of the membrane blocking substance of the comparative example obtained from the spectral data shown in FIGS.
 図9は、特許文献2で用いるカラーセンサで測定可能な光の三原色である赤(R:波長光466nm)、緑(G:波長光532nm)、青(B:波長光630nm)における、上記実施例で示した想定物質毎の測定データから求めた傾きをそれぞれ示している。 FIG. 9 shows the above implementation for red (R: light with a wavelength of 466 nm), green (G: light with a wavelength of 532 nm), and blue (B: light with a wavelength of 630 nm), which are the three primary colors of light measurable by the color sensor used in Patent Document 2. The inclination obtained from the measurement data for each hypothetical substance shown in the example is shown.
 図9で示すように、波長光466nm、532nm、630nmにおける未使用膜及び想定物質毎の傾きを比較すると、未使用膜とフッ化カルシウムとでは、それぞれの傾きがほぼ等しいことが分かる。また、炭酸カルシウム、シリカ及びバイオファウリングについても、それぞれの傾きがほぼ等しいことが分かる。 As shown in FIG. 9, when comparing the slopes of the unused film and assumed material at wavelengths of 466 nm, 532 nm, and 630 nm, it can be seen that the slopes of the unused film and calcium fluoride are almost the same. In addition, it can be seen that the slopes of calcium carbonate, silica and biofouling are almost the same.
 したがって、炭酸カルシウム、フッ化カルシウム、シリカ及びバイオファウリングが想定物質として考えられる場合、特許文献2で示す膜閉塞物質の特定方法では、未使用膜とフッ化カルシウムとを識別することが困難であり、炭酸カルシウム、シリカ及びバイオファウリングを識別することが困難である。すなわち、炭酸カルシウム、フッ化カルシウム、シリカ及びバイオファウリングが想定物質として考えられる場合、特許文献2が示す膜閉塞物質の特定方法では膜閉塞物質を特定できないことが分かる。 Therefore, when calcium carbonate, calcium fluoride, silica, and biofouling are assumed substances, it is difficult to distinguish between unused membranes and calcium fluoride by the method for identifying membrane-blocking substances disclosed in Patent Document 2. and it is difficult to distinguish between calcium carbonate, silica and biofouling. That is, when calcium carbonate, calcium fluoride, silica, and biofouling are considered as assumed substances, it can be seen that the membrane blocking substance cannot be specified by the method for specifying a membrane blocking substance disclosed in Patent Document 2.
 それに対して、本発明では、上記実施例で示したように、これらの物質を判別することが可能であり、特定した膜閉塞物質に基づいて適切な薬液を選択することで、分離膜を洗浄できる、または膜閉塞の発生を抑制できる。 On the other hand, in the present invention, as shown in the above examples, it is possible to distinguish these substances, and by selecting an appropriate chemical solution based on the identified membrane clogging substance, the separation membrane can be washed. or suppress the occurrence of membrane occlusion.
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細には本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments. Various modifications can be made to the configuration and details of the present invention within the scope of the present invention that a person skilled in the art can understand.

Claims (10)

  1.  試験水が通水された監視用分離膜に可視光を照射し、
     前記監視用分離膜で反射した前記可視光の反射強度を可視光分光光度計で測定し、
     測定した前記可視光の前記反射強度に基づいて膜の閉塞物質を特定する、膜閉塞物質の分析方法。
    Irradiate visible light to the monitoring separation membrane through which the test water is passed,
    measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer;
    A method for analyzing a membrane blocking substance, wherein the membrane blocking substance is identified based on the measured reflection intensity of the visible light.
  2.  400nm~800nmの可視光領域のうち、4つ以上の波長光の前記反射強度に基づいて前記膜の閉塞物質を特定する、請求項1に記載の膜閉塞物質の分析方法。 The method for analyzing a membrane-occluding substance according to claim 1, wherein the membrane-occluding substance is identified based on the reflection intensities of light of four or more wavelengths in the visible light region of 400 nm to 800 nm.
  3.  前記可視光領域のうち、400nm~450nm、450nm~500nm、600nm~700nm及び700nm~800nmの各領域でそれぞれ測定した、少なくとも1つ以上の波長光の前記反射強度に基づいて前記膜の閉塞物質を特定する、請求項2に記載の膜閉塞物質の分析方法。 The occlusive substance of the film is determined based on the reflection intensity of light of at least one or more wavelengths measured in each of the visible light regions of 400 nm to 450 nm, 450 nm to 500 nm, 600 nm to 700 nm, and 700 nm to 800 nm. 3. The method for analyzing a membrane-obstructing substance according to claim 2, wherein the substance is identified.
  4.  未使用の前記監視用分離膜である未使用膜及び想定される前記膜の閉塞物質である想定物質の前記反射強度を測定し、
     前記未使用膜及び前記想定物質における前記波長光の差に対する前記反射強度の差である第1の傾きをそれぞれ算出し、
     前記未使用膜及び前記想定物質の前記第1の傾きと、400~450nmまたは700~800nmの波長光における前記未使用膜の前記反射強度とを保存し、
     前記試験水が通水された前記監視用分離膜である被監視膜の前記可視光の前記反射強度を測定し、
     前記400~450nmまたは700~800nmの波長光における、前記被監視膜の前記反射強度が前記未使用膜の前記反射強度よりも小さいとき、前記被監視膜が閉塞していると判定し、
     前記被監視膜における、前記波長光の差に対する前記反射強度の差である第2の傾きを算出し、
     前記第1の傾きと前記第2の傾きとを比較することで、前記被監視膜を閉塞させている前記膜の閉塞物質を特定する、請求項1から3のいずれか1項に記載の膜閉塞物質の分析方法。
    measuring the reflection intensity of an unused membrane that is the unused monitoring separation membrane and an assumed substance that is an assumed blocking substance of the membrane;
    calculating a first slope, which is the difference in the reflection intensity with respect to the difference in the wavelength light in the unused film and the assumed material;
    storing the first slope of the virgin film and the assumed material and the reflection intensity of the virgin film for light with a wavelength of 400 to 450 nm or 700 to 800 nm;
    measuring the reflection intensity of the visible light from the monitored membrane, which is the monitoring separation membrane through which the test water is passed;
    determining that the monitored film is clogged when the reflection intensity of the monitored film in the wavelength light of 400 to 450 nm or 700 to 800 nm is smaller than the reflection intensity of the unused film;
    calculating a second slope, which is the difference in the reflection intensity with respect to the difference in the wavelength light, in the film to be monitored;
    4. The membrane according to any one of claims 1 to 3, wherein a blockage substance in the membrane blocking the monitored membrane is identified by comparing the first slope and the second slope. Method for analyzing occlusive substances.
  5.  試験水が通水される監視用分離膜と、
     前記監視用分離膜に可視光を照射し、前記監視用分離膜で反射した前記可視光の反射強度を測定する可視光分光光度計と、
     測定した前記可視光の前記反射強度に基づいて膜の閉塞物質を特定する演算装置と、
    を有する膜閉塞物質の分析装置。
    a monitoring separation membrane through which test water is passed;
    a visible light spectrophotometer for irradiating the monitoring separation film with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation film;
    a computing device that identifies a film blocking substance based on the measured reflection intensity of the visible light;
    Membrane blockage substance analyzer.
  6.  前記演算装置は、
     400nm~800nmの可視光領域のうち、4つ以上の波長光の前記反射強度に基づいて前記膜の閉塞物質を特定する、請求項5に記載の膜閉塞物質の分析装置。
    The computing device is
    6. The apparatus for analyzing membrane-occluding substances according to claim 5, wherein said membrane-occluding substances are identified based on said reflection intensities of light of four or more wavelengths in a visible light region of 400 nm to 800 nm.
  7.  前記演算装置は、
     前記可視光領域のうち、400nm~450nm、450nm~500nm、600nm~700nm及び700nm~800nmの各領域でそれぞれ測定した、少なくとも1つ以上の波長光の前記反射強度に基づいて前記膜閉塞物質を特定する、請求項6に記載の膜閉塞物質の分析装置。
    The computing device is
    The membrane blocking substance is identified based on the reflection intensity of light of at least one or more wavelengths measured in each of the visible light regions of 400 nm to 450 nm, 450 nm to 500 nm, 600 nm to 700 nm, and 700 nm to 800 nm. 7. The apparatus for analyzing a membrane-occlusive substance according to claim 6.
  8.  前記演算装置は、
     前記可視光分光光度計で測定された未使用の前記監視用分離膜である未使用膜及び想定される前記膜の閉塞物質である想定物質の前記反射強度から、前記未使用膜及び前記想定物質における、前記波長光の差に対する前記反射強度の差である第1の傾きをそれぞれ算出し、前記未使用膜及び前記想定物質の前記第1の傾きと、400~450nmまたは700~800nmの波長光における前記未使用膜の前記反射強度とを保存し、
     前記可視光分光光度計で測定された前記試験水が通水された前記監視用分離膜である被監視膜の前記可視光の前記反射強度に基づき、前記400~450nmまたは700~800nmの波長光における、前記被監視膜の前記反射強度が前記未使用膜の前記反射強度よりも小さいときに前記被監視膜が閉塞していると判定し、前記被監視膜における前記波長光の差に対する前記反射強度の差である第2の傾きを算出し、前記第1の傾きと前記第2の傾きとを比較することで、前記被監視膜を閉塞させている前記膜の閉塞物質を特定する、請求項5から7のいずれか1項に記載の膜閉塞物質の分析装置。
    The computing device is
    From the reflection intensity of the unused membrane that is the unused separation membrane for monitoring and the assumed substance that is the assumed blocking substance of the membrane measured by the visible light spectrophotometer, the unused membrane and the assumed substance , the first slope, which is the difference in the reflection intensity with respect to the difference in the wavelength light, is calculated, and the first slope of the unused film and the assumed material and the wavelength light of 400 to 450 nm or 700 to 800 nm storing the reflection intensity of the virgin film in
    Light with a wavelength of 400 to 450 nm or 700 to 800 nm, based on the reflected intensity of the visible light of the monitored membrane, which is the monitoring separation membrane through which the test water is passed, measured by the visible light spectrophotometer. and determining that the film to be monitored is blocked when the reflection intensity of the film to be monitored is smaller than the reflection intensity of the unused film, and the reflection of the difference in wavelength light from the film to be monitored Calculating a second slope, which is a difference in intensity, and comparing the first slope and the second slope to identify the blocking substance of the membrane that blocks the monitored membrane. Item 8. The apparatus for analyzing a membrane blocking substance according to any one of Items 5 to 7.
  9.  被処理水を分離膜により透過水と濃縮水とに分離し、
     前記濃縮水の一部を試験水として監視用分離膜に通水し、
     前記試験水が通水された前記監視用分離膜に可視光を照射し、
     前記監視用分離膜で反射した可視光の反射強度を可視光分光光度計で測定し、
     測定した前記可視光の前記反射強度に基づいて前記分離膜を閉塞させる膜閉塞物質を特定し、
     特定された膜閉塞物質を溶解除去する薬液、または特定された膜閉塞物質による膜閉塞を抑制する薬液を、前記分離膜の通水ラインに薬注する、分離膜の薬注制御方法。
    The water to be treated is separated into permeated water and concentrated water by a separation membrane,
    Part of the concentrated water is passed through a monitoring separation membrane as test water,
    irradiating the monitoring separation membrane through which the test water is passed with visible light;
    measuring the reflection intensity of the visible light reflected by the monitoring separation film with a visible light spectrophotometer;
    identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light;
    A chemical injection control method for a separation membrane, comprising injecting a chemical solution for dissolving and removing a specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into a water flow line of the separation membrane.
  10.  被処理水を透過水と濃縮水とに分離する分離膜を備えた膜分離装置と、
     前記濃縮水の一部が試験水として通水される監視用分離膜と、
     前記試験水が通水された前記監視用分離膜に可視光を照射し、前記監視用分離膜で反射した可視光の反射強度を測定する可視光分光光度計と、
     測定した前記可視光の前記反射強度に基づいて前記分離膜を閉塞させる膜閉塞物質を特定する演算装置と、
     特定された膜閉塞物質を溶解除去する薬液、または特定された膜閉塞物質による膜閉塞を抑制する薬液を、前記分離膜の通水ラインに薬注する制御装置と、
    を有する分離膜の薬注制御装置。
    A membrane separation device equipped with a separation membrane that separates water to be treated into permeated water and concentrated water;
    a monitoring separation membrane through which part of the concentrated water is passed as test water;
    a visible light spectrophotometer for irradiating the monitoring separation membrane through which the test water is passed with visible light and measuring the reflection intensity of the visible light reflected by the monitoring separation membrane;
    an arithmetic device for identifying a film blocking substance that blocks the separation film based on the measured reflection intensity of the visible light;
    a control device for injecting a chemical solution for dissolving and removing the specified membrane clogging substance or a chemical solution for suppressing membrane clogging by the specified membrane clogging substance into the water flow line of the separation membrane;
    A chemical dosing control device for a separation membrane having
PCT/JP2022/016068 2021-05-06 2022-03-30 Analysis method and analysis device for membrane-occluding substance, and chemical-solution injection control method and chemical-solution injection control device for separation membrane WO2022234751A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023518644A JP7579439B2 (en) 2021-05-06 2022-03-30 Method and apparatus for analyzing membrane blocking substances, and method and apparatus for controlling chemical injection into separation membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078659 2021-05-06
JP2021078659 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234751A1 true WO2022234751A1 (en) 2022-11-10

Family

ID=83932160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016068 WO2022234751A1 (en) 2021-05-06 2022-03-30 Analysis method and analysis device for membrane-occluding substance, and chemical-solution injection control method and chemical-solution injection control device for separation membrane

Country Status (2)

Country Link
TW (1) TW202308751A (en)
WO (1) WO2022234751A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106237A (en) * 2010-10-21 2012-06-07 Nitto Denko Corp Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
JP2019505779A (en) * 2015-12-23 2019-02-28 ケミラ オサケュスティオユルキネン Method and apparatus for deposit formation monitoring and control
JP2019155257A (en) * 2018-03-12 2019-09-19 栗田工業株式会社 Method for evaluating contamination state of separation membrane
JP2019166463A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Film surface observation cell, and operation method of separation membrane module
US20200096438A1 (en) * 2014-12-10 2020-03-26 King Abdullah University Of Science And Technology In-line quantification and characterization of membrane fouling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106237A (en) * 2010-10-21 2012-06-07 Nitto Denko Corp Membrane separation apparatus, membrane separation apparatus operation method and evaluation method using the membrane separation apparatus
JP2016107235A (en) * 2014-12-10 2016-06-20 水ing株式会社 Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
US20200096438A1 (en) * 2014-12-10 2020-03-26 King Abdullah University Of Science And Technology In-line quantification and characterization of membrane fouling
JP2019505779A (en) * 2015-12-23 2019-02-28 ケミラ オサケュスティオユルキネン Method and apparatus for deposit formation monitoring and control
JP2019155257A (en) * 2018-03-12 2019-09-19 栗田工業株式会社 Method for evaluating contamination state of separation membrane
JP2019166463A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Film surface observation cell, and operation method of separation membrane module

Also Published As

Publication number Publication date
TW202308751A (en) 2023-03-01
JPWO2022234751A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US20080190825A1 (en) Water Sanitazation System Having Safety Features and Removable Filter
JP2007093398A (en) Measuring method of concentration of residual chlorine and measuring instrument therefor
JP6446451B2 (en) Automatic analyzer
US20090321360A1 (en) Dialysis machine and method for determining the furring in a dialysis machine
WO2022234751A1 (en) Analysis method and analysis device for membrane-occluding substance, and chemical-solution injection control method and chemical-solution injection control device for separation membrane
JP7579439B2 (en) Method and apparatus for analyzing membrane blocking substances, and method and apparatus for controlling chemical injection into separation membrane
RU95115513A (en) AUTOMATED SYSTEM FOR PERIODIC REMOVAL OF METAL IONS FROM THE CHEMICAL BATH, AUTOMATED SYSTEM OF STABILIZATION OF CHEMICAL BATH, METHOD OF REMOVAL OF METAL IONS AND THE SYSTEM OF AUTOMATIC SEDIMENT DEPOSITION
JP4232361B2 (en) Water quality measuring instrument
JP4802940B2 (en) Method of measuring the concentration of the test component in the test water
TWI653661B (en) Processing liquid generating device and substrate processing device using the same
JP2007085881A (en) Method and instrument for measuring concentration of component
KR100613401B1 (en) Developing system for color filter
TW202003098A (en) Membrane clean device and method for cleaning membrane
CN113242760B (en) Rapid tracer injection for monitoring osmotic membrane integrity
JP2018167207A (en) Biofilm amount monitoring method and water treatment system
US10472253B2 (en) Liquid treatment method and liquid treatment apparatus
JP2008139099A (en) Abnormality detection method of water quality
US20220211924A1 (en) Blood purification device
JP2008082933A (en) Measuring method of test component concentration in water to be measured
JP7215497B2 (en) Water quality analyzer
JP6927346B1 (en) Water quality analysis method
JP6852440B2 (en) Residual chlorine concentration measuring method and measuring device
JP6897380B2 (en) Water treatment system
RU2727601C1 (en) Method and system for controlling dosing of chemical products
JPH03242536A (en) Automatic liquid managing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518644

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798858

Country of ref document: EP

Kind code of ref document: A1