WO2022234701A1 - 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備 - Google Patents

連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備 Download PDF

Info

Publication number
WO2022234701A1
WO2022234701A1 PCT/JP2022/004973 JP2022004973W WO2022234701A1 WO 2022234701 A1 WO2022234701 A1 WO 2022234701A1 JP 2022004973 W JP2022004973 W JP 2022004973W WO 2022234701 A1 WO2022234701 A1 WO 2022234701A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
continuous annealing
dew point
annealing furnace
wall
Prior art date
Application number
PCT/JP2022/004973
Other languages
English (en)
French (fr)
Inventor
玄太郎 武田
秀行 ▲高▼橋
裕紀 竹田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202280031988.0A priority Critical patent/CN117255866A/zh
Priority to KR1020237037743A priority patent/KR20230162110A/ko
Priority to EP22798809.4A priority patent/EP4310207A1/en
Priority to JP2022526834A priority patent/JP7334860B2/ja
Publication of WO2022234701A1 publication Critical patent/WO2022234701A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/005Furnaces in which the charge is moving up or down
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a continuous annealing furnace dew point control method, a steel sheet continuous annealing method, a steel sheet manufacturing method, a continuous annealing furnace, a continuous hot dip galvanizing equipment, and an alloying hot dip galvanizing equipment.
  • high-strength steel sheets which contributes to the weight reduction of structures
  • fields such as automobiles, home appliances, and building materials.
  • high-tensile steel sheets for example, steel sheets with improved hole expandability by containing Si in the steel, steel sheets with good ductility due to easy formation of residual ⁇ by containing Si and Al in the steel, etc. are known. ing.
  • Hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets are hot-annealed at a temperature of about 600 to 900° C. in a non-oxidizing atmosphere or a reducing atmosphere, and then hot-dip galvanized.
  • Si in steel is an easily oxidizable element, and is selectively oxidized even in a generally used non-oxidizing atmosphere or reducing atmosphere, and concentrates on the surface to form an oxide.
  • this oxide reduces the wettability with molten zinc during plating and causes non-plating, the wettability decreases as the Si concentration in the steel increases, resulting in frequent non-plating. Moreover, even if non-plating occurs, the problem of poor plating adhesion may occur. Furthermore, when Si in steel is selectively oxidized and concentrated on the surface, alloying delay may occur in the alloying process after hot-dip galvanizing. As a result, productivity may decrease. If the alloying treatment is performed at an excessively high temperature in order to ensure productivity, deterioration of the powdering resistance may be caused. Therefore, it is difficult to achieve both high productivity and good powdering resistance.
  • Hydrogen embrittlement cracking is a phenomenon in which a steel member, which is subjected to high stress during use, suddenly breaks due to hydrogen entering the steel from the environment. This fracture phenomenon is also called delayed fracture because of its mode of occurrence.
  • hydrogen embrittlement cracking of steel sheets is more likely to occur as the tensile strength of steel sheets increases. This is probably because the higher the tensile strength of the steel sheet, the greater the stress remaining in the steel sheet after the parts are formed.
  • Patent Document 1 discloses a method of manufacturing a galvanized steel sheet by passing a cold-rolled steel sheet with a predetermined chemical composition through an annealing furnace twice and then subjecting the steel sheet to continuous hot-dip plating. .
  • the technique of Patent Document 1 in the second heat treatment (annealing), sets the furnace atmosphere to a H concentration of 2 to 5% and a water vapor partial pressure of -1. Adjust so that 1 ⁇ log(PH 2 O/PH 2 ) ⁇ 0.07 is satisfied, that is, approximately ⁇ 17 to +30° C. in terms of dew point.
  • Patent Document 2 discloses a method in which a part of the gas in the furnace is taken out, dehumidified using a refiner to raise the gas temperature to 400 to 600 ° C., and then supplied into the furnace.
  • Patent Document 3 discloses a method of reducing the dew point of at least the uppermost part of the furnace to 0° C. or less by discharging atmospheric gas from the vicinity of the hearth rolls and supplying dry gas to the vicinity of the hearth rolls.
  • the purpose of the present disclosure which has been made in view of such circumstances, is to provide a dew point control method for a continuous annealing furnace that can control the dew point in the furnace in a short time, a method for continuously annealing a steel plate, a method for manufacturing a steel plate, a continuous annealing furnace, and a continuous hot dip galvanizing equipment. and to provide an alloyed hot-dip galvanizing equipment.
  • a dew point control method for a continuous annealing furnace includes: In a continuous annealing furnace, supply of moist gas into the furnace is stopped or reduced, and dry gas is supplied along the inner wall of the continuous annealing furnace.
  • the furnace inner wall of the continuous annealing furnace may be set to a temperature higher than the atmosphere temperature in the furnace by 30°C or more. Further, in the dew point control method for the continuous annealing furnace, the dew point in the furnace may be changed from a dew point of 5°C or higher to a dew point of less than 0°C.
  • the angle formed by the drying gas injected from the inside of the furnace to the inner wall of the furnace in the continuous annealing furnace and the inner wall of the furnace is 5 ° or more and 45 ° or less, and the drying The impingement wind speed of the gas against the inner wall of the furnace may be controlled to be 0.8 m/s or more.
  • a continuous annealing method for a steel sheet according to an embodiment of the present disclosure includes: The in-furnace dew point is controlled using the dew point control method for the continuous annealing furnace described above.
  • a steel sheet manufacturing method includes: A high-strength steel sheet, a hot-dip galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet is manufactured using the above-described continuous annealing method for steel sheets.
  • a continuous annealing furnace includes: A nozzle capable of supplying gas along the inner wall of the furnace is provided, and the gas supplied from the nozzle includes dry gas.
  • the continuous annealing furnace is provided with a nozzle for injecting gas into at least one of the furnace top wall and the furnace side wall in the furnace, and the angle formed by the gas injected from the nozzle to the furnace inner wall and the furnace inner wall is 5. ° or more and 45° or less. Further, the continuous annealing furnace may be provided with a heating mechanism capable of heating the inner wall of the furnace to a temperature higher than the atmosphere temperature in the furnace by 30°C or more.
  • a continuous hot dip galvanizing facility includes: The above continuous annealing furnace and a plating apparatus following the continuous annealing furnace are provided.
  • An alloyed hot-dip galvanizing facility includes: It comprises the above continuous annealing furnace, and a plating apparatus and an alloying furnace following the continuous annealing furnace.
  • a continuous annealing furnace dew point control method capable of controlling the dew point in the furnace in a short time, a steel sheet continuous annealing method, a steel sheet manufacturing method, a continuous annealing furnace, a continuous hot dip galvanizing equipment, and an alloying hot dip galvanizing equipment can be provided.
  • FIG. 1 is a diagram showing one configuration example of a continuous hot-dip galvanizing facility including a continuous annealing furnace and a plating apparatus.
  • FIG. 2 is a diagram showing an example of a furnace gas supply route in a reduction furnace.
  • FIG. 3 is a diagram showing a conventional dry gas supply nozzle.
  • FIG. 4 is a diagram showing an example of nozzles for supplying dry gas along the inner wall of the furnace in this embodiment.
  • FIG. 5 is a diagram showing an example of a device for controlling heating of the inner wall surface of the reduction furnace.
  • FIG. 6 is a diagram showing an example of changes in dew point in Examples and Comparative Examples.
  • the steel sheet may be a high-strength steel sheet, a hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet, but is not limited to a specific type.
  • a continuous hot-dip galvanizing facility is composed of, for example, a continuous annealing furnace and a plating device following the continuous annealing furnace.
  • the alloying hot-dip galvanizing equipment comprises, for example, a continuous annealing furnace, a plating device following the continuous annealing furnace, and an alloying furnace.
  • continuous hot-dip galvanizing equipment and alloyed hot-dip galvanizing equipment may be collectively referred to as hot-dip galvanizing equipment.
  • the continuous annealing furnace provided in the hot-dip galvanizing equipment is composed of a heating furnace (heating zone) for heating the steel sheet and a soaking furnace (soaking zone) for soaking the heated steel sheet.
  • the continuous annealing furnace may be a furnace that has a mechanism for heating and soaking the steel sheet, that the steel sheet travels or moves in the furnace, and that the atmosphere is controlled. It is not limited to equipment and format.
  • the heating furnace can be, for example, a direct fired furnace (DFF) type or a non-oxidizing furnace (NOF) type.
  • the soaking furnace may be of a radiant tube furnace (RTF) type.
  • the continuous annealing furnace may be of all radiant tube type, in which everything from the heating furnace to the soaking furnace is of the radiant tube (radiation) type.
  • a dew point control method for a continuous annealing furnace is a continuous hot dip galvanizing facility or an alloying facility equipped with a continuous annealing furnace including a DFF heating furnace and an RTF soaking furnace or an NOF heating furnace and an RTF soaking furnace. It is used in hot-dip galvanizing equipment and has excellent effects compared to conventional technology. Furthermore, the continuous annealing furnace dew point control method according to the present embodiment is used in a continuous hot dip galvanizing facility or an alloyed hot dip galvanizing facility equipped with an all-radiant tube type continuous annealing furnace, and is superior to the conventional technology. Effective.
  • a reduction furnace refers to a furnace portion equipped with a radiant tube.
  • the reducing furnace refers to the soaking furnace.
  • the reducing furnace refers to a heating furnace and a soaking furnace.
  • FIG. 1 is a diagram illustrating a configuration example of a continuous hot-dip galvanizing facility 100 including a continuous annealing furnace 20 and a plating device 22.
  • FIG. A continuous annealing furnace 20 comprises a heating zone 10 , a soaking zone 12 , a rapid cooling zone 14 and a slow cooling zone 16 .
  • the combination of the rapid cooling zone 14 and the slow cooling zone 16 may be referred to as a cooling zone.
  • the heating zone 10 is composed of a preheating zone 10A and a direct-fired furnace (DFF) 10B.
  • the soaking zone 12 is also a radiant furnace (RTF), hereinafter also referred to as a reducing furnace. Also shown in FIG.
  • the continuous hot dip galvanizing facility 100 may further comprise an alloying furnace 23 and be configured as an alloyed hot dip galvanizing facility.
  • Fig. 2 shows an example of a furnace gas supply route in a reduction furnace.
  • the reducing furnace includes a humidifying device 26, a circulating constant temperature water tank 28, a gas distribution device 24, an input gas dew point meter 32, humidification gas input ports 36A to 36C, 38A to 38C, 40A to 40C, common dry gas inlets 42A-42H, supply nozzles 44A-44G, and furnace dew point sampling point 46.
  • the in-furnace dew point is the dew point of the atmosphere gas in the continuous annealing furnace.
  • the supply nozzles 44A to 44G are nozzles for supplying dry gas along the inner walls of the furnace when the dew point in the furnace is lowered. Further, the inner wall of the furnace is the furnace wall inside the furnace.
  • N 2 +H 2 dry N 2 or a mixed gas of N 2 and H 2 (hereinafter referred to as “N 2 +H 2 ”) with a dew point of ⁇ 60 to ⁇ 40° C. is supplied from dry gas inlets 42A to 42H to the reduction furnace. available) is always supplied. In this embodiment, part of the supply gas is supplied into the furnace after being humidified by the humidifier 26 .
  • the humidifying device 26 includes a humidifying module having a fluorine-based or polyimide-based hollow fiber membrane, flat membrane, or the like. The humidifier 26 circulates dry gas inside the membrane and circulates pure water adjusted to a predetermined temperature in a constant temperature circulating water tank 28 outside the membrane.
  • Hollow fiber membranes or flat membranes are a type of ion exchange membranes that have an affinity for water molecules.
  • a force is generated to equalize the difference in concentration, and the force is used as a driving force to move the water through the membrane toward a lower water concentration.
  • the temperature of the dry gas before humidification varies according to the season and daily temperature changes.
  • the humidifier 26 also performs heat exchange by sufficiently increasing the contact area between the gas and water via the water vapor permeable membrane. becomes gas humidified to the same dew point as the set water temperature, enabling highly accurate dew point control.
  • the temperature of the gas thus humidified by the humidifier 26 (hereinafter referred to as "humidified gas”) can be arbitrarily controlled within a range of 5 to 50.degree.
  • humidified gas is fed directly into the continuous annealing furnace.
  • the reducing furnace atmosphere is controlled throughout the furnace by instrumentation and process computers.
  • the instrumentation and process computer also manage the dew point by appropriately measuring it and outputting the result to the control system of the humidifier. If the dew point in the furnace is below the target range, the humidifier 26 supplies gas with a high dew point by increasing the temperature of the circulating water. Also, if the dew point in the furnace exceeds the target range, the humidifier 26 supplies gas with a low dew point by lowering the temperature of the circulating water.
  • dry gas is supplied from nozzles 44A to 44G (supply of dry gas along the furnace wall) separately from the supply of humidified gas from nozzles 42A to 42H.
  • the stopping of the humidified gas and the supply of the dry gas along the furnace wall may be performed simultaneously, or the dry gas may be supplied along the furnace wall after a time interval has passed since the humidified gas is stopped. It may also be implemented to increase the supply of dry gas along the furnace wall while reducing the supply of humidified gas.
  • the flow rate is reduced to less than 1/2, more preferably to less than 1/3, the flow rate of the dry gas supply, the dew point in the furnace can be controlled in a short time.
  • the process (reduction annealing process) performed in the reduction furnace reduces iron oxides formed on the surface of the steel sheet in the oxidation treatment process in the heating zone 10 .
  • alloying elements such as Si and Mn are formed as internal oxides inside the steel sheet due to oxygen supplied from the iron oxides.
  • a reduced iron layer reduced from iron oxide is formed on the outermost surface of the steel sheet, and Si, Mn, etc. remain inside the steel sheet as internal oxides. Therefore, the oxidation of Si, Mn, etc. on the surface of the steel sheet is suppressed, the deterioration of wettability between the steel sheet and the hot-dip coating can be prevented, and good coating adhesion can be obtained.
  • a dew point in the furnace of ⁇ 30 ° C. or less is appropriate. Furthermore, it is desirable to adjust the dew point in the furnace to about -15 to -5°C.
  • high-strength steel sheets (980 MPa or more) have the problem of hydrogen embrittlement resistance in the part where bending is performed, and by providing a decarburized layer of about 50 ⁇ m on the surface layer of the steel sheet after annealing, bending characteristics are significantly improved. be able to.
  • the inventors of the present invention have found that bending properties can be remarkably improved by setting the dew point in the furnace to +5 to +20°C, preferably +10 to +15°C.
  • some steel types have an appropriate dew point of +5 to +20°C, so equipment that can quickly control the dew point inside the furnace is required in actual operation.
  • raising the dew point it is possible to adjust to the desired dew point in several minutes by supplying an appropriate amount of humidified gas by the above method.
  • the dew point is lowered, it takes a long time to release moisture from the furnace wall and heat insulating material simply by replacing the gas in the furnace.
  • surface defects such as non-plating and pick-up may occur. Specifically, it is difficult to change the furnace dew point from +5° C. or higher to less than 0° C.
  • the supply of humidified gas responsible for raising the dew point into the furnace is stopped or reduced, and the inner wall of the continuous annealing furnace implement a dew point control method that supplies a dry gas along. This method made it possible to accelerate the release of moisture from the furnace wall.
  • FIG. 3 shows a conventional dry gas supply method for a reducing furnace.
  • dry gas was supplied into the furnace from a gas pipe installed vertically on the furnace wall.
  • a pipe having a size of 25A to 50A for example, is used.
  • the ejection speed into the furnace is about 2 to 50 m/s.
  • the dry gas is immediately mixed with the gas in the furnace, so the dew point near the inner wall of the furnace cannot be lowered efficiently. Even if the dew point in the center of the furnace is lowered, the dew point near the inner wall of the furnace is not lowered, and water is released little by little from the wall of the furnace.
  • the present inventors found that by actively lowering the dew point near the inner wall of the furnace to create a difference in moisture concentration, the moisture contained in the furnace wall and the heat insulating material can be removed from the dry gas flowing along the inner wall of the furnace. It was found that it is possible to efficiently release into the inside.
  • FIG. 4 shows an example of a nozzle (for example, supply nozzle 44C) of a reducing furnace of hot-dip galvanizing equipment including a continuous annealing furnace according to this embodiment.
  • the continuous annealing furnace according to this embodiment includes a nozzle capable of supplying gas along the inner wall of the furnace.
  • the gas supplied from the nozzle includes dry gas. That is, in this embodiment, the nozzle can supply dry gas along the inner wall of the furnace.
  • the nozzle is preferably a slit nozzle as shown in FIG.
  • the type and shape of the nozzle are not particularly limited.
  • the nozzle may have a shape like a wiping nozzle.
  • the slit nozzle in FIG. 4 has a slit width of 2 to 10 mm toward the inner wall of the furnace, for example, in a part of the circular pipe extending in the width direction of the steel plate.
  • the slit length (gas injection effective length) of the slit nozzle is about the maximum width of the steel sheet to be passed.
  • the slit is inclined at an injection angle ⁇ with respect to the inner wall of the furnace, and the dry gas is injected toward the inner wall of the furnace.
  • the injection angle ⁇ is, for example, in the range of 5-45°. In other words, the angle formed by the gas injected from the slit nozzle to the inner wall of the furnace and the inner wall of the furnace is 5° or more and 45° or less.
  • the gas injection speed may be adjusted to about 2 to 20 m/s.
  • the nozzle slit width is B [mm]
  • the distance between the nozzle injection port and the furnace inner wall considering the injection angle (see FIG. 4) is D [mm]
  • the injection speed is V [m/s]
  • collision Vs [m/s] which is the wind speed
  • Vs ⁇ 0.8 m/s it is possible to maintain the wall surface jet and reduce the moisture concentration in the vicinity of the wall surface.
  • Vs 3.46*V* ⁇ ((B/D)/2)
  • the supply nozzles 44A to 44G are desirably provided on the furnace top wall and all the furnace side walls. However, if the supply nozzle is provided in the hearth, foreign matter may be stirred up, so the supply nozzle may be provided outside the hearth.
  • the supplied dry gas may be cooler than the furnace ambient temperature.
  • the furnace atmosphere temperature is the temperature of the furnace atmosphere gas in the continuous annealing furnace. When the temperature of the dry gas is lower than the temperature of the atmosphere inside the furnace, it is difficult to maintain the wall surface jet flow at the top of the furnace due to the temperature difference between the dry gas and the atmosphere gas. Therefore, it is preferable that the supply nozzles are provided at intervals of 3 to 5 m on the furnace top wall.
  • the distance between the supply nozzle 44C and the supply nozzle 44D in FIG. 2 may be 3 to 5 m.
  • the injection direction may be the upstream direction of the continuous annealing furnace, the downstream direction, or the width direction of the steel sheet. It is preferable to inject the gas downward from the top of the reduction furnace in order to utilize the property that the low-temperature gas descends on the furnace side wall.
  • the height of a continuous annealing furnace is about 20 to 30 m, it is preferable that they are provided at intervals of about 10 m in the height direction on the side wall of the furnace.
  • the distance between the supply nozzle 44A and the supply nozzle 44B in FIG. 2 may be about 10 m.
  • a mixed gas of N 2 and H 2 with a dew point of about ⁇ 70 to ⁇ 50° C. can be used as the dry gas, like the dry gas of the prior art.
  • the inventors further found that the release of moisture from the furnace wall and heat insulating material is promoted by setting the furnace inner wall of the continuous annealing furnace to a temperature higher than the atmosphere temperature in the furnace by 30°C or more. At this time, the temperature of the furnace inner wall of the continuous annealing furnace may be higher than the atmosphere temperature in the furnace within a range of 30° C. or more and 50° C. or less.
  • FIG. 5 shows an example of a device for heating and controlling the inner wall of the reduction furnace.
  • the reduction furnace includes heating elements 50A to 50E which are heating mechanisms for heating the inner wall of the furnace, thermometers 52A to 52E for measuring the temperature of the inner wall of the furnace, and controllers 54A to 54E.
  • the controllers 54A-54E control the heating amounts of the heating elements 50A-50E based on the temperature of the inner wall of the furnace measured by the thermometers 52A-52E.
  • the heating amounts of the heating elements 50A-50E are adjusted, for example, by control devices 54A-54E controlling the amount of current flowing through the heating elements 50A-50E.
  • the inner wall of the reduction furnace during actual operation is at, for example, 700 to 900° C.
  • the heating elements 50A to 50E may have a heating capacity capable of further heating 30 to 50° C. from the temperature in the furnace due to the radiant heat of the radiant tube.
  • the heating capacity of the heating elements 50A-50E may be 30-50.degree.
  • Example 4 In a continuous hot dip galvanizing facility (CGL) having a DFF type heating furnace in a continuous annealing furnace, the heating burners of the DFF type heating furnace were divided into four groups (Group 1 to Group 4). As an oxidation zone, three groups (groups 1 to 3) of heating burners were arranged upstream in the direction of movement of the strip in the continuous annealing furnace. As a reduction zone, the remaining one group (group 4) of heating burners was arranged downstream of the oxidation zone in the direction of movement of the steel plate. Tests were conducted with separate control of the air ratios in the oxidation and reduction zones. The length of each of the oxidation and reduction zones is 4 m.
  • a humidifier having a hollow fiber membrane type humidifier was used to condition the gas in the continuous annealing furnace.
  • the humidified gas adjusted by the humidifier was directly supplied to the continuous annealing furnace.
  • Commonly used dry gas inlets were provided at a total of eight locations as in FIG.
  • Humidified gas inlets were provided at a total of nine locations as in FIG.
  • the hollow fiber membrane type humidifying section of the humidifying device has 10 membrane modules. Each membrane module was configured to flow a maximum of 500 liters/min of N 2 +H 2 mixed gas and a maximum of 10 liters/min of circulating water.
  • the N 2 +H 2 mixed gas is a dry gas whose composition has been adjusted in advance for charging into a continuous annealing furnace, and has a constant dew point of -50°C.
  • a circulation constant temperature water bath is common to ten membrane modules, and can supply a total of 100 liters/min of pure water.
  • Dry gas for lowering the dew point in the furnace is provided by supply nozzles 44A to 44G arranged at the positions shown in FIG. 2 and two supply nozzles arranged at two locations on the side wall of the furnace. supplied from.
  • Each of these supply nozzles has a nozzle slit width of 4 [mm], a length (in the width direction of the steel sheet) of 2 m, an injection angle ⁇ to the inner wall of the furnace of 30°, and The distance D to is 80 mm.
  • the dry gas was injected at a gas injection speed of 2.35 m/s and a collision wind speed Vs of 1.29 m/s. At this time, the total flow rate of the dry gas into the furnace was about 600 Nm 3 /hr.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-111995
  • Dry gas was supplied from Other conditions are as shown in Table 2.
  • the time required for the dew point in the furnace to drop to -20°C or less exceeded 90 minutes in the comparative example, but was shortened to 20 minutes in the example.
  • the measurement position of the in-furnace dew point is the sampling point 46 in FIG.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-111995
  • Patent Document 3 Japanese Patent Laid-Open No. 2016-125131
  • the plating bath temperature was 460°C.
  • Al concentration in the plating bath was 0.130%.
  • the coating weight was adjusted to 45 g/m 2 per side by gas wiping.
  • alloying treatment was performed in an induction-heating alloying furnace at an alloying temperature so that the alloying degree (Fe content) of the film was within 10 to 13%.
  • the appearance of the plating was evaluated by inspecting it with an optical surface defect meter (detecting the presence or absence of non-plating defects and pick-up defects).
  • VG if the defect occurrence rate is 0.1% or less over the entire length of the coil, G if 0.1 to 1.0%, B if 1.0 to 5.0%, and 5.0% or more VB if available.
  • the condition for passing the comprehensive evaluation is that the evaluation of plating appearance is VG or G.
  • the material strength (tensile strength) was measured and evaluated.
  • the condition for passing the comprehensive evaluation is that the material strength is equal to or higher than the reference value.
  • the standard value for steel type A is 1180 MPa.
  • the standard value for steel type B is 1470 MPa.
  • the standard value for steel type C is 980 MPa.
  • the standard value for steel type D is 590 MPa.
  • a strip-shaped test piece with a width of 30 mm and a length of 100 mm was taken with the direction parallel to the rolling direction as the bending test axis direction, and a bending test was performed.
  • a 90° V bending test was performed under conditions of a stroke speed of 50 mm/s, an indentation load of 10 tons, and a pressing holding time of 5 seconds.
  • the ridgeline portion of the bending apex was observed with a magnifying glass of 10 times, and the minimum bending radius at which cracks with a crack length of 0.5 mm or more could not be observed was determined.
  • the ratio (R/t) of the minimum bending radius R to the plate thickness t was calculated, and bendability was evaluated by the ratio (R/t).
  • the condition for passing the comprehensive evaluation is that the ratio (R/t) is equal to or less than the reference value.
  • the reference value for steel type A is 3.5.
  • the reference value for steel type B is 5.0.
  • the reference value for steel type C is 1.5.
  • the reference value for steel type D is 0.5.
  • the continuous annealing furnace dew point control method, the steel sheet continuous annealing method, the steel sheet manufacturing method, the continuous annealing furnace, the continuous hot dip galvanizing equipment, and the alloying hot dip galvanizing equipment according to the present embodiment have the above configurations. And, depending on the process, the dew point in the furnace can be controlled in a short time. Further, as is clear from the comparison between the examples and comparative examples in Tables 3 and 4, according to the present disclosure, when producing high-strength steel sheets containing various components, production can be performed without reducing productivity. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

炉内露点を短時間で制御できる連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備が提供される。 連続焼鈍炉の露点制御方法は、連続焼鈍炉において、加湿ガスの炉内への供給を停止して又は減らして、連続焼鈍炉の炉内壁に沿って乾燥ガスを供給する。連続焼鈍炉の露点制御方法は、連続焼鈍炉において、連続焼鈍炉の炉内壁を炉内雰囲気温度より30℃以上高温にしてよい。

Description

連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備
 本開示は、連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備に関する。
 近年、自動車、家電、建材等の分野において、構造物の軽量化等に寄与する高張力鋼板(ハイテン鋼板)の需要が高まっている。ハイテン鋼板としては、例えば、鋼中にSiを含有することにより穴広げ性を向上した鋼板、鋼中にSi及びAlを含有することにより残留γが形成しやすく延性の良好な鋼板などが知られている。
 ここで、Siを多量に含有する高張力鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造する場合に、以下の問題がある。溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板は、非酸化性雰囲気中又は還元雰囲気中で600~900℃程度の温度で加熱焼鈍が行われた後に、溶融亜鉛めっき処理が行われる。鋼中のSiは易酸化性元素であり、一般的に用いられる非酸化性雰囲気中あるいは還元雰囲気中でも選択酸化されて、表面において濃化して酸化物を形成する。この酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるため、鋼中Si濃度の増加に伴って濡れ性が低下し、結果として不めっきが多発し得る。また、不めっきに至らなかった場合でも、めっき密着性が劣るという問題が生じ得る。さらに、鋼中のSiが選択酸化されて表面において濃化すると、溶融亜鉛めっき後の合金化過程において合金化遅延が生じ得る。その結果、生産性が低下し得る。生産性を確保するために、過剰な高温で合金化処理しようとすると、耐パウダリング性の劣化を招くことがある。そのため、高い生産性と良好な耐パウダリング性を両立させることは困難である。
 また、引張強度が980MPaを超えるような超高張力鋼板の場合、成形性だけでなく、鋼板の水素脆化割れの問題を解決する必要がある。水素脆化割れとは、使用状況下において高い応力が作用している鋼部材が、環境から鋼中に侵入した水素に起因して、突然破壊する現象である。この破壊現象は、発生形態から、遅れ破壊とも呼ばれる。一般に、鋼板の水素脆化割れは、鋼板の引張強度が上昇するほど発生し易くなることが知られている。鋼板の引張強度が高いほど、部品成形後に鋼板に残留する応力が増大するためであると考えられる。例えば自動車用鋼板の場合、この水素脆化割れは、大きな塑性ひずみが与えられる曲げ加工部で特に生じやすい。したがって、延性、曲げ性、穴広げ性などの成形性だけでなく、曲げ加工部の耐水素脆化特性の向上が求められる。
 このような問題に対して、特許文献1は、所定の化学成分の冷延鋼板について、焼鈍炉を2回通板させた後に連続溶融めっき処理を施して亜鉛めっき鋼板を製造する方法を開示する。鋼板表層に適切な脱炭層を形成させるため、特許文献1の技術は、2回目の熱処理(焼鈍)において、炉内雰囲気をH濃度が2~5%に対して、水蒸気分圧が-1.1≦log(PHO/PH)≦-0.07を満足するように、すなわち露点に換算すると概ね-17~+30℃であるように調整する。
国際公開第2019/187060号 特開2012-111995号公報 特開2016-125131号公報
 ここで、特許文献1において換算された露点の範囲は上記であるが、炉内露点を一旦0℃以上に上昇させると、通常、炉内露点を低下させることが非常に難しい。炉内露点が高いままで、特許文献1がターゲットとするハイテン鋼板よりSi含有量が低いハイテン鋼板を通板させると、激しく表面酸化して、ロールピックアップが顕著に発生する。
 炉内露点を効率よく低下させる方法として、特許文献2は、炉内ガスの一部を取り出し、リファイナーを用いて除湿してガス温を400~600℃に上げたのち、炉内に供給する方法を開示する。また、特許文献3は、ハースロール近傍から雰囲気ガスを排出するとともに、ハースロール近傍に乾燥ガスを供給することで、少なくとも炉内最上部の露点を0℃以下にする方法を開示する。
 しかし、特許文献2及び特許文献3に記載の方法を組み合わせて炉内ガスを置換したとしても、実際には、露点が下がるまでに時間がかかることがわかった。その原因は、露点を下げる過程で炉壁及び炉断熱材に含まれた水分が炉内に供給されるためである。従来技術では、Si含有量が低いハイテン鋼板に適正な露点(例えば-20℃以下)まで下げるのに、一例として12時間以上かかり、生産性が著しく低下することがわかった。
 かかる事情に鑑みてなされた本開示の目的は、炉内露点を短時間で制御できる連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備を提供することにある。
 本開示の一実施形態に係る連続焼鈍炉の露点制御方法は、
 連続焼鈍炉において、加湿ガスの炉内への供給を停止して又は減らして、前記連続焼鈍炉の炉内壁に沿って乾燥ガスを供給する。
 上記の連続焼鈍炉の露点制御方法は、連続焼鈍炉において、前記連続焼鈍炉の炉内壁を炉内雰囲気温度より30℃以上高温にしてよい。また、上記の連続焼鈍炉の露点制御方法は、前記炉内露点を5℃以上の露点から0℃未満の露点に変更してよい。また、上記の連続焼鈍炉の露点制御方法は、連続焼鈍炉において炉内から炉内壁に噴射される乾燥ガスと前記炉内壁とがなす角度が5°以上かつ45°以下であって、前記乾燥ガスの前記炉内壁への衝突風速が0.8m/s以上であるように制御してよい。
 本開示の一実施形態に係る鋼板の連続焼鈍方法は、
 上記の連続焼鈍炉の露点制御方法を用いて、炉内露点を制御する。
 本開示の一実施形態に係る鋼板の製造方法は、
 上記の鋼板の連続焼鈍方法を用いて高張力鋼板、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板を製造する。
 本開示の一実施形態に係る連続焼鈍炉は、
 炉内壁に沿ってガスを供給できるノズルを備え、前記ノズルから供給されるガスは乾燥ガスを含む。
 上記の連続焼鈍炉は、炉内の炉頂壁及び炉側壁の少なくとも1つにガスを噴射するノズルを備え、前記ノズルから炉内壁に噴射される前記ガスと前記炉内壁とがなす角度が5°以上かつ45°以下であってよい。また、上記の連続焼鈍炉は、炉内壁を炉内雰囲気温度より30℃以上高温に加熱できる加熱機構を備えてよい。
 本開示の一実施形態に係る連続溶融亜鉛めっき設備は、
 上記の連続焼鈍炉と、前記連続焼鈍炉に続くめっき装置を備える。
 本開示の一実施形態に係る合金化溶融亜鉛めっき設備は、
 上記の連続焼鈍炉と、前記連続焼鈍炉に続くめっき装置及び合金化炉を備える。
 本開示によれば、炉内露点を短時間で制御できる連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備を提供することができる。
図1は、連続焼鈍炉とめっき装置を備える連続溶融亜鉛めっき設備の一構成例を示す図である。 図2は、還元炉における炉内ガスの供給ルートの一例を示す図である。 図3は、従来の乾燥ガス供給ノズルを示す図である。 図4は、本実施形態における炉内壁に沿って乾燥ガスを供給するノズルの一例を示す図である。 図5は、還元炉の内壁面を加熱制御する装置の一例を示す図である。 図6は、実施例及び比較例の露点の変化の一例を示す図である。
 以下、図面を参照して本開示の一実施形態に係る連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備が説明される。ここで、鋼板は、高張力鋼板、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板であってよいが、特定の種類に限定されない。
 連続溶融亜鉛めっき設備は、例えば連続焼鈍炉と、連続焼鈍炉に続くめっき装置を備えて構成される。また、合金化溶融亜鉛めっき設備は、例えば連続焼鈍炉と、連続焼鈍炉に続くめっき装置及び合金化炉を備えて構成される。以下、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備をまとめて、溶融亜鉛めっき設備と称することがある。
 溶融亜鉛めっき設備が備える連続焼鈍炉は、鋼板を昇温加熱する加熱炉(加熱帯)及び加熱した鋼板を均熱する均熱炉(均熱帯)を含んで構成される。ここで、連続焼鈍炉は、鋼板の昇温加熱と均熱する機構を有し、炉内を鋼板が走行すなわち移動する炉であり、かつ、雰囲気制御が行われるものであればよく、特定の設備及び形式に限定されない。加熱炉は、例えば直火炉(DFF:Direct Fired Furnace)型又は無酸化炉(NOF:Non Oxidizing Furnace)型であり得る。また、均熱炉は、輻射炉(RTF:Radiant Tube Furnace)型であり得る。また、連続焼鈍炉は、加熱炉から均熱炉までが全てラジアントチューブ(輻射)方式であるオールラジアントチューブ方式であり得る。
 本実施形態に係る連続焼鈍炉の露点制御方法は、DFF型加熱炉とRTF型均熱炉又はNOF型加熱炉とRTF型均熱炉を含む連続焼鈍炉を備える連続溶融亜鉛めっき設備又は合金化溶融亜鉛めっき設備で用いられて、従来技術に比べて優れた効果を奏する。さらに、本実施形態に係る連続焼鈍炉の露点制御方法は、オールラジアントチューブ方式の連続焼鈍炉を備える連続溶融亜鉛めっき設備又は合金化溶融亜鉛めっき設備で用いられて、従来技術に比べて優れた効果を奏する。
 ここで、本明細書において、還元炉とは、ラジアントチューブを備える炉部分を指す。例えば、DFF型加熱炉とRTF型均熱炉を含む連続焼鈍炉及びNOF型加熱炉とRTF型均熱炉を含む連続焼鈍炉において、還元炉は均熱炉を指す。また、オールラジアントチューブ方式の連続焼鈍炉では、還元炉は加熱炉及び均熱炉を指す。
 図1は、連続焼鈍炉20とめっき装置22を備える連続溶融亜鉛めっき設備100の一構成例を説明する図である。連続焼鈍炉20は、加熱帯10と、均熱帯12と、急冷帯14と、徐冷帯16と、を備えて構成される。急冷帯14と徐冷帯16とを合わせて、冷却帯と称することがある。加熱帯10は、予熱帯10Aと、直火炉(DFF)10Bと、で構成される。また、均熱帯12は、輻射炉(RTF)であって、以下において還元炉とも称される。また、図1において、鋼板P、スナウト18及びめっき装置22が示されている。スナウト18は、鋼板Pをめっき浴に浸漬させるための設備である。図1に示すように、連続溶融亜鉛めっき設備100は、さらに合金化炉23を備え、合金化溶融亜鉛めっき設備として構成されてよい。
 図2は、還元炉における炉内ガスの供給ルートの一例を示す。図2に示すように、還元炉は、加湿装置26と、循環恒温水槽28と、ガス分配装置24と、投入ガス用露点計32と、加湿ガス投入口36A~36C、38A~38C、40A~40Cと、常用の乾燥ガス投入口42A~42Hと、供給ノズル44A~44Gと、炉内露点の採取箇所46と、を有する。ここで、炉内露点は、連続焼鈍炉の炉内雰囲気ガスの露点である。供給ノズル44A~44Gは、炉内露点を低下させる場合に、炉内壁に沿って乾燥ガスを供給するためのノズルである。また、炉内壁は炉内側の炉壁である。
 通常、還元炉には、乾燥ガス投入口42A~42Hから露点-60~-40℃の乾燥したN又はNとHの混合ガス(以下「N+H」と表記されることがある)が、常時、供給されている。本実施形態において、その供給ガスの一部は、加湿装置26で加湿され後に炉内に供給される。加湿装置26は、フッ素系又はポリイミド系の中空糸膜、平膜などを有する加湿モジュールを備える。加湿装置26は、膜の内側に乾燥ガスを流し、膜の外側に循環恒温水槽28で所定温度に調整された純水を循環させる。中空糸膜又は平膜は、水分子との親和力を有するイオン交換膜の一種である。膜の内側と外側に水分濃度差が生じると、その濃度差を均等にしようとする力が発生し、水分はその力をドライビングフォースとして低い水分濃度の方へ膜を透過し移動する。加湿前の乾燥ガスの温度は、季節及び1日の気温変化にしたがって変化する。加湿装置26は、水蒸気透過膜を介したガスと水の接触面積を十分に大きくすることで熱交換も行うため、加湿前の乾燥ガスの温度が循環水温より高くても低くても、乾燥ガスが設定水温と同じ露点まで加湿されたガスとなり、高精度な露点制御が可能になる。このように加湿装置26で加湿されたガス(以下「加湿ガス」と称される)の温度は、5~50℃の範囲で任意に制御可能である。
 図2に示すように、加湿ガスは、直接に連続焼鈍炉内に供給される。還元炉の雰囲気は炉全体で計測機器及びプロセスコンピュータによって管理される。計測機器及びプロセスコンピュータは、露点についても、適宜測定し、その結果を加湿装置の制御系統に出力することによって管理する。加湿装置26は、炉内露点が目標範囲を下回るようであれば、循環水温を上昇させることで高い露点のガスを供給する。また、加湿装置26は、炉内露点が目標範囲を上回るようであれば、循環水温を低下させることで低い露点のガスを供給する。本実施形態において、42A~42Hのノズルからの加湿ガスの供給とは別に、44A~44Gのノズルから乾燥ガスの供給(炉壁に沿った乾燥ガスの供給)が実施される。加湿ガスの停止と炉壁に沿った乾燥ガスの供給は同時に実施されてよいし、加湿ガスを停止してから時間間隔をあけて、炉壁に沿った乾燥ガスが供給されてよい。また、加湿ガスの供給を減らしながら、炉壁に沿う乾燥ガスの供給を増加させることが実施されてよい。ここで、加湿ガスの供給を0Nm/hrまで完全停止させなくても、乾燥ガスの供給量の1/2未満の流量まで、より好ましくは1/3未満の流量まで減らせば、炉内露点を短時間で制御可能との効果が得られる。
 還元炉において実行される工程(還元焼鈍工程)は、加熱帯10での酸化処理工程で鋼板表面に形成された鉄酸化物を還元する。このとき、鉄酸化物から供給される酸素によって、Si、Mnなどの合金元素が鋼板内部で内部酸化物として形成される。結果として、鋼板最表面に鉄酸化物から還元された還元鉄層が形成され、Si、Mnなどは内部酸化物として鋼板内部に留まる。そのため、鋼板表面でのSi、Mnなどの酸化が抑制され、鋼板と溶融めっきの濡れ性の低下を防止し、良好なめっき密着性を得ることができる。Si量が低い(例えば0.5%以下)鋼種においては、-30℃以下の炉内露点が適正であるのに対し、それ以上のSiを含有する場合、上記のめっき性向上効果を得るために、-15~-5℃程度の炉内露点に調整されることが望ましい。
 さらに高強度の鋼板(980MPa以上)では、曲げ加工が行われる部分の耐水素脆化特性の課題があり、焼鈍後の鋼板表層に50μm前後の脱炭層を設けることで曲げ特性を顕著に向上させることができる。本発明者は、炉内露点を+5~+20℃、望ましくは+10~+15℃にすれば、曲げ特性を顕著に向上させることができることを見出した。
 一方で、+5~+20℃といった露点が適正なのは一部の鋼種であるため、実操業において、炉内露点を迅速に制御できる設備が必要である。ここで、露点を上昇させる場合に、上記の手法で適正量の加湿ガスを投入することによって、数分で所望の露点に調整することが可能である。しかし、露点を低下させる場合に、単に炉内ガスを置換するだけでは、炉壁及び断熱材からの水分放出に時間がかかる。また、炉内露点が十分下がらないままSi量が低い鋼板を通板させると、不めっき及びピックアップといった表面欠陥が発生し得る。従来技術を用いて、特に炉内露点を+5℃以上の露点から0℃未満の露点に変更すること(例えば+10℃から-5℃への炉内露点の低下)は困難である。上記のように、ガスの切り替えだけでなく、炉内水分を除去する必要があるためである。したがって、+5℃以上から0℃未満までの露点低下を含めて、効率よく露点を下げることが可能な技術が求められていた。
 本実施形態に係る連続焼鈍炉を含む溶融亜鉛めっき設備は、以下に説明するように、露点上昇を担う加湿ガスの炉内への供給を停止して又は減らして、連続焼鈍炉の炉内壁に沿って乾燥ガスを供給する露点制御方法を実行する。この方法によって炉壁からの水分放出を促進することが可能となった。
 図3は、従来の還元炉の乾燥ガス供給方法である。従来、炉壁に垂直に設置されたガス配管から炉内に向かって乾燥ガスが供給されていた。常用のガス供給口42は、例えばサイズが25A~50Aである配管を用いる。例えば投入口数が3~20か所程度、トータルのガス流量が300~1000Nm/hr程度であるので、炉内への噴出速度は2~50m/s程度である。従来の還元炉の乾燥ガス供給方法では、乾燥ガスが炉内のガスと直ちに混合するため、炉内壁近傍の露点を効率よく下げることができない。炉の中央部の露点が低下しても、炉内壁近傍の露点が下がらず、炉壁から少量ずつしか水分が放出されない。
 本発明者は、鋭意検討の結果、炉内壁近傍の露点を積極的に下げて水分濃度差をつけることによって、炉壁及び炉断熱材に含まれた水分を、炉内壁に沿って流れる乾燥ガス中に効率よく放出することが可能であることを見出した。
 図4は、本実施形態に係る連続焼鈍炉を含む溶融亜鉛めっき設備の還元炉のノズル(例えば供給ノズル44C)の一例を示す。本実施形態に係る連続焼鈍炉は、炉内壁に沿ってガスを供給できるノズルを備える。また、ノズルから供給されるガスは乾燥ガスを含む。つまり、本実施形態において、ノズルは炉内壁に沿って乾燥ガスを供給することができる。ノズルは、図4に示すようにスリットノズルであるであることが好ましい。ただし、ノズルの種類及び形状は特に限定されない。他の例として、ノズルは、ワイピングノズルのような形状を有してよい。
 図4のスリットノズルは、例えば鋼板の幅方向に延在する円管の一部に、炉内壁に向けて2~10mmのスリット幅を有する。スリットノズルのスリット長さ(ガス噴射有効長)は通板する鋼板最大幅程度である。スリットは炉内壁に対して噴射角度θだけ傾けて、炉内壁に向かって乾燥ガスを噴射する。噴射角度θは例えば5~45゜の範囲である。換言すると、スリットノズルから炉内壁に噴射されるガスと炉内壁とがなす角度が5°以上かつ45°以下である。噴射角度θをこの範囲とすることで、噴流が炉内壁から剥離しにくくなり、壁面に沿って乾燥ガスを供給することができる。
 ガス噴射速度は2~20m/s程度であるように調整されてよい。ここで、ノズルスリット幅をB[mm]、噴射角度を考慮したノズル噴射口と炉内壁との距離(図4参照)をD[mm]、噴射速度をV[m/s]とすると、衝突風速であるVs[m/s]は以下の式で推定できる。そのため、Vs≧0.8m/s以上となるように、乾燥ガスの炉内壁への噴射速度を設定することが望ましい。Vs≧0.8m/sとすることで、壁面噴流を維持し、壁面近傍の水分濃度を低減させることが可能となる。
 Vs=3.46*V*√((B/D)/2)
 ここで、炉内壁への衝突風速であるVsが速いほど炉壁の水分除去効果は大きくなるが、投入乾燥ガスの流量が多すぎると還元炉の内圧が上昇し、冷却帯側に逆流する可能性がある。そのため、還元炉の内圧は冷却帯の内圧よりも低くなるように調整しなければならない。一例としてVs<10m/sとすることが望ましい。
 ここで、供給ノズル44A~44G(図2参照)は、炉頂壁及びすべての炉側壁に設けることが望ましい。ただし、供給ノズルは、炉床部に設けられると異物を巻き上げることがあり得るため、炉床部を除いて設けられてよい。供給される乾燥ガスは、炉内雰囲気温度より低温であってよい。ここで、炉内雰囲気温度は、連続焼鈍炉の炉内雰囲気ガスの温度である。乾燥ガスは、炉内雰囲気温度より低温である場合に、雰囲気ガスとの温度差によって炉頂部分で壁面噴流を維持しにくい。そのため、炉頂壁において供給ノズルは3~5mの間隔で設けられることが好ましい。例えば図2の供給ノズル44Cと供給ノズル44Dとの間隔が3~5mであってよい。噴射方向は、連続焼鈍炉の上流に向かう方向であってよいし、下流に向かう方向であってよいし、鋼板の幅方向であってよい。炉側壁では、低温のガスが下降する性質を利用するために、還元炉の上部から下向きにガスを噴射することが好ましい。一般に、連続焼鈍炉の高さは20~30m程度であるため、炉側壁において高さ方向に10m程度の間隔で設けられることが好ましい。例えば図2の供給ノズル44Aと供給ノズル44Bとの間隔が10m程度であってよい。
 乾燥ガスは、従来技術の乾燥ガスと同様に、露点-70~-50℃程度のNとHの混合ガスを用いることができる。
 本発明者は、さらに、連続焼鈍炉の炉内壁を炉内雰囲気温度より30℃以上高温にすることで、炉壁及び断熱材からの水分放出が促進されることを見出した。このとき、連続焼鈍炉の炉内壁の温度は、炉内雰囲気温度より30℃以上かつ50℃以下の範囲で高温であればよい。
 図5は、還元炉の炉内壁を加熱制御する装置の一例を示す。還元炉は、炉内壁を加熱する加熱機構である発熱体50A~50Eと、炉内壁の温度を測定する温度計52A~52Eと、制御装置54A~54Eと、を備える。制御装置54A~54Eは、温度計52A~52Eが測定した炉内壁の温度に基づいて、発熱体50A~50Eの加熱量を制御する。発熱体50A~50Eの加熱量は、例えば制御装置54A~54Eが発熱体50A~50Eを流れる電流量を制御することによって調整される。実操業中の還元炉の炉内壁は、炉内のラジアントチューブの輻射熱によって例えば700~900℃になっている。発熱体50A~50Eは、ラジアントチューブの輻射熱による炉内の温度から、さらに30~50℃の加熱が可能な加熱能力を有すればよい。ここで、炉内壁の温度を、50℃を超えて上昇させても、水分除去効果が下がることが知られている。そのため、発熱体50A~50Eの加熱能力は30~50℃でよい。
(実施例)
 連続焼鈍炉にDFF型加熱炉を備える連続溶融亜鉛めっき設備(CGL)において、DFF型加熱炉の加熱用バーナーは4つの群(グループ1~グループ4)に分割された。酸化ゾーンとして、連続焼鈍炉における鋼板移動方向の上流側に3つの群(グループ1~グループ3)の加熱用バーナーが配置された。また、還元ゾーンとして、酸化ゾーンよりも鋼板移動方向の下流側に残りの1つの群(グループ4)の加熱用バーナーが配置された。酸化ゾーン及び還元ゾーンの空気比を個別に制御して試験が行われた。酸化ゾーン及び還元ゾーンのそれぞれの長さは4mである。
 連続焼鈍炉においてガスを調湿するために、中空糸膜式加湿部を有する加湿装置が用いられた。加湿装置で調湿された加湿ガスは、直接、連続焼鈍炉に供給された。常用の乾燥ガス投入口は、図2と同様に、計8か所に設けられた。加湿ガス投入口は、図2と同様に、計9か所に設けられた。加湿装置の中空糸膜式加湿部は、10個の膜モジュールを備える。各膜モジュールに最大500リットル/minのN+H混合ガスと、最大10リットル/minの循環水が流れるように構成された。N+H混合ガスは、連続焼鈍炉の投入用に予め成分調整された乾燥ガスであって、露点が-50℃で一定である。循環恒温水槽は10個の膜モジュールで共通であって、計100リットル/minの純水を供給可能である。
 まず、表1の鋼種Bを用いて、約90分の通板試験が実施された。炉内露点を下げるための乾燥ガスは、図2に示される位置に配置された供給ノズル44A~44Gと、さらに炉側壁の2か所に配置された2つの供給ノズルの合計で9つの供給ノズルから供給された。これらの供給ノズルのそれぞれは、ノズルスリット幅が4[mm]、長さ(鋼板の幅方向)が2m、炉内壁への噴射角度θが30゜、噴射角度を考慮したノズル噴射口から炉内壁までの距離Dが80mmである。また、ガス噴射速度が2.35m/s、衝突風速であるVsが1.29m/sで、乾燥ガスが噴射された。このとき、乾燥ガスの炉内へのトータルの流量は約600Nm/hrであった。
Figure JPOXMLDOC01-appb-T000001
 比較例として、特許文献2(特開2012-111995号公報)に記載の装置を用いて、炉内露点を変化させるために、常用の乾燥ガスと同じく炉内壁に対して垂直に開口した供給口から乾燥ガスが供給された。その他の条件は表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 図6に示すように、炉内露点が-20℃以下に下がるまでに要した時間は、比較例で90分を超えていたのに対し、実施例で20分に短縮された。ここで、炉内露点の測定位置は、図2の採取箇所46(上流側及び下流側に偏っておらず、高さ方向においてやや炉頂側に近い位置)である。
 次に、目標とする炉内露点が異なる複数の鋼種(表1参照)を連続通板する試験を実施した。各鋼種のコイルの通板時間はそれぞれ20分程度となるようにコイル長が調整された。鋼板温度及び炉内露点の実績値は、各コイルの長手方向の中央部500mの平均値で求められた。
 比較例として、特許文献2(特開2012-111995号公報)及び特許文献3(特開2016-125131号公報)に記載の装置が用いられた。
 その他の製造条件は表3及び表4に示す通りである。めっき浴温は460℃で行われた。めっき浴中のAl濃度は0.130%であった。また、付着量はガスワイピングにより片面当り45g/mに調節された。また、溶融亜鉛めっきを施した後に、合金化温度は皮膜合金化度(Fe含有率)が10~13%内となるように、誘導加熱式合金化炉にて合金化処理が行われた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 めっき外観は、光学式の表面欠陥計による検査(不めっき欠陥有無、ピックアップ性欠陥有無を検出)を行って評価された。コイル長手全長において欠陥発生率が0.1%以下であればVG、0.1~1.0%であればG、1.0~5.0%であればB、5.0%以上であればVBとした。総合評価の合格の条件は、めっき外観の評価がVG又はGであることである。
 また、材料強度(引張強度)が測定されて、評価された。総合評価の合格の条件は、材料強度が基準値以上であることである。鋼種Aの基準値は1180MPaである。鋼種Bの基準値は1470MPaである。鋼種Cの基準値は980MPaである。鋼種Dの基準値は590MPaである。
 曲げ性は、圧延方向に対して平行方向を曲げ試験軸方向とする、幅が30mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が50mm/s、押込み荷重が10トン、押付け保持時間が5秒の条件で、90°V曲げ試験を行った。曲げ頂点の稜線部を10倍の拡大鏡で観察し、亀裂長が0.5mm以上の亀裂が認められなくなる最小曲げ半径が求められた。最小曲げ半径Rの板厚tに対する比(R/t)を算出し、比(R/t)によって曲げ性が評価された。総合評価の合格の条件は、比(R/t)が基準値以下であることである。鋼種Aの基準値は3.5である。鋼種Bの基準値は5.0である。鋼種Cの基準値は1.5である。鋼種Dの基準値は0.5である。
 総合評価は、めっき外観の条件、材料強度の条件及び曲げ性の条件の全てを満たした場合に合格とした。特許文献2に記載の装置を用いた比較例であるNo.1及びNo.2と、特許文献3に記載の装置を用いた比較例であるNo.3は、最終的に不合格であった。これらの比較例は、鋼種A及び鋼種Bを通板している間では合格であったが、鋼種C及び鋼種Dを通板しているときに炉内露点が低下しなかったため、ピックアップ欠陥、不めっき欠陥などが発生して、不合格となった。また、炉内を加湿しない(炉内露点を低下させる場合だけでなく、常に加湿ガスを炉内へ供給しない)比較例であるNo.8は、鋼種A~鋼種Cで材料特性を満足せずに不合格であった。これに対して、実施例であるNo.4~No.7は、いずれの鋼種においても、表面品質及び材料特性を満足しており、総合評価が合格であった。
 以上のように、本実施形態に係る連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備は、上記の構成及び工程によって、炉内露点を短時間で制御できる。また、表3及び表4における実施例と比較例との対比から明らかなように、本開示によれば、様々な成分を含む高張力鋼板を製造する場合に、生産性を落とすことなく生産が可能である。
 10 加熱帯
 10A 予熱帯
 10B 直火炉
 12 均熱帯
 14 急冷帯
 16 徐冷帯
 18 スナウト
 20 連続焼鈍炉
 22 めっき装置
 23 合金化炉
 24 ガス分配装置
 26 加湿装置
 28 循環恒温水槽
 36A~36C 加湿ガス投入口
 38A~38C 加湿ガス投入口
 40A~40C 加湿ガス投入口
 42 常用のガス供給口
 42A~42H 常用の乾燥ガス投入口
 44A~44G 供給ノズル
 46 採取箇所
 50A~50E 発熱体
 52A~52E 温度計
 54A~54E 制御装置
 100 連続溶融亜鉛めっき設備

Claims (11)

  1.  連続焼鈍炉において、加湿ガスの炉内への供給を停止して又は減らして、前記連続焼鈍炉の炉内壁に沿って乾燥ガスを供給する、連続焼鈍炉の露点制御方法。
  2.  連続焼鈍炉において、前記連続焼鈍炉の炉内壁を炉内雰囲気温度より30℃以上高温にする、請求項1に記載の連続焼鈍炉の露点制御方法。
  3.  炉内露点を5℃以上の露点から0℃未満の露点に変更する、請求項1又は2に記載の連続焼鈍炉の露点制御方法。
  4.  連続焼鈍炉において炉内から炉内壁に噴射される乾燥ガスと前記炉内壁とがなす角度が5°以上かつ45°以下であって、前記乾燥ガスの前記炉内壁への衝突風速が0.8m/s以上であるように制御する、請求項1から3のいずれか一項に記載の連続焼鈍炉の露点制御方法。
  5.  請求項1から4のいずれか一項に記載の連続焼鈍炉の露点制御方法を用いて、炉内露点を制御する、鋼板の連続焼鈍方法。
  6.  請求項5に記載の鋼板の連続焼鈍方法を用いて高張力鋼板、溶融亜鉛めっき鋼板又は合金化溶融亜鉛めっき鋼板を製造する鋼板の製造方法。
  7.  炉内壁に沿ってガスを供給できるノズルを備え、前記ノズルから供給されるガスは乾燥ガスを含む、連続焼鈍炉。
  8.  炉内の炉頂壁及び炉側壁の少なくとも1つにガスを噴射するノズルを備え、前記ノズルから炉内壁に噴射される前記ガスと前記炉内壁とがなす角度が5°以上かつ45°以下である、請求項7に記載の連続焼鈍炉。
  9.  炉内壁を炉内雰囲気温度より30℃以上高温に加熱できる加熱機構を備える、請求項7又は8に記載の連続焼鈍炉。
  10.  請求項7から9のいずれか一項に記載の連続焼鈍炉と、前記連続焼鈍炉に続くめっき装置を備える、連続溶融亜鉛めっき設備。
  11.  請求項7から9のいずれか一項に記載の連続焼鈍炉と、前記連続焼鈍炉に続くめっき装置及び合金化炉を備える、合金化溶融亜鉛めっき設備。
PCT/JP2022/004973 2021-05-06 2022-02-08 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備 WO2022234701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280031988.0A CN117255866A (zh) 2021-05-06 2022-02-08 连续退火炉的露点控制方法、钢板的连续退火方法、钢板的制造方法、连续退火炉、连续热浸镀锌设备以及合金化热浸镀锌设备
KR1020237037743A KR20230162110A (ko) 2021-05-06 2022-02-08 연속 어닐링로의 노점 제어 방법, 강판의 연속 어닐링 방법, 강판의 제조 방법, 연속 어닐링로, 연속 용융 아연 도금 설비 및 합금화 용융 아연 도금 설비
EP22798809.4A EP4310207A1 (en) 2021-05-06 2022-02-08 Method for controlling dew point of continuous annealing furnace, continuous annealing method for steel sheets, method for producing steel sheet, continuous annealing furnace, continuous hot dip galvanization facility and alloyed hot dip galvanization facility
JP2022526834A JP7334860B2 (ja) 2021-05-06 2022-02-08 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078773 2021-05-06
JP2021078773 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234701A1 true WO2022234701A1 (ja) 2022-11-10

Family

ID=83932104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004973 WO2022234701A1 (ja) 2021-05-06 2022-02-08 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備

Country Status (5)

Country Link
EP (1) EP4310207A1 (ja)
JP (1) JP7334860B2 (ja)
KR (1) KR20230162110A (ja)
CN (1) CN117255866A (ja)
WO (1) WO2022234701A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253327A (ja) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd 加熱炉の露点低下方法
JPH0762450A (ja) * 1993-08-27 1995-03-07 Nippon Steel Corp 連続焼鈍炉における鋼帯エッジ部過加熱防止法
JP2012111995A (ja) 2010-11-25 2012-06-14 Jfe Steel Corp 連続焼鈍炉の炉内雰囲気調整方法
JP2016125131A (ja) 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP2020520408A (ja) * 2017-03-22 2020-07-09 フィブ スタン 乾式冷却と湿式冷却を組み合わせた、連続的ラインを冷却するためのセクション及び方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680303B2 (en) 2018-03-30 2023-06-20 Nippon Steel Corporation Steel sheet and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253327A (ja) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd 加熱炉の露点低下方法
JPH0762450A (ja) * 1993-08-27 1995-03-07 Nippon Steel Corp 連続焼鈍炉における鋼帯エッジ部過加熱防止法
JP2012111995A (ja) 2010-11-25 2012-06-14 Jfe Steel Corp 連続焼鈍炉の炉内雰囲気調整方法
JP2016125131A (ja) 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP2020520408A (ja) * 2017-03-22 2020-07-09 フィブ スタン 乾式冷却と湿式冷却を組み合わせた、連続的ラインを冷却するためのセクション及び方法

Also Published As

Publication number Publication date
EP4310207A1 (en) 2024-01-24
JPWO2022234701A1 (ja) 2022-11-10
JP7334860B2 (ja) 2023-08-29
KR20230162110A (ko) 2023-11-28
CN117255866A (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
US11421312B2 (en) Method for manufacturing hot-dip galvanized steel sheet
KR101949631B1 (ko) 합금화 용융 아연 도금 강판의 제조 방법
EP3168321B1 (en) Production method for alloyed hot-dip-galvanized steel sheet
KR101893509B1 (ko) 환원로의 노점 제어 방법 및 환원로
US20230323501A1 (en) Continuous hot-dip galvanizing apparatus
EP3369836B1 (en) Method for manufacturing hot-dip galvanized steel sheet
WO2022234701A1 (ja) 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備
JP6128068B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
CN117616146A (zh) 热镀锌钢板的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022526834

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012230

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022798809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280031988.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18558192

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237037743

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237037743

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2301007184

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798809

Country of ref document: EP

Effective date: 20231016