WO2022234685A1 - 拡散部材 - Google Patents
拡散部材 Download PDFInfo
- Publication number
- WO2022234685A1 WO2022234685A1 PCT/JP2021/036913 JP2021036913W WO2022234685A1 WO 2022234685 A1 WO2022234685 A1 WO 2022234685A1 JP 2021036913 W JP2021036913 W JP 2021036913W WO 2022234685 A1 WO2022234685 A1 WO 2022234685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detector
- light source
- person
- sub
- image
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 claims description 79
- 238000003384 imaging method Methods 0.000 description 212
- 238000010586 diagram Methods 0.000 description 48
- 238000012986 modification Methods 0.000 description 45
- 230000004048 modification Effects 0.000 description 45
- 238000012545 processing Methods 0.000 description 38
- 230000003287 optical effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 238000001514 detection method Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
Definitions
- the present disclosure relates to a diffusion member that diffusely reflects subterahertz waves.
- Patent Literature 1 discloses a camera that obtains an image of a subject using terahertz waves.
- a diffusion member that diffusely reflects subterahertz waves in a desired range is useful in an imaging device that captures an image of an object using subterahertz waves.
- an object of the present disclosure is to provide a diffusion member that diffusely reflects subterahertz waves in a desired range.
- a diffusion member is a diffusion member that diffusely reflects subterahertz waves, and includes a reflective surface that reflects the subterahertz waves, and the reflective surface has a plurality of convex portions or a plurality of concave portions. and each of the plurality of protrusions or the plurality of recesses has an angle between circumscribed surfaces that is continuously distributed within a range of 0° to ⁇ ( ⁇ is an angle greater than 0° and less than 90°). do.
- subterahertz waves can be diffusely reflected in a desired range.
- FIG. 1 is a schematic diagram showing the appearance of an imaging device according to Embodiment 1.
- FIG. FIG. 2 is a block diagram showing the configuration of the imaging device according to Embodiment 1.
- FIG. 3 is a schematic diagram of the photographing apparatus according to Embodiment 1 as viewed from above.
- FIG. 4 is a schematic diagram showing the cross-sectional structure of the reflector according to the first embodiment.
- FIG. 5A is a schematic diagram showing an example when the first light source according to Embodiment 1 is viewed from the front.
- 5B is a schematic diagram showing another example when the first light source according to Embodiment 1 is viewed from the front.
- FIG. 6A is a diagram for explaining an operation example of the imaging device according to Embodiment 1.
- FIG. 6B is a diagram for explaining an operation example of the imaging device according to Embodiment 1.
- FIG. 6C is a diagram for explaining an operation example of the imaging device according to Embodiment 1.
- FIG. 6D is a diagram for explaining an operation example of the imaging device according to Embodiment 1.
- FIG. 7 is a schematic diagram of the photographing device according to Modification 1 of Embodiment 1 as viewed from above.
- 8A is a diagram for explaining an operation example of an imaging device according to Modification 1 of Embodiment 1.
- FIG. 8B is a diagram for explaining an operation example of the imaging device according to Modification 1 of Embodiment 1.
- FIG. 8C is a diagram for explaining an operation example of the imaging device according to Modification 1 of Embodiment 1.
- FIG. 8A is a diagram for explaining an operation example of an imaging device according to Modification 1 of Embodiment 1.
- FIG. 8B is a diagram for explaining an operation example of the imaging device according to Modification 1 of Embodi
- FIG. 8D is a diagram for explaining an operation example of the imaging device according to Modification 1 of Embodiment 1.
- FIG. FIG. 9 is a schematic diagram of an imaging device according to Modification 2 of Embodiment 1 as viewed from above.
- 10A is a diagram for explaining an operation example of an imaging device according to Modification 2 of Embodiment 1.
- FIG. 10B is a diagram for explaining an operation example of the imaging device according to Modification 2 of Embodiment 1.
- FIG. FIG. 11 is a schematic diagram of an imaging device according to Modification 3 of Embodiment 1 as viewed from above.
- 12A is a diagram for explaining an operation example of an imaging device according to Modification 3 of Embodiment 1.
- FIG. 12B is a diagram for explaining an operation example of the imaging device according to Modification 3 of Embodiment 1.
- FIG. 12C is a diagram for explaining an operation example of the imaging device according to Modification 3 of Embodiment 1.
- FIG. 12D is a diagram for explaining an operation example of the imaging device according to Modification 3 of Embodiment 1.
- FIG. 13 is a perspective view of a diffusion member according to Embodiment 2.
- FIG. 14A is an enlarged plan view of a diffusion member according to Embodiment 2.
- FIG. 14B is an enlarged cross-sectional view of a diffusion member according to Embodiment 2.
- FIG. 15 is an enlarged cross-sectional view showing an example of how recesses are formed in the reflecting member according to the second embodiment.
- FIG. 16A is a frequency distribution diagram of the distance h in the diffusion member according to Embodiment 2.
- FIG. 16B is a frequency distribution diagram of the distance h in the diffusion member according to the comparative example.
- 17A is a correlation diagram showing the relationship between the reflected wave and the intensity in the diffusion member according to Embodiment 2.
- FIG. 17B is a correlation diagram showing the relationship between the reflected wave and the intensity in the diffusion member according to the comparative example.
- FIG. 18 is an enlarged cross-sectional view showing an example of how sub-terahertz waves are reflected by the reflecting surface according to the second embodiment.
- 19 is an enlarged plan view showing an example of a diffusion member according to Embodiment 2.
- FIG. FIG. 20 is a schematic diagram of a reflector according to a modification as viewed from the front.
- a diffusion member is a diffusion member that diffusely reflects subterahertz waves, and includes a reflective surface that reflects the subterahertz waves, and the reflective surface has a plurality of convex portions or a plurality of concave portions. and each of the plurality of protrusions or the plurality of recesses has an angle between circumscribed surfaces that is continuously distributed within a range of 0° to ⁇ ( ⁇ is an angle greater than 0° and less than 90°). do.
- sub-terahertz wave means an electromagnetic wave with a frequency of 0.05 THz or more and 2 THz or less.
- the sub-terahertz wave in this specification may be an electromagnetic wave with a frequency of 0.08 THz or more and 1 THz or less.
- diffuse reflection means that sub-terahertz waves incident on a reflector at one incident angle from a macroscopic point of view are reflected by a plurality of microscopic irregularities due to the structure of an uneven surface having a plurality of microscopic irregularities. It means that it is reflected at the angle of reflection.
- the diffusing member having the above configuration, the reflected waves of the sub-terahertz wave incident on the reflecting surface by the plurality of convex portions or the plurality of concave portions are continuously distributed in the range of 0° to ⁇ . . Therefore, the diffusion member configured as described above can diffusely reflect the sub-terahertz wave in the range of 2 ⁇ .
- the diffusion member having the above configuration can diffusely reflect sub-terahertz waves in a desired range.
- the diffusing member may be plate-shaped, and the reflecting surface may not have a flat area in a direction perpendicular to the normal direction of the diffusing member.
- subterahertz waves are specularly reflected by a flat area.
- the diffusing member having the above configuration does not have a flat region on the reflecting surface in the direction perpendicular to the normal direction of the diffusing member 30 .
- the diffusing member is plate-shaped, and the positions of the vertexes of the plurality of convex portions or the plurality of concave portions in the normal direction of the diffusing member are defined by the wavelength of the sub-terahertz wave , it may be distributed in the range from 0 to L (L ⁇ /2).
- the intensity of the reflected wave of the sub-terahertz wave incident in the normal direction has a reflection angle of around 0°.
- a conspicuous peak occurs in .
- the diffusing member having the above configuration, the distribution of the positions of the vertices in the normal direction spreads over a range of ⁇ /2 or more.
- the diffusing member having the above configuration, it is possible to suppress the generation of a significant peak in the intensity of the reflected wave of the sub-terahertz wave.
- the plurality of convex portions or the plurality of concave portions may have portions similar in shape to each other.
- the mutually similar portions may be part of a spherical surface.
- each figure is not necessarily a strict illustration.
- substantially the same configurations are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified.
- FIG. 1 is a schematic diagram showing the appearance of an imaging device 10 according to the first embodiment. Components other than the reflector 20 are omitted in FIG.
- the imaging device 10 irradiates the person 100 with sub-terahertz waves when the person 100 passes through the imaging space 102 on the passage 101 sandwiched between the reflectors 20, for example.
- the imaging space 102 is a space covered by the reflector 20 in the space above the passage 101 .
- the photographing device 10 photographs, for example, a dangerous object such as a knife that the person 100 hides under his/her clothes.
- the person 100 and a dangerous object such as a knife that the person 100 hides under his or her clothes are examples of objects to be photographed.
- FIG. 2 is a block diagram showing the configuration of the imaging device 10 according to the first embodiment.
- FIG. 3 is a schematic diagram of the photographing apparatus 10 according to the first embodiment as viewed from above.
- FIG. 3 shows how the person 100 passes through the imaging space 102 .
- an example of the course of the sub-terahertz waves emitted from the first light source 41 and the second light source 42 is indicated by arrows.
- the imaging device 10 includes a reflector 20, a first light source 41, a second light source 42, a first detector 51, a second detector 52, a third detector 53, a fourth detector 54, It includes a light source control section 60 , an imaging control section 70 , a sensor 80 and an image processing section 90 .
- the 1st light source 41 and the 2nd light source 42 may be generically called simply a "light source.”
- the first detector 51, the second detector 52, the third detector 53, and the fourth detector 54 may be collectively referred to simply as "detectors.”
- the reflector 20 covers the space above the passage 101 through which the person 100 passes, specifically the imaging space 102 from at least one of both sides of the passage 101 .
- Covering from at least one of both sides of the passage 101 specifically means covering from at least one of two directions perpendicular to both sides when the passage 101 is viewed from above, that is, the direction in which the passage 101 extends.
- the reflector 20 sandwiches the photographing space 102 on the passage 101 through which the person 100 passes from both sides of the passage 101 . That is, the reflector 20 covers the imaging space 102 from both sides of the passage 101 .
- the imaging space 102 is, for example, a space sandwiched between inner surfaces (inner side surfaces 25 described later) of the reflector 20 in the space above the passage 101 .
- a pair of reflectors 20 stand upright from the floor on both sides of passage 101 and face each other. That is, the pair of reflectors 20 made up of two sheets are arranged so as to have a positional relationship that sandwiches the passage 101 when viewed from above. Also, in the illustrated example, the pair of reflectors 20 are arranged so as to have a parallel positional relationship. In the illustrated example, the pair of reflectors 20 are erected perpendicularly to the floor on which the passage 101 is provided. The height of the upper end of the reflector 20 from the passage 101 is not particularly limited, but is, for example, 1.5 m or more and 5.0 m or less.
- the shape of the reflector 20 when viewed from the direction in which the path 101 extends is two I-shapes in the case of a pair of reflectors 20, but the shape is not particularly limited.
- the reflectors 20 may be placed on at least one of the two sides of the photographing space 102, and the reflectors 20 have an I-shape and a J-shape when viewed from the direction in which the path 101 extends. It may be letter-shaped, L-shaped, U-shaped, C-shaped, frame-shaped, annular, or the like.
- the imaging device 10 may further include a reflector other than the pair of reflectors 20, or may include one reflector having a shape in which the ends of the pair of reflectors 20 are extended and connected. . Note that the imaging device 10 may include at least one reflector 20 , and may include only one of the pair of reflectors 20 , for example.
- Each of the pair of reflectors 20 has a plate shape.
- Each of the pair of reflectors 20 has an inner surface 25 and an outer surface 28 as two surfaces that are front surfaces when viewed from the thickness direction of the reflectors 20 .
- the pair of reflectors 20 are arranged such that one inner side surface 25 of the pair of reflectors 20 and the other inner side surface 25 of the pair of reflectors 20 face each other.
- the inner surface 25 is the surface of the reflecting plate 20 on the shooting space 102 side.
- each of the pair of reflectors 20 is a flat plate having an inner surface 25 and an outer surface 28 parallel to the inner surface 25 . That is, the thickness of the reflector 20 is uniform.
- the planar view shape of the pair of reflectors 20 is not particularly limited, for example, each of them is a rectangle.
- the reflector 20 diffusely reflects the sub-terahertz wave. Specifically, the reflector 20 diffusely reflects at least sub-terahertz waves incident from the imaging space 102 side (that is, from inside the pair of reflectors 20). The reflector 20 is positioned between the first light source 41 and the second light source 42 . The sub-terahertz waves emitted from the first light source 41 and the second light source 42 are diffusely reflected one or more times by at least one of the pair of reflectors 20 and irradiated to the person 100, as shown in FIG.
- the sub-terahertz waves incident on the imaging space 102 are likely to remain, and the sub-terahertz waves are projected onto the person 100 from various angles. is irradiated.
- the photographing device 10 can be made thinner and more compact than when a member such as a spherical mirror that concentrates the subterahertz waves on the person 100 is used to reflect the subterahertz waves. is possible.
- FIG. 4 is a schematic diagram showing the cross-sectional structure of the reflector 20. As shown in FIG. FIG. 4 is an enlarged view of a part of the cross section of the reflector 20. As shown in FIG. In FIG. 4, oblique hatching indicating a cross section is omitted for the sake of clarity.
- the reflector 20 has a reflective member 21 and two covering members 24 and 27 .
- the reflector 20 has a structure in which a covering member 24, a reflecting member 21, and a covering member 27 are laminated in this order from the photographing space 102 side.
- the reflecting member 21 is a sheet-like member that diffusely reflects sub-terahertz waves. Reflective member 21 is positioned between covering member 24 and covering member 27 .
- the reflecting member 21 has two main surfaces 22 and 23 as two front surfaces when viewed from the thickness direction of the reflecting member 21 .
- the main surface 22 and the main surface 23 are uneven surfaces that diffusely reflect sub-terahertz waves.
- the main surface 22 is positioned on the imaging space 102 side of the reflecting member 21
- the main surface 23 is positioned on the opposite side of the reflecting member 21 from the imaging space 102 side. Both of the two main surfaces 22 and 23 of the reflecting member 21 are covered with a covering member 24 and a covering member 27, respectively.
- the main surface 22 of the reflecting member 21 on the photographing space 102 side is covered with a covering member 24
- the main surface 23 of the reflecting member 21 on the side opposite to the photographing space 102 side is covered with a covering member 27 . ing. Therefore, the main surface 22 and the main surface 23 do not constitute the surface of the reflector 20 and are not exposed. As a result, when the main surfaces 22 and 23, which are uneven surfaces, are exposed, the uneven surfaces may come into contact with the person 100.
- the reflecting member 21 is protected by being covered with 27 .
- the average length RSm of the roughness curve element is equal to or longer than the wavelength of the sub-terahertz waves emitted from the first light source 41 and the second light source 42.
- the average length RSm of the roughness curve element is 0.15 mm or more, and may be 0.3 mm or more.
- the sub-terahertz waves are efficiently diffusely reflected by the main surfaces 22 and 23 .
- the uneven shapes of the main surface 22 and the main surface 23 are the same.
- corrugated shape of the main surface 22 and the main surface 23 may differ.
- the main surface 22 of the reflecting member 21 on the photographing space 102 side may be an uneven surface, and the main surface 23 may be a flat surface.
- the reflecting member 21 is made of a conductive member such as metal or conductive oxide.
- metals include pure metals (single metals) and alloys containing at least one metal such as copper, aluminum, nickel, iron, stainless steel, silver, gold or platinum.
- conductive oxides include ITO (Indium Tin Oxide), IZO (InZnO; Indium Zinc Oxide), AZO (AlZnO: Aluminum Zinc Oxide), FTO (Florine-doped Tin Oxide), SnO 2 , TiO 2 and ZnO. 2 and other transparent conductive oxides.
- the covering member 24 and the covering member 27 each transmit sub-terahertz waves.
- the covering member 24 and the covering member 27 each transmit, for example, 50% or more of the sub-terahertz waves incident from the thickness direction of the reflector 20 .
- Each of the covering member 24 and the covering member 27 may transmit 80% or more of the sub-terahertz wave incident from the thickness direction of the reflector 20, or may transmit 90% or more.
- the covering member 24 is positioned on the photographing space 102 side of the reflecting member 21 and covers the main surface 22 .
- the surface of the covering member 24 located on the side opposite to the reflecting member 21 side of the covering member 24 constitutes the inner surface 25 of the reflecting plate 20 .
- the inner side surface 25 is a flat surface that does not have an uneven shape like the main surface 22 . As a result, even when the person 100 passing through the passage 101 collides with the inner surface 25 of the reflector 20, the person 100 is prevented from colliding with the uneven surface (that is, the main surface 22) of the reflecting member 21. Main surface 22 is protected. Further, since the inner surface 25 of the reflector 20 is a flat surface, the reflector 20 can be easily cleaned.
- the covering member 27 is located on the opposite side of the reflecting member 21 from the imaging space 102 side and covers the main surface 23 .
- a surface of the covering member 27 located on the side opposite to the reflecting member 21 side of the covering member 27 constitutes an outer surface 28 of the reflecting plate 20 .
- the outer side surface 28 is a flat surface that does not have an uneven shape like the main surface 23 . This makes it easier to clean the reflecting plate 20 .
- the material of the covering member 24 and the covering member 27 may be any material that can be processed into the shape of the covering member 24 and the covering member 27 and can retain the shape.
- a resin material or the like is used as a material for the covering member 24 and the covering member 27, for example.
- the resin material may be, for example, a transparent amorphous resin material that transmits visible light, or a crystalline resin material that diffusely reflects visible light.
- the reflector 20 is formed, for example, by the following method.
- the covering member 24 is formed by molding a resin material with a mold having an uneven surface, or by machining a plate-shaped resin material to provide unevenness.
- a film is formed by vapor deposition, spraying, or the like.
- the reflecting plate 20 is obtained by coating the film-formed reflecting member 21 with the resin material of the coating member 27 by coating or hot-melt pasting.
- a metal plate as a material of the reflecting member 21 is machined to have an uneven surface, and the resin material of the coating member 24 and the coating member 27 is coated on the uneven metal plate, hot melt pasting, insert molding, or the like.
- a reflector 20 is obtained.
- the covering member 24 and the covering member 27 may be formed using a 3D printer.
- the pair of reflectors 20, for example, have the same configuration and material as each other. Note that the pair of reflectors 20 may differ in at least one of their configurations and materials.
- the first light source 41 and the second light source 42 are light sources that emit sub-terahertz waves to the reflector 20, respectively. Specifically, each of the first light source 41 and the second light source 42 emits sub-terahertz waves to at least one inner surface 25 of the pair of reflectors 20 . Further, as shown in FIG. 3 , the first light source 41 and the second light source 42 are arranged such that part of the sub-terahertz waves emitted by the first light source 41 and the second light source 42 are diffusely reflected by the reflector 20 a plurality of times. The two light sources 42 emit sub-terahertz waves to the reflector 20 . Also, part of the subterahertz waves emitted by the first light source 41 and the second light source 42 may be directly incident on the person 100 .
- the first light source 41 and the second light source 42 emit sub-terahertz waves under the control of the light source controller 60, for example.
- the first light source 41 and the second light source 42 may always emit subterahertz waves during use, or may emit subterahertz waves at regular time intervals.
- the first light source 41 and the second light source 42 are supported by, for example, supporting members (not shown).
- the first light source 41 and the second light source 42 are realized by, for example, a known subterahertz wave generation element and a circuit that supplies current to the subterahertz wave generation element.
- the first light source 41 is positioned forward of the center of the imaging space 102 in the direction in which the passage 101 extends.
- the center of the imaging space 102 is the center of the space formed by being sandwiched between the reflectors 20 .
- the first light source 41 is positioned forward of the reflector 20 in the direction in which the passage 101 extends.
- the front in the direction in which the passage 101 extends may be simply referred to as the "front”
- the rear in the direction in which the passage 101 extends may simply be referred to as the "rear”.
- the terms “forward” and “rearward” as used herein do not refer to the forward and backward directions of travel of the person 100 in the aisle 101 , but rather are terms that refer to relative directions.
- forward is an example of a first direction
- rearward is an example of a second direction.
- the first light source 41 emits subterahertz waves from the front side of the reflector 20 toward the inner surface 25 of the reflector 20 .
- the first light source 41 is located near the front end of each of the pair of reflectors 20 and is separated from the reflectors 20 . Also, the first light source 41 is positioned between the first detector 51 and the third detector 53 and the reflector 20 . Accordingly, the first light source 41, the first detector 51, and the third detector 53 are positioned on the same side of the reflector 20, specifically, on the front side. Also, the first light source 41 emits sub-terahertz waves to the reflector 20 from a position closer to the reflector 20 than the first detector 51 and the third detector 53 are.
- the sub-terahertz wave diffusely reflected by the reflecting plate 20 after being emitted from the first light source 41 is irradiated to the person 100 without proceeding to the first detector 51 side and the third detector 53 side. Therefore, the sub-terahertz waves emitted from the first light source 41 can be efficiently used.
- the first light source 41 may be positioned, for example, in the imaging space 102 or may be positioned in front of the first detector 51 and the third detector 53 .
- the first light source 41 includes, for example, a point light source that emits sub-terahertz waves.
- FIG. 5A is a schematic diagram showing an example when the first light source 41 is viewed from the front. Components other than the first light source 41 and the reflector 20 are omitted in FIG. 5A.
- the first light source 41 includes a plurality of point light sources 41a arranged along the reflecting plate 20 when viewed from the direction in which the passage 101 extends and emitting sub-terahertz waves.
- the plurality of point light sources 41a are arranged along the direction in which the pair of reflecting plates 20 are erected.
- FIG. 1 is a schematic diagram showing an example when the first light source 41 is viewed from the front. Components other than the first light source 41 and the reflector 20 are omitted in FIG. 5A.
- the first light source 41 includes a plurality of point light sources 41a arranged along the reflecting plate 20 when viewed from the direction in which the passage 101 extends and emitting sub-terahe
- the first light source 41 includes a pair of multiple point light sources 41a arranged along the direction in which the pair of reflecting plates 20 are erected.
- the number of the plurality of point light sources 41a arranged is not particularly limited, and may be two, or may be four or more.
- a pair of the plurality of point light sources 41a are arranged symmetrically with respect to the virtual plane P1.
- the virtual plane P1 is a vertical plane passing through the center of the imaging space 102 and along the direction in which the passage 101 extends. Note that the plurality of point light sources 41 a may be arranged only on one side of the pair of reflectors 20 .
- the first light source 41 may include another light source instead of the plurality of point light sources 41a.
- FIG. 5B is a schematic diagram showing another example when the first light source 41 is viewed from the front. Components other than the first light source 41 and the reflector 20 are omitted in FIG. 5B.
- the first light source 41 includes a linear light source 41b that extends along the reflecting plate 20 and emits sub-terahertz waves when viewed from the direction in which the passage 101 extends.
- the linear light source 41b extends along the direction in which the pair of reflecting plates 20 are erected.
- FIG. 1 is a schematic diagram showing another example when the first light source 41 is viewed from the front. Components other than the first light source 41 and the reflector 20 are omitted in FIG. 5B.
- the first light source 41 includes a linear light source 41b that extends along the reflecting plate 20 and emits sub-terahertz waves when viewed from the direction in which the passage 101 extends.
- the linear light source 41b extend
- one linear light source 41b is arranged to extend along one front side edge of the pair of reflectors 20, and one linear light source 41b is arranged to extend along the other front side edge of the pair of reflectors 20.
- the first light source 41 includes a pair of linear light sources 41b.
- the number of linear light sources 41b arranged so as to extend along the respective front end portions of the pair of reflectors 20 may be two or more.
- the pair of linear light sources 41b are arranged symmetrically with respect to the virtual plane P1. Note that the linear light source 41b may be arranged only on one side of the pair of reflectors 20 .
- the first light source 41 is arranged along the reflecting plate 20 when viewed from the direction in which the passage 101 extends. and includes at least one of the linear light sources 41b that radiate sub-terahertz waves. Thereby, the first light source 41 can emit sub-terahertz waves widely along the reflecting plate 20 when viewed from the direction in which the passage 101 extends. As a result, the person 100 is effectively irradiated with sub-terahertz waves.
- the second light source 42 is located on the rear side of the center of the imaging space 102 in the direction in which the passage 101 extends. In the example shown in FIG. 3 , the second light source 42 is located behind the reflector 20 . The second light source 42 emits subterahertz waves from behind the reflector 20 toward the inner surface 25 of the reflector 20 .
- the second light source 42 is located near the rear end of each of the pair of reflectors 20 and is separated from the reflectors 20 . Also, the second light source 42 is positioned between the second detector 52 and the fourth detector 54 and the reflector 20 .
- the second light source 42 may be positioned, for example, in the imaging space 102 or may be positioned behind the second detector 52 and the fourth detector 54 . Further, when the photographing device 10 does not photograph the image of the rear side of the person 100 , the second light source 42 may not be provided in the photographing device 10 .
- the second light source 42 includes, for example, at least one of a point light source and a line light source that emit subterahertz waves.
- the point light source and line light source included in the second light source 42 are similar to those of the first light source 41 . Therefore, the point light source and line light source included in the second light source 42 will be described by replacing the first light source 41 with the second light source 42 and reading the front with the rear from the description of FIGS. 5A and 5B.
- the first detector 51 receives the reflected wave of the sub-terahertz wave emitted from the first light source 41 and diffusely reflected by the reflector 20 by the person 100 .
- the first detector 51 generates an image based on the received reflected waves.
- the first detector 51 outputs the generated image to the image processing section 90 .
- Generating an image by a detector such as the first detector 51 is also referred to as “capturing”.
- the first detector 51 is exposed at the timing when the first light source 41 emits sub-terahertz waves to generate an image.
- the first detector 51 is positioned forward of the center of the imaging space 102 in the direction in which the passage 101 extends. In the example shown in FIG. 3, the first detector 51 is positioned forward of the reflector 20 in the direction in which the passage 101 extends. The first detector 51 captures an image of the front surface of the person 100 .
- the first detector 51 is supported by, for example, a support member (not shown) or the like.
- the first detector 51 includes an image sensor 55 and an optical system 56.
- the image sensor 55 receives sub-terahertz waves reflected by the person 100 that are diffusely reflected by the reflector 20 after being emitted from the light source such as the first light source 41 .
- the image sensor 55 detects the intensity of the received reflected waves and generates an image based on the detected intensity. Specifically, the image sensor 55 converts an image of sub-terahertz waves emitted from the object to be photographed during exposure into an electric signal corresponding to its intensity. The image sensor 55 then generates an image based on the converted electrical signal.
- the image generated by the image sensor 55 is output to the image processing section 90 .
- Sub-terahertz waves are mirror-reflected by the human body and metals, and penetrate clothes and bags. For this reason, the image sensor 55 receives the reflected wave specularly reflected by the body of the person 100 from the area included in the angular range that the image sensor 55 can receive in the body of the person 100 .
- a reflected wave from the person 100 is incident on the image sensor 55, for example, passing through a range indicated by a dashed line extending from the first detector 51 in FIG.
- the image sensor 55 receives a reflected wave mirror-reflected by the hidden knife from an area included in the angle range that the image sensor 55 can receive.
- the image sensor 55 is composed of, for example, a plurality of pixels each including a subterahertz wave detection element, peripheral circuits, and the like.
- the optical system 56 forms an image on the image sensor 55 of the sub-terahertz wave that is diffusely reflected by the reflector 20 after being emitted from the light source such as the first light source 41 and reflected by the person 100 .
- the optical system 56 includes, for example, at least one lens. Note that the first detector 51 may not include the optical system 56 and the reflected wave may directly enter the image sensor 55 .
- the second detector 52 receives the reflected wave of the sub-terahertz wave emitted from the second light source 42 and diffusely reflected by the reflector 20 by the person 100 .
- the second detector 52 generates an image based on the received reflected waves.
- the second detector 52 outputs the generated image to the image processing section 90 .
- the second detector 52 is exposed at the timing when the second light source 42 emits sub-terahertz waves to generate an image.
- the second detector 52 is located on the rear side of the center of the imaging space 102 in the direction in which the passage 101 extends. In the example shown in FIG. 3 , the second detector 52 is located behind the reflector 20 . The second detector 52 captures an image of the rear surface of the person 100 .
- the second detector 52 is supported by, for example, a support member (not shown) or the like. In this way, by including the first detector 51 and the second detector 52 in the photographing device 10, images of both the front and rear sides of the person 100 can be generated.
- the second detector 52 includes an image sensor 55a and an optical system 56a. Since the image sensor 55a and the optical system 56a are the same as the image sensor 55 and the optical system 56 described above, detailed description thereof will be omitted.
- the second detector 52 may not be provided in the imaging device 10 when the imaging device 10 does not capture an image of the rear surface of the person 100 .
- the third detector 53 receives the reflected wave of the sub-terahertz wave emitted from the first light source 41 and diffusely reflected by the reflector 20 by the person 100 .
- the third detector 53 generates an image based on the received reflected waves.
- the third detector 53 outputs the generated image to the image processing section 90 .
- the third detector 53 is exposed at the timing when the first light source 41 emits sub-terahertz waves to generate an image.
- the third detector 53 is positioned forward of the center of the imaging space 102 in the direction in which the passage 101 extends. In the example shown in FIG. 3 , the third detector 53 is located forward of the reflector 20 .
- the third detector 53 is supported by, for example, a support member (not shown) or the like.
- the first detector 51 and the third detector 53 are arranged at different positions with respect to the passage 101 when viewed from above.
- the first detector 51 and the third detector 53 have different incident directions of reflected waves from the person 100 .
- the first detector 51 and the third detector 53 generate images based on reflected waves from surfaces of the person 100 facing in different directions. Therefore, for example, blind spots can be reduced when a dangerous object such as a knife hidden by the person 100 is detected by the photographing device 10 .
- the first detector 51 and the third detector 53 have a symmetrical positional relationship with respect to the virtual plane P1. Therefore, the incident direction of the reflected wave on the first detector 51 and the incident direction of the reflected wave on the third detector 53 are symmetrical with respect to the virtual plane P1.
- the first detector 51 and the third detector 53 are arranged along the direction perpendicular to the direction in which the passage 101 extends in a top view of the passage 101 .
- the third detector 53 includes an image sensor 55b and an optical system 56b. Since the image sensor 55b and the optical system 56b are the same as the image sensor 55 and the optical system 56 described above, detailed description thereof will be omitted.
- the fourth detector 54 receives the reflected wave of the sub-terahertz wave emitted from the second light source 42 and diffusely reflected by the reflector 20 by the person 100 .
- the fourth detector 54 generates an image based on the received reflected waves.
- the fourth detector 54 outputs the generated image to the image processing section 90 .
- the fourth detector 54 is exposed at the timing when the second light source 42 emits sub-terahertz waves to generate an image.
- the fourth detector 54 is located on the rear side of the center of the imaging space 102 in the direction in which the passage 101 extends. In the example shown in FIG. 3 , the fourth detector 54 is located behind the reflector 20 .
- the fourth detector 54 is supported by, for example, a support member (not shown) or the like.
- the positional relationship between the second detector 52 and the fourth detector 54 is the same as the positional relationship between the first detector 51 and the third detector 53 .
- the first detector 51 in the description of the positional relationship between the first detector 51 and the third detector 53 is read as the second detector, and the third detector 51 is replaced with the second detector. The description will be made by replacing the detector 53 with the fourth detector 54 .
- the fourth detector 54 includes an image sensor 55c and an optical system 56c. Since the image sensor 55c and the optical system 56c are the same as the image sensor 55 and the optical system 56 described above, detailed description thereof will be omitted.
- At least one of the third detector 53 and the fourth detector 54 may not be provided in the imaging device 10 .
- the light source control unit 60 controls emission of sub-terahertz waves from each of the first light source 41 and the second light source 42 .
- the light source control unit 60 controls, for example, the timing of emitting sub-terahertz waves to each of the first light source 41 and the second light source 42 .
- the light source control unit 60 causes the first light source 41 to emit subterahertz waves during a first period and does not cause the second light source 42 to emit subterahertz waves, and causes the second light source to emit subterahertz waves during a second period different from the first period. 42 is caused to emit subterahertz waves and the first light source 41 is not caused to emit subterahertz waves.
- the light source control unit 60 controls emission of sub-terahertz waves from the first light source 41 and the second light source 42, for example, based on signals acquired from the imaging control unit 70, the sensor 80, and the like.
- the light source control unit 60 includes, for example, a processor and memory, and is implemented by the processor executing a program stored in the memory.
- the imaging control unit 70 controls the timing at which each detector generates an image. For example, the imaging control unit 70 causes the first detector 51 and the third detector 53 to synchronously generate images, and the second detector 52 and the fourth detector 54 to synchronously generate images. Let In addition, the imaging control unit 70 causes each detector to generate an image, for example, based on the emission timing of the sub-terahertz waves from the first light source 41 and the second light source 42 . The imaging control unit 70 may cause each detector to generate an image based on a signal from the sensor 80 or the like.
- the imaging control unit 70 includes, for example, a processor and memory, and is implemented by the processor executing a program stored in the memory.
- the sensor 80 is a sensor for detecting the presence of the person 100.
- the sensor 80 outputs, for example, a signal indicating the presence of the person 100 to the light source control section 60 and the photographing control section 70 .
- the sensor 80 is, for example, a camera that captures moving images.
- the sensor 80 may be another sensor such as a human sensor. Further, although the number of sensors 80 provided in the photographing device 10 is one in the example shown in FIG. 3, the photographing device 10 may include a plurality of sensors 80.
- the image processing unit 90 Upon receiving an image from each detector, the image processing unit 90 outputs the received image to the outside, performs image processing on the received image, and outputs the result of the image processing to the outside.
- the image processing performed by the image processing unit 90 includes, for example, determining whether an object having a predetermined characteristic (for example, an object having a characteristic of a blade) is included in the image output from the detector, When it is determined that an object having a characteristic is included, processing may be performed to output a predetermined detection signal (for example, an alarm indicating that an object having a characteristic of a knife is being photographed). Further, the image processing section 90 may perform synthesis processing on the images received from each detector.
- the image processing unit 90 includes, for example, a processor and memory, and is implemented by the processor executing a program stored in the memory.
- the imaging device 10 may not include the image processing unit 90, and the detector may output an image to an external image processing device. Also, the function of the image processing section 90 may be provided in each detector.
- the irradiation mode of subterahertz waves in the imaging device 10 according to the first embodiment will be described with reference to FIG.
- the subterahertz wave (arrow in FIG. 3) emitted from the light source to the reflector 20 is diffusely reflected by the reflector 20 because the imaging space 102 is covered with the reflector 20 from the side of the imaging space 102. incident on the person 100.
- the inner surface 25 of the reflector 20 functions as a surface light source, and the person 100 is irradiated with sub-terahertz waves from various angles over a relatively wide range. Therefore, the imaging device 10 can effectively irradiate the person 100 with sub-terahertz waves.
- the sub-terahertz wave emitted from the light source is diffusely reflected by the reflectors 20 one or more times. 100.
- most of the sub-terahertz waves emitted from the light source to the reflector 20 are repeatedly diffusely reflected in the imaging space 102, so they remain in the imaging space 102 located on the passage 101 through which the person 100 passes.
- the imaging device 10 can more effectively irradiate the person 100 with sub-terahertz waves.
- the reflected waves of the subterahertz waves reflected over a relatively wide range of the person 100 enter the detector.
- the sub-terahertz waves emitted from the light source to the reflector 20 tend to remain in the imaging space 102, the amount of reflected waves entering the detector increases. Therefore, the quality of the image generated by the detector is improved. As a result, for example, detection accuracy is improved when the photographing device 10 is used to detect a dangerous object such as a knife hidden by the person 100 .
- 6A, 6B, 6C, and 6D are diagrams for explaining an operation example of the imaging device 10 according to the first embodiment.
- 6A, 6B, 6C, and 6D show diagrams of the imaging device 10 viewed from above.
- illustration of the sensor 80 is omitted in FIGS. 6A, 6B, 6C and 6D.
- the first light source 41 and the second light source 42 are hatched with dots when they emit subterahertz waves. Dots are not hatched if they are not.
- examples of paths of sub-terahertz waves emitted from the reflector 20 are schematically indicated by solid-line arrows. These are the same in the diagrams for explaining the operation examples in the following modified examples.
- step S1 the person 100 enters the imaging space 102 and passes through the rear end of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists at the rear end of the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves.
- the light source control unit 60 detects the presence of the person 100 by receiving, from the sensor 80, a signal indicating that the person 100 is present at the rear end of the imaging space 102, for example. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected by the reflector 20 one or more times and is irradiated from the inner surface 25 to the person 100 .
- the person 100 is irradiated with sub-terahertz waves emitted from the inner surface 25 located on the front side of the person 100 .
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 enters the first detector 51 .
- the first detector 51 receives waves reflected by the person 100 .
- the imaging control unit 70 causes the first detector 51 to display an image based on the reflected waves received by the first detector 51 at the timing when the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. generate.
- the first detector 51 generates an image based on the reflected wave from the person 100 passing through the rear end of the imaging space 102 . Thereby, the first detector 51 generates an image of the front surface of the person 100 .
- the first detector 51 outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the first detector 51 has completed generating an image, and turns off the first light source 41 .
- step S1 the first detector 51 receives waves during a first period, which is a period during which the light source control unit 60 causes the first light source 41 to emit subterahertz waves and does not cause the second light source 42 to emit subterahertz waves.
- An image is generated based on the waves reflected by the person 100 . If the second light source 42 emits subterahertz waves when the first detector 51 generates an image, the subterahertz waves emitted from the second light source 42 located behind the person 100 are The wave reflected by the person 100 may enter the first detector 51 at the same time. Therefore, the image generated by the first detector 51 due to the reflected wave from the person 100 may become unclear.
- step S1 the first detector 51 generates an image based on the reflected wave from the person 100 received during the first period in which the second light source 42 does not emit subterahertz waves.
- the image of the wave reflected by the person 100 is clear.
- step S2 the person 100 moves forward from the position in step S1 and is positioned in the center of the imaging space 102 in the direction in which the passage 101 extends.
- the light source control unit 60 detects that the person 100 exists in the central portion of the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves.
- the light source control unit 60 detects the presence of the person 100 by receiving from the sensor 80 a signal indicating that the person 100 is present in the central portion of the imaging space 102 in the direction in which the passage 101 extends. detect. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the light source control unit 60 instead of detecting the presence of the person 100, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves after a predetermined time has elapsed since the generation of the image by the first detector 51 in step S1. good too.
- the predetermined time is set, for example, to a time during which the person 100 takes about one or two steps.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected by the reflector 20 one or more times and is irradiated from the inner surface 25 to the person 100 .
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 enters the first detector 51 .
- the first detector 51 receives waves reflected by the person 100 .
- the imaging control unit 70 causes the first detector 51 to display an image based on the reflected waves received by the first detector 51 at the timing when the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. generate. Thereby, the first detector 51 generates an image of the front surface of the person 100 .
- the first detector 51 outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the first detector 51 has completed generating an image, and turns off the first light source 41 .
- the first detector 51 receives reflected waves from the person 100 at a plurality of timings while the person 100 passes through the imaging space 102 .
- the first detector 51 then generates a plurality of images based on the received reflected waves.
- images of a plurality of aspects of the person 100 are generated. Therefore, for example, an image including a portion that was not captured in one image is generated, and detection accuracy and the like can be improved when the imaging device 10 is used to detect a dangerous object or the like hidden by the person 100 .
- step S2 similarly to step S1, the first detector 51 generates an image based on the reflected wave received by the person 100 during the first period. Further, in step S2, the range where the reflected wave from the person 100 is incident on the first detector 51 is the range indicated by the dashed line extending from the first detector 51 in FIG. 6B.
- the light source 42 and part of the reflector 20 are located. Therefore, when the second light source 42 emits subterahertz waves, the subterahertz waves originating from the second light source 42 are particularly likely to enter the first detector 51 . Therefore, the first detector 51 generates an image during the first period in which the second light source 42 does not emit sub-terahertz waves, so that the image of the reflected waves from the person 100 becomes clear.
- step S1 the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves until the generation of the image of the first detector 51 in step 2 is completed without turning off the first light source 41. You can leave it alone. In this case, for example, when the imaging control unit 70 detects that the person 100 exists in the center of the imaging space 102, it causes the first detector 51 to generate an image.
- step S3 the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves, as shown in FIG. 6C.
- the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves immediately after the completion of the exposure in the generation of the image by the first detector 51 in step S2.
- the light source control unit 60 acquires, for example, a signal indicating the timing at which the first detector 51 finishes generating an image via the imaging control unit 70 .
- the signal is, for example, a signal indicating the end of exposure of the image sensor 55 .
- the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected by the reflector 20 one or more times and is irradiated to the person 100 from the inner surface 25 .
- the person 100 is irradiated with sub-terahertz waves emitted from the inner surface 25 located on the rear side of the person 100 .
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 is incident on the second detector 52 .
- the second detector 52 receives waves reflected by the person 100 .
- the imaging control unit 70 activates the second detector. 52 to start generating the image.
- the second detector 52 detects the wave reflected by the person 100 immediately after the completion of the exposure in the generation of the image based on the wave reflected by the person 100 received by the first detector 51 in step S2. start the exposure in generating the image.
- the second detector 52 captures an image of the rear surface of the person 100 immediately after the first detector 51 captures the image in step S2.
- the second detector 52 outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects completion of image generation by the second detector 52 and turns off the second light source 42 .
- steps S2 and S3 imaging by the first detector 51 and imaging by the second detector 52 are performed without a time interval.
- the person 100 can be photographed from both the front and rear sides without a time interval, the area of the body of the person 100 that is not photographed during photographing is reduced, and the photographing device 10 is used to detect dangerous objects or the like hidden by the person 100. can improve the detection accuracy of
- step S3 the second detector 52 received waves during a second period during which the light source control unit 60 causes the second light source 42 to emit subterahertz waves and does not cause the first light source 41 to emit subterahertz waves.
- An image is generated based on the waves reflected by the person 100 . If the first light source 41 emits subterahertz waves when the second detector 52 generates an image, the subterahertz waves emitted from the first light source 41 positioned in front of the person 100 are It may enter the second detector 52 at the same time as the reflected wave from the person 100 . Therefore, the image generated by the second detector 52 due to the reflected wave from the person 100 may become unclear.
- step S3 the second detector 52 generates an image based on the reflected wave from the person 100 received during the second period in which the first light source 41 does not emit subterahertz waves.
- the image of the reflected wave from the person 100 becomes clear.
- step S3 the range where the reflected wave from the person 100 is incident on the second detector 52 is the range indicated by the dashed line extending from the second detector 52 in FIG. 6C.
- the light source 41 and part of the reflector 20 are located. Therefore, when the second light source 42 emits subterahertz waves, the subterahertz waves originating from the first light source 41 are particularly likely to enter the second detector 52 . Therefore, the second detector 52 generates an image during the second period in which the first light source 41 does not emit sub-terahertz waves, so that the image reflected by the person 100 becomes clear.
- the detector that first generates an image may be the second detector 52 instead of the first detector 51. That is, in the description of steps S2 and S3, the first light source 41 and the second light source 42 may be interchanged, and the first detector 51 and the second detector 52 may be interchanged.
- step S4 the person 100 moves forward from the position in step S3 and is positioned at the front end of the imaging space 102 . That is, the person 100 passes through the front end of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists at the front end of the imaging space 102, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves.
- the light source control unit 60 detects the presence of the person 100 by, for example, receiving from the sensor 80 a signal indicating that the person 100 is present at the front end of the imaging space 102 . Also, at this time, the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected by the reflector 20 one or more times and is irradiated to the person 100 from the inner surface 25 .
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 is incident on the second detector 52 .
- the second detector 52 receives waves reflected by the person 100 .
- the imaging control unit 70 causes the second detector 52 to generate an image based on the reflected waves received by the second detector 52 at the timing when the light source control unit 60 causes the second light source 42 to emit subterahertz waves. Let That is, the second detector 52 generates an image based on reflected waves from the person 100 passing through the front end of the imaging space 102 .
- the second detector 52 captures an image of the rear surface of the person 100 .
- the second detector 52 outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects completion of image generation by the second detector 52 and turns off the second light source 42 .
- the second detector 52 receives reflected waves from the person 100 at a plurality of timings while the person 100 passes through the imaging space 102 .
- the second detector 52 then generates a plurality of images based on the received reflected waves.
- step S4 similarly to step S3, the second detector 52 generates an image based on the reflected wave received by the person 100 during the second period. Therefore, as in step S3, the effect of making the image of the reflected wave from the person 100 clearer is obtained.
- the imaging control unit 70 operates the first detector 51 and the third detector 53 in synchronization, and the second detector 52 and the fourth detector 54, for example. operate synchronously. That is, the third detector 53 operates similarly to the first detector 51 , and the fourth detector 54 operates similarly to the second detector 52 . Therefore, the operations of the third detector 53 and the fourth detector 54 are explained by replacing the first detector 51 with the third detector 53 and the second detector 52 . These are the same for the operation examples in the modifications described below.
- the image processing unit 90 may perform image processing for synthesizing the image generated by the first detector 51 and the image generated by the third detector 53 . Further, the image processing section 90 may perform image processing for synthesizing the image generated by the second detector 52 and the image generated by the fourth detector 54 .
- each detector generated an image of the person 100 at the positions shown in FIGS. 6A, 6B, 6C, and 6D.
- the position of the person 100 when the detector generates an image of the person 100 may be, for example, a position where the inner surface 25 can emit subterahertz waves to the person 100 from the detector side.
- the position where the person 100 is imaged in steps S2 and S3 is a position where sub-terahertz waves can be emitted to the person 100 from both the inner side surface 25 located on the front side and the rear side of the person 100. be.
- the position where the person 100 is photographed in steps S2 and S3 is, for example, the central portion of the photographing space 102 in the direction in which the passage 101 extends, as described above.
- each detector continuously generates an image, and selects the image generated at the timing from step S1 to step S4 from among the plurality of continuously generated images.
- it may be output to the image processing unit 90 .
- each detector may continuously generate an image and output all of the continuously generated multiple images to the image processing section 90 .
- the image processing unit 90 selects, for example, an image generated at the timing from step S1 to step S4 from the plurality of received images, and performs image processing on the selected image.
- the imaging device according to Modification 1 of Embodiment 1 does not leave a time interval between imaging by the first detector and imaging by the second detector. The main difference is that doing is done multiple times.
- the imaging device according to Modification 1 of Embodiment 1 has a length of the reflector in the direction in which the passage extends, and the first detector and the second detector. the distance between is increasing.
- FIG. 7 is a schematic diagram of the photographing device 10a according to this modification as viewed from above.
- the photographing device 10a is configured to include a reflecting plate 20a instead of the reflecting plate 20 of the photographing device 10.
- the photographing device 10a has the same configuration as that of the photographing device 10 except for the reflector 20a.
- the reflector 20a covers the imaging space 102 on the passage 101 through which the person 100 passes from at least one of both sides of the passage 101.
- the reflecting plate 20a sandwiches the imaging space 102 on the passage 101 through which the person 100 passes from both sides of the passage 101 .
- a pair of reflectors 20a stand upright from the floor on both sides of the passage 101 through which the person 100 passes and face each other.
- Each of the pair of reflectors 20a has an inner surface 25a and an outer surface 28a as two surfaces that are front surfaces when viewed in the thickness direction of the reflectors 20a.
- the reflector 20a has the same configuration as the reflector 20 except that it is longer than the reflector 20 in the direction in which the path 101 extends, and detailed description thereof will be omitted.
- 8A, 8B, 8C, and 8D are diagrams for explaining an operation example of the imaging device 10a according to this modification.
- step S11 the person 100 enters the imaging space 102 and passes through the imaging space 102 on the rear side.
- the light source control unit 60 detects that the person 100 exists on the rear side of the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected once or more by the reflector 20a, and is irradiated to the person 100 from the inner surface 25a. Since the subsequent operation of the photographing device 10a is the same as in step S2, detailed description thereof will be omitted. As a result, the first detector 51 generates an image based on the reflected wave from the person 100 passing behind the imaging space 102 .
- step S12 the light source controller 60 causes the second light source 42 to emit sub-terahertz waves, as shown in FIG. 8B. Specifically, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves immediately after the completion of the exposure in the generation of the image by the first detector 51 in step S11. Also, at this time, the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected once or more by the reflector 20a, and is irradiated to the person 100 from the inner surface 25a. Since the subsequent operation of the photographing device 10a is the same as in step S3, detailed description thereof will be omitted. Accordingly, the imaging control unit 70 causes the second detector 52 to start exposure for image generation immediately after the first detector 51 completes exposure for image generation in step S11. That is, the second detector 52 captures an image of the rear surface of the person 100 immediately after the first detector 51 captures the image in step S11.
- step S13 the person 100 moves forward from the position in step S12 and is positioned on the front side in the imaging space 102. That is, the person 100 is passing through the front side of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists on the front side in the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected once or more by the reflector 20a, and is irradiated to the person 100 from the inner surface 25a. Since the subsequent operation of the photographing device 10a is the same as in step S2, detailed description thereof will be omitted. Thereby, the first detector 51 generates an image based on the reflected wave from the person 100 passing through the front side of the imaging space 102 .
- step S14 the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves, as shown in FIG. 8D. Specifically, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves immediately after the completion of the exposure in the generation of the image by the first detector 51 in step S13.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected once or more by the reflector 20a, and is irradiated to the person 100 from the inner surface 25a. Since the subsequent operation of the photographing device 10a is the same as in step S3, detailed description thereof will be omitted. Accordingly, the imaging control unit 70 causes the second detector 52 to start exposure for image generation immediately after the first detector 51 completes exposure for image generation in step S13. In other words, the second detector 52 captures an image of the rear surface of the person 100 immediately after the first detector 51 captures the image in step S13.
- steps S11 and S12 imaging by the first detector 51 and imaging by the second detector 52 are performed without a time interval. Also in steps S13 and S14, the imaging by the first detector 51 and the imaging by the second detector 52 are performed without a time interval.
- steps S13 and S14 the imaging by the first detector 51 and the imaging by the second detector 52 are performed without a time interval.
- steps S11 and S12 both the front and rear surfaces of the person 100 are photographed at the same position of the person 100. Therefore, in order to irradiate the person 100 with subterahertz waves equivalent to the operation example of the first embodiment, the reflectors 20a must be positioned on both front and rear sides of the person 100. As shown in FIG. The same applies to steps S13 and S14. Therefore, in order to photograph the person 100 from both the front and rear sides a plurality of times without any time interval without degrading the image quality of the photographed image, the length of the reflector 20a should be longer than that of the reflector 20. , is longer by the length of the surface for emitting the sub-terahertz wave to the person 100 .
- the imaging device according to Modification 2 of Embodiment 1 has the first detector and the second detector, respectively, where the person is positioned at one predetermined location. The main difference is that the image is captured in the case.
- the imaging device according to Modification 2 of Embodiment 1 has a length of the reflector in the direction in which the passage extends, and the first detector and the second detector. The distance between is getting shorter.
- FIG. 9 is a schematic diagram of an imaging device 10b according to this modified example viewed from above.
- the photographing device 10b is configured to include a reflecting plate 20b instead of the reflecting plate 20 of the photographing device 10.
- the photographing device 10b has the same configuration as that of the photographing device 10 except for the reflector 20b.
- the reflector 20b covers the imaging space 102 on the passage 101 through which the person 100 passes from at least one of both sides of the passage 101 .
- the reflector 20b sandwiches the imaging space 102 on the passage 101 through which the person 100 passes from both sides of the passage 101 .
- a pair of reflectors 20b stand upright from the floor on both sides of the passage 101 through which the person 100 passes and face each other.
- Each of the pair of reflectors 20b has an inner surface 25b and an outer surface 28b as two surfaces that are front surfaces when viewed in the thickness direction of the reflectors 20b.
- the reflector 20b has the same configuration as the reflector 20 except that it is shorter than the reflector 20 in the direction in which the path 101 extends, and detailed description thereof will be omitted.
- 10A and 10B are diagrams for explaining an operation example of the imaging device 10b according to this modification.
- step S21 the person 100 enters the imaging space 102 and passes through the end of the imaging space 102 on the rear side.
- the light source control unit 60 detects that the person 100 exists at the rear end of the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected once or more by the reflector 20b, and is irradiated to the person 100 from the inner surface 25b. Since the subsequent operation of the photographing device 10b is the same as in step S1, detailed description thereof will be omitted. Thereby, the first detector 51 generates an image based on the reflected wave from the person 100 passing through the rear end of the imaging space 102 .
- step S22 the person 100 moves forward from the position in step S21 and is positioned at the front end of the imaging space 102 . That is, the person 100 passes through the front end of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists at the front end of the imaging space 102, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected once or more by the reflector 20b, and is irradiated to the person 100 from the inner surface 25b. Since subsequent operations are the same as those in step S4, detailed description thereof will be omitted. Thereby, the second detector 52 generates an image based on the reflected wave from the person 100 passing through the front end of the imaging space 102 .
- the first detector 51 generates an image based on the reflected wave from the person 100 passing through the rear end of the imaging space 102 in the direction in which the passage 101 extends.
- the second detector 52 also generates an image based on the reflected wave from the person 100 passing through the front end of the imaging space 102 in the direction in which the passage 101 extends.
- images of the person 100 are captured at both ends of the capturing space 102 . Therefore, even when both the image of the front side of person 100 and the image of the back side of person 100 are captured, sub-terahertz light is detected on both front and rear sides of person 100 in the direction in which passage 101 extends. No length of reflector 20b is required to diffusely reflect waves.
- the length of the reflector 20b in the direction in which the passage 101 extends can be shortened. As a result, it is possible to reduce the size of the photographing device 10b. In addition, when the person 100 passes through the imaging space 102, the person 100 is sandwiched between the reflectors 20b. feeling is reduced.
- step S21 the first detector 51 does not perform imaging before and after the person 100 moves from the rear end to the center of the imaging space 102, as in steps S1 and S2 described above. Photographing is performed when the person 100 is positioned at the rear end of the photographing space 102 . Therefore, in the direction in which the path 101 extends, the length of the reflector 20b can be made shorter than the length of the reflector 20 by the length of the movement of the person 100 from step S1 to step S2.
- the operation of emitting the sub-terahertz wave by the light source in the imaging device 10b is not limited to the above operation example.
- the imaging device 10b may not include the light source control unit 60, and the first light source 41 and the second light source 42 may be light sources that emit subterahertz waves all the time or at regular intervals during use.
- the range where the reflected wave from the person 100 is incident on the first detector 51 is the range indicated by the dashed line extending from the first detector 51 in FIG. and the reflector 20b is not located.
- the first detector 51 is positioned within the angular range where the first detector 51 can receive the reflected wave from the person 100, and the second light source 42 and the reflector 20b are arranged in such a positional relationship that they do not enter.
- the range where the reflected wave from the person 100 is incident on the second detector 52 is the range indicated by the dashed line extending from the second detector 52 in FIG. 1 light source 41 and reflector 20b are not located. That is, when the person 100 is positioned at the front end of the imaging space 102, the second detector 52 is positioned within the angle range where the second detector 52 can receive the reflected wave from the person 100.
- steps S21 and S22 even if the first light source 41 and the second light source 42 emit sub-terahertz waves at the same time, the image of the person 100 generated by the first detector 51 and the second detector 52 The image due to the reflected wave is less likely to be blurred.
- the imaging device according to Modification 3 of Embodiment 1 has detectors positioned in front and behind the reflector, and a person passing through the imaging space. The main difference is that it generates an image of a person who is Further, the photographing device according to Modification 3 of Embodiment 1 differs from the photographing device according to Embodiment 1 in that a plurality of detectors are provided. In addition, compared with the imaging device according to Embodiment 1, the imaging device according to Modification 3 of Embodiment 1 has a length of the reflector in the direction in which the passage extends, and the first detector and the second detector. The distance between is getting shorter. In the following, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
- FIG. 11 is a schematic diagram of an imaging device 10c according to this modification as viewed from above.
- the imaging device 10c includes a reflector 20c instead of the reflector 20 of the imaging device 10, and the first detector 51, the second detector 52, and the third detector of the imaging device 10.
- the reflector 20c covers the imaging space 102 on the passage 101 through which the person 100 passes from at least one of both sides of the passage 101 .
- the reflecting plate 20c sandwiches the photographing space 102 on the passage 101 through which the person 100 passes from both sides of the passage 101 .
- a pair of reflectors 20c stand upright from the floor on both sides of the passage 101 through which the person 100 passes and face each other.
- Each of the pair of reflectors 20c has an inner surface 25c and an outer surface 28c as two surfaces that are front surfaces when viewed from the thickness direction of the reflectors 20c.
- the reflector 20c has the same configuration as the reflector 20 except that it is shorter than the reflector 20 in the direction in which the path 101 extends, and detailed description thereof will be omitted.
- Each of the plurality of first detectors 51a and 51b is positioned forward of the reflector 20c in the direction in which the passage 101 extends.
- a plurality of first detectors 51 a and 51 b are arranged along the direction in which passage 101 extends. Specifically, the first detector 51a and the first detector 51b are arranged in this order along the direction in which the path 101 extends from the side far from the reflector 20c, that is, from the front side.
- Each of the plurality of first detectors 51 a and 51 b includes an image sensor 55 and an optical system 56 like the first detector 51 .
- Each of the plurality of second detectors 52a and 52b is located on the rear side of the reflector 20c in the direction in which the passage 101 extends.
- the second detector 52a and the second detector 52b are arranged in this order along the direction in which the path 101 extends from the side far from the reflector 20c, that is, from the rear side.
- Each of the plurality of second detectors 52a and 52b includes an image sensor 55a and an optical system 56a, similar to the second detector 52 .
- Each of the plurality of third detectors 53a and 53b is positioned forward of the reflector 20c in the direction in which the passage 101 extends.
- the third detector 53a and the third detector 53b are arranged in this order along the direction in which the path 101 extends from the far side from the reflector 20c, that is, from the front side.
- the plurality of third detectors 53a and 53b each include an image sensor 55b and an optical system 56b, similar to the third detector 53.
- Each of the plurality of fourth detectors 54a and 54b is located on the rear side of the reflecting plate 20c in the direction in which the passage 101 extends.
- the fourth detector 54a and the fourth detector 54b are arranged in this order along the direction in which the passage 101 extends from the side far from the reflector 20c, that is, from the rear side.
- the plurality of fourth detectors 54a, 54b each include an image sensor 55c and an optical system 56c, similar to the fourth detector 54.
- 12A, 12B, 12C, and 12D are diagrams for explaining an operation example of the imaging device 10c according to this modification.
- step S31 the person 100 advances toward the imaging space 102 and is positioned behind the reflector 20c.
- the light source control unit 60 detects that the person 100 exists behind the reflector 20c, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves.
- the light source control unit 60 detects the existence of the person 100, for example, by receiving a signal from the sensor 80 indicating that the person 100 exists behind the reflector 20c. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected once or more by the reflector 20c, and is irradiated to the person 100 from the inner surface 25c.
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 enters the first detector 51b.
- the first detector 51b receives waves reflected by the person 100 .
- the imaging control unit 70 causes the first detector 51b to display an image based on the reflected waves received by the first detector 51b at the timing when the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. generate. Thereby, the first detector 51b generates an image of the front surface of the person 100 .
- the first detector 51 b outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the generation of the image by the first detector 51b is completed, and turns off the first light source 41 .
- step S32 the person 100 moves forward from the position in step S31, enters the imaging space 102, and is positioned at the rear end of the imaging space 102. . That is, the person 100 passes through the rear end of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists at the rear end of the imaging space 102, the light source control unit 60 causes the first light source 41 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the second light source 42 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the first light source 41 is diffusely reflected once or more by the reflector 20c, and is irradiated to the person 100 from the inner surface 25c.
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 enters the first detector 51a.
- the first detector 51a receives the wave reflected by the person 100 .
- the imaging control unit 70 causes the first detector 51a to display an image based on the reflected waves received by the first detector 51a. generate.
- the first detector 51 a generates an image based on the reflected wave from the person 100 passing through the rear end of the imaging space 102 . Thereby, the first detector 51 a generates an image of the front surface of the person 100 .
- the first detector 51 a outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the first detector 51a has completed generating an image, and turns off the first light source 41 .
- the plurality of first detectors 51a and 51b detect the wave reflected by the person 100 located behind the reflecting plate 20c in the direction in which the passage 101 extends, and the photographing space.
- a plurality of images are generated based on each reflected wave from the person 100 passing through 102 .
- the imaging device 10c since the imaging device 10c generates an image of the person 100 before the person 100 enters the imaging space 102, the length of the reflector 20c in the direction in which the passage 101 extends can be shortened. As a result, it is possible to reduce the size of the photographing device 10c.
- the person 100 passes through the imaging space 102, the person 100 is sandwiched between the reflectors 20c. feeling is reduced.
- the length of the reflector 20c can be made shorter than the length of the reflector 20b by the length of the movement of the person 100 from step S31 to step S32.
- steps S31 and S32 the detectors for generating images are changed to the first detector 51a and the first detector 51b arranged in the direction in which the passage 101 extends. An image based on the reflected wave at the angle is taken.
- the angular range of the sub-terahertz waves incident on the person 100 is narrower than in the operation example (for example, step S1) of the first embodiment described above.
- the angle ranges of the subterahertz waves incident on the person 100 are different between steps S31 and S32, an image based on reflected waves from the person 100 of the subterahertz waves incident at different angles is captured.
- step S31 a subterahertz wave with a relatively small inclination with respect to the inner surface 25c is incident on the person 100
- step S32 a subterahertz wave with a relatively large inclination with respect to the inner surface 25c is incident on the person 100.
- the faces of the photographed person 100 are different in the plurality of images that are photographed, and it is possible to suppress a decrease in detection accuracy when the photographing device 10c is used to detect a dangerous object or the like hidden by a person.
- the first detection of the reflected wave by the person 100 is performed.
- the incident angles on the detector 51a and the first detector 51b are the same.
- reflected waves originating from different inclinations of the subterahertz waves incident on the person 100 are directed toward the detector. reflect. That is, in steps S31 and S32, the subterahertz waves incident on the person 100 with different inclinations with respect to the inner surface 25c are reflected toward the detector. Therefore, since the incident angles of the reflected waves from the person 100 incident on the first detector 51a and the first detector 51b are the same, The images captured have reduced overlap of the planes captured on the person 100 .
- the image processing unit 90 may perform image processing to synthesize the image generated by the first detector 51b in step S31 and the image generated by the first detector 51a in step S32.
- step S33 the person 100 moves forward from the position in step S32 and is positioned at the front end of the imaging space 102 . That is, the person 100 passes through the front end of the imaging space 102 .
- the light source control unit 60 detects that the person 100 exists at the front end of the imaging space 102, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected once or more by the reflector 20c, and is irradiated to the person 100 from the inner surface 25c.
- a reflected wave of the subterahertz wave irradiated to the person 100 by the person 100 enters the second detector 52a.
- the second detector 52a receives waves reflected by the person 100 .
- the imaging control unit 70 causes the second detector 52a to generate an image based on the reflected wave received by the second detector 52a at the timing when the light source control unit 60 causes the second light source 42 to emit the sub-terahertz wave.
- the second detector 52 a generates an image based on the reflected wave from the person 100 passing through the front end of the imaging space 102 .
- the second detector 52a captures an image of the rear surface of the person 100 .
- the second detector 52 a outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the second detector 52a has completed generating an image, and turns off the second light source 42 .
- step S34 the person 100 moves forward from the position in step S33 and is positioned forward of the reflector 20c.
- the light source control unit 60 detects that the person 100 is present on the front side of the reflector 20c, the light source control unit 60 causes the second light source 42 to emit sub-terahertz waves. Also, at this time, the light source control unit 60 does not cause the first light source 41 to emit sub-terahertz waves.
- the sub-terahertz wave emitted from the second light source 42 is diffusely reflected once or more by the reflector 20c, and is irradiated to the person 100 from the inner surface 25c.
- a reflected wave of the sub-terahertz wave irradiated to the person 100 by the person 100 enters the second detector 52b.
- the second detector 52b receives waves reflected by the person 100 .
- the imaging control unit 70 causes the second detector 52b to display an image based on the reflected waves received by the second detector 52b. generate. Thereby, the second detector 52b generates an image of the rear side surface of the person 100 .
- the second detector 52 b outputs the generated image to the image processing section 90 .
- the light source control unit 60 detects that the second detector 52b has completed generating an image, and turns off the second light source 42 .
- the generation of the images of the plurality of second detectors 52a and 52b in steps S33 to S34 has the same effect as the generation of the images of the plurality of first detectors 51a and 51b in steps S31 to S32. can get.
- the imaging device 10c may include one first detector 51 instead of the plurality of first detectors 51a and 51b.
- the first detector 51 is arranged, for example, at any position between the positions where the first detectors 51a and 51b are arranged.
- the imaging device 10c includes a drive mechanism for moving the first detector 51 between the positions where the first detector 51a and the first detector 51b are arranged, and the first detector 51 is moved in step S31. may be moved to the position of the first detector 51b in step S32, and may be moved to the position of the first detector 51a in step S32.
- the plurality of second detectors 52a, 52b, the plurality of third detectors 53a, 53b, and the plurality of fourth detectors 54a, 54b are similar to the plurality of first detectors 51a, 51b.
- Embodiment 2 In Embodiment 1, the reflector 20 has been described as an example of a diffusion member that diffusely reflects sub-terahertz waves. However, the image capturing apparatus 10 according to Embodiment 1 does not necessarily need to use the same diffusion member as the reflector 20 as the diffusion member that diffusely reflects the sub-terahertz wave.
- Embodiment 2 will explain an example of another diffusion member that can be used in place of the reflector 20 in the photographing device 10 according to Embodiment 1.
- FIG. 1 is a diagrammatic representation of an example of another diffusion member that can be used in place of the reflector 20 in the photographing device 10 according to Embodiment 1.
- FIG. 13 is a perspective view of the diffusion member 30 according to Embodiment 2.
- FIG. 13 is a perspective view of the diffusion member 30 according to Embodiment 2.
- the diffusion member 30 diffusely reflects the sub-terahertz wave.
- the diffusion member 30 has a reflecting surface 31 that reflects subterahertz waves.
- the diffusing member 30 will be described below as having a plate shape, the diffusing member 30 is not necessarily limited to a plate shape as long as it has a reflecting surface that reflects sub-terahertz waves.
- the diffusing member 30 may be configured, for example, in the shape of a portion of the outer shell of a spheroid.
- FIG. 14A is an enlarged plan view of the diffusion member 30 shown in FIG. 13 as viewed from the reflecting surface 31 side
- FIG. 14B is an enlarged cross-sectional view of the diffusion member 30 shown in FIG. be.
- the diffusing member 30 is configured by laminating a reflecting member 21d and a covering member 27d.
- the reflecting member 21d reflects sub-terahertz waves on its surface. Therefore, the reflecting surface 31 is formed by the surface of the reflecting member 21d.
- the reflecting member 21d is made of, for example, a conductive member such as metal or conductive oxide similar to the reflecting member 21 according to the first embodiment.
- the reflecting member 21d is formed, for example, by depositing the same material as that of the reflecting member 21 on the coating member 27d having an uneven surface formed thereon by vapor deposition or spray coating.
- the covering member 27d has the same function as the covering member 27 according to the first embodiment.
- the diffusion member 30 will be described assuming that the reflection surface 31 is exposed on the surface of the diffusion member 30.
- the diffusion member 30 is similar to the reflection plate 20 according to Embodiment 1 in that the reflection surface 31 is exposed on the surface of the diffusion member 30. It may be configured to be covered with a covering member.
- a plurality of recesses 32 are formed on the surface of the reflecting member 21d. That is, the reflective surface 31 has a plurality of recesses 32 .
- each of the plurality of recesses 32 consists of a portion of a spherical surface. For this reason, the plurality of recesses 32 have portions of similar shapes to each other.
- Each of the plurality of recesses 32 has, for example, a spherical surface with respect to the surface of the plate-like covering member 27d (hereinafter also referred to as the “diffusion member virtual surface”) before the plurality of recesses 32 are formed. It is formed by grinding in a concave shape so that it becomes a part.
- FIG. 15 is an enlarged cross-sectional view of the diffusion member 30 showing an example of how the recesses 32 are formed in the reflection member 21d, and is an enlarged cross-sectional view of a cross section passing through the position of the apex of the recesses 32 in the normal direction of the diffusion member 30.
- FIG. is.
- each of the plurality of recesses 32 has a spherical crown shape in which the maximum angle formed by the circumscribed surface with respect to the virtual surface of the diffusion member is ⁇ _max ( ⁇ _max is an angle larger than 0° and smaller than 45°). That is, it is formed by grinding into a spherical crown having a central angle of 2 ⁇ _max.
- each of the plurality of spherical crowns (hereinafter also referred to as "recess forming spherical crowns") to be recessedly ground to form the plurality of recesses 32 has a similar shape to each other.
- the plurality of recess-forming spherical crowns are formed by grinding so that parts of them overlap each other in a plan view of the diffusion member 30 .
- the plurality of concave portion-forming spherical crowns are formed by grinding so that even a portion of the virtual surface of the diffusing member does not remain. Therefore, the reflective surface 31 does not have a flat area in the direction perpendicular to the normal direction of the diffusion member 30 as shown in FIG. 14B.
- the distance h in the plurality of concave portions 32 is in the range of 0 to L (L ⁇ /2). distributed in
- the wavelength ⁇ of the sub-terahertz wave is 3.0 mm and L is 3.87 mm.
- FIG. 16A is a frequency distribution diagram showing how the distance h is distributed in the range from 0 to 3.87 mm.
- the horizontal axis is height h [mm] and the vertical axis is frequency.
- FIG. 16B is a frequency distribution diagram showing how the distance h is distributed in the range of 0 to 1.16 mm in the diffusion member according to the comparative example.
- the horizontal axis is height h [mm] and the vertical axis is frequency.
- FIG. 17A is a correlation diagram showing the relationship between the reflection angle and the intensity of the reflected wave when the sub-terahertz wave incident in the normal direction of the diffusion member 30 is diffusely reflected by the diffusion member 30.
- the horizontal axis is the reflection angle of the reflected wave
- the vertical axis is the intensity of the reflected wave.
- FIG. 17B is a correlation diagram showing the relationship between the reflection angle and the intensity of the reflected wave when the sub-terahertz wave incident in the normal direction of the diffusion member according to the comparative example is diffusely reflected by the diffusion member according to the comparative example;
- FIG. is.
- the horizontal axis is the reflection angle of the reflected wave
- the vertical axis is the intensity of the reflected wave.
- the diffusion member 30 according to the present disclosure widens the distribution of the positions of the vertices in the normal direction to a range of ⁇ /2 or more.
- the intensity of the incident sub-terahertz wave can be prevented from having a significant peak near the reflection angle of 0°.
- the angle ⁇ 1 between the circumscribed surface and the virtual surface of the diffusion member 30 ranges from 0 ° to It is continuously distributed in the range of ⁇ _max. Therefore, the angles ⁇ 2 formed between the circumscribed surfaces of each of the plurality of concave portions 32 are continuously distributed within the range of 0° to ⁇ ( ⁇ is an angle larger than 0° and smaller than 90°).
- FIG. 18 is an enlarged cross-sectional view of the diffusion member 30 showing an example of how sub-terahertz waves are reflected by the reflecting surface 31 of the recess 32, and shows the position of the apex of the recess 32 in the normal direction of the diffusion member 30.
- 1 is an enlarged cross-sectional view in a cross section passing through .
- the maximum value of the angle ⁇ 1 between the circumscribed surface of the recess 32 and the virtual surface of the diffusion member is ⁇ 3.
- the concave portion 32 can diffusely reflect the sub-terahertz wave in the range of 4 ⁇ 3 .
- ⁇ Discussion> In general, subterahertz waves are specularly reflected by flat areas.
- the reflection surface 31 does not have a flat portion in the direction perpendicular to the normal direction of the diffusion member 30 .
- the diffuser member 30 configured as described above can suppress specular reflection of sub-terahertz waves.
- the diffusing member 30 configured as described above, the distribution of the positions of the respective vertices in the normal direction spreads over a range of ⁇ /2 or more.
- the diffusion member 30 having the above configuration, it is possible to suppress the occurrence of a significant peak in the intensity of the reflected wave of the sub-terahertz wave.
- the diffusion member 30 has been described assuming that the shape of each of the plurality of recesses 32 is part of a spherical surface. However, if the shape of each of the plurality of concave portions 32 is continuously distributed in the range of 0° to ⁇ between the circumscribing surfaces, the diffusion member 30 is necessarily formed of a part of a spherical surface. It need not be limited to configuration.
- the diffusion member 30 may have a configuration in which each of the plurality of recesses 32 is formed from a portion of the surface of a spheroid.
- the diffusion member 30 has been described as having no flat region on the reflection surface 31 in the direction perpendicular to the normal direction of the diffusion member 30 .
- the reflection surface 31 may be provided with light in a direction perpendicular to the normal direction of the diffusion member 30 as another configuration example.
- a configuration example in which there is a flat region of is also conceivable.
- the diffusing member 30 is described as having a plurality of recesses 32 on the reflecting surface 31 .
- the diffusing member 30 may have a configuration in which the reflecting surface 31 includes a plurality of protrusions instead of the plurality of recesses 32 .
- FIG. 19 is an enlarged cross-sectional view showing an example of the diffusing member 30 in which the reflecting surface 31 has a plurality of convex portions 33 instead of the plurality of concave portions 32 .
- each of the plurality of protrusions 33 is a shape in which the direction of protrusions and recesses is reversed from the shape of each of the plurality of recesses 32 .
- the distance h between the apex of the convex portion 33 and the virtual surface of the diffusing member 30 in the normal direction of the diffusing member 30 is distributed in the range of 0 to L (L ⁇ /2).
- the diffusing member 30 having the above configuration in which the reflecting surface 31 includes a plurality of convex portions 33 is similar to the case of the diffusing member 30 having a configuration in which the reflecting surface 31 includes a plurality of concave portions 32 .
- the maximum angle to the surface is ⁇ 3
- the sub-terahertz wave can be diffusely reflected in the range of 4 ⁇ 3 .
- the diffusion member 30 having the above-described configuration in which the reflecting surface 31 includes a plurality of convex portions 33 is similar to the diffusion member 30 having a configuration in which the reflecting surface 31 includes a plurality of concave portions 32 .
- the distribution of the position of each vertex spreads over a range of ⁇ /2 or more.
- the diffusing member 30 having the above configuration in which the reflecting surface 31 includes the plurality of convex portions 33, it is possible to suppress the occurrence of a significant peak in the intensity of the sub-terahertz wave.
- the reflectors 20, 20a, 20b, and 20c are flat plates, but the present invention is not limited to this. At least part of the reflectors 20, 20a, 20b, and 20c may be curved.
- the reflectors 20, 20a, 20b, and 20c may have a curved plate shape such that at least one of the upper side, the front side, and the rear side of the pair of reflectors 20 approaches each other.
- the reflectors 20, 20a, 20b, and 20c may be divided into a plurality of pieces.
- FIG. 18 is a schematic diagram of a reflector according to a modification as viewed from the front.
- illustration of the components of the photographing device other than the reflector 20d is omitted.
- the three reflectors 20d sandwich the imaging space 102 from both sides of the passage 101 and further cover the imaging space 102 from above.
- the subterahertz waves that have entered the imaging space 102 are prevented from exiting from above the imaging space 102 , so that the subterahertz waves tend to remain in the imaging space 102 .
- three reflectors 20d may be provided in the imaging devices 10, 10a, 10b, 10c instead of the pair of reflectors 20, 20a, 20b, 20c.
- the reflectors 20, 20a, 20b, and 20c have the reflector 21 and the covering member 24 and covering member 27, but the present invention is not limited to this.
- Reflector 20 may have only one of covering member 24 and covering member 27 .
- the reflectors 20 , 20 a , 20 b , and 20 c may be composed of the reflecting member 21 without the covering members 24 and 27 . In that case, major surface 22 constitutes inner surface 25 and major surface 23 constitutes outer surface 28 .
- the imaging devices 10, 10a, 10b, and 10c may not include the light source control section 60, the imaging control section 70, and the sensor 80.
- the photographing devices 10, 10a, 10b, and 10c each include an operation reception unit that receives an operation from the user, and photograph the person 100 based on the operation from the user, and perform the operation examples of the above-described embodiment and each modification. , etc. may be performed.
- the object to be photographed is the person 100, but it is not limited to this.
- the object to be photographed may be luggage or the like.
- the imaging devices 10, 10a, 10b, and 10c may not include the imaging control unit 70.
- each detection The device may have the function of the imaging control section 70 .
- each detector may output a plurality of continuously generated images to the image processing section 90 without controlling the timing of generating the images.
- the imaging devices 10, 10a, 10b, and 10c may not include the sensor 80.
- the light source control unit 60 and the imaging control unit 70 may Signals may be obtained from external sensors such as cameras provided around 10a, 10b, 10c.
- the imaging device 10 may not include all of the constituent elements described in the above embodiment and modifications, and may be configured only with constituent elements for performing a desired operation.
- each component such as the light source control unit 60, the photographing control unit 70, and the image processing unit 90 is configured by dedicated hardware or executes a software program suitable for each component. It may be realized by Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
- each component may be a circuit (or an integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
- generic or specific aspects of the present invention may be implemented in systems, devices, methods, integrated circuits, computer programs, or non-transitory recording media such as computer-readable CD-ROMs.
- any combination of systems, devices, methods, integrated circuits, computer programs, and non-transitory recording media may be implemented.
- the present invention may be implemented as a program for causing a computer to perform control performed by a control section or the like provided for each component of the imaging apparatus.
- the order of a plurality of processes in the operation of the photographing device described in the above embodiment is an example.
- the order of multiple processes may be changed, and multiple processes may be executed in parallel.
- the present disclosure is widely applicable to diffuse reflection members that diffusely reflect subterahertz waves.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
サブテラヘルツ波を拡散反射する拡散部材(30)であって、サブテラヘルツ波を反射する反射面(31)を備え、反射面(31)は、複数の凸部(33)または複数の凹部(32)を有し、複数の凸部(33)または複数の凹部(32)のそれぞれは、外接面間のなす角度が、0°からθ(θは0°より大きく90°よりも小さい角度)の範囲において連続して分布する。
Description
本開示は、サブテラヘルツ波を拡散反射する拡散部材に関する。
従来、テラヘルツ波及びサブテラヘルツ波を用いて撮影対象物の画像を撮影する撮影装置が知られている。例えば、特許文献1には、テラヘルツ波を用いて被写体の画像を取得するカメラが開示されている。
サブテラヘルツ波を用いて撮影対象物の画像を撮影する撮影装置において、サブテラヘルツ波を所望の範囲に拡散反射させる拡散部材が有用である。
そこで、本開示は、サブテラヘルツ波を所望の範囲に拡散反射させる拡散部材を提供することを目的とする。
本開示の一態様に係る拡散部材は、サブテラヘルツ波を拡散反射する拡散部材であって、前記サブテラヘルツ波を反射する反射面を備え、前記反射面は、複数の凸部または複数の凹部を有し、前記複数の凸部または前記複数の凹部のそれぞれは、外接面間のなす角度が、0°からθ(θは0°より大きく90°よりも小さい角度)の範囲において連続して分布する。
本開示の一態様に係る拡散部材によれば、サブテラヘルツ波を所望の範囲に拡散反射させることができる。
(本開示の概要)
本開示の一態様の概要は、以下の通りである。
本開示の一態様の概要は、以下の通りである。
本開示の一態様に係る拡散部材は、サブテラヘルツ波を拡散反射する拡散部材であって、前記サブテラヘルツ波を反射する反射面を備え、前記反射面は、複数の凸部または複数の凹部を有し、前記複数の凸部または前記複数の凹部のそれぞれは、外接面間のなす角度が、0°からθ(θは0°より大きく90°よりも小さい角度)の範囲において連続して分布する。
なお、本明細書において、「サブテラヘルツ波」とは、0.05THz以上2THz以下の周波数の電磁波を意味する。本明細書におけるサブテラヘルツ波は、0.08THz以上1THz以下の周波数の電磁波であってもよい。また、本明細書において、「拡散反射」とは、マクロ的に見て1つの入射角で反射板に対して入射したサブテラヘルツ波が、ミクロ的な凹凸を複数有する凹凸面の構造によって複数の反射角で反射されることを意味する。
上記構成の拡散部材によると、反射面に入射するサブテラヘルツ波の、複数の凸部または複数の凹部による反射波は、その反射する方向の範囲が0°からθの範囲に連続して分布する。このため、上記構成の拡散部材は、サブテラヘルツ波を、2θの範囲に拡散反射することができる。
このように、上記構成の拡散部材によると、サブテラヘルツ波を所望の範囲に拡散反射させることができる。
また、例えば、前記拡散部材は板状であり、前記反射面には、前記拡散部材の法線方向と垂直な方向の平坦な領域が存在しないとしてもよい。
一般に、サブテラヘルツ波は、平坦な領域により鏡面反射される。上記構成の拡散部材は、反射面に、拡散部材30の法線方向と垂直な方向の平坦な領域が存在しない。
したがって、上記構成の拡散部材によると、サブテラヘルツ波の鏡面反射を抑制することができる。
また、例えば、前記拡散部材は、板状であり、前記拡散部材の法線方向における、前記複数の凸部または前記複数の凹部のそれぞれの頂点の位置は、前記サブテラヘルツ波の波長をλとする場合において、0からL(L≧λ/2)の範囲に分布するとしてもよい。
上記法線方向における各頂点の位置がλ/2よりも小さな範囲にしか分布していない場合には、上記法線方向に入射するサブテラヘルツ波の反射波の強度には、反射角0°付近に顕著なピークが生じてしまう。
これに対して、上記構成の拡散部材によると、上記法線方向における各頂点の位置の分布が、λ/2以上の範囲にまで広がっている。
このとき、上記構成の拡散部材によると、サブテラヘルツ波の反射波の強度に顕著なピークが生じてしまうことを抑制することができる。
また、例えば、前記複数の凸部または前記複数の凹部は、互いに相似形の部分を有するとしてもよい。
これにより、反射面を比較的容易に設計することができる。
また、例えば、前記互いに相似形の部分は、球面の一部であるとしてもよい。
これにより、反射面を、さらに容易に設計することができる。
以下では、実施の形態について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。
また、本明細書において、平行などの要素間の関係性を示す用語、及び、平板などの要素の形状を示す用語、直後などの時間を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
また、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略又は簡略化する。
(実施の形態1)
[構成]
まず、実施の形態1に係る撮影装置の構成について説明する。
[構成]
まず、実施の形態1に係る撮影装置の構成について説明する。
図1は、本実施の形態1に係る撮影装置10の外観を示す模式図である。図1では、反射板20以外の構成要素は省略されている。
図1に示されるように、撮影装置10は、例えば、人100が、反射板20に挟まれた通路101上の撮影空間102を通過する際に、人100に対してサブテラヘルツ波を照射し、照射されたサブテラヘルツ波の、人100による反射波に基づいて画像を撮影する撮影装置である。撮影空間102は、通路101上の空間うち、反射板20に覆われた空間である。また、撮影装置10は、例えば、人100が衣服等の下に隠し持つ刃物等の危険物を撮影する。人100及び人100が衣服等の下に隠し持つ刃物等の危険物は、それぞれ撮影対象物の一例である。
以下、撮影装置10の各構成要素の詳細について説明する。図2は、本実施の形態1に係る撮影装置10の構成を示すブロック図である。また、図3は、本実施の形態1に係る撮影装置10を上方から見た場合の模式図である。図3には、撮影空間102を人100が通過する様子を示されている。また、図3には、第1光源41及び第2光源42から射出されるサブテラヘルツ波の進路の一例が、矢印で示されている。
撮影装置10は、反射板20と、第1光源41と、第2光源42と、第1検出器51と、第2検出器52と、第3検出器53と、第4検出器54と、光源制御部60と、撮影制御部70と、センサ80と、画像処理部90とを備える。以下では、第1光源41及び第2光源42を総称して、単に「光源」と称する場合がある。また、第1検出器51、第2検出器52、第3検出器53及び第4検出器54を総称して、単に「検出器」と称する場合がある。
反射板20は、人100が通過する通路101上の空間、具体的には撮影空間102を、通路101の両側部の少なくとも一方から覆う。通路101の両側部の少なくとも一方から覆うとは、具体的には、通路101を上方から見た場合の、両側方、つまり通路101が延びる方向に対して垂直な2つの方向の少なくとも一方から覆うことを意味する。本実施の形態1においては、反射板20は、人100が通過する通路101上の撮影空間102を通路101の両側部から挟む。つまり、反射板20は、撮影空間102を、通路101の両側部の両方から覆う。撮影空間102は、例えば、通路101上の空間うち、反射板20の内側の表面(後述する内側面25)に挟まれた空間である。本実施の形態1においては、一対の反射板20が、通路101の両側部の床面から立設して対向している。つまり、2枚からなる一対の反射板20は、上面視で通路101を挟む位置関係になるように配置されている。また、図示されている例では、一対の反射板20は、互いに平行な位置関係になるように配置されている。また、図示されている例では、一対の反射板20は、それぞれ、通路101が設けられている床面に対して垂直に立設している。反射板20の上端の通路101からの高さは、特に制限されないが、例えば1.5m以上5.0m以下である。通路101が延びる方向から見た場合の反射板20の形状は、一対の反射板20の場合には2つのI字状であるが、特に形状は制限されない。反射板20は、撮影空間102の両側方の少なくとも一方に反射板20があるように配置されればよく、通路101が延びる方向から見た場合の反射板20の形状は、I字状、J字状、L字状、U字状、C字状、枠状又は円環状等であってもよい。例えば、撮影装置10は、一対の反射板20以外の反射板をさらに備えてもよく、又は、一対の反射板20の端部を延長して繋げた形状の1つの反射板を備えてもよい。なお、撮影装置10は、少なくとも1つの反射板20を備えていればよく、例えば、一対の反射板20のうち、一方のみを備えていてもよい。
一対の反射板20は、それぞれ、板状である。一対の反射板20は、それぞれ、反射板20の厚み方向から見た場合の正面となる面である2つの面として、内側面25と外側面28とを有する。一対の反射板20は、一対の反射板20の一方の内側面25と、一対の反射板20の他方の内側面25とが対面するによう配置されている。つまり、内側面25は、反射板20における撮影空間102側の面である。例えば、一対の反射板20は、それぞれ、内側面25と、内側面25に平行な外側面28とを有する平板状である。つまり、反射板20の厚みは均一である。一対の反射板20の平面視形状は、特に制限されないが、例えば、それぞれ、矩形である。
反射板20は、サブテラヘルツ波を拡散反射する。具体的には、反射板20は、少なくとも撮影空間102側(つまり、一対の反射板20の内側)から入射するサブテラヘルツ波を拡散反射する。反射板20は、第1光源41と第2光源42との間に位置する。第1光源41及び第2光源42から射出されたサブテラヘルツ波は、図3に示されるように、一対の反射板20の少なくとも一方で1回以上拡散反射され、人100に照射される。このように、サブテラヘルツ波を拡散反射する反射板20が撮影空間102を挟むことにより、撮影空間102に入射したサブテラヘルツ波がとどまりやすくなると共に、人100に対して様々な角度からサブテラヘルツ波が照射される。
また、反射板20が平板状であることにより、人100にサブテラヘルツ波を集中させる球面ミラーのような部材がサブテラヘルツ波の反射に用いられる場合と比べて、撮影装置10の薄型化及び小型化が可能である。
次に、反射板20の詳細な構成について説明する。
図4は、反射板20の断面構造を示す模式図である。図4は、反射板20の断面の一部が拡大された図である。なお、図4においては、見やすくするため、断面を示す斜線のハッチングは省略されている。
反射板20は、反射部材21と、2つの被覆部材24及び被覆部材27とを有する。反射板20は、被覆部材24と、反射部材21と、被覆部材27とが、撮影空間102側からこの順で積層された構造を有する。
反射部材21は、サブテラヘルツ波を拡散反射するシート状の部材である。反射部材21は、被覆部材24と被覆部材27との間に位置する。反射部材21は、反射部材21の厚み方向から見た場合に正面となる2つの面として、2つの主面22及び主面23を有する。主面22及び主面23は、サブテラヘルツ波を拡散反射させる凹凸面である。主面22は、反射部材21における撮影空間102側に位置し、主面23は、反射部材21における撮影空間102側とは反対側に位置する。反射部材21における2つの主面22及び主面23の両方は、被覆部材24及び被覆部材27にそれぞれ被覆されている。具体的には、反射部材21における撮影空間102側の主面22は、被覆部材24に被覆され、反射部材21における撮影空間102側とは反対側の主面23は、被覆部材27に被覆されている。そのため、主面22及び主面23は、反射板20の表面を構成せず、露出していない。これにより、凹凸面である主面22及び主面23が露出する場合には、凹凸面が人100に接触する可能性があるが、主面22及び主面23がそれぞれ被覆部材24及び被覆部材27に被覆されることで、反射部材21が保護される。
それぞれ凹凸面である主面22及び主面23では、例えば、粗さ曲線要素の平均長さRSmが第1光源41及び第2光源42から射出されるサブテラヘルツ波の波長以上である。具体的に、主面22及び主面23では、例えば、粗さ曲線要素の平均長さRSmが0.15mm以上であり、0.3mm以上であってもよい。これにより、サブテラヘルツ波が効率良く主面22及び主面23で拡散反射される。図4に示されている例では、主面22と主面23との凹凸形状は、一致している。なお、主面22と主面23との凹凸形状は、異なっていてもよい。また、反射部材21における撮影空間102側の主面22が凹凸面であればよく、主面23は平坦面であってもよい。
反射部材21は、金属又は導電性酸化物等の導電性部材で構成される。金属としては、銅、アルミニウム、ニッケル、鉄、ステンレス、銀、金又は白金等の金属を少なくとも1つを含む純金属(単体金属)及び合金等が挙げられる。導電性酸化物としては、例えば、ITO(Indium Tin Oxide)、IZO(InZnO;Indium Zinc Oxide)、AZO(AlZnO:Aluminum Zinc Oxide)、FTO(Florine-doped Tin Oxide)、SnO2、TiO2及びZnO2等の透明導電性酸化物が挙げられる。
被覆部材24及び被覆部材27は、それぞれ、サブテラヘルツ波を透過させる。被覆部材24及び被覆部材27は、それぞれ、例えば、反射板20の厚み方向から入射するサブテラヘルツ波の50%以上を透過させる。被覆部材24及び被覆部材27は、それぞれ、反射板20の厚み方向から入射するサブテラヘルツ波の80%以上を透過させてもよく、90%以上を透過させてもよい。
被覆部材24は、反射部材21の撮影空間102側に位置し、主面22を被覆する。被覆部材24における反射部材21側とは反対側に位置する被覆部材24の表面は、反射板20の内側面25を構成する。内側面25は、主面22のような凹凸形状を有さない平坦面である。これにより、通路101を通過する人100が反射板20の内側面25にぶつかった場合にも、人100が反射部材21の凹凸面(つまり主面22)にぶつかることが防止され、人100及び主面22が保護される。また、反射板20の内側面25が平坦面であることにより、反射板20を清掃しやすくなる。
被覆部材27は、反射部材21の撮影空間102側とは反対側に位置し、主面23を被覆する。被覆部材27における反射部材21側とは反対側に位置する被覆部材27の表面は、反射板20の外側面28を構成する。外側面28は、主面23のような凹凸形状を有さない平坦面である。これにより、反射板20を清掃しやすくなる。
被覆部材24及び被覆部材27の材料は、被覆部材24及び被覆部材27の形状に加工でき、形状を保持できる材料であればよい。被覆部材24及び被覆部材27の材料としては、例えば、樹脂材料等が用いられる。樹脂材料は、例えば、可視光を透過させる透明な非晶性樹脂材料であってもよく、可視光を拡散反射させる結晶性樹脂材料であってもよい。
反射板20は、例えば、次の方法で形成される。まず、被覆部材24を、凹凸面を有する金型で樹脂材料を成形、又は、板状の樹脂材料を機械加工によって凹凸加工することで形成し、形成された被覆部材24上に反射部材21を蒸着又はスプレー等によって成膜する。そして、成膜された反射部材21を被覆部材27の樹脂材料で塗布又はホットメルト貼り付け等によって被覆することにより、反射板20が得られる。また、反射部材21の材料として金属板を機械加工によって凹凸加工し、凹凸加工した金属板を被覆部材24及び被覆部材27の樹脂材料で塗布、ホットメルト貼り付け又はインサート成形等によって被覆することで、反射板20が得られる。また、被覆部材24及び被覆部材27は、3Dプリンタを用いて形成されてもよい。
以上のような構成により、図4に示されるように、反射板20に対して一対の反射板20の内側(つまり、撮影空間102側)から入射するサブテラヘルツ波は、被覆部材24に侵入し、反射部材21の主面22で拡散反射され、内側面25から撮影空間102側へ様々な角度で射出される。
一対の反射板20は、例えば、それぞれ互いに同じ構成及び材料である。なお、一対の反射板20は、それぞれの構成及び材料の少なくとも一方が異なっていてもよい。
再び、図2及び図3を参照し、撮影装置10の構成要素についての説明を続ける。
第1光源41及び第2光源42は、それぞれ、反射板20に対してサブテラヘルツ波を射出する光源である。具体的には、第1光源41及び第2光源42は、それぞれ、一対の反射板20の少なくとも一方の内側面25に対してサブテラヘルツ波を射出する。また、図3に示されるように、第1光源41及び第2光源42それぞれが射出したサブテラヘルツ波の一部が、複数回、反射板20で拡散反射するように、第1光源41及び第2光源42は、反射板20に対してサブテラヘルツ波を射出する。また、第1光源41及び第2光源42が射出するサブテラヘルツ波の一部は、直接、人100に入射してもよい。
第1光源41及び第2光源42は、例えば、光源制御部60の制御に基づいて、サブテラヘルツ波を射出する。また、第1光源41及び第2光源42は、使用中は、常時、サブテラヘルツ波を射出していてもよく、一定の時間間隔でサブテラヘルツ波を射出してもよい。
第1光源41及び第2光源42は、例えば、図示が省略されている支持部材等により支持されている。第1光源41及び第2光源42は、例えば、公知のサブテラヘルツ波発生素子及びサブテラヘルツ波発生素子に電流を供給する回路等によって実現される。
第1光源41は、通路101の延びる方向において、撮影空間102の中央よりも前方側に位置する。撮影空間102の中央とは、反射板20に挟まれることで形成される空間の中央である。図3に示されている例では、第1光源41は、通路101の延びる方向において、反射板20よりも前方側に位置する。以下では、通路101が延びる方向における前方を、単に「前方」と称する場合があり、通路101が延びる方向における後方を、単に「後方」と称する場合がある。また、本明細書において「前方」及び「後方」は、通路101における人100の進行における前後を指すものではなく、相対的な方向を指す用語である。具体的には、通路101が延びる方向における一方の方向を「前方」と称し、一方の方向の反対方向である他方の方向を「後方」を称する。本明細書において、前方は第1の方向の一例であり、後方は第2の方向の一例である。第1光源41は、反射板20の前方側から反射板20の内側面25に対してサブテラヘルツ波を射出する。
また、第1光源41は、一対の反射板20それぞれの前方側の端部の近傍に位置し、反射板20と離間している。また、第1光源41は、第1検出器51及び第3検出器53と反射板20との間に位置する。これにより、第1光源41、第1検出器51及び第3検出器53は、反射板20の同じ方向側、具体的には前方側に位置する。また、第1光源41は、第1検出器51及び第3検出器53よりも反射板20に近い位置から、反射板20に対してサブテラヘルツ波を射出する。さらに、第1光源41から射出された後、反射板20で拡散反射されたサブテラヘルツ波は、第1検出器51側及び第3検出器53側に進むことなく、人100に照射される。そのため、第1光源41から射出されるサブテラヘルツ波を効率的に利用できる。
なお、第1光源41は、例えば、撮影空間102に位置していてもよく、第1検出器51及び第3検出器53の前方側に位置していてもよい。
第1光源41は、例えば、サブテラヘルツ波を放射する点光源を含む。図5Aは、第1光源41を前方から見た場合の一例を示す模式図である。図5Aにおいては、第1光源41及び反射板20以外の構成要素は省略されている。図5Aに示されるように、第1光源41は、通路101の延びる方向から見た場合に、反射板20に沿って並び、サブテラヘルツ波を放射する複数の点光源41aを含む。本実施の形態1においては、複数の点光源41aは、一対の反射板20の立設する方向に沿って並んでいる。図5Aにおいては、一対の反射板20の一方の前方側端部に沿って3つの点光源41aが並び、一対の反射板20の他方の前方側端部に沿って3つの点光源41aが並んでいる。つまり、第1光源41は、一対の反射板20の立設する方向に沿って並ぶ一対の複数の点光源41aを含む。複数の点光源41aが並ぶ数は、特に制限されず、2つであってもよく、4つ以上であってもよい。また、図5Aに示されている例では、一対の複数の点光源41aは、仮想面P1を基準に対称に配置されている。仮想面P1は、撮影空間102の中心を通り、通路101の延びる方向に沿った鉛直面である。なお、複数の点光源41aは、一対の反射板20の一方側のみに配置されていてもよい。
また、第1光源41は、複数の点光源41aの代わりに、別の光源を含んでいてもよい。図5Bは、第1光源41を前方から見た場合の別の例を示す模式図である。図5Bにおいては、第1光源41及び反射板20以外の構成要素は省略されている。図5Bに示されるように、第1光源41は、通路101の延びる方向から見た場合に、反射板20に沿って延び、サブテラヘルツ波を放射する線光源41bを含む。本実施の形態1においては、線光源41bは、一対の反射板20の立設する方向に沿って延びている。図5Bにおいては、一対の反射板20の一方の前方側端部に沿って延びるように1つの線光源41bが配置され、一対の反射板20の他方の前方側端部に沿って延びるように1つの線光源41bが配置されている。つまり、第1光源41は、一対の線光源41bを含む。一対の反射板20のそれぞれの前方側端部に沿って延びるように配置される線光源41bの数は2つ以上であってもよい。また、図5Bに示されている例では、一対の線光源41bは、仮想面P1を基準に対称に配置されている。なお、線光源41bは、一対の反射板20の一方側のみに配置されていてもよい。
このように、第1光源41は、通路101の延びる方向から見た場合に、反射板20に沿って並び、それぞれがサブテラヘルツ波を放射する複数の点光源41a、及び、反射板20に沿って延び、サブテラヘルツ波を放射する線光源41bのうちの少なくとも一方を含む。これにより、第1光源41は、通路101の延びる方向から見た場合に、反射板20に沿って幅広くサブテラヘルツ波を射出することができる。その結果、人100に効果的にサブテラヘルツ波が照射される。
第2光源42は、通路101の延びる方向において、撮影空間102の中央よりも後方側に位置する。図3に示されている例では、第2光源42は、反射板20よりも後方側に位置する。第2光源42は、反射板20の後方から反射板20の内側面25に対してサブテラヘルツ波を射出する。
また、第2光源42は、一対の反射板20それぞれの後方側の端部の近傍に位置し、反射板20と離間している。また、第2光源42は、第2検出器52及び第4検出器54と反射板20との間に位置する。
なお、第2光源42は、例えば、撮影空間102に位置していてもよく、第2検出器52及び第4検出器54の後方側に位置していてもよい。また、撮影装置10が人100の後方側の面の画像を撮影しない場合には、第2光源42は、撮影装置10に備えられていなくてもよい。
第2光源42は、例えば、サブテラヘルツ波を放射する点光源及び線光源の少なくとも一方を含む。第2光源42に含まれる点光源及び線光源は、第1光源41と同様である。このため、第2光源42に含まれる点光源及び線光源は、上記図5A及び図5Bにおける説明から、第1光源41を第2光源42に読み替え、前方を後方に読み替えることで説明される。
再び、図2及び図3を参照し、撮影装置10の構成要素についての説明を続ける。
第1検出器51は、第1光源41から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波を受波する。第1検出器51は、受波した反射波に基づいて画像を生成する。第1検出器51は、生成した画像を画像処理部90に出力する。第1検出器51等の検出器が画像を生成することを「撮影する」とも称する。第1検出器51は、第1光源41がサブテラヘルツ波を射出しているタイミングで、露光し、画像を生成する。
第1検出器51は、通路101の延びる方向において、撮影空間102の中央よりも前方側に位置する。図3に示されている例では、第1検出器51は、通路101の延びる方向において、反射板20よりも前方側に位置する。第1検出器51は、人100の前方側の面の画像を撮影する。第1検出器51は、例えば、図示が省略されている支持部材等により支持されている。
第1検出器51は、イメージセンサ55と光学系56とを含む。
イメージセンサ55は、第1光源41等の光源から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波を受波する。イメージセンサ55は、受波した反射波の強度を検出し、検出した強度に基づいて画像を生成する。具体的には、イメージセンサ55は、露光中に、撮影対象物から発せられたサブテラヘルツ波の像を、その強度に応じた電気信号に変換する。そして、イメージセンサ55は、変換した電気信号に基づく画像を生成する。イメージセンサ55に生成された画像は、画像処理部90に出力される。
サブテラヘルツ波は、人体及び金属等に対して鏡面反射し、衣服及びカバン等を透過する。このため、イメージセンサ55は、人100の体のうち、イメージセンサ55が受波可能な角度範囲内に含まれる領域からの、人100の体で鏡面反射した反射波を受波する。イメージセンサ55には、例えば、図3における第1検出器51から延びた破線で示される範囲を通る、人100による反射波が入射する。また、人100が刃物等を隠し持つ場合には、イメージセンサ55は、イメージセンサ55が受波可能な角度範囲内に含まれる領域からの、隠し持つ刃物で鏡面反射した反射波を受波する。
イメージセンサ55は、例えば、それぞれがサブテラヘルツ波の検出素子を含む複数の画素、及び、周辺回路等で構成される。
光学系56は、第1光源41等の光源から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波をイメージセンサ55に結像する。光学系56は、例えば、少なくとも1つのレンズを含んで構成される。なお、第1検出器51は、光学系56を含んでいなくてもよく、反射波が直接イメージセンサ55に入射してもよい。
第2検出器52は、第2光源42から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波を受波する。第2検出器52は、受波した反射波に基づいて画像を生成する。第2検出器52は、生成した画像を画像処理部90に出力する。第2検出器52は、第2光源42がサブテラヘルツ波を射出しているタイミングで、露光し、画像を生成する。
第2検出器52は、通路101の延びる方向において、撮影空間102の中央よりも後方側に位置する。図3に示されている例では、第2検出器52は、反射板20よりも後方側に位置する。第2検出器52は、人100の後方側の面の画像を撮影する。第2検出器52は、例えば、図示が省略されている支持部材等により支持されている。このように、撮影装置10が第1検出器51と第2検出器52とを備えることにより、人100の前後両側の画像を生成できる。
第2検出器52は、イメージセンサ55aと光学系56aとを含む。イメージセンサ55a及び光学系56aは、上述のイメージセンサ55及び光学系56と同じであるため、詳細な説明は省略する。
なお、撮影装置10が人100の後方側の面の画像を撮影しない場合には、第2検出器52は、撮影装置10に備えられていなくてもよい。
第3検出器53は、第1光源41から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波を受波する。第3検出器53は、受波した反射波に基づいて画像を生成する。第3検出器53は、生成した画像を画像処理部90に出力する。第3検出器53は、第1光源41がサブテラヘルツ波を射出しているタイミングで、露光し、画像を生成する。
第3検出器53は、通路101の延びる方向において、撮影空間102の中央よりも前方側に位置する。図3に示されている例では、第3検出器53は、反射板20よりも前方側に位置する。第3検出器53は、例えば、図示が省略されている支持部材等により支持されている。第1検出器51と第3検出器53とは、通路101に対する上面視で異なる位置に配置されている。第1検出器51と第3検出器53とは、人100による反射波の入射方向が異なる。これにより、第1検出器51と第3検出器53とで、人100の異なる方向を向く面からの反射波に基づく画像が生成される。そのため、例えば、撮影装置10によって人100が隠し持つ刃物等の危険物を検知する場合等における死角を減らすことができる。
例えば、第1検出器51と第3検出器53とは、仮想面P1を基準に対称な位置関係である。そのため、第1検出器51の反射波の入射方向と第3検出器53の反射波の入射方向とは、仮想面P1を基準に対称である。また、第1検出器51と第3検出器53とは、通路101に対する上面視で、通路101の延びる方向と垂直な方向に沿って並んでいる。
第3検出器53は、イメージセンサ55bと光学系56bとを含む。イメージセンサ55b及び光学系56bは、上述のイメージセンサ55及び光学系56と同じであるため、詳細な説明は省略する。
第4検出器54は、第2光源42から射出された後、反射板20で拡散反射されたサブテラヘルツ波の、人100による反射波を受波する。第4検出器54は、受波した反射波に基づいて画像を生成する。第4検出器54は、生成した画像を画像処理部90に出力する。第4検出器54は、第2光源42がサブテラヘルツ波を射出しているタイミングで、露光し、画像を生成する。
第4検出器54は、通路101の延びる方向において、撮影空間102の中央よりも後方側に位置する。図3に示されている例では、第4検出器54は、反射板20よりも後方側に位置する。第4検出器54は、例えば、図示が省略されている支持部材等により支持されている。第2検出器52と第4検出器54との位置関係は、第1検出器51と第3検出器53との位置関係と同様である。第2検出器52と第4検出器54との位置関係は、第1検出器51と第3検出器53との位置関係の説明における第1検出器51を第2検出器に読み替え、第3検出器53を第4検出器54に読み替えることで説明される。
第4検出器54は、イメージセンサ55cと光学系56cとを含む。イメージセンサ55c及び光学系56cは、上述のイメージセンサ55及び光学系56と同じであるため、詳細な説明は省略する。
なお、第3検出器53及び第4検出器54の少なくとも一方は、撮影装置10に備えられていなくてもよい。
光源制御部60は、第1光源41及び第2光源42それぞれのサブテラヘルツ波の射出を制御する。光源制御部60は、例えば、第1光源41及び第2光源42それぞれにサブテラヘルツ波を射出させるタイミングを制御する。光源制御部60は、例えば、第1期間に第1光源41にサブテラヘルツ波を射出させて第2光源42にサブテラヘルツ波を射出させず、第1期間とは異なる第2期間に第2光源42にサブテラヘルツ波を射出させて第1光源41にサブテラヘルツ波を射出させない。
光源制御部60は、例えば、撮影制御部70及びセンサ80等から取得した信号に基づいて、第1光源41及び第2光源42それぞれのサブテラヘルツ波の射出を制御する。光源制御部60は、例えば、プロセッサとメモリとを備え、プロセッサが、メモリに記憶されるプログラムを実行することにより実現される。
撮影制御部70は、各検出器が画像を生成するタイミングを制御する。撮影制御部70は、例えば、第1検出器51と第3検出器53とに、同期して画像を生成させ、第2検出器52と第4検出器54とに、同期して画像を生成させる。また、撮影制御部70は、例えば、第1光源41及び第2光源42それぞれのサブテラヘルツ波の射出のタイミングに基づいて、各検出器に画像を生成させる。撮影制御部70は、センサ80等からの信号に基づいて、各検出器に画像を生成させてもよい。撮影制御部70は、例えば、プロセッサとメモリとを備え、プロセッサが、メモリに記憶されるプログラムを実行することにより実現される。
センサ80は、人100の存在を検知するためのセンサである。センサ80は、例えば、人100の存在を示す信号を光源制御部60及び撮影制御部70に出力する。センサ80は、例えば、動画像を撮影するカメラである。センサ80は、人感センサ等の他のセンサであってもよい。また、撮影装置10が備えるセンサ80の数は、図3に示されている例では1つであるが、撮影装置10は複数のセンサ80を備えていてもよい。
画像処理部90は、各検出器より画像を受け取ると、受け取った画像を外部に出力すると共に、受け取った画像に対して画像処理を行い、その画像処理の結果を外部に出力する。
画像処理部90が行う画像処理は、例えば、検出器から出力された画像に、所定の特徴を有する物体(例えば、刃物の特徴を有する物体)が含まれているか否かを判定し、所定の特徴を有する物体が含まれていると判定する場合には、所定の検知信号(例えば、刃物の特徴を有する物体が撮影されている旨を示す警報)を出力する処理であってもよい。また、画像処理部90は、各検出器から受け取った画像に対して合成処理を行ってもよい。画像処理部90は、例えば、プロセッサとメモリとを備え、プロセッサが、メモリに記憶されるプログラムを実行することにより実現される。
なお、撮影装置10は、画像処理部90を備えていなくてもよく、検出器が外部の画像処理装置に画像を出力してもよい。また、画像処理部90の機能が、各検出器に備えられていてもよい。
ここで、本実施の形態1に係る撮影装置10におけるサブテラヘルツ波の照射態様について、図3を参照しながら説明する。光源から反射板20に対して射出されたサブテラヘルツ波(図3における矢印)は、撮影空間102が撮影空間102の側方から反射板20に覆われているため、反射板20で拡散反射されて人100に入射する。これにより、反射板20の内側面25が、面光源として機能し、人100に対して比較的広い範囲に様々な角度からサブテラヘルツ波が照射される。よって、撮影装置10は、人100に対して効果的にサブテラヘルツ波を照射できる。また、本実施の形態1においては、反射板20が撮影空間102を挟んで対向した板状であるため、光源から射出されたサブテラヘルツ波は、反射板20で1回以上拡散反射されて人100に入射する。また、光源から反射板20に対して射出されたサブテラヘルツ波の多くは、撮影空間102で拡散反射することを繰り返すため、人100が通過する通路101上に位置する撮影空間102の空間にとどまりやすい。よって、撮影装置10は、人100に対してより効果的にサブテラヘルツ波を照射できる。
さらに、人100における比較的広い範囲に様々な角度からサブテラヘルツ波が照射されるため、人100における比較的広い範囲で反射したサブテラヘルツ波の反射波が検出器に入射する。また、光源から反射板20に対して射出されたサブテラヘルツ波は、撮影空間102の空間にとどまりやすいため、検出器に入射する反射波の量が増加する。そのため、検出器で生成される画像の画質が向上する。その結果、例えば、撮影装置10を人100が隠し持つ刃物等の危険物の検知に用いる場合の検知精度が向上する。
[動作例]
次に、本実施の形態1に係る撮影装置10の動作例について説明する。
次に、本実施の形態1に係る撮影装置10の動作例について説明する。
以下の動作例の説明では、撮影装置10が、撮影空間102を後方から前方に向かって通過する人100の画像を撮影する動作について説明する。図6A、図6B、図6C及び図6Dは、本実施の形態1に係る撮影装置10の動作例を説明するための図である。図6A、図6B、図6C及び図6Dには、撮影装置10を上方から見た場合の図が示されている。また、見やすさのため、図6A、図6B、図6C及び図6Dでは、センサ80の図示は省略されている。また、図6A、図6B、図6C及び図6Dにおいて、第1光源41及び第2光源42は、サブテラヘルツ波を射出している場合にドットのハッチングが付されており、サブテラヘルツ波を射出していない場合にドットのハッチングが付されていない。また、図6A、図6B、図6C及び図6Dにおいて、反射板20から射出されるサブテラヘルツ波の進路の一例が模式的に実線の矢印で示されている。これらは、以下の各変形例における動作例の説明のための図においても同様である。
まず、図6Aに示されるように、ステップS1では、人100が、撮影空間102に進入し、撮影空間102の後方側の端部を通過している。光源制御部60は、人100が撮影空間102の後方側の端部に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。光源制御部60は、例えば、人100が撮影空間102の後方側の端部に存在していることを示す信号をセンサ80から受信することで、人100が存在していることを検知する。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20で1回以上拡散反射し、内側面25から人100に照射される。具体的には、人100よりも前方側に位置する内側面25から射出されたサブテラヘルツ波が、人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第1検出器51に入射する。第1検出器51は、人100による反射波を受波する。撮影制御部70は、光源制御部60が第1光源41にサブテラヘルツ波を射出させているタイミングで、第1検出器51に、第1検出器51が受波した反射波に基づいて画像を生成させる。つまり、第1検出器51は、撮影空間102の後方側の端部を通過している人100による反射波に基づいて画像を生成する。これにより、第1検出器51は、人100の前方側の面の画像を生成する。第1検出器51は、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第1検出器51による画像の生成が完了したことを検知し、第1光源41を消灯させる。
ステップS1においては、光源制御部60が第1光源41にサブテラヘルツ波を射出させ、第2光源42にサブテラヘルツ波を射出させない期間である第1期間に、第1検出器51は受波した人100による反射波に基づいて画像を生成している。もし、第1検出器51が画像を生成する際に第2光源42がサブテラヘルツ波を射出する場合には、人100の後方側に位置する第2光源42から射出されたサブテラヘルツ波が、人100による反射波と同時に第1検出器51に入射する可能性がある。そのため、第1検出器51によって生成された画像の人100による反射波による像が不鮮明になる可能性がある。一方、ステップS1においては、第1検出器51は、第2光源42がサブテラヘルツ波を射出していない第1期間に受波した人100による反射波に基づいて画像を生成しているため、人100による反射波による像が鮮明である。
次に、図6Bに示されるように、ステップS2では、人100は、ステップS1での位置から前方に進んでおり、通路101が延びる方向において、撮影空間102の中央部に位置する。光源制御部60は、人100が撮影空間102の中央部に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。光源制御部60は、例えば、人100が通路101の延びる方向における撮影空間102の中央部に存在していることを示す信号をセンサ80から受信することで、人100が存在していることを検知する。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。なお、光源制御部60は、人100の存在を検知する代わりに、ステップS1での第1検出器51の画像の生成から所定の時間経過後に、第1光源41にサブテラヘルツ波を射出させてもよい。所定の時間は、例えば、人100が1から2歩程度進む時間に設定される。
第1光源41から射出されたサブテラヘルツ波は、反射板20で1回以上拡散反射し、内側面25から人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第1検出器51に入射する。第1検出器51は、人100による反射波を受波する。撮影制御部70は、光源制御部60が第1光源41にサブテラヘルツ波を射出させているタイミングで、第1検出器51に、第1検出器51が受波した反射波に基づいて画像を生成させる。これにより、第1検出器51は、人100の前方側の面の画像を生成する。第1検出器51は、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第1検出器51による画像の生成が完了したことを検知し、第1光源41を消灯させる。
このように、ステップS1からステップS2において、第1検出器51は、人100が撮影空間102を通過する間に、人100による反射波を複数のタイミングで受波する。そして、第1検出器51は、受波したそれぞれの反射波に基づく複数の画像を生成する。これにより、人100が撮影空間102を通過する間に、人100の複数の態様の画像が生成される。そのため、例えば、1つの画像では撮影されていなかった箇所を含む画像が生成され、撮影装置10を人100が隠し持つ危険物等の検知に用いる場合の検知精度等を向上できる。
また、ステップS2においても、ステップS1と同様に、第1検出器51は、第1期間に受波した人100による反射波に基づいて画像を生成している。また、ステップS2においては、人100による反射波が第1検出器51に入射する範囲は、図6Bの第1検出器51から延びた破線で示される範囲であり、当該範囲には、第2光源42及び反射板20の一部が位置する。そのため、第2光源42がサブテラヘルツ波を射出している場合には、第1検出器51に、第2光源42に由来するサブテラヘルツ波が特に入射しやすい。そのため、第2光源42がサブテラヘルツ波を射出していない第1期間に、第1検出器51が画像を生成することによる、人100による反射波による像が鮮明になる効果が顕著である。
なお、ステップS1において、光源制御部60は、第1光源41を消灯させずに、ステップ2における第1検出器51の画像の生成が完了するまで、第1光源41にサブテラヘルツ波を射出させたままにしていてもよい。この場合、例えば、撮影制御部70は、人100が撮影空間102の中央部に存在していることを検知すると、第1検出器51に画像を生成させる。
次に、ステップS2の直後のステップS3において、図6Cに示されるように、光源制御部60は、第2光源42にサブテラヘルツ波を射出させる。具体的には、光源制御部60は、ステップS2における第1検出器51による画像の生成における露光の完了直後に、第2光源42にサブテラヘルツ波を射出させる。光源制御部60は、例えば、撮影制御部70を介して、第1検出器51による画像の生成が終了するタイミングを示す信号を取得する。当該信号は、例えば、イメージセンサ55の露光の終了を示す信号である。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20で1回以上拡散反射し、内側面25から人100に照射される。具体的には、人100よりも後方側に位置する内側面25から射出されたサブテラヘルツ波が、人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第2検出器52に入射する。第2検出器52は、人100による反射波を受波する。撮影制御部70は、光源制御部60が第2光源42にサブテラヘルツ波を射出させたタイミング、つまり、ステップS2における第1検出器51による画像の生成における露光の完了直後に、第2検出器52に画像の生成を開始させる。言い換えると、第2検出器52は、ステップS2の第1検出器51における受波した人100による反射波に基づいた画像の生成における露光の完了直後に、受波した人100による反射波に基づいた画像の生成における露光を開始する。このようにして、第2検出器52は、ステップS2の第1検出器51における画像の撮影の直後に、人100の後方側の面の画像を撮影する。第2検出器52は、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第2検出器52による画像の生成が完了したことを検知し、第2光源42を消灯させる。
このように、ステップS2とステップS3とでは、第1検出器51による撮影と、第2検出器52による撮影とが時間的な間隔を開けずに行われる。これにより、時間的な間隔を開けずに人100を前後両側から撮影できるため、撮影時に撮影されない人100の体の領域が減り、撮影装置10を人100が隠し持つ危険物等の検知に用いる場合の検知の精度を向上できる。
ステップS3においては、第2検出器52は、光源制御部60が第2光源42にサブテラヘルツ波を射出させ、第1光源41にサブテラヘルツ波を射出させない期間である第2期間に受波した人100による反射波に基づいて画像を生成している。もし、第2検出器52が画像を生成する際に第1光源41がサブテラヘルツ波を射出する場合には、人100の前方側に位置する第1光源41から射出されたサブテラヘルツ波が、人100による反射波と同時に第2検出器52に入射する可能性がある。そのため、第2検出器52によって生成された画像の人100による反射波による像が不鮮明になる可能性がある。一方、ステップS3においては、第2検出器52は、第1光源41がサブテラヘルツ波を射出していない第2期間に受波した人100による反射波に基づいて画像を生成しているため、人100による反射波による像が鮮明になる。また、ステップS3においては、人100による反射波が第2検出器52に入射する範囲は、図6Cの第2検出器52から延びた破線で示される範囲であり、当該範囲には、第1光源41及び反射板20の一部が位置する。そのため、第2光源42がサブテラヘルツ波を射出している場合には、第2検出器52に、第1光源41に由来するサブテラヘルツ波が特に入射しやすい。そのため、第1光源41がサブテラヘルツ波を射出していない第2期間に、第2検出器52が画像を生成することによる、人100による反射波による像が鮮明になる効果が顕著である。
なお、ステップS2とステップS3とにおいて、先に画像生成する検出器が第1検出器51ではなく、第2検出器52であってもよい。つまり、ステップS2及びステップS3の説明において、第1光源41と第2光源42とを入れ替え、且つ、第1検出器51と第2検出器52とを入れ替えた動作が行われてもよい。
次に、図6Dに示されるように、ステップS4では、人100は、ステップS3での位置から前方に進んでおり、撮影空間102の前方側の端部に位置する。つまり、人100は、撮影空間102の前方側の端部を通過している。光源制御部60は、人100が撮影空間102の前方側の端部に存在していることを検知すると、第2光源42にサブテラヘルツ波を射出させる。光源制御部60は、例えば、撮影空間102の前方側の端部に存在していることを示す信号をセンサ80から受信することで、人100が存在していることを検知する。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20で1回以上拡散反射し、内側面25から人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第2検出器52に入射する。第2検出器52は、人100による反射波を受波する。撮影制御部70は、光源制御部60が第2光源42にサブテラヘルツ波を射出させたタイミングで、第2検出器52に、第2検出器52が受波した反射波に基づいて画像を生成させる。つまり、第2検出器52は、撮影空間102の前方側の端部を通過している人100による反射波に基づいて画像を生成する。これにより、第2検出器52は、人100の後方側の面の画像を撮影する。第2検出器52は、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第2検出器52による画像の生成が完了したことを検知し、第2光源42を消灯させる。
このように、ステップS3からステップS4において、第2検出器52は、人100が撮影空間102を通過する間に、人100による反射波を複数のタイミングで受波する。そして、第2検出器52は、受波したそれぞれの反射波に基づく複数の画像を生成する。これにより、ステップS1からステップS2における第1検出器51による画像の生成と同様の効果が得られる。
また、ステップS4においても、ステップS3と同様に、第2検出器52は、第2期間に受波した人100による反射波に基づいて画像を生成している。よって、ステップS3と同様に、人100による反射波による像が鮮明になる効果が得られる。
また、上記撮影装置10の動作例において、撮影制御部70は、例えば、第1検出器51と第3検出器53とを同期して動作させ、第2検出器52と第4検出器54とを同期して動作させる。つまり、第3検出器53は、第1検出器51と同様の動作を行い、第4検出器54は、第2検出器52と同様の動作を行う。そのため、第3検出器53及び第4検出器54の動作は、第1検出器51を第3検出器53に読み替え、第2検出器52に読み替えることで説明される。これらは、以下で説明する各変形例における動作例においても同様である。
また、画像処理部90は、第1検出器51で生成された画像と第3検出器53で生成された画像とを合成する画像処理を行ってもよい。また、画像処理部90は、第2検出器52で生成された画像と第4検出器54で生成された画像とを合成する画像処理を行ってもよい。
なお、上記撮影装置10の動作例では、各検出器は、図6A、図6B、図6C及び図6Dに示される位置の人100の画像を生成したが、人100の位置はこれらの位置に限らない。検出器が人100の画像を生成する際の人100の位置は、例えば、検出器側から、内側面25が人100に対してサブテラヘルツ波を射出できる位置であればよい。また、ステップS2及びステップS3で人100が撮影される位置は、人100よりも前方側及び後方側のどちらに位置する内側面25からも、人100に対してサブテラヘルツ波が射出できる位置である。ステップS2及びステップS3で人100が撮影される位置は、例えば、上述のような、通路101が延びる方向における撮影空間102の中央部である。
また、ステップS1からステップS4までの間、各検出器は、画像を連続的に生成し、連続的に生成した複数の画像の中から、ステップS1からステップS4におけるタイミングで生成された画像を選択的に、画像処理部90に出力してもよい。また、各検出器は、画像を連続的に生成し、連続的に生成した複数の画像を全て、画像処理部90に出力してもよい。この場合、画像処理部90は、例えば、受け取った複数の画像のうちステップS1からステップS4におけるタイミングで生成された画像を選択して、選択した画像に対して画像処理を行う。
[変形例1]
次に、実施の形態1の変形例1に係る撮影装置について説明する。
次に、実施の形態1の変形例1に係る撮影装置について説明する。
実施の形態1の変形例1に係る撮影装置は、実施の形態1に係る撮影装置と比べて、第1検出器による撮影と、第2検出器による撮影とを時間的な間隔を開けずに行うことが複数回行われる点で主に相違する。また、実施の形態1の変形例1に係る撮影装置は、実施の形態1に係る撮影装置と比べて、通路が延びる方向における反射板の長さ、及び、第1検出器と第2検出器との距離が長くなっている。以下では実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
図7は、本変形例に係る撮影装置10aを上方から見た場合の模式図である。図7に示されるように、撮影装置10aは、撮影装置10の反射板20の代わりに、反射板20aを備える構成である。撮影装置10aにおいて、反射板20a以外の構成は、撮影装置10と同じである。
反射板20aは、人100が通過する通路101上の撮影空間102を、通路101の両側部の少なくとも一方から覆う。本変形例においては、反射板20aは、人100が通過する通路101上の撮影空間102を通路101の両側部から挟む。また、本変形例においては、一対の反射板20aが、人100が通過する通路101の両側部の床面から立設して対向している。一対の反射板20aは、それぞれ、反射板20aの厚み方向から見た場合の正面となる面である2つの面として、内側面25aと外側面28aとを有する。反射板20aは、反射板20より、通路101の延びる方向における長さが長い以外の点は、反射板20と同様の構成であり、詳細な説明は省略する。
次に、本変形例に係る撮影装置10aの動作例について説明する。
以下の動作例の説明では、撮影装置10aが、撮影空間102を後方から前方に向かって通過する人100の画像を撮影する動作について説明する。図8A、図8B、図8C及び図8Dは、本変形例に係る撮影装置10aの動作例を説明するための図である。
まず、図8Aに示されるように、ステップS11では、人100が、撮影空間102に進入し、撮影空間102における後方側を通過している。光源制御部60は、人100が撮影空間102における後方側に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20aで1回以上拡散反射し、内側面25aから人100に照射される。以降の撮影装置10aの動作は、上記ステップS2と同様であるため、詳細な説明は省略する。これにより、第1検出器51は、撮影空間102における後方側を通過している人100による反射波に基づいて画像を生成する。
次に、ステップS11の直後のステップS12において、図8Bに示されるように、光源制御部60は、第2光源42にサブテラヘルツ波を射出させる。具体的には、光源制御部60は、ステップS11における第1検出器51による画像の生成における露光の完了直後に、第2光源42にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20aで1回以上拡散反射し、内側面25aから人100に照射される。以降の撮影装置10aの動作は、上記ステップS3と同様であるため、詳細な説明は省略する。これにより、撮影制御部70は、ステップS11における第1検出器51による画像の生成における露光の完了直後に、第2検出器52に画像の生成における露光を開始させる。つまり、第2検出器52は、ステップS11の第1検出器51における画像の撮影の直後に、人100の後方側の面の画像を撮影する。
次に、図8Cに示されるように、ステップS13では、人100は、ステップS12での位置から前方に進んでおり、撮影空間102における前方側に位置する。つまり、人100は、撮影空間102における前方側を通過している。光源制御部60は、人100が撮影空間102における前方側に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20aで1回以上拡散反射し、内側面25aから人100に照射される。以降の撮影装置10aの動作は、上記ステップS2と同様であるため、詳細な説明は省略する。これにより、第1検出器51は、撮影空間102における前方側を通過している人100による反射波に基づいて画像を生成する。
次に、ステップS13の直後のステップS14において、図8Dに示されるように、光源制御部60は、第2光源42にサブテラヘルツ波を射出させる。具体的には、光源制御部60は、ステップS13における第1検出器51による画像の生成における露光の完了直後に、第2光源42にサブテラヘルツ波を射出させる。
第2光源42から射出されたサブテラヘルツ波は、反射板20aで1回以上拡散反射し、内側面25aから人100に照射される。以降の撮影装置10aの動作は、上記ステップS3と同様であるため、詳細な説明は省略する。これにより、撮影制御部70は、ステップS13における第1検出器51による画像の生成における露光の完了直後に、第2検出器52に画像の生成における露光を開始させる。つまり、第2検出器52は、ステップS13の第1検出器51における画像の撮影の直後に、人100の後方側の面の画像を撮影する。
以上のように、ステップS11とステップS12とでは、第1検出器51による撮影と、第2検出器52による撮影とが時間的な間隔を開けずに行われる。また、ステップS13とステップS14とでも、第1検出器51による撮影と、第2検出器52による撮影とが時間的な間隔を開けずに行われる。これにより、人100が撮影空間102を通過する間に、複数回、時間的な間隔を開けずに人100を前後両側から撮影でき、かつ、人100が撮影空間102を通過する間に、人100の複数の態様の画像が生成される。そのため、撮影装置10aを人100が隠し持つ危険物等の検知に用いる場合の検知精度をさらに向上できる。
また、ステップS11及びステップS12では、同じ人100の位置で、人100の前後両側の面を撮影するため、人100に実施の形態1の動作例と同等のサブテラヘルツ波を照射するためには、人100の前後両側に反射板20aが位置している必要がある。ステップS13及びステップS14においても同様である。そのため、撮影される画像の画質を低下させずに、複数回、時間的な間隔を開けずに人100を前後両側から撮影するためには、反射板20aの長さは、反射板20よりも、サブテラヘルツ波を人100に対して射出するための面の長さ分、長くなる。
[変形例2]
次に、実施の形態1の変形例2に係る撮影装置について説明する。
次に、実施の形態1の変形例2に係る撮影装置について説明する。
実施の形態1の変形例2に係る撮影装置は、実施の形態1に係る撮影装置と比べて、第1検出器及び第2検出器が、それぞれ、人が所定の1箇所に位置している場合に画像を撮影する点で主に相違する。また、実施の形態1の変形例2に係る撮影装置は、実施の形態1に係る撮影装置と比べて、通路が延びる方向における反射板の長さ、及び、第1検出器と第2検出器との距離が短くなっている。以下では実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
図9は、本変形例に係る撮影装置10bを上方から見た場合の模式図である。図9に示されるように、撮影装置10bは、撮影装置10の反射板20の代わりに、反射板20bを備える構成である。撮影装置10bにおいて、反射板20b以外の構成は、撮影装置10と同じである。
反射板20bは、人100が通過する通路101上の撮影空間102を、通路101の両側部の少なくとも一方から覆う。本変形例においては、反射板20bは、人100が通過する通路101上の撮影空間102を通路101の両側部から挟む。また、本変形例においては、一対の反射板20bが、人100が通過する通路101の両側部の床面から立設して対向している。一対の反射板20bは、それぞれ、反射板20bの厚み方向から見た場合の正面となる面である2つの面として、内側面25bと外側面28bとを有する。反射板20bは、反射板20より、通路101の延びる方向における長さが短い以外の点は、反射板20と同様の構成であり、詳細な説明は省略する。
次に、本変形例に係る撮影装置10bの動作例について説明する。
以下の動作例の説明では、撮影装置10bが、撮影空間102を後方から前方に向かって通過する人100の画像を撮影する動作について説明する。図10A及び図10Bは、本変形例に係る撮影装置10bの動作例を説明するための図である。
まず、図10Aに示されるように、ステップS21では、人100が、撮影空間102に進入し、撮影空間102の後方側の端部を通過している。光源制御部60は、人100が撮影空間102の後方側の端部に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20bで1回以上拡散反射し、内側面25bから人100に照射される。以降の撮影装置10bの動作は、上記ステップS1と同様であるため、詳細な説明は省略する。これにより、第1検出器51は、撮影空間102の後方側の端部を通過している人100による反射波に基づいて画像を生成する。
次に、図10Bに示されるように、ステップS22では、人100は、ステップS21での位置から前方に進んでおり、撮影空間102の前方側の端部に位置する。つまり、人100は、撮影空間102の前方側の端部を通過している。光源制御部60は、人100が撮影空間102の前方側の端部に存在していることを検知すると、第2光源42にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20bで1回以上拡散反射し、内側面25bから人100に照射される。以降の動作は、上記ステップS4と同様であるため、詳細な説明は省略する。これにより、第2検出器52は、撮影空間102の前方側の端部を通過している人100による反射波に基づいて画像を生成する。
以上のように、撮影装置10bにおいては、第1検出器51は、通路101が延びる方向における撮影空間102の後方側の端部を通過している人100による反射波に基づいて画像を生成する。また、第2検出器52は、通路101が延びる方向における撮影空間102の前方側の端部を通過している人100による反射波に基づいて画像を生成する。このように、撮影空間102の両端部で人100の画像が撮影される。そのため、人100の前方側の面の画像と人100の後方側の面の画像との両方を撮影する場合であっても、通路101の延びる方向において、人100の前方後方の両側でサブテラヘルツ波を拡散反射させるための反射板20bの長さを必要としない。よって、人100の前方側の面の画像と人100の後方側の面の画像との両方を撮影する場合であっても、反射板20bの通路101が延びる方向における長さを短縮できる。その結果、撮影装置10bの小型化が可能になる。また、人100は、撮影空間102を通過する際に、反射板20bに挟まれるため、閉塞感を感じる可能性があるが、反射板20bの長さが短縮されることで、人100の閉塞感が軽減される。
例えば、ステップS21において、第1検出器51は、上述のステップS1からステップS2のように、人100が撮影空間102の後方側の端部から中央部に移動する前後での撮影を行わず、人100が撮影空間102の後方側の端部に位置する際に撮影を行う。そのため、通路101の延びる方向において、ステップS1からステップS2で人100が移動する長さの分、反射板20bの長さは反射板20の長さよりも短くすることができる。
なお、撮影装置10bにおける光源によるサブテラヘルツ波の射出動作は、上記動作例に限らない。例えば、撮影装置10bは、光源制御部60を備えず、使用中に第1光源41及び第2光源42が、常時、又は、一定間隔で、サブテラヘルツ波を射出する光源であってもよい。ステップS21においては、人100による反射波が第1検出器51に入射する範囲は、図10Aの第1検出器51から延びた破線で示される範囲であり、当該範囲には、第2光源42及び反射板20bが位置していない。つまり、第1検出器51は、人100が撮影空間102の後方側の端部に位置する場合の、第1検出器51における人100による反射波を受波可能な角度範囲に、第2光源42及び反射板20bが入らないような位置関係で配置されている。同様に、ステップS22においては、人100による反射波が第2検出器52に入射する範囲は、図10Bの第2検出器52から延びた破線で示される範囲であり、当該範囲には、第1光源41及び反射板20bが位置していない。つまり、第2検出器52は、人100が撮影空間102の前方側の端部に位置する場合の、第2検出器52における人100による反射波を受波可能な角度範囲に、第1光源41及び反射板20bが入らないような位置関係で配置されている。そのため、ステップS21及びステップS22において、第1光源41及び第2光源42は、同時にサブテラヘルツ波を射出していても、第1検出器51及び第2検出器52によって生成された画像の人100による反射波による像が不鮮明になりにくい。
[変形例3]
次に、実施の形態1の変形例3に係る撮影装置について説明する。
次に、実施の形態1の変形例3に係る撮影装置について説明する。
実施の形態1の変形例3に係る撮影装置は、実施の形態1に係る撮影装置と比べて、検出器が反射板よりも前方及び後方に位置している人、及び、撮影空間を通過している人の画像を生成する点で主に相違する。また、実施の形態1の変形例3に係る撮影装置は、実施の形態1に係る撮影装置と比べて、各検出器が複数備えられている点でも相違する。また、実施の形態1の変形例3に係る撮影装置は、実施の形態1に係る撮影装置と比べて、通路が延びる方向における反射板の長さ、及び、第1検出器と第2検出器との距離が短くなっている。以下では実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
図11は、本変形例に係る撮影装置10cを上方から見た場合の模式図である。図11に示されるように、撮影装置10cは、撮影装置10の反射板20の代わりに、反射板20cを備え、撮影装置10の第1検出器51、第2検出器52、第3検出器53及び第4検出器54の代わりに、複数の第1検出器51a、51b、複数の第2検出器52a、52b、複数の第3検出器53a、53b及び複数の第4検出器54a、54bを備える構成である。撮影装置10cにおいて、反射板20c、複数の第1検出器51a、51b、複数の第2検出器52a、52b、複数の第3検出器53a、53b及び複数の第4検出器54a、54b以外の構成は、撮影装置10と同じである。
反射板20cは、人100が通過する通路101上の撮影空間102を、通路101の両側部の少なくとも一方から覆う。本変形例においては、反射板20cは、人100が通過する通路101上の撮影空間102を通路101の両側部から挟む。また、本変形例においては、一対の反射板20cが、人100が通過する通路101の両側部の床面から立設して対向している。一対の反射板20cは、それぞれ、反射板20cの厚み方向から見た場合の正面となる面である2つの面として、内側面25cと外側面28cとを有する。反射板20cは、反射板20より、通路101の延びる方向における長さが短い以外の点は、反射板20と同様の構成であり、詳細な説明は省略する。
複数の第1検出器51a、51bは、それぞれ、通路101の延びる方向において、反射板20cよりも前方側に位置する。複数の第1検出器51a、51bは、通路101の延びる方向に沿って並んでいる。具体的には、第1検出器51aと第1検出器51bとは、この順で、反射板20cから遠い側、つまり前方側から、通路101が延びる方向に沿って、並んでいる。複数の第1検出器51a、51bは、それぞれ、第1検出器51と同様にイメージセンサ55と光学系56とを含む。
複数の第2検出器52a、52bは、それぞれ、通路101の延びる方向において、反射板20cよりも後方側に位置する。第2検出器52aと第2検出器52bとは、この順で、反射板20cから遠い側、つまり後方側から、通路101が延びる方向に沿って、並んでいる。複数の第2検出器52a、52bは、それぞれ、第2検出器52と同様にイメージセンサ55aと光学系56aとを含む。
複数の第3検出器53a、53bは、それぞれ、通路101の延びる方向において、反射板20cよりも前方側に位置する。第3検出器53aと第3検出器53bとは、この順で、反射板20cから遠い側、つまり前方側から、通路101が延びる方向に沿って、並んでいる。複数の第3検出器53a、53bは、それぞれ、第3検出器53と同様にイメージセンサ55bと光学系56bとを含む。
複数の第4検出器54a、54bは、それぞれ、通路101の延びる方向において、反射板20cよりも後方側に位置する。第4検出器54aと第4検出器54bとは、この順で、反射板20cから遠い側、つまり後方側から、通路101が延びる方向に沿って、並んでいる。複数の第4検出器54a、54bは、それぞれ、第4検出器54と同様にイメージセンサ55cと光学系56cとを含む。
次に、本変形例に係る撮影装置10cの動作例について説明する。
以下の動作例の説明では、撮影装置10cが、撮影空間102を後方から前方に向かって通過する人100の画像を撮影する動作について説明する。図12A、図12B、図12C及び図12Dは、本変形例に係る撮影装置10cの動作例を説明するための図である。
まず、図12Aに示されるように、ステップS31では、人100が、撮影空間102に向かって進行し、反射板20cよりも後方側に位置している。光源制御部60は、人100が反射板20cよりも後方側に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。光源制御部60は、例えば、人100が反射板20cの後方側に存在していることを示す信号をセンサ80から受信することで、人100が存在していることを検知する。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20cで1回以上拡散反射し、内側面25cから人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第1検出器51bに入射する。第1検出器51bは、人100による反射波を受波する。撮影制御部70は、光源制御部60が第1光源41にサブテラヘルツ波を射出させているタイミングで、第1検出器51bに、第1検出器51bが受波した反射波に基づいて画像を生成させる。これにより、第1検出器51bは、人100の前方側の面の画像を生成する。第1検出器51bは、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第1検出器51bによる画像の生成が完了したことを検知し、第1光源41を消灯させる。
次に、図12Bに示されるように、ステップS32では、人100は、ステップS31での位置から前方に進んでおり、撮影空間102に進入し、撮影空間102の後方側の端部に位置する。つまり、人100は、撮影空間102の後方側の端部を通過している。光源制御部60は、人100が撮影空間102の後方側の端部に存在していることを検知すると、第1光源41にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第2光源42にサブテラヘルツ波を射出させない。
第1光源41から射出されたサブテラヘルツ波は、反射板20cで1回以上拡散反射し、内側面25cから人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第1検出器51aに入射する。第1検出器51aは、人100による反射波を受波する。撮影制御部70は、光源制御部60が第1光源41にサブテラヘルツ波を射出させているタイミングで、第1検出器51aに、第1検出器51aが受波した反射波に基づいて画像を生成させる。つまり、第1検出器51aは、撮影空間102の後方側の端部を通過している人100による反射波に基づいて画像を生成する。これにより、第1検出器51aは、人100の前方側の面の画像を生成する。第1検出器51aは、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第1検出器51aによる画像の生成が完了したことを検知し、第1光源41を消灯させる。
このように、ステップS31からステップS32において、複数の第1検出器51a、51bは、通路101の延びる方向における反射板20cよりも後方側に位置している人100による反射波、及び、撮影空間102を通過している人100による反射波それぞれに基づいて複数の画像を生成する。これにより、撮影装置10cは、人100が撮影空間102に進入する前から、人100の画像を生成するため、反射板20cの通路101が延びる方向における長さを短縮できる。その結果、撮影装置10cの小型化が可能になる。また、人100は、撮影空間102を通過する際に、反射板20cに挟まれるため、閉塞感を感じる可能性があるが、反射板20cの長さが短縮されることで、人100の閉塞感が軽減される。例えば、通路101の延びる方向において、反射板20cの長さは、ステップS31からステップS32で人100が移動する長さの分、反射板20bの長さよりも短くできる。
また、ステップS31とステップS32とでは、画像を生成させる検出器を、通路101が延びる方向に並ぶ第1検出器51aと第1検出器51bとに変更することで、同様の検出器への入射角度での反射波に基づく画像が撮影される。
また、ステップS31とステップS32とでは、人100に入射するサブテラヘルツ波の角度範囲が上述の実施の形態1の動作例(例えば、ステップS1)等の場合と比べると狭くなる。しかしながら、ステップS31とステップS32とでは、人100に入射するサブテラヘルツ波の角度範囲が異なるために、異なる角度で入射したサブテラヘルツ波の、人100による反射波に基づく画像が撮影される。具体的には、ステップS31では、内側面25cに対する傾斜の比較的小さいサブテラヘルツ波が人100に入射し、ステップS32では、内側面25cに対する傾斜の比較的大きいサブテラヘルツ波が人100に入射する。これにより、撮影される複数の画像において撮影される人100における面が異なることになり、撮影装置10cを人が隠し持つ危険物等の検知に用いる場合の検知精度の低下を抑制できる。
また、例えば、ステップS31からステップS32で人100が移動する長さの分、第1検出器51aと第1検出器51bとが離れて配置されることで、人100による反射波の第1検出器51aと第1検出器51bへの入射角度が同じになる。この場合には、ステップS31とステップS32とでは、人100に入射するサブテラヘルツ波の角度範囲が異なるため、人100に入射するサブテラヘルツ波の異なる傾斜に由来する反射波が検出器に向かって反射する。つまり、ステップS31とステップS32とでは、内側面25cに対して異なる傾斜の、人100に入射するサブテラヘルツ波が、検出器に向かって反射する。そのため、第1検出器51aと第1検出器51bとで撮影の際に入射する人100による反射波の入射角度が同じになることで、第1検出器51aと第1検出器51bとによって撮影される画像は、人100において撮影される面の重複範囲が減少する。
また、画像処理部90は、ステップS31で第1検出器51bによって生成された画像と、ステップS32で第1検出器51aによって生成された画像とを合成する画像処理を行ってもよい。
次に、図12Cに示されるように、ステップS33では、人100は、ステップS32での位置から前方に進んでおり、撮影空間102の前方側の端部に位置する。つまり、人100は、撮影空間102の前方側の端部を通過している。光源制御部60は、人100が撮影空間102の前方側の端部に存在していることを検知すると、第2光源42にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20cで1回以上拡散反射し、内側面25cから人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第2検出器52aに入射する。第2検出器52aは、人100による反射波を受波する。撮影制御部70は、光源制御部60が第2光源42にサブテラヘルツ波を射出させたタイミングで、第2検出器52aに、第2検出器52aが受波した反射波に基づいて画像を生成させる。つまり、第2検出器52aは、撮影空間102の前方側の端部を通過している人100による反射波に基づいて画像を生成する。これにより、第2検出器52aは、人100の後方側の面の画像を撮影する。第2検出器52aは、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第2検出器52aによる画像の生成が完了したことを検知し、第2光源42を消灯させる。
次に、図12Dに示されるように、ステップS34では、人100は、ステップS33での位置から前方に進んでおり、反射板20cよりも前方側に位置する。光源制御部60は、人100が反射板20cよりも前方側に存在していることを検知すると、第2光源42にサブテラヘルツ波を射出させる。また、この際、光源制御部60は、第1光源41にサブテラヘルツ波を射出させない。
第2光源42から射出されたサブテラヘルツ波は、反射板20cで1回以上拡散反射し、内側面25cから人100に照射される。人100に照射されたサブテラヘルツ波の、人100による反射波は、第2検出器52bに入射する。第2検出器52bは、人100による反射波を受波する。撮影制御部70は、光源制御部60が第2光源42にサブテラヘルツ波を射出させているタイミングで、第2検出器52bに、第2検出器52bが受波した反射波に基づいて画像を生成させる。これにより、第2検出器52bは、人100の後方側の面の画像を生成する。第2検出器52bは、生成した画像を画像処理部90に出力する。光源制御部60は、例えば、第2検出器52bによる画像の生成が完了したことを検知し、第2光源42を消灯させる。
このように、ステップS33からステップS34における複数の第2検出器52a、52bの画像の生成においても、ステップS31からステップS32における複数の第1検出器51a、51bの画像の生成と同様の効果が得られる。
なお、本変形例において、撮影装置10cは、複数の第1検出器51a、51bの代わりに、1つの第1検出器51を備えていてもよい。この場合、第1検出器51は、例えば、第1検出器51aと第1検出器51bとが配置されている位置の間のいずれかの位置に配置される。また、撮影装置10cは、第1検出器51aと第1検出器51bとが配置されている位置の間で第1検出器51を移動させる駆動機構を備え、第1検出器51が、ステップS31においては第1検出器51bの位置に移動し、ステップS32においては第1検出器51aの位置に移動してもよい。これらは、複数の第2検出器52a、52b、複数の第3検出器53a、53b並びに複数の第4検出器54a、54bについても、複数の第1検出器51a、51bと同様である。
(実施の形態2)
実施の形態1において、サブテラヘルツ波を拡散反射する拡散部材の一例として、反射板20を例示して説明した。しかしながら、実施の形態1に係る撮影装置10は、サブテラヘルツ波を拡散反射する拡散部材として、必ずしも、反射板20の通りの拡散部材を利用する必要はない。
実施の形態1において、サブテラヘルツ波を拡散反射する拡散部材の一例として、反射板20を例示して説明した。しかしながら、実施の形態1に係る撮影装置10は、サブテラヘルツ波を拡散反射する拡散部材として、必ずしも、反射板20の通りの拡散部材を利用する必要はない。
本実施の形態2では、実施の形態1に係る撮影装置10において反射板20の替わりに利用可能な、他の拡散部材の一例について説明する。
図13は、実施の形態2に係る拡散部材30の斜視図である。
拡散部材30は、サブテラヘルツ波を拡散反射する。
図13に示すように、拡散部材30は、サブテラヘルツ波を反射する反射面31を備える。
以下、拡散部材30は、板状であるとして説明するが、拡散部材30は、サブテラヘルツ波を反射する反射面を備えていれば、必ずしも、板状である構成に限定される必要はない。拡散部材30は、例えば、回転楕円体の外殻の一部からなる形状である構成であってもよい。
図14Aは、図13に示す拡散部材30の、反射面31側から見た拡大平面図であり、図14Bは、図13に示す拡散部材30の、法線方向で断面にした拡大断面図である。
図14Bに示すように、拡散部材30は、反射部材21dと、被覆部材27dとが積層されて構成される。
反射部材21dは、その表面においてサブテラヘルツ波を反射する。このため、反射面31は、反射部材21dの表面により形成される。反射部材21dは、例えば、実施の形態1に係る反射部材21と同様の、金属又は導電性酸化物等の導電性部材で構成される。
反射部材21dは、例えば、その表面に凹凸形状が形成される被覆部材27d上に反射部材21と同じ材料を蒸着又はスプレー等による塗布によって成膜することで形成される。
被覆部材27dは、実施の形態1に係る被覆部材27と同様の機能を有する。
以下、拡散部材30は、反射面31が拡散部材30の表面に露出しているとして説明するが、拡散部材30は、実施の形態1に係る反射板20のように、反射面31の表面が被覆部材によって被覆される構成であってもよい。
図14A、図14Bに示すように、反射部材21dの表面には、複数の凹部32が形成される。すなわち、反射面31は、複数の凹部32を有する。
複数の凹部32のそれぞれの形状は、球面の一部からなる。このため、複数の凹部32は、互いに相似形の部分を有する。
複数の凹部32のそれぞれは、例えば、複数の凹部32が形成される前の、板状の被覆部材27dの表面(以下、「拡散部材仮想表面」とも称する)に対して、表面が球面の一部となるように凹型に研削加工することで形成される。
図15は、反射部材21dに凹部32を形成する様子の一例を示す拡散部材30の拡大断面図であって、拡散部材30の法線方向における凹部32の頂点の位置を通る断面における拡大断面図である。
図15に示すように、複数の凹部32のそれぞれは、拡散部材仮想表面に対する外接面のなす角度の最大値がθ_max(θ_maxは0°より大きく45°よりも小さい角度)となる球冠状に、すなわち、中心角が2θ_maxとなる球冠状に研削加工することで形成される。
複数の凹部32において、θ_maxは互いに等しいのに対して、球冠の半径rは必ずしも互いに等しくない。このため、複数の凹部32を形成するために凹型に研削加工される複数の球冠(以下、「凹部形成用球冠」とも称する)のそれぞれは、互いに相似形である。
また、図14Aに示されるように、複数の凹部形成用球冠は、拡散部材30の平面視において、一部が互いに重なり合うように研削加工されて形成される。ここでは、複数の凹部形成用球冠は、拡散部材仮想表面が一部でも残らないように、一部が互いに重なり合うように研削加工されて形成される。このため、反射面31には、図14Bのように拡散部材30の法線方向と垂直な方向の平坦な領域が存在しない。
図15に示すように、凹部形成用球冠の半径をrとした場合に、拡散部材30の法線方向における、凹部32の頂点と拡散部材仮想表面との距離hは、h=r(1-sin(θ_max))で表される。
ここでは、第1光源41及び第2光源42から射出されるサブテラヘルツ波の波長をλとする場合に、複数の凹部32における上記距離hは、0からL(L≧λ/2)の範囲に分布している。
ここでは、サブテラヘルツ波の波長λが3.0mmであり、Lが3.87mmであるとして説明する。
図16Aは、距離hが0から3.87mmの範囲に分布している様子を示す度数分布図である。ここで、3.87mmは、3.0/2=1.5mm以上となっている。図16Aにおいて、横軸は高さh[mm]、縦軸は頻度である。
図16Bは、比較例に係る拡散部材において、距離hが0から1.16mmの範囲に分布している様子を示す度数分布図である。ここで、1.16mmは、3.0/2=1.5mm未満となっている。図16Bにおいて、横軸は高さh[mm]、縦軸は頻度である。
図17Aは、拡散部材30の法線方向に入射するサブテラヘルツ波が、拡散部材30により拡散反射される場合における、反射波の反射角と強度との関係を示す相関図である。図17Aにおいて、横軸は反射波の反射角、縦軸は反射波の強度である。
図17Bは、比較例に係る拡散部材の法線方向に入射するサブテラヘルツ波が、比較例に係る拡散部材により拡散反射される場合における、反射波の反射角と強度との関係を示す相関図である。図17Bにおいて、横軸は反射波の反射角、縦軸は反射波の強度である。
比較例に係る拡散部材ように、拡散部材30の法線方向における、複数の凹部32の各頂点の位置がλ/2より小さな範囲にしか分布していない場合には、図17Bに示すように、上記法線方向に入射するサブテラヘルツ波の強度には、反射角0°付近に顕著なピークが生じてしまう。これに対して、本開示に係る拡散部材30は、上記法線方向における各頂点の位置の分布がλ/2以上の範囲にまで広げることで、図17Aに示すように、上記法線方向に入射するサブテラヘルツ波の強度には、反射角0°付近に顕著なピークが生じないようにすることができる。
また、図15に示すように、凹部形成用球冠は、その表面が球面の一部であるため、その外接面と、拡散部材30の仮想表面との間の角度θ1は、0°からθ_maxの範囲において連続して分布する。このため、複数の凹部32のそれぞれは、外接面間のなす角度θ2は、0°からθ(θは、0°より大きく90°より小さい角度)の範囲において連続して分布する。
図18は、サブテラヘルツ波が、凹部32の反射面31により反射される様子の一例を示す拡散部材30の拡大断面図であって、拡散部材30の法線方向における、凹部32の頂点の位置を通る断面における拡大断面図である。ここでは、凹部32の外接面と拡散部材仮想表面との間の角度θ1の最大値がθ3である場合の例となっている。
前述したように、凹部32の表面が球面の一部であるため、θ1は0°からθ3の範囲において連続して分布する。このため、凹部32の反射面31により反射される反射波の反射角は、0°から2θ3の範囲において連続して分布する。このため、凹部32は、サブテラヘルツ波を、4θ3の範囲に拡散反射することができる。
ここで、凹部32の外接面と拡散部材仮想表面との間の角度θ3に対応する、外接面間のなす角度θは、θ=2θ3となる。すなわち、上記構成の拡散部材30は、凹部32のそれぞれにおいて、外接面間のなす角度が0°からθ(θは0°より大きく90°よりも小さい角度)の範囲において連続して分布することにより、サブテラヘルツ波を、2θの範囲に拡散反射することができる。このように、上記構成の拡散部材30によると、サブテラヘルツ波を所望の範囲に拡散反射させることができる。
<考察>
一般に、サブテラヘルツ波は、平坦な領域により鏡面反射される。これに対して、上記構成の拡散部材30は、反射面31に、拡散部材30の法線方向と垂直な方向の平坦な部分が存在しない。
一般に、サブテラヘルツ波は、平坦な領域により鏡面反射される。これに対して、上記構成の拡散部材30は、反射面31に、拡散部材30の法線方向と垂直な方向の平坦な部分が存在しない。
したがって、上記構成の拡散部材30によると、サブテラヘルツ波の鏡面反射を抑制することができる。
前述したように、拡散部材30の法線方向における、複数の凹部32の各頂点の位置がλ/2より小さな範囲にしか分布していない場合には、上記法線方向に入射するサブテラヘルツ波の強度には、反射角0°付近に顕著なピークが生じてしまう。これに対して、上記構成の拡散部材30によると、上記法線方向における各頂点の位置の分布がλ/2以上の範囲にまで広がっている。
このとき、上記構成の拡散部材30によると、サブテラヘルツ波の反射波の強度に顕著なピークが生じてしまうことを抑制することができる。
なお、実施の形態2において、拡散部材30は、複数の凹部32のそれぞれの形状が球面の一部からなるとして説明した。しかしながら、拡散部材30は、複数の凹部32のそれぞれの形状が、外接面間のなす角度θが0°からθの範囲において連続して分布する形状であれば、必ずしも、球面の一部からなる構成に限定される必要はない。例えば、拡散部材30は、複数の凹部32のそれぞれの形状が、回転楕円体の表面の一部からなる構成であるとしても構わない。
なお、実施の形態2において、拡散部材30は、反射面31には、拡散部材30の法線方向と垂直な方向の平坦な領域が存在しないとして説明した。これに対して、拡散部材30は、例えば、一定程度以上に鏡面反射を抑制する必要が無い場合には、他の構成例として、反射面31に、拡散部材30の法線方向と垂直な方向の平坦な領域が存在する構成例も考えられる。
なお、実施の形態2において、拡散部材30は、反射面31が複数の凹部32を有するとして説明した。これに対して、他の構成例として、拡散部材30は、反射面31が、複数の凹部32の替わりに、複数の凸部を備える構成の例も考えられる。
図19は、反射面31が、複数の凹部32の替わりに、複数の凸部33を備える構成である場合における拡散部材30の一例を示す拡大断面図である。
複数の凸部33のそれぞれの形状は、複数の凹部32のそれぞれの形状から、その凹凸方向が逆転した形状である。
また、拡散部材30の法線方向における、凸部33の頂点と拡散部材仮想表面との距離hは、0からL(L≧λ/2)の範囲に分布する。
反射面31が複数の凸部33を備える上記構成の拡散部材30は、反射面31が複数の凹部32を備える構成の拡散部材30の場合と同様に、凸部33の外接面と拡散部材仮想表面との間の角度の最大値をθ3とする場合に、サブテラヘルツ波を、4θ3の範囲に拡散反射することができる。ここで、凸部33の外接面と拡散部材仮想表面との間の角度θ3に対応する、外接面間のなす角度θは、θ=2θ3となる。すなわち、反射面31が複数の凸部33を備える上記構成の拡散部材30は、反射面31が複数の凹部32を備える構成の拡散部材30の場合と同様に、サブテラヘルツ波を、2θの範囲に拡散反射することができる。すなわち、上記構成の、反射面31が複数の凸部33を備える上記構成の拡散部材30によると、サブテラヘルツ波を所望の範囲に拡散反射させることができる。
また、反射面31が複数の凸部33を備える上記構成の拡散部材30は、反射面31が複数の凹部32を備える構成の拡散部材30の場合と同様に、拡散部材30の法線方向における各頂点の位置の分布がλ/2以上の範囲にまで広がっている。
したがって、反射面31が複数の凸部33を備える上記構成の拡散部材30によると、サブテラヘルツ波の強度に顕著なピークが生じてしまうことを抑制することができる。
(他の実施の形態)
以上、本開示に係る撮影装置について、実施の形態に基づいて説明したが、本開示は、これら実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形をこれら実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つ又は複数の態様の範囲内に含まれる。
以上、本開示に係る撮影装置について、実施の形態に基づいて説明したが、本開示は、これら実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形をこれら実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の1つ又は複数の態様の範囲内に含まれる。
例えば、上記実施の形態及び各変形例では、反射板20、20a、20b、20cは、それぞれ、平板状であったがこれに限らない。反射板20、20a、20b、20cの少なくとも一部は湾曲していてもよい。反射板20、20a、20b、20cは、例えば、一対の反射板20の上方側、前方側及び後方側の少なくともいずれかの箇所が互いに近づくように湾曲した板状であってもよい。また、反射板20、20a、20b、20cは、複数に分割して設けられていてもよい。
また、上記実施の形態及び各変形例において、撮影装置10、10a、10b、10cは、一対の反射板20、20a、20b、20cに加えて、撮影空間102の上方及び下方の少なくとも一方に位置し、サブテラヘルツ波を拡散反射する反射板を備えていてもよい。図18は、変形例に係る反射板を前方から見た場合の模式図である。図18においては、反射板20d以外の撮影装置の構成要素の図示が省略されている。図18に示されるように、3つの反射板20dは、撮影空間102を通路101の両側部から挟み、さらに、撮影空間102の上方を覆っている。これにより、撮影空間102に入射したサブテラヘルツ波が、撮影空間102の上方から出ることが抑制されるため、サブテラヘルツ波が撮影空間102にとどまりやすくなる。例えば、3つの反射板20dは、一対の反射板20、20a、20b、20cの代わりに撮影装置10、10a、10b、10cに備えられてもよい。
また、上記実施の形態及び各変形例において、反射板20、20a、20b、20cは、反射部材21と被覆部材24及び被覆部材27とを有していたが、これに限らない。反射板20は、被覆部材24及び被覆部材27のうちの一方のみを有していてもよい。また、反射板20、20a、20b、20cは、被覆部材24及び被覆部材27を有さず、反射部材21で構成されていてもよい。その場合、主面22が内側面25を構成し、主面23が外側面28を構成する。
また、上記実施の形態及び各変形例において、撮影装置10、10a、10b、10cは、光源制御部60、撮影制御部70及びセンサ80を備えていなくてもよい。例えば、撮影装置10、10a、10b、10cは、ユーザからの操作を受け付ける操作受付部を備え、ユーザからの操作に基づいて、人100を撮影し、上記実施の形態及び各変形例の動作例の動作等を行ってもよい。
また、上記実施の形態及び各変形例では、撮影対象物は人100であったが、これに限らない。撮影対象物は、荷物等であってもよい。
また、上記実施の形態及び各変形例において、撮影装置10、10a、10b、10cは、撮影制御部70を備えていなくてもよく、例えば、撮影装置10、10a、10b、10cにおいて、各検出器が撮影制御部70の機能を有していてもよい。また、各検出器は、画像を生成するタイミングを制御されず、連続的に生成した複数の画像を画像処理部90に出力してもよい。
また、上記実施の形態及び各変形例において、撮影装置10、10a、10b、10cは、センサ80を備えていなくてもよく、例えば、光源制御部60及び撮影制御部70は、撮影装置10、10a、10b、10cの周囲に備えられているカメラ等の外部センサから信号を取得してもよい。
また、例えば、撮影装置10は、上記実施の形態及び各変形例で説明した各構成要素を全て備えていなくてもよく、目的の動作をさせるための構成要素のみで構成されていてもよい。
また、上記実施の形態において、光源制御部60、撮影制御部70及び画像処理部90等の各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
また、各構成要素は、回路(又は集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
また、本発明の包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び非一時的な記録媒体の任意な組み合わせで実現されてもよい。例えば、本発明は、撮影装置の各構成要素が備える制御部等が行う制御をコンピュータに実行させるためのプログラムとして実現されてもよい。
また、上記実施の形態において説明された撮影装置の動作における複数の処理の順序は一例である。複数の処理の順序は、変更されてもよいし、複数の処理は、並行して実行されてもよい。
また、上記実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示は、サブテラヘルツ波を拡散反射する拡散反射部材に広く利用可能である。
10、10a、10b、10c 撮影装置
20、20a、20b、20c、20d 反射板
21、21d 反射部材
22、23 主面
24、27、27d 被覆部材
25、25a、25b、25c 内側面
28、28a、28b、28c 外側面
30 拡散部材
31 反射面
32 凹部
33 凸部
41 第1光源
41a 点光源
41b 線光源
42 第2光源
51、51a、51b 第1検出器
52、52a、52b 第2検出器
53、53a、53b 第3検出器
54、54a、54b 第4検出器
60 光源制御部
70 撮影制御部
80 センサ
90 画像処理部
100 人
101 通路
102 撮影空間
20、20a、20b、20c、20d 反射板
21、21d 反射部材
22、23 主面
24、27、27d 被覆部材
25、25a、25b、25c 内側面
28、28a、28b、28c 外側面
30 拡散部材
31 反射面
32 凹部
33 凸部
41 第1光源
41a 点光源
41b 線光源
42 第2光源
51、51a、51b 第1検出器
52、52a、52b 第2検出器
53、53a、53b 第3検出器
54、54a、54b 第4検出器
60 光源制御部
70 撮影制御部
80 センサ
90 画像処理部
100 人
101 通路
102 撮影空間
Claims (5)
- サブテラヘルツ波を拡散反射する拡散部材であって、
前記サブテラヘルツ波を反射する反射面を備え、
前記反射面は、複数の凸部または複数の凹部を有し、
前記複数の凸部または前記複数の凹部のそれぞれは、外接面間のなす角度が、0°からθ(θは0°より大きく90°よりも小さい角度)の範囲において連続して分布する
拡散部材。 - 前記拡散部材は板状であり、
前記反射面には、前記拡散部材の法線方向と垂直な方向の平坦な領域が存在しない
請求項1に記載の拡散部材。 - 前記拡散部材は、板状であり、
前記拡散部材の法線方向における、前記複数の凸部または前記複数の凹部のそれぞれの頂点の位置は、前記サブテラヘルツ波の波長をλとする場合において、0からL(L≧λ/2)の範囲に分布する
請求項1または請求項2に記載の拡散部材。 - 前記複数の凸部または前記複数の凹部は、互いに相似形の部分を有する
請求項1から請求項3のいずれか1項に記載の拡散部材。 - 前記互いに相似形の部分は、球面の一部である
請求項4に記載の拡散部材。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021078350 | 2021-05-06 | ||
JP2021-078350 | 2021-05-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022234685A1 true WO2022234685A1 (ja) | 2022-11-10 |
Family
ID=83932065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036913 WO2022234685A1 (ja) | 2021-05-06 | 2021-10-06 | 拡散部材 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022234685A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004177162A (ja) * | 2002-11-25 | 2004-06-24 | Alps Electric Co Ltd | 反射率測定装置 |
WO2020166225A1 (ja) * | 2019-02-14 | 2020-08-20 | ソニーセミコンダクタソリューションズ株式会社 | 光源ユニット、光源装置及び測距装置 |
WO2021070428A1 (ja) * | 2019-10-09 | 2021-04-15 | パナソニックIpマネジメント株式会社 | 撮影装置 |
-
2021
- 2021-10-06 WO PCT/JP2021/036913 patent/WO2022234685A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004177162A (ja) * | 2002-11-25 | 2004-06-24 | Alps Electric Co Ltd | 反射率測定装置 |
WO2020166225A1 (ja) * | 2019-02-14 | 2020-08-20 | ソニーセミコンダクタソリューションズ株式会社 | 光源ユニット、光源装置及び測距装置 |
WO2021070428A1 (ja) * | 2019-10-09 | 2021-04-15 | パナソニックIpマネジメント株式会社 | 撮影装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021255964A1 (ja) | 撮影装置 | |
KR20210126766A (ko) | 카메라 조립체 및 전자 장치 | |
CN109917545A (zh) | 空中图像显示装置 | |
JP2019003332A (ja) | 空中映像表示装置 | |
TW201339923A (zh) | 光學觸控系統 | |
CN108938129A (zh) | 口腔扫描机 | |
CN102591532B (zh) | 双反射镜交叉定位电子白板装置 | |
US20240133676A1 (en) | Optics for vehicle occupant monitoring systems | |
WO2022234685A1 (ja) | 拡散部材 | |
TW392133B (en) | Light projection device for a photoelectric smoke sensor | |
JP7561340B2 (ja) | 撮影装置 | |
WO2022219833A1 (ja) | 撮影装置 | |
JP7492670B2 (ja) | 車両用表示装置 | |
JP2869161B2 (ja) | 赤外線画像装置用反射形チョッパ | |
US20230116330A1 (en) | Imaging apparatus | |
JP6761488B2 (ja) | 3次元情報検出装置 | |
TWI530151B (zh) | 掃描裝置 | |
JP2022139268A (ja) | 光検出装置 | |
CN115280098A (zh) | 摄影装置 | |
WO2023189876A1 (ja) | 撮影装置 | |
WO2023058265A1 (ja) | 判定装置および判定方法 | |
WO2023189875A1 (ja) | 撮影装置 | |
TWI267640B (en) | Omnidirectional electromagnetic sensing device | |
US20230108490A1 (en) | Camera system | |
JP2013096811A (ja) | ミリ波撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21939594 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |