WO2022234559A1 - Chuck for acquiring a warped workpiece - Google Patents

Chuck for acquiring a warped workpiece Download PDF

Info

Publication number
WO2022234559A1
WO2022234559A1 PCT/IL2022/050431 IL2022050431W WO2022234559A1 WO 2022234559 A1 WO2022234559 A1 WO 2022234559A1 IL 2022050431 W IL2022050431 W IL 2022050431W WO 2022234559 A1 WO2022234559 A1 WO 2022234559A1
Authority
WO
WIPO (PCT)
Prior art keywords
chuck
workpiece
extendible
inflow
vacuum ports
Prior art date
Application number
PCT/IL2022/050431
Other languages
English (en)
French (fr)
Inventor
Boaz Nishri
Ami HERMAN
Nir GURARYE
Yaacov Legerbaum
Igor BIRGER
Alon Segal
Mart GENENDER
Ronen Lautman
Original Assignee
Core Flow Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/307,002 external-priority patent/US20220250168A1/en
Application filed by Core Flow Ltd. filed Critical Core Flow Ltd.
Priority to CN202280047603.XA priority Critical patent/CN117597772A/zh
Priority to KR1020237041223A priority patent/KR20240004759A/ko
Priority to JP2023567870A priority patent/JP2024517231A/ja
Publication of WO2022234559A1 publication Critical patent/WO2022234559A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/30Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck
    • B23B31/307Vacuum chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B11/00Work holders not covered by any preceding group in the subclass, e.g. magnetic work holders, vacuum work holders
    • B25B11/005Vacuum work holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/22Feeding articles separated from piles; Feeding articles to machines by air-blast or suction device
    • B65H5/222Feeding articles separated from piles; Feeding articles to machines by air-blast or suction device by suction devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/30Suction means
    • B65H2406/34Suction grippers
    • B65H2406/343Details of sucking member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/30Suction means
    • B65H2406/36Means for producing, distributing or controlling suction
    • B65H2406/362Means for producing, distributing or controlling suction adjusting or controlling distribution of vacuum transversally to the transport direction, e.g. according to the width of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/30Suction means
    • B65H2406/36Means for producing, distributing or controlling suction
    • B65H2406/363Means for producing, distributing or controlling suction adjusting or controlling distribution of vacuum for a plurality of suction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2406/00Means using fluid
    • B65H2406/30Suction means
    • B65H2406/36Means for producing, distributing or controlling suction
    • B65H2406/363Means for producing, distributing or controlling suction adjusting or controlling distribution of vacuum for a plurality of suction means
    • B65H2406/3632Means for producing, distributing or controlling suction adjusting or controlling distribution of vacuum for a plurality of suction means means for auto adjustment of vacuum distribution according to the size of handled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/17Nature of material
    • B65H2701/172Composite material

Definitions

  • the present invention relates to chucks for holding a workpiece. More particularly, the present invention relates to a chuck that is operable to acquire a warped workpiece.
  • a chuck is used to acquire the workpiece and to manipulate the workpiece for various types of processing.
  • the chuck may operate by applying suction to the workpiece in order to hold the workpiece at a precisely defined location during processing.
  • a vacuum chuck may acquire such a wafer and hold it during processing such as coating, cutting, machining, etching, polishing, inspection, or other processing.
  • a chuck including: a chuck surface; a plurality of extendible port assemblies distributed over the chuck surface, each extendible port assembly including a conduit that is connectable to a suction source and a tube that distally extends from the chuck surface, the tube having a distal end that is configured to form a seal when in contact with a workpiece, and that is configured to collapse by suction that is applied by the suction source after formation of the seal; a plurality of non extendible vacuum ports that are interspersed with the extendible port assemblies on the chuck surface, each of the non-extendible vacuum ports including a conduit that is connectable to the suction source; and at least one areal seal that extends from the chuck surface and bounds a region of the chuck surface that includes at least one non-extendible vacuum port of the plurality of non extendible vacuum ports, the areal seal configured to form an airtight seal when the areal seal is in contact with the workpiece
  • the tube is configured to re-extend after cessation of application of the suction.
  • the conduit includes a flow restrictor that is characterized by a flow resistance.
  • the flow resistance of the flow restrictor in the conduit of one non-extendible vacuum port of the plurality of non-extendible vacuum ports is less than the flow resistance of the flow restrictor of at least the conduit of one other non-extendible vacuum port of the plurality of non-extendible vacuum ports.
  • the chuck surface is divided into a plurality of contiguous regions, and wherein the flow resistances of the flow restrictors of the conduits of the non-extendible vacuum ports in each contiguous region are substantially equal.
  • the plurality of contiguous regions includes a plurality of concentric circular bands.
  • the plurality of contiguous regions includes a plurality of circle sectors divided by radii.
  • the plurality of contiguous regions are divided by parallel chords.
  • the flow restrictor is selected from a group of flow restrictors consisting of a constriction, a baffle and a self-adapting segmented orifice (SASO).
  • SASO segmented orifice
  • the tube is in the form of a bellows with accordion folds.
  • the conduits of the plurality of non-extendible vacuum ports each includes a sensor to sense inflow through the conduits and a valve that is operable to enable or disable inflow through that conduit.
  • a controller is configured to receive a signal from the sensor and, when the sensor indicates reduced inflow through some non-extendible vacuum ports of the plurality of non-extendible vacuum ports, the reduced flow being indicative of acquisition of a warped workpiece by the some non-extendible vacuum port, and non-reduced inflow through at least one other non-extendible vacuum port of the plurality of non-extendible vacuum ports, the non-reduced inflow being indicative of failure to acquire the warped workpiece by the at least one other non-extendible vacuum port, to operate the valve of the conduit of at least one non-extendible vacuum port of the plurality of non-extendible vacuum ports to disable inflow through the at least one other non-extendible vacuum port.
  • the senor includes a flowmeter.
  • the reduced inflow is indicated by a sensed rate of flow that is less than a predetermined threshold flowrate.
  • the senor includes a pressure sensor.
  • the reduced inflow is indicated by a sensed fluid pressure that is below a predetermined threshold pressure.
  • each non extendible vacuum port is surrounded by a flexible cup that is configured to form a seal between the workpiece and that non-extendible vacuum port.
  • each non extendible vacuum port includes a pin to limit local bending of the workpiece when acquired by that non-extendible vacuum port.
  • the at least one other non-extendible vacuum port includes a plurality of the non-extendible vacuum ports, the controller being further configured, after disabling inflow through the at least one non-extendible vacuum port of the at least one other non-extendible vacuum port, to determine whether inflow has been reduced through at least one additional non-extendible vacuum port of the at least one other non-extendible vacuum port.
  • the controller is further configured, upon determining that the inflow has been reduced through the at least one additional non-extendible vacuum port, to enable inflow through at least one non-extendible vacuum port through which inflow was previously disabled.
  • FIG. 1A schematically illustrates an example of a chuck that is configured to flatten a warped workpiece, according to some embodiments of the invention.
  • Fig. IB is a schematic side view of the chuck shown in Fig. 1A.
  • Fig. 1C is a schematic top view of the chuck shown in Fig. 1A.
  • Fig. ID is a schematic block diagram of the chuck shown in Fig. 1 A.
  • Fig. IE schematically illustrates a chuck where groups of vacuum ports are divided into groups by parallel chords, in accordance with an embodiment of the invention.
  • FIG. IF schematically illustrates a chuck where groups of vacuum ports are divided into groups by radii, in accordance with an embodiment of the invention.
  • FIG. 2A schematically illustrates a variant of the chuck shown in Fig. 1A that includes projections for preventing contact of a workpiece with the chuck surface.
  • Fig. 2B is an enlarged view of a section of the surface of the chuck shown in Fig. 2A.
  • Fig. 2C schematically illustrates a cross section of a vacuum port with an extendible and retractable tube structure for facilitating acquisition of a workpiece.
  • Fig. 3A is a schematic block diagram of the flow control of a chuck that is configured to hold a warped workpiece, according to some embodiments of the invention.
  • FIG. 3B schematically illustrates a vacuum port of the chuck shown in Fig. 3A.
  • Fig. 4 is a flowchart depicting a method of operation of the chuck shown in Fig. 3A.
  • Fig. 5 is a flowchart depicting a variant of the method of operation depicted in Fig. 4.
  • FIG. 6A schematically illustrates a chuck that includes vacuum ports with extendible and retractable tube structure as shown in Fig. 2C.
  • Fig. 6B is a schematic sectional side view of the chuck shown in Fig. 6A. DETAILED DESCRIPTION OF THE INVENTION
  • the terms “plurality” and “a plurality” as used herein may include, for example, “multiple” or “two or more”.
  • the terms “plurality” or “a plurality” may be used throughout the specification to describe two or more components, devices, elements, units, parameters, or the like.
  • the method embodiments described herein are not constrained to a particular order or sequence. Additionally, some of the described method embodiments or elements thereof can occur or be performed simultaneously, at the same point in time, or concurrently. Unless otherwise indicated, the conjunction “or” as used herein is to be understood as inclusive (any or all of the stated options).
  • a chuck is configured to acquire and hold a warped workpiece.
  • the workpiece may be a silicon wafer that is to be processed for incorporation into one or more electronic components, a thin pane of glass (e.g., for incorporation into a touchscreen or display screen), or other types of substrates that may become warped during their formation or subsequent handling.
  • the warping may exhibit concave curvature along one or two axes, convex curvature along one or two axes, or a mixture of concave and convex curvatures, such as in a wavy surface or saddle shape.
  • References herein to concave and convex curvatures of the workpiece refer to the surface of the workpiece that faces, and is visible from the direction of, the chuck, and that is to be acquired and held by the chuck.
  • a chuck includes a plurality of vacuum ports that are distributed over a grasping surface of the chuck.
  • Each of the vacuum ports is connected to a suction source that is operable to apply suction to the vacuum ports.
  • the suction source may include a pump, blower, or other type of device for generating pneumatic suction. All of the vacuum ports may be connected to the same suction source. Alternatively, different subsets of vacuum ports may be connected to different suction sources.
  • a distribution pattern of the vacuum ports over the grasping surface may be designed in accordance with the type of workpiece with which that chuck is to be used, and which may include any anticipated warpage, e.g., dictated by the type of workpiece or the actual warpage of an individual workpiece.
  • a sensor may be operated to sense the topography of the surface of a particular workpiece.
  • a controller of a system that includes a plurality of chucks may select a chuck that is configured or optimized for that type of workpiece for efficient grasp and manipulation of that workpiece.
  • a tube or conduit that connects each vacuum port to the suction source may include one or more valves, flow restrictors (e.g., constrictions or narrowing, baffles, self-adapting segmented orifice (SASO) flow restrictors, or another type of flow restrictor), vacuum or flow sensors, or other components for modifying, controlling, or monitoring inflow through the vacuum port.
  • SASO self-adapting segmented orifice
  • the strength of the suction that is applied via each vacuum port also referred to herein as the vacuum level of that vacuum port, may depend on the types and numbers of flow restrictors, as well as on the state of any valves, in the fluidic path between the suction source and that vacuum port.
  • a vacuum or suction level of a vacuum port may be quantified by a rate of inflow through the vacuum port when the vacuum port is uncovered, or by a level of vacuum within the port when the port is covered so as to prevent inflow.
  • the chuck may be configured to flatten a warped workpiece.
  • Different contiguous regions of the chuck may be designed to have different rates of inflow through the vacuum ports in order to achieve the flattening.
  • Different rates of inflow may be accomplished by providing the vacuum ports in the different regions with flow restrictors having different flow resistances.
  • the flow resistance may be relatively (as compared to other regions of the chuck surface) high, resulting in a relatively low rate of inflow in regions of the chuck surface where the surface of the warped workpiece is expected to be initially relatively close to the chuck surface.
  • the flow resistance may be relatively low in order to enable a relatively high rate of inflow.
  • the resulting increased rate of inflow in the regions of the chuck surface with the relatively large initial gap may cause increased suction to be applied to the more distant regions of the workpiece.
  • the increased suction may thus bend the initially distant regions of the workpiece toward the chuck surface.
  • an elastic modulus of the workpiece may resist bending by a value that is proportional to a bending angle of the workpiece.
  • a local bending angle in a region of the workpiece may be proportional to a change in distance of the local region of the workpiece from the chuck surface.
  • the suction force that is applied to the workpiece by a vacuum port may be inversely proportional to a cube of the local distance between the local region of the workpiece and the chuck surface.
  • the suction flowrate required to flatten a workpiece to a chuck surface may scale with the cube of the local distance between the local region of the workpiece and the chuck surface.
  • the chuck surface may be circular.
  • each contiguous regions of the chuck, within which the rates of flow through the vacuum ports of the region are substantially uniform may include a plurality of concentric circular bands or annuli at different distances from the center of the circular chuck surface.
  • the contiguous regions may include a plurality of circle sectors at different azimuths about the center of the chuck surface.
  • the chuck surface may be divided into an arrangement of cells.
  • Each cell may be surrounded by a closed perimeter of a raised ridge or ridges (hereinafter ridges) and may include at least one vacuum port within the raised ridges.
  • ridges a raised ridge or ridges
  • the contact with the ridges may form a seal.
  • the suction that is applied within the volume that is bounded by the workpiece surface, the surrounding ridges, and the chuck surface may hold that section of the workpiece to that cell of the chuck.
  • the rate of inflow through a vacuum port within this volume may approach zero.
  • the suction source continuing to operate at its previous capacity, may then apply increased suction to the vacuum ports in other cells of the chuck.
  • the dimensions and locations of the cells, the thicknesses and heights of the ridges, and other characteristics of the chuck surface may be determined by one or more considerations. For example, the total area of the workpiece that is allowed to physically contact the chuck surface may be limited, e.g., due to considerations related to quality control of the workpiece process, thus limiting the fraction of the chuck surface that may be physically in contact with the ridges. Distances between ridges surrounding a cell and their heights, as well as the level of the vacuum that is applied to the vacuum port or ports in that cell, may be limited by limits on local bending of section of the workpiece that covers that cell. Other limitations may be imposed by manufacturability and cost limitations in producing the chuck surface. Vacuum ports may be located anywhere within the cell.
  • a chuck may be designed to acquire and flatten a workpiece with concave warping (e.g., dome-shaped).
  • the cells of the chuck may be designed such that the suction is greater in cells near the middle of the chuck (where the domed workpiece surface is further from the chuck surface) than in cells near the edges of the chuck (where the dome-shaped workpiece is nearest to the chuck surface).
  • the flow resistance of the vacuum ports of the cells in the middle of the chuck surface may be smaller than the flow resistances of the cells near the edge of the chuck.
  • the center of the workpiece may be drawn toward the chuck surface, where it may be acquired by cells near the center of the chuck.
  • a chuck may be designed to acquire and flatten a workpiece with convex warping (e.g., a bowl shape).
  • the cells of the chuck may be designed such that the suction is greater in cells near the edges of the chuck (where the bowl- shaped workpiece surface is further from the chuck surface) than in cells near the center of the chuck (where the bowl-shaped workpiece is nearest to the chuck surface).
  • the flow resistance of the vacuum ports of the cells near the edges of the chuck surface may be less that the flow resistance of the cells near the center of the chuck.
  • the edges of the workpiece may be drawn toward the chuck surface, where they may be acquired by cells at the edges of the chuck.
  • the cells along a radius may have similar flow restrictors, while cells at different azimuths may have different flow restrictors.
  • the cells at azimuths that allow more inflow may acquire corresponding radial sections of a convex workpiece.
  • cells at neighboring azimuths with lower inflow rates may then be enabled to acquire the workpiece.
  • the chuck may be configured such that the rate of inflow through each cell may depend on one or more of its radial position or its angular or azimuthal position.
  • the flow restrictors that provide the flow resistance to each vacuum port may be located in a conduit that forms a fluidic connection between that vacuum port and the suction source.
  • a chuck for holding a particular workpiece may be selected on the basis of the type of warping of that workpiece.
  • a batch of workpieces may be characterized by a particular form of warping (e.g., concave or convex).
  • warping e.g., concave or convex
  • chucks that are designed for that type of warping may be attached to (e.g., by an operator of), or activated by a controller of, the system.
  • the system may be configured to concurrently or selectively operate a plurality of chucks that are designed for workpieces that are warped in different ways.
  • One or more sensors of the system may be configured to sense the warping of each workpiece, e.g., at or near an entry point to the system.
  • a controller of the system may then select a chuck that has been designed for the sensed warping in order to acquire and manipulate that workpiece.
  • a single flow restrictor may provide the flow resistance for a group of neighboring or otherwise arranged subset of the vacuum ports.
  • the flow restrictor may be located in a conduit that branches out to form a fluidic connection between the vacuum ports of the subset of vacuum ports and the suction source.
  • an arrangement of valves or other structures may be operated to cause the inflow through the subset of vacuum ports to pass through a sefected flow restrictor of two or more different flow restrictors.
  • a single chuck may be configurable for different warpage of workpieces.
  • one or more sensors of a processing system that includes the configurable chuck may be operated to sense the warping of each workpiece that are to be held by the chuck.
  • a controller of the system may be configured to select a flow restrictor for each of the groups of vacuum ports in order to configure the chuck to optimally acquire and manipulate the workpiece with the sensed warpage.
  • a chuck in which vacuum ports in different regions of the chuck have different initial rates of inflow due to flow restrictors with different flow resistances may be advantageous in handling a warped workpiece.
  • the suction level that is applied to all vacuum ports is uniform, the suction that would be required to acquire and flatten a warped workpiece could exceed or strain the capacity of its suction source, or a strong suction source may be required.
  • use of a chuck in accordance with an embodiment of the present invention, in which the rates of inflow through different vacuum ports are designed to acquire and flatten a warped workpiece may efficiently utilize the suction that is provided by a suction source to acquire and flatten a warped workpiece.
  • division of the vacuum ports into regions with different flow resistances and inflow rates may be by radius, where all vacuum ports at a common distance from the center of the chuck surface have substantially equal flow resistances, or by azimuth, where all vacuum ports within a given circle sector of the chuck surface have substantially equal resistances.
  • the vacuum ports may be divided by radius into an inner section and an outer section, where the rate of inflow through each vacuum port in the outer section is initially greater than the rate of inflow through each vacuum port in the inner section.
  • the number of vacuum ports in the outer section is one third of the number of vacuum ports in the inner section.
  • the flow resistance in the inner section is 10, 5, or 3 times the flow resistance in the outer section, according to calculations approximately 71%, 56%, or 43%, respectively, of the inflow may initially flow through the vacuum ports in the outer section.
  • the vacuum ports may be divided by azimuth into a first region (circle sector) containing about 25% of the vacuum ports, and a second region containing about 75% of the vacuum ports. If the flow resistance to each vacuum port in the second region is 3 times the flow resistance to each port in the first region, according to calculations approximately 50% of the inflow may initially flow through the vacuum ports in the first region.
  • a chuck may be configured to increase the suction that is applied to acquire and hold a warped workpiece without flattening the workpiece.
  • a chuck may be configured to dynamically adjust the rate of inflow through each vacuum port in order to maximize the suction that is applied to those vacuum ports that have acquired a region of the workpiece. This may be effected by minimizing or blocking inflow through those vacuum ports that did not acquire the workpiece, and that would otherwise suck in air or other gas from the ambient atmosphere.
  • each vacuum port (or a conduit that forms a fluidic connection between the vacuum port and the suction source) may be provided with one or more sensors (e.g., flow sensors) and a valve. Initially, the valves of all of the vacuum ports may be opened.
  • the sensors of each vacuum port may be configured to sense one or more of a rate of inflow through the vacuum port, a level of a vacuum that is formed within the port, or another value that is indicative of whether the vacuum port has acquired the workpiece surface.
  • a controller of the chuck may receive signals from the sensors that may be analyzed or interpreted to indicate as to whether each vacuum port has acquired the workpiece surface.
  • the controller is configured to close the valve of each vacuum port that has not acquired the workpiece surface. In this manner, the suction of the suction source is applied to only those vacuum ports that are in contact with the workpiece surface.
  • the controller may be configured to close only some (e.g., at least one) of the valves of the vacuum ports that have not acquired the workpiece.
  • the increased suction through the open vacuum ports may increase the likelihood of those vacuum ports acquiring the workpiece. If the workpiece is not acquired by more vacuum ports, e.g., within a predetermined period of time, the valves of all vacuum ports that have not acquired the workpiece may be closed.
  • the force that holds that workpiece to the chuck may be stronger than the force that would be applied without blocking inflow through vacuum ports that remain open to the ambient atmosphere.
  • a flow sensor may detect a significant (e.g., determined by a previously determined threshold value) decrease in the rate of inflow through the vacuum port.
  • a vacuum sensor may detect a significant (e.g., determined by a previously determined threshold value) increase in the vacuum level within the vacuum port.
  • one or more vacuum ports may not acquire the workpiece surface.
  • warping of the workpiece may cause the workpiece surface to bend away from those vacuum ports, leaving a sufficiently large air gap between the vacuum port and the workpiece surface.
  • air or other gas from the ambient atmosphere may flow inward through those uncovered vacuum ports substantially unimpeded (e.g., relative to the inflow through those vacuum ports that have made contact with and acquired the workpiece surface).
  • the controller In order to strengthen the force with which the workpiece is grasped, the controller is configured to close a valve of each vacuum port that has not acquired the workpiece. In this manner, the controller is configured to prevent or reduce unimpeded inflow through those vacuum ports. Therefore, all of the suction that is applied by the suction force is applied only to those vacuum ports that have acquired a part of the workpiece surface and are currently covered by the workpiece. Therefore, the suction, and thus friction forces, that are applied to the workpiece via the covered vacuum ports may be increased, improving the tightness of the grip of the chuck on the workpiece. Increased tightness of the grip may increase the accuracy and reproducibility of manipulation of the workpiece as performed by the chuck. Furthermore, the increased tightness of the grip may reduce the likelihood of the workpiece slipping along the chuck surface or falling away from the chuck surface.
  • a chuck may be designed to distribute inflow over its surface in order to accommodate a warped workpiece.
  • the inflow distribution may be designed to flatten the workpiece against the chuck surface in order to achieve more uniform distribution of suction forces on the workpiece.
  • the inflow distribution may be adjustable during use in order to limit suction to vacuum ports that have been covered by the workpiece so as to firmly hold a warped workpiece without altering its shape.
  • a chuck designed for a warped workpiece when handling a warped workpiece may be advantageous over use of a conventional chuck that was designed for flat workpieces.
  • the suction that is applied must be sufficient to hold the workpiece firmly to the chuck surface.
  • a conventional chuck would require a high rate of inflow in order to firmly hold a warped workpiece where there are gaps between the chuck surface and the warped workpiece surface.
  • the total rate of inflow that may be generated by the suction source may be limited.
  • a conventional chuck may not be capable of reliably manipulating such a warped workpiece.
  • a chuck that is designed with adjustable distribution of inflow may apply a larger level of suction to where such large suction may be most needed to flatten or hold the workpiece, while applying a lower level of suction to where such low level is sufficient, or no suction to a vacuum port that is not in contact with any part of the workpiece surface.
  • the limited total inflow of the suction source is directed in order to firmly hold the warped workpiece.
  • physical contact of the workpiece with ridges of cells may be considered excessive, e.g., due to extreme sensitivity of the workpiece to contamination.
  • a chuck surface may include thin protrusions (e.g., pins or columns) that extend outward from the chuck surface to provide an acceptably small contact area with the workpiece.
  • the protrusions are interspersed with the vacuum ports on the chuck surface.
  • a rim of the chuck may be raised above the chuck surface in order to facilitate contact of the rim with the exclusion zone of the workpiece.
  • the sizing and spacing between protrusions may be designed in accordance with mechanical properties and processing requirements of the workpiece mechanical properties, e.g., to prevent local sagging or bending more than a predefined threshold.
  • the rim of the chuck may be constructed of metal, ceramic, polymer, or another suitable material. For example, the material of the rim may be informed by the sensitivity of the workpiece to contamination, scratching, or other damage or degradation. The material and shape of the rim may be informed by a requirement that the rim adjust its shape to follow the contour of the workpiece in order to form a seal.
  • each bellows may include a tube that is made of a flexible material whose sides form a series of azimuthal accordion folds that are distributed along the length of the tube.
  • Each bellows may be configured such that, when not in contact with a workpiece, the bellows is fully extended.
  • Each bellows may be configured such that, when a seal is formed between a distal end of the bellows and the workpiece, the suction pulls the workpiece toward the chuck surface, thereby at least partially collapsing the bellows. The collapsing of the bellows enables the workpiece to come into contact with other, similarly configured bellows, with protrusions, with cell ridges, or with other structure that prevents excessive contact area between the workpiece and the chuck surface.
  • FIG. 1A schematically illustrates a chuck that is configured to flatten a workpiece, according to some embodiments of the invention.
  • Fig. IB is a schematic side view of the chuck shown in Fig. 1A.
  • Fig. 1C is a schematic top view of the chuck shown in Fig. 1A.
  • Fig. ID is a schematic block diagram of the chuck shown in Fig. 1A.
  • Workpiece flattening chuck 10 may be configured to acquire a warped workpiece 13 such that warped workpiece 13 adheres to chuck surface 22. Workpiece flattening chuck 10 may further be configured to flatten warped workpiece 13 onto chuck surface. The flattening may be complete or partial. It may be noted that the warpage of warped workpiece 13 as shown in Fig. ID has been exaggerated for the purpose of illustration and that the warping has concave curvature. In other examples, the warpage may have another form.
  • Workpiece flattening chuck 10 is configured to flatten warped workpiece 13 by applying different levels of suction to different regions of warped workpiece 13.
  • a larger level of suction is applied to a region of warped workpiece 13 that, due to the warpage of warped workpiece 13, is expected to be more distant from chuck surface 22 (e.g., the center of warped workpiece 13 in Fig. ID).
  • the level of applied suction that is applied to a region of warped workpiece 13 that is closer to, or in contact with, chuck surface 22 may be smaller.
  • the increased suction that is applied to a region of warped workpiece 13 that is initially more distant from chuck surface 22 than another region of warped workpiece 13 may be expected to pull the more distant region of warped workpiece 13 toward chuck surface 22.
  • the relatively lower level of suction that is applied to a region of warped workpiece 13 that is originally located near chuck surface 22 may be sufficient to merely maintain contact of that region with chuck surface 22.
  • the increased inward pulling that is applied to a region of warped workpiece 13 that was initially more distant from chuck surface 22 may tend to flatten warped workpiece 13 against chuck surface 22.
  • a plurality of vacuum ports 12 are distributed over chuck surface 22. Each vacuum port 12 is open to a conduit 34.
  • Each conduit 34 (e.g., internal to chuck body 24) is connected to one or more of suction connectors 20.
  • Each suction connector 20 may be connected to a suction source 11.
  • suction source 11 may include a pump, blower, vacuum ejector (e.g., water aspirator), or other type of suction source.
  • each vacuum port is connectable to suction source 11.
  • Each vacuum port 12 may be surrounded by raised ridges 14 to form a surface cell 16.
  • that region of warped workpiece 13 may cover a surface cell 16 and lie against raised ridges 14 of that surface cell 16.
  • a surface cell 16 is covered by a region of warped workpiece 13, the acquired region of warped workpiece 13, raised ridges 14, and the section of chuck surface 22 that is surrounded by raised ridges 14 may form walls of an enclosed volume that may be evacuated by the suction that is applied to vacuum port 12 of that surface cell 16.
  • the thicknesses, heights, and spacing among raised ridges 14 may be designed to enable firm acquisition of warped workpiece 13 while avoiding excessive contact area between the surface of warped workpiece 13 and raised ridges 14, and while also avoiding excessive local bending of warped workpiece 13.
  • a user of flattening chuck 10 may require that no more than a predetermined fraction of the surface (e.g., 10% or another fraction) of warped workpiece 13 be in contact with raised ridges 14.
  • the surface of warped workpiece 13 after acquisition and flattening may be restricted to flatness within a predetermined limit (e.g., 1 pm or another limit).
  • a predetermined limit e.g. 1 pm or another limit.
  • Such requirements may, in consideration of other parameters, such as suction level, determine limits regarding sizing and spacing of raised ridges 14.
  • Other constraints may be imposed by considerations such as manufacturability of workpiece flattening chuck 10, as well as manufacturing cost.
  • a single surface cell 16 that is surrounded by raised ridges 14 may include two or more vacuum ports 12.
  • One or more of suction connectors 20, vacuum ports 12, or conduits 34 may incorporate one or more flow restrictors 25.
  • Each flow restrictor 25 is designed to provide resistance to flow between a suction connector 20 and a vacuumport 12.
  • flow restrictor 25 may include a SASO, a constriction, baffles, or another type of flow restrictor.
  • Surface cells 16 that are distributed on chuck surface 22 may be divided into a plurality of cell groups 18 of surface cells 16.
  • the vacuum ports 12 of the surface cells 16 within each cell group 18 are connected to suction source 11 via flow restrictors 25 with substantially identical (e.g., within predetermined limits) flow resistances.
  • each cell group 18 includes neighboring surface cells 16, where each surface cell 16 shares a common bordering raised ridge 14 with at least one other surface cell 16 in that cell group 18.
  • vacuum ports 12 of each cell group 18 cover a contiguous region of chuck surface 22.
  • the flow resistance in a cell group 18 is designed to be relatively low where the vacuum ports 12 of that cell group 18 are expected to apply relatively high suction to the surface of warped workpiece 13.
  • lower flow resistance may be provided to vacuum ports 12 of a cell group 18 where warpage of warped workpiece 13 is expected to increase the distance between a local region of warped workpiece 13 that covers that cell group 18 and chuck surface 22.
  • the increased suction may be expected to pull that local region of warped workpiece 13 toward chuck surface 22, thus reducing the warpage.
  • the flow resistance in a cell group 18 is designed to be relatively high where the vacuum ports 12 of that cell group 18 are expected to apply relatively low suction to the surface of warped workpiece 13.
  • higher flow resistance may be provided to vacuum ports 12 of a cell group 18 where warpage of warped workpiece 13 is expected to bring a local region of warped workpiece 13 that covers that cell group 18 relatively close to, or in contact with, to chuck surface 22.
  • the lower applied suction may maintain contact between that near local region and raised ridges 14 of that cell group 18 as the higher suction in another cell group 18 pulls a more distant region of warped workpiece 13 toward raised ridges 14 and chuck surface 22 in that other cell group 18.
  • chuck surface 22 is circular (e.g., designed to hold and manipulate a circular warped workpiece 13), and surface cells 16 and vacuum ports 12 are arranged in a series of contiguous concentric circles so as to cover chuck surface 22.
  • surface cells 16 may be otherwise arranged, and chuck surface 22 may be otherwise shaped.
  • surface cells 16 on a circular chuck surface 22 may be arranged in parallel rows, may be arranged in distinct circle sectors, or may be arranged in another way.
  • Surface cells 16 of an otherwise shaped chuck surface 22 (e.g., oval, polygonal, or otherwise) may be arranged in a pattern that is designed to fill that chuck surface 22.
  • the arrangement of surface cells 16 is typically designed to facilitate application of different levels of suction to different regions of a warped workpiece 13 that is held to that chuck surface 22.
  • workpiece flattening chuck 10 may be configured to flatten a warped workpiece 13 with concave curvature along two axes, as viewed from chuck surface 22 (e.g., a domed workpiece when viewed from the side of the workpiece that is opposite the side that faces chuck surface 22, similar to the curvature of the example of warped workpiece 13 shown in Fig. ID).
  • chuck surface 22 e.g., a domed workpiece when viewed from the side of the workpiece that is opposite the side that faces chuck surface 22, similar to the curvature of the example of warped workpiece 13 shown in Fig. ID.
  • warped workpiece 13 is initially placed on chuck surface 22, the surface of warped workpiece 13 is nearest to chuck surface 22 at the periphery of chuck surface 22.
  • the surface of warped workpiece 13 is most distant from chuck surface 22 near the center of chuck surface 22.
  • surface cells 16 may be advantageously divided into cell groups 18, where each cell group 18 includes one of the concentric circles of surface cells 16 in the example shown. Therefore, surface cells 16 that are arranged in one of cell groups 18, such as outer circular group 18a or inner circular group 18b, are all connected to suction source 11 via a single set of one or more flow restrictors 25, or via different but substantially mutually equivalent sets of flow restrictors 25. In order for a warped workpiece 13 with concave curvature to be flattened, the level of suction that is applied to inner circular group 18b may be greater than the level of suction that is applied to outer circular group 18a.
  • the flow resistance of a flow restrictor 25 that is placed between suction source 11 and each vacuum port 12 within outer circular group 18a may be greater than the flow resistance of a flow restrictor 25 that is placed between suction source 11 and each vacuum port 12 within inner circular group 18b.
  • the values of the flow resistance of the flow restrictors 25 of each cell group 18 decrease from the periphery of chuck surface 22 toward the center of chuck surface 22. The decrease may be arithmetic (e.g., additive), geometric (e.g., multiplicative), exponential, or otherwise.
  • inner circular group 18b and outer circular group 18a may be connected to different suction sources 11 that provide different levels of suction.
  • a warped workpiece 13 with concave curvature along two axes may be flattened by ensuring an airtight seal between the outer perimeter of warped workpiece 13 and chuck surface 22.
  • Continued application of suction to warped workpiece 13 may then flatten the region of warped workpiece 13 that is interior to the perimeter against chuck surface 22.
  • the level of suction that is applied to outer circular group 18b e.g., at a radius that is approximately equal to the radius of warped workpiece 13, may be greater than the level of suction that is applied to inner circular group 18a and other vacuum ports 12.
  • the flow resistance of a flow restrictor 25 that is placed between suction source 11 and each vacuum port 12 within outer circular group 18a may be less than the flow resistance of a flow restrictor 25 that is placed between suction source 11 and each vacuum port 12 within inner circular group 18b or other vacuum ports 12.
  • vacuum ports 12 in outer circular group 18a may be connected to a suction source 11 that provides a greater level of suction than a suction source 11 to which the other vacuum ports 12 are connected.
  • workpiece flattening chuck 10 may be configured to flatten a warped workpiece with convex curvature along two axes, as viewed from chuck surface 22 (e.g., a bowl-shaped workpiece when viewed from the side of the workpiece that is opposite the side that faces chuck surface 22, e.g., similar to convexly warped workpiece 13' shown in Fig. ID).
  • chuck surface 22 e.g., a bowl-shaped workpiece when viewed from the side of the workpiece that is opposite the side that faces chuck surface 22, e.g., similar to convexly warped workpiece 13' shown in Fig. ID.
  • the surface of convexly warped workpiece 13' may be in contact with chuck surface 22, e.g., with raised ridges 14 of chuck surface 22, near the center of chuck surface 22.
  • the surface of chuck surface 22 that is most distant from chuck surface 22 is located near the periphery of chuck surface 22.
  • the level of suction that is applied to outer circular group 18a may be greater than the level of suction that is applied to inner circular group 18b.
  • the flow resistance of a flow restrictor 25 that is placed between suction source may be greater than the flow resistance of a flow restrictor 25 that is placed between suction source
  • each vacuum port 12 within outer circular group 18a may be smaller than the flow resistance of a flow restrictor 25 that is placed between suction source 11 and each vacuum port
  • the values of the flow resistance of the flow restrictors 25 of each cell group 18 increase from the periphery of chuck surface 22 toward the center of chuck surface 22.
  • the increase may be arithmetic, geometric, exponential, or otherwise.
  • the density and distribution of surface cells 16 within each cell group 18 may be depend on the radial distance of each cell group 18 from the center of chuck surface 22.
  • the level of suction that is applied to vacuum port 12 in cell groups 18 nearer the center of chuck surface 22 may be greater than the level of suction that is applied to vacuum ports 12 in cell groups 18 that are farther from the center.
  • the suction that is applied to vacuum ports 12 in cell groups 18 that are nearer to the center is lower than the level of suction that is applied to vacuum ports 12 that are in cell groups 18 that are farther from the center.
  • the density and distribution of surface cells 16 within each cell group 18 may depend on the angular or azimuthal position of each cell group 18 on chuck surface 22.
  • the level of suction that is applied to vacuum ports 12 within a cell group 18 at one azimuthal position may be greater or less than the level of suction that is applied to vacuum ports 12 in a cell group 18 at another azimuthal position.
  • a workpiece flattening chuck 10 is configured to flatten a warped workpiece 13 with concave or convex curvature along a single axis (e.g., in the form of a section of a surface of a cylinder), or parallel regions of varying curvature (e.g., wavy or rippled) vacuum ports 12 may be advantageously divided into cell groups 18 along a plurality of parallel secant lines.
  • Fig. IE schematically illustrates a chuck where groups of vacuum ports are divided into groups by parallel chords, in accordance with an embodiment of the invention.
  • vacuum ports 12 are divided into cell groups 18 by parallel chords 19a.
  • workpiece flattening chuck 10 may be square or otherwise shaped.
  • the level of suction that is applied to each cell group 18 may vary with distance from a diameter that is parallel to parallel chords 19a.
  • vacuum ports 12 may be advantageously divided into cell groups 18 along a plurality of radii.
  • Fig. IF schematically illustrates a chuck where groups of vacuum ports are divided into groups by radii, in accordance with an embodiment of the invention.
  • vacuum ports 12 are divided into cell groups 18 by radii 19b.
  • the level of suction that is applied to vacuum ports in each cell group may vary with angle between cell groups 18 that lie along one axis and those cell groups 18 that lie along a perpendicular axis.
  • the degree of curvature of the workpiece may vary from location to location on the workpiece.
  • the direction of curvature may vary from location to location on the workpiece.
  • a workpiece surface may form a saddle point, or may be rippled, dimpled, or otherwise curved.
  • a workpiece flattening chuck 10 may be configured to acquire and flatten a warped workpiece 13 with any such type of warpage.
  • one or more suction connectors 20 or conduits 34 may be provided with valves or other devices for selectively directing inflow through vacuum ports 12 of one or more cell groups 18 through a particular selected flow restrictor 25.
  • a workpiece flattening chuck 10 may be configured for a warped workpiece 13 with a particular form of warpage.
  • a controller may be configured to receive sensed information describing the warping of a particular warped workpiece, and to adjust the level of suction that is applied to each vacuum port 12 or groups of vacuum ports 12 in order to acquire and flatten that workpiece.
  • FIG. 2A schematically illustrates a variant of the chuck shown in Fig. 1A that includes projections for preventing contact of a workpiece with the chuck surface.
  • Fig. 2B is an enlarged view of a section of the surface of the chuck shown in Fig. 2 A.
  • vacuum ports 12 are interspersed with projections 62.
  • vacuum ports 12 alternate with projections 62 in a rectangular array pattern.
  • vacuum ports 12 and projections 62 may be arranged in another, nonrectangular pattern.
  • the density of the distribution of vacuum ports 12 may be greater than or less than the density of distribution of projections 62.
  • each projection 62 is circular.
  • a projection 62 may be otherwise (e.g., oval, polygonal, or otherwise) shaped.
  • each projection 62 may be designed such that a maximum permitted area of contact between each projection 62 and a workpiece is not exceeded.
  • the distribution of projections 62 on chuck surface 22 may be designed such that the area of contact between the workpiece and projections 62 within a region of chuck surface 22 does not exceed a maximum permitted area of contact within that region.
  • Spacing among projections 62 may be designed such that bending of the workpiece by vacuum ports 12 between two projections 62 does not result in contact between the workpiece and chuck surface 22, or does not exceed a maximum permitted local bending (e.g., as specified by a maximum permitted curvature, maximum permitted differences in distance from chuck surface 22, or otherwise) between projections 62.
  • chuck surface 22 may include one or more areal seals 72 (see Figs. 6A-6B), as described below. Areal seals 72 may serve to limit the area of contact of warped workpiece 13 with chuck 60, as well as facilitate holding and handling of warped workpiece 13.
  • one or more of vacuum ports 12 may be provided with an extendible and retractable tube structure in order to facilitate acquisition of a warped workpiece 13.
  • FIG. 2C schematically illustrates a cross section of a vacuum port with an extendible and retractable tube structure for facilitating acquisition of a workpiece.
  • extendible port assembly 66 includes conduit 34, vacuum port 12 and extendible tube 68.
  • Conduit 34, vacuum port 12 and extendible tube 68 may be circular, or one or more of the components of extendible port assembly 66 may have another shape.
  • extendible tube 68 has a bellows shape with accordion folds that enables the length of extendible tube 68 to change.
  • an extendible tube may be otherwise configured (with a weave structure or otherwise stretchable and shrinkable material, with telescoping segments, or otherwise) to change its length.
  • Extendible tube 68 may be typically configured to extend outward from chuck surface 22 when in an equilibrium state (e.g., not subjected to any stretching or compressing forces). When warped workpiece 13 comes into contact with a distal end of extendible tube 68, as in the example shown, a seal may form between extendible tube 68 and warped workpiece 13.
  • the inward pulling of warped workpiece 13 may be limited by projections 62, by raised ridges 14, by a minimum compressed length of extendible tube 68, or otherwise.
  • the inward pulling of extendible tube 68 may facilitate acquisition of warped workpiece 13 by other vacuum ports 12 (e.g., provided with shorter extendible tubes 68 or other sealing structure), thus facilitating acquisition, and possibly flattening, of warped workpiece 13.
  • Fig. 3A is a schematic block diagram of a chuck that is configured to adjust inflow to hold a warped workpiece.
  • each conduit 34 that connects one or more (e.g., neighboring) vacuum ports 12 with suction source 11 includes at least one inflow sensor 36 and at least one valve 38.
  • Controller 40 is configured to operate one or more valves 38 based on inflow data that is sensed by one or more inflow sensors 36.
  • controller 40 may include circuitry or one or more processors that are configured to control operation of valves 38 in accordance with signals that are received from inflow sensors 36.
  • Controller 40 may include a circuitry or a processor that is incorporated into, or otherwise dedicated to operation of, adjustable inflow chuck 30.
  • controller 40 may be incorporated into, e.g., may represent a software module or program of, a controller that is configured to operate a system that incorporates adjustable inflow chuck 30 for the purpose of processing workpieces such as warped workpiece 13.
  • connections between controller 40 and only some of inflow sensors 36 and valves 38 are indicated in Fig. 3A.
  • a signal that is generated by each inflow sensor 36, and that is indicative of inflow through that conduit 34, may be received by controller 40.
  • inflow sensor 36 may include one or more of a pressure sensor, flow sensor, or other sensor that may be utilized to determine a rate of inflow through one or more vacuum ports 12 that are connected to a conduit 34 that includes inflow sensor 36.
  • a flowmeter of inflow sensor 36 may indicate a reduction in flow.
  • a pressure sensor of inflow sensor 36 may indicate a reduction in fluid pressure to below atmospheric pressure (vacuum) due to evacuation of conduit 34 by suction source 11.
  • Controller 40 may be configured to detect when inflow via a vacuum port 12 or conduit 34 by comparing the sensed rate of inflow with a threshold level, e.g., by a low sensed flow rate or high sensed vacuum level. On the other hand, when, e.g., after a predetermined period of time, the rate of inflow as indicated by inflow sensor 36 remains higher than the threshold level (e.g., by a high sensed flow rate or relatively high sensed fluid pressure), controller 40 may determine that the associated vacuum port 12 has not been blocked and has not acquired warped workpiece 13.
  • a threshold level e.g., by a low sensed flow rate or high sensed vacuum level.
  • Controller 40 may determine that a sufficient number of vacuum ports 12, such as covered vacuum ports 12a as sensed by one or more inflow sensors 36a, in the example shown, have acquired warped workpiece 13 in order to reliably manipulate warped workpiece 13.
  • the number of covered vacuum ports 12a that are required to acquire warped workpiece 13 may be determined in accordance with characteristics of warped workpiece 13, such as its mass, size, surface properties, or other characteristic, and of the type of processing that is to be applied to warped workpiece 13 when held by adjustable inflow chuck 30.
  • Other vacuum ports 12, such as uncovered vacuum port 12b in the example shown may be determined based on a signal received from one or more inflow sensors 36b, to have not acquired warped workpiece 13.
  • controller 40 may close one or more valves 38b to stop inflow through some or all of uncovered vacuum ports 12b, which have not acquired warped workpiece 13.
  • a valve 38 may include a solenoid valve or another type of electronically controllable valve. Valves 38a that are connected to covered vacuum ports 12a may remain open. Therefore, the suction that is generated by suction source 11 is applied solely to covered vacuum ports 12a, without drawing in air through uncovered vacuum ports 12b. This selective application of the suction to covered vacuum ports 12a only may increase the strength of the holding force that is applied to warped workpiece 13 via covered vacuum ports 12a.
  • valves 38b may be closed. In this manner, the suction that is applied to uncovered vacuum ports 12b whose valves 38b remain open may be increased to facilitate acquisition of warped workpiece 13 by those uncovered vacuum ports 12b with open valves 38b.
  • One or more vacuum ports 12 may be configured to facilitate acquisition of warped workpiece 13 by vacuum port 12.
  • FIG. 3B schematically illustrates a vacuum port of the chuck shown in Fig. 3A.
  • vacuum port 12 includes suction opening 54 surrounded by flexible cup 50 mounted on base 56 (e.g., which may be made of a rigid material such as a metal and which may be bolted to the surface of adjustable inflow chuck 30).
  • base 56 e.g., which may be made of a rigid material such as a metal and which may be bolted to the surface of adjustable inflow chuck 30.
  • suction source 11 applies suction to suction opening 54
  • a warped workpiece 13 placed near flexible cup 50 may cover flexible cup 50 and be drawn inward toward suction opening 54.
  • Contact between warped workpiece 13 and flexible cup 50 may form a seal that enhances suction and friction forces on adjustable inflow chuck 30.
  • Port pin 52 is located within suction opening 54.
  • Port pin 52 may limit local bending of a region of warped workpiece 13 that is acquired by vacuum port 12, and may ensure that suction opening 54 remains unblocked.
  • PEEK polyether ether ketone
  • vacuum ports 12 of adjustable inflow chuck 30 may be in the form of a extendible port assembly 66 that includes an extendible tube 68, e.g., as schematically illustrated in Fig. 2C, that may be surrounded by raised ridges 14, or that may be otherwise provided with sealing structure.
  • Fig. 4 is a flowchart depicting a method of operation of the chuck shown in Fig. 3A.
  • Chuck operation method 100 may be executed by controller 40 of adjustable inflow chuck 30.
  • execution of chuck operation method 100 may be initiated by controller 40 when adjustable inflow chuck 30 is to acquire a new workpiece such as warped workpiece 13.
  • suction from suction source 11 is applied to vacuum ports 12 (block 110).
  • Valves 38 in conduits 34 leading to all vacuum ports 12 to which the suction is to be applied may be opened.
  • the vacuum ports 12 to be opened may include all vacuum ports 12 on adjustable inflow chuck 30, or a subset of these (e.g., where a size of warped workpiece 13 is smaller than the surface of adjustable inflow chuck 30 or where the weight of warped workpiece 13 enables grasping with fewer vacuum ports 12).
  • controller 40 may apply predetermined inflow criteria (e.g., flowrate or pressure criteria, e.g., a threshold flowrate or pressure) to distinguish between a vacuum port 12 that has acquired warped workpiece 13 and one that has not.
  • predetermined inflow criteria e.g., flowrate or pressure criteria, e.g., a threshold flowrate or pressure
  • Inflow sensors 36 may indicate reduced inflow through some vacuum ports 12, indicating acquisition of warped workpiece 13 by those vacuum ports 12, while inflow through other vacuum ports 12 is not reduced, the non-reduced inflow indicating that those vacuum ports 12 have failed to acquire warped workpiece 13.
  • controller 40 may close some of valves 38 to disable inflow through those vacuum ports 12 that have not acquired warped workpiece 13 (block 130). The disabled inflow through the vacuum ports 12 that have not acquired warped workpiece 13 may enhance the grip on warped workpiece 13 by those vacuum ports 12 that have acquired warped workpiece 13.
  • Adjustable inflow chuck 30 may then be operated to manipulate warped workpiece 13, e.g., during processing of warped workpiece 13.
  • a method of operation may include disabling inflow through a fraction of those vacuum ports 12 that have not acquired warped workpiece 13.
  • Fig. 5 is a flowchart depicting a variant of the method of operation depicted in Fig. 4.
  • Chuck operation method 200 may be executed by controller 40 of adjustable inflow chuck 30.
  • execution of chuck operation method 200 may be initiated by controller 40 when adjustable inflow chuck 30 is to acquire a new workpiece such as warped workpiece 13.
  • suction from suction source 11 is applied to vacuum ports 12 (block 210).
  • Valves 38 in conduits 34 leading to all vacuum ports 12 to which the suction is to be applied may be opened.
  • controller 40 may apply predetermined inflow criteria (e.g., flowrate or pressure criteria) to distinguish between a vacuum port 12 that has acquired warped workpiece 13 and one that has not. For example, a flowrate sensed by a flowmeter that is less than a predetermined threshold flowrate, or a fluid pressure (e.g., below atmospheric pressure) sensed by a pressure sensor that is below a predetermined threshold pressure level, may be considered to be indicative of acquisition of warped workpiece 13 by a vacuumport 12.
  • predetermined inflow criteria e.g., flowrate or pressure criteria
  • controller 40 may determine that some of vacuum ports 12 are blocked, indicating acquisition of warped workpiece 13 by those vacuum ports 12, while other vacuum ports 12 are unblocked, indicating failure of those vacuum ports 12 to acquire warped workpiece 13 (block 230).
  • Controller 40 may close some of valves 38 to disable inflow through a nonzero fraction of those vacuum ports 12 that have not acquired warped workpiece 13 (block 240). For example, controller 40 may apply predetermined criteria to determine the number and locations of those vacuum ports 12 that are to be closed. This disabling of inflow through some of the vacuum ports
  • the increased inflow may facilitate acquisition of warped workpiece 13 by those unblocked vacuum ports 12 that have not yet acquired warped workpiece 13.
  • valves 38 that had been previously disabled by closing may be reopened (block 260). Continued monitoring may detect whether some of these additional reopened vacuum ports 12 become blocked due to acquisition of warped workpiece 13 by those vacuum ports 12 (returning to block 250).
  • controller 40 may close valves 38 to disable inflow through all vacuum ports 12 that have not acquired warped workpiece 13 (block 270). The disabled inflow through the vacuum ports 12 that have not acquired warped workpiece 13 may enhance the grip on warped workpiece
  • Adjustable inflow chuck 30 may then be operated to manipulate warped workpiece 13, e.g., during processing of warped workpiece 13.
  • a chuck surface may be provided with elastic tube structure that is designed to facilitate moving a warped workpiece 13 toward and away from the chuck surface.
  • FIG. 6A schematically illustrates a chuck that includes vacuum ports with extendible and retractable tube structure as shown in Fig. 2C.
  • Fig. 6B is a schematic sectional side view of the chuck shown in Fig. 6A.
  • Chuck 70 is configured to acquire and hold a workpiece whether the workpiece is flat or warped.
  • Chuck surface 22 of chuck 70 includes a plurality of extendible port assemblies 66.
  • Each extendible port assembly 66 includes a conduit 34 that is connectable to suction source 11 and an extendible tube 68.
  • Each extendible tube 68 may include a bellows structure or similar structure that is made of an elastic material and that extends distally outward (e.g., beyond the distal end each areal seal 72) from chuck surface 22.
  • a distal end of extendible tube 68 is configured (e.g., includes a ring of elastic material) such that when the distal end is in contact with a surface of a workpiece, an airtight seal is formed.
  • Extendible tube 68 is collapsible when subjected to a compressing force. For example, when suction is applied to extendible tube 68 and the distal end forms a seal with the workpiece, the compressing force that is exerted by the suction may collapse extendible tube 68 such that the distal end and the attached workpiece surface are drawn toward chuck surface 22.
  • the elasticity of extendible tube 68 is configured to re-extend extendible tube 68 when the compressing force is removed (e.g., by cessation of application of suction to extendible tube 68).
  • one or more extendible tubes 68 may be constructed of a collapsible and inelastic material.
  • extendible tube 68 may be constructed of a material that is sufficiently stiff so as to remain extended until the force applied by the suction collapses extendible tube 68.
  • a suitable material may include an inelastic plastic, metal foil, paper, cardboard, or other suitable material.
  • a distal end of such an inelastic extendible tube 68 may include a ring of elastic material to form and airtight seal with the workpiece surface.
  • the plurality of extendible port assemblies 66 are interspersed with a plurality of non-extendible vacuum ports 12, also each connectible to suction source 11 by a conduit 34, that do not include extendible tubes that are extendible from chuck surface 22.
  • the resistances to flow of flow restrictors of extendible port assemblies 66 may be different from the flow resistances of flow restrictors of vacuum ports 12.
  • the arrangement of vacuum ports 12 and extendible port assemblies 66 may differ from the arrangement in the example shown, e.g., as suitable for a particular intended application of chuck 70.
  • a chuck surface 22 may include only extendible port assemblies 66, without interspersed non-extendible vacuum ports 12.
  • One or more areal seals 72 extend distally outward from (e.g., above) chuck surface 22. Each areal seal 72 bounds a closed region of chuck surface 22.
  • each areal seal 72 is constructed of an elastic material (e.g., rubber, silicone, or another elastic polymer) that may form an airtight seal to prevent or impede inflow of air when areal seal 72 (e.g., along a sufficient fraction of the length, e.g., all of the length) is in contact with a surface of a workpiece.
  • areal seal 72 may be constructed of the same material as extendible tube 68 of an extendible port assembly 66, or of a different material.
  • the continued pulling of the workpiece toward chuck surface 22 may pull the workpiece into contact with one or more areal seals 72.
  • a sealed volume may be formed between the workpiece, areal seal 72, and the region of chuck surface 22 that is bound by that areal seal 72.
  • suction that is applied to vacuum ports 12 that not extendible and that are within the bound region of chuck surface 22 may firmly and stably hold the workpiece against areal seal 72 for manipulation by chuck 70.
  • the workpiece may be tightly held whether or not the workpiece is warped.
  • a compressing force that is exerted by the suction may compress areal seals 72 such that the areal seal 72 and the attached workpiece surface are drawn toward chuck surface 22.
  • the workpiece may be released by chuck 70.
  • application of suction to vacuum ports 12 and to extendible port assemblies 66 may cease.
  • the elasticity of extendible tube 68 of extendible port assembly 66 may extend extendible port assembly 66, and a workpiece that is supported by extendible port assembly 66, distally away from chuck surface 22.
  • the workpiece may be at a convenient height above chuck surface 22 for removal (e.g., and for transport to another station for further processing).
  • chuck 70 may include a plurality of support pins 74 that are extendible out of chuck surface 22 and retractable into chuck surface 22.
  • Support pins 74 may provide support for the workpiece, e.g., prior to acquisition of the workpiece by extendible port assemblies 66 and after release of the workpiece, or in place of extendible port assemblies 66.
  • chuck 70 with one or more areal seals 72 may include one or more features that are associated with the configurations shown in Figs. 1A-1F.
  • each (e.g., non-extendible) vacuum port 12 may be surrounded by a raised ridge 14 to form a surface cell 16.
  • Adjacent cell groups 18 of surface cells 16 may be separated from one another by one or more areal seals 72.
  • (e.g., non-extendible) vacuum ports 12 in different cell groups 18 may be connected to suction source 11 via flow restrictors 25 that are characterized by different flow resistance values.
  • vacuum ports 12 that are not surrounded by raised ridges 14 and that are located in different contiguous regions of chuck surface 22 that are separated from one another by areal seals 72 may be connected to suction source 11 via flow restrictors 25 that are characterized by different flow resistance values.
  • each areal seal 72 surrounds a circular region of chuck surface 22 that is concentric with circular chuck surface 22.
  • each areal seal may be placed along a boundary that bounds the region on all sides.
  • At least some (e.g., non-extendible) vacuum ports 12 may include inflow sensors 36 and valves 38 that are operable by a controller 40 in accordance with chuck operation method 100 or 200, as described above.
  • a (e.g., non-extendible) vacuum port 12 may be surrounded by a flexible cup 50, may include a port pin 52, or may otherwise include one of more features of the chucks described above in connection with Figs. 2A-3B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
PCT/IL2022/050431 2021-05-04 2022-04-28 Chuck for acquiring a warped workpiece WO2022234559A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280047603.XA CN117597772A (zh) 2021-05-04 2022-04-28 用于获取翘曲工件的卡盘
KR1020237041223A KR20240004759A (ko) 2021-05-04 2022-04-28 휘어진 공작물을 포착하기 위한 척
JP2023567870A JP2024517231A (ja) 2021-05-04 2022-04-28 反ったワークピースを取得するチャック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/307,002 US20220250168A1 (en) 2021-02-08 2021-05-04 Chuck for acquiring a warped workpiece
US17/307,002 2021-05-04

Publications (1)

Publication Number Publication Date
WO2022234559A1 true WO2022234559A1 (en) 2022-11-10

Family

ID=83932616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2022/050431 WO2022234559A1 (en) 2021-05-04 2022-04-28 Chuck for acquiring a warped workpiece

Country Status (5)

Country Link
JP (1) JP2024517231A (ja)
KR (1) KR20240004759A (ja)
CN (1) CN117597772A (ja)
TW (1) TW202247341A (ja)
WO (1) WO2022234559A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294333A1 (en) * 2016-04-08 2017-10-12 Applied Materials, Inc. Vacuum chuck pressure control system
US20180166314A1 (en) * 2016-12-08 2018-06-14 Ultratech, Inc. Wafer Chuck Apparatus With Contractible Sealing Devices For Securing Warped Wafers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170294333A1 (en) * 2016-04-08 2017-10-12 Applied Materials, Inc. Vacuum chuck pressure control system
US20180166314A1 (en) * 2016-12-08 2018-06-14 Ultratech, Inc. Wafer Chuck Apparatus With Contractible Sealing Devices For Securing Warped Wafers

Also Published As

Publication number Publication date
TW202247341A (zh) 2022-12-01
KR20240004759A (ko) 2024-01-11
CN117597772A (zh) 2024-02-23
JP2024517231A (ja) 2024-04-19

Similar Documents

Publication Publication Date Title
JP6363605B2 (ja) フィルムフレーム上のウェハーの回転ミスアライメントを自動的に訂正するためのシステム及び方法
CN109935524B (zh) 基底结合设备和利用其结合基底的方法
US20220250168A1 (en) Chuck for acquiring a warped workpiece
KR102316311B1 (ko) 접합 장치 및 접합 시스템
EP3227912B1 (en) Chucking warped wafer with bellows
EP0961309A2 (en) A tool for the contact-free support of plate-like substrates
WO2015134258A1 (en) Wafer-handling end effectors
US9524897B2 (en) End handler for film and film frames and a method thereof
JP6706182B2 (ja) 基板保持装置
CN107591356A (zh) 晶圆固定装置及其使用方法
US11749551B2 (en) Chuck for acquiring a warped workpiece
WO2022234559A1 (en) Chuck for acquiring a warped workpiece
US20170266779A1 (en) Substrate polishing method, top ring, and substrate polishing apparatus
US11267137B1 (en) Controlling end effector suction area using expandable bladder
CN114334781A (zh) 一种晶圆晶向的定位装置及方法
CN110838459B (zh) 监测系统及监测方法
US20220216090A1 (en) Suction gripper for warped workpiece
US10625428B2 (en) End effector with selectively deformable interface
US5822498A (en) Teaching method for loading arm for objects to be processed
US10468290B2 (en) Wafer chuck apparatus with micro-channel regions
JP6904971B2 (ja) 真空ホイールを備えた搬送システム
CN108573900A (zh) 基板处理装置
KR20220029455A (ko) 기판 처리 장치 및 기판 처리 방법
CN111993265A (zh) 判断研磨头的胶膜是否扭曲的方法
US20130119688A1 (en) Handling device for handling of a wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798764

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567870

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237041223

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202280047603.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22798764

Country of ref document: EP

Kind code of ref document: A1