WO2022233911A1 - Hybridgetriebe mit drehmoment begrenzender und schaltbarer kupplung - Google Patents

Hybridgetriebe mit drehmoment begrenzender und schaltbarer kupplung Download PDF

Info

Publication number
WO2022233911A1
WO2022233911A1 PCT/EP2022/061925 EP2022061925W WO2022233911A1 WO 2022233911 A1 WO2022233911 A1 WO 2022233911A1 EP 2022061925 W EP2022061925 W EP 2022061925W WO 2022233911 A1 WO2022233911 A1 WO 2022233911A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
combustion engine
torque
electric motor
internal combustion
Prior art date
Application number
PCT/EP2022/061925
Other languages
English (en)
French (fr)
Inventor
Martin Hertel
Daniel Lorenz
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Publication of WO2022233911A1 publication Critical patent/WO2022233911A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains
    • F16H7/0827Means for varying tension of belts, ropes, or chains for disconnecting the drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range

Definitions

  • the present invention relates to a hybrid transmission having a branch which is suitably connected to a connection to which an internal combustion engine can be connected, to an electric motor and to an output for transmitting torque, with a first clutch and between the connection and the branch a second clutch is arranged between the electric motor and the output. Furthermore, the present invention relates to a vehicle with an internal combustion engine and such a hybrid transmission.
  • the generic DE 102017221 775 A1 discloses a hybrid drive train for a vehicle with an internal combustion engine, which is designed to transmit torque to at least one drive axle.
  • An input shaft of a transmission is connected to a drive shaft of the engine to transmit torque from the engine to the input shaft and further to a drive axle.
  • the input shaft and the drive shaft of the internal combustion engine are arranged parallel to each other.
  • an electric motor is connected to the input shaft, which together with the Combustion engine can represent at least one eCVT mode.
  • At least one, preferably passive, decoupling device, such as a slipping clutch, is provided and designed to interrupt torque transmission between the internal combustion engine and/or the electric motor and the drive axle.
  • the decoupling device can be arranged, for example, in the transmission and/or in a rotational non-uniformity compensation device.
  • the decoupling device of DE 102017211 775 A1 can limit the transmitted torque within the framework of the strength of the hybrid drive train.
  • a driven wheel can lift off due to an irregularity in the road surface and be accelerated so strongly that when it touches down again, such an abrupt change in speed is introduced into the hybrid drive train that a passive or active decoupling device cannot decouple the combustion engine and/or the electric motor quickly enough.
  • a further task can therefore consist in adapting the hybrid transmission to the installation space of a vehicle, in particular a passenger car, SUV and/or LCV.
  • the invention provides a hybrid transmission having a branch which is connected to a connection to which an internal combustion engine can be connected, to an electric motor and to an output for transmission of a torque is suitably connected, a first clutch being arranged between the connection and the branch and a second clutch being arranged between the electric motor and the output, and the first clutch and the second clutch each limiting a transmittable torque and being switchable.
  • the first clutch can be optimized for the internal combustion engine and its combination of uniform and periodic inertial forces and gas pressure forces.
  • the second clutch for the electric motor, possibly including drive train components between the second and first clutch, separately, the second clutch can be optimized for the uniform inertial forces of the hybrid transmission.
  • Both clutches are switchable. Thus, they can be aired or opened in anticipation. For example, wheel lift and acceleration can be compared by comparing an ABS wheel speed sensor to an acceleration threshold to initiate clutch disengagement. Depending on the type of clutch, the moment the opening begins, the torque limitation can respond more quickly, and thus protect the components even in very abrupt load cases.
  • the first clutch and the second clutch can therefore be characterized as actively switchable and passively effective overload clutches.
  • the connectable combustion engine and the electric motor each have a high level of inertia, which can only be accelerated slowly or slightly in the event of an abrupt load case due to the short torque pulse, without the first clutch and without the second clutch, the torque led to a strong impact and it could lead to a deformation of, for example, transmission components or to a very high load, for example on a spring damper of a dual-mass flywheel, which also has a high level of inertia represents, as well as a noticeable jerk on the vehicle.
  • Both clutches according to the invention each effectively limit a transmissible torque.
  • the components of the hybrid drive train can be designed with a low abuse resistance.
  • the components of the hybrid drive train can be designed with a low abuse resistance.
  • they can be built small and light.
  • the hybrid transmission according to the invention therefore enables a vehicle to be driven efficiently and with low consumption.
  • the split can be described as a power split, which couples the driving or consuming power of the connectable internal combustion engine, the electric motor and the output, depending on the driving mode.
  • the branch can be or contain a rigid branch, which specifies a fixed speed ratio between the internal combustion engine that can be connected, the electric motor and the output. This solution is very inexpensive and robust.
  • the branching can also be or contain a differential gear, such as a planetary gear, which specifies a torque ratio between the connectable internal combustion engine, the electric motor and the output, so that smaller speed fluctuations between the electric motor and the connectable internal combustion engine do not lead to tension in the hybrid transmission.
  • the differential gear can be locked or short-circuited in order to prevent or reduce compensation losses.
  • the branch can be coupled directly to the electric motor, such as a rotor of the electric motor, so that it serves as a direct point of action for the electric motor.
  • the connection can be a flange, which is complementary to a crankshaft flange of a crankshaft of a connectable internal combustion engine, for example.
  • the connection can be a hub, which can form a shaft-hub connection with a crankshaft in a space-saving manner.
  • the connection can Be shaft, which can form a space-saving shaft-hub connection with a hub of a connectable internal combustion engine.
  • the connection can be a clutch disc, a flywheel, a primary mass of a dual-mass flywheel or, in general, a rotational non-uniformity compensator, such as an absorber and/or a damper, in order to be able to use standard assemblies in a cost-saving manner.
  • the connection is not limited to a connectable internal combustion engine having a crankshaft.
  • the electric motor should be suitable for driving a vehicle. If the electric motor is suitable for driving a vehicle alone, another electric motor can be dispensed with to save costs.
  • the electric motor can be a motor generator, which is advantageously designed to charge an energy store.
  • the hybrid transmission is preferably designed so that the internal combustion engine that can be connected can be used both as a range extender, which generates electricity via a generator function of the electric motor, and as a direct drive. This saves a lossy conversion of kinetic power into electrical power and back into kinetic power, so that the efficiency is increased.
  • the hybrid transmission may include a transmission that provides a variable ratio. This enables the connectable combustion engine to be used as a direct drive over a wide range of driving speeds.
  • the transmission gear can be arranged, for example, between the connection and the junction or between the junction and the output. If the transmission gear is arranged between the internal combustion engine and the junction, the electric motor can act directly on the output without the transmission gear, so that the electric motor can be operated very efficiently. If the transmission gear is arranged between the junction and the output, a relatively small electric motor with correspondingly high efficiency can be installed; in addition, the electric motor can efficiently connect the start the combustion engine and thus save on a starter; After all, this arrangement is advantageous in terms of size and position in many installation space scenarios.
  • the transmission can be an inexpensive manual transmission (MT). If the transmission is an automated or automatic transmission, a control strategy can control the transmission and a torque delivered by the electric motor in a particularly efficient manner.
  • MT automated manual transmission
  • DCT double-clutch transmission
  • AT stepped automatic transmission
  • electrically power-split transmission a hydraulic power-split transmission and special forms such as a continuously variable transmission (CVT) come into consideration.
  • CVT continuously variable transmission
  • the higher the number of gears or spread of the transmission the more narrowly the internal combustion engine can be operated, which means that unavoidable vibrations (technically NVH) can be better compensated for, such as damped and/or eliminated.
  • the electric motor and the transmission gear are arranged concentrically or axially parallel and the internal combustion engine can be connected axially parallel to the transmission gear, a particularly compact installation space can be achieved.
  • the hybrid transmission is therefore particularly suitable for small cars in the typical front-transverse configuration.
  • the output can include the transmission gear, which provides a variable transmission, a shaft, an axle ratio, a differential and/or a wheel reduction.
  • the output forms mentioned can be used to advantage.
  • the second clutch is preferably arranged between the junction and the electric motor, in order to save installation space that is optimized for the electric motor.
  • the second clutch can be designed in such a way that the torque that can be transmitted corresponds to the nominal torque, ie the maximum torque that can be delivered, of the electric motor plus a certain tolerance. By means of the tolerance, variations as a result of, for example, operating conditions, signs of aging, Road conditions, performance increases through updates and/or a torque difference for wear protection and/or the like are taken into account.
  • the transmittable torque of the second clutch can be twice the nominal torque of the electric motor; preferably the 1.4-fold is provided; 1.1 times to 1.2 times is particularly preferred.
  • a third clutch can be arranged between the junction and the output. By opening or releasing the third clutch, energy stores can be charged when the vehicle is stationary.
  • This third clutch can be advantageously combined with the arrangement of the second clutch between the junction and the electric motor for storing energy when the vehicle is stationary.
  • the third clutch can therefore be used, for example, with a step-up gear without an idle position.
  • the clutches first clutch, second clutch and third clutch can each and independently contain a friction clutch, in particular a wet and/or dry-running single or multi-disk clutch, and/or a multi-plate clutch.
  • a friction clutch in particular a wet and/or dry-running single or multi-disk clutch, and/or a multi-plate clutch.
  • Each of the three clutches may be configured and/or operated as a slip clutch and/or as a slip clutch. These are tried and trusted clutches with high reliability.
  • wet-running single or multi-plate clutches and multi-plate clutches allow controlled slippage as a measure to limit the torque that can be transmitted in a particularly good-natured manner.
  • the first clutch, the second clutch and optionally the third clutch are each a normally closed, ventable clutch such that the vehicle remains drivable in the event of a failure.
  • Hybrid drives are increasingly being installed in a front-transverse arrangement or in a rear-transverse arrangement because, compared to a front-longitudinal arrangement, this gives vehicle developers, for example, a long vehicle interior, a large frontal crumple zone, a vehicle center of gravity that is more central in the longitudinal direction or a relatively easy-to-implement vehicle construction kit.
  • the transverse arrangements have to fit into tight installation spaces.
  • the branching and the connection are arranged paraxially and connected via a first transverse drive.
  • the first clutch can be arranged between the first transverse drive and the connection.
  • a commercially available flywheel-clutch combination can be adapted with little effort.
  • maintenance access can be simplified, for example to change a clutch disk.
  • the first clutch can also be arranged between the junction and the first cross drive. In this way, the output-side components of the drive train can also be isolated from the effects of mass inertia of the first transverse drive in the event of an abrupt drop in load, so that these components can be designed with lower strength and therefore lighter and more efficiently.
  • the branching and the electric motor are arranged paraxially and connected via a second transverse drive.
  • An arrangement of the second clutch between the junction and the second transverse drive is advantageous because the output-side components of the drive train can also be isolated from the mass inertia effects of the second transverse drive in the event of an abrupt load.
  • the second clutch is easily accessible for maintenance operations.
  • the first transverse drive and the second transverse drive can each be a chain drive, a belt drive and/or a gear drive, such as a so-called gear chain, independently of one another.
  • one of the transverse drives is a non-positive belt drive
  • the non-positive connection limits the torque that can be transmitted by the transverse drive.
  • the transverse drive can therefore be at least part of the respective clutch.
  • the transmittable torque can be adjusted by using an adjustable belt tensioner.
  • the belt drive can be the switchable clutch that limits the transmittable torque.
  • the nominal torque of the electric motor is lower than the nominal torque of a connectable internal combustion engine, which is why a chain drive or toothed belt drive is preferred as the first transverse drive, and a non-positive belt drive is preferred as the second transverse drive.
  • the aim is to have the lowest possible transmission ratio, preferably 1:1, in order to keep the torque on the output-side components as low as possible.
  • the transmission gear is arranged between the first cross drive and the connection, the first cross drive can be designed with a higher transmission ratio than the final drive ratio, so that the number of installed components can be reduced.
  • a method for controlling a hybrid transmission as described above is independently claimable, the method comprising detecting a speed or rotational acceleration of a wheel connected to the output, comparing the wheel acceleration detected or calculated from the speed with a deceleration threshold value, and opening the first clutch and the second clutch if the wheel acceleration falls below the deceleration threshold.
  • a control unit that is set up to carry out this method can also be claimed independently. By means of this procedure or this Control unit is the object of the invention is achieved by the clutches first clutch and second clutch can be opened in abrupt load cases to protect the drive train components.
  • the object is also achieved by a vehicle with an internal combustion engine and a hybrid transmission as described above, the internal combustion engine being connected to the connection because the two clutches separate the internal combustion engine and the electric motor even in the case of abrupt load cases and thus protect the output-side components of the drive train from failure protection.
  • the first clutch can be designed in such a way that the torque that can be transmitted corresponds to the nominal torque, ie the maximum torque that can be delivered, of the internal combustion engine plus a certain tolerance.
  • the tolerance can be used to take into account variations as a result of, for example, rotational irregularities, operating states, aging phenomena, increases in performance through updates, road conditions and/or a torque difference for wear protection and/or the like.
  • the transmittable torque of the first clutch can be three times the nominal torque of the internal combustion engine; preferably 2.1 times is provided; a factor of 1.2 to 1.3 is particularly preferred.
  • the nominal torque of the electric motor is 0.5 times to 1 times the nominal torque of the internal combustion engine. In this way, the electric motor alone can cover most driving situations.
  • the internal combustion engine can be kept small in terms of installation space and fuel consumption and still provide sufficient support when the vehicle is accelerated at high levels.
  • the hybrid transmission and the electric motor are preferably dimensioned to drive or accelerate the internal combustion engine in addition to the vehicle up to the idling speed of the internal combustion engine. This can prevent the internal combustion engine from running at low speed in the area of the first Drive train natural frequency ignites and thus stimulates the hybrid drive train to vibrate. These would both lead to wear and impair comfort.
  • the hybrid transmission, the electric motor and the internal combustion engine can be designed so that the internal combustion engine can be accelerated without ignition up to a speed of 900 rpm, more preferably up to 1300 rpm.
  • FIG. 1 shows a schematic representation of a vehicle according to the invention with a hybrid transmission according to the invention according to a first embodiment, with a disk clutch being used as the first and second clutch;
  • FIG. 2 shows a schematic representation of a vehicle according to the invention with a hybrid transmission according to the invention according to a second embodiment, a disk clutch being used as the first clutch and a non-positive belt drive being used as the second clutch;
  • FIG. 3 shows a schematic representation of a vehicle according to the invention with a hybrid transmission according to the invention according to a third specific embodiment, a disk clutch being used as the first and second clutch;
  • FIG. 4 shows a schematic representation of a vehicle according to the invention with a hybrid transmission according to the invention according to a fourth embodiment, wherein the second clutch is located between a junction and an output.
  • the vehicle 1 shows a vehicle 1 with a hybrid transmission 2 according to a first embodiment.
  • An internal combustion engine 3 is connected to the hybrid transmission 2 .
  • the vehicle 1 is a car.
  • a crankshaft of the internal combustion engine 3 is connected to a connection 4 of the hybrid transmission 2 .
  • the connection 4 is formed here by a primary mass of a dual mass flywheel 5 .
  • the dual-mass flywheel 5 is connected to a first transverse drive 7 via a first clutch 6 .
  • the first clutch is a normally closed single-plate clutch with a slipping torque that is 30% above a nominal torque of the internal combustion engine 3 .
  • the first transverse drive 7 is designed as a chain drive, and it thus connects the connection 4 with a shaft 8 arranged axis-parallel to it.
  • the shaft 8 is an input shaft of a transmission 9.
  • the transmission 9 is an automatic transmission, and together with a differential 10, the transmission 9 is an output 11 of the hybrid transmission 2.
  • the differential 10 drives front wheels of the vehicle 1 via side shafts 12 in a known manner. so that the vehicle 1 travels in a forward direction V, for example.
  • a branch 13 is arranged concentrically.
  • the junction 13 connects an electric motor 16 to the shaft 8 via a second clutch 14 and a second transverse drive 15.
  • the junction 13 is a shaft-hub connection here, which supports a hub of a clutch disk of the second clutch 14. So there is a rigid branching 13 here.
  • the second clutch 14 is a normally closed single-plate clutch with a slip torque, which is 20% above a nominal torque of the electric motor 16.
  • the second transverse drive 15 is a flat belt drive for connecting the shaft 8 to the electric motor 16, which is arranged on a parallel axis.
  • another electric motor 17 is arranged in the rear of the vehicle, which drives rear wheels of the vehicle 1 via side shafts 12 .
  • the second transverse drive 15 is a flat belt drive, which connects the electric motor 8 to the branch 13 that is parallel to the axis.
  • the junction 13 is a shaft-hub connection between the shaft 8 and a pulley of the transverse drive 15.
  • the second transverse drive 15 contains a controllable belt tensioner so that a torque transmission between the electric motor 8 and the junction 13 can be adjusted and switched by the flat belt.
  • the third specific embodiment shows a vehicle 1 with a hybrid transmission 2 according to a third specific embodiment.
  • the hybrid transmission 2 differs from the first embodiment in the following details, while the rest is referred to the previous description.
  • the first clutch 6 is arranged between the junction 13 and the first transverse drive 7 . In this way, the first clutch 6 protects the differential 10 and the transmission gear 9 from mass effects of the first transverse drive 7, the dual-mass flywheel 5 and the internal combustion engine 3 in the event of an abrupt load.
  • FIG. 4 shows a vehicle 1 with a hybrid transmission 2 according to a fourth specific embodiment.
  • the hybrid transmission 2 differs from the second embodiment in the following details, while otherwise reference is made to the previous description.
  • the second clutch is one disc slip clutch. It is arranged between the branch 13 and the output 11 .
  • the second transverse drive 15 is a non-switchable, pretensioned belt drive.
  • the engine 3 is always shown in the direction of travel behind the junction 13 and the transmission gear 9 in FIGS. 1 to 4 , the engine 3 can of course be arranged in front of it in an actual vehicle 1 . In this way, the hybrid transmission 2 can be arranged at least partially under a driver's cab in a space-saving manner.
  • the hybrid transmission 2 and the internal combustion engine 3 can, for example, be arranged in the rear of the vehicle 1 in order to drive a rear axle.
  • This assembly can also be arranged between the branch 13 and the first transverse drive 7 .
  • the first transverse drive 7 can be arranged axially between the internal combustion engine 3 and the damper/absorber and the clutch 6, for example by means of a hollow shaft construction, so that the first transverse drive 7 is positioned along the shaft 8 close to the junction 13, saving installation space and weight.
  • the damper/absorber is preferably arranged between the internal combustion engine 3 and the chain drive, so that vibrations resulting from gas and inertial forces of the internal combustion engine are introduced into the chain drive in a significantly reduced manner. This increases the service life of the chain drive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)

Abstract

Die Erfindung betrifft ein Hybridgetriebe (2) aufweisend eine Verzweigung (13), welche mit einem Anschluss (4), an den ein Verbrennungsmotor (3) anschließbar ist, mit einem Elektromotor (16) und mit einem Abtrieb (11) zum Übertragen eines Drehmoments geeignet verbunden ist, wobei zwischen dem Anschluss (4) und der Verzweigung (13) eine erste Kupplung (6) und zwischen dem Elektromotor (16) und dem Abtrieb (11) eine zweite Kupplung (14) angeordnet sind, und wobei die erste Kupplung (6) und die zweite Kupplung (14) jeweils ein übertragbares Drehmoment begrenzen und schaltbar sind. Die Erfindung betrifft weiter ein Fahrzeug (1) mit einem Verbrennungsmotor (3) und dem Hybridgetriebe (2), wobei der Verbrennungsmotor (3) an den Anschluss (4) angeschlossen ist

Description

HYBRIDGETRIEBE MIT DREHMOMENT BEGRENZENDER UND SCHALTBARER KUPPLUNG
TECHNISCHES GEBIET
Die vorliegende Erfindung bezieht sich auf ein Hybridgetriebe aufweisend eine Verzweigung, welche mit einem Anschluss, an den ein Verbrennungsmotor anschließbar ist, mit einem Elektromotor und mit einem Abtrieb zum Übertragen eines Drehmoments geeignet verbunden ist, wobei zwischen dem Anschluss und der Verzweigung eine erste Kupplung und zwischen dem Elektromotor und dem Abtrieb eine zweite Kupplung angeordnet sind. Ferner betrifft die vorliegende Erfindung ein Fahrzeug mit einem Verbrennungsmotor und einem solchen Hybridgetriebe.
TECHNISCHER HINTERGRUND
Für moderne Fahrzeugantriebe wird Effizienz immer wichtiger. Daher soll ein Energieverbrauch je gefahrener Strecke gesenkt werden. Eine Möglich hierzu ist ein Hybridantrieb mit einem Hybridgetriebe, wodurch einen Verbrennungsmotor mit einem Elektromotor und einem Übersetzungsgetriebe derart verbunden wird, dass zwischen diesen drei Vorrichtungen ein Drehmoment übertragen werden kann.
Zum Erhöhen des Wirkungsgrads eines solchen Hybridgetriebes kann man die rotierenden Massen verringern, muss allerdings sicherstellen, dass ein potentiell auftretender abrupter Lastfall nicht die Festigkeit einer Antriebsstrangkomponente übersteigt und zum Versagen führt.
Die gattungsgemäße DE 102017221 775 A1 offenbart einen Hybridantriebsstrang für ein Fahrzeug mit einem Verbrennungsmotor, der dazu ausgelegt ist, ein Drehmoment auf zumindest eine Antriebsachse zu übertragen. Eine Eingangswelle eines Getriebes ist mit einer Antriebswelle des Verbrennungsmotors verbunden, um ein Drehmoment von dem Verbrennungsmotor auf die Eingangswelle und weiter auf eine Antriebsachse zu übertragen. Die Eingangswelle und die Antriebswelle des Verbrennungsmotors sind parallel zueinander angeordnet. Außerdem ist ein Elektromotor mit der Eingangswelle verbunden, welcher zusammen mit dem Verbrennungsmotor mindestens einen eCVT-Modus darstellen kann. Mindestens eine, vorzugsweise passive, Entkopplungseinrichtung, wie beispielsweise eine Rutschkupplung, ist bereitgestellt und dazu ausgelegt, eine Drehmomentübertragung zwischen dem Verbrennungsmotor und/oder dem Elektromotor und der Antriebsachse zu unterbrechen. Die Entkopplungsvorrichtung kann beispielsweise im Getriebe und/oder in einer Drehungleichförmigkeitsausgleicheinrichtung angeordnet sein.
Die Entkopplungsvorrichtung der DE 102017211 775 A1 kann das übertragene Drehmoment im Rahmen der Festigkeit des Hybridantriebsstrangs begrenzen. Je abrupter der Lastfall ist, also je abrupter eine Drehzahländerung erzwungen wird, umso schwieriger sind die Anforderungen durch die Entkopplungsvorrichtung zu erfüllen. Beispielsweise kann ein angetriebenes Rad wegen einer Fahrbahnunregelmäßigkeit abheben und dabei so stark beschleunigt werden, dass bei einem Wiederaufsetzen eine so abrupte Drehzahländerung in den Hybridantriebsstrang eingeleitet wird, dass eine passive oder aktive Entkopplungsvorrichtung nicht schnell genug den Verbrennungsmotor und/oder den Elektromotor entkoppeln kann.
Es besteht also die Aufgabe, in einem Hybridgetriebe einen Verbrennungsmotor und/oder einen Elektromotor schnell entkoppeln zu können.
Aus Kostengründen sollen dieselben Komponenten für PKWs, SUVs (sport utility verhicle, etwa Stadtgeländewagen) und LCVs (light commercial vehicle, etwa Lieferwagen) verwendet werden können. Eine weitere Aufgabe kann also darin bestehen, das Hybridgetriebe an den Bauraum eines Fahrzeugs, insbesondere eines PKWs, SUVs und/oder LCVs anzupassen.
ZUSAMMENFASSUNG
Zum Lösen der Aufgabe sieht die Erfindung vor ein Hybridgetriebe aufweisend eine Verzweigung, welche mit einem Anschluss, an den ein Verbrennungsmotor anschließbar ist, mit einem Elektromotor und mit einem Abtrieb zum Übertragen eines Drehmoments geeignet verbunden ist, wobei zwischen dem Anschluss und der Verzweigung eine erste Kupplung und zwischen dem Elektromotor und dem Abtrieb eine zweite Kupplung angeordnet sind, und wobei die erste Kupplung und die zweite Kupplung jeweils ein übertragbares Drehmoment begrenzen und schaltbar sind.
Indem die erste Kupplung für den Verbrennungsmotor separat vorgesehen ist, kann die erste Kupplung auf den Verbrennungsmotor und dessen Kombination aus gleichförmigen und periodischen Massenkräften und Gasdruckkräften optimiert werden.
Indem die zweite Kupplung für den Elektromotor, ggf. einschließlich Triebstrangkomponenten zwischen zweiter und erster Kupplung, separat vorgesehen ist, kann die zweite Kupplung auf die gleichförmigen Massenkräfte des Hybridgetriebes optimiert werden.
Beide Kupplungen sind schaltbar. Somit sind sie antizipativ lüftbar bzw. öffenbar. Beispielsweise kann das Abheben und Beschleunigen eines Rades durch den Vergleich eines ABS-Radgeschwindigkeitssensors mit einem Beschleunigungsschwellwert verglichen werden, um ein Kupplungsöffnen zu initiieren. Je nach ausgeführter Kupplung kann bereits ein begonnenes Öffnen die Drehmomentbegrenzung schneller ansprechen lassen, und so auch in sehr abrupten Lastfällen die Komponenten schützen.
Die erste Kupplung und die zweite Kupplung sind also als aktiv schaltbare und passiv wirksame Übelastkupplungen charakterisierbar.
Weil der anschließbare Verbrennungsmotor und der Elektromotor jeweils eine hohe Trägheit darstellen, welche bei einem abrupten Lastfall durch den kurzen Drehmomentimpuls jeweils nur langsam bzw. wenig beschleunigt werden kann, führte ohne die erste Kupplung und ohne die zweite Kupplung das Drehmoment zu einem starken Stoß und es könnte zu einer Verformung von beispielsweise Getriebebauteilen oder zu einer sehr hohen Belastung beispielsweise eines Federdämpfers eines Zweimassenschwungrads, das ebenfalls eine hohe Trägheit darstellt, sowie zu einem spürbaren Ruck am Fahrzeug kommen. Beide erfindungsgemäße Kupplungen begrenzen jedoch wirksam jeweils ein übertragbares Drehmoment. Somit schützen sie im Falle eines abrupten Lastfalls übrige Komponenten, wie Verzahnungen in einem Übersetzungsgetriebe, einer Achsübersetzung oder einem Differentialgetriebe vor Masseeffekten der vergleichsweise hohen trägen Massen des anschließbaren Verbrennungsmotors oder des Elektromotors. Somit können die Komponenten des Hybridantriebsstrangs mit einer geringen Missbrauchsfestigkeit ausgelegt werden. Sie können also beispielsweise klein und leicht gebaut werden. Daher ermöglicht das erfindungsgemäße Hybridgetriebe ein verbrauchsarmes und effizientes Antreiben eines Fahrzeugs.
Die Verzweigung kann beschrieben werden als eine Leistungsverzweigung, welche die antreibenden oder verbrauchenden Leistungen jeweils des anschließbaren Verbrennungsmotors, des Elektromotors und des Abtriebs miteinander je nach Fahrmodus koppelt. Die Verzweigung kann eine starre Verzweigung sein oder enthalten, welche zwischen dem anschließbaren Verbrennungsmotor, dem Elektromotor und dem Abtrieb ein festes Drehzahlverhältnis vorgibt. Diese Lösung ist sehr kostengünstig und robust. Die Verzweigung kann auch ein Ausgleichsgetriebe, wie ein Planetengetriebe sein oder enthalten, welches zwischen dem anschließbaren Verbrennungsmotor, dem Elektromotor und dem Abtrieb ein Drehmomentverhältnis vorgibt, sodass kleinere Drehzahlschwankungen zwischen dem Elektromotor und dem anschließbaren Verbrennungsmotor nicht zu einer Verspannung im Hybridgetriebe führen. Optional kann das Ausgleichsgetriebe sperrbar bzw. kurzschließbar sein, um Ausgleichsverluste zu verhindern oder zu vermindern. In einer bevorzugten Ausführungsform kann die Verzweigung unmittelbar mit dem Elektromotor, etwa einem Rotor des Elektromotors gekoppelt sein, sodass sie als direkter Angriffspunkt des Elektromotors dient.
Der Anschluss kann ein Flansch sein, der beispielsweise zu einem Kurbelwellenflansch einer Kurbelwelle eines anschließbaren Verbrennungsmotors komplementär ist. Der Anschluss kann eine Nabe sein, welche mit einer Kurbelwelle bauraumsparend eine Welle-Nabe-Verbindung bilden kann. Der Anschluss kann eine Welle sein, welche mit einer Nabe eines anschließbaren Verbrennungsmotors bauraumsparend eine Welle-Nabe-Verbindung bilden kann. Der Anschluss kann eine Kupplungsscheibe, ein Schwungrad, eine Primärmasse eines Zweimassenschwungrads oder allgemein ein Drehungleichförmigkeitsausgleicher, wie ein Tilger und/oder ein Dämpfer sein, um kostensparend Standardbaugruppen verwenden zu können. Der Anschluss ist nicht darauf beschränkt, dass ein anschließbarer Verbrennungsmotor eine Kurbelwelle aufweist.
Der Elektromotor sollte zum Antreiben eines Fahrzeugs geeignet sein. Ist der Elektromotor zum alleinigen Antreiben eines Fahrzeugs geeignet, kann kostensparend auf einen weiteren Elektromotor verzichtet werden. Der Elektromotor kann ein Motorgenerator sein, der vorteilhaft zum Laden eines Energiespeichers ausgelegt ist.
Vorzugsweise ist das Hybridgetriebe dazu ausgelegt, dass der anschließbare Verbrennungsmotor sowohl als Reichweitenverlängerer, der über eine Generatorfunktion des Elektromotors Strom erzeugt, wie auch als Direktantrieb eingesetzt werden kann. Dies erspart eine verlustbehaftete Umwandlung von kinetischer Leistung in elektrische Leistung und zurück in kinetische Leistung, sodass der Wirkungsgrad erhöht wird.
Das Hybridgetriebe kann ein Übersetzungsgetriebe enthalten, das eine veränderbare Übersetzung bereitstellt. Dies ermöglicht, den anschließbaren Verbrennungsmotor in einem breiten Fahrgeschwindigkeitsband als Direktantrieb zu nutzen. Das Übersetzungsgetriebe kann beispielsweise zwischen dem Anschluss und der Verzweigung oder zwischen der Verzweigung und dem Abtrieb angeordnet sein. Ist das Übersetzungsgetriebe zwischen dem Verbrennungsmotor und der Verzweigung angeordnet, kann der Elektromotor ohne das Übersetzungsgetriebe direkt auf den Abtrieb wirken, sodass der Elektromotor sehr effizient betreibbar ist. Ist das Übersetzungsgetriebe zwischen der Verzweigung und dem Abtrieb angeordnet, kann ein im Verhältnis kleinerer Elektromotor mit entsprechend hoher Effizienz verbaut werden; außerdem kann der Elektromotor effizient den anschließbaren Verbrennungsmotor starten und so einen Starter einsparen; schließlich ist diese Anordnung bezüglich der Größe und Position in vielen Bauraumszenarien vorteilhaft.
Das Übersetzungsgetriebe kann ein kostengünstiges manuell betätigbares Schaltgetriebe (MT) sein. Ist das Übersetzungsgetriebe ein automatisiertes oder automatisches Getriebe, kann eine Steuerstrategie die Übersetzung und ein durch den Elektromotor abgegebenes Drehmoment besonders effizient steuern. Insbesondere kommen ein automatisiertes Schaltgetriebe (AMT), ein Doppelkupplungsgetriebe (DCT), ein Stufenautomatikgetriebe (AT), ein elektrisch leistungsverzweigtes Getriebe, ein hydraulisch leistungsverzweigtes Getriebe und Sonderformen wie ein stufen los veränderlich übersetzendes Getriebe (CVT) in Betracht. Je höher die Gangzahl bzw. Spreizung des Getriebes ist, desto schmalbandiger kann der Verbrennungsmotor betrieben werden, wodurch unvermeidbare Schwingungen (fachsprachlich NVH) besser ausgeglichen, wie gedämpft und/oder getilgt, werden können.
Falls der Elektromotor und das Übersetzungsgetriebe konzentrisch oder achsparallel angeordnet und der Verbrennungsmotor zum Übersetzungsgetriebe achsparallel anschließbar sind, ist ein besonders kompakter Bauraum erzielbar. Insbesondere für Kleinwägen in typischer Front-Quer-Konfiguration wird das Hybridgetriebe somit besonders geeignet.
Der Abtrieb kann das Übersetzungsgetriebe, welches eine veränderbare Übersetzung bereitstellt, eine Welle, eine Achsübersetzung, ein Differential und/oder ein Raduntersetzung enthalten. Jede der genannten Abtrieb-Formen ist vorteilhaft einsetzbar.
Vorzugsweise ist die zweite Kupplung zwischen der Verzweigung und dem Elektromotor angeordnet, um auf den Elektromotor optimiert Bauraum zu sparen. Die zweite Kupplung kann so ausgelegt sein, dass das übertragbare Drehmoment dem Nennmoment, also dem maximal abgebbaren Drehmoment, des Elektromotors zuzüglich einer gewissen Toleranz entspricht. Mittels der Toleranz können Variationen infolge von beispielsweise Betriebszuständen, Alterungserscheinungen, Straßenzuständen, Leistungssteigerungen durch Aktualisierungen und/oder eine Drehmomentdifferenz zum Verschleißschutz und/oder dergleichen berücksichtigt werden. In einer ersten Näherung kann das übertragbare Drehmoment der zweiten Kupplung das zweifache des Nenndrehmoments des Elektromotors betragen; vorzugsweise wird das 1 ,4-fache vorgesehen; besonders bevorzugt wird das 1,1- fache bis 1 ,2-fache vorgesehen.
Weiterhin kann eine dritte Kupplung zwischen der Verzweigung und dem Abtrieb angeordnet sein. Durch Öffnen bzw. Lüften der dritten Kupplung ist ein Laden von Energiespeichern bei stehendem Fahrzeug möglich. Diese dritte Kupplung ist vorteilhaft mit der Anordnung der zweiten Kupplung zwischen der Verzweigung und dem Elektromotor zum Energiespeichern bei stehendem Fahrzeug kombinierbar. Durch die dritte Kupplung kann daher beispielsweise ein Übersetzungsgetriebe ohne Leerlaufstellung verwendet werden.
Die Kupplungen erste Kupplung, zweite Kupplung und dritte Kupplung können jeweils und voneinander unabhängig eine Reibkupplung, insbesondere eine nass und/oder trocken laufende Ein- oder Mehrscheibenkupplung, und/oder eine Lamellenkupplung enthalten. Jede der drei Kupplungen kann als eine Rutschkupplung und/oder als eine Schlupfkupplung konfiguriert sein und/oder betrieben werden. Diese sind erprobte und zuverlässige Kupplungen mit hoher Zuverlässigkeit. Insbesondere nasslaufende Ein- oder Mehrscheibenkupplungen und Lamellenkupplungen lassen ein gesteuertes Schlupfen als Maßnahme zum Begrenzen des übertragbaren Drehmoments besonders gutmütig zu. Vorzugsweise sind die erste Kupplung, die zweite Kupplung und ggf. die dritte Kupplung jeweils eine normalerweise geschlossene lüftbare Kupplung, sodass das Fahrzeug bei einem Ausfall fahrbar bleibt.
Falls das übertragbare Drehmoment der jeweiligen Kupplung regelbar ist, können natürliche und/oder technisch übliche Schwankungen wie Temperatureinflüsse, Toleranzen oder Verschleiß ausgeglichen werden. Außerdem könnte das Grenzdrehmoment an eine Beladungssituation angepasst werden. Hybridantriebe werden zunehmend in einer Front-Quer-Anordnung oder in einer Heck-Quer-Anordnung verbaut, weil dies Fahrzeugentwicklern im Vergleich zu einer Front-Längs-Anordnung beispielsweise einen lange Fahrzeuginnenraum, eine große frontale Knautschzone, einen in Längsrichtung zentraleren Fahrzeugschwerpunkt oder einen verhältnismäßig einfach umsetzbaren Fahrzeugbaukasten ermöglicht. Die Quer-Anordnungen müssen aber in enge Bauräume passen.
Für solche engen Bauräume bei einem PKW, SUV oder LCV und/oder um einen in Querrichtung zentraleren Schwerpunkt zu ermöglichen ist von Vorteil, wenn die Verzweigung und der Anschluss achsparallel angeordnet und über einen ersten Quertrieb verbunden sind. Die erste Kupplung kann dabei zwischen dem ersten Quertrieb und dem Anschluss angeordnet werden. Dadurch kann einerseits eine marktübliche Schwungrad-Kupplung-Kombination mit geringem Aufwand adaptiert werden. Andererseits kann ein Wartungszugang vereinfacht werden, bspw. zum Wechsel einer Kupplungsscheibe. Die erste Kupplung kann auch zwischen der Verzweigung und dem ersten Quertrieb angeordnet werden. Hierdurch können die abtriebsseitigen Komponenten des Antriebsstrangs im Fall eines abrupten Lastfalls zusätzlich von Massenträgheitseffekten des ersten Quertriebs isoliert werden, sodass diese Komponenten mit geringerer Festigkeit und daher leichter und effizienter ausgeführt werden können.
Für die engen Bauräume bei einem PKW, SUV oder LCV und/oder um einen in Querrichtung zentraleren Schwerpunkt zu ermöglichen ist genauso von Vorteil, wenn die Verzweigung und der Elektromotor achsparallel angeordnet und über einen zweiten Quertrieb verbunden sind. Eine Anordnung der zweiten Kupplung zwischen der Verzweigung und dem zweiten Quertrieb ist vorteilhaft, weil die abtriebsseitigen Komponenten des Antriebsstrangs im Fall eines abrupten Lastfalls zusätzlich von Massenträgheitseffekten des zweiten Quertriebs isoliert werden können. Zwischen dem zweiten Quertrieb und dem Elektromotor angeordnet ist die zweite Kupplung leicht für Wartungsvorgänge zugänglich. Der erste Quertrieb und der zweite Quertrieb können jeweils und voneinander unabhängig beispielsweise ein Kettentrieb, ein Riementrieb und/oder ein Zahnradgetriebe, wie ein sog. Räderkette, sein.
Falls einer der Quertriebe ein kraftschlüssiger Riementrieb ist, begrenzt der Kraftschluss das durch den Quertrieb übertragbare Drehmoment. Der Quertrieb kann also zumindest ein Teil der jeweiligen Kupplung sein. Durch Verwenden eines einstellbaren Riemenspanners kann das übertragbare Drehmoment eingestellt werden. Durch Verwenden eines schaltbaren Riemenspanners kann der Riementrieb die jeweilige das übertragbare Drehmoment begrenzende und schaltbare Kupplung sein.
Generell wird bevorzugt, dass das Nenndrehmoment des Elektromotors niedriger als das Nenndrehmoment eines anschließbaren Verbrennungsmotors ist, weswegen als erster Quertrieb ein Kettentrieb oder Zahnriementrieb bevorzugt wird, und als zweiter Quertrieb ein kraftschlüssiger Riementrieb bevorzugt wird.
Bei beiden Quertrieben wird ein möglichst niedriges Übersetzungsverhältnis angestrebt, vorzugsweise 1 :1 , um die Drehmomente auf den abtriebsseitigen Komponenten möglichst niedrig zu halten. Falls jedoch das Übersetzungsgetriebe zwischen dem ersten Quertrieb und dem Anschluss angeordnet wird, kann der erste Quertrieb mit einem höheren Übersetzungsverhältnis als Achsübersetzung ausgeführt werden, sodass die Zahl der verbauten Komponenten reduziert werden kann.
Ein Verfahren zum Steuern eines Hybridgetriebes wie vorstehend beschrieben ist unabhängig beanspruchbar, wobei das Verfahren aufweist ein Erfassen einer Drehzahl oder Drehbeschleunigung eines mit dem Abtrieb verbundenen Rades, ein Vergleichen der erfassten oder aus der Drehzahl errechneten Radbeschleunigung mit einem Verzögerungsschwellwert, und ein Öffnen der ersten Kupplung und der zweiten Kupplung, falls die Radbeschleunigung den Verzögerungsschwellwert unterschreitet. Weiters unabhängig beanspruchbar ist ein Steuergerät, das zum Ausführen dieses Verfahrens eingerichtet ist. Mittels dieses Verfahrens bzw. dieses Steuergeräts wird also die Aufgabe der Erfindung gelöst, indem die Kupplungen erste Kupplung und zweite Kupplung in abrupten Lastfällen zum Schutz der Antriebsstrangkomponenten geöffnet werden können.
Die Aufgabe wird auch gelöst durch ein Fahrzeug mit einem Verbrennungsmotor und einem Hybridgetriebe wie vorstehend beschrieben, wobei der Verbrennungsmotor an den Anschluss angeschlossen ist, weil die beiden Kupplungen den Verbrennungsmotor und den Elektromotor auch bei abrupten Lastfällen trennen und so die abtriebsseitigen Komponenten des Antriebsstrangs vor Versagen schützen.
Die erste Kupplung kann so ausgelegt sein, dass das übertragbare Drehmoment dem Nennmoment, also dem maximal abgebbaren Drehmoment, des Verbrennungsmotors zuzüglich einer gewissen Toleranz entspricht. Mittels der Toleranz können Variationen infolge von beispielsweise Drehungleichförmigkeiten, Betriebszuständen, Alterungserscheinungen, Leistungssteigerungen durch Aktualisierungen, Straßenzuständen und/oder eine Drehmomentdifferenz zum Verschleißschutz und/oder dergleichen berücksichtigt werden. In einer ersten Näherung kann das übertragbare Drehmoment der ersten Kupplung das dreifache des Nenndrehmoments des Verbrennungsmotors betragen; vorzugsweise wird das 2,1 -fache vorgesehen; besonders bevorzugt wird das 1 ,2-fache bis 1 ,3-fache vorgesehen.
Es hat sich als vorteilhaft herausgestellt, falls das Nenn-Drehmoment des Elektromotors das 0,5-fache bis 1 -fache des Nenn-Drehmoments des Verbrennungsmotors beträgt. Auf diese Weise kann allein der Elektromotor die meisten Fahrsituationen abdecken. Der Verbrennungsmotor kann bezüglich des Bauraums und des Verbrauchs klein gehalten werden und dennoch bei hohen gewünschten Fahrzeugbeschleunigungen ausreichend unterstützen.
Vorzugsweise sind das Hybridgetriebe und der Elektromotor dazu dimensioniert, zusätzlich zum Fahrzeug den Verbrennungsmotor bis zur Leerlaufdrehzahl des Verbrennungsmotors anzutreiben bzw. zu beschleunigen. Dadurch kann vermieden werden, dass der Verbrennungsmotor untertourig im Bereich der ersten Antriebsstrangeigenfrequenz zündet und so den Hybridantriebstrang zu Schwingungen anregt. Diese würden sowohl zu Verschleiß führen wie auch einen Komfort beeinträchtigen. Beispielsweise können das Hybridgetriebe, der Elektromotor und der Verbrennungsmotor dazu ausgelegt sein, dass der Verbrennungsmotor bis zu einer Drehzahl von 900 U/min, stärker bevorzugt bis zu 1300 U/min zündungslos beschleunigt werden kann.
Weitere Aspekte und Merkmale der vorliegenden Erfindung ergeben sich aus den abhängigen Ansprüchen, der beigefügten Zeichnung und der nachfolgenden Beschreibung bevorzugter Ausführungsformen.
FIGURENLISTE
Ausführungsformen werden nun beispielhaft und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Dabei zeigen:
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Fahrzeugs mit einem erfindungsgemäßen Hybridgetriebe gemäß einer ersten Ausführungsform, wobei als erste und zweite Kupplung jeweils eine Scheibenkupplung verwendet werden;
Fig. 2 eine schematische Darstellung eines erfindungsgemäßen Fahrzeugs mit einem erfindungsgemäßen Hybridgetriebe gemäß einer zweiten Ausführungsform, wobei als erste Kupplung eine Scheibenkupplung und als zweite Kupplung ein kraftschlüssiger Riementrieb verwendet werden;
Fig. 3 eine schematische Darstellung eines erfindungsgemäßen Fahrzeugs mit einem erfindungsgemäßen Hybridgetriebe gemäß einer dritten Ausführungsform, wobei als erste und zweite Kupplung jeweils eine Scheibenkupplung verwendet werden; und
Fig. 4 eine schematische Darstellung eines erfindungsgemäßen Fahrzeugs mit einem erfindungsgemäßen Hybridgetriebe gemäß einer vierten Ausführungsform, wobei die zweite Kupplung zwischen einer Verzweigung und einem Abtrieb angeordnet ist.
BESCHREIBUNG VON AUSFÜHRUNGSFORMEN
Die Fig. 1 zeigt ein Fahrzeug 1 mit einem Hybridgetriebe 2 gemäß einer ersten Ausführungsform. An das Hybridgetriebe 2 ist ein Verbrennungsmotor 3 angeschlossen. Das Fahrzeug 1 ist ein PKW.
Eine Kurbelwelle des Verbrennungsmotors 3 ist an einen Anschluss 4 des Hybridgetriebes 2 angeschlossen. Der Anschluss 4 wird hier durch eine Primärmasse eines Zweimassenschwungrads 5 gebildet. Das Zweimassenschwungrad 5 wird über eine erste Kupplung 6 mit einem ersten Quertrieb 7 verbunden.
Die erste Kupplung ist eine normalerweise geschlossene Einscheibenkupplung mit einem Rutschmoment, welches um 30% über einem Nenndrehmoment des Verbrennungsmotors 3 liegt. Der erste Quertrieb 7 ist als Kettentrieb ausgeführt, und er verbindet somit den Anschluss 4 mit einer dazu achsparallel angeordneten Welle 8.
Die Welle 8 ist eine Eingangswelle eines Übersetzungsgetriebes 9. Das Übersetzungsgetriebe 9 ist ein Automatikschaltgetriebe, und zusammen mit einem Differential 10 ist das Übersetzungsgetriebe 9 ein Abtrieb 11 des Hybridgetriebes 2. Das Differential 10 treibt über Seitenwellen 12 in bekannter Weise Fronträder des Fahrzeugs 1 an, sodass das Fahrzeug 1 beispielsweise in eine Vorwärtsrichtung V fährt.
An der Welle 8 ist konzentrisch eine Verzweigung 13 angeordnet. Die Verzweigung 13 verbindet über eine zweite Kupplung 14 und einen zweiten Quertrieb 15 einen Elektromotor 16 mit der Welle 8. Die Verzweigung 13 ist hier eine Welle-Nabe Verbindung, welche eine Nabe einer Kupplungsscheibe der zweiten Kupplung 14 lagert. Also liegt hier eine starre Verzweigung 13 vor. Die zweite Kupplung 14 ist eine normalerweise geschlossene Einscheibenkupplung mit einem Rutschmoment, welches 20% über einem Nenndrehmoment des Elektromotors 16 liegt. Der zweite Quertrieb 15 ist eine Flachriementrieb zum Verbinden der Welle 8 mit dem achsparallel angeordneten Elektromotor 16.
Außerdem ist im Heck des Fahrzeugs ein weiterer Elektromotor 17 angeordnet, welcher über Seitenwellen 12 Heckräder des Fahrzeugs 1 antreibt.
Die Fig. 2 zeigt ein Fahrzeug 1 mit einem Hybridgetriebe 2 gemäß einer zweiten Ausführungsform. Das Hybridgetriebe 2 unterscheidet sich zur ersten Ausführungsform in den folgenden Einzelheiten, während im Übrigen auf die Vorbeschreibung verwiesen wird. Der zweite Quertrieb 15 ist ein Flachriementrieb, welcher den Elektromotor 8 mit der dazu achsparallelen Verzweigung 13 verbindet. Die Verzweigung 13 ist eine Welle-Nabe-Verbindung zwischen der Welle 8 und einer Riemenscheibe des Quertriebs 15. Der zweite Quertrieb 15 enthält einen steuerbaren Riemenspanner, sodass eine Drehmomentübertragung zwischen dem Elektromotor 8 und der Verzweigung 13 durch den Flachriemen eingestellt und geschaltet werden kann. Daher wirkt der zweite Quertrieb 15, genauer die Einsteilbarkeit und Schaltbarkeit des zweiten Quertriebs 15 als die zweite Kupplung 14.
Die Fig. 3 zeigt ein Fahrzeug 1 mit einem Hybridgetriebe 2 gemäß einer dritten Ausführungsform. Das Hybridgetriebe 2 unterscheidet sich zur ersten Ausführungsform in den folgenden Einzelheiten, während im Übrigen auf die Vorbeschreibung verwiesen wird. Die erste Kupplung 6 ist zwischen der Verzweigung 13 und dem ersten Quertrieb 7 angeordnet. Somit schützt die erste Kupplung 6 bei einem abrupten Lastfall das Differential 10 und das Übersetzungsgetriebe 9 vor Masseeffekten des ersten Quertriebs 7, des Zweimassenschwungrads 5 und des Verbrennungsmotors 3.
Schließlich zeigt die Fig. 4 ein Fahrzeug 1 mit einem Hybridgetriebe 2 gemäß einer vierten Ausführungsform. Das Hybridgetriebe 2 unterscheidet sich zur zweiten Ausführungsform in den folgenden Einzelheiten, während im Übrigen auf die Vorbeschreibung verwiesen wird. Die zweite Kupplung ist eine Scheibenrutschkupplung. Sie ist zwischen der Verzweigung 13 und dem Abtrieb 11 angeordnet. Der zweite Quertrieb 15 ist ein nicht schaltbarer vorgespannter Riementrieb.
In den Fig. 1 bis Fig. 4 wird der Verbrennungsmotor 3 zwar immer in Fahrtrichtung hinter der Verzweigung 13 und dem Übersetzungsgetriebe 9 gezeigt, aber natürlich kann der Verbrennungsmotor 3 in einem tatsächlichen Fahrzeug 1 davor angeordnet werden. Auf diese Weise kann das Hybridgetriebe 2 platzsparend zumindest teilweise unter einer Fahrerkabine angeordnet werden.
Das Hybridgetriebe 2 und der Verbrennungsmotor 3 können beispielsweise zum Antreiben einer Hinterachse im Heck des Fahrzeugs 1 angeordnet werden.
Statt des Zweimassenschwungrads 5 kann eine andere Bauform eines Dämpfers und/oder Tilgers gewählt werden. Diese Baugruppe kann auch zwischen der Verzweigung 13 und dem ersten Quertrieb 7 angeordnet sein. Der erste Quertrieb 7 kann, beispielsweise mittels einer Hohlwellenkonstruktion, axial zwischen dem Verbrennungsmotor 3 und dem Dämpfer/Tilger und der Kupplung 6 angeordnet sein, sodass bauraum- und gewichtsparend der erste Quertrieb 7 entlang der Welle 8 nahe neben der Verzweigung 13 positioniert wird.
Falls der erste Quertrieb 7 ein Kettentrieb oder Riementrieb ist, wird der Dämpfer/Tilger vorzugsweise zwischen dem Verbrennungsmotor 3 und dem Kettentrieb angeordnet, sodass Schwingungen, welche aus Gas- und Massekräften des Verbrennungsmotors resultieren, deutlich reduziert in den Kettentrieb eingeleitet werden. Dies erhöht die Lebensdauer des Kettentriebs.
Die beschriebenen Ausführungsformen sollen untereinander auch auszugsweise kombinierbar sein. Weitere Variationen und Ausführungsformen der Erfindung ergeben sich für den Fachmann im Rahmen der Ansprüche. Bezuqszeichen
1 Fahrzeug
2 Hybridgetriebe
3 Verbrennungsmotor
4 Anschluss
5 Zweimassenschwungrad
6 erste Kupplung
7 erster Quertrieb
8 Welle
9 Übersetzungsgetriebe
10 Differential
11 Abtrieb
12 Seitenwelle
13 Verzweigung
14 zweite Kupplung
15 zweiter Quertrieb
16 Elektromotor
17 Elektromotor
18 dritte Kupplung
V Vorwärtsrichtung

Claims

Patentansprüche
1. Hybridgetriebe (2) aufweisend eine Verzweigung (13), welche mit einem Anschluss (4), an den ein Verbrennungsmotor (3) anschließbar ist, mit einem Elektromotor (16) und mit einem Abtrieb (11) zum Übertragen eines Drehmoments geeignet verbunden ist, wobei zwischen dem Anschluss (4) und der Verzweigung (13) eine erste Kupplung (6) und zwischen dem Elektromotor (16) und dem Abtrieb (11) eine zweite Kupplung (14) angeordnet sind, dadurch gekennzeichnet, dass die erste Kupplung (6) und die zweite Kupplung (14) jeweils ein übertragbares Drehmoment begrenzen und schaltbar sind.
2. Hybridgetriebe (2) nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Kupplung (6) und/oder die zweite Kupplung (14) als schaltbare Reibkupplung ausgeführt ist bzw. sind.
3. Hybridgetriebe (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verzweigung (13) und der Anschluss (4) achsparallel angeordnet und über einen ersten Quertrieb (7) verbunden sind.
4. Hybridgetriebe (2) nach Anspruch 3, dadurch gekennzeichnet, dass die erste Kupplung (6) zwischen dem ersten Quertrieb (7) und dem Anschluss (4) angeordnet ist.
5. Hybridgetriebe (2) nach Anspruch 3, dadurch gekennzeichnet, dass die erste Kupplung (6) zwischen dem ersten Quertrieb (7) und der Verzweigung (13) angeordnet ist.
6. Hybridgetriebe (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verzweigung (13) und der Elektromotor (16) achsparallel angeordnet und über einen zweiten Quertrieb (15) verbunden sind.
7. Hybridgetriebe (2) nach Anspruch 6, dadurch gekennzeichnet, dass der zweite Quertrieb (15) die zweite Kupplung (14) enthält und das übertragbare Drehmoment begrenzt, indem er ein kraftschlüssiger Riementrieb mit einstellbarem Rutschmoment ist.
8. Hybridgetriebe (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zweite Kupplung (14) zwischen dem Abtrieb (11) und der Verzweigung (13) angeordnet ist.
9. Fahrzeug (1) mit einem Verbrennungsmotor (3), dadurch gekennzeichnet, dass das Fahrzeug ein Hybridgetriebe (2) nach einem der vorstehenden Ansprüche enthält, wobei der Verbrennungsmotor (3) an den Anschluss (4) angeschlossen ist.
10. Fahrzeug (1) nach Anspruch 9, dadurch gekennzeichnet, dass das übertragbare Drehmoment der ersten Kupplung (6) höchstens das 3-fache des Nenndrehmoments des Verbrennungsmotors (3) beträgt.
PCT/EP2022/061925 2021-05-06 2022-05-04 Hybridgetriebe mit drehmoment begrenzender und schaltbarer kupplung WO2022233911A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021204583.9A DE102021204583A1 (de) 2021-05-06 2021-05-06 Hybridgetriebe mit Drehmoment begrenzender und/oder schaltbarer Kupplung
DE102021204583.9 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022233911A1 true WO2022233911A1 (de) 2022-11-10

Family

ID=81941068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/061925 WO2022233911A1 (de) 2021-05-06 2022-05-04 Hybridgetriebe mit drehmoment begrenzender und schaltbarer kupplung

Country Status (2)

Country Link
DE (1) DE102021204583A1 (de)
WO (1) WO2022233911A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208167A1 (de) 2022-08-05 2024-02-08 Zf Friedrichshafen Ag Hybridantriebssystem für ein Kraftfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160052382A1 (en) * 2014-08-20 2016-02-25 GM Global Technology Operations LLC Powertrain with transmission-based motor/generator for engine starting and regenerative braking modes
US20170120899A1 (en) * 2015-11-04 2017-05-04 Kanzaki Kokyukoki Mfg. Co., Ltd. Transaxle and motor unit for hybrid vehicle
DE102017201307A1 (de) * 2017-01-27 2018-04-12 Continental Automotive Gmbh Verfahren zum Betreiben eines P2-Hybridantriebsstrangs und P2-Hybridantriebsstrang
DE102016219380A1 (de) * 2016-10-06 2018-04-12 Continental Automotive Gmbh Antriebsmodul für ein Kraftfahrzeug
DE102017211775B3 (de) 2017-07-10 2018-08-16 Gardner Denver Thomas Gmbh Kolbenpumpe mit einem angetriebenen, rotierenden Pumpenkopf und einem darin oszillierenden Kolben
DE102017116341A1 (de) * 2017-07-20 2019-01-24 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung, Verfahren zum Starten eines Verbrennungsaggregats, Computerprogramm und Antriebsstrang für ein Kraftfahrzeug
DE102017221775A1 (de) 2017-12-04 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebsstrang
DE102018009654A1 (de) * 2018-12-08 2020-06-10 BorgWarner lnc. Antriebsstrang für ein Hybridfahrzeug

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110525191B (zh) 2019-09-20 2022-10-18 段志辉 用于车辆的混合动力系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160052382A1 (en) * 2014-08-20 2016-02-25 GM Global Technology Operations LLC Powertrain with transmission-based motor/generator for engine starting and regenerative braking modes
US20170120899A1 (en) * 2015-11-04 2017-05-04 Kanzaki Kokyukoki Mfg. Co., Ltd. Transaxle and motor unit for hybrid vehicle
DE102016219380A1 (de) * 2016-10-06 2018-04-12 Continental Automotive Gmbh Antriebsmodul für ein Kraftfahrzeug
DE102017201307A1 (de) * 2017-01-27 2018-04-12 Continental Automotive Gmbh Verfahren zum Betreiben eines P2-Hybridantriebsstrangs und P2-Hybridantriebsstrang
DE102017211775B3 (de) 2017-07-10 2018-08-16 Gardner Denver Thomas Gmbh Kolbenpumpe mit einem angetriebenen, rotierenden Pumpenkopf und einem darin oszillierenden Kolben
DE102017116341A1 (de) * 2017-07-20 2019-01-24 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung, Verfahren zum Starten eines Verbrennungsaggregats, Computerprogramm und Antriebsstrang für ein Kraftfahrzeug
DE102017221775A1 (de) 2017-12-04 2019-06-06 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebsstrang
DE102018009654A1 (de) * 2018-12-08 2020-06-10 BorgWarner lnc. Antriebsstrang für ein Hybridfahrzeug

Also Published As

Publication number Publication date
DE102021204583A1 (de) 2022-11-10

Similar Documents

Publication Publication Date Title
DE102015113318B4 (de) Antriebsstrang mit getriebebasiertem motor/generator für kraftmaschinenstart- und regenerationsbremsmodi
EP3419848B1 (de) Antriebssystem für ein hybridfahrzeug und verfahren zum betreiben eines solchen
EP2655113B1 (de) Hybridmodul für einen triebstrang eines fahrzeuges
EP2496429B1 (de) Hybridfahrzeuggetriebe
DE102010043591A1 (de) Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs
DE102004002061A1 (de) Verfahren zum Steuern und Regeln eines Antriebsstranges eines Hybridfahrzeuges und Antriebsstrang eines Hybridfahrzeugs
DE102008002677A1 (de) System und Verfahren zum Steuern eines Kupllungseingriffs bei einem Hybridfahrzeug
EP3606781B1 (de) Antriebsvorrichtung mit einer kupplungseinrichtung, antriebssystem mit dieser antriebsvorrichtung und verfahren zum betrieb des antriebsystems
WO2006105929A1 (de) Antriebsstrang eines fahrzeuges und verfahren zur steuerung eines antriebsstranges
DE112013000024T5 (de) Steuerungsvorrichtung eines Hybridfahrzeugs
DE102010023093B4 (de) Antriebsstrang für ein Kraftfahrzeug und Verfahren zum Ansteuern eines Kraftfahrzeug-Antriebsstranges
DE102013216268A1 (de) Antriebsstrang
WO2022233911A1 (de) Hybridgetriebe mit drehmoment begrenzender und schaltbarer kupplung
DE3918254A1 (de) Verfahren zur verhinderung von lastwechselschlaegen
DE102017211264A1 (de) Torsionsdämpfungsanordnung sowie Kraftfahrzeug
DE102008000045A1 (de) Verfahren zum Betreiben eines Antriebsstrangs
DE102010022912B4 (de) Verfahren zum Ansteuern eines Kraftfahrzeug-Antriebsstranges
DE102017211260B4 (de) Schwungstartkupplungsanordnung, Torsionsdämpferanordnung sowie Kraftfahrzeug
DE102009029917B4 (de) Fahrzeug mit zwei Getrieben
DE102010033074A1 (de) Kraftfahrzeuggetriebe sowie Verfahren zum Schalten eines Kraftfahrzeuggetriebes
DE102008061476A1 (de) Antriebsvorrichtung, insbesondere für ein Fahrzeug
DE102016004658B4 (de) Luftkompressorantriebssystem
DE102013109664B4 (de) Antriebsstrang-Ansteuerverfahren und -vorrichtung
DE102019215260B3 (de) Verfahren zur Deaktivierung eines Parksperrenmechanismus eines Hybridantriebsstrangs für ein Kraftfahrzeug
DE102017211258A1 (de) Antriebsstranganordnung sowie Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22728054

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22728054

Country of ref document: EP

Kind code of ref document: A1