WO2022233212A1 - 解耦装置及解耦方法 - Google Patents

解耦装置及解耦方法 Download PDF

Info

Publication number
WO2022233212A1
WO2022233212A1 PCT/CN2022/085386 CN2022085386W WO2022233212A1 WO 2022233212 A1 WO2022233212 A1 WO 2022233212A1 CN 2022085386 W CN2022085386 W CN 2022085386W WO 2022233212 A1 WO2022233212 A1 WO 2022233212A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoupling
unit
plane
decoupling unit
metal
Prior art date
Application number
PCT/CN2022/085386
Other languages
English (en)
French (fr)
Inventor
傅随道
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22798553.8A priority Critical patent/EP4325664A1/en
Publication of WO2022233212A1 publication Critical patent/WO2022233212A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a decoupling device and a decoupling method.
  • MIMO Multiple input multiple output, multiple input multiple output
  • 5G Fifth Generation of mobile communication
  • Antenna mutual coupling as a widespread physical phenomenon, can significantly degrade the performance of MIMO antenna systems, resulting in problems such as increased independent channel correlation, active standing wave degradation, gain degradation, and signal-to-noise ratio degradation.
  • the antenna array is required to be miniaturized, which further increases the mutual coupling. Therefore, reducing the mutual coupling of antennas becomes the research focus of Massive-MIMO antennas.
  • the coupling modes can be divided into E-plane coupling mode, H-plane coupling mode, and a diagonal coupling mode between the E-plane coupling mode and the H-plane coupling mode according to the relative positional relationship between the antenna elements .
  • Existing decoupling techniques can only achieve decoupling in a single coupling mode.
  • the present application aims to solve one of the technical problems existing in some situations at least to a certain extent, and to provide a decoupling device and a decoupling method.
  • an embodiment of the present application provides a decoupling device, which is applied to an antenna array, where the antenna array includes a plurality of antenna units, and the decoupling device includes: a dielectric substrate, where the dielectric substrate is located on the plurality of antennas above the unit; a first decoupling unit, the first decoupling unit is disposed on the dielectric substrate, and the first decoupling unit is disposed above the middle position of each two E-plane coupled antenna units; a second decoupling unit, the second decoupling unit is disposed on the dielectric substrate, and the second decoupling unit is disposed above each of the antenna units; a third decoupling unit, the third decoupling unit The unit is arranged on the dielectric substrate, and the third decoupling unit is arranged above the middle position of every two H-plane coupled antenna units.
  • an embodiment of the present application provides a decoupling method, which is applied to an antenna array, where the antenna array includes a plurality of antenna elements, and the decoupling method includes: coupling the antenna elements on every two E-planes.
  • a first decoupling unit is arranged above the middle position; a second decoupling unit is arranged above each of the antenna units; a third decoupling unit is arranged above the middle position of each of the two H-plane coupled antenna units .
  • FIG. 1 is a schematic perspective view of a decoupling device provided by an embodiment of the present application.
  • FIG. 2 is a schematic side view of a decoupling device provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of an antenna array provided by an embodiment of the present application.
  • FIG. 4 is a structural diagram of a decoupling device provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of a first decoupling unit of a decoupling device provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of a second decoupling unit of a decoupling device provided by an embodiment of the present application.
  • Fig. 7 is the mutual coupling curve diagram before and after using the decoupling device in an embodiment provided by the examples of the present application;
  • FIG. 8 is a graph of return loss before and after using a decoupling device in an embodiment provided by the examples of the present application.
  • Fig. 9 is the direction diagram before and after using the decoupling device in an embodiment provided by the examples of the present application.
  • 10 is an active standing wave diagram before and after using a decoupling device in an embodiment (2-element sub-array) provided in the examples of this application;
  • FIG. 11 is an E-plane and H-plane mutual coupling curve diagram when only the first decoupling unit and the second decoupling unit are used in an embodiment (2-element sub-array) provided in the examples of the present application;
  • FIG. 12 is an H-plane mutual coupling curve diagram when the size of the third decoupling unit changes in an embodiment provided by the examples of the present application;
  • FIG. 13 is a flowchart of a decoupling method provided by an embodiment of the present application.
  • the meaning of several is one or more, the meaning of multiple is two or more, greater than, less than, exceeding, etc., are understood as not including this number, and above, below, within, etc., are understood as including this number. If it is described that the first and the second are only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying relative importance, or indicating the number of the indicated technical features or the order of the indicated technical features. relation.
  • Embodiments of the present application provide a decoupling device and a decoupling method, which can realize joint decoupling of the E-plane and the H-plane of an antenna array.
  • the embodiment of the first aspect of the present application provides a decoupling device, which is applied to an antenna array.
  • the antenna array includes a plurality of antenna units.
  • the antenna array in this embodiment takes a 2 ⁇ 2 planar antenna array 200 as an example. 200 As shown in FIG. 2 and FIG. 3, the planar antenna array 200 is placed on the reflective floor 300, and the planar antenna array 200 includes a first antenna unit 210, a second antenna unit 220, a third antenna unit 230 and a fourth antenna unit 240,
  • the first antenna unit 210 and the second antenna unit 220 are two antenna units coupled on the H plane
  • the second antenna unit 220 and the third antenna unit 230 are two antenna units coupled on the E plane.
  • the third antenna unit The unit 230 and the fourth antenna unit 240 are also two antenna units coupled on the H-plane
  • the first antenna unit 210 and the fourth antenna unit 240 are also two antenna units coupled on the E-plane;
  • the decoupling device 100 is covered above the planar antenna array 200, and the decoupling device 100 includes a dielectric substrate 110, a first decoupling unit 120, a second decoupling unit 130 and a third decoupling unit 140, wherein:
  • the dielectric substrate 110 is located above the plurality of antenna units, that is, located above the planar antenna array 200 , and the dielectric substrate 110 only serves to decouple the first decoupling unit 120 , the second decoupling unit 130 and the
  • the dielectric substrate 110 may be a one-layer or multi-layer structure, and in some possible implementations, the dielectric substrate 110 may also be an radome;
  • the first decoupling unit 120 is disposed on the dielectric substrate 110 , and the first decoupling unit 120 is disposed above the middle position of every two E-plane coupled antenna units, that is, the middle of the second antenna unit 220 and the third antenna unit 230
  • the first decoupling unit 120 is disposed above the position, and the first decoupling unit 120 is also disposed above the middle position of the first antenna unit 210 and the fourth antenna unit 240;
  • the second decoupling unit 130 is disposed on the dielectric substrate 110, and the second decoupling unit 130 is disposed above each antenna unit, namely: the first antenna unit 210, the second antenna unit 220, the third antenna unit 230 and the fourth antenna
  • the second decoupling unit 130 is disposed above the unit 240;
  • the third decoupling unit 140 is disposed on the dielectric substrate 110 , and the third decoupling unit 140 is disposed above the middle position of every two H-plane coupled antenna units, that is, the middle of the first antenna unit 210 and the second antenna unit 220
  • the third decoupling unit 140 is disposed above the position, and the third decoupling unit 140 is also disposed above the middle position of the third antenna unit 230 and the fourth antenna unit 240 .
  • the first decoupling unit 120 is arranged above the middle position of the two E-plane coupled antenna units, and the second decoupling unit 130 is arranged above the antenna units.
  • the first decoupling unit 120 and the The second decoupling unit 130 generates the E-surface scattered waves with the same amplitude and opposite phase as the E-surface coupled waves, and the E-surface scattered waves and the E-surface coupled waves cancel each other to realize the E-surface decoupling.
  • the second decoupling unit 130 also An H-surface scattered wave will be generated to realize the H-surface decoupling.
  • a third decoupling unit 140 is set above the middle position of the two H-surface coupled antenna units, and the second decoupling unit 130 and the third decoupling unit are used.
  • the unit 140 jointly generates the H-surface scattered wave with the same amplitude and opposite phase as the H-surface coupled wave, and the H-surface scattered wave and the H-surface coupled wave cancel each other to realize the E-surface decoupling; through the first decoupling unit 120 and the second decoupling
  • the joint action of the unit 130 and the third decoupling unit 140 realizes the joint decoupling of the E-plane and the H-plane of the antenna array.
  • the first decoupling unit 120 includes one first metal patch 121 or includes a plurality of first metal patches 121 arranged along the H-plane direction, and the geometric center of the first decoupling unit 120 is located at two E Just above the mid-position of the surface-coupled antenna element.
  • the first antenna unit 210 and the second antenna unit 220 are two antenna units coupled by the H-plane
  • the third antenna unit 230 and the fourth antenna unit 240 are also two antenna units coupled by the H-plane.
  • antenna elements, and the H-plane direction in FIG. 4 is the horizontal direction.
  • each first decoupling unit 120 specifically includes two first metal patches 121 arranged along the H-plane direction, that is, the second antenna unit 220 and the third antenna unit 230 Two first metal patches 121 arranged in the horizontal direction are arranged above the middle position, and two first metal patches 121 arranged in the horizontal direction are also arranged above the middle position of the first antenna unit 210 and the fourth antenna unit 240 .
  • the first decoupling unit 120 may also include only one first metal patch 121, and may also include three or more first metal patches 121, which are not limited in this application, and only need to keep the first decoupling unit
  • the geometric center of 120 may be located just above the middle position of the two E-plane coupled antenna elements.
  • the shape of the first metal patch 121 may be a rectangle, a triangle, a circle, a cross, an I-shape, a C-shape, or other similar shapes.
  • the length of the first metal patch 121 in the H-plane direction ranges from 0.01 ⁇ c to 0.25 ⁇ c, where ⁇ c is the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna array.
  • the first metal patch 121 in this size range is an electrically small size metal patch.
  • the electromagnetic scattered waves of the electrically small-sized metal patch structure are isotropic, that is, when the distance is the same, the amplitude and phase of the scattered waves in different directions are equal.
  • a first metal ring 122 is sleeved outside the first metal patch 121 .
  • the structure of the first metal patch 121 can be either a single metal patch structure or an inner nested structure.
  • the use of nested metal patch structure is beneficial to enhance the amplitude of scattered waves and improve the decoupling effect.
  • each of the first metal patches 121 includes a plurality of metal patches arranged in a direction perpendicular to the H-plane.
  • each first metal patch 121 includes a plurality of first metal patches 121 arranged along the direction perpendicular to the H-plane.
  • the metal patch that is, the first decoupling unit 120 is formed by arranging a plurality of metal patches in a two-dimensional array. Specifically, as shown in FIG.
  • the first decoupling unit 120 includes two first metal patches 121 arranged along the H-plane direction, and each first metal patch 121 further includes two first metal patches 121 arranged along the direction perpendicular to the H-plane
  • the metal patch that is, the first decoupling unit 120 is composed of four metal patches arranged in a two-dimensional array.
  • each of the first metal patches 121 includes a plurality of stacked metal patches.
  • the first metal patch 121 is formed by a plurality of stacked metal patches to form a three-dimensional space structure, which can achieve different decoupling effects.
  • the second decoupling unit 130 includes one second metal patch 131 or includes a plurality of second metal patches 131 arranged along the E-plane direction, and the geometric center of the second decoupling unit 130 is located at the edge of the antenna unit. Directly above.
  • each second decoupling unit 130 includes two second metal patches 131 arranged along the E-plane direction, namely the first antenna unit 210 , the second antenna unit 220 , the second Above the three antenna units 230 and the fourth antenna unit 240 are two second metal patches 131 arranged in the vertical direction.
  • the second decoupling unit 130 may also include only one second metal patch 131, or may include three or more second metal patches 131, which is not limited in this application, and only the second decoupling unit is required to be maintained.
  • the geometric center of 130 is just above each antenna element.
  • the shape of the second metal patch 131 may be a rectangle, a triangle, a circle, a cross, an I-shape, a C-shape, or other similar shapes.
  • the length of the second metal patch 131 along the E-plane direction ranges from 0.01 ⁇ c to 0.25 ⁇ c, where ⁇ c is the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna array.
  • the second metal patch 131 in this size range is an electrically small size metal patch.
  • the electromagnetic scattered waves of the electrically small-sized metal patch structure are isotropic, that is, when the distance is the same, the amplitude and phase of the scattered waves in different directions are equal.
  • a second metal ring 132 is sleeved outside the second metal patch 131 .
  • the structure of the second metal patch 131 can be either a single metal patch structure or an inner nested structure.
  • the structure formed by the metal ring 132 is beneficial to enhance the amplitude of scattered waves and improve the decoupling effect.
  • each of the second metal patches 131 includes a plurality of metal patches arranged in a direction perpendicular to the E-plane.
  • each second metal patch 131 includes a plurality of second metal patches 131 arranged in a direction perpendicular to the E plane.
  • the metal patch, that is, the second decoupling unit 130 is formed by arranging a plurality of metal patches in a two-dimensional array. Specifically, as shown in FIG.
  • the second decoupling unit 130 includes two second metal patches 131 arranged along the E-plane direction, and each second metal patch 131 further includes two second metal patches 131 arranged along the E-plane direction
  • the metal patch, that is, the second decoupling unit 130 is composed of four metal patches arranged in a two-dimensional array.
  • each second metal patch 131 includes a plurality of stacked metal patches.
  • the second metal patch 131 is formed by a plurality of stacked metal patches to form a three-dimensional space structure, which can achieve different decoupling effects.
  • the third decoupling unit 140 includes one third metal patch 141 or a plurality of third metal patches 141 arranged in layers, and the geometric center of the third decoupling unit 140 is located at the two H-plane coupled antennas Just above the middle of the cell.
  • the third decoupling unit 140 may be composed of only one third metal patch 141 , or may be composed of a plurality of third metal patches 141 arranged in layers to achieve different decoupling effects.
  • the shape of the third metal patch 141 may be a rectangle, a triangle, a circle, a cross, an I-shape, a C-shape, or other similar shapes.
  • the length of the third metal patch 141 in the H-plane direction ranges from 0.40 ⁇ c to 0.80 ⁇ c, where ⁇ c is the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna array.
  • the third metal patch 141 in this size range is an electrically large size metal patch, and the electrically large size refers to both the physical length and the length through which the effective current flows, that is, the electrical length.
  • a third metal ring 142 is sleeved outside the third metal patch 141 .
  • the structure of the third metal patch 141 can be either a single metal patch structure or an inner nested structure.
  • the use of the nested metal patch structure is beneficial to reduce the physical size of the electrically large-sized metal patch, enhance the amplitude of scattered waves, and improve the decoupling effect.
  • first decoupling unit 120 , the second decoupling unit 130 and the third decoupling unit 140 may be at the same height or may be at different heights.
  • the heights of the first decoupling unit 120, the second decoupling unit 130 and the third decoupling unit 140 from the antenna unit are between 0.05 ⁇ c and 1.0 ⁇ c.
  • the size of the first decoupling unit 120 increases as the distance between every two E-plane coupled antenna elements decreases, but the upper limit does not exceed the distance between two H-plane coupled antenna elements; the second decoupling unit 130 The size increases as the spacing between every two E-plane coupled antenna elements decreases or as the spacing between every two H-plane coupled antenna elements decreases, but the upper limit does not exceed two E-plane coupled antenna elements. Spacing between antenna elements.
  • the size of the third decoupling unit 140 is determined by the operating frequency of the antenna, regardless of the spacing between the antenna units.
  • the first decoupling unit 120 , the second decoupling unit 130 and the third decoupling unit 140 can be respectively extended along the x-axis and the y-axis according to the array scale of the planar antenna, so they are suitable for antenna arrays with any number of antenna units.
  • the planar antenna array 200 is placed on the reflective floor 300, the array element spacing of the antenna unit in the x-axis direction is 47mm (0.55 ⁇ 3.5GHz ), and the array element spacing in the y-axis direction is 43mm (0.5 ⁇ 3.5GHz ); the antenna unit is Printed electric dipole antenna;
  • the first decoupling unit 120 , the second decoupling unit 130 and the third decoupling unit 140 are all etched on the upper surface of the dielectric substrate 110 ;
  • the first decoupling unit 120 is composed of two electrically small first metal patches 121; the first metal patches 121 are arranged along the direction of the H-plane of the antenna; the geometric center of the first decoupling unit 120 is located at every two E Just above the mid-position of the surface-coupled antenna element;
  • the second decoupling unit 130 is composed of two electrically small second metal patches 131; in order to avoid excessive influence on the decoupling effect of the first decoupling unit 120, the second metal patches 131 are separated from the two ends of the antenna unit. Arranged along the direction of the antenna E surface; the geometric center of the second decoupling unit 130 is located directly above each antenna unit;
  • the third decoupling unit 140 is composed of a third metal patch 141 with an electrically large size, and the geometric center of the third decoupling unit 140 is located above the middle position of every two H-plane coupled antenna units;
  • the length L1 of the first metal patch 121 is 16mm (0.19 ⁇ 3.5GHz ), and the width W1 is 8mm (0.09 ⁇ 3.5GHz );
  • the length L2 of the second metal patch 131 is 19mm (0.22 ⁇ 3.5GHz ), and the width W2 is 8mm (0.09 ⁇ 3.5GHz );
  • the length L3+L4 of the third metal patch 141 is 46mm (0.54 ⁇ 3.5GHz ), and the width W3 is 6mm (0.07 ⁇ 3.5GHz );
  • the first decoupling unit 120 , the second decoupling unit 130 and the third decoupling unit 140 are located at the same height, and the distance H from the antenna array 200 is 14 mm (0.16 ⁇ 3.5 GHz );
  • the first metal patch 121 is a rectangular metal patch, and a first metal ring 122 is set outside to enhance the scattered wave intensity;
  • the second metal patch 131 is a rectangular metal patch, and a second metal ring 132 is set outside to enhance the scattered wave intensity;
  • the third metal patch 141 is a cross-shaped metal patch, and a cross-shaped third metal ring 142 is sleeved outside to reduce the physical size of the electrically large-sized metal patch and enhance the scattered wave amplitude;
  • first metal patch 121 and the second metal patch 131 is not limited to a rectangle, and the structure is not limited to annular nesting; the shape of the third metal patch 141 is not limited to a cross, and the structure is not limited to circular nesting;
  • the decoupling device 100 can be fixed above the planar antenna array through a plastic support, or can be fabricated inside the radome.
  • the decoupling device 100 provided in this example which is applied to a planar antenna array to realize dual-mode decoupling, can further improve the impedance characteristics and radiation characteristics of the antenna on the basis of significantly reducing the mutual coupling between the E-plane and the H-plane of the MIMO antenna.
  • Figure 7 shows the mutual coupling curve before and after using the decoupling device.
  • the mutual coupling between the E-plane and the H-plane can be reduced by more than 10dB within a relative bandwidth of 6% (3.4-3.6GHz); it can be within a relative bandwidth of 12%.
  • Figure 8 is the return loss curve before and after using the decoupling device, which can increase the antenna impedance bandwidth from 5.7% (3.4-3.6GHz) to 14.5 % (3.2-3.7GHz);
  • Figure 9 is the pattern before and after using the decoupling device, which can increase the antenna gain from 8.0dBi to 8.3dBi;
  • Figure 10 is the active standing wave diagram before and after using the decoupling device, which can make the MIMO The maximum active standing wave when the antenna beam is pointed at 0° is reduced from 1.9 to 1.55, and the maximum active standing wave when the beam is pointed at 15° is reduced from 3.3 to 1.6;
  • the decoupling device 100 can be periodically extended along the x-axis and y-axis, using It can be applied to a plane MIMO antenna with any number of antenna array elements; it can be covered above the MIMO antenna and can be integrated inside the radome, and has the characteristics of simple structure, convenient implementation and low cost
  • the E-plane scattered waves and the E-plane coupled waves generated by the first decoupling unit 120 and the second decoupling unit 130 are equal in amplitude and opposite in phase, and the scattered waves and E-plane coupled waves cancel each other to achieve E-plane decoupling.
  • the H-surface scattered waves generated by the second decoupling unit 130 can realize H-surface decoupling.
  • the third decoupling unit uses the resonant characteristics of the electrically large size metal patch to change the phase of the H-surface scattered wave generated by the second decoupling unit, so that the H-surface scattered wave generated by the second decoupling unit and the third decoupling unit is the same as the
  • the H-plane coupled waves have equal amplitudes and opposite phases to realize H-plane decoupling.
  • the third decoupling unit is far away from the E-plane coupling antenna and will not affect the E-plane decoupling.
  • the H-plane mutual coupling is less than 25dB, which is 10dB lower than that of the non-decoupling device.
  • the size of the electrically large-sized metal patch included in the third decoupling unit directly determines the phase of the H-plane scattered wave.
  • Figure 12 shows the H-plane mutual coupling curve when the size of the electrically large-sized metal patch changes in the 2-element sub-array. As the size of the electrically large size metal patch becomes larger, the optimal decoupling frequency band of the H surface moves to the low frequency.
  • a second aspect embodiment of the present application provides a decoupling method, which is applied to an antenna array.
  • the antenna array includes a plurality of antenna elements, and the decoupling method includes the following steps:
  • Step S1310 set a first decoupling unit above the middle position of every two E-plane coupled antenna units;
  • Step S1320 Arrange a second decoupling unit above each antenna unit;
  • Step S1330 Set a third decoupling unit above the middle position of every two H-plane coupled antenna units.
  • a first decoupling unit is arranged above the middle position of the two E-plane coupled antenna units, and a second decoupling unit is arranged above the antenna units, and the first decoupling unit and the second decoupling unit are arranged
  • the coupling unit generates the E-surface scattered waves with the same amplitude and opposite phase as the E-surface coupled waves.
  • the E-surface scattered waves and the E-surface coupled waves cancel each other out to realize the E-surface decoupling.
  • the second decoupling unit also generates H-surface scattering. The wave realizes the H-surface decoupling.
  • a third decoupling unit is arranged above the middle position of the two H-surface coupled antenna units, and the second decoupling unit and the third decoupling unit jointly generate coupling with the H-surface.
  • the H-surface scattered waves with equal wave amplitude and opposite phase, the H-surface scattered waves and the H-surface coupled waves cancel each other out to realize the E-surface decoupling; It can realize the joint decoupling of the E-plane and the H-plane of the antenna array.
  • the first decoupling unit includes a first metal patch or includes a plurality of first metal patches arranged along the H-plane direction, and the geometric center of the first decoupling unit is located at the two E-plane coupled antennas. Just above the middle of the cell.
  • the shape of the first metal patch can be a rectangle, a triangle, a circle, a cross, an I-shaped, a C-shaped or other similar shapes; the size of the first metal patch ranges from 0.01 ⁇ c to 0.25 ⁇ c, where ⁇ c is the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna array.
  • the first metal patch in this size range is an electrically small size metal patch.
  • the electromagnetic scattered waves of the electrically small-sized metal patch structure are isotropic, that is, when the distance is the same, the amplitude and phase of the scattered waves in different directions are equal.
  • each first metal patch can also be sleeved with a first metal ring, or each first metal patch includes a plurality of metal patches arranged in a direction perpendicular to the H plane, or each first metal patch
  • the sheet includes a plurality of stacked metal patches, and the first metal patches of different structures can achieve different decoupling effects.
  • the decoupling method further includes the following steps:
  • the shape, number, height or size of the first metal patch is adjusted so that the E-plane scattered wave and the E-plane coupled wave generated by the first decoupling unit have the same amplitude and opposite phase.
  • the E-plane scattered wave and the E-plane coupled wave generated by the first decoupling unit have the same amplitude and opposite phase, and the E-plane scattered wave and the E-plane coupled wave cancel each other out to realize the E-plane decoupling.
  • the second decoupling unit includes one two metal patches or includes a plurality of second metal patches arranged along the E-plane direction, and the geometric center of the second decoupling unit is located just above the antenna unit.
  • the shape of the second metal patch can be a rectangle, a triangle, a circle, a cross, an I-shaped, a C-shaped or other similar shapes; the size of the second metal patch ranges from 0.01 ⁇ c to 0.25 ⁇ c, where ⁇ c is the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna array.
  • the second metal patch in this size range is an electrically small size metal patch.
  • the electromagnetic scattered waves of the electrically small-sized metal patch structure are isotropic, that is, when the distance is the same, the amplitude and phase of the scattered waves in different directions are equal.
  • a second metal ring may be sleeved on the outside of the second metal patch, or each second metal patch includes a plurality of metal patches arranged in a direction perpendicular to the E-plane, or each second metal patch
  • the sheet includes a plurality of stacked metal patches, and the second metal patches of different structures can achieve different decoupling effects.
  • the decoupling method further includes the following steps:
  • the shape, number, height or size of the second metal patch is adjusted so that the H-plane scattered wave and the H-plane coupled wave generated by the second decoupling unit have equal amplitudes.
  • the H-surface scattered wave generated by the second decoupling unit can realize the H-surface decoupling.
  • the third decoupling unit includes a third metal patch or a plurality of third metal patches arranged in layers, and the geometric center of the third decoupling unit is located in the middle of the two H-plane coupled antenna units. directly above.
  • the third decoupling unit may be composed of only one third metal patch, or may be composed of a plurality of third metal patches arranged in layers to achieve different decoupling effects.
  • the shape of the third metal patch may be a rectangle, a triangle, a circle, a cross, an I-shape, a C-shape, or other similar shapes.
  • the size of the third metal patch ranges from 0.40 ⁇ c to 0.80 ⁇ c, where ⁇ c is the electromagnetic wave wavelength corresponding to the center frequency of the antenna array.
  • the third metal patch in this size range is an electrically large size metal patch, and the electrically large size refers to both the physical length and the length through which the effective current flows, that is, the electrical length.
  • a third metal ring can also be set on the outside of the third metal patch, and a nested metal patch structure is adopted, which is beneficial to reduce the physical size of the electrically large-sized metal patch, enhance the amplitude of scattered waves, and improve the Decoupling effect.
  • the decoupling method further includes the following steps:
  • the shape, number of layers, height or size of the third metal patch is adjusted so that the H-plane scattered wave and the H-plane coupled wave jointly generated by the second decoupling unit and the third decoupling unit are equal in amplitude and opposite in phase.
  • the second decoupling unit and the third decoupling unit jointly generate the H-surface scattered waves with the same amplitude and opposite phase as the H-surface coupled waves, and the H-surface scattered waves and the H-surface coupled waves cancel each other to realize the E-surface decoupling.
  • the method for realizing dual-mode decoupling applied to a planar antenna array includes the following steps:
  • the first step is to set the first decoupling unit 120.
  • the first decoupling unit 120 is composed of a first metal patch 121 with an electrically small size or is composed of a plurality of first metal patches 121 with an electrically small size;
  • the decoupling unit 120 is composed of a plurality of first metal patches 121 of electrically small size, the plurality of first metal patches 121 are arranged along the direction of the antenna H plane, and the geometric center of the first decoupling unit 120 is located at every two E Just above the middle position of the surface-coupled antenna unit, by adjusting the size, height, quantity, shape, and number of layers of the first metal patch 121 , the E-surface scattered waves and E-surface coupled waves generated by the first decoupling unit 120 are adjusted.
  • the amplitude is equal and the phase is opposite to realize the decoupling of the E-plane antenna;
  • a second decoupling unit 130 is set up, and the second decoupling unit 130 is composed of a second metal patch 131 with an electrically small size or is composed of a plurality of second metal patches 131 with an electrically small size;
  • the decoupling unit 130 is composed of a plurality of second metal patches 131 of small size, and the plurality of second metal patches 131 are placed along the E surface of the antenna.
  • the second metal patches 131 start from both ends of the antenna and are arranged from the outside to the inside.
  • the geometric center of the second decoupling unit 130 is located directly above each antenna unit.
  • the third step is to optimize the first decoupling unit 120, and by adjusting the size of the first metal patch 121, correct the influence on the scattered waves on the E surface caused by the introduction of the second decoupling unit 130, so as to ensure the decoupling of the E surface;
  • the fourth step is to set up a third decoupling unit 140.
  • the third decoupling unit 140 is composed of one electrically large third metal patch 141 or a plurality of electrically large third metal patches 141 are stacked.
  • the third decoupling unit The geometric center of 140 is located just above the middle position of every two H-plane coupled antenna elements.
  • the second decoupling unit 130 is optimized, and the influence caused by the introduction of the third decoupling unit 140 is corrected by adjusting the size of the second metal patch 131 to ensure H-plane decoupling;
  • the first decoupling unit 120, the second decoupling unit 130 and the third decoupling unit 140 are respectively expanded along the x-axis and the y-axis according to the scale of the planar MIMO antenna to obtain a decoupling device to realize the E-plane and H-plane of the antenna. face co-decoupling.
  • this method is not only applicable to single-polarized antenna arrays but also to dual-polarized antenna arrays.
  • the decoupling device and decoupling method provided in the embodiments of the present application can achieve more coupled wave suppression in a dual-polarized MIMO antenna array, and obtain better coupling effect; and can also realize coupling and decoupling in any direction in two-dimensional space, This makes the base station antenna decoupling more flexible.
  • the embodiments of the present application include: a decoupling device and a decoupling method, a first decoupling unit is arranged above the middle position of the two E-plane coupled antenna units, and a second decoupling unit is arranged above the antenna units,
  • the first decoupling unit and the second decoupling unit generate the E-surface scattered waves with the same amplitude and opposite phase as the E-surface coupled waves.
  • the E-surface scattered waves and the E-surface coupled waves cancel each other out to realize the E-surface decoupling.
  • the second decoupling The coupling unit will also generate H-plane scattered waves to realize the decoupling of the H-plane.
  • a third decoupling unit is set above the middle position of the two H-plane coupled antenna units.
  • the second decoupling unit and the third decoupling unit jointly generate the H-surface scattered waves with the same amplitude and opposite phase as the H-surface coupled waves, and the H-surface scattered waves and the H-surface coupled waves cancel each other to realize the E-surface decoupling; through the first decoupling unit and the second decoupling unit Together with the third decoupling unit, the E-plane and the H-plane of the antenna array are decoupled together.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种解耦装置及解耦方法,在两个E面耦合的天线单元的中间位置的上方设置第一解耦单元(120),以及在天线单元的上方设置第二解耦单元(130),在两个H面耦合的天线单元的中间位置的上方设置第三解耦单元(140)。

Description

解耦装置及解耦方法
相关申请的交叉引用
本申请基于申请号为202110488752.7,申请日为2021年05月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种解耦装置及解耦方法。
背景技术
在第五代移动通信中采用了MIMO(Multiple input multiple output,多输入多输出)天线技术,该技术具有提高通信系统可靠性和增加信道容量的能力,因此被认为是5G核心技术之一。天线互耦作为一种广泛存在物理现象会显著恶化MIMO天线系统性能,造成诸如独立通道相关性增加、有源驻波恶化、增益下降以及信噪比恶化等问题。与此同时为了降低塔顶租赁成本要求天线阵面小型化,这又进一步造成互耦的增强。因此,降低天线互耦成为Massive-MIMO天线的研究重点。
在天线阵列中,可以根据天线单元间的相对位置关系将耦合模式分为E面耦合模式、H面耦合模式,以及一种介于E面耦合模式和H面耦合模式之间的对角耦合模式。现有的解耦技术仅能对实现单一耦合模式下的解耦。
发明内容
本申请旨在至少在一定程度上解决一些情形中存在的技术问题之一,提供一种解耦装置及解耦方法。
第一方面,本申请实施例提供一种解耦装置,应用于天线阵列,所述天线阵列包括多个天线单元,所述解耦装置包括:介质基板,所述介质基板位于所述多个天线单元的上方;第一解耦单元,所述第一解耦单元设置于所述介质基板,每两个E面耦合的所述天线单元的中间位置的上方设置有所述第一解耦单元;第二解耦单元,所述第二解耦单元设置于所述介质基板,每个所述天线单元的上方设置有所述第二解耦单元;第三解耦单元,所述第三解耦单元设置于所述介质基板,每两个H面耦合的所述天线单元的中间位置的上方设置有所述第三解耦单元。
第二方面,本申请实施例提供一种解耦方法,应用于天线阵列,所述天线阵列包括多个天线单元,所述解耦方法包括:在每两个E面耦合的所述天线单元的中间位置的上方设置第一解耦单元;在每个所述天线单元的上方设置第二解耦单元;在每两个H面耦合的所述天线单元的中间位置的上方设置第三解耦单元。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
下面结合附图和实施例对本申请进一步地说明;
图1是本申请实施例提供的一种解耦装置的立体示意图;
图2是本申请实施例提供的一种解耦装置的侧面示意图;
图3是本申请实施例提供的一种天线阵列的结构图;
图4是本申请实施例提供的一种解耦装置的结构图;
图5是本申请实施例提供的一种解耦装置的第一解耦单元的结构图;
图6是本申请实施例提供的一种解耦装置的第二解耦单元的结构图;
图7是本申请实施例提供的一个实施方案中使用解耦装置前后的互耦曲线图;
图8是本申请实施例提供的一个实施方案中使用解耦装置前后的回波损耗曲线图;
图9是本申请实施例提供的一个实施方案中使用解耦装置前后的方向图;
图10是本申请实施例提供的一个实施方案(2元子阵)中使用解耦装置前后的有源驻波图;
图11是本申请实施例提供的一个实施方案(2元子阵)中仅使用第一解耦单元和第二解耦单元时的E面和H面互耦曲线图;
图12是本申请实施例提供的一个实施方案中随着第三解耦单元尺寸变化时的H面互耦曲线图;
图13是本申请实施例提供的一种解耦方法的流程图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请之若干实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
本申请实施例提供一种解耦装置及解耦方法,能够实现天线阵列的E面和H面共同解耦。
下面结合附图,对本申请实施例作进一步阐述。
本申请的第一方面实施例提供一种解耦装置,应用于天线阵列,天线阵列包括多个天线单元,本实施例中的天线阵列以2×2的平面天线阵列200为例,平面天线阵列200如图2和图3所示,平面天线阵列200放置于反射地板300上,平面天线阵列200包括第一天线单元210、第二天线单元220、第三天线单元230和第四天线单元240,其中,第一天线单元210和第二天线单元220为H面耦合的两个天线单元,第二天线单元220和第三天线单元230为 E面耦合的两个天线单元;同理,第三天线单元230和第四天线单元240也为H面耦合的两个天线单元,第一天线单元210和第四天线单元240也为E面耦合的两个天线单元;
解耦装置100覆盖于平面天线阵列200的上方,解耦装置100包括介质基板110、第一解耦单元120、第二解耦单元130和第三解耦单元140,其中:
如图1和图2所示,介质基板110位于多个天线单元的上方,即位于平面天线阵列200的上方,介质基板110仅起到对第一解耦单元120、第二解耦单元130和第三解耦单元140的物理支撑作用,介质基板110可以是一层或者多层结构,在一些可能的实施方式中,介质基板110也可以是天线罩体;
第一解耦单元120设置于介质基板110,每两个E面耦合的天线单元的中间位置的上方设置有第一解耦单元120,即:第二天线单元220和第三天线单元230的中间位置的上方设置有第一解耦单元120,第一天线单元210和第四天线单元240的中间位置的上方也设置有第一解耦单元120;
第二解耦单元130设置于介质基板110,每个天线单元的上方设置有第二解耦单元130,即:第一天线单元210、第二天线单元220、第三天线单元230和第四天线单元240的上方均设置有第二解耦单元130;
第三解耦单元140设置于介质基板110,每两个H面耦合的天线单元的中间位置的上方设置有第三解耦单元140,即:第一天线单元210和第二天线单元220的中间位置的上方设置有第三解耦单元140,第三天线单元230和第四天线单元240的中间位置的上方也设置有第三解耦单元140。
在本实施例中,在两个E面耦合的天线单元的中间位置的上方设置第一解耦单元120,以及在天线单元的上方设置第二解耦单元130,通过第一解耦单元120和第二解耦单元130产生与E面耦合波幅度相等、相位相反的E面散射波,E面散射波和E面耦合波相互抵消,实现E面解耦,同时,第二解耦单元130也会产生H面散射波实现H面部分解耦,另外,还在两个H面耦合的天线单元的中间位置的上方设置第三解耦单元140,通过第二解耦单元130和第三解耦单元140共同产生与H面耦合波幅度相等、相位相反的H面散射波,H面散射波和H面耦合波相互抵消,实现E面解耦;通过第一解耦单元120、第二解耦单元130和第三解耦单元140的共同作用,实现天线阵列的E面和H面共同解耦。
在一实施例中,第一解耦单元120包括一个第一金属贴片121或者包括多个沿H面方向排列的第一金属贴片121,第一解耦单元120的几何中心位于两个E面耦合的天线单元的中间位置的正上方。
需要说明的是,如图3所示,第一天线单元210和第二天线单元220为H面耦合的两个天线单元,第三天线单元230和第四天线单元240也为H面耦合的两个天线单元,图4中的H面方向为水平方向。如图4所示,在本实施例中,每个第一解耦单元120具体包括两个沿H面方向排列的第一金属贴片121,即第二天线单元220和第三天线单元230的中间位置的上方设置有两个水平方向排列的第一金属贴片121,第一天线单元210和第四天线单元240的中间位置的上方也设置有两个水平方向排列的第一金属贴片121。第一解耦单元120也可以只包括一个第一金属贴片121,还可以包括三个或者更多数量的第一金属贴片121,本申请对此不作限定,只需保持第一解耦单元120的几何中心位于两个E面耦合的天线单元的中间位置的正上方即可。
第一金属贴片121的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状。
另外,第一金属贴片121沿H面方向的长度范围为0.01λc至0.25λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第一金属贴片121为电小尺寸的金属贴片。电小尺寸的金属贴片结构的电磁散射波是各向同性的,即距离相同时,不同方向上的散射波幅度和相位相等。
参照图4,在一实施例中,第一金属贴片121的外部套设有第一金属环122。
可以理解的是,第一金属贴片121的结构既可以是单一的金属贴片结构,也可以是内部嵌套结构,内部嵌套结构即为在第一金属贴片121的外部套设第一金属环122所形成的结构。采用嵌套式的金属贴片结构,有利于增强散射波幅度,提高解耦效果。
在一实施例中,每个第一金属贴片121包括多个沿垂直于H面方向排列的金属贴片。
可以理解的是,在第一解耦单元120包括多个沿H面方向排列的第一金属贴片121的基础上,每个第一金属贴片121包括多个沿垂直于H面方向排列的金属贴片,即第一解耦单元120由多个金属贴片按照二维阵列排列而成。具体地,如图5所示,第一解耦单元120包括两个沿H面方向排列的第一金属贴片121,每个第一金属贴片121又包括两个沿垂直于H面方向排列的金属贴片,即第一解耦单元120由四个金属贴片按照二维阵列排列而成。
另外,在一实施例中,每个第一金属贴片121包括多个层叠设置的金属贴片。
可以理解的是,第一金属贴片121由多个层叠的金属贴片形成三维空间结构,可以达到不同的解耦效果。
在一实施例中,第二解耦单元130包括一个第二金属贴片131或者包括多个沿E面方向排列的第二金属贴片131,第二解耦单元130的几何中心位于天线单元的正上方。
需要说明的是,如图3所示,第二天线单元220和第三天线单元230为E面耦合的两个天线单元,第一天线单元210和第四天线单元240也为E面耦合的两个天线单元,图4中的E面方向为竖直方向。如图4所示,在本实施例中,每个第二解耦单元130包括两个沿E面方向排列的第二金属贴片131,即第一天线单元210、第二天线单元220、第三天线单元230和第四天线单元240的上方均设置有两个沿竖直方向排列的第二金属贴片131。第二解耦单元130也可以只包括一个第二金属贴片131,还可以包括三个或者更多数量的第二金属贴片131,本申请对此不作限定,只需保持第二解耦单元130的几何中心位于每个天线单元的正上方即可。
第二金属贴片131的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状。
另外,第二金属贴片131沿E面方向的长度范围为0.01λc至0.25λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第二金属贴片131为电小尺寸的金属贴片。电小尺寸的金属贴片结构的电磁散射波是各向同性的,即距离相同时,不同方向上的散射波幅度和相位相等。
参照图4,在一实施例中,第二金属贴片131的外部套设有第二金属环132。
可以理解的是,第二金属贴片131的结构既可以是单一的金属贴片结构,也可以是内部嵌套结构,内部嵌套结构即为在第二金属贴片131的外部套设第二金属环132所形成的结构。采用嵌套式的金属贴片结构,有利于增强散射波幅度,提高解耦效果。
在一实施例中,每个第二金属贴片131包括多个沿垂直于E面方向排列的金属贴片。
可以理解的是,在第二解耦单元130包括多个沿E面方向排列的第二金属贴片131的基础上,每个第二金属贴片131包括多个沿垂直于E面方向排列的金属贴片,即第二解耦单元130由多个金属贴片按照二维阵列排列而成。具体地,如图6所示,第二解耦单元130包括两个沿E面方向排列的第二金属贴片131,每个第二金属贴片131又包括两个沿垂直于E面方向排列的金属贴片,即第二解耦单元130由四个金属贴片按照二维阵列排列而成。
另外,在一实施例中,每个第二金属贴片131包括多个层叠设置的金属贴片。
可以理解的是,第二金属贴片131由多个层叠的金属贴片形成三维空间结构,可以达到不同的解耦效果。
在一实施例中,第三解耦单元140包括一个第三金属贴片141或者多个层叠设置的第三金属贴片141,第三解耦单元140的几何中心位于两个H面耦合的天线单元的中间位置的正上方。
第三解耦单元140可以仅由一个第三金属贴片141构成,也可以由多个层叠设置的第三金属贴片141构成,以达到不同的解耦效果。第三金属贴片141的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状。
另外,第三金属贴片141沿H面方向的长度范围为0.40λc至0.80λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第三金属贴片141为电大尺寸的金属贴片,电大尺寸既是指物理长度也是指有效电流所流经长度,即电长度。
参照图4,在一实施例中,第三金属贴片141的外部套设有第三金属环142。
可以理解的是,第三金属贴片141的结构既可以是单一的金属贴片结构,也可以是内部嵌套结构,内部嵌套结构即为在第三金属贴片141的外部套设第三金属环142所形成的结构。采用嵌套式的金属贴片结构,有利于减小电大尺寸的金属贴片的物理尺寸,并增强散射波幅度,提高解耦效果。
需要说明的是,第一解耦单元120、第二解耦单元130和第三解耦单元140,可以处于同一高度,也可以处于不同高度。第一解耦单元120、第二解耦单元130和第三解耦单元140距离天线单元的高度在0.05λc至1.0λc之间。
第一解耦单元120的尺寸随着每两个E面耦合的天线单元的间距的减小而增加,但上限不超过两个H面耦合的天线单元之间的间距;第二解耦单元130的尺寸随着每两个E面耦合的天线单元之间的间距减小或者随着每两个H面耦合的天线单元之间的间距减小而增加,但上限不超过两个E面耦合的天线单元之间的间距。第三解耦单元140的尺寸由天线工作频率决定,与天线单元之间的间距无关。
第一解耦单元120、第二解耦单元130和第三解耦单元140可以根据平面天线的阵列规模,沿着x轴和y轴分别扩展,因此适用于任意天线单元数目的天线阵列。
下面,结合具体的实施例,对本申请提供的解耦装置作进一步说明。
一种应用于平面天线阵列以实现双模解耦的解耦装置100,如图1至图4,该解耦装置100覆盖于一个2×2平面天线阵列200的上方,包括:介质基板110、第一解耦单元120、第二解耦单元130和第三解耦单元140;
平面天线阵列200放置于反射地板300上,天线单元在x轴方向的阵元间距为47mm(0.55λ 3.5GHz),在y轴方向的阵元间距为43mm(0.5λ 3.5GHz);天线单元为印刷电偶极子天线;
第一解耦单元120、第二解耦单元130和第三解耦单元140均刻蚀在介质基板110的上表面;
第一解耦单元120由两个电小尺寸的第一金属贴片121构成;第一金属贴片121沿着天线H面方向排布;第一解耦单元120的几何中心位于每两个E面耦合的天线单元的中间位置的正上方;
第二解耦单元130由两个电小尺寸的第二金属贴片131构成;为了避免对第一解耦单元120解耦效果的过度影响,第二金属贴片131从天线单元的两端,沿着天线E面方向排布;第二解耦单元130的几何中心位于每一个天线单元的正上方;
第三解耦单元140由一个电大尺寸的第三金属贴片141构成,第三解耦单元140的几何中心位于每两个H面耦合的天线单元的中间位置的上方;
第一金属贴片121长度L1为16mm(0.19λ 3.5GHz),宽度W1为8mm(0.09λ 3.5GHz);
第二金属贴片131长度L2为19mm(0.22λ 3.5GHz),宽度W2为8mm(0.09λ 3.5GHz);
第三金属贴片141的长度L3+L4为46mm(0.54λ 3.5GHz),宽度W3为6mm(0.07λ 3.5GHz);
第一解耦单元120、第二解耦单元130以及第三解耦单元140位于同一高度,距离天线阵列200的距离H为14mm(0.16λ 3.5GHz);
第一金属贴片121为矩形金属贴片,并且外部再套设一个第一金属环122,用以增强散射波辐度;
第二金属贴片131为矩形金属贴片,并且外部再套设一个第二金属环132用以增强散射波辐度;
第三金属贴片141为十字形金属贴片,并且外部再套设一个十字形的第三金属环142,用以减小电大尺寸金属贴片物理尺寸,并增强散射波辐度;
需要说明的是,第一金属贴片121、第二金属贴片131形状不局限于矩形,结构不局限于环状嵌套;第三金属贴片141形状不局限于十字形,结构不局限于环状嵌套;
解耦装置100可以通过塑料支撑件固定于平面天线阵列上方,亦可以制作在天线罩体内侧。
本实例提供的应用于平面天线阵列以实现双模解耦的解耦装置100,可以在显著降低MIMO天线E面和H面互耦的基础上,进一步改善天线阻抗特性和辐射特性,具体体现在:图7为使用解耦装置前后的互耦曲线图,可以在6%的相对带宽内(3.4-3.6GHz),实现E面和H面互耦降低10dB以上;可以在12%的相对带宽内(3.3-3.7GHz),实现E面和H面互耦降低5dB;图8为使用解耦装置前后的回波损耗曲线图,可以使天线阻抗带宽由5.7%(3.4-3.6GHz)增加至14.5%(3.2-3.7GHz);图9为使用解耦装置前后的方向图,可以使天线增益由8.0dBi增加至8.3dBi;图10为使用解耦装置前后的有源驻波图,可以使MIMO天线0°波束指向时的最大有源驻波由1.9降低至1.55,15°时波束指向的最大有源驻波由3.3降低至1.6;解耦装置100可以沿x轴和y轴周期拓展,使用于任意天线阵元数的平面MIMO天线;可以覆盖于MIMO天线上方,可集成于天线罩体内侧,具有结构简单、实施便捷、成本低廉的特点。
第一解耦单元120和第二解耦单元130所产生的E面散射波与E面耦合波幅度相等、相位相反,散射波和E面耦合波相互抵消,实现E面解耦。同时,第二解耦单元130所产生的H面散射波会实现H面部分解耦。如图11所示使用第一解耦单元和第二解耦单元时E面和H面互耦曲线。使用第一解耦单元、第二解耦单元后,在3.4-3.6GHz频段内,E面互耦降低10dB, H面互耦仅降低4dB。
第三解耦单元利用电大尺寸金属贴片的谐振特性,改变第二解耦单元所产生的H面散射波相位,使得第二解耦单元和第三解耦单元所产生的H面散射波与H面耦合波幅度相等,相位相反,实现H面解耦。同时第三解耦单元远离E面耦合天线,对E面解耦不会产生影响。如图7所示为,使用第一解耦单元、第二解耦单元、第三解耦单元后,H面互耦小于25dB,相较无解耦装置降低10dB。
第三解耦单元所包含的电大尺寸金属贴片的尺寸直接决定H面散射波的相位。图12所示为2元子阵列中,电大尺寸金属贴片尺寸变化时的H面互耦曲线。随着电大尺寸金属贴片尺寸变大,H面最佳解耦频段向低频移动。
通过第一解耦单元、第二解耦单元以及第三解耦单元的共同作用,实现天线E/H面共同解耦。
另外,参照图13,本申请的第二方面实施例提供解耦方法,应用于天线阵列,天线阵列包括多个天线单元,解耦方法包括以下步骤:
步骤S1310:在每两个E面耦合的天线单元的中间位置的上方设置第一解耦单元;
步骤S1320:在每个天线单元的上方设置第二解耦单元;
步骤S1330:在每两个H面耦合的天线单元的中间位置的上方设置第三解耦单元。
在本实施例中,在两个E面耦合的天线单元的中间位置的上方设置第一解耦单元,以及在天线单元的上方设置第二解耦单元,通过第一解耦单元和第二解耦单元产生与E面耦合波幅度相等、相位相反的E面散射波,E面散射波和E面耦合波相互抵消,实现E面解耦,同时,第二解耦单元也会产生H面散射波实现H面部分解耦,另外,还在两个H面耦合的天线单元的中间位置的上方设置第三解耦单元,通过第二解耦单元和第三解耦单元共同产生与H面耦合波幅度相等、相位相反的H面散射波,H面散射波和H面耦合波相互抵消,实现E面解耦;通过第一解耦单元、第二解耦单元和第三解耦单元的共同作用,实现天线阵列的E面和H面共同解耦。
在一实施例中,第一解耦单元包括一个第一金属贴片或者包括多个沿H面方向排列的第一金属贴片,第一解耦单元的几何中心位于两个E面耦合的天线单元的中间位置的正上方。
其中,第一金属贴片的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状;第一金属贴片的尺寸范围为0.01λc至0.25λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第一金属贴片为电小尺寸的金属贴片。电小尺寸的金属贴片结构的电磁散射波是各向同性的,即距离相同时,不同方向上的散射波幅度和相位相等。此外,第一金属贴片的外部还可以套设有第一金属环,或者每个第一金属贴片包括多个沿垂直于H面方向排列的金属贴片,又或者每个第一金属贴片包括多个层叠设置的金属贴片,不同结构的第一金属贴片可以达到不同的解耦效果。
在一实施例中,解耦方法还包括以下步骤:
调节第一金属贴片的形状、数量、高度或者尺寸,使得第一解耦单元产生的E面散射波与E面耦合波幅度相等、相位相反。
第一解耦单元产生的E面散射波与E面耦合波幅度相等、相位相反,E面散射波和E面耦合波相互抵消,实现E面解耦。
在一实施例中,第二解耦单元包括一个二金属贴片或者包括多个沿E面方向排列的第二 金属贴片,第二解耦单元的几何中心位于天线单元的正上方。
其中,第二金属贴片的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状;第二金属贴片的尺寸范围为0.01λc至0.25λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第二金属贴片为电小尺寸的金属贴片。电小尺寸的金属贴片结构的电磁散射波是各向同性的,即距离相同时,不同方向上的散射波幅度和相位相等。此外,第二金属贴片的外部还可以套设有第二金属环,或者每个第二金属贴片包括多个沿垂直于E面方向排列的金属贴片,又或者每个第二金属贴片包括多个层叠设置的金属贴片,不同结构的第二金属贴片可以达到不同的解耦效果。
在一实施例中,解耦方法还包括以下步骤:
调节第二金属贴片的形状、数量、高度或者尺寸,使得第二解耦单元产生的H面散射波与H面耦合波幅度相等。
第二解耦单元产生的H面散射波可以实现H面部分解耦。
在一实施例中,第三解耦单元包括一个第三金属贴片或者多个层叠设置的第三金属贴片,第三解耦单元的几何中心位于两个H面耦合的天线单元的中间位置的正上方。
第三解耦单元可以仅由一个第三金属贴片构成,也可以由多个层叠设置的第三金属贴片构成,以达到不同的解耦效果。第三金属贴片的形状可以为矩形、三角形、圆形、十字型、工字型、C字型或者其他类似形状。第三金属贴片的尺寸范围为0.40λc至0.80λc,其中λc是对应于天线阵列的中心频率的电磁波波长。该尺寸范围的第三金属贴片为电大尺寸的金属贴片,电大尺寸既是指物理长度也是指有效电流所流经长度,即电长度。此外,第三金属贴片的外部也可以套设有第三金属环,采用嵌套式的金属贴片结构,有利于减小电大尺寸的金属贴片的物理尺寸,并增强散射波幅度,提高解耦效果。
在一实施例中,解耦方法还包括以下步骤:
调节第三金属贴片形状、层数、高度或者尺寸,使得第二解耦单元和第三解耦单元共同产生的H面散射波与H面耦合波幅度相等、相位相反。
通过第二解耦单元和第三解耦单元共同产生与H面耦合波幅度相等、相位相反的H面散射波,H面散射波和H面耦合波相互抵消,实现E面解耦。
下面,结合具体的实施例,对本申请提供的解耦方法作进一步说明。
本实例提供的应用于平面天线阵列的以实现双模解耦的方法,包括以下步骤:
第一步,设置第一解耦单元120,第一解耦单元120由一个电小尺寸的第一金属贴片121构成或者由多个电小尺寸的第一金属贴片121构成;若第一解耦单元120由多个电小尺寸的第一金属贴片121构成,多个第一金属贴片121沿着天线H面方向排布,第一解耦单元120的几何中心位于每两个E面耦合的天线单元的中间位置的正上方,通过调节第一金属贴片121的尺寸、高度、数量、形状、层数,使得第一解耦单元120产生的E面散射波与E面耦合波幅度相等、相位相反,实现E面天线解耦;
第二步,设置第二解耦单元130,第二解耦单元130由一个电小尺寸的第二金属贴片131构成或者由多个电小尺寸的第二金属贴片131构成;若第二解耦单元130由多个电小尺寸的第二金属贴片131构成,多个第二金属贴片131沿着天线E面放置。为了避免第二解耦单元130对第一解耦单元120产生较大影响,第二金属贴片131从天线两端开始,由外到内排布。第二解耦单元130的几何中心位于每个天线单元的正上方。通过调节第二金属贴片131的尺 寸、数量、形状、层数,使得第二解耦单元130产生的H面散射波与H面耦合波幅度相等;
第三步,优化第一解耦单元120,通过调节第一金属贴片121尺寸,修正由于第二解耦单元130引入对E面散射波造成的影响,确保E面解耦;
第四步,设置第三解耦单元140,第三解耦单元140由一个电大尺寸的第三金属贴片141构成或多个电大尺寸的第三金属贴片141层叠构成,第三解耦单元140的几何中心位于每两个H面耦合的天线单元的中间位置的正上方。通过调节第三金属贴片141的尺寸,利用第三解耦单元140的谐振特性,使得第二解耦单元130产生H面散射波与H面耦合波相位反相,实现H面天线解耦;
第五步,优化第二解耦单元130,通过调节第二金属贴片131尺寸,修正由于第三解耦单元140引入造成的影响,确保H面解耦;
第六步,将第一解耦单元120、第二解耦单元130以及第三解耦单元140按照平面MIMO天线规模,沿x轴和y轴分别拓展,获得解耦装置实现天线E面和H面共解耦。
由于解耦单元的对称性,因此该方法不仅适用于单极化天线阵列同样适用于双极化天线阵列。
本申请实施例提供的解耦装置及解耦方法,可以在双极化MIMO天线阵列中实现更多的耦合波抑制,获得更好的耦合效果;还可以实现二维空间任意方向耦合去耦,使得基站天线去耦具有更大灵活性。
本申请实施例包括:解耦装置及解耦方法,在两个E面耦合的天线单元的中间位置的上方设置第一解耦单元,以及在天线单元的上方设置第二解耦单元,通过第一解耦单元和第二解耦单元产生与E面耦合波幅度相等、相位相反的E面散射波,E面散射波和E面耦合波相互抵消,实现E面解耦,同时,第二解耦单元也会产生H面散射波实现H面部分解耦,另外,还在两个H面耦合的天线单元的中间位置的上方设置第三解耦单元,通过第二解耦单元和第三解耦单元共同产生与H面耦合波幅度相等、相位相反的H面散射波,H面散射波和H面耦合波相互抵消,实现E面解耦;通过第一解耦单元、第二解耦单元和第三解耦单元的共同作用,实现天线阵列的E面和H面共同解耦。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (21)

  1. 一种解耦装置,应用于天线阵列,所述天线阵列包括多个天线单元,其中,所述解耦装置包括:
    介质基板,所述介质基板位于所述多个天线单元的上方;
    第一解耦单元,所述第一解耦单元设置于所述介质基板,每两个E面耦合的所述天线单元的中间位置的上方设置有所述第一解耦单元;
    第二解耦单元,所述第二解耦单元设置于所述介质基板,每个所述天线单元的上方设置有所述第二解耦单元;
    第三解耦单元,所述第三解耦单元设置于所述介质基板,每两个H面耦合的所述天线单元的中间位置的上方设置有所述第三解耦单元。
  2. 根据权利要求1所述的解耦装置,其中,所述第一解耦单元包括一个第一金属贴片或者包括多个沿H面方向排列的第一金属贴片,所述第一解耦单元的几何中心位于两个E面耦合的所述天线单元的中间位置的正上方。
  3. 根据权利要求2所述的解耦装置,其中,每个所述第一金属贴片包括多个沿垂直于H面方向排列的金属贴片。
  4. 根据权利要求2所述的解耦装置,其中,每个所述第一金属贴片包括多个层叠设置的金属贴片。
  5. 根据权利要求2所述的解耦装置,其中,所述第一金属贴片的外部套设有第一金属环。
  6. 根据权利要求2所述的解耦装置,其中,所述第一金属贴片沿H面方向的长度范围为0.01λc至0.25λc,其中λc是对应于所述天线阵列的中心频率的电磁波波长。
  7. 根据权利要求1所述的解耦装置,其中,所述第二解耦单元包括一个第二金属贴片或者包括多个沿E面方向排列的第二金属贴片,所述第二解耦单元的几何中心位于所述天线单元的正上方。
  8. 根据权利要求7所述的解耦装置,其中,每个所述第二金属贴片包括多个沿垂直于E面方向排列的金属贴片。
  9. 根据权利要求7所述的解耦装置,其中,每个所述第二金属贴片包括多个层叠设置的金属贴片。
  10. 根据权利要求7所述的解耦装置,其中,所述第二金属贴片的外部套设有第二金属环。
  11. 根据权利要求7所述的解耦装置,其中,所述第二金属贴片沿E面方向的长度范围为0.01λc至0.25λc,其中λc是对应于所述天线阵列的中心频率的电磁波波长。
  12. 根据权利要求1所述的解耦装置,其中,所述第三解耦单元包括一个第三金属贴片或者多个层叠设置的第三金属贴片,所述第三解耦单元的几何中心位于两个H面耦合的所述天线单元的中间位置的正上方。
  13. 根据权利要求12所述的解耦装置,其中,所述第三金属贴片沿H面方向的长度范围为0.40λc至0.80λc,其中λc是对应于所述天线阵列的中心频率的电磁波波长。
  14. 根据权利要求12所述的解耦装置,其中,所述第三金属贴片的外部套设有第三金属环。
  15. 一种解耦方法,应用于天线阵列,所述天线阵列包括多个天线单元,其中,所述解耦方法包括:
    在每两个E面耦合的所述天线单元的中间位置的上方设置第一解耦单元;
    在每个所述天线单元的上方设置第二解耦单元;
    在每两个H面耦合的所述天线单元的中间位置的上方设置第三解耦单元。
  16. 根据权利要求15所述的解耦方法,其中,所述第一解耦单元包括一个第一金属贴片或者包括多个沿H面方向排列的第一金属贴片,所述第一解耦单元的几何中心位于两个E面耦合的所述天线单元的中间位置的正上方。
  17. 根据权利要求16所述的解耦方法,还包括:
    调节所述第一金属贴片的形状、数量、高度或者尺寸,使得所述第一解耦单元产生的E面散射波与E面耦合波幅度相等、相位相反。
  18. 根据权利要求15所述的解耦方法,其中,所述第二解耦单元包括一个第二金属贴片或者包括多个沿E面方向排列的第二金属贴片,所述第二解耦单元的几何中心位于所述天线单元的正上方。
  19. 根据权利要求18所述的解耦方法,还包括:
    调节所述第二金属贴片的形状、数量、高度或者尺寸,使得所述第二解耦单元产生的H面散射波与H面耦合波幅度相等。
  20. 根据权利要求15所述的解耦方法,其中,所述第三解耦单元包括一个第三金属贴片或者多个层叠设置的第三金属贴片,所述第三解耦单元的几何中心位于两个H面耦合的所述天线单元的中间位置的正上方。
  21. 根据权利要求20所述的解耦方法,还包括:
    调节所述第三金属贴片形状、层数、高度或者尺寸,使得所述第二解耦单元和所述第三解耦单元共同产生的H面散射波与H面耦合波幅度相等、相位相反。
PCT/CN2022/085386 2021-05-06 2022-04-06 解耦装置及解耦方法 WO2022233212A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22798553.8A EP4325664A1 (en) 2021-05-06 2022-04-06 Decoupling device and decoupling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110488752.7 2021-05-06
CN202110488752.7A CN115313043A (zh) 2021-05-06 2021-05-06 解耦装置及解耦方法

Publications (1)

Publication Number Publication Date
WO2022233212A1 true WO2022233212A1 (zh) 2022-11-10

Family

ID=83853162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085386 WO2022233212A1 (zh) 2021-05-06 2022-04-06 解耦装置及解耦方法

Country Status (3)

Country Link
EP (1) EP4325664A1 (zh)
CN (1) CN115313043A (zh)
WO (1) WO2022233212A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437659A (zh) * 2016-05-26 2017-12-05 香港中文大学 用于降低天线阵列中互耦的设备和方法
CN110085997A (zh) * 2019-04-30 2019-08-02 中国科学技术大学 一种利用电磁超表面覆盖层的mimo天线阵
CN111129769A (zh) * 2020-01-13 2020-05-08 西安朗普达通信科技有限公司 天线阵列的去耦方法及具有新型去耦结构的天线阵列
CN112467378A (zh) * 2020-11-19 2021-03-09 山西大学 一种基于阵列天线解耦表面的双频带mimo天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437659A (zh) * 2016-05-26 2017-12-05 香港中文大学 用于降低天线阵列中互耦的设备和方法
CN110085997A (zh) * 2019-04-30 2019-08-02 中国科学技术大学 一种利用电磁超表面覆盖层的mimo天线阵
CN111129769A (zh) * 2020-01-13 2020-05-08 西安朗普达通信科技有限公司 天线阵列的去耦方法及具有新型去耦结构的天线阵列
CN112467378A (zh) * 2020-11-19 2021-03-09 山西大学 一种基于阵列天线解耦表面的双频带mimo天线

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Dissertation Submitted to Southeast University For the Academic Degree of Doctor of Engineering State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University", 15 February 2022, STATE KEY LABORATORY OF MILLIMETER WAVES SCHOOL OF INFORMATION SCIENCE AND ENGINEERING SOUTHEAST UNIVERSITY, CN, article FU: "Research on Bandwidth Enhancement and Decoupling for Mobile Communication Antennas", pages: 1 - 153, XP093000553 *
WU KE-LI; WEI CHANGNING; MEI XIDE; ZHANG ZHEN-YUAN: "Array-Antenna Decoupling Surface", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 65, no. 12, 1 December 2017 (2017-12-01), USA, pages 6728 - 6738, XP011673551, ISSN: 0018-926X, DOI: 10.1109/TAP.2017.2712818 *

Also Published As

Publication number Publication date
EP4325664A1 (en) 2024-02-21
EP4325664A9 (en) 2024-04-03
CN115313043A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US11735807B2 (en) Antenna module and electronic device
US11652288B2 (en) Antenna
US7889137B2 (en) Antenna structure with antenna radome and method for rising gain thereof
CN107230840B (zh) 高增益宽带微带贴片天线
CN110048211B (zh) 宽频多谐振5g天线系统及基站
WO2021013010A1 (zh) 天线单元和电子设备
CN103066376A (zh) 一种宽频带高隔离度双极化天线及其辐射单元
US20230017375A1 (en) Radiating element, antenna assembly and base station antenna
WO2021244158A1 (zh) 双极化天线及客户前置设备
US20210135343A1 (en) Base station antenna and multiband base station antenna
CN114976665A (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
CN107611587B (zh) 一种低剖面超宽带高增益定向天线及其制备方法
CN107546478B (zh) 采用特殊方向图阵元的宽角扫描相控阵天线及设计方法
CN203039094U (zh) 一种宽频带高隔离度双极化天线及其辐射单元
CN110707420B (zh) 一种双极化天线振子及包含该天线振子的天线
CN107394346B (zh) 通信装置
WO2022233212A1 (zh) 解耦装置及解耦方法
CN116417786A (zh) 一种移动宽频段室内分布双极化定向挂墙天线
CN116454595A (zh) 一种太阳能天线单元及阵列
CN217485700U (zh) 一种高增益超宽带双极化定向振子
US20230084643A1 (en) Antenna having high isolation and low cross-polarization level, base station, and terminal
CN115954661A (zh) 一种具有360°周向波束覆盖的可重构微带天线
CN114865307A (zh) 基于人工磁导体的c波段宽带低剖面双极化天线
CN212033232U (zh) 一种双u型结构的高前后比天线
US20240235058A1 (en) Decoupling device and decoupling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18558782

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022798553

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022798553

Country of ref document: EP

Effective date: 20231114

NENP Non-entry into the national phase

Ref country code: DE