WO2022233208A1 - 一种用于准直背光模组的楔形导光板及准直背光模组 - Google Patents

一种用于准直背光模组的楔形导光板及准直背光模组 Download PDF

Info

Publication number
WO2022233208A1
WO2022233208A1 PCT/CN2022/084947 CN2022084947W WO2022233208A1 WO 2022233208 A1 WO2022233208 A1 WO 2022233208A1 CN 2022084947 W CN2022084947 W CN 2022084947W WO 2022233208 A1 WO2022233208 A1 WO 2022233208A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wedge
guide plate
light guide
backlight module
Prior art date
Application number
PCT/CN2022/084947
Other languages
English (en)
French (fr)
Inventor
陈玉雷
武鹏
周淑金
Original Assignee
苏州晶智科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶智科技有限公司 filed Critical 苏州晶智科技有限公司
Priority to US18/285,387 priority Critical patent/US20240184034A1/en
Priority to EP22798549.6A priority patent/EP4290304A4/en
Priority to JP2023555148A priority patent/JP2024510729A/ja
Publication of WO2022233208A1 publication Critical patent/WO2022233208A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the invention relates to a collimation backlight module for a liquid crystal display, and relates to a wedge-shaped light guide plate for the collimation backlight module and the collimation backlight module.
  • the current solutions for the privacy protection of the display screen are mainly divided into two categories: 1Add a privacy protection film to the original display module. 2Use the backlight module with anti-peep feature to achieve the purpose of anti-peep.
  • the collimation degree of light output in the dimension perpendicular to the light transmission direction needs to be improved.
  • the technical problem to be solved by the present invention is to provide a wedge-shaped light guide plate for a backlight module and a collimated backlight module thereof, which can effectively improve the collimation degree of the wedge-shaped light guide plate in the dimension perpendicular to the light transmission direction.
  • a wedge-shaped light guide plate for collimating a backlight module which is surrounded by a thick-end light incident surface, a first light emitting surface, a second light emitting surface and two side surfaces, A wedge angle is formed between the first light-emitting surface and the second light-emitting surface, and a light-incident micro-prism structure is arranged on the light-incident surface.
  • the light incident micro-prism structure is composed of a plurality of light incident micro-prism strips arranged in parallel, and the light incident micro-prism strips extend from one side of the wedge-shaped light guide plate to the other side or from the first side.
  • a light emitting surface extends toward the second light emitting surface.
  • the cross section of the light incident microprism strip is triangular.
  • the light incident micro prism structure is composed of a plurality of light incident micro prism grooves arranged in parallel, and the light incident micro prism grooves extend from one side of the wedge-shaped light guide plate to the other side or from the The first light-emitting surface of the second light-emitting surface extends toward the second light-emitting surface.
  • the light incident microprism groove is a triangular groove.
  • At least one of the first light emitting surface and the second light emitting surface is provided with a light emitting microprism structure.
  • the light-exiting micro-prism structure is composed of a plurality of light-exiting micro-prism strips arranged in parallel, and the light-exiting micro-prism strips extend from the thick end to the thin end of the wedge-shaped light guide plate.
  • the cross section of the light-emitting microprism strip is a triangle, a circular arc or a trapezoid with an apex angle of 40°-170°.
  • the light-emitting micro-prism structure is composed of a plurality of light-emitting micro-prism grooves arranged in parallel, and the light-emitting micro-prism grooves extend from the thick end to the thin end of the wedge-shaped light guide plate.
  • the light-emitting microprism grooves are triangular grooves, arc-shaped grooves or trapezoidal grooves with an apex angle of 40°-170°.
  • the collimating backlight module with the above wedge-shaped light guide plate is composed of at least one wedge-shaped light guide plate, a bar-shaped light source arranged on the side of the light incident surface of the wedge-shaped light guide plate, and a light source arranged on the side of the first light emitting surface.
  • the inverse prism film is composed of a reflective film arranged on one side of the second light-emitting surface, the bar-shaped light source extends from one side of the wedge-shaped light guide plate to the other side, and the inverse prism film is provided with One side of the microprism structure faces the first light emitting surface.
  • the wedge-shaped light guide plate is a piece, the first light emitting surface is provided with a first light emitting microprism structure and the second light emitting surface is provided with a second light emitting microprism structure.
  • the wedge-shaped light guide plate is a plurality of pieces, and the plurality of the wedge-shaped light guide plates are stacked up and down, and the first light-emitting surface of the wedge-shaped light guide plate adjacent to the inverse prism film is provided with
  • the second light-emitting micro-prism structure is provided on the second light-emitting surface of the wedge-shaped light guide plate adjacent to the reflective film.
  • the microprism structure of the inverse prism film is a symmetrical or asymmetrical triangular structure.
  • the present invention has the advantage that by arranging a specific light incident micro-prism structure on the light incident surface of the wedge-shaped light guide plate combined with a specific structure inverse prism film, the purpose of controlling the light exit angle can be achieved to adapt to different application occasions.
  • the wedge-shaped light guide plate and the collimated backlight module of the inverse prism film structure of the present invention the half-width distribution of the light output angle can reach ⁇ 25°, which is better than most of the anti-peep films on the market at present.
  • FIG. 1 is a schematic structural diagram of a collimating backlight module according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of a wedge-shaped light guide plate according to an embodiment of the present invention.
  • FIG. 3 is a schematic three-dimensional structure diagram of a wedge-shaped light guide plate according to an embodiment of the present invention.
  • FIG. 4 is a left-view structural schematic diagram of a wedge-shaped light guide plate according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of optical path transmission in a vertical dimension of a wedge-shaped light guide plate according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of optical path transmission on a light incident surface according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of optical path transmission of a collimating backlight module according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of two wedge-shaped light guide plates according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of optical path transmission of a collimated backlight module according to Embodiment 2 of the present invention.
  • a new type of collimating backlight module includes a wedge-shaped light guide plate 01, a strip light source 02, an inverse prism film 03 and a reflective film 04.
  • the structure of the wedge-shaped light guide plate 01 is shown in Figures 2 and 2. As shown in Fig.
  • the first light exit surface 001 is provided with a first light exit microprism structure
  • the second light exit surface 002 is provided with a second light exit microprism structure
  • the light entrance surface 003 is provided with a light entrance microprism structure
  • the second light-exiting micro-prism structures are all composed of a plurality of parallel-arranged light-exiting micro-prism strips or light-exiting micro-prism grooves extending from the thick end to the thin end of the wedge-shaped light guide plate 01 .
  • the light incident micro-prism strips or light incident micro-prism grooves are arranged side by side and extend from one side to the other side.
  • One side of 01 extends to the other side
  • the reflective film 04 is arranged on the side of the second light emitting surface 002
  • the inverse prism film 03 is arranged on the side of the first light emitting surface 001
  • the side of the inverse prism film 03 with the microprism structure faces the first
  • the microprism structure of the inverse prism film 03 is a symmetrical isosceles triangle structure.
  • the cross-section of the light-emitting micro-prism strip may be a symmetric or asymmetric triangle with an apex angle of 40°-170°, or a circular arc or trapezoid, and the light-incident micro-prism strip has a triangular cross-section.
  • the light-emitting microprism groove can be a symmetrical or asymmetrical triangular groove with an apex angle of 40°-170°, or a circular arc groove or a trapezoidal groove.
  • the light incident microprism structure is a symmetrical triangular structure
  • the first light exit microprism structure is a circular arc structure
  • the second light exit microprism structure is a symmetrical triangular structure.
  • FIG. 5 describes the transmission process of the light in the vertical direction between the first light-emitting micro-prism structure, the reflective film 04 and the second light-emitting micro-prism structure.
  • the light 11 is directly emitted from the inside of the wedge-shaped light guide plate 01 to the first light-emitting micro-prism structure, and is refracted by the first light-emitting micro-prism structure and then emitted into the air.
  • the first light-emitting microprism structure has a certain converging effect on the light emitted into the air.
  • the light 12 is emitted from the inside of the wedge-shaped light guide plate 01 to the second light-emitting micro-prism structure, and then transmitted to the reflective film 04, reflected by the reflective film 04 and recovered, and returned to the inside of the wedge-shaped light guide plate 01 through the second light-emitting micro-prism structure. next cycle.
  • FIG. 6 depicts that after light 13 and light 14 come out from the bar light source 02, after passing through the light incident microprism structure, they are refracted from the original propagation direction to the first light emitting surface 001 and the second light emitting surface 002.
  • the main function of the light incident micro-prism structure is to adjust the distribution of light introduced into the wedge-shaped light guide plate 01, so as to achieve the purpose of changing the light output from the wedge-shaped light guide plate 01.
  • FIG. 7 describes the transmission process of the light 15 , the light 16 , and the light 17 inside the wedge-shaped light guide plate 01 inside the collimating backlight module.
  • the light 15 After the light 15 is emitted from the light incident surface 003, it propagates from the inside of the light guide plate to the first light emitting surface 001. Since it does not meet the conditions of total reflection, after being refracted by the first light emitting surface 001, it enters the air and propagates to the inverse prism film 03.
  • One side of the microstructure of the inverse prism film 03 refracts into the inside of the microstructure until it hits the other side of the microstructure. At this time, the light satisfies the condition of total reflection, and the direction of the light after total reflection is approximately parallel to the normal direction of the inverse prism film.
  • the light ray 16 starts from the light incident surface 003 and propagates to the second light emitting surface 002. Since it does not meet the total reflection conditions at this time, after being refracted by the second light emitting surface 002, it propagates to the surface of the reflective film 04, and a mirror surface occurs on the surface of the reflective film 04. After reflection, the light 16 is refracted by the second light emitting surface and then re-enters the interior of the light guide plate. The light ray 16 propagates in a straight line inside the light guide plate to the first light emitting surface 001.
  • the light 16 propagates to one side of the prism structure on the inverse prism film 03, and is refracted. After entering the interior of the microstructure, when the incident position of the light is close to a bottom corner of the microprism, the refracted light cannot meet the other side of the microstructure, so the ray 16 propagates in a straight line along the refracted angle at this time, until it reaches the opposite side. The other surface of the prism film 03 emerges.
  • the light 17 After the light 17 is emitted from the light incident surface 003, it propagates to the second light exit surface 002 inside the light guide plate 01. Since the total reflection condition is met at this time, the light is totally reflected on the second light exit surface 002, and the light changes direction at the second light exit surface 002. The inside of the light guide plate continues to propagate. Until the light does not meet the condition of total reflection, it is emitted in the way of light 15 or light 16 .
  • Embodiment 2 As shown in Figures 8 and 9, there are two light guide plates 011 and 012 stacked together from top to bottom. Propagation process in the light panel.
  • the light ray 18 travels from the light incident surface 003 to the first light emitting surface 001 of the wedge-shaped light guide plate 011. Since it does not meet the conditions of total reflection at this time, it enters the air after being refracted by the first light emitting surface 001, and propagates to the On one side of the microprism structure of the inverse prismatic film 03, the light 18 enters the interior of the microprism structure after being refracted. Since the light 18 is close to a bottom corner of the microprism structure at this time, the light travels straight to the top boundary of the inverse prismatic film 03, After being refracted, it exits directly. Since the light 18 is not refracted by the other side of the microprism structure of the inverse prism film 03 , the angle between the exit direction and the normal direction of the inverse prism film 03 is slightly larger.
  • the light 19 starts from the light incident surface 003, and travels in a straight line inside the wedge-shaped light guide plate 011 to the first light-emitting surface 001 of the wedge-shaped light guide plate 011. At this time, the light satisfies the condition of total reflection, and total reflection occurs on the first light-emitting surface 001, changing the After the direction, the light continues to propagate inside the wedge-shaped light guide plate 011. Under the condition of total reflection, after each time the light is totally reflected on the first light-emitting surface 001 and the second light-emitting surface 002, it is clamped with the normal direction of the corresponding light-emitting surface. The angle will be reduced by a wedge angle ⁇ until it does not meet the conditions of total reflection and exits.
  • the light 19 will enter the air after being refracted by the first light exit surface 001 and propagate to the inverse prism film 03 On one side of the microprism structure, it enters the inside of the microprism structure after being refracted. If the light is close to the top angle of the microprism structure of the inverse prism film 03, the light 19 will be refracted and propagate straight to the other side of the microprism structure. side, after the total reflection occurs on this side, it is refracted by the top boundary of the inverse prism film 03 and then exits. At this time, the angle between the light 19 and the normal direction of the inverse prism film 03 is small, and it exits collimatedly.
  • the light 20 starts from the light incident surface 003 and travels straightly inside the wedge-shaped light guide plate 011 to the second light-emitting surface 002 of the wedge-shaped light guide plate 011. Since the total reflection condition is not met at this time, the light is refracted by the second light-emitting surface 002 and then enters The air gap between the wedge-shaped LGP 011 and the wedge-shaped LGP 012 propagates straight to the first light-emitting surface 001 of the wedge-shaped LGP 012, and then enters the wedge-shaped LGP 012 after being refracted by the first light-emitting surface 001. The interior propagates to the second light emitting surface 002 of the wedge-shaped light guide plate 012 along a straight line.
  • the light 20 still does not meet the condition of total reflection. It is refracted by the second light emitting surface 002 of the wedge-shaped light guide plate 012 and then enters the air, and propagates along a straight line to the reflective film 04 , after the specular emission occurs, it is refracted by the second light emitting surface 002 of the wedge-shaped light guide plate 012 and then returned to the inside of the wedge-shaped light guide plate 012, and propagates along a straight line to the first light emitting surface 001 of the wedge-shaped light guide plate 012. It can be seen from the previous analysis that , the light does not meet the condition of total reflection here.
  • the first light-emitting surface 001 of the wedge-shaped light guide plate 012 After being refracted by the first light-emitting surface 001 of the wedge-shaped light guide plate 012, it returns to the air gap between the wedge-shaped light guide plate 011 and the wedge-shaped light guide plate 012, and propagates along a straight line to the wedge-shaped light guide plate 011.
  • the second light emitting surface 002 enters the inside of the wedge-shaped light guide plate 011 after being refracted by the second light emitting surface 002 .
  • the light 20 propagates in a straight line inside the wedge-shaped light guide plate 011 to its first light-emitting surface 001, enters the air after being refracted, and propagates to one side of the micro-prism structure of the inverse prism film 03, and enters the inverse prism film after being refracted by the micro-prism structure. Internally, the subsequent propagation process is similar to that of light 18, and finally exits into the air.
  • the light 21 starts from the light incident surface 003, and travels in a straight line inside the wedge-shaped light guide plate 012 to the second light-emitting surface 002 of the wedge-shaped light guide plate 012. At this time, it meets the conditions of total reflection, and continues inside the wedge-shaped light guide plate 012 after total reflection. It propagates to its first light-emitting surface 001. Since the light 21 undergoes a total reflection at this time, the angle between it and the normal direction of the first light-emitting surface 001 of the wedge-shaped light guide plate 012 is reduced by a wedge angle ⁇ . A light emitting surface 001 no longer meets the condition of total reflection.
  • the first light emitting surface 001 After being refracted by the first light emitting surface 001, it enters the air gap between the wedge-shaped light guide plate 011 and the wedge-shaped light guide plate 012, and the light 21 propagates in a straight line to the wedge-shaped light guide plate in the air gap.
  • the second light-emitting surface 002 of 011 enters the inside of the wedge-shaped light guide plate 011 after refraction, and continues to propagate in a straight line to the first light-emitting surface 001 of the wedge-shaped light guide plate 011. At this time, it still does not meet the conditions of total reflection.
  • 001 enters the air after refraction.
  • the light 21 travels in the air along a straight line to one side of the microprism structure of the inverse prism film 03, where it is refracted and enters the interior of the microprism structure, and when it hits the other side of the microprism structure, it is totally reflected and propagated to the inverse prism film 03
  • the interface of the top layer which is refracted and emitted.
  • This embodiment describes in detail the transmission process of typical light rays in a collimated backlight module with a multi-layer light guide plate. eventually ejected into the air.
  • the prism structure of the inverse prism film 03 may also be an asymmetric triangular structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

一种用于准直背光模组的楔形导光板(01)及其准直背光模组,楔形导光板(01)由厚端的入光面(003)、第一出光面(001)、第二出光面(002)和两个侧面围成,第一出光面(001)和第二出光面(002)之间成楔角,入光面(003)上设置有入光微棱镜结构,准直背光模组由至少一块楔形导光板(01)、设置在楔形导光板(01)的入光面(003)一侧的条形光源(02)、设置在第一出光面(001)一侧的逆棱镜膜(03)和设置在第二出光面(002)一侧的反射膜(04)组成,条形光源(02)从楔形导光板(01)的一个侧面向另一个侧面延伸,逆棱镜膜(03)设置有微棱镜结构的一面面向第一出光面(001),本方案可以达到控制出光角度的目的,以适应不同应用场合的要求,准直背光模组的出光角度半宽分布可以达到±25°。

Description

[根据细则26改正26.04.2022] 一种用于准直背光模组的楔形导光板及准直背光模组 技术领域
本发明涉及一种用于液晶显示器的准直背光模组,涉及一种用于准直背光模组的楔形导光板及其准直背光模组。
背景技术
近年来,随着人们对电子资料保密性的要求越来越高,人们对防窥屏幕的需求日益增大,终端市场需求旺盛。当前对于显示屏的防窥性的解决方案主要分为两类:①在原有的显示模组上增加防窥膜。②使用带有防窥特性的背光模组,以达到防窥的目的。
而属于第二种应用场景的准直背光模组,在垂直于光线传输方向维度的出光准直度尚有待于改善。
发明内容
本发明所要解决的技术问题是提供一种能够有效改善楔形导光板在垂直于光线传输方向维度的出光准直度的用于背光模组的楔形导光板及其准直背光模组。
本发明解决上述技术问题所采用的技术方案为:一种用于准直背光模组的楔形导光板,由厚端的入光面、第一出光面、第二出光面和两个侧面围成,所述的第一出光面和所述的第二出光面之间成楔角,所述的入光面上设置有入光微棱镜结构。
所述的入光微棱镜结构由多个并列设置的入光微棱镜条组成,所述的入光微棱镜条从所述的楔形导光板的一个侧面向另一个侧面延伸或从所述的第一出光面向所述的第二出光面延伸。
所述的入光微棱镜条的截面为三角形。
所述的入光微棱镜结构由多个并列设置的入光微棱镜凹槽组成,所述的入光微棱镜凹槽从所述的楔形导光板的一个侧面向另一个侧面延伸或从所述的第一出光面向所述的第二出光面延伸。
所述的入光微棱镜凹槽三角形凹槽。
所述的第一出光面和所述的第二出光面中的至少一个出光面上设置有出光微棱镜结构。
所述的出光微棱镜结构由多个并列设置的出光微棱镜条组成,所述的出光微棱镜条 从所述的楔形导光板的厚端向薄端延伸。
所述的出光微棱镜条的截面为顶角角度为40°-170°的三角形、圆弧形或梯形。
所述的出光微棱镜结构由多个并列设置的出光微棱镜凹槽组成,所述的出光微棱镜凹槽从所述的楔形导光板的厚端向薄端延伸。
所述的出光微棱镜凹槽是顶角为40°-170°的三角形凹槽、圆弧形凹槽或梯形凹槽。
具有上述楔形导光板的准直背光模组,由至少一块楔形导光板、设置在所述的楔形导光板的入光面一侧的条形光源、设置在所述的第一出光面一侧的逆棱镜膜和设置在所述的第二出光面一侧的反射膜组成,所述的条形光源从所述的楔形导光板的一个侧面向另一个侧面延伸,所述的逆棱镜膜设置有微棱镜结构的一面面向所述的第一出光面。
所述的楔形导光板为一块,所述的第一出光面上设置有第一出光微棱镜结构和,所述的第二出光面上设置有第二出光微棱镜结构。
所述的楔形导光板为多块,多块所述的楔形导光板上下叠合的,与所述的逆棱镜膜相邻的所述的楔形导光板的所述的第一出光面上设置有第一出光微棱镜结构,与所述的反射膜相邻的所述的楔形导光板的所述的第二出光面上设置有第二出光微棱镜结构。
所述的逆棱镜膜的微棱镜结构为对称或非对称的三角形结构。
与现有技术相比,本发明的优点在于通过在楔形导光板的入光面设置特定的入光微棱镜结构结合特定结构的逆棱镜膜,可以达到控制出光角度的目的,以适应不同应用场合的要求;使用本发明的楔形导光板及逆棱镜膜结构的准直背光模组,出光角度半宽分布可以达到±25°,优于目前市场上大部分的防窥膜防窥角度。
附图说明
图1为本发明实施例一准直背光模组的结构示意图;
图2为本发明实施例一楔形导光板的平面结构示意图;
图3为本发明实施例一楔形导光板的立体结构示意图;
图4为本发明实施例一楔形导光板的左视结构示意图;
图5为本发明实施例一楔形导光板在垂直维度的光路传输示意图;
图6为本发明实施例一入光面光路传输示意图;
图7为本发明实施例一准直背光模组光路传输示意图;
图8为本发明实施例二两块楔形导光板的结构示意图;
图9为本发明实施例二准直背光模组光路传输示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例:如图1所示,一种新型准直背光模组,包括一块楔形导光板01,条形光源02,逆棱镜膜03和反射膜04,楔形导光板01的结构如图2和图3所示,由厚端的入光面003、第一出光面001、第二出光面002和两个侧面围成,楔形导光板01第一出光面001和第二出光面002成楔角α,第一出光面001上设置有第一出光微棱镜结构,第二出光面002上设置有第二出光微棱镜结构,入光面003上设置有入光微棱镜结构,第一出光微棱镜结构和第二出光微棱镜结构均由从楔形导光板01的厚端向薄端延伸的多个并列设置的出光微棱镜条或出光微棱镜凹槽组成,入光微棱镜结构由从楔形导光板01的一个侧面向另一个侧面延伸的多个并列设置的入光微棱镜条或入光微棱镜凹槽组成,条形光源02设置在楔形导光板01的入光面003一侧,并从楔形导光板01的一个侧面向另一个侧面延伸,反射膜04设置在第二出光面002一侧,逆棱镜膜03设置在第一出光面001一侧,逆棱镜膜03有微棱镜结构的一面面向第一出光面001,本实施例中,逆棱镜膜03的微棱镜结构为对称的等腰三角形结构。
本实施例中,出光微棱镜条的截面可以是顶角角度为40°-170°的对称或非对称的三角形,也可以是圆弧形或梯形,入光微棱镜条的截面为三角形。
而出光微棱镜凹槽可以是顶角为40°-170°的对称或非对称的三角形凹槽,也可以是圆弧形凹槽或梯形凹槽。
图4是本实施例楔形导光板01的示意图,入光微棱镜结构为对称三角形结构,第一出光微棱镜结构为圆弧形结构,第二出光微棱镜结构为对称三角形结构。
图5描述了垂直方向光线在第一出光微棱镜结构、反射膜04和第二出光微棱镜结构之间的传输过程。光线11由楔形导光板01内部直接出射到第一出光微棱镜结构上,由第一出光微棱镜结构折射后出射到空气中。在此过程中,第一出光微棱镜结构对出射到空气中的光线有一定的汇聚作用。光线12由楔形导光板01内部出射到第二出光微棱 镜结构,然后透射到反射膜04上,由反射膜04反射后回收,经由第二出光微棱镜结构后回到楔形导光板01内部,进行下一个循环。
图6描述了光线13和光线14从条形光源02出来后,经由入光微棱镜结构后,由原来传播方向折射到偏向第一出光面001和第二出光面002。入光微棱镜结构主要作用是调节导入到楔形导光板01内部光线的分布,以达到改变楔形导光板01出光的目的。
图7描述了楔形导光板01内部光线15、光线16、和光线17在准直背光模组内部的传输过程。
光线15从入光面003处发出后,从导光板内部传播到第一出光面001,由于不符合全反射条件,经由第一出光面001折射后,进入空气传播至逆棱镜膜03,光线由逆棱镜膜03微结构的一面折射进入微结构内部,直至碰到微结构的另外一面,此时光线满足全反射条件,全反射后光线方向近似平行于逆棱镜膜的法线方向出射。
光线16从入光面003处出发,传播至第二出光面002,由于此时不符合全反射条件,经由第二出光面002折射后,传播至反射膜04表面,在反射膜04表面发生镜面反射,光线16经由第二出光面折射后重新进入导光板内部。光线16在导光板内部沿直线传播至第一出光面001处,由于不符合全反射条件,经由第一出光面001折射后,光线16传播至逆棱镜膜03上的棱镜结构的一面,经折射后进入微结构内部,当光线入射位置靠近微棱镜的一个底角时,折射后的光线并不能遇到微结构的另一面,因此光线16此时沿折射后的角度进行直线传播,直至从逆棱镜膜03的另一面出射。经过此过程的光线由于没有在微结构的另一面进行全反射,因此其传播方向与逆棱镜膜的法线方向偏差略大,与光线15出射的光线形成一定夹角。这也是本发明所描述的准直背光模组出射光线之半宽的由来。
光线17由从入光面003发出后,在导光板01内部传播到第二出光面002,由于此时符合全反射条件,因此光线在第二出光面002上发生全反射,光线改变方向后在导光板内部继续传播。光线直至不符合全反射条件,按照光线15或者光线16方式出射。
实施例二:如图8和图9所示,从上到下有两块叠合在一起的导光板011和导光板012,本实施例以两层导光板为例,描述光线在多层导光板中传播过程。
如图9所示,光线18从入光面003出发传播至楔形导光板011的第一出光面001,由于此时不符合全反射条件,因此经过第一出光面001折射后进入空气,传播至逆棱镜膜03的微棱镜结构的一条边上,光线18折射后进入微棱镜结构内部,由于此时光线18 靠近微棱镜结构的一个底角,因此光线直线传播至逆棱镜膜03的顶层边界,折射后直接出射,由于光线18没有经过逆棱镜膜03微棱镜结构的另一边折射,出射方向与逆棱镜膜03的法线方向夹角略大。
光线19从入光面003处出发,在楔形导光板011内部直线传播到楔形导光板011的第一出光面001,此时光线满足全反射条件,在第一出光面001上发生全反射,改变方向后在楔形导光板011内部继续传播,在符合全反射的条件下,光线每次在第一出光面001和第二出光面002上发生全反射后,其与相应的出光面法线方向夹角都会减小一个楔角α,直至不符合全反射条件出射出来。如图9所示,若光线在楔形导光板011的第一出光面001处第一次不符合全反射条件,光线19将通过第一出光面001的折射后进入空气,传播至逆棱镜膜03的微棱镜结构的一个侧边上,经过折射后进入微棱镜结构内部,若光线靠近逆棱镜膜03微棱镜结构的顶角,则光线19经过折射后,将直线传播至微棱镜结构的另一条边,在这条边上发生全反射后,经过逆棱镜膜03的顶层边界折射后出射,此时光线19与逆棱镜膜03的法线方向夹角很小,准直出射。
光线20从入光面003处出发,在楔形导光板011内部直线传播至楔形导光板011的第二出光面002上,由于此时不符合全反射条件,光线经过第二出光面002折射后进入楔形导光板011和楔形导光板012之间的空气隙,直线传播至楔形导光板012的第一出光面001处,经过第一出光面001折射后进入楔形导光板012内部,在楔形导光板012内部沿直线传播至楔形导光板012的第二出光面002,此时光线20依然不符合全反射条件,由楔形导光板012的第二出光面002折射后进入空气,沿直线传播至反射膜04,发生镜面发射后,经由楔形导光板012的第二出光面002折射后回到楔形导光板012内部,沿直线传播到楔形导光板012的第一出光面001处,从前面的分析可以看出,光线在此处不符合全反射条件,经过楔形导光板012的第一出光面001折射后,再次回到楔形导光板011和楔形导光板012的空气隙,沿直线传播至楔形导光板011的第二出光面002,经由第二出光面002折射后进入楔形导光板011内部。光线20在楔形导光板011内部沿直线传播至其第一出光面001处,经折射后进入空气,传播至逆棱镜膜03微棱镜结构的一条边上,经微棱镜结构折射后进入逆棱镜膜内部,之后的传播过程与光线18类似,最终出射至空气中。
光线21从入光面003处出发,在楔形导光板012内部沿直线传播至楔形导光板012的第二出光面002处,此时符合全反射条件,经由全反射后继续在楔形导光板012内部 传播至其第一出光面001,由于此时光线21经过一次全反射,其与楔形导光板012的第一出光面001法线方向夹角减小了一个楔角α,此时光线21在第一出光面001处已经不符合全反射条件,经由第一出光面001折射后,进入楔形导光板011和楔形导光板012之间的空气隙,光线21在空气隙内沿直线传播至楔形导光板011的第二出光面002处,经过折射后进入楔形导光板011内部,继续沿直线传播至楔形导光板011的第一出光面001处,此时依然不符合全反射条件,经由第一出光面001折射后进入空气。光线21在空气中沿直线传播至逆棱镜膜03微棱镜结构的一条边上,在此处折射后进入微棱镜结构内部,碰到微棱镜结构的另一边时,全反射后传播至逆棱镜膜03顶层的界面,经折射后出射。
本实施例详细描述了含有多层导光板的准直背光模组中典型光线的传输过程,其他未描述到的光线可以参照前面实施例及本实施例中的光线在模组中进行传播,直至最终出射到空气中。
本发明中,逆棱镜膜03的棱镜结构也可以是非对称的三角形结构。

Claims (14)

  1. 一种用于准直背光模组的楔形导光板,由厚端的入光面、第一出光面、第二出光面和两个侧面围成,所述的第一出光面和所述的第二出光面之间成楔角,其特征在于所述的入光面上设置有入光微棱镜结构。
  2. 如权利要求1所述的一种用于准直背光模组的楔形导光板,其特征在于所述的入光微棱镜结构由多个并列设置的入光微棱镜条组成,所述的入光微棱镜条从所述的楔形导光板的一个侧面向另一个侧面延伸或从所述的第一出光面向所述的第二出光面延伸。
  3. 如权利要求2所述的一种用于准直背光模组的楔形导光板,其特征在于所述的入光微棱镜条的截面为三角形。
  4. 如权利要求1所述的一种用于准直背光模组的楔形导光板,其特征在于所述的入光微棱镜结构由多个并列设置的入光微棱镜凹槽组成,所述的入光微棱镜凹槽从所述的楔形导光板的一个侧面向另一个侧面延伸或从所述的第一出光面向所述的第二出光面延伸。
  5. 如权利要求4所述的一种用于准直背光模组的楔形导光板,其特征在于所述的入光微棱镜凹槽三角形凹槽。
  6. 如权利要求1所述的一种用于准直背光模组的楔形导光板,其特征在于所述的第一出光面和所述的第二出光面中的至少一个出光面上设置有出光微棱镜结构。
  7. 如权利要求6所述的一种用于准直背光模组的楔形导光板,其特征在于所述的出光微棱镜结构由多个并列设置的出光微棱镜条组成,所述的出光微棱镜条从所述的楔形导光板的厚端向薄端延伸。
  8. 如权利要求7所述的一种用于准直背光模组的楔形导光板,其特征在于所述的出光微棱镜条的截面为顶角角度为40°-170°的三角形、圆弧形或梯形。
  9. 如权利要求6所述的一种用于准直背光模组的楔形导光板,其特征在于所述的出光微棱镜结构由多个并列设置的出光微棱镜凹槽组成,所述的出光微棱镜凹槽从所述的楔形导光板的厚端向薄端延伸。
  10. 如权利要求9所述的一种用于准直背光模组的楔形导光板,其特征在于所述的出光微棱镜凹槽是顶角为40°-170°的三角形凹槽、圆弧形凹槽或梯形凹槽。
  11. 具有权利要求6~10中任一项权利要求所述的楔形导光板的准直背光模组,其特征在于由至少一块楔形导光板、设置在所述的楔形导光板的入光面一侧的条形光源、设置在所述的第一出光面一侧的逆棱镜膜和设置在所述的第二出光面一侧的反射膜组成,所述的条形光源从所述的楔形导光板的一个侧面向另一个侧面延伸,所述的逆棱镜膜设置有微棱镜结构的一面面向所述的第一出光面。
  12. 如权利要求11所述的一种准直背光模组,其特征在于所述的楔形导光板为一块,所述的第一出光面上设置有第一出光微棱镜结构和,所述的第二出光面上设置有第二出光微棱镜结构。
  13. 如权利要求11所述的一种准直背光模组,其特征在于所述的楔形导光板为多块,多块所述的楔形导光板上下叠合的,与所述的逆棱镜膜相邻的所述的楔形导光板的所述的第一出光面上设置有第一出光微棱镜结构,与所述的反射膜相邻的所述的楔形导光板的所述的第二出光面上设置有第二出光微棱镜结构。
  14. 如权利要求11所述的准直背光模组,其特征在于所述的逆棱镜膜的微棱镜结构为对称或非对称的三角形结构。
PCT/CN2022/084947 2021-05-06 2022-04-02 一种用于准直背光模组的楔形导光板及准直背光模组 WO2022233208A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/285,387 US20240184034A1 (en) 2021-05-06 2022-04-02 Wedge-shaped light guide plate for collimating backlight module, and collimating backlight module
EP22798549.6A EP4290304A4 (en) 2021-05-06 2022-04-02 WEDGE-SHAPED LIGHT GUIDE BOARD FOR COLLIMIZING A BACKLIGHT MODULE AND COLLIMIZING BACKLIGHT MODULE
JP2023555148A JP2024510729A (ja) 2021-05-06 2022-04-02 コリメートバックライトモジュール用の楔状導光板及びコリメートバックライトモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110488532.4 2021-05-06
CN202110488532.4A CN113238314B (zh) 2021-05-06 2021-05-06 一种用于准直背光模组的楔形导光板及其准直背光模组

Publications (1)

Publication Number Publication Date
WO2022233208A1 true WO2022233208A1 (zh) 2022-11-10

Family

ID=77132261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084947 WO2022233208A1 (zh) 2021-05-06 2022-04-02 一种用于准直背光模组的楔形导光板及准直背光模组

Country Status (5)

Country Link
US (1) US20240184034A1 (zh)
EP (1) EP4290304A4 (zh)
JP (1) JP2024510729A (zh)
CN (1) CN113238314B (zh)
WO (1) WO2022233208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117310867A (zh) * 2023-09-28 2023-12-29 浙江彩丞科技有限公司 一种复合导光模块

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238314B (zh) * 2021-05-06 2022-11-01 苏州晶智科技有限公司 一种用于准直背光模组的楔形导光板及其准直背光模组
CN114967224B (zh) * 2022-04-07 2024-01-30 武汉华星光电技术有限公司 背光模组及显示装置
CN114755752B (zh) * 2022-04-14 2023-11-28 武汉华星光电技术有限公司 背光模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324726A (zh) * 2007-04-18 2008-12-17 罗门哈斯丹麦金融有限公司 双面转向膜
US20130235613A1 (en) * 2012-03-12 2013-09-12 Samsung Display Co., Ltd. Light guide plate and display apparatus having the same
CN108224132A (zh) * 2018-01-03 2018-06-29 京东方科技集团股份有限公司 一种准直光源模组和显示装置
CN110032004A (zh) * 2019-05-09 2019-07-19 苏州晶智科技有限公司 一种用于准直背光模组的楔形板及准直背光模组
CN110208895A (zh) * 2019-05-08 2019-09-06 苏州晶智科技有限公司 一种用于背光模组的楔形板及其背光模组
WO2019186391A1 (en) * 2018-03-28 2019-10-03 3M Innovative Properties Company Wedge lightguide
CN113238314A (zh) * 2021-05-06 2021-08-10 苏州晶智科技有限公司 一种用于准直背光模组的楔形导光板及其准直背光模组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002829A (en) * 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
JPH11249136A (ja) * 1998-03-05 1999-09-17 Sony Corp バックライト装置
JP4006918B2 (ja) * 2000-02-28 2007-11-14 オムロン株式会社 面光源装置及びその製造方法
CN101832517B (zh) * 2009-03-13 2012-12-19 鸿富锦精密工业(深圳)有限公司 背光模组
JP2011258532A (ja) * 2010-06-11 2011-12-22 Omron Corp 面光源装置及び立体表示装置
JP6381484B2 (ja) * 2015-05-22 2018-08-29 三菱電機株式会社 面光源装置及びそれを備える表示装置
CN106646718A (zh) * 2016-10-20 2017-05-10 苏州向隆塑胶有限公司 具区段出光控制的侧入式背光模组及其显示装置
CN110941116A (zh) * 2018-09-21 2020-03-31 京东方科技集团股份有限公司 背光模组及其制作方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324726A (zh) * 2007-04-18 2008-12-17 罗门哈斯丹麦金融有限公司 双面转向膜
US20130235613A1 (en) * 2012-03-12 2013-09-12 Samsung Display Co., Ltd. Light guide plate and display apparatus having the same
CN108224132A (zh) * 2018-01-03 2018-06-29 京东方科技集团股份有限公司 一种准直光源模组和显示装置
WO2019186391A1 (en) * 2018-03-28 2019-10-03 3M Innovative Properties Company Wedge lightguide
CN110208895A (zh) * 2019-05-08 2019-09-06 苏州晶智科技有限公司 一种用于背光模组的楔形板及其背光模组
CN110032004A (zh) * 2019-05-09 2019-07-19 苏州晶智科技有限公司 一种用于准直背光模组的楔形板及准直背光模组
CN113238314A (zh) * 2021-05-06 2021-08-10 苏州晶智科技有限公司 一种用于准直背光模组的楔形导光板及其准直背光模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4290304A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117310867A (zh) * 2023-09-28 2023-12-29 浙江彩丞科技有限公司 一种复合导光模块

Also Published As

Publication number Publication date
EP4290304A1 (en) 2023-12-13
EP4290304A4 (en) 2024-09-04
JP2024510729A (ja) 2024-03-11
CN113238314A (zh) 2021-08-10
US20240184034A1 (en) 2024-06-06
CN113238314B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2022233208A1 (zh) 一种用于准直背光模组的楔形导光板及准直背光模组
US8371735B2 (en) Multi-layer light guide apparatus
US9164216B2 (en) Illumination device and display device
JP4053626B2 (ja) 面光源装置並びに非対称プリズムシート
US6027220A (en) Surface light source device outputting polarized frontal illumination light
TW201539049A (zh) 面光源裝置及顯示裝置
JPH06324217A (ja) 多重反射射光システムを有し、マイクロプリズムを用いるバックライティング用アセンブリ
KR20080019069A (ko) 면광원 장치 및 해당 장치를 이용한 기기
KR20030096509A (ko) 프리즘 시트 및 이를 갖는 액정표시기
US9261637B2 (en) Surface light source device and its light guide plate
WO2013116970A1 (zh) 一种用于液晶显示器的新型背光模组
EP4235284A1 (en) Anti-peeping backlight module
JPH04271324A (ja) 液晶用照明装置
US20110157521A1 (en) Liquid crystal display
US20210011339A1 (en) Optical element and reflection-type liquid crystal display system using the same
WO2016206148A1 (zh) 导光板、背光模组及显示装置
TWI802092B (zh) 導光板、背光模組及顯示裝置
US20240192430A1 (en) Area light source device and flat panel display device
CN111435186A (zh) 导光组件、背光模组以及显示设备
TWI682202B (zh) 導光板、背光模組及顯示裝置
TW201504699A (zh) 導光板及使用該導光板的背光模組
JP2006196384A (ja) バックライトモジュール
KR100907198B1 (ko) 면광원장치및비대칭프리즘시트
US20170045670A1 (en) Light guide plate assembly and display apparatus
CN110208895A (zh) 一种用于背光模组的楔形板及其背光模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022798549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023555148

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285387

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022798549

Country of ref document: EP

Effective date: 20230905

NENP Non-entry into the national phase

Ref country code: DE