WO2022231299A1 - Compound for organic electric element, organic electric element using same, and electronic device thereof - Google Patents

Compound for organic electric element, organic electric element using same, and electronic device thereof Download PDF

Info

Publication number
WO2022231299A1
WO2022231299A1 PCT/KR2022/006010 KR2022006010W WO2022231299A1 WO 2022231299 A1 WO2022231299 A1 WO 2022231299A1 KR 2022006010 W KR2022006010 W KR 2022006010W WO 2022231299 A1 WO2022231299 A1 WO 2022231299A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
sub
layer
compound
Prior art date
Application number
PCT/KR2022/006010
Other languages
French (fr)
Korean (ko)
Inventor
이제우
이중근
이인구
이선희
문성윤
김원삼
박다헌
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to CN202280030490.2A priority Critical patent/CN117203203A/en
Publication of WO2022231299A1 publication Critical patent/WO2022231299A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • An organic electric device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • a material used as an organic layer in an organic electric device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, according to their function.
  • the efficiency cannot be maximized simply by improving the organic material layer. This is because, when the energy level and T1 value between each organic material layer, and the intrinsic properties (mobility, interfacial properties, etc.) of materials are optimally combined, long lifespan and high efficiency can be achieved at the same time.
  • a light emitting auxiliary layer must be present between the hole transport layer and the light emitting layer, and different light emission auxiliary according to each light emitting layer (R, G, B). It is time for layer development.
  • electrons are transferred from the electron transport layer to the light emitting layer and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
  • the material constituting the organic layer in the device for example, a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc. is stable and efficient. Supported by materials should be preceded, but the development of stable and efficient organic layer materials for organic electric devices has not yet been sufficiently made. Therefore, the development of new materials continues to be demanded.
  • the present invention has revealed a compound having a novel structure, and the fact that when this compound is applied to an organic electric device, the luminous efficiency, stability and lifespan of the device can be greatly improved has revealed
  • an object of the present invention is to provide a novel compound, an organic electric device using the same, and an electronic device thereof.
  • the present invention provides a compound represented by the following formula (1).
  • the present invention provides an organic electric device comprising the compound represented by Formula 1 and an electronic device thereof.
  • 1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
  • organic electric device 110 first electrode
  • first hole transport layer 340 first light emitting layer
  • second charge generation layer 420 second hole injection layer
  • halo or halogen refers to fluorine (F), bromine (Br), chlorine (Cl) or iodine (I), unless otherwise specified.
  • alkyl or "alkyl group” as used herein, unless otherwise specified, has a single bond of 1 to 60 carbon atoms, a straight chain alkyl group, a branched chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted cyclo means a radical of saturated aliphatic functional groups including alkyl groups, cycloalkyl-substituted alkyl groups.
  • alkenyl group As used herein, the terms “alkenyl group”, “alkenyl group” or “alkynyl group” have a double or triple bond of 2 to 60 carbon atoms, respectively, unless otherwise specified, and include a straight or branched chain group, , but not limited thereto.
  • cycloalkyl refers to an alkyl forming a ring having 3 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
  • alkoxyl group refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified. it is not
  • aryloxyl group refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
  • aryl group and arylene group used in the present invention have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto.
  • an aryl group or an arylene group means a single ring or multiple ring aromatic, and includes an aromatic ring formed by a neighboring substituent joining or participating in a reaction.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
  • aryl refers to a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • the radical substituted with an aryl group has the number of carbon atoms described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group and wherein the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heterocyclic group as used in the present invention, unless otherwise specified, contains one or more heteroatoms, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heteroaliphatic ring aromatic rings. It may be formed by combining adjacent functional groups.
  • heteroatom refers to N, O, S, P or Si, unless otherwise specified.
  • heterocyclic group may include a ring containing SO 2 instead of carbon forming the ring.
  • heterocyclic group includes the following compounds.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structures, respectively, unless otherwise specified, " A substituted fluorenyl group” or “substituted fluorenylene group” means that at least one of the substituents R, R' and R" is a substituent other than hydrogen, and R and R' are bonded to each other to It includes the case of forming a compound as a spy together.
  • spiro compound used in the present invention has a 'spiro union', and the spiro linkage means a connection formed by sharing only one atom in two rings. At this time, the atoms shared by the two rings are called 'spiro atoms', and depending on the number of spiro atoms in a compound, they are respectively 'monospiro-', 'dispiro-', 'trispiro-' ' It's called a compound.
  • aliphatic refers to an aliphatic hydrocarbon having 1 to 60 carbon atoms
  • aliphatic ring refers to an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring consisting of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocycle having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
  • heterocompounds or heteroradicals other than the above-mentioned heterocompounds include one or more heteroatoms, but are not limited thereto.
  • substitution means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 Alkoxyl group, C 1 ⁇ C 20 Alkylamine group, C 1 ⁇ C 20 Alkylthiophene group, C 6 ⁇ C 20 Arylthiophene group, C 2 ⁇ C 20 Alkenyl group, C 2 ⁇ C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, C 6 ⁇ C 20 aryl group substituted with deuterium, C 8 ⁇ C 20 arylalkenyl group, silane group, boron It means substituted with one or more substituents selected from the group consisting of a group, a germanium group, and a C 2 ⁇ C 20 heterocyclic group, but is
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, and when a is an integer of 1, one substituent R 1 is bonded to any one carbon of the carbons forming the benzene ring, and when a is an integer of 2 or 3
  • R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the hydrogen bonded to the carbon forming the benzene ring is omitted.
  • Bond-Dissociation Energy is a calculation of the bond energy for acyclic bonds within a molecule. To this end, the electrical potential energy of the target molecule is calculated, and the electrical potential energy for each is calculated by dividing it into two radical molecules based on an acyclic bond, and the bond dissociation energy can be expressed as follows.
  • the term “average bond-dissociation energy in solid state amorphous ” is, unless otherwise specified, the quantum mechanical average binding energy (Quantum) of amorphous solid phase molecules through molecular dynamics simulation. -Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous).
  • the average bond dissociation energy in the amorphous solid phase is a statistical data set (a set of multiple energy values), the value may be quantified differently depending on the data processing method. Therefore, in the present specification, for quantification, the average value of the bond dissociation energy distribution in the amorphous solid phase is used, which is statistically reliable because there are many samples, and the characteristic difference between materials is clearly displayed, and the value is obtained through the following process do.
  • the average bond dissociation energy in the amorphous solid phase is a value derived by placing a certain number of monomolecules in a unit cell with a periodic boundary condition (PBC) and performing molecular dynamics simulations on this.
  • PBC periodic boundary condition
  • the number of monomolecules in the unit cell may be several tens to several thousand.
  • Molecular dynamics simulation was performed in a total of 4 steps, and the first step was conducted at a temperature of 10 Kelvin under conditions of constant volume according to Brownian mechanics.
  • the second step is similarly performed according to Brownian mechanics, but at a temperature of 100 Kelvin under constant atmospheric pressure (1.01325 bar).
  • molecular dynamics according to the force field is calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature).
  • the molecular dynamics process is performed in units of 2 femtoseconds (fs), and the simulation is performed until a certain time is required.
  • the predetermined time means a time for the amorphous solid structure to sufficiently reach the equilibrium state, and may preferably be several hundred nanoseconds to several thousand nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably For example, it may be 120 nanoseconds.
  • structural data at the final time point are extracted, and some monomolecules are extracted (sampling) from the corresponding structure.
  • Single-point energy calculation for a single molecule extracted through quantum mechanics simulation is performed, and the bond-dissociation energy (BDE) for an acyclic bond within a molecule is calculated. Calculate.
  • the set of bond dissociation energies G ⁇ E 1 ... E N ⁇ is constructed and the average value of the set of bond dissociation energies is used as an indicator of the bond dissociation energy of a solid state substance.
  • the average bond dissociation energy value in the amorphous solid phase The unit of is eV, and can be converted to kcal/mol by multiplying the eV value by 23.061.
  • the term “ Bulk density of solid-state amorphous ” refers to the bulk density of Molecular Dynamically simulated obtained through molecular dynamics simulation, unless otherwise specified. solid-state amorphous ), and its value is obtained through the following process.
  • the monomolecules in the unit cell are It may be tens to thousands.
  • Molecular dynamics simulation was performed in a total of 4 steps, and the first step was conducted at a temperature of 10 Kelvin under conditions of constant volume according to Brownian mechanics.
  • the second step is similarly performed according to Brownian mechanics, but at a temperature of 100 Kelvin under constant atmospheric pressure (1.01325 bar).
  • molecular dynamics according to the force field is calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature).
  • the molecular dynamics process is performed in units of 2 femtoseconds (fs), and the simulation is performed until a certain time is required.
  • the predetermined time means the time for the amorphous solid structure to sufficiently reach the equilibrium state, and may preferably be several hundred nanoseconds to several thousand nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably may be 120 nanoseconds.
  • the average bulk density for the final 20% of the time was calculated, and the final 20% of the time may be preferably several tens of nanoseconds to several thousand nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds. and even more preferably 120 nanoseconds.
  • the unit of the volume density value of the amorphous solid molecular structure is g/cm 3 .
  • radial distribution function (RDF) g(r) ” refers to the probability of finding another molecule separated by a certain distance r from one molecule.
  • the radial distribution function is expressed as a function according to the distance, and the equation is defined as follows.
  • is the bulk density
  • dr is the micro-thickness of the sphere having the radius r
  • dn r is the number of molecules included in the shell of the sphere having the micro-thickness of dr .
  • the amorphous solid phase structure for obtaining the radial distribution function is obtained through molecular dynamics simulation, and the distribution function was calculated using only the structure for the last 20% of the total simulation time, and the final 20% of the time is preferably several tens. It may be nanoseconds to several thousand nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds, and even more preferably 120 nanoseconds.
  • the unit of the value of the radial distribution function is ⁇ .
  • the average dissociation energy of the amorphous solid phase described herein, the volume density of the molecular structure of the amorphous solid phase, and the radial distribution function values were obtained through molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161), and the molecular Desmond package was used for dynamics simulation. Quantum chemical properties based on the first principle were calculated by extracting single molecules from the structure obtained through molecular dynamics simulation, and Gaussian and Jaguar packages were used in this process.
  • Charge mobility is a generalized effective medium model (GEMM)
  • GEMM generalized effective medium model
  • charge mobility for a uniform medium is an analytical method of the master equation according to the effective medium approximation (Effective medium approximation) It can be obtained from the solution, and the expression is expressed as:
  • e is the amount of charge
  • is a thermodynamic constant given by the Boltzmann constant and the reciprocal of temperature (1/k B T)
  • M is the average number of nearest-neighbor molecules
  • H ab is the charge transfer matrix element
  • is the Planck constant
  • is the reorganization energy
  • is the disorder parameter
  • C is the correction constant. Therefore, the charge mobility has the following proportional relationship.
  • the charge transfer matrix element has a proportional relationship with the intermolecular distance as follows.
  • the charge mobility has a relationship that is proportional to the exponential decay with respect to the intermolecular distance, and as the intermolecular distance is shorter, the charge mobility tends to increase.
  • volume density is inversely proportional to the volume ( ⁇ ⁇ 1/ V )
  • this is used to determine the average intermolecular distance ( ), and the smaller the volume density, the shorter the intermolecular distance.
  • the distribution section with the maximum intermolecular distance can be confirmed, and the position of the peak value of the radial distribution function can be used as an intermolecular distance index to compare charge mobility.
  • the present invention relates to quantum-mechanical average bond dissociation energy of amorphous solid-phase molecules. It provides a compound represented by the following formula (1) is 3.650 eV or more.
  • the present invention is an organic electric device comprising an anode, a cathode, and an organic material layer formed between the anode and the cathode, wherein the organic material layer comprises a single compound or two or more compounds represented by the following formula (1), and in the organic material layer, the compound is Quantum-mechanical mean bond dissociation energy of amorphous solid-phase molecules It provides an organic electric device, characterized in that 3.650 eV or more.
  • X 1 and X 2 are each independently O or S.
  • Ar 1 , Ar 2 and Ar 3 are each independently a C 6 ⁇ C 60 aryl group, preferably a C 6 ⁇ C 30 aryl group, more preferably a C 6 ⁇ C 25 aryl group, such as phenylene, biphenyl, naphthalene, terphenyl, and the like.
  • L 1 and L 2 are each independently a single bond or a C 6 ⁇ C 60 arylene group, and when L 1 and L 2 are an arylene group, preferably a C 6 ⁇ C 30 arylene group, more preferably may be a C 6 ⁇ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, and the like.
  • aryl group and the arylene group are each deuterium; halogen; silane group; siloxane group; boron group; germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; C 1 ⁇ C 20 Alkoxy group; C 6 ⁇ C 20 Aryloxy group; C 1 ⁇ C 20 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 20 A heteroalkyl group; C 1 ⁇ C 20 Heteroalkenyl group; C 1 ⁇ C 20 Heteroalkynyl group; C 6 ⁇ C 20 Aryl group; C 6 ⁇ C 20 Aryl group substituted with deuterium; fluorenyl group; C 2 ⁇ C 20 A heterocyclic group; C 3 ⁇ C 20 Cycloalkyl group; C 7 ⁇ C 20 Arylalkyl group; And C 8 ⁇ C 20 Aryl alkenyl group; may
  • Quantum-mechanical average bond dissociation energy of the amorphous solid-phase molecule of the compound represented by Formula 1 in the present invention is preferably 3.650 eV or more, more preferably 3.650 eV to 4.500 eV, and even more preferably 3.655 eV to 3.800 eV.
  • the present invention provides a compound having a volume density of 1.110 g/cm 3 or more of the amorphous solid molecular structure of the compound represented by Formula 1 above.
  • the volume density of the amorphous solid molecular structure of the compound represented by Formula 1 may be preferably 1.110 g/cm 3 or more, more preferably 1.110 g/cm 3 to 1.200 g/cm 3 , and even more preferably preferably 1.140 g/cm 3 to 1.160 g/cm 3 .
  • the present invention provides a compound having a radial distribution function value of less than 11.0 ⁇ of the compound represented by Formula 1 above.
  • the value of the radial distribution function of the compound represented by Formula 1 may be preferably less than 11.0 ⁇ , more preferably 8.0 ⁇ to 13.0 ⁇ , and even more preferably 9.0 ⁇ to 11.0 ⁇ .
  • the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following Formulas 1-1 to 1-3.
  • the present invention provides a compound in which at least one of Ar 1 to Ar 3 is represented by any one of the following Chemical Formulas Ar-1 to Ar-13.
  • R 1 , R 2 , and R 3 are the same or different from each other, and each independently hydrogen; deuterium, halogen; cyano group; nitro group; C 6 ⁇ C 60 Aryl group; fluorenyl group; O, N, S, Si and P containing at least one heteroatom C 2 ⁇ C 60 A heterocyclic group; C 3 ⁇ C 60 A fused ring group of an aliphatic ring and a C 6 ⁇ C 60 aromatic ring; C 3 ⁇ C 20 Cycloalkyl group; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 An alkoxyl group; And C 6 ⁇ C 30 Aryloxy group; is selected from the group consisting of.
  • R 1 , R 2 and R 3 are aryl groups, preferably a C 6 ⁇ C 30 aryl group, more preferably a C 6 ⁇ C 25 aryl group, such as phenylene, biphenyl, naphthalene, terphenyl etc.
  • R 1 , R 2 and R 3 are a heterocyclic group, preferably a C 2 ⁇ C 30 heterocyclic group, more preferably a C 2 ⁇ C 24 heterocyclic group, illustratively pyrazine, cy Offene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzo thienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine, and the like.
  • R 1 , R 2 and R 3 are a fused ring group, preferably a fused ring group of a C 3 ⁇ C 30 aliphatic ring and a C 6 ⁇ C 30 aromatic ring, more preferably a C 3 ⁇ C 24 It may be a fused ring group of an aliphatic ring and a C 6 ⁇ C 24 aromatic ring.
  • R 1 , R 2 and R 3 are an alkyl group, it may be preferably a C 1 to C 30 alkyl group, and more preferably a C 1 to C 24 alkyl group.
  • R 1 , R 2 and R 3 are an alkoxyl group, it may be preferably a C 1 to C 24 alkoxyl group.
  • R 1 , R 2 and R 3 are an aryloxy group, it may be preferably a C 6 ⁇ C 24 aryloxy group.
  • a is an integer from 0 to 5
  • b and c are independently integers from 0 to 4
  • the present invention provides a compound in which at least one of L 1 and L 2 is represented by any one of the following Chemical Formulas L-1 to L-3.
  • R 4 is the same as the definition of R 1 above,
  • d is an integer from 0 to 4,
  • the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following compounds P-1 to P-90.
  • the organic electric device 100 includes a first electrode 110 , a second electrode 170 , and between the first electrode 110 and the second electrode 170 by Chemical Formula 1
  • the first electrode 110 may be an anode or an anode
  • the second electrode 170 may be a cathode or a cathode.
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 .
  • the remaining layers except for the light emitting layer 140 may not be formed.
  • It may further include a hole blocking layer, an electron blocking layer, a light emission auxiliary layer 220 , a buffer layer 210 , and the like, and the electron transport layer 150 and the like may serve as a hole blocking layer. (See Fig. 2)
  • the organic electric device may further include a protective layer or a light efficiency improving layer 180 .
  • the light efficiency improving layer may be formed on a surface of both surfaces of the first electrode that does not contact the organic material layer or on a surface of both surfaces of the second electrode that does not contact the organic material layer.
  • the compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the emission layer 140, or a material of the light efficiency improving layer.
  • the compound according to Chemical Formula 1 of the present invention may be used as a material for a light emitting auxiliary layer or a hole transport layer.
  • the organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generating layer formed between the two or more stacks. (See Fig. 3)
  • the band gap, electrical properties, interface properties, etc. may vary depending on which position the substituent is bonded to, so the selection of the core and the combination of the sub-substituents coupled thereto are also very
  • the energy level and T1 value between each organic material layer and the intrinsic properties of the material are optimally combined, a long lifespan and high efficiency can be achieved at the same time.
  • the organic electroluminescent device may be manufactured using a PVD (physical vapor deposition) method.
  • PVD physical vapor deposition
  • an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and the hole injection layer 120, the hole transport layer 130, the light emitting layer 140, the electron transport layer 150 and After forming the organic material layer including the electron injection layer 160, it may be manufactured by depositing a material that can be used as a cathode thereon.
  • the organic layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic layer contains the compound as an electron transport material. It provides an organic electric device, characterized in that.
  • the present invention provides an organic electric device, characterized in that the compound of the same or different types of the compound represented by Formula 1 is mixed and used in the organic material layer.
  • the present invention provides a light-emitting auxiliary layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the light-emitting auxiliary layer.
  • the present invention provides a hole transport layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the hole transport layer.
  • the present invention provides a light efficiency improving layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the light efficiency improving layer.
  • the present invention is a display device including the organic electric device described above; and a controller for driving the display device.
  • the present invention provides an electronic device, characterized in that the organic electroluminescent device is at least one of an organic electroluminescent device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for single color or white lighting.
  • the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation system, a game machine, various TVs, and various computers.
  • Ar is the same as the definition of Ar 1 in Formula 1,
  • L is the same as the definition of L 1 in Formula 1,
  • Sub 1 may be the same or different from each other.
  • the compound belonging to Sub 1 may be the following compounds, but is not limited thereto, and Table 1 below shows Field Desorption-Mass Spectrometry (FD-MS) values of the compounds belonging to Sub 1.
  • FD-MS Field Desorption-Mass Spectrometry
  • R 101 is the same as the definition of Ar 3 in Formula 1,
  • n is an integer from 0 to 5.
  • the compound belonging to Sub 2 may be the following compounds, but is not limited thereto, and Table 2 below shows FD-MS (Field Desorption-Mass Spectrometry) values of the compounds belonging to Sub 2 .
  • NPB N,N'-bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine
  • the compound P-1 of the present invention was vacuum-deposited on the hole transport layer to a thickness of 20 nm to form a light emitting auxiliary layer, and then, as a host material, 4,4'-N,N'-dicarbazole-biphenyl (hereinafter, CBP), tris(2-phenylpyridine)-iridium (hereinafter, abbreviated as Ir(ppy) 3 ) is used as a dopant material, but a dopant is doped at a weight of 95:5 to form a light emitting layer with a thickness of 30 nm did.
  • CBP 4,4'-N,N'-dicarbazole-biphenyl
  • Ir(ppy) 3 tris(2-phenylpyridine)-iridium
  • BAlq (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum
  • BAlq was vacuum-deposited on the light emitting layer to form a hole blocking layer with a thickness of 10 nm.
  • Alq 3 tris(8-quinolinol)aluminum
  • LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.2 nm
  • Al was deposited to form a cathode having a thickness of 150 nm.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of the present invention described in Table 4 was used instead of the compound P-1 of the present invention as a light emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the following comparative compounds A to F were used instead of the compound P-1 of the present invention as a light emitting auxiliary layer material.
  • the electroluminescence (EL) characteristics were obtained with PR-650 of photoresearch. was measured, and as a result of the measurement, the T95 lifetime was measured using a lifetime measuring device manufactured by McScience at 5000 cd/m 2 standard luminance. Table 4 below shows the device fabrication and evaluation results.
  • Comparative compounds A to F are the same as the compounds of the present invention in that dibenzofuran is substituted in the tertiary amine compound, but have at least one substituent at the 8th position of dibenzofuran or dibenzothiophene, At the same time, it is different from the compound of the present invention in that it is a tertiary amine compound in which two groups having an amine group bonded to the 1-position of dibenzofuran or dibenzothiophene are necessarily present.
  • Table 5 shows the quantum mechanical average dissociation energies of the amorphous solid phase molecules of the compounds of the present invention and comparative compounds A to E having similar compound structures.
  • Avg. BDE unit: eV
  • Bulk Density unit: g/cm 3
  • RDF radial distribution function
  • the quantum mechanical average bond dissociation energy value of the amorphous solid phase molecules in the compounds P-1 to P-5 of the present invention is higher than that of the comparative compounds A to E.
  • the lower the crystallinity of the thin film the more an amorphous state can be created. can be faster
  • the quantum mechanical average bond dissociation energy of a solid-state molecule in the amorphous state may be different due to intermolecular interactions in the solid-state, and the higher the value, the higher the stability of the compound itself. do.
  • the stability of electrons passing through the light emitting layer is significantly increased compared to Comparative Examples using Comparative Compounds A to E having similar basic skeletons to the compound of the present invention.
  • the lifetime of the device is maximized.
  • the volume density value of the amorphous solid molecular structure of the compounds P-1 to P-5 of the present invention is higher than that of the comparative compounds A to E, and the radial distribution It can be seen from Table 5 that the function value is formed low. This is because when the compound of the present invention is in the amorphous solid state than the comparative compounds, the intermolecular distance is closer and the charge transfer is relatively quick. considered to be improved.
  • the compound of the present invention may be applied to the hole transport layer or both the hole transport layer and the light emission auxiliary layer may be applied.
  • the present invention it is possible to manufacture an organic device having excellent device characteristics of high luminance, high luminescence and long life, and thus has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides: a novel compound which can improve the luminous efficiency, stability, and service life of an element; an organic electric element using same; and an electronic device thereof.

Description

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치Compound for organic electric device, organic electric device using same, and electronic device thereof
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.The present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. An organic electric device using an organic light emitting phenomenon generally has a structure including an anode and a cathode and an organic material layer therebetween. Here, the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.A material used as an organic layer in an organic electric device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material, according to their function.
유기전기발광소자에 있어 가장 문제시되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 하는 상황이다. 효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다.Lifespan and efficiency are the most problematic for organic light emitting diodes, and as displays become larger, these problems of efficiency and life must be solved. Efficiency, lifespan, and driving voltage are related to each other, and when the efficiency is increased, the driving voltage is relatively decreased. It shows a tendency to increase the lifespan.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.However, the efficiency cannot be maximized simply by improving the organic material layer. This is because, when the energy level and T1 value between each organic material layer, and the intrinsic properties (mobility, interfacial properties, etc.) of materials are optimally combined, long lifespan and high efficiency can be achieved at the same time.
또한, 최근 유기전기발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 반드시 정공수송층과 발광층 사이에 발광보조층이 존재하여야 하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요한 시점이다.In addition, in order to solve the light emitting problem in the hole transport layer in recent organic electroluminescent devices, a light emitting auxiliary layer must be present between the hole transport layer and the light emitting layer, and different light emission auxiliary according to each light emitting layer (R, G, B). It is time for layer development.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.In general, electrons are transferred from the electron transport layer to the light emitting layer and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
하지만 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야 하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층으로 넘어가게 되어 결과적으로 발광층 내 전하 불균형(charge unbalance)을 초래하여 정공수송층 계면에서 발광하게 된다.However, most of the materials used for the hole transport layer have a low T1 value because they should have a low HOMO value. As a result, excitons generated in the emission layer are transferred to the hole transport layer, resulting in charge unbalance in the emission layer. This results in light emission at the hole transport layer interface.
정공수송층 계면에서 발광될 경우, 유기전기소자의 색순도 및 효율이 저하되고 수명이 짧아지는 문제점이 발생하게 된다. 따라서 높은 T1 값을 가지며, 정공 수송층 HOMO 에너지 준위와 발광층의 HOMO 에너지 준위 사이의 HOMO 준위를 갖는 발광보조층의 개발이 절실히 요구된다.When light is emitted at the hole transport layer interface, the color purity and efficiency of the organic electric device are lowered, and the lifespan is shortened. Therefore, it is urgently required to develop a light emitting auxiliary layer having a high T1 value and having a HOMO level between the HOMO energy level of the hole transport layer and the HOMO energy level of the emission layer.
한편, 유기전기소자의 수명단축 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투확산되는 것을 지연시키면서, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다. 정공수송층 재료의 낮은 유리전이 온도는 소자 구동시, 박막 표면의 균일도를 저하시키는 특성이 있는바, 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자는 주로 증착 방법에 의해 형성되는데, 증착시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요한 실정이다.On the other hand, while delaying the penetration and diffusion of metal oxide from the anode electrode (ITO) into the organic layer, which is one of the causes of shortening the lifespan of the organic electric device, stable characteristics against Joule heating generated during device driving, that is, high glass transition There is a need for development of a hole injection layer material having a temperature. The low glass transition temperature of the hole transport layer material has a characteristic of lowering the uniformity of the thin film surface when driving the device, which is reported to have a significant effect on the device lifespan. In addition, OLED devices are mainly formed by a deposition method, and there is a need to develop a material that can withstand a long time during deposition, that is, a material with strong heat resistance.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있다.That is, in order to sufficiently exhibit the excellent characteristics of the organic electric device, the material constituting the organic layer in the device, for example, a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc. is stable and efficient. Supported by materials should be preceded, but the development of stable and efficient organic layer materials for organic electric devices has not yet been sufficiently made. Therefore, the development of new materials continues to be demanded.
상술한 배경기술의 문제점을 해결하기 위해 본 발명은, 신규한 구조를 갖는 화합물을 밝혀내었으며, 또한 이 화합물을 유기전기소자에 적용시 소자의 발광효율, 안정성 및 수명을 크게 향상시킬 수 있다는 사실을 밝혀내었다.In order to solve the problems of the above-mentioned background art, the present invention has revealed a compound having a novel structure, and the fact that when this compound is applied to an organic electric device, the luminous efficiency, stability and lifespan of the device can be greatly improved has revealed
이에 본 발명은 신규한 화합물, 이를 이용한 유기전기소자 및 그 전자 장치를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a novel compound, an organic electric device using the same, and an electronic device thereof.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.The present invention provides a compound represented by the following formula (1).
화학식 1 Formula 1
Figure PCTKR2022006010-appb-img-000001
Figure PCTKR2022006010-appb-img-000001
다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기전기소자 및 그 전자 장치를 제공한다.In another aspect, the present invention provides an organic electric device comprising the compound represented by Formula 1 and an electronic device thereof.
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압 및 고내열성을 달성할 수 있으며, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.By using the compound according to the present invention, high luminous efficiency, low driving voltage and high heat resistance of the device can be achieved, and color purity and lifespan of the device can be greatly improved.
도 1 내지 도 3은 본 발명에 따른 유기전기발광소자의 예시도이다.1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
도 4는 본 발명의 일 측면에 따른 화학식을 나타낸다.4 shows a chemical formula according to an aspect of the present invention.
도 5는 본 발명의 일 실시예에 따른 결합 해리에너지 측정 결과를 나타낸다.5 shows a measurement result of the bond dissociation energy according to an embodiment of the present invention.
100, 200, 300 : 유기전기소자 110 : 제1 전극100, 200, 300: organic electric device 110: first electrode
120 : 정공주입층 130 : 정공수송층120: hole injection layer 130: hole transport layer
140 : 발광층 150 : 전자수송층140: light emitting layer 150: electron transport layer
160 : 전자주입층 170 : 제2 전극160: electron injection layer 170: second electrode
180 : 광효율 개선층 210 : 버퍼층180: light efficiency improvement layer 210: buffer layer
220 : 발광보조층 320 : 제1 정공주입층220: light emitting auxiliary layer 320: first hole injection layer
330 : 제1 정공수송층 340 : 제1 발광층330: first hole transport layer 340: first light emitting layer
350 : 제1 전자수송층 360 : 제1 전하생성층350: first electron transport layer 360: first charge generation layer
361 : 제2 전하생성층 420 : 제2 정공주입층361: second charge generation layer 420: second hole injection layer
430 : 제2 정공수송층 440 : 제2 발광층430: second hole transport layer 440: second light emitting layer
450 : 제2 전자수송층 CGL : 전하생성층450: second electron transport layer CGL: charge generation layer
ST1 : 제1 스택 ST2 : 제2 스택ST1: first stack ST2: second stack
이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, it will be described in detail with reference to embodiments of the present invention. In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the elements from other elements, and the essence, order, or order of the elements are not limited by the terms. When it is described that a component is “connected”, “coupled” or “connected” to another component, the component may be directly connected or connected to the other component, but another component is between each component. It should be understood that elements may be “connected,” “coupled,” or “connected.”
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다:As used in this specification and the appended claims, unless stated otherwise, the following terms have the following meanings:
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.As used herein, the term “halo” or “halogen” refers to fluorine (F), bromine (Br), chlorine (Cl) or iodine (I), unless otherwise specified.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.The term "alkyl" or "alkyl group" as used herein, unless otherwise specified, has a single bond of 1 to 60 carbon atoms, a straight chain alkyl group, a branched chain alkyl group, a cycloalkyl (alicyclic) group, an alkyl-substituted cyclo means a radical of saturated aliphatic functional groups including alkyl groups, cycloalkyl-substituted alkyl groups.
본 발명에 사용된 용어 "알켄일기", "알케닐기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.As used herein, the terms "alkenyl group", "alkenyl group" or "alkynyl group" have a double or triple bond of 2 to 60 carbon atoms, respectively, unless otherwise specified, and include a straight or branched chain group, , but not limited thereto.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.As used herein, the term “cycloalkyl” refers to an alkyl forming a ring having 3 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.As used herein, the term "alkoxyl group", "alkoxy group", or "alkyloxy group" refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified. it is not
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.As used herein, the term “aryloxyl group” or “aryloxy group” refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.The terms "aryl group" and "arylene group" used in the present invention have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto. In the present invention, an aryl group or an arylene group means a single ring or multiple ring aromatic, and includes an aromatic ring formed by a neighboring substituent joining or participating in a reaction. For example, the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다. The prefix “aryl” or “ar” refers to a radical substituted with an aryl group. For example, an arylalkyl group is an alkyl group substituted with an aryl group, an arylalkenyl group is an alkenyl group substituted with an aryl group, and the radical substituted with an aryl group has the number of carbon atoms described herein.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.Also, when prefixes are named consecutively, it is meant that the substituents are listed in the order listed first. For example, an arylalkoxy group means an alkoxy group substituted with an aryl group, an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group, and an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group and wherein the arylcarbonyl group is a carbonyl group substituted with an aryl group.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.The term "heterocyclic group" as used in the present invention, unless otherwise specified, contains one or more heteroatoms, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heteroaliphatic ring aromatic rings. It may be formed by combining adjacent functional groups.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.As used herein, the term "heteroatom" refers to N, O, S, P or Si, unless otherwise specified.
또한 "헤테로고리기"는 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다. In addition, the "heterocyclic group" may include a ring containing SO 2 instead of carbon forming the ring. For example, "heterocyclic group" includes the following compounds.
Figure PCTKR2022006010-appb-img-000002
Figure PCTKR2022006010-appb-img-000002
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.As used herein, the term "fluorenyl group" or "fluorenylene group" means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structures, respectively, unless otherwise specified, " A substituted fluorenyl group" or "substituted fluorenylene group" means that at least one of the substituents R, R' and R" is a substituent other than hydrogen, and R and R' are bonded to each other to It includes the case of forming a compound as a spy together.
Figure PCTKR2022006010-appb-img-000003
Figure PCTKR2022006010-appb-img-000003
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.The term "spiro compound" used in the present invention has a 'spiro union', and the spiro linkage means a connection formed by sharing only one atom in two rings. At this time, the atoms shared by the two rings are called 'spiro atoms', and depending on the number of spiro atoms in a compound, they are respectively 'monospiro-', 'dispiro-', 'trispiro-' ' It's called a compound.
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.Unless otherwise specified, as used herein, the term "aliphatic" refers to an aliphatic hydrocarbon having 1 to 60 carbon atoms, and "aliphatic ring" refers to an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화고리를 포함한다.Unless otherwise specified, the term "ring" as used herein refers to a fused ring consisting of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocycle having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.Other heterocompounds or heteroradicals other than the above-mentioned heterocompounds include one or more heteroatoms, but are not limited thereto.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.In addition, unless otherwise explicitly stated, in the term "substituted or unsubstituted" used in the present invention, "substitution" means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ~ C 20 alkyl group, C 1 ~ C 20 Alkoxyl group, C 1 ~ C 20 Alkylamine group, C 1 ~ C 20 Alkylthiophene group, C 6 ~ C 20 Arylthiophene group, C 2 ~ C 20 Alkenyl group, C 2 ~ C 20 alkynyl group, C 3 ~ C 20 cycloalkyl group, C 6 ~ C 20 aryl group, C 6 ~ C 20 aryl group substituted with deuterium, C 8 ~ C 20 arylalkenyl group, silane group, boron It means substituted with one or more substituents selected from the group consisting of a group, a germanium group, and a C 2 ~ C 20 heterocyclic group, but is not limited to these substituents.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.In addition, unless there is an explicit explanation, the formula used in the present invention is the same as the definition of the substituent by the exponent definition of the following formula.
Figure PCTKR2022006010-appb-img-000004
Figure PCTKR2022006010-appb-img-000004
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.Here, when a is an integer of 0, the substituent R 1 is absent, and when a is an integer of 1, one substituent R 1 is bonded to any one carbon of the carbons forming the benzene ring, and when a is an integer of 2 or 3 Each is bonded as follows, where R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the hydrogen bonded to the carbon forming the benzene ring is omitted.
Figure PCTKR2022006010-appb-img-000005
Figure PCTKR2022006010-appb-img-000005
결합해리에너지(Bond-Dissociation Energy, BDE)는 분자 내 비순환결합에 대한 결합에너지를 계산한 것이다. 이를 위해 대상 분자의 전기적 퍼텐셜 에너지(Electric potential energy)를 계산하고 비순환결합을 기준으로 2개의 래디컬 분자로 나누어 각각에 대한 전기적 퍼텐셜 에너지를 계산하며, 결합해리에너지는 하기와 같은 식으로 표현할 수 있다. Bond-Dissociation Energy (BDE) is a calculation of the bond energy for acyclic bonds within a molecule. To this end, the electrical potential energy of the target molecule is calculated, and the electrical potential energy for each is calculated by dividing it into two radical molecules based on an acyclic bond, and the bond dissociation energy can be expressed as follows.
Figure PCTKR2022006010-appb-img-000006
Figure PCTKR2022006010-appb-img-000006
모든 계산은 전기적 중성 상태를 가정하여 진행하고, 분자동역학 시뮬레이션을 통해 추출한 고체상 분자의 경우 기체상 분자와 다르게 최적화된 구조를 갖지 않으므로 모든 계산은 단일점 에너지(Single-point energy, SPE) 계산으로 진행하여 구조를 유지한 채 결합해리에너지를 계산한다.All calculations are performed assuming an electrically neutral state, and since solid-phase molecules extracted through molecular dynamics simulation do not have an optimized structure unlike gas-phase molecules, all calculations are performed with single-point energy ( Single-point energy , SPE) and calculate the bond dissociation energy while maintaining the structure.
Figure PCTKR2022006010-appb-img-000007
Figure PCTKR2022006010-appb-img-000007
본 명세서에서 사용된 용어 “비결정질 고체상에서의 평균 결합해리에너지(Average Bond-dissociation energy in solid state amorphous)”는 다른 설명이 없는 한, 분자동역학 시뮬레이션을 통한 비결정질 고체상 분자의 양자역학적 평균 결합에너지(Quantum-Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous)를 의미한다.As used herein, the term “average bond-dissociation energy in solid state amorphous ” is, unless otherwise specified, the quantum mechanical average binding energy (Quantum) of amorphous solid phase molecules through molecular dynamics simulation. -Mechanics-based Average Bond-dissociation Energy of Molecules in Molecular Dynamically simulated solid-state amorphous).
상기 비결정질 고체상에서의 평균 결합해리에너지는 통계적인 데이터 집합(다수의 에너지 값의 집합)이기 때문에 데이터 가공 방법에 따라 그 값이 다르게 수치화될 수 있다. 따라서 본 명세서에서는 수치화를 위해 표본이 많아 통계적으로 신뢰도가 높고, 물질 간 특성 차이가 명확하게 나타나는 비결정질 고체상에서의 결합해리에너지 분포의 평균값을 사용하였으며, 그 값을 구하는 것은 하기와 같은 과정을 통해 진행된다.Since the average bond dissociation energy in the amorphous solid phase is a statistical data set (a set of multiple energy values), the value may be quantified differently depending on the data processing method. Therefore, in the present specification, for quantification, the average value of the bond dissociation energy distribution in the amorphous solid phase is used, which is statistically reliable because there are many samples, and the characteristic difference between materials is clearly displayed, and the value is obtained through the following process do.
비결정질 고체상에서의 평균 결합해리에너지는 주기 반복 경계 조건(Periodic Boundary Condition, PBC)을 가진 단위 정(Unit cell) 내에 일정한 개수의 단분자를 배치하고 이에 대해 분자동역학 시뮬레이션을 시행하여 도출된 값이며, 바람직하게는 단위 정(Unit cell) 내의 단분자는 수십 개 내지 수천 개일 수 있다.The average bond dissociation energy in the amorphous solid phase is a value derived by placing a certain number of monomolecules in a unit cell with a periodic boundary condition (PBC) and performing molecular dynamics simulations on this. Preferably, the number of monomolecules in the unit cell may be several tens to several thousand.
분자동역학 시뮬레이션은 총 4단계로 진행되었으며, 첫 단계는 Brownian 역학에 따라 일정한 부피를 갖는 조건에서 10 켈빈의 온도로 진행한다. 두 번째 단계도 마찬가지로 Brownian 역학에 따라 진행하되, 일정한 대기압(1.01325 bar) 조건에서 100 켈빈의 온도로 진행한다. 이후 세 번째 단계에서 역장(Force Field)에 따른 분자동역학을 계산하게 되며, 마찬가지로 일정한 압력(대기압)과 온도(상온)에서 0.1나노초(ns) 만큼 진행시킨다. 마지막으로 세 번째 단계와 같은 조건(대기압, 상온)에서 2펨토초(fs) 단위로 분자 동역학 과정을 진행시키며, 일정 시간이 소요될 때까지 시뮬레이션을 진행한다. 이때 일정 시간은 비결정질 고체 구조가 충분히 평형상태(Equilibrium state)에 이르는 시간을 의미하며, 바람직하게는 수백나노초 내지 수천나노초 일 수 있으며, 더욱 바람직하게는 100나노초 내지 150나노초 일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다. 이후 최종 시점에서의 구조 데이터를 추출하고 해당 구조에서 일부 단분자들을 추출(샘플링)한다. 양자역학(Quantum Mechanics) 시뮬레이션을 통해 추출한 단분자에 대한 단일시점 에너지 계산(Single-point energy calculation)을 진행하고 분자 내 비순환결합(Acyclic bond)에 대한 결합해리에너지(Bond-dissociation energy; BDE)를 계산한다. 얻어낸 모든 결합해리에너지 값을 취하여 결합해리에너지 집합 G={E1 … EN}을 구성하고 결합해리에너지 집합의 평균값
Figure PCTKR2022006010-appb-img-000008
을 고체 상태 물질의 결합해리에너지 지표로 사용한다.
Molecular dynamics simulation was performed in a total of 4 steps, and the first step was conducted at a temperature of 10 Kelvin under conditions of constant volume according to Brownian mechanics. The second step is similarly performed according to Brownian mechanics, but at a temperature of 100 Kelvin under constant atmospheric pressure (1.01325 bar). After that, in the third step, molecular dynamics according to the force field is calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature). Finally, under the same conditions as in the third step (atmospheric pressure, room temperature), the molecular dynamics process is performed in units of 2 femtoseconds (fs), and the simulation is performed until a certain time is required. In this case, the predetermined time means a time for the amorphous solid structure to sufficiently reach the equilibrium state, and may preferably be several hundred nanoseconds to several thousand nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably For example, it may be 120 nanoseconds. Thereafter, structural data at the final time point are extracted, and some monomolecules are extracted (sampling) from the corresponding structure. Single-point energy calculation for a single molecule extracted through quantum mechanics simulation is performed, and the bond-dissociation energy (BDE) for an acyclic bond within a molecule is calculated. Calculate. By taking all the obtained bond dissociation energies, the set of bond dissociation energies G = {E 1 … E N } is constructed and the average value of the set of bond dissociation energies
Figure PCTKR2022006010-appb-img-000008
is used as an indicator of the bond dissociation energy of a solid state substance.
본 명세서에서 비결정질 고체상에서의 평균 결합해리에너지 값
Figure PCTKR2022006010-appb-img-000009
의 단위는 eV이며, eV 값에 23.061을 곱하여 kcal/mol 단위로 환산할 수 있다.
In the present specification, the average bond dissociation energy value in the amorphous solid phase
Figure PCTKR2022006010-appb-img-000009
The unit of is eV, and can be converted to kcal/mol by multiplying the eV value by 23.061.
본 명세서에서 사용된 용어 “비결정질 고체상 분자 구조의 체적 밀도(Bulk density of solid-state amorphous)”는 다른 설명이 없는 한 분자동역학 시뮬레이션을 통해 얻은 비결정질 고체상 분자 구조의 체적 밀도(Bulk density of Molecular Dynamically simulated solid-state amorphous)를 의미하며, 그 값을 구하는 것은 하기와 같은 과정을 통해 진행된다.As used herein, the term “ Bulk density of solid-state amorphous ” refers to the bulk density of Molecular Dynamically simulated obtained through molecular dynamics simulation, unless otherwise specified. solid-state amorphous ), and its value is obtained through the following process.
주기 반복 경계 조건(PBC)을 가진 단위 정(Unit cell) 내에 일정한 개수의 단분자를 배치하고 이에 대해 분자동역학 시뮬레이션을 시행하여 도출된 값이며, 바람직하게는 단위 정(Unit cell) 내의 단분자는 수십 개 내지 수천 개일 수 있다.It is a value derived by placing a certain number of monomolecules in a unit cell with periodic repeat boundary conditions (PBC) and performing molecular dynamics simulations on them. Preferably, the monomolecules in the unit cell are It may be tens to thousands.
분자동역학 시뮬레이션은 총 4단계로 진행되었으며, 첫 단계는 Brownian 역학에 따라 일정한 부피를 갖는 조건에서 10 켈빈의 온도로 진행한다. 두 번째 단계도 마찬가지로 Brownian 역학에 따라 진행하되, 일정한 대기압(1.01325 bar) 조건에서 100 켈빈의 온도로 진행한다. 이후 세 번째 단계에서 역장(Force Field)에 따른 분자동역학을 계산하게 되며, 마찬가지로 일정한 압력(대기압)과 온도(상온)에서 0.1나노초(ns) 만큼 진행시킨다. 마지막으로 세 번째 단계와 같은 조건(대기압, 상온)에서 2펨토초(fs) 단위로 분자 동역학 과정을 진행시키며, 일정 시간이 소요될 때까지 시뮬레이션을 진행한다. 이때 일정 시간은 비결정질 고체 구조가 충분히 평형상태(Equilibrium state)에 이르는 시간을 의미하며 바람직하게는 수백나노초 내지 수천나노초 일 수 있으며, 더욱 바람직하게는 100나노초 내지 150나노초일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다. 이후 최종 20%의 시간 동안의 평균 체적 밀도(Average bulk density)를 계산하였으며, 상기 최종 20%의 시간은 바람직하게는 수십나노초 내지 수천나노초일 수 있으며, 더욱 바람직하게는 80나노초 내지 150나노초 일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다.Molecular dynamics simulation was performed in a total of 4 steps, and the first step was conducted at a temperature of 10 Kelvin under conditions of constant volume according to Brownian mechanics. The second step is similarly performed according to Brownian mechanics, but at a temperature of 100 Kelvin under constant atmospheric pressure (1.01325 bar). After that, in the third step, molecular dynamics according to the force field is calculated, and similarly, it proceeds by 0.1 nanoseconds (ns) at a constant pressure (atmospheric pressure) and temperature (room temperature). Finally, under the same conditions as in the third step (atmospheric pressure, room temperature), the molecular dynamics process is performed in units of 2 femtoseconds (fs), and the simulation is performed until a certain time is required. In this case, the predetermined time means the time for the amorphous solid structure to sufficiently reach the equilibrium state, and may preferably be several hundred nanoseconds to several thousand nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably may be 120 nanoseconds. After that, the average bulk density for the final 20% of the time was calculated, and the final 20% of the time may be preferably several tens of nanoseconds to several thousand nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds. and even more preferably 120 nanoseconds.
본 명세서에서 비결정질 고체상 분자 구조의 체적 밀도값 단위는 g/cm3이다.In the present specification, the unit of the volume density value of the amorphous solid molecular structure is g/cm 3 .
본 명세서에서 사용된 용어 “방사 분포 함수(Radial Distribution Function, RDF) g(r)”는 하나의 분자로부터 일정한 거리 r만큼 떨어진 다른 분자를 발견할 확률을 의미한다. 방사 분포 함수는 거리에 따른 함수로 표현되며, 그 식은 다음과 같이 정의한다.As used herein, the term “radial distribution function (RDF) g(r) ” refers to the probability of finding another molecule separated by a certain distance r from one molecule. The radial distribution function is expressed as a function according to the distance, and the equation is defined as follows.
Figure PCTKR2022006010-appb-img-000010
Figure PCTKR2022006010-appb-img-000010
상기 화학식에서 ρ는 체적 밀도(bulk density), dr은 반지름 r을 갖는 구의 미소 두께이며, dnrdr의 미소 두께를 가지는 구 껍질에 포함되는 분자의 개수이다. 방사 분포 함수를 수치화하기 위하여 비결정질 고체상에서 방사 분포 함수가 가장 큰 값을 가지는 거리를 지표로 사용하며, 이때 분자간 거리 r은 각 분자의 질량 중심 거리(Center-of-mass distance)를 사용하였다. 방사 분포 함수를 얻기 위한 비결정질 고체상 구조는 분자동역학 시뮬레이션을 통해 구하고, 이때 총 시뮬레이션 시간 중 최종 20%의 시간 동안의 구조만을 사용하여 분포 함수를 계산하였으며, 상기 최종 20%의 시간은 바람직하게는 수십나노초 내지 수천나노초일 수 있으며, 더욱 바람직하게는 80나노초 내지 150나노초일 수 있고, 더욱 더 바람직하게는 120나노초일 수 있다.In the above formula, ρ is the bulk density, dr is the micro-thickness of the sphere having the radius r , and dn r is the number of molecules included in the shell of the sphere having the micro-thickness of dr . In order to quantify the radial distribution function, the distance at which the radial distribution function has the largest value in the amorphous solid phase is used as an index, and the intermolecular distance r is the center-of-mass distance of each molecule. The amorphous solid phase structure for obtaining the radial distribution function is obtained through molecular dynamics simulation, and the distribution function was calculated using only the structure for the last 20% of the total simulation time, and the final 20% of the time is preferably several tens. It may be nanoseconds to several thousand nanoseconds, more preferably 80 nanoseconds to 150 nanoseconds, and even more preferably 120 nanoseconds.
본 명세서에서 방사 분포 함수값의 단위는 Å이다.In the present specification, the unit of the value of the radial distribution function is Å.
본 명세서에서 기재된 비결정질 고체상에서의 평균 결합해리에너지, 비결정질 고체상 분자 구조의 체적 밀도 및 방사 분포 함수값은 분자 시뮬레이션(Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161)을 통해 얻어졌으며, 분자동역학 시뮬레이션을 위해 Desmond 패키지를 사용하였다. 분자동역학 시뮬레이션을 통해 얻어진 구조에서 단분자를 추출하여 제1원리에 입각한 양자화학적 특성을 계산하였으며 이 과정에서 Gaussian과 Jaguar 패키지를 사용하였다.The average dissociation energy of the amorphous solid phase described herein, the volume density of the molecular structure of the amorphous solid phase, and the radial distribution function values were obtained through molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161), and the molecular Desmond package was used for dynamics simulation. Quantum chemical properties based on the first principle were calculated by extracting single molecules from the structure obtained through molecular dynamics simulation, and Gaussian and Jaguar packages were used in this process.
전하이동도(Charge Mobility)는 일반화된 유효매질모델(Generalized effective medium model, GEMM)에서 균일한 매질에 대한 전하이동도는 유효매질근사(Effective medium approximation)에 따른 마스터 방정식(Master equation)의 해석적 해로부터 구할 수 있으며, 그 식은 다음과 같이 표현된다.Charge mobility is a generalized effective medium model (GEMM), charge mobility for a uniform medium is an analytical method of the master equation according to the effective medium approximation (Effective medium approximation) It can be obtained from the solution, and the expression is expressed as:
Figure PCTKR2022006010-appb-img-000011
Figure PCTKR2022006010-appb-img-000011
여기서 e는 전하량, β는 볼츠만 상수와 온도의 역수(1/kBT)로 주어지는 열역학적 상수, M은 평균 이웃분자(Nearest-neighbor molecules) 개수, Hab는 전하 전달 행렬 요소(Charge transfer matrix element), n은 전하 전달 차원(3차원계에서 n=3), ħ는 플랑크 상수, λ는 재배치 에너지(Reorganization energy), σ는 무질서도 지표(disorder parameter), C는 보정상수이다. 따라서 전하이동도는 다음과 같은 비례관계를 갖는다.where e is the amount of charge, β is a thermodynamic constant given by the Boltzmann constant and the reciprocal of temperature (1/k B T), M is the average number of nearest-neighbor molecules, H ab is the charge transfer matrix element ), n is the charge transfer dimension ( n = 3 in a three-dimensional system), ħ is the Planck constant, λ is the reorganization energy, σ is the disorder parameter, and C is the correction constant. Therefore, the charge mobility has the following proportional relationship.
Figure PCTKR2022006010-appb-img-000012
Figure PCTKR2022006010-appb-img-000012
비결정질 고체상태의 분자들이 충분히 균일하게 분포되어 있다고 가정할 경우(σ≪1), 각 이분자(Dimer) 사이의 전하 전달 행렬 요소(Hab)는 일정하므로 위 비례식은 다음과 같이 나타낼 수 있다.If it is assumed that the molecules in the amorphous solid state are sufficiently uniformly distributed (σ≪1), the charge transfer matrix element (H ab ) between each dimer is constant, so the above proportional expression can be expressed as follows.
Figure PCTKR2022006010-appb-img-000013
Figure PCTKR2022006010-appb-img-000013
이때, 전하 전달 행렬 요소는 선험적으로 분자간 거리와 아래와 같은 비례 관계를 가지고 있음이 알려져 있다.At this time, it is known a priori that the charge transfer matrix element has a proportional relationship with the intermolecular distance as follows.
Figure PCTKR2022006010-appb-img-000014
Figure PCTKR2022006010-appb-img-000014
여기서 η는 감쇠상수(decay constant), r은 분자간 거리이다. 따라서 균일한 매질에 대해 전하이동도는 분자간 거리에 대해 지수적 감쇠 비례하는 관계를 가지고 있으며, 분자간 거리가 짧을수록 전하이동도는 증가하는 추세를 보이게 된다.where η is the decay constant, and r is the intermolecular distance. Therefore, for a uniform medium, the charge mobility has a relationship that is proportional to the exponential decay with respect to the intermolecular distance, and as the intermolecular distance is shorter, the charge mobility tends to increase.
또한 체적 밀도가 부피에 반비례하므로(ρ∝1/V) 이를 이용해 평균 분자간 거리(
Figure PCTKR2022006010-appb-img-000015
)를 도출할 수 있으며, 체적 밀도가 작을수록 분자간 거리는 짧아지게 되므로 이는 체적 밀도가 작은 물질이 높은 전하이동도를 가질 수 있음을 의미한다.
Also, since the volume density is inversely proportional to the volume ( ρ ∝1/ V ), this is used to determine the average intermolecular distance (
Figure PCTKR2022006010-appb-img-000015
), and the smaller the volume density, the shorter the intermolecular distance.
따라서 분자동역학 시뮬레이션을 통해 얻은 비결정질 고체상 구조에서 방사 분포 함수를 조사하는 것으로 분자간 거리가 최대로 밀집된 분포 구간을 확인할 수 있으며, 방사 분포 함수의 피크 값 위치를 전하이동도를 비교할 수 있는 분자간 거리 지표로서 활용할 수 있다.Therefore, by examining the radial distribution function in the amorphous solid-phase structure obtained through molecular dynamics simulation, the distribution section with the maximum intermolecular distance can be confirmed, and the position of the peak value of the radial distribution function can be used as an intermolecular distance index to compare charge mobility. can be utilized
상기 전하이동도는 문헌 [Friederich, Pascal, et al. "Ab initio treatment of disorder effects in amorphous organic materials: Toward parameter free materials simulation", Journal of chemical theory and computation 10.9 (2014): 3720-3725], [Friederich, Pascal, et al. "Molecular origin of the charge carrier mobility in small molecule organic semiconductors", Advanced Functional Materials 26.31 (2016): 5757-5763], [Oberhofer, Harald, and Jochen Blumberger. "Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set", The Journal of Chemical Physics 133.24 (2010): 244105], [Albinsson, Bo, et al. "Electron and energy transfer in donor-acceptor systems with conjugated molecular bridges", Physical Chemistry Chemical Physics 9.44 (2007): 5847-5864] 및 [Cave, Robert J., and Marshall D. Newton. "Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods", The Journal of chemical physics 106.22 (1997): 9213-9226]을 참조하며, 이들 문헌은 그 전문이 본원에 참고로 포함된다.The charge mobility is described in Friederich, Pascal, et al. "Ab initio treatment of disorder effects in amorphous organic materials: Toward parameter free materials simulation", Journal of chemical theory and computation 10.9 (2014): 3720-3725], [Friederich, Pascal, et al. “Molecular origin of the charge carrier mobility in small molecule organic semiconductors”, Advanced Functional Materials 26.31 (2016): 5757-5763], Oberhofer, Harald, and Jochen Blumberger. "Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set", The Journal of Chemical Physics 133.24 (2010): 244105], [Albinsson, Bo, et al. "Electron and energy transfer in donor-acceptor systems with conjugated molecular bridges", Physical Chemistry Chemical Physics 9.44 (2007): 5847-5864 and Cave, Robert J., and Marshall D. Newton. See "Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods", The Journal of chemical physics 106.22 (1997): 9213-9226, which includes The entirety of which is incorporated herein by reference.
이하, 본 발명의 일 측면에 따른 화합물 및 이를 포함하는 유기전기소자에 대하여 설명한다.Hereinafter, a compound according to an aspect of the present invention and an organic electric device including the same will be described.
본 발명은 비결정질 고체상 분자의 양자역학적 평균 결합 해리에너지
Figure PCTKR2022006010-appb-img-000016
가 3.650 eV 이상인 하기 화학식 1로 표시되는 화합물을 제공한다.
The present invention relates to quantum-mechanical average bond dissociation energy of amorphous solid-phase molecules.
Figure PCTKR2022006010-appb-img-000016
It provides a compound represented by the following formula (1) is 3.650 eV or more.
또한 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 하기 화학식 1로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하고, 상기 유기물층에서 상기 화합물이 비결정질 고체상 분자의 양자역학적 평균 결합해리에너지
Figure PCTKR2022006010-appb-img-000017
가 3.650 eV 이상인 것을 특징으로 하는 유기전기소자를 제공한다.
In addition, the present invention is an organic electric device comprising an anode, a cathode, and an organic material layer formed between the anode and the cathode, wherein the organic material layer comprises a single compound or two or more compounds represented by the following formula (1), and in the organic material layer, the compound is Quantum-mechanical mean bond dissociation energy of amorphous solid-phase molecules
Figure PCTKR2022006010-appb-img-000017
It provides an organic electric device, characterized in that 3.650 eV or more.
화학식 1 Formula 1
Figure PCTKR2022006010-appb-img-000018
Figure PCTKR2022006010-appb-img-000018
상기 화학식 1에서, 각 기호는 하기와 같이 정의될 수 있다.In Formula 1, each symbol may be defined as follows.
1) X1 및 X2는 서로 독립적으로 O 또는 S이다.1) X 1 and X 2 are each independently O or S.
2) Ar1, Ar2 및 Ar3은 서로 독립적으로 C6~C60의 아릴기이며, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.2) Ar 1 , Ar 2 and Ar 3 are each independently a C 6 ~ C 60 aryl group, preferably a C 6 ~ C 30 aryl group, more preferably a C 6 ~ C 25 aryl group, such as phenylene, biphenyl, naphthalene, terphenyl, and the like.
3) L1 및 L2는 서로 독립적으로 단일결합 또는 C6~C60의 아릴렌기이며, 상기 L1 및 L2가 아릴렌기일 경우 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.3) L 1 and L 2 are each independently a single bond or a C 6 ~ C 60 arylene group, and when L 1 and L 2 are an arylene group, preferably a C 6 ~ C 30 arylene group, more preferably may be a C 6 ~ C 24 arylene group, for example, phenylene, biphenyl, naphthalene, terphenyl, and the like.
4) 여기서, 상기 아릴기 및 아릴렌기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C6~C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C20의 헤테로알킬기; C1~C20의 헤테로알켄일기; C1~C20의 헤테로알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.4) wherein the aryl group and the arylene group are each deuterium; halogen; silane group; siloxane group; boron group; germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; C 1 ~ C 20 Alkoxy group; C 6 ~ C 20 Aryloxy group; C 1 ~ C 20 Alkyl group; C 2 ~ C 20 Alkenyl group; C 2 ~ C 20 alkynyl group; C 1 ~ C 20 A heteroalkyl group; C 1 ~ C 20 Heteroalkenyl group; C 1 ~ C 20 Heteroalkynyl group; C 6 ~ C 20 Aryl group; C 6 ~ C 20 Aryl group substituted with deuterium; fluorenyl group; C 2 ~ C 20 A heterocyclic group; C 3 ~ C 20 Cycloalkyl group; C 7 ~ C 20 Arylalkyl group; And C 8 ~ C 20 Aryl alkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may be combined with each other to form a ring, where 'ring' means C 3 ~ C 60 of an aliphatic ring or a C 6 ~ C 60 aromatic ring or a C 2 ~ C 60 heterocyclic ring or a fused ring consisting of a combination thereof, and includes a saturated or unsaturated ring.
본 발명에서 상기 화학식 1로 표시되는 화합물의 비결정질 고체상 분자의 양자역학적 평균 결합해리에너지
Figure PCTKR2022006010-appb-img-000019
는 바람직하게는 3.650 eV 이상이고, 더욱 바람직하게는 3.650 eV 내지 4.500 eV일 수 있고, 더욱 더 바람직하게는 3.655 eV 내지 3.800 eV일 수 있다.
Quantum-mechanical average bond dissociation energy of the amorphous solid-phase molecule of the compound represented by Formula 1 in the present invention
Figure PCTKR2022006010-appb-img-000019
is preferably 3.650 eV or more, more preferably 3.650 eV to 4.500 eV, and even more preferably 3.655 eV to 3.800 eV.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물의 비결정질 고체상 분자 구조의 체적 밀도가 1.110 g/cm3 이상인 화합물을 제공한다. 상기 화학식 1로 표시되는 화합물의 비결정질 고체상 분자 구조의 체적 밀도는 바람직하게는 1.110 g/cm3 이상일 수 있고, 더욱 바람직하게는 1.110 g/cm3 내지 1.200 g/cm3일 수 있으며, 더욱 더 바람직하게는 1.140 g/cm3 내지 1.160 g/cm3일 수 있다.In addition, the present invention provides a compound having a volume density of 1.110 g/cm 3 or more of the amorphous solid molecular structure of the compound represented by Formula 1 above. The volume density of the amorphous solid molecular structure of the compound represented by Formula 1 may be preferably 1.110 g/cm 3 or more, more preferably 1.110 g/cm 3 to 1.200 g/cm 3 , and even more preferably preferably 1.140 g/cm 3 to 1.160 g/cm 3 .
또한, 본 발명은 상기 화학식 1로 표시되는 화합물의 방사 분포 함수 값이 11.0 Å 미만인 화합물을 제공한다. 상기 화학식 1로 표시되는 화합물의 방사 분포 함수 값은 바람직하게는 11.0 Å 미만일 수 있고, 더욱 바람직하게는 8.0 Å 내지 13.0 Å일 수 있으며, 더욱 더 바람직하게는 9.0 Å 내지 11.0 Å일 수 있다.In addition, the present invention provides a compound having a radial distribution function value of less than 11.0 Å of the compound represented by Formula 1 above. The value of the radial distribution function of the compound represented by Formula 1 may be preferably less than 11.0 Å, more preferably 8.0 Å to 13.0 Å, and even more preferably 9.0 Å to 11.0 Å.
또한, 본 발명은 상기 화학식 1로 나타낸 화합물이 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following Formulas 1-1 to 1-3.
화학식 1-1 화학식 1-2 Formula 1-1 Formula 1-2
Figure PCTKR2022006010-appb-img-000020
Figure PCTKR2022006010-appb-img-000020
화학식 1-3 Formula 1-3
Figure PCTKR2022006010-appb-img-000021
Figure PCTKR2022006010-appb-img-000021
{상기 화학식 1-1 내지 화학식 1-3에서, Ar1, Ar2, Ar3, L1 및 L2는 상기 화학식 1에서 정의된 바와 동일하다.}{In Formulas 1-1 to 1-3, Ar 1 , Ar 2 , Ar 3 , L 1 and L 2 are the same as defined in Formula 1 above.}
또한, 본 발명은 상기 Ar1 내지 Ar3 중 적어도 하나가 하기 화학식 Ar-1 내지 화학식 Ar-13 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which at least one of Ar 1 to Ar 3 is represented by any one of the following Chemical Formulas Ar-1 to Ar-13.
화학식 Ar-1 화학식 Ar-2 화학식 Ar-3 화학식 Ar-4Formula Ar-1 Formula Ar-2 Formula Ar-3 Formula Ar-4
Figure PCTKR2022006010-appb-img-000022
Figure PCTKR2022006010-appb-img-000022
화학식 Ar-5 화학식 Ar-6 화학식 Ar-7 Formula Ar-5 Formula Ar-6 Formula Ar-7
Figure PCTKR2022006010-appb-img-000023
Figure PCTKR2022006010-appb-img-000023
화학식 Ar-8 화학식 Ar-9 화학식 Ar-10 Formula Ar-8 Formula Ar-9 Formula Ar-10
Figure PCTKR2022006010-appb-img-000024
Figure PCTKR2022006010-appb-img-000024
화학식 Ar-11 화학식 Ar-12 화학식 Ar-13 Formula Ar-11 Formula Ar-12 Formula Ar-13
Figure PCTKR2022006010-appb-img-000025
Figure PCTKR2022006010-appb-img-000025
상기 화학식 Ar-1 내지 화학식 Ar-13에서, 각 기호는 하기와 같이 정의될 수 있다.In Formulas Ar-1 to Ar-13, each symbol may be defined as follows.
1) R1, R2 및 R3은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소, 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C3~C20의 시클로알킬기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택된다.1) R 1 , R 2 , and R 3 are the same or different from each other, and each independently hydrogen; deuterium, halogen; cyano group; nitro group; C 6 ~ C 60 Aryl group; fluorenyl group; O, N, S, Si and P containing at least one heteroatom C 2 ~ C 60 A heterocyclic group; C 3 ~ C 60 A fused ring group of an aliphatic ring and a C 6 ~ C 60 aromatic ring; C 3 ~ C 20 Cycloalkyl group; C 1 ~ C 50 Alkyl group; C 2 ~ C 20 Alkenyl group; C 2 ~ C 20 alkynyl group; C 1 ~ C 30 An alkoxyl group; And C 6 ~ C 30 Aryloxy group; is selected from the group consisting of.
상기 R1, R2 및 R3이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.When R 1 , R 2 and R 3 are aryl groups, preferably a C 6 ~ C 30 aryl group, more preferably a C 6 ~ C 25 aryl group, such as phenylene, biphenyl, naphthalene, terphenyl etc.
상기 R1, R2 및 R3이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.When R 1 , R 2 and R 3 are a heterocyclic group, preferably a C 2 ~ C 30 heterocyclic group, more preferably a C 2 ~ C 24 heterocyclic group, illustratively pyrazine, cy Offene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzo thienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine, and the like.
상기 R1, R2 및 R3이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.When R 1 , R 2 and R 3 are a fused ring group, preferably a fused ring group of a C 3 ~ C 30 aliphatic ring and a C 6 ~ C 30 aromatic ring, more preferably a C 3 ~ C 24 It may be a fused ring group of an aliphatic ring and a C 6 ~ C 24 aromatic ring.
상기 R1, R2 및 R3이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.When R 1 , R 2 and R 3 are an alkyl group, it may be preferably a C 1 to C 30 alkyl group, and more preferably a C 1 to C 24 alkyl group.
상기 R1, R2 및 R3이 알콕실기인 경우, 바람직하게는 C1~C24의 알콕실기일 수 있다.When R 1 , R 2 and R 3 are an alkoxyl group, it may be preferably a C 1 to C 24 alkoxyl group.
상기 R1, R2 및 R3이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.When R 1 , R 2 and R 3 are an aryloxy group, it may be preferably a C 6 ~ C 24 aryloxy group.
2) a는 0 내지 5의 정수이고, b 및 c는 서로 독립적으로 0 내지 4의 정수이며,2) a is an integer from 0 to 5, b and c are independently integers from 0 to 4,
3) *는 결합위치를 의미한다.3) * means the bonding position.
또한, 본 발명은 상기 L1 및 L2 중 적어도 하나는 하기 화학식 L-1 내지 화학식 L-3 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which at least one of L 1 and L 2 is represented by any one of the following Chemical Formulas L-1 to L-3.
화학식 L-1 화학식 L-2 화학식 L-3Formula L-1 Formula L-2 Formula L-3
Figure PCTKR2022006010-appb-img-000026
Figure PCTKR2022006010-appb-img-000026
{상기 화학식 L-1 내지 화학식 L-3에서,{In the above formulas L-1 to L-3,
1) R4는 상기 R1 정의와 동일하며,1) R 4 is the same as the definition of R 1 above,
2) d는 0 내지 4의 정수이고,2) d is an integer from 0 to 4,
3) *는 결합위치를 의미한다.}3) * means the bonding position.}
또한, 본 발명은 상기 화학식 1로 나타낸 화합물이 하기 화합물 P-1 내지 P-90 중 어느 하나로 표시되는 화합물을 제공한다.In addition, the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following compounds P-1 to P-90.
Figure PCTKR2022006010-appb-img-000027
Figure PCTKR2022006010-appb-img-000027
Figure PCTKR2022006010-appb-img-000028
Figure PCTKR2022006010-appb-img-000028
Figure PCTKR2022006010-appb-img-000029
Figure PCTKR2022006010-appb-img-000029
Figure PCTKR2022006010-appb-img-000030
Figure PCTKR2022006010-appb-img-000030
Figure PCTKR2022006010-appb-img-000031
Figure PCTKR2022006010-appb-img-000031
Figure PCTKR2022006010-appb-img-000032
Figure PCTKR2022006010-appb-img-000032
Figure PCTKR2022006010-appb-img-000033
Figure PCTKR2022006010-appb-img-000033
Figure PCTKR2022006010-appb-img-000034
Figure PCTKR2022006010-appb-img-000034
Figure PCTKR2022006010-appb-img-000035
Figure PCTKR2022006010-appb-img-000035
Figure PCTKR2022006010-appb-img-000036
Figure PCTKR2022006010-appb-img-000036
Figure PCTKR2022006010-appb-img-000037
Figure PCTKR2022006010-appb-img-000037
Figure PCTKR2022006010-appb-img-000038
Figure PCTKR2022006010-appb-img-000038
Figure PCTKR2022006010-appb-img-000039
Figure PCTKR2022006010-appb-img-000039
Figure PCTKR2022006010-appb-img-000040
Figure PCTKR2022006010-appb-img-000040
Figure PCTKR2022006010-appb-img-000041
Figure PCTKR2022006010-appb-img-000041
Figure PCTKR2022006010-appb-img-000042
Figure PCTKR2022006010-appb-img-000042
Figure PCTKR2022006010-appb-img-000043
Figure PCTKR2022006010-appb-img-000043
Figure PCTKR2022006010-appb-img-000044
Figure PCTKR2022006010-appb-img-000044
Figure PCTKR2022006010-appb-img-000045
Figure PCTKR2022006010-appb-img-000045
Figure PCTKR2022006010-appb-img-000046
Figure PCTKR2022006010-appb-img-000046
Figure PCTKR2022006010-appb-img-000047
Figure PCTKR2022006010-appb-img-000047
Figure PCTKR2022006010-appb-img-000048
Figure PCTKR2022006010-appb-img-000048
Figure PCTKR2022006010-appb-img-000049
Figure PCTKR2022006010-appb-img-000049
도 1을 참조하여 설명하면, 본 발명에 따른 유기전기소자(100)는 제 1전극(110), 제 2전극(170) 및 제 1전극(110)과 제 2전극(170) 사이에 화학식 1로 표시되는 단독화합물 또는 2종 이상의 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(110)은 애노드 또는 양극이고, 제 2전극(170)은 캐소드 또는 음극일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.Referring to FIG. 1 , the organic electric device 100 according to the present invention includes a first electrode 110 , a second electrode 170 , and between the first electrode 110 and the second electrode 170 by Chemical Formula 1 An organic material layer including a single compound or two or more compounds represented by In this case, the first electrode 110 may be an anode or an anode, and the second electrode 170 may be a cathode or a cathode. In the case of an inverted type, the first electrode may be a cathode and the second electrode may be an anode.
유기물층은 제 1전극(110) 상에 순차적으로 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함할 수 있다. 이때, 발광층(140)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(220), 버퍼층(210) 등을 더 포함할 수도 있고, 전자수송층(150) 등이 정공저지층의 역할을 할 수도 있을 것이다. (도 2 참조)The organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 . In this case, the remaining layers except for the light emitting layer 140 may not be formed. It may further include a hole blocking layer, an electron blocking layer, a light emission auxiliary layer 220 , a buffer layer 210 , and the like, and the electron transport layer 150 and the like may serve as a hole blocking layer. (See Fig. 2)
또한, 본 발명의 일 실시예에 따른 유기전기소자는 보호층 또는 광효율 개선층(180)을 더 포함할 수 있다. 이러한 광효율 개선층은 제 1전극의 양면 중 유기물층과 접하지 않는 면 또는 제 2전극의 양면 중 유기물층과 접하지 않는 면에 형성될 수 있다. 상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(120), 정공수송층(130), 발광보조층(220), 전자수송보조층, 전자수송층(150), 전자주입층(160), 발광층(140)의 호스트 또는 도펀트, 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는 예컨대, 본 발명의 화학식 1에 따른 화합물은 발광보조층 또는 정공수송층의 재료로 사용될 수 있다.In addition, the organic electric device according to an embodiment of the present invention may further include a protective layer or a light efficiency improving layer 180 . The light efficiency improving layer may be formed on a surface of both surfaces of the first electrode that does not contact the organic material layer or on a surface of both surfaces of the second electrode that does not contact the organic material layer. The compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the emission layer 140, or a material of the light efficiency improving layer. Preferably, for example, the compound according to Chemical Formula 1 of the present invention may be used as a material for a light emitting auxiliary layer or a hole transport layer.
상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함할 수 있으며, 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함할 수 있다. (도 3 참조)The organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generating layer formed between the two or more stacks. (See Fig. 3)
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.On the other hand, even with the same core, the band gap, electrical properties, interface properties, etc. may vary depending on which position the substituent is bonded to, so the selection of the core and the combination of the sub-substituents coupled thereto are also very In particular, when the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) are optimally combined, a long lifespan and high efficiency can be achieved at the same time.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.The organic electroluminescent device according to an embodiment of the present invention may be manufactured using a PVD (physical vapor deposition) method. For example, an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and the hole injection layer 120, the hole transport layer 130, the light emitting layer 140, the electron transport layer 150 and After forming the organic material layer including the electron injection layer 160, it may be manufactured by depositing a material that can be used as a cathode thereon.
또한, 본 발명에서 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 및 롤투롤 공정 중 어느 하나에 의해 형성되며, 상기 유기물층은 전자수송재료로 상기 화합물을 포함하는 것을 특징으로 하는 유기전기소자를 제공한다.In addition, in the present invention, the organic layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic layer contains the compound as an electron transport material. It provides an organic electric device, characterized in that.
또 다른 구체적인 예로서, 본 발명은 상기 유기물층에 상기 화학식 1로 표시되는 화합물의 동종 또는 이종의 화합물이 혼합되어 사용되는 것을 특징으로 하는 유기전기소자를 제공한다.As another specific example, the present invention provides an organic electric device, characterized in that the compound of the same or different types of the compound represented by Formula 1 is mixed and used in the organic material layer.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 발광보조층 조성물을 제공하고, 상기 발광보조층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a light-emitting auxiliary layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the light-emitting auxiliary layer.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 정공수송층 조성물을 제공하고, 상기 정공수송층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a hole transport layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the hole transport layer.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 광효율 개선층 조성물을 제공하고, 상기 광효율 개선층을 포함하는 유기전기소자를 제공한다.In addition, the present invention provides a light efficiency improving layer composition comprising the compound represented by Formula 1, and provides an organic electric device including the light efficiency improving layer.
또한, 본 발명은 상기한 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치를 제공한다.In addition, the present invention is a display device including the organic electric device described above; and a controller for driving the display device.
또 다른 측면에서 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치를 본 발명에서 제공한다. 이때, 전자 장치는 현재 또는 장래의 유무선 통신단말기일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자 장치를 포함한다.In another aspect, the present invention provides an electronic device, characterized in that the organic electroluminescent device is at least one of an organic electroluminescent device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for single color or white lighting. In this case, the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation system, a game machine, various TVs, and various computers.
이하에서, 본 발명의 상기 화학식 1로 표시되는 화합물의 합성예 및 본 발명의 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명의 하기 실시예로 한정되는 것은 아니다.Hereinafter, a synthesis example of the compound represented by Formula 1 of the present invention and a manufacturing example of the organic electric device of the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.
[합성예 1][Synthesis Example 1]
본 발명에 따른 화학식 1로 표시되는 화합물(Final Product)은 하기 반응식 1과 같이 합성되며 이에 한정되는 것은 아니다.The compound (Final Product) represented by Formula 1 according to the present invention is synthesized as shown in Scheme 1 below, but is not limited thereto.
<반응식 1><Scheme 1>
Figure PCTKR2022006010-appb-img-000050
Figure PCTKR2022006010-appb-img-000050
{상기 반응식 1에서,{In Scheme 1,
1) Hal은 I, Br 또는 Cl이며,1) Hal is I, Br or Cl;
2) X는 상기 화학식 1의 X1의 정의와 동일하고,2) X is the same as the definition of X 1 in Formula 1,
3) Ar은 상기 화학식 1의 Ar1의 정의와 동일하며,3) Ar is the same as the definition of Ar 1 in Formula 1,
4) L은 상기 화학식 1의 L1의 정의와 동일하고,4) L is the same as the definition of L 1 in Formula 1,
5) Sub 1은 서로 동일하거나 상이할 수 있다.}5) Sub 1 may be the same or different from each other.}
I. Sub 1의 합성I. Synthesis of Sub 1
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성되며, 이에 한정되는 것은 아니다. Hal은 I, Br 또는 Cl이다. Sub 1 of Scheme 1 is synthesized by the reaction route of Scheme 2 below, but is not limited thereto. Hal is I, Br or Cl.
<반응식 2><Scheme 2>
Figure PCTKR2022006010-appb-img-000051
Figure PCTKR2022006010-appb-img-000051
상기 반응식 2에서, Sub 1의 L이 존재하지 않는 경우, Sub 1B와 Sub 1B'이 반응하는 단계는 생략할 수 있다.In Scheme 2, when L of Sub 1 does not exist, the step of reacting Sub 1B and Sub 1B' may be omitted.
1. Sub 1-1 합성예1. Sub 1-1 Synthesis Example
Figure PCTKR2022006010-appb-img-000052
Figure PCTKR2022006010-appb-img-000052
둥근바닥플라스크에 Sub 1-1A (50.0 g, 177.6 mmol)를 넣고 THF (888 ml)에 녹인 후, Sub 1-1A' (21.7 g, 177.6 mmol), Pd(PPh3)4 (12.3 g, 10.7 mmol), NaOH (21.3 g, 532.8 mmol), 물(444 ml)을 첨가하고 80℃에서 반응을 진행한다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 생성물 40.1 g을 얻었다. (수율 : 81.1%)Sub 1-1A (50.0 g, 177.6 mmol) was placed in a round-bottom flask and dissolved in THF (888 ml), followed by Sub 1-1A' (21.7 g, 177.6 mmol), Pd(PPh 3 ) 4 (12.3 g, 10.7). mmol), NaOH (21.3 g, 532.8 mmol), and water (444 ml) are added, and the reaction proceeds at 80°C. After completion of the reaction, extraction with CH 2 Cl 2 and water, the organic layer was dried over MgSO 4 , concentrated, and the resulting organic material was recrystallized by silicagel column to obtain 40.1 g of a product. (Yield: 81.1%)
2. Sub 1-2 합성예2. Sub 1-2 Synthesis Example
Figure PCTKR2022006010-appb-img-000053
Figure PCTKR2022006010-appb-img-000053
둥근바닥플라스크에 Sub 1-1 (30.0 g, 107.6 mmol)을 넣고 THF (538 ml)에 녹인 후, Sub 1-2B' (16.8 g, 107.6 mmol), Pd(PPh3)4 (7.5 g, 6.5 mmol), NaOH (12.9 g, 322.9 mmol), 물(269 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 30.9 g 얻었다. (수율 : 80.8%)Put Sub 1-1 (30.0 g, 107.6 mmol) in a round-bottom flask and dissolve in THF (538 ml), Sub 1-2B' (16.8 g, 107.6 mmol), Pd(PPh 3 ) 4 (7.5 g, 6.5 mmol), NaOH (12.9 g, 322.9 mmol), and water (269 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 30.9 g of the product. (Yield: 80.8%)
3. Sub 1-31 합성예3. Sub 1-31 Synthesis Example
Figure PCTKR2022006010-appb-img-000054
Figure PCTKR2022006010-appb-img-000054
둥근바닥플라스크에 Sub 1-31A (50.0 g, 168.0 mmol)을 넣고 THF (840 ml)에 녹인 후, Sub 1-31A' (58.8 g, 168.0 mmol), Pd(PPh3)4 (11.7 g, 10.1 mmol), NaOH (20.2 g, 504.0 mmol), 물(420 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 67.5 g 얻었다. (수율 : 76.8%)Put Sub 1-31A (50.0 g, 168.0 mmol) in a round-bottom flask and dissolve in THF (840 ml), Sub 1-31A' (58.8 g, 168.0 mmol), Pd(PPh 3 ) 4 (11.7 g, 10.1) mmol), NaOH (20.2 g, 504.0 mmol), and water (420 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 67.5 g of the product. (Yield: 76.8%)
4. Sub 1-39 합성예4. Sub 1-39 Synthesis Example
Figure PCTKR2022006010-appb-img-000055
Figure PCTKR2022006010-appb-img-000055
1) Sub 1-39B의 합성1) Synthesis of Sub 1-39B
둥근바닥플라스크에 Sub 1-31A (50.0 g, 168.0 mmol)를 넣고 THF (840 ml)에 녹인 후, Sub 1-39A' (39.3 g, 168.0 mmol), Pd(PPh3)4 (11.7 g, 10.1 mmol), NaOH (20.2 g, 504.0 mmol), 물(420 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 56.3 g 얻었다. (수율 : 82.3%)Put Sub 1-31A (50.0 g, 168.0 mmol) in a round-bottom flask and dissolve in THF (840 ml), Sub 1-39A' (39.3 g, 168.0 mmol), Pd(PPh 3 ) 4 (11.7 g, 10.1) mmol), NaOH (20.2 g, 504.0 mmol), and water (420 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 56.3 g of the product. (Yield: 82.3%)
2) Sub 1-39의 합성2) Synthesis of Sub 1-39
둥근바닥플라스크에 상기 반응에서 얻은 Sub 1-39B (56.3 g, 138.3 mmol)를 넣고 THF (692 ml)에 녹인 후, Sub 1-39B' (21.6 g, 138.3 mmol), Pd(PPh3)4 (9.6 g, 8.3 mmol), NaOH (16.6 g, 415.0 mmol), 물(346 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 54.5 g 얻었다. (수율 : 81.5%)Sub 1-39B (56.3 g, 138.3 mmol) obtained in the above reaction was placed in a round-bottom flask and dissolved in THF (692 ml), Sub 1-39B' (21.6 g, 138.3 mmol), Pd(PPh 3 ) 4 ( 9.6 g, 8.3 mmol), NaOH (16.6 g, 415.0 mmol), and water (346 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 54.5 g of the product. (Yield: 81.5%)
5. Sub 1-46 합성예5. Sub 1-46 Synthesis Example
Figure PCTKR2022006010-appb-img-000056
Figure PCTKR2022006010-appb-img-000056
1) Sub 1-49의 합성1) Synthesis of Sub 1-49
둥근바닥플라스크에 Sub 1-46A (50.0 g, 173.9 mmol)를 넣고 THF (869 ml)에 녹인 후, Sub 1-46A' (22.1 g, 173.9 mmol), Pd(PPh3)4 (12.1 g, 10.4 mmol), NaOH (20.9 g, 521.6 mmol), 물(435 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 41.2 g 얻었다. (수율 : 81.8%)Put Sub 1-46A (50.0 g, 173.9 mmol) in a round-bottom flask and dissolve in THF (869 ml), Sub 1-46A' (22.1 g, 173.9 mmol), Pd(PPh 3 ) 4 (12.1 g, 10.4) mmol), NaOH (20.9 g, 521.6 mmol), and water (435 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 41.2 g of the product. (Yield: 81.8%)
2) Sub 1-46의 합성2) Synthesis of Sub 1-46
둥근바닥플라스크에 상기 반응에서 얻은 Sub 1-49 (41.2 g, 142.2 mmol)를 넣고 THF (711 ml)에 녹인 후, Sub 1-2B' (22.2 g, 142.2 mmol), Pd(PPh3)4 (9.9 g, 8.5 mmol), NaOH (17.1 g, 426.5 mmol), 물(355 ml)을 첨가하고 상기 Sub 1-1과 동일한 방법으로 실험하여 생성물을 42.1 g 얻었다. (수율 : 80.9%)Sub 1-49 (41.2 g, 142.2 mmol) obtained in the above reaction was placed in a round-bottom flask and dissolved in THF (711 ml), Sub 1-2B' (22.2 g, 142.2 mmol), Pd(PPh 3 ) 4 ( 9.9 g, 8.5 mmol), NaOH (17.1 g, 426.5 mmol), and water (355 ml) were added, and the experiment was performed in the same manner as in Sub 1-1 to obtain 42.1 g of the product. (Yield: 80.9%)
상기 Sub 1에 속하는 화합물은 하기와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 1은 Sub 1에 속하는 화합물의 FD-MS (Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.The compound belonging to Sub 1 may be the following compounds, but is not limited thereto, and Table 1 below shows Field Desorption-Mass Spectrometry (FD-MS) values of the compounds belonging to Sub 1.
Figure PCTKR2022006010-appb-img-000057
Figure PCTKR2022006010-appb-img-000057
Figure PCTKR2022006010-appb-img-000058
Figure PCTKR2022006010-appb-img-000058
Figure PCTKR2022006010-appb-img-000059
Figure PCTKR2022006010-appb-img-000059
Figure PCTKR2022006010-appb-img-000060
Figure PCTKR2022006010-appb-img-000060
Figure PCTKR2022006010-appb-img-000061
Figure PCTKR2022006010-appb-img-000061
Figure PCTKR2022006010-appb-img-000062
Figure PCTKR2022006010-appb-img-000062
Figure PCTKR2022006010-appb-img-000063
Figure PCTKR2022006010-appb-img-000063
Figure PCTKR2022006010-appb-img-000064
Figure PCTKR2022006010-appb-img-000064
Figure PCTKR2022006010-appb-img-000065
Figure PCTKR2022006010-appb-img-000065
Figure PCTKR2022006010-appb-img-000066
Figure PCTKR2022006010-appb-img-000066
Figure PCTKR2022006010-appb-img-000067
Figure PCTKR2022006010-appb-img-000067
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
Sub 1-1Sub 1-1 m/z=278.05(C18H11ClO=278.74)m/z=278.05 (C 18 H 11 ClO=278.74) Sub 1-2Sub 1-2 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83)
Sub 1-3Sub 1-3 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83) Sub 1-4Sub 1-4 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83)
Sub 1-5Sub 1-5 m/z=334.11(C22H19ClO=334.84)m/z=334.11 (C 22 H 19 ClO=334.84) Sub 1-6Sub 1-6 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83)
Sub 1-7Sub 1-7 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83) Sub 1-8Sub 1-8 m/z=354.08(C24H15ClO=354.83)m/z=354.08 (C 24 H 15 ClO=354.83)
Sub 1-9Sub 1-9 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93) Sub 1-10Sub 1-10 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-11Sub 1-11 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93) Sub 1-12Sub 1-12 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-13Sub 1-13 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93) Sub 1-14Sub 1-14 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-15Sub 1-15 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93) Sub 1-16Sub 1-16 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-17Sub 1-17 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93) Sub 1-18Sub 1-18 m/z=390.18(C26H27ClO=390.95)m/z=390.18 (C 26 H 27 ClO=390.95)
Sub 1-19Sub 1-19 m/z=486.18(C34H27ClO=487.04)m/z=486.18 (C 34 H 27 ClO=487.04) Sub 1-20Sub 1-20 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-21Sub 1-21 m/z=506.14(C36H23ClO=507.03)m/z=506.14 (C 36 H 23 ClO=507.03) Sub 1-22Sub 1-22 m/z=370.06(C24H15ClS=370.89)m/z=370.06 (C 24 H 15 ClS=370.89)
Sub 1-23Sub 1-23 m/z=370.06(C24H15ClS=370.89)m/z=370.06 (C 24 H 15 ClS=370.89) Sub 1-24Sub 1-24 m/z=370.06(C24H15ClS=370.89)m/z=370.06 (C 24 H 15 ClS=370.89)
Sub 1-25Sub 1-25 m/z=294.03(C18H11ClS=294.8)m/z=294.03 (C 18 H 11 ClS=294.8) Sub 1-26Sub 1-26 m/z=426.12(C28H23ClS=427)m/z=426.12 (C 28 H 23 ClS=427)
Sub 1-27Sub 1-27 m/z=312.02(C18H10ClFS=312.79)m/z=312.02 (C 18 H 10 ClFS=312.79) Sub 1-28Sub 1-28 m/z=376.11(C24H21ClS=376.94)m/z=376.11 (C 24 H 21 ClS=376.94)
Sub 1-29Sub 1-29 m/z=303.05(C19H10ClNO=303.75)m/z=303.05 (C 19 H 10 ClNO=303.75) Sub 1-30Sub 1-30 m/z=446.09(C30H19ClS=446.99)m/z=446.09 (C 30 H 19 ClS=446.99)
Sub 1-31Sub 1-31 m/z=522.12(C36H23ClS=523.09)m/z=522.12 (C 36 H 23 ClS=523.09) Sub 1-32Sub 1-32 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-33Sub 1-33 m/z=444.13(C31H21ClO=444.96)m/z=444.13 (C 31 H 21 ClO=444.96) Sub 1-34Sub 1-34 m/z=426.12(C28H23ClS=427)m/z=426.12 (C 28 H 23 ClS=427)
Sub 1-35Sub 1-35 m/z=502.15(C34H27ClS=503.1)m/z=502.15 (C 34 H 27 ClS=503.1) Sub 1-36Sub 1-36 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-37Sub 1-37 m/z=410.14(C28H23ClO=410.94)m/z=410.14 (C 28 H 23 ClO=410.94) Sub 1-38Sub 1-38 m/z=430.11(C30H19ClO=430.93)m/z=430.11 (C 30 H 19 ClO=430.93)
Sub 1-39Sub 1-39 m/z=482.18(C32H31ClS=483.11)m/z=482.18 (C 32 H 31 ClS=483.11) Sub 1-40Sub 1-40 m/z=506.14(C36H23ClO=507.03)m/z=506.14 (C 36 H 23 ClO=507.03)
Sub 1-41Sub 1-41 m/z=370.06(C24H15ClS=370.89)m/z=370.06 (C 24 H 15 ClS=370.89) Sub 1-42Sub 1-42 m/z=406.15(C26H27ClS=407.01)m/z=406.15 (C 26 H 27 ClS=407.01)
Sub 1-43Sub 1-43 m/z=359.11(C24H10D5ClO=359.86)m/z=359.11 (C 24 H 10 D 5 ClO=359.86) Sub 1-44Sub 1-44 m/z=522.12(C36H23ClS=523.09)m/z=522.12 (C 36 H 23 ClS=523.09)
Sub 1-45Sub 1-45 m/z=446.09(C30H19ClS=446.99)m/z=446.09 (C 30 H 19 ClS=446.99) Sub 1-46Sub 1-46 m/z=365.15(C24H4D11ClO=365.9)m/z=365.15 (C 24 H 4 D 11 ClO=365.9)
Sub 1-47Sub 1-47 m/z=358.11(C24H11D4ClO=358.86)m/z=358.11 (C 24 H 11 D 4 ClO=358.86) Sub 1-48Sub 1-48 m/z=374.08(C24H11D4ClS=374.92)m/z=374.08 (C 24 H 11 D 4 ClS=374.92)
Sub 1-49Sub 1-49 m/z=289.12(C18D11ClO=289.8)m/z=289.12 (C 18 D 11 ClO=289.8) Sub 1-50Sub 1-50 m/z=381.13(C24H4D11ClS=381.96)m/z=381.13 (C 24 H 4 D 11 ClS=381.96)
Sub 1-51Sub 1-51 m/z=299.06(C18H6D5ClS=299.83)m/z=299.06 (C 18 H 6 D 5 ClS=299.83) Sub 1-52Sub 1-52 m/z=354.11(C22H15D4ClS=354.93)m/z=354.11 (C 22 H 15 D 4 ClS=354.93)
II. Sub 2의 합성II. Synthesis of Sub 2
상기 반응식 1의 Sub 2는 하기 반응식 3의 반응경로에 의해 합성되며, 이에 한정되는 것은 아니다. Sub 2 of Scheme 1 is synthesized by the reaction route of Scheme 3 below, but is not limited thereto.
<반응식 3><Scheme 3>
Figure PCTKR2022006010-appb-img-000068
Figure PCTKR2022006010-appb-img-000068
{상기 반응식 3에서,{In Scheme 3,
1) Hal은 I, Br 또는 Cl이며,1) Hal is I, Br or Cl;
2) R101은 상기 화학식 1의 Ar3의 정의와 동일하고,2) R 101 is the same as the definition of Ar 3 in Formula 1,
3) n은 0 내지 5의 정수이다.}3) n is an integer from 0 to 5.}
상기 Sub 2에 속하는 화합물은 하기와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 하기 표 2는 Sub 2에 속하는 화합물의 FD-MS (Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.The compound belonging to Sub 2 may be the following compounds, but is not limited thereto, and Table 2 below shows FD-MS (Field Desorption-Mass Spectrometry) values of the compounds belonging to Sub 2 .
Figure PCTKR2022006010-appb-img-000069
Figure PCTKR2022006010-appb-img-000069
Figure PCTKR2022006010-appb-img-000070
Figure PCTKR2022006010-appb-img-000070
Figure PCTKR2022006010-appb-img-000071
Figure PCTKR2022006010-appb-img-000071
Figure PCTKR2022006010-appb-img-000072
Figure PCTKR2022006010-appb-img-000072
Figure PCTKR2022006010-appb-img-000073
Figure PCTKR2022006010-appb-img-000073
Figure PCTKR2022006010-appb-img-000074
Figure PCTKR2022006010-appb-img-000074
Figure PCTKR2022006010-appb-img-000075
Figure PCTKR2022006010-appb-img-000075
Figure PCTKR2022006010-appb-img-000076
Figure PCTKR2022006010-appb-img-000076
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
Sub 2-1Sub 2-1 m/z=169.09(C12H11N=169.23)m/z=169.09 (C 12 H 11 N=169.23) Sub 2-2Sub 2-2 m/z=169.09(C12H11N=169.23)m/z=169.09 (C 12 H 11 N=169.23)
Sub 2-3Sub 2-3 m/z=93.06(C6H7N=93.13)m/z=93.06 (C 6 H 7 N=93.13) Sub 2-4Sub 2-4 m/z=169.09(C12H11N=169.23)m/z=169.09 (C 12 H 11 N=169.23)
Sub 2-5Sub 2-5 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-6Sub 2-6 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-7Sub 2-7 m/z=225.15(C16H19N=225.34)m/z=225.15 (C 16 H 19 N=225.34) Sub 2-8Sub 2-8 m/z=281.21(C20H27N=281.44)m/z=281.21 (C 20 H 27 N=281.44)
Sub 2-9Sub 2-9 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-10Sub 2-10 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42)
Sub 2-11Sub 2-11 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-12Sub 2-12 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-13Sub 2-13 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-14Sub 2-14 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-15Sub 2-15 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-16Sub 2-16 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-17Sub 2-17 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42) Sub 2-18Sub 2-18 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42)
Sub 2-19Sub 2-19 m/z=149.12(C10H15N=149.24)m/z=149.12 (C 10 H 15 N=149.24) Sub 2-20Sub 2-20 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-21Sub 2-21 m/z=183.1(C13H13N=183.25)m/z=183.1 (C 13 H 13 N=183.25) Sub 2-22Sub 2-22 m/z=281.21(C20H27N=281.44)m/z=281.21 (C 20 H 27 N=281.44)
Sub 2-23Sub 2-23 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42) Sub 2-24Sub 2-24 m/z=303.2(C22H25N=303.45)m/z=303.2 (C 22 H 25 N=303.45)
Sub 2-25Sub 2-25 m/z=265.15(C18H19NO=265.36)m/z=265.15 (C 18 H 19 NO=265.36) Sub 2-26Sub 2-26 m/z=187.08(C12H10FN=187.22)m/z=187.08 (C 12 H 10 FN=187.22)
Sub 2-27Sub 2-27 m/z=185.08(C12H11NO=185.23)m/z=185.08 (C 12 H 11 NO=185.23) Sub 2-28Sub 2-28 m/z=195.1(C14H13N=195.27)m/z=195.1 (C 14 H 13 N=195.27)
Sub 2-29Sub 2-29 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33) Sub 2-30Sub 2-30 m/z=174.12(C12H6D5N=174.26)m/z=174.12 (C 12 H 6 D 5 N=174.26)
Sub 2-31Sub 2-31 m/z=258.2(C18H2D13N=258.4)m/z=258.2 (C 18 H 2 D 13 N=258.4) Sub 2-32Sub 2-32 m/z=178.15(C12H2D9N=178.28)m/z=178.15 (C 12 H 2 D 9 N=178.28)
Sub 2-33Sub 2-33 m/z=233.2(C16H11D8N=233.38)m/z=233.2 (C 16 H 11 D 8 N=233.38) Sub 2-34Sub 2-34 m/z=245.12(C18H15N=245.33)m/z=245.12 (C 18 H 15 N=245.33)
Sub 2-35Sub 2-35 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42) Sub 2-36Sub 2-36 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42)
Sub 2-37Sub 2-37 m/z=225.15(C16H19N=225.34)m/z=225.15 (C 16 H 19 N=225.34) Sub 2-38Sub 2-38 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42)
Sub 2-39Sub 2-39 m/z=321.15(C24H19N=321.42)m/z=321.15 (C 24 H 19 N=321.42) Sub 2-40Sub 2-40 m/z=175.14(C12H17N=175.28)m/z=175.14 (C 12 H 17 N=175.28)
III. Final Product의 합성III. Synthesis of Final Product
1. P-1 합성예1. P-1 Synthesis Example
Figure PCTKR2022006010-appb-img-000077
Figure PCTKR2022006010-appb-img-000077
둥근바닥플라스크에 Sub 1-1 (10.0 g, 35.9 mmol)을 toluene (179 mL)으로 녹인 후에, Sub 2-1 (2.9 g, 17.9 mmol), Pd2(dba)3 (1.0 g, 1.1 mmol), P(t-Bu)3 (0.4 g, 2.2 mmol), NaOt-Bu (6.9 g, 71.8 mmol)을 넣고 120℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물을 17.7 g 얻었다. (수율 : 75.4%)After dissolving Sub 1-1 (10.0 g, 35.9 mmol) with toluene (179 mL) in a round-bottom flask, Sub 2-1 (2.9 g, 17.9 mmol), Pd 2 (dba) 3 (1.0 g, 1.1 mmol) , P( t -Bu) 3 (0.4 g, 2.2 mmol), and NaO t -Bu (6.9 g, 71.8 mmol) were added and stirred at 120°C. Upon completion of the reaction, the mixture was extracted with CH 2 Cl 2 and water, the organic layer was dried over MgSO 4 , concentrated, and the resulting compound was recrystallized by silicagel column to obtain 17.7 g of the product. (Yield: 75.4%)
2. P-5 합성예2. P-5 Synthesis Example
Figure PCTKR2022006010-appb-img-000078
Figure PCTKR2022006010-appb-img-000078
1) Intermediate-5의 합성1) Synthesis of Intermediate-5
둥근바닥플라스크에 Sub 1-1 (10.0 g, 35.9 mmol), Sub 2-1 (2.9 g, 17.9 mmol), Pd2(dba)3 (1.0 g, 1.1 mmol), P(t-Bu)3 (0.4 g, 2.2 mmol), NaOt-Bu (6.9 g, 71.8 mmol), toluene (179 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 8.4 g을 얻었다. (수율 : 56.8%)Sub 1-1 (10.0 g, 35.9 mmol), Sub 2-1 (2.9 g, 17.9 mmol), Pd 2 (dba) 3 (1.0 g, 1.1 mmol), P( t -Bu) 3 ( 0.4 g, 2.2 mmol), NaO t -Bu (6.9 g, 71.8 mmol), and toluene (179 mL) were tested in the same manner as in P-1 to obtain 8.4 g of the product. (Yield: 56.8%)
2) P-5의 합성2) Synthesis of P-5
둥근바닥플라스크에 상기 합성에서 얻어진 Intermediate-5 (8.4 g, 20.4 mmol)와 Sub 1-2 (7.0 g, 20.4 mmol), Pd2(dba)3 (0.6 g, 0.6 mmol), P(t-Bu)3 (0.3 g, 1.2 mmol), NaOt-Bu (3.9 g, 40.8 mmol), toluene (102 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 11.5 g을 얻었다. (수율 : 77.1%)In a round-bottom flask, Intermediate-5 (8.4 g, 20.4 mmol) obtained in the above synthesis, Sub 1-2 (7.0 g, 20.4 mmol), Pd 2 (dba) 3 (0.6 g, 0.6 mmol), P(t-Bu) ) 3 (0.3 g, 1.2 mmol), NaOt-Bu (3.9 g, 40.8 mmol), and toluene (102 mL) were tested in the same manner as in P-1 to obtain 11.5 g of the product. (Yield: 77.1%)
3. P-20 합성예3. P-20 Synthesis Example
Figure PCTKR2022006010-appb-img-000079
Figure PCTKR2022006010-appb-img-000079
둥근바닥플라스크에 Sub 1-1 (10.0 g, 35.9 mmol), Sub 2-14 (4.3 g, 17.9 mmol), Pd2(dba)3 (1.0 g, 1.1 mmol), P(t-Bu)3 (0.4 g, 2.2 mmol), NaOt-Bu (6.9 g, 71.8 mmol), toluene (179 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 19.2 g을 얻었다. (수율 : 73.5%)Sub 1-1 (10.0 g, 35.9 mmol), Sub 2-14 (4.3 g, 17.9 mmol), Pd 2 (dba) 3 (1.0 g, 1.1 mmol), P( t -Bu) 3 ( 0.4 g, 2.2 mmol), NaO t -Bu (6.9 g, 71.8 mmol), and toluene (179 mL) were tested in the same manner as in P-1 to obtain 19.2 g of the product. (Yield: 73.5%)
4. P-67 합성예4. P-67 Synthesis Example
Figure PCTKR2022006010-appb-img-000080
Figure PCTKR2022006010-appb-img-000080
1) Intermediate-67의 합성1) Synthesis of Intermediate-67
둥근바닥플라스크에 Sub 1-25 (10.0 g, 33.9 mmol), Sub 2-20 (8.0 g, 33.9 mmol), Pd2(dba)3 (0.9 g, 1.0 mmol), P(t-Bu)3 (0.4 g, 2.0 mmol), NaOt-Bu (6.5 g, 67.8 mmol), toluene (170 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 9.5 g을 얻었다. (수율 : 55.7%)Sub 1-25 (10.0 g, 33.9 mmol), Sub 2-20 (8.0 g, 33.9 mmol), Pd 2 (dba) 3 (0.9 g, 1.0 mmol), P( t -Bu) 3 ( 0.4 g, 2.0 mmol), NaO t -Bu (6.5 g, 67.8 mmol), and toluene (170 mL) were tested in the same manner as in P-1 to obtain 9.5 g of the product. (Yield: 55.7%)
2) P-67의 합성2) Synthesis of P-67
둥근바닥플라스크에 상기 합성에서 얻어진 Intermediate-67 (9.5 g, 18.9 mmol)과 Sub 1-30 (8.1 g, 18.9 mmol), Pd2(dba)3 (0.5 g, 0.6 mmol), P(t-Bu)3 (0.2 g, 1.1 mmol), NaOt-Bu (3.6 g, 37.7 mmol), toluene (94 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 12.4 g을 얻었다. (수율 : 72.1%)Intermediate-67 (9.5 g, 18.9 mmol) obtained in the above synthesis and Sub 1-30 (8.1 g, 18.9 mmol), Pd 2 (dba) 3 (0.5 g, 0.6 mmol), P(t-Bu) in a round-bottom flask ) 3 (0.2 g, 1.1 mmol), NaOt-Bu (3.6 g, 37.7 mmol), and toluene (94 mL) were tested in the same manner as in P-1 to obtain 12.4 g of the product. (Yield: 72.1%)
5. P-74 합성예5. P-74 Synthesis Example
Figure PCTKR2022006010-appb-img-000081
Figure PCTKR2022006010-appb-img-000081
1) Intermediate-74의 합성1) Synthesis of Intermediate-74
둥근바닥플라스크에 Sub 1-25 (10.0 g, 33.9 mmol), Sub 2-1 (2.8 g, 17.0 mmol), Pd2(dba)3 (0.9 g, 1.0 mmol), P(t-Bu)3 (0.4 g, 2.0 mmol), NaOt-Bu (6.5 g, 67.8 mmol), toluene (170 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 8.1 g을 얻었다. (수율 : 56.0%)Sub 1-25 (10.0 g, 33.9 mmol), Sub 2-1 (2.8 g, 17.0 mmol), Pd 2 (dba) 3 (0.9 g, 1.0 mmol), P( t -Bu) 3 ( 0.4 g, 2.0 mmol), NaO t -Bu (6.5 g, 67.8 mmol), and toluene (170 mL) were tested in the same manner as in P-1 to obtain 8.1 g of the product. (Yield: 56.0%)
2) P-74의 합성2) Synthesis of P-74
둥근바닥플라스크에 상기 합성에서 얻어진 Intermediate-74 (8.1 g, 18.9 mmol)와 Sub 1-38 (7.9 g, 18.9 mmol), Pd2(dba)3 (0.5 g, 0.6 mmol), P(t-Bu)3 (0.2 g, 1.1 mmol), NaOt-Bu (3.6 g, 37.9 mmol), toluene (95 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 11.4 g을 얻었다. (수율 : 72.9%)Intermediate-74 (8.1 g, 18.9 mmol) obtained in the above synthesis and Sub 1-38 (7.9 g, 18.9 mmol), Pd 2 (dba) 3 (0.5 g, 0.6 mmol), P(t-Bu) in a round-bottom flask ) 3 (0.2 g, 1.1 mmol), NaOt-Bu (3.6 g, 37.9 mmol), and toluene (95 mL) were tested in the same manner as in P-1 to obtain 11.4 g of the product. (Yield: 72.9%)
6. P-86 합성예6. P-86 Synthesis Example
Figure PCTKR2022006010-appb-img-000082
Figure PCTKR2022006010-appb-img-000082
둥근바닥플라스크에 Sub 1-49 (10.0 g, 28.0 mmol), Sub 2-32 (2.4 g, 14.0 mmol), Pd2(dba)3 (0.8 g, 0.8 mmol), P(t-Bu)3 (0.3 g, 1.7 mmol), NaOt-Bu (5.4 g, 55.9 mmol), toluene (140 mL)을 상기 P-1과 동일한 방법으로 실험하여 생성물 14.4 g을 얻었다. (수율 : 75.4%)Sub 1-49 (10.0 g, 28.0 mmol), Sub 2-32 (2.4 g, 14.0 mmol), Pd 2 (dba) 3 (0.8 g, 0.8 mmol), P( t -Bu) 3 ( 0.3 g, 1.7 mmol), NaO t -Bu (5.4 g, 55.9 mmol), and toluene (140 mL) were tested in the same manner as in P-1 to obtain 14.4 g of the product. (Yield: 75.4%)
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P-1 내지 P-90의 FD-MS 값은 하기 표 3과 같다.Meanwhile, FD-MS values of compounds P-1 to P-90 of the present invention prepared according to the above synthesis examples are shown in Table 3 below.
화합물compound FD-MSFD-MS 화합물compound FD-MSFD-MS
P-1P-1 m/z=653.24(C48H31NO2=653.78)m/z=653.24 (C 48 H 31 NO 2 =653.78) P-2P-2 m/z=653.24(C48H31NO2=653.78)m/z=653.24 (C 48 H 31 NO 2 =653.78)
P-3P-3 m/z=577.2(C42H27NO2=577.68)m/z=577.2 (C 42 H 27 NO 2 =577.68) P-4P-4 m/z=653.24(C48H31NO2=653.78)m/z=653.24 (C 48 H 31 NO 2 =653.78)
P-5P-5 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-6P-6 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-7P-7 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98) P-8P-8 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-9P-9 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-10P-10 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-11P-11 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98) P-12P-12 m/z=709.3(C52H39NO2=709.89)m/z=709.3 (C 52 H 39 NO 2 =709.89)
P-13P-13 m/z=765.36(C56H47NO2=766)m/z=765.36 (C 56 H 47 NO 2 =766) P-14P-14 m/z=709.3(C52H39NO2=709.89)m/z=709.3 (C 52 H 39 NO 2 =709.89)
P-15P-15 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-16P-16 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-17P-17 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-18P-18 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-19P-19 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-20P-20 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-21P-21 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-22P-22 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-23P-23 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98) P-24P-24 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-25P-25 m/z=709.3(C52H39NO2=709.89)m/z=709.3 (C 52 H 39 NO 2 =709.89) P-26P-26 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-27P-27 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98) P-28P-28 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-29P-29 m/z=819.31(C61H41NO2=820)m/z=819.31 (C 61 H 41 NO 2 =820) P-30P-30 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-31P-31 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98) P-32P-32 m/z=833.33(C62H43NO2=834.03)m/z=833.33 (C 62 H 43 NO 2 =834.03)
P-33P-33 m/z=881.33(C66H43NO2=882.08)m/z=881.33 (C 66 H 43 NO 2 =882.08) P-34P-34 m/z=881.33(C66H43NO2=882.08)m/z=881.33 (C 66 H 43 NO 2 =882.08)
P-35P-35 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88) P-36P-36 m/z=729.27(C54H35NO2=729.88)m/z=729.27 (C 54 H 35 NO 2 =729.88)
P-37P-37 m/z=709.3(C52H39NO2=709.89)m/z=709.3 (C 52 H 39 NO 2 =709.89) P-38P-38 m/z=897.45(C66H59NO2=898.2)m/z=897.45 (C 66 H 59 NO 2 =898.2)
P-39P-39 m/z=957.36(C72H47NO2=958.17)m/z=957.36 (C 72 H 47 NO 2 =958.17) P-40P-40 m/z=805.3(C60H39NO2=805.98)m/z=805.3 (C 60 H 39 NO 2 =805.98)
P-41P-41 m/z=669.21(C48H31NOS=669.84)m/z=669.21 (C 48 H 31 NOS=669.84) P-42P-42 m/z=685.19(C48H31NS2=685.9)m/z=685.19 (C 48 H 31 NS 2 =685.9)
P-43P-43 m/z=593.18(C42H27NOS=593.74)m/z=593.18 (C 42 H 27 NOS=593.74) P-44P-44 m/z=669.21(C48H31NOS=669.84)m/z=669.21 (C 48 H 31 NOS=669.84)
P-45P-45 m/z=761.22(C54H35NS2=762)m/z=761.22 (C 54 H 35 NS 2 =762) P-46P-46 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04)
P-47P-47 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04) P-48P-48 m/z=837.25(C60H39NS2=838.1)m/z=837.25 (C 60 H 39 NS 2 =838.1)
P-49P-49 m/z=761.22(C54H35NS2=762)m/z=761.22 (C 54 H 35 NS 2 =762) P-50P-50 m/z=745.24(C54H35NOS=745.94)m/z=745.24 (C 54 H 35 NOS=745.94)
P-51P-51 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04) P-52P-52 m/z=725.28(C52H39NOS=725.95)m/z=725.28 (C 52 H 39 NOS=725.95)
P-53P-53 m/z=933.4(C68H55NOS=934.25)m/z=933.4 (C 68 H 55 NOS=934.25) P-54P-54 m/z=893.31(C64H47NS2=894.21)m/z=893.31 (C 64 H 47 NS 2 =894.21)
P-55P-55 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04) P-56P-56 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04)
P-57P-57 m/z=837.25(C60H39NS2=838.1)m/z=837.25 (C 60 H 39 NS 2 =838.1) P-58P-58 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04)
P-59P-59 m/z=819.3(C58H45NS2=820.13)m/z=819.3 (C 58 H 45 NS 2 =820.13) P-60P-60 m/z=781.25(C54H39NOS2=782.03)m/z=781.25 (C 54 H 39 NOS 2 =782.03)
P-61P-61 m/z=703.18(C48H30FNS2=703.89)m/z=703.18 (C 48 H 30 FNS 2 =703.89) P-62P-62 m/z=685.21(C48H31NO2S=685.84)m/z=685.21 (C 48 H 31 NO 2 S=685.84)
P-63P-63 m/z=695.23(C50H33NOS=695.88)m/z=695.23 (C 50 H 33 NOS=695.88) P-64P-64 m/z=779.21(C54H34FNS2=779.99)m/z=779.21 (C 54 H 34 FNS 2 =779.99)
P-65P-65 m/z=731.32(C52H45NOS=732)m/z=731.32 (C 52 H 45 NOS=732) P-66P-66 m/z=694.21(C49H30N2OS=694.85)m/z=694.21 (C 49 H 30 N 2 OS=694.85)
P-67P-67 m/z=913.28(C66H43NS2=914.2)m/z=913.28 (C 66 H 43 NS 2 =914.2) P-68P-68 m/z=913.28(C66H43NS2=914.2)m/z=913.28 (C 66 H 43 NS 2 =914.2)
P-69P-69 m/z=835.29(C61H41NOS=836.07)m/z=835.29 (C 61 H 41 NOS=836.07) P-70P-70 m/z=743.28(C55H37NO2=743.91)m/z=743.28 (C 55 H 37 NO 2 =743.91)
P-71P-71 m/z=801.31(C58H43NOS=802.05)m/z=801.31 (C 58 H 43 NOS=802.05) P-72P-72 m/z=933.4(C68H55NOS=934.25)m/z=933.4 (C 68 H 55 NOS=934.25)
P-73P-73 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04) P-74P-74 m/z=821.28(C60H39NOS=822.04)m/z=821.28 (C 60 H 39 NOS=822.04)
P-75P-75 m/z=797.31(C56H47NS2=798.12)m/z=797.31 (C 56 H 47 NS 2 =798.12) P-76P-76 m/z=897.31(C66H43NOS=898.14)m/z=897.31 (C 66 H 43 NOS=898.14)
P-77P-77 m/z=801.31(C58H43NOS=802.05)m/z=801.31 (C 58 H 43 NOS=802.05) P-78P-78 m/z=833.41(C58H59NS2=834.24)m/z=833.41 (C 58 H 59 NS 2 =834.24)
P-79P-79 m/z=989.31(C72H47NS2=990.3)m/z=989.31 (C 72 H 47 NS 2 =990.3) P-80P-80 m/z=837.25(C60H39NS2=838.1)m/z=837.25 (C 60 H 39 NS 2 =838.1)
P-81P-81 m/z=734.3(C54H30D5NO2=734.91)m/z=734.3 (C 54 H 30 D 5 NO 2 =734.91) P-82P-82 m/z=816.37(C60H28D11NO2=817.04)m/z=816.37 (C 60 H 28 D 11 NO 2 =817.04)
P-83P-83 m/z=826.31(C60H34D5NOS=827.07)m/z=826.31 (C 60 H 34 D 5 NOS=827.07) P-84P-84 m/z=829.33(C60H31D8NOS=830.09)m/z=829.33 (C 60 H 31 D 8 NOS=830.09)
P-85P-85 m/z=742.35(C54H22D13NO2=742.96)m/z=742.35 (C 54 H 22 D 13 NO 2 =742.96) P-86P-86 m/z=684.43(C48D31NO2=684.97)m/z=684.43 (C 48 D 31 NO 2 =684.97)
P-87P-87 m/z=848.32(C60H28D11NS2=849.17)m/z=848.32 (C 60 H 28 D 11 NS 2 =849.17) P-88P-88 m/z=749.3(C52H31D8NS2=750.06)m/z=749.3 (C 52 H 31 D 8 NS 2 =750.06)
P-89P-89 m/z=786.37(C56H42D5NOS=787.09)m/z=786.37 (C 56 H 42 D 5 NOS=787.09) P-90P-90 m/z=734.33(C52H30D9NOS=735)m/z=734.33 (C 52 H 30 D 9 NOS=735)
유기전기소자의 제조평가Manufacturing evaluation of organic electric devices
[실시예 1] 녹색유기전기발광소자(발광보조층)[Example 1] Green organic electroluminescent device (light emitting auxiliary layer)
유리 기판에 형성된 ITO층(양극)위에 위에 4,4',4"-tris[2-naphthyl(phenyl)amino]triphenylamine (이하, 2-TNATA로 약기함)을 진공증착하여 60 nm 두께의 정공주입층을 형성한 후, 상기 정공주입층 상에 N,N'-bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (이하, NPB로 약기함)를 60 nm 두께로 진공증착하여 정공수송층을 형성하였다.On the ITO layer (anode) formed on the glass substrate, 4,4',4"-tris[2-naphthyl(phenyl)amino]triphenylamine (hereinafter abbreviated as 2-TNATA) was vacuum-deposited on it, and a 60 nm-thick hole was injected. After forming the layer, N,N'-bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (hereinafter , abbreviated as NPB) was vacuum-deposited to a thickness of 60 nm to form a hole transport layer.
이어서, 상기 정공수송층 상에 본 발명의 화합물 P-1을 20 nm의 두께로 진공증착하여 발광보조층을 형성한 후, 호스트 재료로 4,4'-N,N'-dicarbazole-biphenyl (이하, CBP로 약기함)을, 도판트 재료로 tris(2-phenylpyridine)-iridium (이하, Ir(ppy)3로 약기함)을 사용하되 95:5 중량으로 도펀트를 도핑하여 30 nm 두께의 발광층을 형성하였다.Then, the compound P-1 of the present invention was vacuum-deposited on the hole transport layer to a thickness of 20 nm to form a light emitting auxiliary layer, and then, as a host material, 4,4'-N,N'-dicarbazole-biphenyl (hereinafter, CBP), tris(2-phenylpyridine)-iridium (hereinafter, abbreviated as Ir(ppy) 3 ) is used as a dopant material, but a dopant is doped at a weight of 95:5 to form a light emitting layer with a thickness of 30 nm did.
다음으로, 상기 발광층 상에 (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum (이하, BAlq로 약기함)을 진공증착하여 10 nm 두께의 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄(이하, Alq3로 약기함)을 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 전자수송층 상에 LiF를 증착하여 0.2 nm 두께의 전자주입층을 형성하고, 이어서 Al을 증착하여 150 nm의 두께의 음극을 형성하였다.Next, (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum (hereinafter abbreviated as BAlq) was vacuum-deposited on the light emitting layer to form a hole blocking layer with a thickness of 10 nm. was formed, and tris(8-quinolinol)aluminum (hereinafter, abbreviated as Alq 3 ) was vacuum-deposited to a thickness of 40 nm on the hole blocking layer to form an electron transport layer. Thereafter, LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.2 nm, and then Al was deposited to form a cathode having a thickness of 150 nm.
[실시예 2] 내지 [실시예 15][Example 2] to [Example 15]
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 표 4에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of the present invention described in Table 4 was used instead of the compound P-1 of the present invention as a light emitting auxiliary layer material.
[비교예 1] 내지 [비교예 6][Comparative Example 1] to [Comparative Example 6]
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 A 내지 비교화합물 F를 사용한 점을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the following comparative compounds A to F were used instead of the compound P-1 of the present invention as a light emitting auxiliary layer material.
[비교화합물 A] [비교화합물 B] [비교화합물 C] [Comparative compound A] [Comparative compound B] [Comparative compound C]
Figure PCTKR2022006010-appb-img-000083
Figure PCTKR2022006010-appb-img-000083
[비교화합물 D] [비교화합물 E] [비교화합물 F] [Comparative compound D] [Comparative compound E] [Comparative compound F]
Figure PCTKR2022006010-appb-img-000084
Figure PCTKR2022006010-appb-img-000084
본 발명의 실시예 1 내지 실시예 15, 비교예 1 내지 비교예 6에 의해 제조된 유기전기발광소자에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000 cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표 4는 소자제작 및 평가한 결과를 나타낸다.By applying a forward bias DC voltage to the organic electroluminescent devices manufactured by Examples 1 to 15 and Comparative Examples 1 to 6 of the present invention, the electroluminescence (EL) characteristics were obtained with PR-650 of photoresearch. was measured, and as a result of the measurement, the T95 lifetime was measured using a lifetime measuring device manufactured by McScience at 5000 cd/m 2 standard luminance. Table 4 below shows the device fabrication and evaluation results.
화합물compound 구동전압drive voltage 전류(mA/cm2)Current (mA/cm 2 ) 휘도(cd/m2)Luminance (cd/m 2 ) 효율(cd/A)Efficiency (cd/A) T(95)T(95)
비교예(1)Comparative Example (1) 비교화합물 AComparative compound A 6.1 6.1 13.9 13.9 5000.0 5000.0 36.1 36.1 100.9 100.9
비교예(2)Comparative Example (2) 비교화합물 BComparative compound B 5.8 5.8 13.6 13.6 5000.0 5000.0 36.7 36.7 102.2 102.2
비교예(3)Comparative Example (3) 비교화합물 CComparative compound C 6.1 6.1 13.5 13.5 5000.0 5000.0 37.0 37.0 103.6 103.6
비교예(4)Comparative Example (4) 비교화합물 DComparative compound D 5.9 5.9 12.9 12.9 5000.0 5000.0 38.8 38.8 101.3 101.3
비교예(5)Comparative Example (5) 비교화합물 EComparative compound E 5.7 5.7 12.9 12.9 5000.0 5000.0 37.9 37.9 104.5 104.5
비교예(6)Comparative Example (6) 비교화합물 FComparative compound F 5.8 5.8 13.2 13.2 5000.0 5000.0 35.4 35.4 105.7 105.7
실시예(1)Example (1) P-1P-1 4.9 4.9 9.9 9.9 5000.0 5000.0 50.5 50.5 131.9 131.9
실시예(2)Example (2) P-2P-2 5.0 5.0 10.3 10.3 5000.0 5000.0 48.6 48.6 130.3 130.3
실시예(3)Example (3) P-3P-3 4.9 4.9 9.9 9.9 5000.0 5000.0 50.7 50.7 130.8 130.8
실시예(4)Example (4) P-4P-4 4.9 4.9 9.8 9.8 5000.0 5000.0 51.2 51.2 131.1 131.1
실시예(5)Example (5) P-5P-5 5.0 5.0 10.0 10.0 5000.0 5000.0 49.8 49.8 131.4 131.4
실시예(6)Example (6) P-6P-6 5.3 5.3 11.1 11.1 5000.0 5000.0 44.9 44.9 132.3 132.3
실시예(7)Example (7) P-14P-14 5.1 5.1 10.4 10.4 5000.0 5000.0 48.1 48.1 125.3 125.3
실시예(8)Example (8) P-25P-25 5.1 5.1 10.5 10.5 5000.0 5000.0 47.8 47.8 127.5 127.5
실시예(9)Example (9) P-41P-41 5.3 5.3 9.9 9.9 5000.0 5000.0 50.6 50.6 128.1 128.1
실시예(10)Example (10) P-52P-52 5.2 5.2 10.9 10.9 5000.0 5000.0 46.0 46.0 123.9 123.9
실시예(11)Example (11) P-56P-56 5.3 5.3 11.2 11.2 5000.0 5000.0 44.5 44.5 125.4 125.4
실시예(12)Example (12) P-59P-59 5.3 5.3 11.4 11.4 5000.0 5000.0 43.8 43.8 122.5 122.5
실시예(13)Example (13) P-74P-74 5.2 5.2 10.8 10.8 5000.0 5000.0 46.3 46.3 128.6 128.6
실시예(14)Example (14) P-80P-80 5.3 5.3 11.1 11.1 5000.0 5000.0 45.0 45.0 129.8 129.8
실시예(15)Example (15) P-86P-86 5.0 5.0 9.8 9.8 5000.0 5000.0 50.8 50.8 132.0 132.0
상기 표 4의 결과로부터 알 수 있듯이, 본 발명의 유기전기발광소자용 재료를 발광보조층 재료로 사용하여 녹색유기전기발광소자를 제작한 경우, 본 발명의 화합물과 기본 골격이 유사한 비교화합물 A 내지 비교화합물 F를 사용한 비교예보다 유기전기발광소자의 구동전압, 발광 효율 및 수명을 개선시킬 수 있다.다시 말해, 비교화합물 A 내지 비교화합물 F를 사용하여 발광보조층을 사용한 비교예 1 내지 비교예 6의 경우보다 본 발명의 화합물을 발광보조층 재료로 사용한 경우, 유기전기 발광소자의 구동전압이 낮아지고, 발광효율 및 특히 수명이 현저히 향상되었다.As can be seen from the results of Table 4, when a green organic light emitting device is manufactured using the material for an organic electroluminescent device of the present invention as a light emitting auxiliary layer material, Comparative Compounds A to having a similar basic skeleton to the compound of the present invention The driving voltage, luminous efficiency, and lifetime of the organic electroluminescent device can be improved compared to Comparative Examples using Comparative Compound F. In other words, Comparative Examples 1 to Comparative Examples using the light emitting auxiliary layer using Comparative Compounds A to F. When the compound of the present invention was used as a light emitting auxiliary layer material than in case 6, the driving voltage of the organic electroluminescent device was lowered, and the luminous efficiency and especially the lifespan were significantly improved.
비교화합물 A 내지 비교화합물 F는 3차 아민 화합물에서 다이벤조퓨란이 치환되어 있다는 점에서 본 발명의 화합물과 동일하지만, 다이벤조퓨란 또는 다이벤조싸이오펜의 8번 위치에 적어도 하나의 치환기를 가지며, 동시에 다이벤조퓨란 또는 다이벤조싸이오펜의 1번 위치에 아민기가 결합하는 기가 반드시 2개가 존재하는 3차 아민 화합물이라는 점에서 본 발명의 화합물과 상이하다.Comparative compounds A to F are the same as the compounds of the present invention in that dibenzofuran is substituted in the tertiary amine compound, but have at least one substituent at the 8th position of dibenzofuran or dibenzothiophene, At the same time, it is different from the compound of the present invention in that it is a tertiary amine compound in which two groups having an amine group bonded to the 1-position of dibenzofuran or dibenzothiophene are necessarily present.
하기 표 5는 화합물 구조가 유사한 본 발명의 화합물과 비교화합물 A 내지 비교화합물 E의 비결정질 고체상 분자의 양자역학적 평균 결합해리에너지
Figure PCTKR2022006010-appb-img-000085
(이하, Avg. BDE, 단위: eV), 비결정질 고체상 분자 구조의 체적 밀도(이하, Bulk Density, 단위: g/cm3) 및 방사 분포 함수 값(Radial Distribution Function, 이하 RDF, 단위: Å)을 분자 시뮬레이션(Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161)을 이용하여 측정한 데이터이다.
Table 5 below shows the quantum mechanical average dissociation energies of the amorphous solid phase molecules of the compounds of the present invention and comparative compounds A to E having similar compound structures.
Figure PCTKR2022006010-appb-img-000085
(hereinafter, Avg. BDE, unit: eV), the volume density of the amorphous solid-state molecular structure (hereinafter, Bulk Density, unit: g/cm 3 ) and the value of the radial distribution function (RDF, unit: Å) Data measured using molecular simulation (Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161).
도 5는 주기 반복 경계 조건(Periodic Boundary Condition, PBC)을 가진 단위 정(Unit cell) 내의 분자 일부를 추출하고 각 분자의 결합해리에너지를 계산한 값이며, 하기 표 5에서는 얻어낸 모든 결합해리에너지 값을 취하여 결합해리에너지 집합 G={E1 … EN}을 구성 후, 결합해리에너지 집합의 평균값
Figure PCTKR2022006010-appb-img-000086
을 고체 상태의 결합해리에너지 지표로 사용하였다.
5 is a value obtained by extracting a part of a molecule in a unit cell having a periodic boundary condition (PBC) and calculating the bond dissociation energy of each molecule. The set of bond dissociation energies G = {E 1 … After constructing E N }, the average value of the set of bond dissociation energies
Figure PCTKR2022006010-appb-img-000086
was used as an indicator of the bond dissociation energy of the solid state.
Avg. BDE (eV)Avg. BDE (eV) Bulk Density (g/cm3)Bulk Density (g/cm 3 ) RDF (Å)RDF (Å)
P-1P-1 3.670043.67004 1.1521.152 9.99.9
P-2P-2 3.659073.65907 1.1461.146 10.0710.07
P-3P-3 3.735613.73561 1.1531.153 9.539.53
P-4P-4 3.756423.75642 1.1511.151 9.039.03
P-5P-5 3.729873.72987 1.1491.149 9.959.95
비교화합물 AComparative compound A 3.478463.47846 1.1091.109 10.7210.72
비교화합물 BComparative compound B 3.512613.51261 1.1221.122 10.6310.63
비교화합물 CComparative compound C 3.502283.50228 1.1091.109 10.4710.47
비교화합물 DComparative compound D 3.615243.61524 1.1211.121 10.1610.16
비교화합물 EComparative compound E 3.606793.60679 1.1421.142 10.1910.19
상기 표 5로부터, 비교화합물 A 내지 비교화합물 E보다 본 발명의 화합물 P-1 내지 P-5에서 비결정질 고체상 분자의 양자역학적 평균 결합 해리에너지 값이 상회하는 것을 확인할 수 있다. 유기전기소자에서는 박막의 결정화도가 낮을수록 비결정질 상태를 만들 수 있으며, 이러한 비결정질 상태는 등방성(isotropic)과 균등질(homogeneous) 특성을 통해서 결정립의 경계(Grain Boundary)를 줄이고 전하와 정공의 이동도가 빨라지게 될 수 있다. 그러나 분자의 구조에 따라 동일한 비결정질 상태라고 하더라도 비결정질 상태의 고체상 분자의 양자역학적 평균 결합 해리에너지는 고체상일 때의 분자간 상호작용에 의해 차이가 날 수 있으며, 높은 값을 가질수록 화합물 자체의 안정성이 증가한다. 따라서 본 발명의 화합물을 유기전기소자의 발광보조층으로 사용할 경우, 본 발명의 화합물과 기본 골격이 유사한 비교화합물 A 내지 비교화합물 E를 사용한 비교예보다 발광층에서 넘어오는 전자에 대한 안정성이 현저하게 증가하여 소자의 수명을 극대화 시켜준 것으로 판단된다.또한, 비교화합물 A 내지 비교화합물 E보다 본 발명의 화합물 P-1 내지 P-5에서 비결정질 고체상 분자 구조의 체적 밀도 값이 높게 형성되어 있고, 방사 분포 함수 값이 낮게 형성되어 있는 것을 상기 표 5로부터 확인할 수 있다. 이는 비교화합물들보다 본 발명의 화합물이 비결정질 고체상 상태일 때 분자간 거리가 더욱 가깝고 이에 전하의 이동이 상대적으로 빨라지게 되므로 소자 전체의 전하 균형(Charge balance)이 향상되어 소자의 효율 및 구동이 현저하게 개선된 것으로 판단된다.From Table 5, it can be seen that the quantum mechanical average bond dissociation energy value of the amorphous solid phase molecules in the compounds P-1 to P-5 of the present invention is higher than that of the comparative compounds A to E. In an organic electric device, the lower the crystallinity of the thin film, the more an amorphous state can be created. can be faster However, depending on the structure of the molecule, even in the same amorphous state, the quantum mechanical average bond dissociation energy of a solid-state molecule in the amorphous state may be different due to intermolecular interactions in the solid-state, and the higher the value, the higher the stability of the compound itself. do. Therefore, when the compound of the present invention is used as a light emitting auxiliary layer of an organic electric device, the stability of electrons passing through the light emitting layer is significantly increased compared to Comparative Examples using Comparative Compounds A to E having similar basic skeletons to the compound of the present invention. Thus, it is judged that the lifetime of the device is maximized. In addition, the volume density value of the amorphous solid molecular structure of the compounds P-1 to P-5 of the present invention is higher than that of the comparative compounds A to E, and the radial distribution It can be seen from Table 5 that the function value is formed low. This is because when the compound of the present invention is in the amorphous solid state than the comparative compounds, the intermolecular distance is closer and the charge transfer is relatively quick. considered to be improved.
이러한 결과는 비교화합물 A 내지 비교화합물 F와 본 발명의 화합물 같이 분자가 구성되는 기본골격이 치환기의 치환 위치 및 분자의 구성에 따라 Hole 특성, 광효율 특성, 에너지 레벨, 정공 주입 및 이동도 특성, 정공과 전자의 Charge balance, 체적 밀도 및 분자간 거리 등과 같은 화합물의 특성이 달라질 수 있으며, 그 결과 소자의 특성도 달라질 수 있음을 시사하고 있다.These results show that the basic skeleton of the molecule, such as Comparative Compound A to Comparative Compound F and the compound of the present invention, has Hole characteristics, light efficiency characteristics, energy levels, hole injection and mobility characteristics, hole This suggests that the properties of the compound such as charge balance of electrons and electrons, bulk density, and intermolecular distance may vary, and as a result, the properties of the device may also vary.
발광보조층의 경우에는 정공수송층과 발광층(호스트)과의 상호관계를 파악해야 하는 바, 유사한 코어를 사용하더라도 본 발명의 화합물이 사용된 발광보조층에서 나타내는 특징을 유추하는 것은 통상의 기술자라 하더라도 매우 어려울 것이다.In the case of the light-emitting auxiliary layer, it is necessary to understand the correlation between the hole transport layer and the light-emitting layer (host). It will be very difficult.
아울러, 전술한 소자 제작의 평가 결과에서는 본 발명의 화합물을 발광보조층에만 적용한 소자 특성을 설명하였으나, 본 발명의 화합물을 정공수송층에 적용하거나 정공수송층과 발광보조층 모두 적용하여 사용될 수 있다.In addition, in the evaluation results of the above-described device fabrication, the device characteristics in which the compound of the present invention is applied only to the light emitting auxiliary layer has been described, but the compound of the present invention may be applied to the hole transport layer or both the hole transport layer and the light emission auxiliary layer may be applied.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the present invention, and those of ordinary skill in the art to which the present invention pertains will be able to make various modifications without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed herein are for illustrative purposes rather than limiting the present invention, and the spirit and scope of the present invention are not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all descriptions within an equivalent scope should be construed as being included in the scope of the present invention.
본 발명에 따르면, 고휘도, 고발광 및 장수명의 우수한 소자특성을 갖는 유기소자를 제조할 수 있어 산업상 이용가능성이 있다.According to the present invention, it is possible to manufacture an organic device having excellent device characteristics of high luminance, high luminescence and long life, and thus has industrial applicability.

Claims (18)

  1. 하기 화학식 1로 표시되는 화합물A compound represented by the following formula (1)
    화학식 1 Formula 1
    Figure PCTKR2022006010-appb-img-000087
    Figure PCTKR2022006010-appb-img-000087
    {상기 화학식 1에서,{In Formula 1,
    1) X1 및 X2는 서로 독립적으로 O 또는 S이며,1) X 1 and X 2 are each independently O or S,
    2) Ar1, Ar2 및 Ar3은 서로 독립적으로 C6~C60의 아릴기이고,2) Ar 1 , Ar 2 and Ar 3 are each independently a C 6 ~ C 60 aryl group,
    3) L1 및 L2는 서로 독립적으로 단일결합 또는 C6~C60의 아릴렌기이며,3) L 1 and L 2 are each independently a single bond or a C 6 ~ C 60 arylene group,
    4) 여기서, 상기 아릴기 및 아릴렌기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C6~C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C20의 헤테로알킬기; C1~C20의 헤테로알켄일기; C1~C20의 헤테로알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}4) wherein the aryl group and the arylene group are each deuterium; halogen; silane group; siloxane group; boron group; germanium group; cyano group; nitro group; C 1 ~ C 20 Alkylthio group; C 1 ~ C 20 Alkoxy group; C 6 ~ C 20 Aryloxy group; C 1 ~ C 20 Alkyl group; C 2 ~ C 20 Alkenyl group; C 2 ~ C 20 alkynyl group; C 1 ~ C 20 A heteroalkyl group; C 1 ~ C 20 Heteroalkenyl group; C 1 ~ C 20 Heteroalkynyl group; C 6 ~ C 20 Aryl group; C 6 ~ C 20 Aryl group substituted with deuterium; fluorenyl group; C 2 ~ C 20 A heterocyclic group; C 3 ~ C 20 Cycloalkyl group; C 7 ~ C 20 Arylalkyl group; And C 8 ~ C 20 Aryl alkenyl group; may be further substituted with one or more substituents selected from the group consisting of, and these substituents may be combined with each other to form a ring, where 'ring' means C 3 ~ C 60 of an aliphatic ring or C 6 ~ C 60 aromatic ring or C 2 ~ C 60 heterocyclic ring or a fused ring consisting of a combination thereof, including saturated or unsaturated rings.}
  2. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 비결정질 고체상 분자의 양자역학적 평균 결합해리에너지
    Figure PCTKR2022006010-appb-img-000088
    가 3.650 eV 이상인 것을 특징으로 하는 화합물
    According to claim 1, wherein the compound represented by Formula 1 is the quantum mechanical average dissociation energy of the amorphous solid-state molecule
    Figure PCTKR2022006010-appb-img-000088
    A compound characterized in that 3.650 eV or more
  3. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 비결정질 고체상 분자 구조의 체적 밀도가 1.110 g/cm3 이상인 것을 특징으로 하는 화합물The compound according to claim 1, wherein the compound represented by Formula 1 has a volume density of 1.110 g/cm 3 or more of the amorphous solid molecular structure.
  4. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물의 방사 분포 함수 값이 11.0 Å 미만인 것을 특징으로 하는 화합물The compound according to claim 1, wherein the value of the radial distribution function of the compound represented by Formula 1 is less than 11.0 Å.
  5. 제1항에 있어서, 상기 화학식 1로 나타낸 화합물이 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein the compound represented by Formula 1 is represented by any one of the following Formulas 1-1 to 1-3.
    화학식 1-1 화학식 1-2 Formula 1-1 Formula 1-2
    Figure PCTKR2022006010-appb-img-000089
    Figure PCTKR2022006010-appb-img-000089
    화학식 1-3 Formula 1-3
    Figure PCTKR2022006010-appb-img-000090
    Figure PCTKR2022006010-appb-img-000090
    {상기 화학식 1-1 내지 화학식 1-3에서, Ar1, Ar2, Ar3, L1 및 L2는 상기 청구항 1에서 정의된 바와 동일하다.}{In Formulas 1-1 to 1-3, Ar 1 , Ar 2 , Ar 3 , L 1 and L 2 are the same as defined in claim 1 above.}
  6. 제1항에 있어서, 상기 Ar1 내지 Ar3 중 적어도 하나가 하기 화학식 Ar-1 내지 화학식 Ar-13 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein at least one of Ar 1 to Ar 3 is represented by any one of the following Chemical Formulas Ar-1 to Ar-13.
    화학식 Ar-1 화학식 Ar-2 화학식 Ar-3 화학식 Ar-4Formula Ar-1 Formula Ar-2 Formula Ar-3 Formula Ar-4
    Figure PCTKR2022006010-appb-img-000091
    Figure PCTKR2022006010-appb-img-000091
    화학식 Ar-5 화학식 Ar-6 화학식 Ar-7 Formula Ar-5 Formula Ar-6 Formula Ar-7
    Figure PCTKR2022006010-appb-img-000092
    Figure PCTKR2022006010-appb-img-000092
    화학식 Ar-8 화학식 Ar-9 화학식 Ar-10 Formula Ar-8 Formula Ar-9 Formula Ar-10
    Figure PCTKR2022006010-appb-img-000093
    Figure PCTKR2022006010-appb-img-000093
    화학식 Ar-11 화학식 Ar-12 화학식 Ar-13 Formula Ar-11 Formula Ar-12 Formula Ar-13
    Figure PCTKR2022006010-appb-img-000094
    Figure PCTKR2022006010-appb-img-000094
    {상기 화학식 Ar-1 내지 화학식 Ar-13에서,{In the formulas Ar-1 to Ar-13,
    1) R1, R2 및 R3은 각각 동일하거나 상이하며, 서로 독립적으로 수소; 중수소, 할로겐; 시아노기; 니트로기; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C3~C20의 시클로알킬기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며,1) R 1 , R 2 , and R 3 are the same or different from each other, and each independently hydrogen; deuterium, halogen; cyano group; nitro group; C 6 ~ C 60 Aryl group; fluorenyl group; O, N, S, Si and P containing at least one heteroatom C 2 ~ C 60 A heterocyclic group; C 3 ~ C 60 A fused ring group of an aliphatic ring and a C 6 ~ C 60 aromatic ring; C 3 ~ C 20 Cycloalkyl group; C 1 ~ C 50 Alkyl group; C 2 ~ C 20 Alkenyl group; C 2 ~ C 20 alkynyl group; C 1 ~ C 30 An alkoxyl group; And C 6 ~ C 30 An aryloxy group; is selected from the group consisting of,
    2) a는 0 내지 5의 정수이고, b 및 c는 서로 독립적으로 0 내지 4의 정수이며,2) a is an integer from 0 to 5, b and c are independently integers from 0 to 4,
    3) *는 결합위치를 의미한다.}3) * means the bonding position.}
  7. 제1항에 있어서, 상기 L1 및 L2 중 적어도 하나는 하기 화학식 L-1 내지 화학식 L-3 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein at least one of L 1 and L 2 is represented by any one of the following Chemical Formulas L-1 to L-3.
    화학식 L-1 화학식 L-2 화학식 L-3Formula L-1 Formula L-2 Formula L-3
    Figure PCTKR2022006010-appb-img-000095
    Figure PCTKR2022006010-appb-img-000095
    {상기 화학식 L-1 내지 화학식 L-3에서,{In the above formulas L-1 to L-3,
    1) R4는 상기 청구항 5의 R1 정의와 동일하며,1) R 4 is the same as the definition of R 1 in claim 5,
    2) d는 0 내지 4의 정수이고,2) d is an integer from 0 to 4,
    3) *는 결합위치를 의미한다.}3) * means the bonding position.}
  8. 제1항에 있어서, 상기 화학식 1이 하기 화합물 P-1 내지 P-90 중 어느 하나로 표시되는 것을 특징으로 하는 화합물The compound according to claim 1, wherein Formula 1 is represented by any one of the following compounds P-1 to P-90.
    Figure PCTKR2022006010-appb-img-000096
    Figure PCTKR2022006010-appb-img-000096
    Figure PCTKR2022006010-appb-img-000097
    Figure PCTKR2022006010-appb-img-000097
    Figure PCTKR2022006010-appb-img-000098
    Figure PCTKR2022006010-appb-img-000098
    Figure PCTKR2022006010-appb-img-000099
    Figure PCTKR2022006010-appb-img-000099
    Figure PCTKR2022006010-appb-img-000100
    Figure PCTKR2022006010-appb-img-000100
    Figure PCTKR2022006010-appb-img-000101
    Figure PCTKR2022006010-appb-img-000101
    Figure PCTKR2022006010-appb-img-000102
    Figure PCTKR2022006010-appb-img-000102
    Figure PCTKR2022006010-appb-img-000103
    Figure PCTKR2022006010-appb-img-000103
    Figure PCTKR2022006010-appb-img-000104
    Figure PCTKR2022006010-appb-img-000104
    Figure PCTKR2022006010-appb-img-000105
    Figure PCTKR2022006010-appb-img-000105
    Figure PCTKR2022006010-appb-img-000106
    Figure PCTKR2022006010-appb-img-000106
    Figure PCTKR2022006010-appb-img-000107
    Figure PCTKR2022006010-appb-img-000107
    Figure PCTKR2022006010-appb-img-000108
    Figure PCTKR2022006010-appb-img-000108
    Figure PCTKR2022006010-appb-img-000109
    Figure PCTKR2022006010-appb-img-000109
    Figure PCTKR2022006010-appb-img-000110
    Figure PCTKR2022006010-appb-img-000110
    Figure PCTKR2022006010-appb-img-000111
    Figure PCTKR2022006010-appb-img-000111
    Figure PCTKR2022006010-appb-img-000112
    Figure PCTKR2022006010-appb-img-000112
    Figure PCTKR2022006010-appb-img-000113
    Figure PCTKR2022006010-appb-img-000113
    Figure PCTKR2022006010-appb-img-000114
    Figure PCTKR2022006010-appb-img-000114
    Figure PCTKR2022006010-appb-img-000115
    Figure PCTKR2022006010-appb-img-000115
    Figure PCTKR2022006010-appb-img-000116
    Figure PCTKR2022006010-appb-img-000116
    Figure PCTKR2022006010-appb-img-000117
    Figure PCTKR2022006010-appb-img-000117
    Figure PCTKR2022006010-appb-img-000118
    Figure PCTKR2022006010-appb-img-000118
  9. 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 제1항의 화학식 1로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하고, 상기 유기물층에서 상기 화합물이 비결정질 고체상 분자의 양자역학적 평균 결합해리에너지
    Figure PCTKR2022006010-appb-img-000119
    가 3.650 eV 이상인 것을 특징으로 하는 유기전기소자
    In an organic electric device comprising an anode, a cathode, and an organic material layer formed between the anode and the cathode, the organic material layer comprises a single compound or two or more compounds represented by Formula 1 of claim 1, wherein the compound in the organic material layer is an amorphous solid phase Quantum mechanical average dissociation energy of molecules
    Figure PCTKR2022006010-appb-img-000119
    Organic electric device, characterized in that 3.650 eV or more
  10. 제9항에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer comprises at least one of a hole injection layer, a hole transport layer, a light emission auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer.
  11. 제9항에 있어서, 상기 유기물층은 발광보조층인 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer is a light emitting auxiliary layer.
  12. 제9항에 있어서, 상기 유기물층은 정공수송층인 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer is a hole transport layer.
  13. 제9항에 있어서, 상기 양극과 음극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 유기전기소자The organic electric device according to claim 9, further comprising a light efficiency improving layer formed on at least one surface opposite to the organic material layer among one surface of the anode and the cathode.
  14. 제9항에 있어서, 상기 유기물층은 광효율 개선층인 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer is a light efficiency improving layer.
  15. 제9항에 있어서, 상기 유기물층은 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함하는 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer comprises at least two stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode.
  16. 제9항에 있어서, 상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함하는 것을 특징으로 하는 유기전기소자The organic electric device according to claim 9, wherein the organic material layer further comprises a charge generating layer formed between the two or more stacks.
  17. 제9항의 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치A display device comprising the organic electric device of claim 9; and a controller configured to drive the display device.
  18. 제17항에 있어서, 상기 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치18. The method of claim 17, wherein the organic electric device is at least one of an organic electroluminescent device (OLED), an organic solar cell, an organophotoreceptor (OPC), an organic transistor (organic TFT), and a device for monochromatic or white lighting. electronic device
PCT/KR2022/006010 2021-04-28 2022-04-27 Compound for organic electric element, organic electric element using same, and electronic device thereof WO2022231299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280030490.2A CN117203203A (en) 2021-04-28 2022-04-27 Compound for organic electric element, organic electric element using the same, and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210055173A KR102406578B1 (en) 2021-04-28 2021-04-28 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR10-2021-0055173 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022231299A1 true WO2022231299A1 (en) 2022-11-03

Family

ID=81981732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006010 WO2022231299A1 (en) 2021-04-28 2022-04-27 Compound for organic electric element, organic electric element using same, and electronic device thereof

Country Status (3)

Country Link
KR (1) KR102406578B1 (en)
CN (1) CN117203203A (en)
WO (1) WO2022231299A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057849B (en) * 2022-06-24 2024-05-17 长春海谱润斯科技股份有限公司 Triarylamine organic compound and organic light-emitting device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180044799A (en) * 2016-10-21 2018-05-03 삼성디스플레이 주식회사 Monoamine compound and organic electroluminescence device including the same
KR20180118744A (en) * 2016-03-03 2018-10-31 메르크 파텐트 게엠베하 Material for organic electroluminescence device
KR20180138333A (en) * 2017-06-21 2018-12-31 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
KR20190020514A (en) * 2017-08-21 2019-03-04 에스케이케미칼 주식회사 Compound for organic electroluminescent device and organic electroluminescent device comprising the same
US20210119135A1 (en) * 2019-10-21 2021-04-22 Samsung Display Co., Ltd. Luminescence device and amine compound for luminescence device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942526A (en) * 2017-12-20 2019-06-28 三星显示有限公司 Aminated compounds and organic light emitting apparatus including the aminated compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180118744A (en) * 2016-03-03 2018-10-31 메르크 파텐트 게엠베하 Material for organic electroluminescence device
KR20180044799A (en) * 2016-10-21 2018-05-03 삼성디스플레이 주식회사 Monoamine compound and organic electroluminescence device including the same
KR20180138333A (en) * 2017-06-21 2018-12-31 주식회사 동진쎄미켐 Novel compound and organic electroluminescent divice including the same
KR20190020514A (en) * 2017-08-21 2019-03-04 에스케이케미칼 주식회사 Compound for organic electroluminescent device and organic electroluminescent device comprising the same
US20210119135A1 (en) * 2019-10-21 2021-04-22 Samsung Display Co., Ltd. Luminescence device and amine compound for luminescence device

Also Published As

Publication number Publication date
CN117203203A (en) 2023-12-08
KR102406578B1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2020262925A1 (en) Organic electric element
WO2018004187A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device therefor
WO2020231197A1 (en) Organic electric element comprising compound for organic electric element, and electronic device thereof
WO2022010305A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2017204557A1 (en) Compound for organic electronic element, organic electronic element using same and electronic device therefor
WO2021015555A1 (en) Compound for organic electric element, organic electric element using same, and electronic device comprising same organic electric element
WO2021045590A1 (en) Compound for organic electronic element, organic electronic element using the same, and electronic device thereof
WO2021206477A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2016032137A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device
WO2020226300A1 (en) Organic electric device comprising compound for organic electric device and electronic device thereof
WO2018016786A1 (en) Compound for organic electronic device, organic electronic device using same, and electronic apparatus thereof
WO2023003234A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2021201449A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device comprising same
WO2020149711A1 (en) Compound for organic electric element, organic electric element using same, and electronic device therefor
WO2022075746A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2021145651A1 (en) Compound for organic electrical element, organic electrical element using same, and electronic device thereof
WO2024039119A1 (en) Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2021080334A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device thereof
WO2022225198A1 (en) Compound for organic electric element, organic electric element using same, and electronic device comprising same
WO2021080333A1 (en) Compound for organic electric element, organic electric element using same, and electronic device therefor
WO2019022435A1 (en) Compound for organic electronic device, organic electronic device using same, and electronic apparatus thereof
WO2020209514A1 (en) Compound for organic electric element, organic electric element using same, and electronic device comprising same organic light element
WO2020130394A1 (en) Organic electric element comprising compound for organic electric element, and electronic device therefor
WO2021101247A1 (en) Compound for organic electrical element, organic electrical element using same and electronic device thereof
WO2018034444A1 (en) Compound for organic electronic element, organic electronic element using same, and electronic device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22796131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030490.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22796131

Country of ref document: EP

Kind code of ref document: A1