WO2022231111A1 - Raman spectrometer for focus scanning and measurement method using raman spectrometer - Google Patents
Raman spectrometer for focus scanning and measurement method using raman spectrometer Download PDFInfo
- Publication number
- WO2022231111A1 WO2022231111A1 PCT/KR2022/003080 KR2022003080W WO2022231111A1 WO 2022231111 A1 WO2022231111 A1 WO 2022231111A1 KR 2022003080 W KR2022003080 W KR 2022003080W WO 2022231111 A1 WO2022231111 A1 WO 2022231111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- raman spectrometer
- focus scanning
- actuator
- light
- Prior art date
Links
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 117
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 238000005259 measurement Methods 0.000 claims abstract description 32
- 238000001237 Raman spectrum Methods 0.000 claims abstract description 28
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 claims abstract description 27
- 238000001228 spectrum Methods 0.000 claims abstract description 9
- 230000003287 optical effect Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000002411 adverse Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
Definitions
- the present invention relates to a focus scanning Raman spectrometer and a measuring method using the Raman spectrometer, and more particularly, to obtain more accurate and reliable results in a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip. which relates to a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer.
- the Raman spectroscopy technique is an analysis technique that irradiates a laser onto a target sample and discriminates material components from a spectrum obtained therefrom.
- a sample is irradiated with a laser, which is a monochromatic light source, light is scattered. Most of the scattered light is a signal corresponding to the wavelength of the laser, but some of the scattered light is a Raman shift (Raman shift) corresponding to the frequency of the vibration mode of the sample at the wavelength of the laser. ), there is a signal coming out.
- a Raman shift Raman shift
- the basic Raman spectrometer irradiates the laser light output from the short-wavelength light source 110' to the specimen 500' through the objective lens 130', and the light scattered from the specimen 500'. Among them, only the component corresponding to the Raman shift is selected by the filter 140', and then the spectrum is obtained by the spectrometer 160'.
- a dichroic mirror or a dichroic beam splitter 120 ′ is used for splitting light by wavelength.
- a light receiving lens 150' is provided in front of the spectrometer 160' in order to smoothly enter the light into the spectrometer 160'.
- Raman spectroscopy has been commercialized in various forms depending on the purpose of use and environment, and if we look at it broadly, it is a general microscope type for research and analysis used in a fixed state in laboratories, etc. It can be classified for field use.
- the Raman spectrometer for research and analysis is used in a stable and fully controllable environment such as a laboratory, and considering that the measurement results should be used for more in-depth analysis, it is designed for various functions and high performance. tends to happen. That is, an optical configuration such as using multiple filters is added, or a specimen stage, beam scanning mechanism, etc. are added so that a signal can be received from several points instead of only from one point of the specimen. Even if it becomes complicated, the focus tends to be on diversifying functions or improving performance. Of course, even if the overall device configuration of the Raman spectrometer for research and analysis becomes very complicated, it is natural that the structure of its core part is based on FIG. 2 .
- a laser light source also typically uses one wavelength, and additional components such as a specimen stage and a beam scanning mechanism are excluded.
- additional components such as a specimen stage and a beam scanning mechanism are excluded.
- the user holds the device by hand and approaches the device to the specimen to perform measurement.
- a field-use Raman spectrometer it tends to have a simple and relatively low-spec configuration, and almost follows the configuration of FIG. 2 as it is.
- the SERS technique briefly introduced above has a characteristic that can effectively amplify the Raman signal so that even a very low concentration signal can be detected. Accordingly, it is expected that by introducing SERS into a relatively low-spec Raman spectrometer, that is, a Raman spectrometer for the field, its utility can be further improved. That is, it is a method of detecting a Raman signal after preparing a SERS signal amplification reaction material in the form of a strip or a substrate in advance, applying a target sample to be tested on it and reacting it. As shown in FIG. 3 , the method of using a handheld Raman spectrometer together with the SERS substrate is spotlighted as a potential technology that can satisfy both portability and sensitivity.
- a method of using a handheld type small Raman spectrometer and a SERS substrate together is briefly described as follows.
- the sample to be measured is coated on the surface of the SERS substrate, and the intensity of the Raman spectrum generated therefrom is read with a handheld type small Raman spectrometer to enable detection of the sample.
- the result to be determined can be derived through this. For example, if Raman spectrum signal intensity data for each concentration of a specific chemical component measured in advance is secured to obtain a reference value, the signal measured for the actual target sample is obtained from this. Concentrations can be calculated from the data.
- various applications can be made, such as determining whether the target sample is safe from the concentration value converted from the data value.
- the optical device itself which can be viewed as fixed hardware, can be regarded as the same condition if it operates normally, and the performance state of the SERS substrate itself can be assumed to be uniform if it is a mass-produced product.
- the focus position will be changed due to the application state of the sample, the difference in the flatness of the strip, and the thickness error of the slide glass.
- an object of the present invention is to have a negative effect on device miniaturization in a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip.
- An object of the present invention is to provide a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer that allow more accurate and reliable results to be obtained only by adding a simple configuration within a range not provided.
- an object of the present invention is to measure the Raman spectrum in a focal plane of several stages, obtain a representative spectrum such as a maximum value by using it, and use it as data used for determination, so that the reliability of the measurement result
- An object of the present invention is to provide a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer that greatly improves the
- the focus scanning Raman spectrometer 100 of the present invention for achieving the above object includes: a light source 110 for irradiating laser light; a light splitter 120 formed to reflect the laser light irradiated from the light source 110 and make it incident toward the sample 500 or transmit the light scattered from the sample 500; an objective lens 130 for condensing the light scattered by the light splitter 120 and irradiating it to the sample 500; a filter 140 that filters and transmits a component corresponding to a Raman shift among the light scattered from the sample 500 and transmitted through the light splitter 120; a light receiving lens 150 for receiving the light transmitted through the filter 140; a spectrometer 160 that receives the light received by the light receiving lens 150 and measures a spectrum; an actuator 170 for adjusting the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction; may include.
- the focus scanning Raman spectrometer 100 is a Raman spectrum generated in each of a plurality of focal planes formed as the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 .
- Each of the signals may be acquired, but a Raman spectrum signal in a focal plane at which the signal intensity becomes a maximum value may be selected as a measurement value.
- the focus scanning Raman spectrometer 100 is within the range of a plurality of focal planes formed as the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130.
- the sample ( 500) may be formed to be completely included.
- the focus scanning Raman spectrometer 100 includes the light source 110 , the light splitter 120 , the objective lens 130 , the filter 140 , the light receiving lens 150 , and the spectrometer 160 .
- the actuator 170 may be formed to move the module 180 in the optical axis direction.
- the actuator 170 may be formed to move the sample 500 in the optical axis direction.
- the actuator 170 may be formed to move the objective lens 130 in the optical axis direction.
- the focus scanning Raman spectrometer 100 may be a handheld type that a user can carry and use while moving.
- sample 500 may be applied on the SERS substrate or the base 550 in the form of a SERS strip.
- the actuator 170 may be implemented with at least one selected from a motorized stage, a piezoelectric actuator, and a voice coil motor (VCM).
- VCM voice coil motor
- the sample 500 is positioned below the objective lens 130 .
- the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction, and occurs in each of a plurality of focal planes formed for each step.
- Step measuring step of obtaining each of the Raman spectrum signals; a signal determination step of selecting a Raman spectrum signal in a focal plane having a maximum signal intensity among Raman spectrum signals generated in each of a plurality of focal planes as a measurement value; may include.
- the Raman spectrum in the focal plane of various stages is measured while changing the distance in the optical axis direction of the measuring device and the measurement target to a predetermined interval step by step during measurement, and the signal strength is maximized by using this.
- the signal in the step is a representative value, there is an effect that data processing and calculation can be performed quickly.
- adverse effects such as noise can be reduced, and as a result, accuracy and reliability can be improved.
- the present invention since an actuator that enables only a predetermined step-by-step movement is used without requiring complicated operation and control such as automatic focusing for movement in the optical axis direction, the device volume, specifications, manufacturing cost, etc. are excessively There is no factor to increase. Therefore, when the present invention is applied to a small Raman spectrometer for a handheld that is aimed at low-spec miniaturization, it is economical and has a great effect of maximizing performance.
- Figure 2 is the structure of a conventional basic Raman spectrometer.
- Figure 3 is a handheld small Raman spectrometer and an example of using a SERS substrate.
- Figure 4 is an embodiment of the measurement process of the focus scanning Raman spectrometer of the present invention.
- 5 is an embodiment of the measurement result of the focus scanning Raman spectrometer of the present invention.
- 6 to 8 are structural embodiments of the focus scanning Raman spectrometer of the present invention.
- actuator 180 module
- the Raman spectrometer irradiates light on the surface of the sample and receives the scattered light from the sample to obtain a spectral signal.
- the measured result has sufficient reliability when all other conditions such as the optical device, the SERS performance state, and the focal position are the same in addition to the target sample.
- the optical device or SERS performance state can be regarded as the same condition in most cases.
- the focal position there is considerable variation due to the sample coating state, the difference in the flatness of the strip, and the thickness error of the slide glass substrate.
- the present invention is a technology for improving the reliability of results measured by a handheld small Raman spectrometer without requiring a complicated device configuration such as automatic focusing in such a limited situation.
- the measurement is performed while adjusting the relative distance between the sample and the objective lens in a Raman spectrometer in a plurality of steps at predetermined equal intervals along the optical axis direction, and the maximum value is selected as the measurement value. solve it
- the principle of the present invention will be described in detail as follows.
- the sample 500 is coated on the SERS substrate or the base 550 in the form of a SERS strip. Accordingly, as shown in FIG. 4 , the surface of the sample 500 has significant irregularities due to various factors such as a difference in flatness of the strip and an error in the thickness of the slide glass substrate. Therefore, when the focal position of the Raman spectrometer objective lens 130 is fixed at any one position, there is a high probability that the surface of the sample 500 is not in focus, and accordingly, the reliability of the result value of the measured Raman spectrum signal is quite high.
- the relative distance between the sample 500 and the objective lens 130 is measured along the optical axis direction, instead of having a high-performance driving device and sensor for realizing precise optical axis movement necessary for the automatic focusing function.
- An actuator 170 (shown in FIGS. 6 to 8 hereinafter) that adjusts to a plurality of steps at predetermined equal intervals is used.
- a plurality of focal planes are formed as shown in FIG. 4 .
- 4 shows four focal planes formed at equal intervals in the optical axis direction. In the embodiment of FIG. 4 , an example in which the surface of the sample 500 is accurately focused on the focal plane 3 is shown.
- Raman spectral signals generated in each of these plurality of focal planes are respectively acquired once.
- 5 shows an embodiment of the measurement result of the focus scanning Raman spectrometer of the present invention, and shows the measurement result of the Raman spectrum signal generated in each of the focal planes (1) to (4) of FIG. 4 in one graph, have.
- the scattered Raman spectrum signal will come out the most when the surface of the sample 500 is well focused.
- the signal strength of the result value measured on the focal plane 3 in FIG. 5 becomes the maximum value. to be.
- the signal intensity is at the maximum value. or closest to exact). That is, if the Raman spectrum signal in the focal plane where the signal strength becomes the maximum value is selected as the measurement value, the measurement value in the state in which the focus is accurately (or closest to accuracy) is obtained, so the reliability of the result value is greatly improved. will be able to improve it.
- the Raman spectrum signal in the focal plane where the signal strength is the maximum is the measurement value in the state that the sample surface is in focus (or closest to accuracy). can be greatly improved.
- the actuator 170 of the present invention used in this process does not need to implement the precise operation required for the automatic focusing function, but only moves at predetermined equal intervals.
- the movement range of the actuator 170 may be determined in advance in an appropriate range in consideration of the thickness of the sample 500 or the thickness of the SERS strip or substrate.
- the actuator 170 is positioned between the sample 500 and the objective lens 130. It may be formed so that the sample 500 is completely included within the formation range of the plurality of focal planes formed by adjusting the relative distance.
- a relatively low-spec motorized stage, piezoelectric actuator, and VCM (Voice coil motor) can be easily utilized to implement movement with this level of precision, and parts of this level can be used to manufacture devices. It does not significantly affect cost or volume.
- the focus scanning Raman spectrometer 100 of the present invention the optical system itself for measuring the Raman spectrum signal follows the basic configuration of the Raman spectrometer shown in FIG. 2 as it is. That is, the focus scanning Raman spectrometer 100 is basically a light source 110 irradiating laser light, reflects the laser light irradiated from the light source 110 and makes it incident toward the sample 500 , or the sample 500 .
- a light splitter 120 that is formed to transmit the scattered light
- an objective lens 130 that collects the light scattered from the light splitter 120 and irradiates it to the sample 500
- the sample 500 A filter 140 that filters and transmits a component corresponding to a Raman shift among the light scattered from the light splitter 120 and transmitted through the light splitter 120, a light receiving lens 150 that receives the light transmitted through the filter 140, and a spectrometer 160 that receives the light received by the light receiving lens 150 and measures a spectrum.
- the focus scanning Raman spectrometer 100 of the present invention adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction.
- An actuator 170 is provided for Depending on where the actuator 170 is actually provided, various exemplary configurations as shown in FIGS. 6 to 8 have come out.
- FIG. 6 shows an embodiment of the actuator 170 applied to a more specific configuration in the case where the focus scanning Raman spectrometer 100 is a handheld compact Raman spectrometer.
- the spectrometer 160 is integrally modularized. That is, the various parts described above are accommodated or supported in a certain container or frame. In this way, the above-mentioned respective parts are accommodated or supported in a certain container or frame, and the integrated body is called a module 180 .
- the small-sized Raman spectrometer for handheld also includes a case 190 that protects the module 180 from the external environment and includes a handle so that a user can easily carry it and use it. That is, the case 190 basically serves to accommodate the module 180 and the actuator 170 . At this time, of course, the sample 500 enters and exits one side of the case 190 for a smooth measurement operation. Possible sample inlet 195 is formed.
- the actuator 170 is formed to move the module 180 in the optical axis direction.
- the module 180 and the case 190 are basically provided as shown in FIG. 6, so the configuration shown in FIG. 6 can be the most intuitively designed and implemented configuration have.
- the performance of the actuator 170 should be higher as the target to which the actuator 170 should move becomes the entire module 180 .
- the actuator 170 is formed to move the sample 500 in the optical axis direction.
- the sample 500 is substantially light in the form of a SERS strip or a substrate
- the actuator 170 can be implemented as a device with a lower specification compared to the embodiment of FIG. 6 .
- the sample 500 is not stably fixed, there is a concern that the possibility of error occurrence is slightly increased.
- the actuator 170 is formed to move the objective lens 130 in the optical axis direction.
- a condition must be added that the incident light to the objective lens 130 is configured to be a parallel light, but it is not necessary to move the entire module 180, so that the device specification can be further lowered, and the sample 500 It has the advantage of more firmly securing the positional stability of
- the measurement method using the focus scanning Raman spectrometer 100 of the present invention will be described in stages as follows.
- the measuring method using the focus scanning Raman spectrometer 100 of the present invention includes a sample arrangement step, a step measurement step, and a signal determination step.
- the sample 500 is disposed below the objective lens 130 . In an actual field, it would be an operation of pushing the SERS strip or substrate into the sample inlet 195 of the handheld small Raman spectrometer case 190 .
- the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction, and a plurality of steps formed at each step Raman spectral signals generated in each of the focal planes are respectively acquired. That is, as the actuator 170 implements the stepwise operation as shown in FIG. 4 , a plurality of Raman spectrum signals as shown in FIG. 5 are obtained.
- a Raman spectrum signal in a focal plane having a maximum signal intensity among Raman spectrum signals generated in each of a plurality of focal planes is selected as a measurement value.
- the signal strength is the maximum value even if it is not known whether the focus is achieved. If is selected, the signal can be sufficiently regarded as a signal obtained when the focus is precisely or close to accurate. Accordingly, the reliability of the selected signal is improved.
- a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip more accurate and reliable results can be obtained just by adding a simple configuration within a range that does not adversely affect device miniaturization. It has a huge effect on making it happen. Accordingly, it is possible to improve overall work efficiency by enabling field workers to obtain more accurate Raman spectroscopy results using light and inexpensive portable equipment.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
The present invention relates to a Raman spectrometer for focus scanning and a measurement method using the Raman spectrometer. The objective of the present invention is to provide a Raman spectrometer for focus scanning and a measurement method using the Raman spectrometer, which may obtain more accurate and reliable results only by adding a simple configuration within a range that does not adversely affect device miniaturization in a handheld small Raman spectrometer for measuring an object to be measured in the form of a SERS strip. More particularly, the objective of the present invention is to provide a Raman spectrometer for focus scanning and a measurement method using the Raman spectrometer, which significantly improve the reliability of measurement results by measuring Raman spectra at a plurality of stages of a focal plane, using the Raman spectra to obtain a representative spectrum such as a maximum value, and using the representative spectrum as data used for identification.
Description
본 발명은 포커스 스캐닝 라만 분광기 및 상기 라만 분광기를 이용한 측정방법에 관한 것으로, 보다 상세하게는 SERS 스트립 형태의 측정대상을 측정하는 핸드헬드용 소형 라만 분광기에 있어서 보다 정확하고 신뢰성있는 결과를 얻을 수 있도록 하는, 포커스 스캐닝 라만 분광기 및 상기 라만 분광기를 이용한 측정방법에 관한 것이다.The present invention relates to a focus scanning Raman spectrometer and a measuring method using the Raman spectrometer, and more particularly, to obtain more accurate and reliable results in a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip. which relates to a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer.
라만 분광 기법은 레이저를 대상 시료에 조사하고 이로부터 얻어지는 스펙트럼으로부터 물질의 성분을 판별하는 분석기법이다. 시료에 단색 광원인 레이저를 조사하면 빛이 산란되는데, 이처럼 산란된 빛의 대부분은 레이저의 파장에 상응하는 신호이지만, 일부는 레이저의 파장에서 시료의 진동모드의 주파수에 해당하는 라만 이동(Raman shift)이 되어 나오는 신호가 있다. 이 신호를 분석하면 분자나 결정의 형태 및 대칭성에 대한 정보를 알 수 있고 시료의 결정화 정도를 파악할 수 있다. 이렇게 파장이 변화하는 양상은 물질의 구조적 특성에 따라 다르게 나타나고, 각각의 특정한 물질에 대해서 고유한 특성처럼 나타나기 때문에, 라만 스펙트럼은 물질의 지문(fingerprint)이라고 일컬어진다. 특히 최근에는 SERS(surface enhanced Raman scattering)와 같은 다양한 라만 신호 증폭 기술이 활발히 연구되고 있으며, 라만 분광 기법은 극미세 농도의 성분을 판별할 수 있는 탁월한 기술로서 주목받고 있다. 도 1은 이와 같은 라만 분광의 원리 및 라만 스펙트럼 사례를 하나의 예시로서 도시하고 있다.The Raman spectroscopy technique is an analysis technique that irradiates a laser onto a target sample and discriminates material components from a spectrum obtained therefrom. When a sample is irradiated with a laser, which is a monochromatic light source, light is scattered. Most of the scattered light is a signal corresponding to the wavelength of the laser, but some of the scattered light is a Raman shift (Raman shift) corresponding to the frequency of the vibration mode of the sample at the wavelength of the laser. ), there is a signal coming out. By analyzing this signal, information on the shape and symmetry of molecules or crystals can be obtained, and the degree of crystallization of a sample can be determined. This change in wavelength appears differently depending on the structural characteristics of the material and appears as a unique characteristic for each specific material, so the Raman spectrum is called the fingerprint of the material. In particular, recently, various Raman signal amplification techniques such as surface enhanced Raman scattering (SERS) have been actively studied, and the Raman spectroscopy technique is attracting attention as an excellent technique for discriminating ultrafine concentration components. 1 illustrates the principle of Raman spectroscopy and an example of Raman spectrum as an example.
도 2는 종래의 기본적인 라만 분광기의 구조를 도시하고 있다. 도시된 바와 같이, 기본적인 라만 분광기는, 단파장의 광원(110')에서 출력되는 레이저 광을 대물렌즈(130')를 통하여 시편(500')에 조사하고, 상기 시편(500')으로부터 산란되는 광 중에서 라만 이동(Raman shift)에 해당하는 성분만을 필터(140')로 선별한 뒤 스펙트로미터(160')로 그 스펙트럼을 구한다. 이 때 빛의 파장별 분기를 위해 이색성 거울(dichroic mirror) 또는 이색성 광분할기(dichroic beam splitter)(120')를 사용한다. 또한 스펙트로미터(160')로 광을 원활하게 진입시키기 위하여 상기 스펙트로미터(160') 전방에 수광렌즈(150')가 구비된다.2 shows the structure of a conventional basic Raman spectrometer. As shown, the basic Raman spectrometer irradiates the laser light output from the short-wavelength light source 110' to the specimen 500' through the objective lens 130', and the light scattered from the specimen 500'. Among them, only the component corresponding to the Raman shift is selected by the filter 140', and then the spectrum is obtained by the spectrometer 160'. In this case, a dichroic mirror or a dichroic beam splitter 120 ′ is used for splitting light by wavelength. In addition, a light receiving lens 150' is provided in front of the spectrometer 160' in order to smoothly enter the light into the spectrometer 160'.
라만 분광기는 사용 목적 및 환경 등에 따라 여러 형태로 상용화되었는데, 이를 크게 나누어 보자면 일반적인 현미경 형태로서 실험실 등에 고정된 상태로 사용되는 연구분석용과, 실무 현장에서 장치 자체를 휴대하면서 측정을 수행할 수 있도록 구성된 현장용으로 구분할 수 있다.Raman spectroscopy has been commercialized in various forms depending on the purpose of use and environment, and if we look at it broadly, it is a general microscope type for research and analysis used in a fixed state in laboratories, etc. It can be classified for field use.
연구분석용 라만 분광기는 상술한 바와 같이 실험실과 같은 안정적이고 완전히 통제가능한 환경에서 사용되며, 또한 측정결과가 보다 심도있는 분석에 사용될 수 있어야 한다는 점을 고려할 때, 다양한 기능성 및 고성능을 지향하는 설계로 이루어지는 경향이 있다. 즉 여러 개의 필터를 사용하는 등의 광학적인 구성이 추가된다거나, 시편의 한 포인트에서만 신호를 받는 것이 아니라 여러 포인트에서 신호를 받을 수 있도록 시편 스테이지, 빔 스캐닝 메커니즘 등이 추가되는 등과 같이, 장치 구성이 복잡해지더라도 기능을 다변화하거나 고성능화하는 데에 초점이 맞추어지는 편이다. 물론 이처럼 연구분석용 라만 분광기 전체적인 장치 구성이 매우 복잡해진다 하더라도, 그 핵심 부분의 구조는 도 2를 근간으로 하는 것은 당연하다.As mentioned above, the Raman spectrometer for research and analysis is used in a stable and fully controllable environment such as a laboratory, and considering that the measurement results should be used for more in-depth analysis, it is designed for various functions and high performance. tends to happen. That is, an optical configuration such as using multiple filters is added, or a specimen stage, beam scanning mechanism, etc. are added so that a signal can be received from several points instead of only from one point of the specimen. Even if it becomes complicated, the focus tends to be on diversifying functions or improving performance. Of course, even if the overall device configuration of the Raman spectrometer for research and analysis becomes very complicated, it is natural that the structure of its core part is based on FIG. 2 .
현장용 라만 분광기의 경우, 실무 현장에서 장치 자체를 휴대하고 다닐 수 있어야 하기 때문에 소형화가 필수적이다. 이에 따라 레이저 광원도 통상적으로 1개의 파장을 사용하며, 시편 스테이지, 빔 스캐닝 메커니즘 등과 같은 추가적인 구성은 배제된다. 실제로 현장용 라만 분광기의 경우 사용자가 장치를 손으로 잡고(hand-held) 시편에 장치를 접근시켜 측정을 수행하는 방식을 사용한다. 현장용 라만 분광기의 경우, 이처럼 간소하고 상대적으로 저사양의 구성으로 이루어지는 경향이 있는 바, 거의 도 2 구성을 그대로 따른다.In the case of on-site Raman spectroscopy, miniaturization is essential because the device itself must be portable and portable in the field. Accordingly, a laser light source also typically uses one wavelength, and additional components such as a specimen stage and a beam scanning mechanism are excluded. In fact, in the case of on-site Raman spectroscopy, the user holds the device by hand and approaches the device to the specimen to perform measurement. In the case of a field-use Raman spectrometer, it tends to have a simple and relatively low-spec configuration, and almost follows the configuration of FIG. 2 as it is.
한편 앞서 간략히 소개한 SERS 기법은 매우 낮은 농도의 신호도 검출할 수 있도록 라만 신호를 효과적으로 증폭시킬 수 있는 특성을 가지고 있다. 이에 따라 상대적으로 저사양의 라만 분광기 즉 현장용 라만 분광기에 SERS를 도입함으로써 그 활용성을 한층 높일 수 있음이 기대되고 있다. 즉, SERS 신호 증폭 반응 물질을 스트립이나 기판 형태로 미리 준비하고, 검사하고자 하는 타겟 시료를 이 위에 도포하여 반응시킨 후에 라만 신호를 검출하는 방식이다. 도 3에 도시된 바와 같이 핸드헬드 형태의 라만 분광기를 SERS 기판과 함께 이용하는 방법은 휴대성과 감도를 모두 만족시킬 수 있는 잠재 기술로 각광받고 있다.On the other hand, the SERS technique briefly introduced above has a characteristic that can effectively amplify the Raman signal so that even a very low concentration signal can be detected. Accordingly, it is expected that by introducing SERS into a relatively low-spec Raman spectrometer, that is, a Raman spectrometer for the field, its utility can be further improved. That is, it is a method of detecting a Raman signal after preparing a SERS signal amplification reaction material in the form of a strip or a substrate in advance, applying a target sample to be tested on it and reacting it. As shown in FIG. 3 , the method of using a handheld Raman spectrometer together with the SERS substrate is spotlighted as a potential technology that can satisfy both portability and sensitivity.
헨드헬드 형태의 소형 라만 분광기와 SERS 기판을 함께 이용하는 방법을 간략히 설명하면 다음과 같다. 먼저 측정하고자 하는 시료를 SERS 기판 표면에 도포하고, 이로부터 발생하는 라만 스펙트럼의 세기를 핸드헬드 형태의 소형 라만 분광기로 읽음으로써 시료에 대한 검출을 할 수 있게 된다. 또한 이를 통해 판단하고자 하는 결과를 도출할 수도 있는데, 예를 들어 기준값을 얻기 위해 사전에 측정된 특정 화학성분의 농도별 라만 스펙트럼 신호 세기 데이터를 확보하고 있다면, 이로부터 실제 타겟 시료에 대해서 측정한 신호 데이터로부터 농도를 환산할 수 있을 것이다. 나아가 이러한 타겟 시료가 유해물질인 경우, 데이터 값으로부터 환산된 농도 값으로부터 안전성 여부를 판단할 수도 있는 등 다양한 활용이 이루어질 수 있다.A method of using a handheld type small Raman spectrometer and a SERS substrate together is briefly described as follows. First, the sample to be measured is coated on the surface of the SERS substrate, and the intensity of the Raman spectrum generated therefrom is read with a handheld type small Raman spectrometer to enable detection of the sample. In addition, the result to be determined can be derived through this. For example, if Raman spectrum signal intensity data for each concentration of a specific chemical component measured in advance is secured to obtain a reference value, the signal measured for the actual target sample is obtained from this. Concentrations can be calculated from the data. Furthermore, when the target sample is a hazardous substance, various applications can be made, such as determining whether the target sample is safe from the concentration value converted from the data value.
한편 핸드헬드 형태의 소형 라만 분광기의 경우, 앞서 설명한 바와 같이 고기능보다는 소형화 및 휴대성을 향상시키기 위한 설계가 우선시되기 때문에, 다양한 기능을 포기하고 최대한 간략화된 구성으로 이루어지는 경우가 많다. 이에 따라 성능적 한계가 불가피하게 발생하게 되며, 때에 따라 이러한 성능적 한계를 해소하기 위한 간략한 부가구성을 구비하는 경우도 있다. 한국등록특허 제1965803호("레이저 출력조정기를 가지는 라만 분광기", 2019.03.29.)의 경우, 라만 분광기를 소형화하는 과정에서 불가피하게 스펙트로미터의 감도가 낮아지게 되어 상대적으로 레이저의 세기를 높여서 사용하는 과정에서, 측정 시 레이저 조사에 의해서 시료가 손상되는 것을 방지하기 위하여, 소형화에 영향을 주지 않을 만큼 간소하지만 레이저 출력 세기를 조절할 수 있는 부품을 부가하는 기술이 개시된다. 이처럼 핸드헬드용 소형 라만 분광기에서도 간소하지만 꼭 필요한 구성을 추가하여 성능적 한계를 개선하고자 하는 노력이 많이 이루어지고 있다.On the other hand, in the case of a handheld-type small Raman spectrometer, as described above, design for miniaturization and portability is prioritized over high functionality, and thus various functions are given up and the configuration is simplified as much as possible in many cases. Accordingly, performance limitations inevitably occur, and in some cases, a simple additional configuration is provided to solve such performance limitations. In the case of Korean Patent No. 1965803 ("Raman spectrometer with laser power regulator", March 29, 2019), in the process of miniaturizing the Raman spectrometer, the sensitivity of the spectrometer is inevitably lowered, so it is used by relatively increasing the intensity of the laser. In the process of measuring, in order to prevent damage to the sample by laser irradiation during measurement, a technique for adding a component capable of adjusting the laser output intensity is disclosed which is simple enough not to affect the miniaturization. In this way, even in small Raman spectrometers for handheld use, many efforts are being made to improve the performance limit by adding a simple but essential configuration.
상술한 바와 같은 핸드헬드용 소형 라만 분광기 및 SERS 기판 활용방식의 경우, 다음과 같은 성능적 한계가 지적된다. 상술한 바와 같은 방식으로 검출을 수행하는 과정에서, 결과값이 신뢰성이 있으려면 타겟 시료 외에는 모두 동일조건이어야 한다는 전제가 필요하다. 일반적으로 고정된 하드웨어로 볼 수 있는 광학장치 자체는 정상적으로 동작된다면 동일조건으로 볼 수 있으며, SERS 기판 자체의 성능상태도 일단 양산되는 제품의 경우라면 균일하다고 가정할 수 있다. 그러나 시료의 도포상태, 스트립의 평탄도 차이, 슬라이드 글라스의 두께 오차 등으로 인하여 초점위치가 변동될 가능성이 높으며, 따라서 초점위치는 균일하게 동일조건을 유지한다고 보기 어렵다. 즉 스펙트럼의 세기가 약해졌을 경우, 이것이 시료의 농도가 낮아져서 그런 것인지, 두께 오차 발생에 의하여 시료면과 초점면이 멀어져서 그런 것인지 확인하기 어렵다. 이러한 초점위치의 변동은 값에 직접적으로 영향을 미칠 수 있기 때문에 결과에 민감하게 반영될 위험성이 있다.In the case of the handheld Raman spectrometer and the SERS substrate utilization method as described above, the following performance limitations are pointed out. In the process of performing the detection in the above-described manner, it is necessary that all but the target sample be the same condition in order for the result to be reliable. In general, the optical device itself, which can be viewed as fixed hardware, can be regarded as the same condition if it operates normally, and the performance state of the SERS substrate itself can be assumed to be uniform if it is a mass-produced product. However, there is a high possibility that the focus position will be changed due to the application state of the sample, the difference in the flatness of the strip, and the thickness error of the slide glass. That is, when the intensity of the spectrum is weakened, it is difficult to determine whether this is because the concentration of the sample is lowered or whether the sample plane and the focal plane are separated due to the occurrence of a thickness error. There is a risk of being sensitively reflected in the results because the change in the focal position can directly affect the value.
앞서 설명한 연구분석용 라만 분광기의 경우, 이러한 오류 발생 위험성을 제거하기 위하여 광학 현미경 영상을 이용하여 기판 표면에 초점이 맞고 있는지 확인한 후에 측정을 수행한다. 그러나 이러한 과정을 매번 반복하는 것이 번거로울 뿐만 아니라, 핸드헬드용 소형 라만 분광기의 경우 별도의 초점을 맞출 수 있는 장치가 구비되지 않기 때문에 초기 설계된 초점거리에서 오차가 생길 경우 이에 대한 확인이 불가능하다.In the case of the Raman spectrometer for research and analysis described above, in order to eliminate the risk of such an error, the measurement is performed after confirming that the substrate surface is in focus using an optical microscope image. However, it is cumbersome to repeat this process every time, and since a separate focusing device is not provided in the case of a handheld small Raman spectrometer, it is impossible to check if an error occurs in the initially designed focal length.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
1. 한국등록특허 제1965803호("레이저 출력조정기를 가지는 라만 분광기", 2019.03.29.)1. Korean Patent No. 1965803 ("Raman Spectrometer with Laser Power Regulator", 2019.03.29.)
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, SERS 스트립 형태의 측정대상을 측정하는 핸드헬드용 소형 라만 분광기에 있어서, 장치 소형화에 악영향을 주지 않는 범위 내의 간소한 구성을 부가하는 것만으로도 보다 정확하고 신뢰성있는 결과를 얻을 수 있도록 하는 포커스 스캐닝 라만 분광기 및 상기 라만 분광기를 이용한 측정방법을 제공함에 있다. 보다 상세하게는, 본 발명의 목적은, 여러 단계의 초점평면에서의 라만 스펙트럼을 측정하고, 이를 활용하여 최대값 등과 같은 대표 스펙트럼을 얻어내 이를 판별에 사용하는 데이터로 활용함으로써, 측정결과의 신뢰도를 크게 향상하는 포커스 스캐닝 라만 분광기 및 상기 라만 분광기를 이용한 측정방법을 제공함에 있다.Therefore, the present invention has been devised to solve the problems of the prior art as described above, and an object of the present invention is to have a negative effect on device miniaturization in a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip. An object of the present invention is to provide a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer that allow more accurate and reliable results to be obtained only by adding a simple configuration within a range not provided. More specifically, an object of the present invention is to measure the Raman spectrum in a focal plane of several stages, obtain a representative spectrum such as a maximum value by using it, and use it as data used for determination, so that the reliability of the measurement result An object of the present invention is to provide a focus scanning Raman spectrometer and a measurement method using the Raman spectrometer that greatly improves the
상기한 바와 같은 목적을 달성하기 위한 본 발명의 포커스 스캐닝 라만 분광기(100)는, 레이저 광을 조사하는 광원(110); 상기 광원(110)에서 조사된 레이저 광을 반사시켜 시료(500) 쪽으로 입사시키거나, 상기 시료(500)에서 산란된 광을 투과시키도록 형성되는 광분할기(120); 상기 광분할기(120)에서 산란되어 온 광을 집광하여 상기 시료(500)으로 조사하는 대물렌즈(130); 상기 시료(500)에서 산란되어 상기 광분할기(120)를 투과하여 온 광 중 라만 이동에 해당하는 성분을 필터링하여 투과시키는 필터(140); 상기 필터(140)를 투과하여 온 광을 수광하는 수광렌즈(150); 상기 수광렌즈(150)로 수광되어 온 광을 진입받아 스펙트럼을 측정하는 스펙트로미터(160); 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키는 액추에이터(170); 를 포함할 수 있다.The focus scanning Raman spectrometer 100 of the present invention for achieving the above object includes: a light source 110 for irradiating laser light; a light splitter 120 formed to reflect the laser light irradiated from the light source 110 and make it incident toward the sample 500 or transmit the light scattered from the sample 500; an objective lens 130 for condensing the light scattered by the light splitter 120 and irradiating it to the sample 500; a filter 140 that filters and transmits a component corresponding to a Raman shift among the light scattered from the sample 500 and transmitted through the light splitter 120; a light receiving lens 150 for receiving the light transmitted through the filter 140; a spectrometer 160 that receives the light received by the light receiving lens 150 and measures a spectrum; an actuator 170 for adjusting the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction; may include.
이 때 상기 포커스 스캐닝 라만 분광기(100)는, 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라 형성되는 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호를 각각 획득하되, 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호를 측정값으로서 선택할 수 있다.At this time, the focus scanning Raman spectrometer 100 is a Raman spectrum generated in each of a plurality of focal planes formed as the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 . Each of the signals may be acquired, but a Raman spectrum signal in a focal plane at which the signal intensity becomes a maximum value may be selected as a measurement value.
또한 상기 포커스 스캐닝 라만 분광기(100)는, 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라 형성되는 복수 개의 초점평면의 형성범위 내에 상기 시료(500)가 완전히 포함되도록 형성될 수 있다.In addition, the focus scanning Raman spectrometer 100 is within the range of a plurality of focal planes formed as the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130. The sample ( 500) may be formed to be completely included.
또한 상기 포커스 스캐닝 라만 분광기(100)는, 상기 광원(110), 상기 광분할기(120), 상기 대물렌즈(130), 상기 필터(140), 상기 수광렌즈(150), 상기 스펙트로미터(160)가 일체화되어 형성되는 모듈(180); 상기 모듈(180) 및 상기 액추에이터(170)를 수용하며 일측에 상기 시료(500)가 출입가능한 시료출입구(195)가 형성되는 케이스(190); 를 포함할 수 있다.In addition, the focus scanning Raman spectrometer 100 includes the light source 110 , the light splitter 120 , the objective lens 130 , the filter 140 , the light receiving lens 150 , and the spectrometer 160 . a module 180 that is integrally formed; a case 190 accommodating the module 180 and the actuator 170 and having a sample inlet 195 through which the sample 500 can be entered and exited on one side; may include.
이 때 상기 액추에이터(170)는, 상기 모듈(180)을 광축방향으로 이동시키도록 형성될 수 있다.At this time, the actuator 170 may be formed to move the module 180 in the optical axis direction.
또는 상기 액추에이터(170)는, 상기 시료(500)를 광축방향으로 이동시키도록 형성될 수 있다.Alternatively, the actuator 170 may be formed to move the sample 500 in the optical axis direction.
또는 상기 액추에이터(170)는, 상기 대물렌즈(130)를 광축방향으로 이동시키도록 형성될 수 있다.Alternatively, the actuator 170 may be formed to move the objective lens 130 in the optical axis direction.
또한 상기 포커스 스캐닝 라만 분광기(100)는, 사용자가 휴대 및 이동하면서 사용이 가능한 핸드헬드용일 수 있다.Also, the focus scanning Raman spectrometer 100 may be a handheld type that a user can carry and use while moving.
또한 상기 시료(500)는, SERS 기판 또는 SERS 스트립 형태의 베이스(550) 상에 도포될 수 있다.In addition, the sample 500 may be applied on the SERS substrate or the base 550 in the form of a SERS strip.
또한 상기 액추에이터(170)는, 모터 스테이지(motorized stage), 피에조구동기(Piezoelectric actuator), VCM(Voice coil motor) 중 선택되는 적어도 하나로 구현될 수 있다.Also, the actuator 170 may be implemented with at least one selected from a motorized stage, a piezoelectric actuator, and a voice coil motor (VCM).
또한 본 발명의 포커스 스캐닝 라만 분광기를 이용한 측정방법은, 상술한 바와 같은 구성으로 된 상기 포커스 스캐닝 라만 분광기(100)를 이용한 측정방법에 있어서, 상기 시료(500)가 상기 대물렌즈(130) 하방에 배치되는 시료배치단계; 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키며, 각 단계마다 형성되는 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호가 각각 획득되는 단계측정단계; 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호 중 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호가 측정값으로서 선택되는 신호결정단계; 를 포함할 수 있다.Also, in the measuring method using the focus scanning Raman spectrometer of the present invention, in the measuring method using the focus scanning Raman spectrometer 100 configured as described above, the sample 500 is positioned below the objective lens 130 . a sample arrangement step to be arranged; The actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction, and occurs in each of a plurality of focal planes formed for each step. Step measuring step of obtaining each of the Raman spectrum signals; a signal determination step of selecting a Raman spectrum signal in a focal plane having a maximum signal intensity among Raman spectrum signals generated in each of a plurality of focal planes as a measurement value; may include.
본 발명에 의하면, 헨드헬드용 소형 라만 분광기에 있어서, SERS 스트립 형태의 측정대상을 측정할 때 측정 시마다 균일하게 초점위치를 맞출 수 없었던 종래의 문제점을 개선함으로써 보다 정확하고 신뢰성있는 결과를 얻을 수 있도록 하는 큰 효과가 있다. 구체적으로는, 본 발명에서는 측정 시 측정장치 및 측정대상의 광축방향 간격을 기결정된 간격으로 단계적으로 변경시켜 가면서 여러 단계의 초점평면에서의 라만 스펙트럼을 측정하고, 이를 활용하여 신호세기가 최대가 되는 단계에서의 신호를 대표값으로 결정함으로써, 데이터 처리 및 계산을 신속하게 수행할 수 있는 효과가 있다. 물론 신호세기가 가장 강한 부분에서의 데이터만 획득하기 때문에 노이즈 등의 악영향도 줄일 수 있어, 결과적으로 정확도 및 신뢰성 또한 향상시킬 수 있는 효과가 있다.According to the present invention, in a handheld Raman spectrometer, when measuring a measurement object in the form of a SERS strip, it is possible to obtain more accurate and reliable results by improving the conventional problem that the focus position could not be uniformly focused during each measurement. has a great effect. Specifically, in the present invention, the Raman spectrum in the focal plane of various stages is measured while changing the distance in the optical axis direction of the measuring device and the measurement target to a predetermined interval step by step during measurement, and the signal strength is maximized by using this. By determining the signal in the step as a representative value, there is an effect that data processing and calculation can be performed quickly. Of course, since only the data in the portion with the strongest signal strength is acquired, adverse effects such as noise can be reduced, and as a result, accuracy and reliability can be improved.
특히 본 발명에 의하면, 광축방향으로의 움직임에 자동 포커싱과 같은 복잡한 동작 및 제어를 요구하는 것이 아니고 기결정된 단계별 이동만 가능하도록 하는 액추에이터를 사용하기 때문에, 장치 부피, 사양, 제작비용 등이 과도하게 증가할 요인이 없다. 따라서 저사양 소형화를 지향하는 핸드헬드용 소형 라만 분광기에 본 발명을 활용할 경우 경제적이면서도 최대한의 성능을 끌어낼 수 있는 큰 효과가 있다.In particular, according to the present invention, since an actuator that enables only a predetermined step-by-step movement is used without requiring complicated operation and control such as automatic focusing for movement in the optical axis direction, the device volume, specifications, manufacturing cost, etc. are excessively There is no factor to increase. Therefore, when the present invention is applied to a small Raman spectrometer for a handheld that is aimed at low-spec miniaturization, it is economical and has a great effect of maximizing performance.
도 1은 라만 분광의 원리 및 라만 스펙트럼 사례.1 is an example of the principle of Raman spectroscopy and Raman spectrum.
도 2는 종래의 기본적인 라만 분광기의 구조.Figure 2 is the structure of a conventional basic Raman spectrometer.
도 3은 핸드헬드용 소형 라만 분광기 및 SERS 기판 사용예.Figure 3 is a handheld small Raman spectrometer and an example of using a SERS substrate.
도 4는 본 발명의 포커스 스캐닝 라만 분광기의 측정과정 실시예.Figure 4 is an embodiment of the measurement process of the focus scanning Raman spectrometer of the present invention.
도 5는 본 발명의 포커스 스캐닝 라만 분광기의 측정결과 실시예.5 is an embodiment of the measurement result of the focus scanning Raman spectrometer of the present invention.
도 6 내지 도 8은 본 발명의 포커스 스캐닝 라만 분광기의 구성 실시예.6 to 8 are structural embodiments of the focus scanning Raman spectrometer of the present invention.
** 부호의 설명 **** Explanation of symbols **
100 : 포커스 스캐닝 라만 분광기100: focus scanning Raman spectroscopy
110 : 광원 120 : 광분할기110: light source 120: light splitter
130 : 대물렌즈 140 : 필터130: objective lens 140: filter
150 : 수광렌즈 160 : 스펙트로미터150: light receiving lens 160: spectrometer
170 : 액추에이터 180 : 모듈170: actuator 180: module
190 : 케이스 195 : 시료출입구190: case 195: sample inlet
500 : 시료 550 : 베이스500: sample 550: base
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 포커스 스캐닝 라만 분광기 및 상기 라만 분광기를 이용한 측정방법을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, a focus scanning Raman spectrometer and a measuring method using the Raman spectrometer according to the present invention having the configuration as described above will be described in detail with reference to the accompanying drawings.
[1] 본 발명의 포커스 스캐닝 라만 분광기의 기술적 취지 및 원리[1] Technical purpose and principle of focus scanning Raman spectrometer of the present invention
앞서 설명한 종래의 문제점을 간략히 요약하면 다음과 같다. 라만 분광기는 시료의 표면에 광을 조사하고 시료로부터 산란된 광을 수광하여 스펙트럼 신호를 얻어내게 된다. 이 때 타겟 시료 외에 광학장치, SERS 성능상태, 초점위치 등의 다른 조건들이 모두 동일하여야 측정된 결과값이 충분한 신뢰성을 가진다고 볼 수 있다. 그런데 광학장치나 SERS 성능상태는 대부분의 경우 동일조건으로 간주할 수 있으나, 초점위치의 경우 시료의 도포상태, 스트립의 평탄도 차이, 슬라이드 글라스 기판의 두께 오차 등으로 인하여 상당한 변동가능성이 있다. 실험실 등에서 사용되는 연구분석용 라만 분광기의 경우, 경제성이나 부피 등을 고려하지 않고 최대한 고성능을 추구하기 때문에, 자동 포커싱 기능 등을 이용하여 초점위치를 자동으로 맞춘 후 측정을 수행하면 되기 때문에 초점위치 변동 문제가 결과값에 큰 악영향을 주지 못한다. 그러나 실무현장에서 사용되는 핸드헬드용 소형 라만 분광기의 경우, 성능보다는 휴대성, 편의성, 경제성 등을 고려하여 최대한 소형화 및 저비용화되는 것을 추구하기 때문에, 자동 포커싱 기능과 같이 정밀하게 동작되는 고성능의 장치 및 제어 알고리즘이 구비되기 어렵다.The conventional problems described above are briefly summarized as follows. The Raman spectrometer irradiates light on the surface of the sample and receives the scattered light from the sample to obtain a spectral signal. At this time, it can be considered that the measured result has sufficient reliability when all other conditions such as the optical device, the SERS performance state, and the focal position are the same in addition to the target sample. However, the optical device or SERS performance state can be regarded as the same condition in most cases. However, in the case of the focal position, there is considerable variation due to the sample coating state, the difference in the flatness of the strip, and the thickness error of the slide glass substrate. In the case of Raman spectrometers for research and analysis used in laboratories, etc., since high performance is pursued as much as possible without considering economic feasibility or volume. The problem does not have a significant adverse effect on the results. However, in the case of a small handheld Raman spectrometer used in the field, it is a high-performance device that operates precisely like an automatic focusing function because it seeks to be miniaturized and low-cost as much as possible in consideration of portability, convenience, and economic feasibility rather than performance. and control algorithms are difficult to be provided.
본 발명은, 이와 같은 제한적인 상황에서, 자동 포커싱 등과 같은 복잡한 장치 구성을 요하지 않고도 핸드헬드용 소형 라만 분광기에서 측정되는 결과값의 신뢰성을 향상시키고자 하는 기술이다. 본 발명에서는, 라만 분광기에서 시료 및 상기 대물렌즈 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절하면서 측정을 수행하고, 이 중 최대값을 측정값으로서 선택함으로써 앞서 설명한 문제를 해결한다. 본 발명의 원리를 구체적으로 설명하면 다음과 같다.The present invention is a technology for improving the reliability of results measured by a handheld small Raman spectrometer without requiring a complicated device configuration such as automatic focusing in such a limited situation. In the present invention, the measurement is performed while adjusting the relative distance between the sample and the objective lens in a Raman spectrometer in a plurality of steps at predetermined equal intervals along the optical axis direction, and the maximum value is selected as the measurement value. solve it The principle of the present invention will be described in detail as follows.
도 4는 본 발명의 포커스 스캐닝 라만 분광기의 측정과정 실시예를 도시한 것이다. 앞서 설명한 바와 같이, 상기 시료(500)는 SERS 기판 또는 SERS 스트립 형태의 베이스(550) 상에 도포된 형태로 이루어지는 것이 바람직하다. 이에 따라 스트립의 평탄도 차이, 슬라이드 글라스 기판의 두께 오차 등과 같은 다양한 요인에 의하여 도 4에 도시된 바와 같이 시료(500)의 표면은 상당한 요철을 가지게 된다. 그러므로 라만 분광기 대물렌즈(130)의 초점위치가 어느 한 위치에 고정되어 있을 경우 상기 시료(500) 표면에 초점이 맞지 않을 확률이 높으며, 이에 따라 측정된 라만 스펙트럼 신호의 결과값에 대한 신뢰성이 상당히 떨어지게 된다. 또한 앞서 설명한 바와 같이 핸드헬드용 소형 라만 분광기의 경우 광축방향으로 초점위치를 조절하여 시료 표면에 초점을 맞추는 자동 포커싱 기능을 적용하기에는 경제성 등의 측면에서 제한이 있다.4 shows an embodiment of the measurement process of the focus scanning Raman spectrometer of the present invention. As described above, it is preferable that the sample 500 is coated on the SERS substrate or the base 550 in the form of a SERS strip. Accordingly, as shown in FIG. 4 , the surface of the sample 500 has significant irregularities due to various factors such as a difference in flatness of the strip and an error in the thickness of the slide glass substrate. Therefore, when the focal position of the Raman spectrometer objective lens 130 is fixed at any one position, there is a high probability that the surface of the sample 500 is not in focus, and accordingly, the reliability of the result value of the measured Raman spectrum signal is quite high. will fall In addition, as described above, in the case of a handheld small Raman spectrometer, there is a limitation in terms of economic feasibility and the like to apply the automatic focusing function to focus on the sample surface by adjusting the focal position in the optical axis direction.
본 발명에서는, 자동 포커싱 기능에 필요한 정도로 정밀한 광축방향 움직임을 구현하기 위한 고성능의 구동장치와 센서를 구비하는 대신, 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절하는 액추에이터(170, 이후 도 6 내지 도 8에 표시됨)를 사용한다. 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라, 도 4에 도시된 바와 같이 복수 개의 초점평면(focal plane)이 형성되게 된다. 도 4에는 광축방향 등간격으로 형성되는 4개의 초점평면이 도시되어 있다. 도 4의 실시예에서는, 초점평면 (3)에서 상기 시료(500)의 표면에 정확하게 초점이 맞는 예시가 나타나 있다.In the present invention, the relative distance between the sample 500 and the objective lens 130 is measured along the optical axis direction, instead of having a high-performance driving device and sensor for realizing precise optical axis movement necessary for the automatic focusing function. An actuator 170 (shown in FIGS. 6 to 8 hereinafter) that adjusts to a plurality of steps at predetermined equal intervals is used. As the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 , a plurality of focal planes are formed as shown in FIG. 4 . 4 shows four focal planes formed at equal intervals in the optical axis direction. In the embodiment of FIG. 4 , an example in which the surface of the sample 500 is accurately focused on the focal plane 3 is shown.
본 발명에서는, 일단 이러한 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호를 각각 획득한다. 도 5는 본 발명의 포커스 스캐닝 라만 분광기의 측정결과 실시예를 도시한 것으로, 도 4의 초점평면 (1)~(4) 각각에서 발생되는 라만 스펙트럼 신호의 측정결과를 하나의 그래프에 합쳐 도시하고 있다. 이론적으로 상기 시료(500) 표면에 초점이 잘 맞았을 때 산란되어 나오는 라만 스펙트럼 신호가 가장 많이 나오게 될 것임은 자명하다. 도 4에서 초점평면 (3)에서 상기 시료(500)의 표면에 정확하게 초점이 맞았던 것을 상기하면, 도 5에서 초점평면 (3)에서 측정된 결과값의 신호세기가 최대값이 되는 것은 매우 당연한 결과이다.In the present invention, Raman spectral signals generated in each of these plurality of focal planes are respectively acquired once. 5 shows an embodiment of the measurement result of the focus scanning Raman spectrometer of the present invention, and shows the measurement result of the Raman spectrum signal generated in each of the focal planes (1) to (4) of FIG. 4 in one graph, have. Theoretically, it is self-evident that the scattered Raman spectrum signal will come out the most when the surface of the sample 500 is well focused. Recalling that the surface of the sample 500 was accurately focused on the focal plane 3 in FIG. 4 , it is a very natural result that the signal strength of the result value measured on the focal plane 3 in FIG. 5 becomes the maximum value. to be.
이 때 반대로 생각하면, 실제로 어느 단계의 초점평면에서 시료 표면에 초점이 맞았는지 모른다 하더라도, 여러 초점평면에서 발생된 신호들을 모두 비교했을 때 그 중에 신호세기가 최대값이 될 때 시료 표면에 정확히(내지는 정확에 가장 가깝게) 맞았음을 알 수 있다. 즉 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호를 측정값으로서 선택하면, 초점이 정확히(내지는 정확에 가장 가깝게) 맞은 상태에서의 측정값을 획득하게 되는 것이므로, 결과값의 신뢰성을 크게 향상시킬 수 있게 되는 것이다.Conversely, even if you don't know which stage of the focal plane actually focused on the sample surface, when all the signals generated from several focal planes are compared, the signal intensity is at the maximum value. or closest to exact). That is, if the Raman spectrum signal in the focal plane where the signal strength becomes the maximum value is selected as the measurement value, the measurement value in the state in which the focus is accurately (or closest to accuracy) is obtained, so the reliability of the result value is greatly improved. will be able to improve it.
즉 정리하면 다음과 같다. 본 발명에서는, 실무현장에서 사용되는 핸드헬드용 소형 라만 분광기의 경우 휴대성, 경제성 등의 여러 문제로 인하여 자동 포커싱 기능과 같이 정밀동작이 요구되는 고성능 부품을 구비하기 어려워 시료 표면에 초점이 정확히 맞았는지 알 수 없는 상태에서 측정을 수행하는 과정에서 발생되는 결과값의 신뢰성 하락 문제를 해결하기 위한 것이다.That is, to summarize: In the present invention, in the case of a handheld small Raman spectrometer used in the field, it is difficult to provide high-performance parts that require precise operation such as an automatic focusing function due to various problems such as portability and economic feasibility, so that the focus is precisely on the sample surface. This is to solve the problem of decreasing the reliability of the result value that occurs in the process of performing measurement in a state where it is unknown.
이 때, 본 발명에서는 시료 표면에 초점이 맞았는지의 여부를 확인할 수는 없으나, 시료 및 대물렌즈 사이의 상대거리를 기결정된 등간격으로 조절해가면서 각각의 단계에서 발생되는 신호들을 모두 획득한다. 이 중에서 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호가 바로 시료 표면에 초점이 정확히(내지는 정확에 가장 가깝게) 맞은 상태에서의 측정값이며, 따라서 이를 측정값으로 선택함으로써 결과값의 신뢰성을 크게 향상시킬 수 있다.At this time, in the present invention, it is not possible to check whether the sample surface is in focus, but all signals generated in each step are acquired while adjusting the relative distance between the sample and the objective lens at a predetermined equal interval. Among them, the Raman spectrum signal in the focal plane where the signal strength is the maximum is the measurement value in the state that the sample surface is in focus (or closest to accuracy). can be greatly improved.
이 과정에서 사용되는 본 발명의 액추에이터(170)는, 자동 포커싱 기능에서 요구되는 정밀한 동작구현을 할 필요가 없이, 기결정된 등간격으로 이동하기만 하면 된다. 이 때 상기 액추에이터(170)의 이동범위는, 상기 시료(500)의 도포두께나 SERS 스트립 또는 기판의 두께 등을 고려하여 미리 적절한 범위로 결정될 수 있다. 물론 상기 액추에이터(170)가 이동하면서 형성되는 초점평면이 상기 시료(500) 표면과 만나지 못하면 안되므로, 보다 엄밀하게는, 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라 형성되는 복수 개의 초점평면의 형성범위 내에 상기 시료(500)가 완전히 포함되도록 형성되도록 하면 된다. 이 정도의 정밀도로 움직임을 구현하는 데에는, 상대적으로 저사양의 모터 스테이지(motorized stage), 피에조구동기(Piezoelectric actuator), VCM(Voice coil motor) 등이 쉽게 활용될 수 있으며, 이 정도의 부품은 장치 제작비용이나 부피 등에 큰 영향을 끼치지 않는다.The actuator 170 of the present invention used in this process does not need to implement the precise operation required for the automatic focusing function, but only moves at predetermined equal intervals. At this time, the movement range of the actuator 170 may be determined in advance in an appropriate range in consideration of the thickness of the sample 500 or the thickness of the SERS strip or substrate. Of course, since the focal plane formed while the actuator 170 moves must not meet the surface of the sample 500, more precisely, the actuator 170 is positioned between the sample 500 and the objective lens 130. It may be formed so that the sample 500 is completely included within the formation range of the plurality of focal planes formed by adjusting the relative distance. A relatively low-spec motorized stage, piezoelectric actuator, and VCM (Voice coil motor) can be easily utilized to implement movement with this level of precision, and parts of this level can be used to manufacture devices. It does not significantly affect cost or volume.
즉 본 발명의 원리를 이용하면, 고가의 정밀동작을 요하는 자동 포커싱 기능을 적용하지 않고, 상대적으로 훨씬 저가 및 저성능의 액추에이터를 구비하기만 하면 되며, 따라서 장치의 소형화 및 저비용화에의 악영향도 거의 발생하지 않는다. 이에 따라 궁극적으로는, 핸드헬드용 소형 라만 분광기에서의 휴대성, 편의성, 경제성을 거의 그대로 유지하면서도 측정값의 정확도 및 신뢰성을 비약적으로 향상시킬 수 있게 되는 것이다.That is, if the principle of the present invention is used, the automatic focusing function that requires an expensive and precise operation is not applied, and a relatively low-cost and low-performance actuator only needs to be provided. also rarely occurs. Accordingly, ultimately, it is possible to dramatically improve the accuracy and reliability of the measurement values while maintaining the portability, convenience, and economical efficiency of the handheld small Raman spectrometer.
[2] 본 발명의 포커스 스캐닝 라만 분광기의 구성[2] Construction of the focus scanning Raman spectrometer of the present invention
도 6 내지 도 8은 본 발명의 포커스 스캐닝 라만 분광기의 구성 실시예를 도시하고 있다. 본 발명의 포커스 스캐닝 라만 분광기(100)는, 라만 스펙트럼 신호를 측정하는 광학계 자체는 도 2의 기본적인 라만 분광기 구성을 그대로 따른다. 즉, 상기 포커스 스캐닝 라만 분광기(100)는 기본적으로, 레이저 광을 조사하는 광원(110), 상기 광원(110)에서 조사된 레이저 광을 반사시켜 시료(500) 쪽으로 입사시키거나, 상기 시료(500)에서 산란된 광을 투과시키도록 형성되는 광분할기(120), 상기 광분할기(120)에서 산란되어 온 광을 집광하여 상기 시료(500)으로 조사하는 대물렌즈(130), 상기 시료(500)에서 산란되어 상기 광분할기(120)를 투과하여 온 광 중 라만 이동에 해당하는 성분을 필터링하여 투과시키는 필터(140), 상기 필터(140)를 투과하여 온 광을 수광하는 수광렌즈(150), 상기 수광렌즈(150)로 수광되어 온 광을 진입받아 스펙트럼을 측정하는 스펙트로미터(160)를 포함한다.6 to 8 show a configuration embodiment of the focus scanning Raman spectrometer of the present invention. In the focus scanning Raman spectrometer 100 of the present invention, the optical system itself for measuring the Raman spectrum signal follows the basic configuration of the Raman spectrometer shown in FIG. 2 as it is. That is, the focus scanning Raman spectrometer 100 is basically a light source 110 irradiating laser light, reflects the laser light irradiated from the light source 110 and makes it incident toward the sample 500 , or the sample 500 . ) a light splitter 120 that is formed to transmit the scattered light, an objective lens 130 that collects the light scattered from the light splitter 120 and irradiates it to the sample 500, the sample 500 A filter 140 that filters and transmits a component corresponding to a Raman shift among the light scattered from the light splitter 120 and transmitted through the light splitter 120, a light receiving lens 150 that receives the light transmitted through the filter 140, and a spectrometer 160 that receives the light received by the light receiving lens 150 and measures a spectrum.
이 때 앞서 설명한 바와 같이, 본 발명의 포커스 스캐닝 라만 분광기(100)는, 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키기 위한 액추에이터(170)가 구비된다. 상기 액추에이터(170)가 실제적으로 어디에 구비되느냐에 따라 도 6 내지 도 8과 같은 여러 실시예 구성들이 나오게 된 것이다.At this time, as described above, the focus scanning Raman spectrometer 100 of the present invention adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction. An actuator 170 is provided for Depending on where the actuator 170 is actually provided, various exemplary configurations as shown in FIGS. 6 to 8 have come out.
도 6은, 상기 포커스 스캐닝 라만 분광기(100)가 핸드헬드용 소형 라만 분광기일 경우의 보다 구체적인 구성에 적용된 상기 액추에이터(170)의 실시예를 도시한다.FIG. 6 shows an embodiment of the actuator 170 applied to a more specific configuration in the case where the focus scanning Raman spectrometer 100 is a handheld compact Raman spectrometer.
핸드헬드용 소형 라만 분광기의 경우, 광학계의 조건변동을 최소화하기 위해, 상기 광원(110), 상기 광분할기(120), 상기 대물렌즈(130), 상기 필터(140), 상기 수광렌즈(150), 상기 스펙트로미터(160)가 일체로 모듈화되어 있다. 즉 상술한 여러 부품들이 어떤 용기나 프레임에 수용 또는 지지되어 형성되는 것이다. 이처럼 상술한 각부가 어떤 용기나 프레임에 수용 또는 지지되어 일체화된 결합체를 모듈(180)이라 칭한다.In the case of a handheld small Raman spectrometer, in order to minimize the change in conditions of the optical system, the light source 110 , the light splitter 120 , the objective lens 130 , the filter 140 , and the light receiving lens 150 ) , the spectrometer 160 is integrally modularized. That is, the various parts described above are accommodated or supported in a certain container or frame. In this way, the above-mentioned respective parts are accommodated or supported in a certain container or frame, and the integrated body is called a module 180 .
핸드헬드용 소형 라만 분광기에서는 또한, 상기 모듈(180)을 외부환경으로부터 보호하고 손잡이 등을 구성하여 사용자가 쉽게 휴대하여 사용할 수 있게 하는 케이스(190)를 포함한다. 즉 상기 케이스(190)는 기본적으로 상기 모듈(180) 및 상기 액추에이터(170)를 수용하는 역할을 하는데, 이 때 원활한 측정작업을 위해서 당연히 상기 케이스(190)의 일측에는 상기 시료(500)가 출입가능한 시료출입구(195)가 형성된다.The small-sized Raman spectrometer for handheld also includes a case 190 that protects the module 180 from the external environment and includes a handle so that a user can easily carry it and use it. That is, the case 190 basically serves to accommodate the module 180 and the actuator 170 . At this time, of course, the sample 500 enters and exits one side of the case 190 for a smooth measurement operation. Possible sample inlet 195 is formed.
도 6의 실시예에서는, 상기 액추에이터(170)가 상기 모듈(180)을 광축방향으로 이동시키도록 형성된다. 핸드헬드용 소형 라만 분광기의 경우 기본적으로 도 6과 같이 상기 모듈(180) 및 상기 케이스(190)를 기본적으로 구비하고 있으므로, 도 6과 같은 구성이 직관적으로 가장 설계 및 실현하기 쉬운 구성이 될 수 있다. 다만 상기 액추에이터(170)가 움직여야 하는 대상이 상기 모듈(180) 전체가 됨에 따라 상기 액추에이터(170)의 성능이 좀더 높아야 한다는 약간의 단점이 있다.In the embodiment of FIG. 6 , the actuator 170 is formed to move the module 180 in the optical axis direction. In the case of a small Raman spectrometer for handheld use, the module 180 and the case 190 are basically provided as shown in FIG. 6, so the configuration shown in FIG. 6 can be the most intuitively designed and implemented configuration have. However, there is a slight disadvantage that the performance of the actuator 170 should be higher as the target to which the actuator 170 should move becomes the entire module 180 .
도 7의 실시예에서는, 상기 액추에이터(170)가 상기 시료(500)를 광축방향으로 이동시키도록 형성된다. 이 경우 상기 시료(500)는 실질적으로 SERS 스트립 또는 기판 형태로서 매우 가볍기 때문에, 도 6의 실시예에 비해 보다 저사양의 장치로 상기 액추에이터(170)를 구현할 수 있다. 다만 이 경우 상기 시료(500)가 안정적으로 고정된 상태가 아니게 되기 때문에 오차 발생 가능성이 조금 더 커질 우려가 있다.In the embodiment of FIG. 7 , the actuator 170 is formed to move the sample 500 in the optical axis direction. In this case, since the sample 500 is substantially light in the form of a SERS strip or a substrate, the actuator 170 can be implemented as a device with a lower specification compared to the embodiment of FIG. 6 . However, in this case, since the sample 500 is not stably fixed, there is a concern that the possibility of error occurrence is slightly increased.
도 8의 실시예에서는, 상기 액추에이터(170)가 상기 대물렌즈(130)를 광축방향으로 이동시키도록 형성된다. 이 경우 상기 대물렌즈(130)로의 입사광이 평행광이 되도록 구성되어야 한다는 조건이 추가되어야 하지만, 상기 모듈(180) 전체를 이동시킬 필요가 없어 장치 사양을 더욱 낮출 수 있고, 또한 상기 시료(500)의 위치안정성을 보다 확고히 확보할 수 있는 장점이 있다.In the embodiment of FIG. 8 , the actuator 170 is formed to move the objective lens 130 in the optical axis direction. In this case, a condition must be added that the incident light to the objective lens 130 is configured to be a parallel light, but it is not necessary to move the entire module 180, so that the device specification can be further lowered, and the sample 500 It has the advantage of more firmly securing the positional stability of
[3] 본 발명의 포커스 스캐닝 라만 분광기를 이용한 측정방법[3] Measurement method using focus scanning Raman spectrometer of the present invention
이러한 본 발명의 포커스 스캐닝 라만 분광기(100)를 이용한 측정방법을 단계적으로 설명하면 다음과 같다. 본 발명의 포커스 스캐닝 라만 분광기(100)를 이용한 측정방법은, 시료배치단계, 단계측정단계, 신호결정단계를 포함한다.The measurement method using the focus scanning Raman spectrometer 100 of the present invention will be described in stages as follows. The measuring method using the focus scanning Raman spectrometer 100 of the present invention includes a sample arrangement step, a step measurement step, and a signal determination step.
상기 시료배치단계에서는, 상기 시료(500)가 상기 대물렌즈(130) 하방에 배치된다. 실제 현장에서라면, SERS 스트립 또는 기판을 핸드헬드용 소형 라만 분광기 케이스(190)의 시료출입구(195)에 밀어넣는 동작이 될 것이다.In the sample arrangement step, the sample 500 is disposed below the objective lens 130 . In an actual field, it would be an operation of pushing the SERS strip or substrate into the sample inlet 195 of the handheld small Raman spectrometer case 190 .
상기 단계측정단계에서는, 상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키며, 각 단계마다 형성되는 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호가 각각 획득된다. 즉 상기 액추에이터(170)가 도 4와 같은 단계적 동작을 구현함에 따라, 도 5와 같은 복수 개의 라만 스펙트럼 신호가 획득되는 것이다.In the step measuring step, the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction, and a plurality of steps formed at each step Raman spectral signals generated in each of the focal planes are respectively acquired. That is, as the actuator 170 implements the stepwise operation as shown in FIG. 4 , a plurality of Raman spectrum signals as shown in FIG. 5 are obtained.
상기 신호결정단계에서는, 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호 중 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호가 측정값으로서 선택된다. 앞서 설명한 바와 같이, 상기 시료(500) 표면에 초점이 정확하게 맞았을 경우 신호세기가 가장 세게 된다는 것은 잘 알려진 이론적 사실이므로, 초점이 맞았는지의 여부를 모르는 상태라 하더라도 신호세기가 최대값이 되는 신호를 선택한다면 그 신호는 초점이 정확히 맞거나 또는 정확에 가깝게 맞은 상태에서 얻어진 신호라고 충분히 간주할 수 있다. 이에 따라 이렇게 선택된 신호의 신뢰성이 향상되는 것이다.In the signal determination step, a Raman spectrum signal in a focal plane having a maximum signal intensity among Raman spectrum signals generated in each of a plurality of focal planes is selected as a measurement value. As described above, since it is a well-known theoretical fact that the signal strength is the strongest when the sample 500 is precisely focused on the surface, the signal strength is the maximum value even if it is not known whether the focus is achieved. If is selected, the signal can be sufficiently regarded as a signal obtained when the focus is precisely or close to accurate. Accordingly, the reliability of the selected signal is improved.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application is varied, and anyone with ordinary knowledge in the field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims It goes without saying that various modifications are possible.
본 발명에 의하면, SERS 스트립 형태의 측정대상을 측정하는 핸드헬드용 소형 라만 분광기에 있어서, 장치 소형화에 악영향을 주지 않는 범위 내의 간소한 구성을 부가하는 것만으로도 보다 정확하고 신뢰성있는 결과를 얻을 수 있도록 해 주는 큰 효과가 있다. 이에 따라 현장 실무자들이 가볍고 저렴한 휴대용 장비를 이용하여 보다 정확한 라만 분광 결과를 얻을 수 있게 해 주기 때문에 전반적인 업무효율을 향상시킬 수 있다.According to the present invention, in a handheld small Raman spectrometer for measuring a measurement object in the form of a SERS strip, more accurate and reliable results can be obtained just by adding a simple configuration within a range that does not adversely affect device miniaturization. It has a huge effect on making it happen. Accordingly, it is possible to improve overall work efficiency by enabling field workers to obtain more accurate Raman spectroscopy results using light and inexpensive portable equipment.
Claims (11)
- 레이저 광을 조사하는 광원(110);a light source 110 for irradiating laser light;상기 광원(110)에서 조사된 레이저 광을 반사시켜 시료(500) 쪽으로 입사시키거나, 상기 시료(500)에서 산란된 광을 투과시키도록 형성되는 광분할기(120);a light splitter 120 formed to reflect the laser light irradiated from the light source 110 and make it incident toward the sample 500 or transmit the light scattered from the sample 500;상기 광분할기(120)에서 산란되어 온 광을 집광하여 상기 시료(500)으로 조사하는 대물렌즈(130);an objective lens 130 for condensing the light scattered by the light splitter 120 and irradiating it to the sample 500;상기 시료(500)에서 산란되어 상기 광분할기(120)를 투과하여 온 광 중 라만 이동에 해당하는 성분을 필터링하여 투과시키는 필터(140);a filter 140 that filters and transmits a component corresponding to a Raman shift among the light scattered from the sample 500 and transmitted through the light splitter 120;상기 필터(140)를 투과하여 온 광을 수광하는 수광렌즈(150);a light receiving lens 150 for receiving the light transmitted through the filter 140;상기 수광렌즈(150)로 수광되어 온 광을 진입받아 스펙트럼을 측정하는 스펙트로미터(160);a spectrometer 160 that receives the light received by the light receiving lens 150 and measures a spectrum;상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키는 액추에이터(170);an actuator 170 for adjusting the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction;를 포함하는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.A focus scanning Raman spectrometer comprising a.
- 제 1항에 있어서, 상기 포커스 스캐닝 라만 분광기(100)는,According to claim 1, wherein the focus scanning Raman spectrometer (100),상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라 형성되는 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호를 각각 획득하되,Raman spectrum signals generated in each of a plurality of focal planes formed as the actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 are respectively acquired,신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호를 측정값으로서 선택하는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.A focus-scanning Raman spectrometer, characterized in that a Raman spectrum signal in a focal plane at which signal intensity becomes a maximum value is selected as a measurement value.
- 제 1항에 있어서, 상기 포커스 스캐닝 라만 분광기(100)는,According to claim 1, wherein the focus scanning Raman spectrometer (100),상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 조절함에 따라 형성되는 복수 개의 초점평면의 형성범위 내에 상기 시료(500)가 완전히 포함되도록 형성되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.The actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 so that the sample 500 is completely included within the forming range of a plurality of focal planes, characterized in that Focus scanning Raman spectroscopy.
- 제 1항에 있어서, 상기 포커스 스캐닝 라만 분광기(100)는,According to claim 1, wherein the focus scanning Raman spectrometer (100),상기 광원(110), 상기 광분할기(120), 상기 대물렌즈(130), 상기 필터(140), 상기 수광렌즈(150), 상기 스펙트로미터(160)가 일체화되어 형성되는 모듈(180);a module 180 in which the light source 110, the light splitter 120, the objective lens 130, the filter 140, the light receiving lens 150, and the spectrometer 160 are integrally formed;상기 모듈(180) 및 상기 액추에이터(170)를 수용하며 일측에 상기 시료(500)가 출입가능한 시료출입구(195)가 형성되는 케이스(190);a case 190 accommodating the module 180 and the actuator 170 and having a sample inlet 195 through which the sample 500 can be entered and exited on one side;를 포함하는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.A focus scanning Raman spectrometer comprising a.
- 제 4항에 있어서, 상기 액추에이터(170)는,According to claim 4, wherein the actuator 170,상기 모듈(180)을 광축방향으로 이동시키도록 형성되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.Focus scanning Raman spectrometer, characterized in that it is formed to move the module (180) in the optical axis direction.
- 제 1항에 있어서, 상기 액추에이터(170)는,According to claim 1, wherein the actuator 170,상기 시료(500)를 광축방향으로 이동시키도록 형성되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.Focus scanning Raman spectrometer, characterized in that it is formed to move the sample (500) in the optical axis direction.
- 제 1항에 있어서, 상기 액추에이터(170)는,According to claim 1, wherein the actuator 170,상기 대물렌즈(130)를 광축방향으로 이동시키도록 형성되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.Focus scanning Raman spectrometer, characterized in that it is formed to move the objective lens (130) in the optical axis direction.
- 제 4항에 있어서, 상기 포커스 스캐닝 라만 분광기(100)는,According to claim 4, wherein the focus scanning Raman spectrometer (100),사용자가 휴대 및 이동하면서 사용이 가능한 핸드헬드용인 것을 특징으로 하는 포커스 스캐닝 라만 분광기.A focus scanning Raman spectrometer, characterized in that it is for handheld use that can be carried and moved by a user.
- 제 1항에 있어서, 상기 시료(500)는,According to claim 1, wherein the sample 500,SERS 기판 또는 SERS 스트립 형태의 베이스(550) 상에 도포되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.Focus scanning Raman spectrometer, characterized in that it is applied on the SERS substrate or the base 550 in the form of a SERS strip.
- 제 1항에 있어서, 상기 액추에이터(170)는,According to claim 1, wherein the actuator 170,모터 스테이지(motorized stage), 피에조구동기(Piezoelectric actuator), VCM(Voice coil motor) 중 선택되는 적어도 하나로 구현되는 것을 특징으로 하는 포커스 스캐닝 라만 분광기.A focus scanning Raman spectrometer, characterized in that it is implemented with at least one selected from a motorized stage, a piezoelectric actuator, and a voice coil motor (VCM).
- 제 1항에 의한 포커스 스캐닝 라만 분광기(100)를 이용한 측정방법에 있어서,In the measuring method using the focus scanning Raman spectrometer 100 according to claim 1,상기 시료(500)가 상기 대물렌즈(130) 하방에 배치되는 시료배치단계;a sample arrangement step in which the sample 500 is disposed under the objective lens 130;상기 액추에이터(170)가 상기 시료(500) 및 상기 대물렌즈(130) 사이의 상대거리를 광축방향을 따라 기결정된 등간격의 복수 단계로 조절시키며, 각 단계마다 형성되는 복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호가 각각 획득되는 단계측정단계;The actuator 170 adjusts the relative distance between the sample 500 and the objective lens 130 in a plurality of steps at predetermined equal intervals along the optical axis direction, and occurs in each of a plurality of focal planes formed for each step. Step measuring step of obtaining each of the Raman spectrum signals;복수 개의 초점평면 각각에서 발생되는 라만 스펙트럼 신호 중 신호세기가 최대값이 되는 초점평면에서의 라만 스펙트럼 신호가 측정값으로서 선택되는 신호결정단계;a signal determination step of selecting a Raman spectrum signal in a focal plane having a maximum signal intensity among Raman spectrum signals generated in each of a plurality of focal planes as a measurement value;를 포함하는 것을 특징으로 하는 포커스 스캐닝 라만 분광기를 이용한 측정방법.A measurement method using a focus scanning Raman spectrometer, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0053606 | 2021-04-26 | ||
KR1020210053606A KR102347488B1 (en) | 2021-04-26 | 2021-04-26 | Focus scanning Raman spectrometer and measuring method with the same Raman spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022231111A1 true WO2022231111A1 (en) | 2022-11-03 |
Family
ID=79355288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/003080 WO2022231111A1 (en) | 2021-04-26 | 2022-03-04 | Raman spectrometer for focus scanning and measurement method using raman spectrometer |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102347488B1 (en) |
WO (1) | WO2022231111A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102347488B1 (en) * | 2021-04-26 | 2022-01-07 | 나노스코프시스템즈 주식회사 | Focus scanning Raman spectrometer and measuring method with the same Raman spectrometer |
KR102692390B1 (en) * | 2023-11-20 | 2024-08-07 | 나노스코프시스템즈 주식회사 | Fluorescence compensating Raman spectrometer and measuring method with the same Raman spectrometer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07306135A (en) * | 1994-05-13 | 1995-11-21 | Jasco Corp | Spectroscope device |
CN104316507A (en) * | 2014-10-14 | 2015-01-28 | 上海交通大学 | Raman signal detection system and method |
CN106383105A (en) * | 2016-08-29 | 2017-02-08 | 上海交通大学 | Raman spectrum measuring device and method capable of automatically adjusting distance between device and measured sample |
CN107907512A (en) * | 2017-10-13 | 2018-04-13 | 中国科学院上海技术物理研究所 | A kind of adaptive Raman fluorescence imaging method for combined use of survey of deep space microcell |
KR101965803B1 (en) * | 2018-10-30 | 2019-04-05 | 나노스코프시스템즈 주식회사 | Raman spectroscopy having laser power control apparatus |
KR102347488B1 (en) * | 2021-04-26 | 2022-01-07 | 나노스코프시스템즈 주식회사 | Focus scanning Raman spectrometer and measuring method with the same Raman spectrometer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014215201A (en) * | 2013-04-26 | 2014-11-17 | 凸版印刷株式会社 | Substrate for adsorbing raman spectroscopic sample, and creation method thereof |
JP6484780B1 (en) * | 2018-04-03 | 2019-03-20 | フォトメディカル合同会社 | Faint light detection system and faint light detection method |
-
2021
- 2021-04-26 KR KR1020210053606A patent/KR102347488B1/en active IP Right Grant
-
2022
- 2022-03-04 WO PCT/KR2022/003080 patent/WO2022231111A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07306135A (en) * | 1994-05-13 | 1995-11-21 | Jasco Corp | Spectroscope device |
CN104316507A (en) * | 2014-10-14 | 2015-01-28 | 上海交通大学 | Raman signal detection system and method |
CN106383105A (en) * | 2016-08-29 | 2017-02-08 | 上海交通大学 | Raman spectrum measuring device and method capable of automatically adjusting distance between device and measured sample |
CN107907512A (en) * | 2017-10-13 | 2018-04-13 | 中国科学院上海技术物理研究所 | A kind of adaptive Raman fluorescence imaging method for combined use of survey of deep space microcell |
KR101965803B1 (en) * | 2018-10-30 | 2019-04-05 | 나노스코프시스템즈 주식회사 | Raman spectroscopy having laser power control apparatus |
KR102347488B1 (en) * | 2021-04-26 | 2022-01-07 | 나노스코프시스템즈 주식회사 | Focus scanning Raman spectrometer and measuring method with the same Raman spectrometer |
Also Published As
Publication number | Publication date |
---|---|
KR102347488B1 (en) | 2022-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022231111A1 (en) | Raman spectrometer for focus scanning and measurement method using raman spectrometer | |
US6791676B1 (en) | Spectrophotometric and nephelometric detection unit | |
JP3815969B2 (en) | Multiplex fluorescence detection in microfluidic devices | |
AU751246B2 (en) | Set-up of measuring instruments for the parallel readout of SPR sensors | |
KR102359863B1 (en) | Auto-focusing Raman spectrometer and measuring method with the same Raman spectrometer | |
WO2010062150A2 (en) | Surface plasmon resonance sensor using beam profile ellipsometry | |
WO2010062149A2 (en) | Multi-channel surface plasmon resonance sensor using beam profile ellipsometry | |
EP3460456A1 (en) | An apparatus for detecting fluorescent light emitted from a sample, a biosensor system, and a detector for detecting supercritical angle fluorescent light | |
WO2011117565A2 (en) | Alignment methods and systems and devices using them | |
WO2010110523A1 (en) | Optical sensor employing surface plasmon resonance | |
US20210190693A1 (en) | Adjustable extended focus raman system | |
CN115735116A (en) | Micro-raman spectrometry device and method for adjusting micro-raman spectrometry device | |
CN101893509B (en) | Device and method for measuring modulation transfer function of large-numerical aperture micro objective | |
CN111982007A (en) | Contrast spectrum system and measurement method for realizing depth measurement of micro groove with high depth-to-width ratio | |
US20070165215A1 (en) | Contactless corrosion sensor | |
EP2288883B1 (en) | Optical device and method for use in spectroscopy | |
CN209910826U (en) | micro-Raman detection device | |
WO2019203480A1 (en) | Spectrometer | |
JP2745576B2 (en) | Spectrophotometer | |
US20190091695A1 (en) | A prism array based portable microplate reader | |
CN214953036U (en) | Micro-droplet fluorescence signal detection device containing multiple photomultiplier tubes | |
WO2023115537A1 (en) | Microplate reader | |
KR100408811B1 (en) | Apparatus for Plastics distinction using NIR | |
JP2001004544A (en) | Raman spectrometric apparatus | |
EP4381279A1 (en) | Capillary array window holder related systems and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22795945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.04.2024) |