WO2022230932A1 - Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer - Google Patents

Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer Download PDF

Info

Publication number
WO2022230932A1
WO2022230932A1 PCT/JP2022/019058 JP2022019058W WO2022230932A1 WO 2022230932 A1 WO2022230932 A1 WO 2022230932A1 JP 2022019058 W JP2022019058 W JP 2022019058W WO 2022230932 A1 WO2022230932 A1 WO 2022230932A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polyether
polyether copolymer
ppm
formula
copolymer according
Prior art date
Application number
PCT/JP2022/019058
Other languages
French (fr)
Japanese (ja)
Inventor
颯志 並木
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2022230932A1 publication Critical patent/WO2022230932A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Definitions

  • the present invention relates to an aromatic polyether copolymer, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer. Specifically, the present invention relates to an aromatic polyether copolymer excellent in workability, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer.
  • PEEK Polyetheretherketone
  • Patent Document 1 Polyetheretherketone
  • Patent Document 1 In the conventional technology including Patent Document 1, there is room for further improvement in terms of such workability.
  • One of the objects of the present invention is to provide an aromatic polyether copolymer excellent in workability, a method for producing the aromatic polyether copolymer, and a method for adjusting the thermophysical properties of the aromatic polyether copolymer. be.
  • an aromatic polyether copolymer comprising a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
  • a method for producing an aromatic polyether copolymer comprising reacting a dihalogenobenzophenone, a dihydric phenol, and a dihydric phenyl ether. 8. 8. The method for producing an aromatic polyether copolymer according to 7, wherein the dihalogenobenzophenone is difluorobenzophenone. 9. 9. The method for producing an aromatic polyether copolymer according to 8, wherein the difluorobenzophenone is 4,4'-difluorobenzophenone. 10. 10. The method for producing an aromatic polyether copolymer according to any one of 7 to 9, wherein the dihydric phenol is hydroquinone. 11. 11. 11.
  • thermophysical properties of an aromatic polyether copolymer containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2), By adjusting the molar ratio of the repeating unit represented by the formula (2) to the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2), the aromatic poly The above method, comprising adjusting the thermophysical properties of the ether copolymer. 16.
  • thermophysical properties of an aromatic polyether copolymer according to 15 wherein the crystallization temperature Tc of the aromatic polyether copolymer is adjusted as the thermophysical property. 17. 17. The method for adjusting the thermophysical properties of the aromatic polyether copolymer according to 15 or 16, wherein the exothermic peak width due to crystallization observed in differential scanning calorimetry of the aromatic polyether copolymer as the thermophysical property is adjusted. .
  • an aromatic polyether copolymer with excellent workability, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer.
  • Aromatic polyether copolymer An aromatic polyether copolymer according to one aspect of the present invention includes a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2) .
  • the repeating unit represented by formula (1) and the repeating unit represented by formula (2) are different from each other, and correspond to the repeating unit represented by formula (2) in the aromatic polyether copolymer.
  • the partial structure is regarded as a repeating unit represented by formula (2) and not regarded as a repeating unit represented by formula (1).
  • the aromatic polyether copolymer according to this aspect an effect of excellent workability can be obtained.
  • the molar ratio of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (2) (for example, as a "peak area ratio" described later) is By adjusting, the thermophysical properties of the aromatic polyether copolymer can be adjusted. The processability can be improved by adjusting the thermophysical properties toward desired values according to various processing conditions.
  • the aromatic polyether copolymer according to this embodiment has thermophysical properties such as crystallization temperature T c , glass transition temperature T g , melting point T m , difference between crystallization temperature T c and melting point T m (T m ⁇ T c ) and an exothermic peak width due to crystallization observed in differential scanning calorimetry (details will be described later, but it corresponds to the crystallization speed).
  • T c crystallization temperature
  • T g glass transition temperature
  • T m melting point
  • T m difference between crystallization temperature T c and melting point T m
  • T m ⁇ T c difference between crystallization temperature T c and melting point T m
  • an exothermic peak width due to crystallization observed in differential scanning calorimetry (details will be described later, but it corresponds to the crystallization speed).
  • One or more selected from the group can be adjusted.
  • the crystallization temperature Tc is increased to give priority to production efficiency.
  • the crystallization temperature Tc can be lowered to give priority to molding accuracy.
  • the aromatic polyether copolymer according to this aspect even if the crystallization temperature Tc is changed by the molar ratio described above, the glass transition temperature Tg and the melting point Tm change relatively slowly. From another point of view, the aromatic polyether copolymer according to this aspect can be adjusted to the difference between the crystallization temperature Tc and the glass transition temperature Tg , and the crystallization temperature The difference between Tc and melting point Tm can be adjusted respectively. This also contributes to the improvement of workability.
  • the aromatic polyether copolymer according to this aspect can reduce the difference between the crystallization temperature Tc and the melting point Tm , for example, by increasing the crystallization temperature Tc .
  • Tc crystallization temperature
  • the temperature holding time for sufficiently promoting crystallization can be shortened, and the molding cycle can be shortened.
  • productivity can be increased, workability is excellent, and characteristics of a crystalline resin can be favorably imparted to a processed product (for example, a molded product).
  • the aromatic polyether copolymer according to this aspect can increase the difference between the crystallization temperature Tc and the melting point Tm , for example, by lowering the crystallization temperature Tc .
  • the molten aromatic polyether copolymer for example, molding with a mold
  • the molding temperature for example, the temperature of the mold
  • the processability is excellent, and the characteristics of a crystalline resin can be favorably imparted to a processed product (for example, a molded product).
  • the aromatic polyether copolymer according to this aspect can be applied to various processing conditions with high versatility, and can exhibit excellent processability depending on the processing conditions.
  • the molar ratio between the repeating unit represented by formula (1) and the repeating unit represented by formula (2) is not particularly limited. This molar ratio can be adjusted appropriately so as to obtain the desired crystallization temperature Tc .
  • the integral ratio Y represented by the following formula (I Y ) in 1 H-NMR measurement of the aromatic polyether copolymer can be used.
  • Y [%] ⁇ (A/8)/(A/8+B/4) ⁇ x 100 (I Y )
  • A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm
  • B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm.
  • a peak derived from the repeating unit represented by formula (2) is observed in the integral range corresponding to the integral value A (chemical shift range from 7.15 ppm to 7.23 ppm).
  • the integral ratio Y is the ratio of the repeating units represented by the formula (2) to the total of the repeating units represented by the formula (1) and the repeating units represented by the formula (2) contained in the aromatic polyether copolymer. Match the molar ratio.
  • the integral ratio Y can be appropriately adjusted so that the aromatic polyether copolymer is imparted with desired thermophysical properties.
  • the integral ratio Y is greater than 0% and less than 100%, preferably 0.1-99.9%, preferably 5-95%.
  • the integral ratio Y is, for example, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60% , 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% or 0%, 0.1%, 0.5%, 1% above and below these point values, respectively, Ranges up to and including 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 9.5%, 9.9% or 10%.
  • This range can be selected within a range in which the integral ratio Y exceeds 0% and is less than 100%.
  • the point value is 50%, and the range including 5% above and 10% below the point value is 40 to 55%.
  • the integral ratio Y is a value measured by the method described in Examples.
  • the integral ratio Y is preferably 0.1-49.9%, more preferably 3-25%.
  • the aromatic polyether copolymer not only has excellent processability, but also exhibits excellent toughness.
  • the crystallization temperature Tc of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Normally, the crystallization temperature Tc can be lowered by increasing the integral ratio Y, and the crystallization temperature Tc can be increased by decreasing the integral ratio Y. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
  • the crystallization temperature Tc of the aromatic polyether copolymer is 260°C or higher and 300°C or lower.
  • the crystallization temperature Tc is a value measured by the method described in Examples.
  • the glass transition temperature Tg of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Increasing the integral ratio Y tends to lower the glass transition temperature Tg , and decreasing the integral ratio Y tends to raise the glass transition temperature Tg . This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
  • the glass transition temperature T g of the aromatic polyether copolymer is 130° C. or higher and 150° C. or lower.
  • the glass transition temperature Tg is a value measured by the method described in Examples.
  • the melting point Tm of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Normally, the melting point Tm can be lowered by increasing the integral ratio Y, and the melting point Tm can be increased by decreasing the integral ratio Y. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
  • the aromatic polyether copolymer has a melting point T m of 320° C. or higher and 350° C. or lower.
  • the melting point Tm is a value measured by the method described in Examples.
  • the difference (T m ⁇ T c ) between the crystallization temperature T c and the melting point T m of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Increasing the integral ratio Y tends to increase the difference (T m ⁇ T c ), and decreasing the integral ratio Y tends to decrease the difference (T m ⁇ T c ). This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%. In one embodiment, the difference (T m ⁇ T c ) is 52° C. or higher or 53° C. or higher and is 60° C. or lower.
  • the exothermic peak width due to crystallization observed in differential scanning calorimetry (DSC) of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integration ratio Y.
  • the exothermic peak width tends to increase as the integral ratio Y increases, and the exothermic peak width tends to decrease as the integral ratio Y decreases. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
  • the exothermic peak width corresponds to the crystallization speed of the aromatic polyether copolymer, and it can be said that the smaller the width, the faster the crystallization speed.
  • the exothermic peak width due to crystallization observed in differential scanning calorimetry (DSC) of the aromatic polyether copolymer is 15° C. or less.
  • the lower limit of the exothermic peak width is not particularly limited, and is, for example, 7°C or higher.
  • the exothermic peak width is a value measured by the method described in Examples.
  • the aromatic polyether copolymer has a 1 H-NMR spectrum in which the integral ratio X represented by the following formula (I X ) exceeds 0%.
  • X [%] ⁇ (C/2)/(A/8+B/4) ⁇ x 100 ( IX ) (In formula (I X ), A is the integrated value in the range of chemical shift 7.15 ppm to 7.23 ppm, B is the integrated value in the range of chemical shift 7.32 ppm to 7.42 ppm, C is the chemical shift from 7.42 ppm It is an integrated value in the range of 7.49 ppm.)
  • the integral ratio X represented by the formula (I X ) will be described.
  • a peak derived from the repeating unit represented by formula (2) is observed in the integral range corresponding to the integral value A (chemical shift range from 7.15 ppm to 7.23 ppm).
  • a peak derived from the repeating unit represented by formula (1) is observed in the integral range corresponding to the integral value B (chemical shift range from 7.32 ppm to 7.42 ppm).
  • the integral range corresponding to the integral value C (chemical shift range from 7.42 ppm to 7.49 ppm)
  • a peak derived from fluorine atoms bonded to the main chain end of the aromatic polyether copolymer is observed. .
  • the fact that the integral ratio X exceeds 0% indicates the presence of an aromatic polyether copolymer having a fluorine atom bonded to at least one terminal of the main chain.
  • the integral ratio X is a value measured by the method described in Examples.
  • a method of obtaining an aromatic polyether copolymer having an integral ratio X of more than 0% a method of using a monomer containing a fluorine atom (for example, difluorobenzophenone, etc.) as a raw material for the aromatic polyether copolymer is mentioned. be done.
  • the integral ratio X exceeds 0%, the molar ratio (or the integral ratio Y) between the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) and each thermophysical property described above becomes more linear, and each thermophysical property can be adjusted with high accuracy.
  • the aromatic polyether copolymer has an integral ratio Z represented by the following formula (I Z ) of 0% in the 1 H-NMR spectrum.
  • Z [%] ⁇ (D/2)/(A/8+B/4) ⁇ 100 (I Z )
  • A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm
  • B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm
  • D is the chemical shift from 7.89 ppm It is an integrated value in the range of 7.93 ppm.
  • the integral ratio Z represented by the formula (I Z ) will be explained.
  • the explanation given for the integral ratio X is used.
  • D chemical shift range from 7.89 ppm to 7.93 ppm
  • a peak derived from chlorine atoms bonded to the main chain end of the aromatic polyether copolymer is observed.
  • the fact that the integral ratio Z exceeds 0% indicates the presence of an aromatic polyether copolymer having a chlorine atom bonded to at least one terminal of the main chain.
  • the integral ratio Z is a value measured by the method described in Examples.
  • the integral ratio Z is 0%, that is, when the main chain end of the aromatic polyether copolymer does not have a chlorine atom bonded thereto, the effects of the present invention are exhibited more favorably.
  • a method for making the integral ratio Z 0% there is a method in which a monomer containing a chlorine atom (eg, dichlorobenzophenone, etc.) is not used as a raw material for the aromatic polyether copolymer.
  • the melt flow rate of the aromatic polyether copolymer is not particularly limited.
  • the melt flow rate of the aromatic polyether copolymer is 1500 g/10 min or less, 1000 g/10 min or less, 500 g/10 min or less, 300 g/10 min or less, 200 g/10 min or less, 100 g/10 min or less, 80 g/ 10 min or less, 50 g/10 min or less, 30 g/10 min or less, 20 g/10 min or less, or 10 g/10 min or less, and 0.0001 g/10 min or more, 0.0005 g/10 min or more, or 0.001 g/10 min or more.
  • the melt flow rate of the aromatic polyether copolymer is preferably 100 g/10 min or less.
  • An aromatic polyether copolymer having a melt flow rate of 100 g/10 min or less has a sufficiently high molecular weight and is therefore suitable for pelletization by an extruder or the like. Such pellets can be preferably applied to uses such as injection molding.
  • the melt flow rate is a value measured by the method described in Examples.
  • the terminal structure of the aromatic polyether copolymer is not particularly limited, and may be any structure, such as a hydrogen atom or a halogen atom.
  • the halogen atom includes, for example, fluorine atom, bromine atom, iodine atom and the like, and fluorine atom is preferable.
  • thermophysical properties specifically, the crystallization temperature T c , the glass transition temperature T g , the melting point T m , the crystallization temperature T c and melting point T m (T m - T c ) and exothermic peak width due to crystallization observed in differential scanning calorimetry
  • thermophysical properties suitable for various processing conditions can be flexibly adjusted.
  • terminal structure of the aromatic polyether copolymer may be, for example, the terminal structure represented by the following formula (3).
  • the method of introducing the terminal structure represented by formula (3) into the aromatic polyether copolymer is not particularly limited.
  • the ends having the terminal structure represented by formula (3) are represented by the following formulas (4) or (5), for example.
  • the terminal structure represented by formula (3) can form the terminal represented by formula (4) or (5).
  • the carbonyl groups in formulas (4) and (5) can correspond to the carbonyl groups in formula (1) or (2).
  • the aromatic polyether copolymer does not contain repeating units other than the repeating units represented by formula (1) and the repeating units represented by formula (2).
  • the end of the molecular chain can have a terminal structure as described above.
  • the aromatic polyether copolymer has a structure other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2), as long as the effect of the present invention is not impaired.
  • Including units Other structural units are not particularly limited, and include, for example, repeating units represented by formula (1) or formula (2) in which the linking position is different (the linking position is not para-position).
  • the entire aromatic polyether copolymer (i) a portion excluding the terminal structure from the entire aromatic polyether copolymer, or (iii) the repeating unit represented by the formula (1) for the total of all repeating units constituting the aromatic polyether copolymer
  • the total ratio (% by mass) of the repeating units represented by formula (2) is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more , 97% by mass or more, 99% by mass or more, 99.5% by mass or more, or 100% by mass.
  • a method for producing an aromatic polyether copolymer according to one aspect of the present invention includes reacting a dihalogenobenzophenone, a dihydric phenol, and a dihydric phenyl ether. .
  • Dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether are monomers for producing aromatic polyether copolymers by polymerization.
  • the molar ratio of dihydric phenol and divalent phenyl ether to be subjected to the reaction for example, the total of dihydric phenol and divalent phenyl ether
  • the thermophysical properties of the aromatic polyether copolymer obtained by polymerizing these monomers can be adjusted. Therefore, the effect of being able to produce an aromatic polyether copolymer with excellent workability can be obtained.
  • the description of the aromatic polyether copolymer according to one embodiment of the present invention is used.
  • the dihalogenobenzophenone is 4,4'-dihalogenobenzophenone.
  • the dihydric phenol is hydroquinone.
  • the divalent phenyl ether is 4,4'-dihydroxydiphenyl ether.
  • the 4,4'-dihalogenobenzophenone is not particularly limited, and the two halogen atoms may be the same or different.
  • the two halogen atoms can each independently be a fluorine atom, a bromine atom or an iodine atom.
  • the dihalogenobenzophenone is difluorobenzophenone.
  • the difluorobenzophenone is preferably 4,4'-difluorobenzophenone.
  • An aromatic polyether copolymer is obtained by reacting (polymerizing) these monomers in a reaction mixture containing dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether as monomers.
  • a reaction mixture containing dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether as monomers.
  • the substance amount of dihalogenobenzophenone is bmol, b/a ⁇ 1.00, preferably b /a>1.00, more preferably b/a>1.001, still more preferably b/a>1.002.
  • the reaction mixture includes a solvent.
  • the solvent is not particularly limited, and for example, a neutral polar solvent can be used.
  • neutral polar solvents include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethyl Benzoamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, Nn-propyl-2-pyrrolidone, Nn- Butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5- trimethyl-2-pyrrolidone,
  • the reaction mixture includes a base.
  • the base is not particularly limited, and examples thereof include alkali metal salts and the like.
  • alkali metal salts include alkali metal carbonates, alkali metal hydrogen carbonates, and the like.
  • alkali metal carbonates include potassium carbonate, lithium carbonate, rubidium carbonate, and cesium carbonate.
  • alkali metal hydrogencarbonates include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, rubidium hydrogencarbonate, and cesium hydrogencarbonate.
  • the reaction mixture can contain one or more bases.
  • the blending amount of the base in the reaction mixture (the total blending amount when blending two or more bases) is when the total blending amount of the dihydric phenol and the divalent phenyl ether is 100 mol parts. , 100 mol parts or more, and 180 mol parts or less, 160 mol parts or less, 140 mol parts or less, or 120 mol parts or less. If the total amount of the bases is 100 mol parts or more, the reaction time can be shortened. If the total amount of the bases is 180 mol parts or less, the formation of gel components can be suppressed.
  • the molar ratio of divalent phenyl ether to the total of divalent phenol and divalent phenyl ether subjected to the reaction is more than 0 mol% and less than 100 mol%, It is preferably 0.1 to 99.9 mol %, preferably 5 to 95 mol %.
  • the total concentration of dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether in the reaction mixture is not particularly limited. In one embodiment, the total concentration of dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether in the reaction mixture (based on the blending amount) is 1.0 mol/l or more, 1.2 mol/l or more, 1.3 mol/l 1.4 mol/l or more, or 1.5 mol/l or more, and 6.0 mol/l or less, 5.0 mol/l or less, or 4.0 mol/l or less.
  • monomers other than dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether are not used as the monomers subjected to the reaction described above.
  • the monomers subjected to the reaction described above may contain monomers other than dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether to the extent that the effects of the present invention are not impaired.
  • Other monomers include, for example, a terminal blocking agent (eg, one or more selected from the group consisting of 4-phenoxyphenol and 4-halogenodiphenyl ether) capable of introducing a terminal structure represented by the above formula (3), and the like. are mentioned.
  • the total amount (% by mass) of dihalogenobenzophenone, dihydric phenol and divalent phenyl ether is 50% by mass or more, 60% by mass or more, relative to the amount of all monomers in the reaction mixture, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, 99% by mass or more, 99.5% by mass or more, or 100% by mass.
  • the reaction mixture may or may not contain components other than dihalogenobenzophenone, dihydric phenol, dihydric phenyl ether, base and solvent.
  • substantially 100% by mass unavoidable impurities may be included.
  • the reaction of dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether can be carried out under an inert gas atmosphere.
  • the inert gas is not particularly limited, and examples thereof include nitrogen gas and argon gas.
  • the reaction mixture is heated during the reaction of the dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether.
  • the maximum temperature (maximum temperature) of the reaction mixture during the reaction is not particularly limited as long as it is the temperature at which the aromatic polyether copolymer is produced, and may be, for example, 250 to 350°C.
  • a method for adjusting the thermophysical properties of an aromatic polyether copolymer according to one aspect of the present invention includes an aromatic A method for adjusting the thermophysical properties of a polyether copolymer, which is represented by the formula (2) for the sum of the repeating units represented by the formula (1) and the repeating units represented by the formula (2) and adjusting the molar ratio of the repeating units to adjust the thermophysical properties of the aromatic polyether copolymer.
  • thermophysical properties include, for example, the crystallization temperature T c , the glass transition temperature T g , the melting point T m , the difference between the crystallization temperature T c and the melting point T m (T m ⁇ T c ), and the differential scanning calorific value
  • One or more selected from the group consisting of exothermic peak width due to crystallization observed in the measurement can be adjusted.
  • thermophysical property one or more selected from the group consisting of the crystallization temperature Tc and the exothermic peak width due to crystallization observed in differential scanning calorimetry can be adjusted.
  • An aromatic polyether copolymer whose thermophysical properties are adjusted by the method for adjusting thermophysical properties of an aromatic polyether copolymer according to this aspect exhibits an effect of excellent workability.
  • the method for adjusting the molar ratio of the repeating unit represented by formula (2) to the total of the repeating unit represented by formula (1) and the repeating unit represented by formula (2) includes: A method of adjusting the ratio of monomers (eg, 4,4'-dihalogenobenzophenone, hydroquinone and 4,4'-dihydroxydiphenyl ether) used in producing the aromatic polyether copolymer can be used.
  • monomers eg, 4,4'-dihalogenobenzophenone, hydroquinone and 4,4'-dihydroxydiphenyl ether
  • the molar ratio may be adjusted by adjusting the integral ratio Y, which is one index of the molar ratio.
  • aromatic polyether copolymer according to one aspect of the present invention described above, the aromatic polyether copolymer produced by the method for producing the aromatic polyether copolymer according to one aspect of the present invention, and An aromatic polyether copolymer whose thermophysical properties are adjusted by a method for adjusting thermophysical properties of an aromatic polyether copolymer according to one aspect of the present invention (hereinafter collectively referred to as “aromatic Group polyether copolymer ⁇ ”) is not particularly limited.
  • aromatic polyether copolymer ⁇ can be preferably applied to various processing due to its excellent workability.
  • the aromatic polyether copolymer ⁇ it is preferable to subject the aromatic polyether copolymer ⁇ to molding as an example of processing.
  • molding there is a method of molding the aromatic polyether copolymer ⁇ in a molten state and then cooling and solidifying it.
  • a molded article can be produced by molding the aromatic polyether copolymer ⁇ .
  • known methods such as injection molding, extrusion molding, and blow molding can be used.
  • the aromatic polyether copolymer ⁇ can be press-molded, and a known method such as a cold press method or a hot press method can be used.
  • the aromatic polyether copolymer ⁇ can be used in 3D printer ink and molded by a 3D printer.
  • the aromatic polyether copolymer ⁇ may or may not be subjected to a method of forming a three-dimensional object from powder by selective sintering using electromagnetic radiation.
  • the aromatic polyether copolymer ⁇ may be used to form a composite material containing the aromatic polyether copolymer ⁇ and fibers.
  • the fibers are not particularly limited, and examples thereof include fibers of inorganic compounds. Examples of inorganic compound fibers include glass fibers and carbon fibers.
  • the fibers may be dispersed in the aromatic polyether copolymer ⁇ , or the fibers (for example, in the form of cloth) may be impregnated with the aromatic polyether copolymer ⁇ .
  • a cloth is composed of fibers arranged in a plane. The cloth can be, for example, woven, nonwoven, unidirectional, or the like.
  • a unidirectional material is composed of fibers aligned in one direction.
  • the composite material may be subjected to molding as described above.
  • Example 1 In a 300 ml separable flask, 0.1641 mol of difluorobenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as "DFBP”) and 0.1568 mol of hydroquinone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., abbreviated as “HQ”) are added as monomers. 0.0049 mol of 4,4′-dihydroxydiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as “DHPE”) was added.
  • the molar ratio y of DHPE to the sum of HQ and DHPE is 3 mol %.
  • K 2 CO 3 potassium carbonate
  • a ribbon heater was wound around the top of the separable flask, and glass wool was wound thereon to keep it warm.
  • the entire lower portion of the separable flask was wrapped with a mantle heater.
  • the ribbon heater was set to 150°C and the mantle heater to 165°C, and after heating for 30 minutes while stirring at a stirring speed of 100 rpm, the stirring speed was changed to 210 rpm, and the reaction mixture was heated to 200°C over 30 minutes. . After the temperature was raised, the temperature was maintained at 200°C for 1 hour, and the temperature was again raised to 250°C over 30 minutes.
  • Integral ratio X, integral ratio Y, and integral ratio Z in 1 H-NMR measurement of the polymer were obtained based on integral values A, B, C, and D below.
  • the integral value A is obtained by connecting the intensity of the chemical shift 7.15 ppm and the intensity of 7.42 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as an integrated value in the chemical shift range of 7.15 ppm to 7.23 ppm. If no peak is observed in the chemical shift range from 7.15 ppm to 7.23 ppm, the integrated value A is assumed to be 0.
  • the integral value B is obtained by connecting the intensity of the chemical shift 7.15 ppm and the intensity of 7.42 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.32 ppm to 7.42 ppm. When no peak is observed in the chemical shift range from 7.32 ppm to 7.42 ppm, the integrated value B is set to 0.
  • the integral value C is obtained by connecting the intensity of the chemical shift 7.42 ppm and the intensity of 7.49 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.42 ppm to 7.49 ppm. If no peak is observed in the chemical shift range from 7.42 ppm to 7.49 ppm, the integrated value C is assumed to be 0.
  • the integrated value D is obtained by connecting the intensity of the chemical shift 7.89 ppm and the intensity of 7.93 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.89 ppm to 7.93 ppm. When no peak is observed in the chemical shift range of 7.89 ppm to 7.93 ppm, the integrated value D is set to 0. It was confirmed that the polymer contained the repeating unit represented by formula (1) and the repeating unit represented by formula (2) by checking that the integral ratio Y was more than 0% and less than 100%.
  • thermophysical properties Differential scanning calorimetry (DSC) 5 mg of the obtained polymer (sample) was weighed into an aluminum pan and subjected to temperature scanning measurement using a differential scanning calorimeter (“DSC8500” manufactured by PerkinElmer). The temperature scan was performed by increasing the temperature of the sample from 50°C to 420°C at a rate of 20°C/min (first temperature increase) with nitrogen flowing at 20 ml/min, holding at 420°C for 1 minute, 420°C. C. to 50.degree. C. at -20.degree. C./min (first temperature decrease), hold at 50.degree. gone.
  • DSC8500 differential scanning calorimeter
  • the crystallization temperature Tc was determined by reading the exothermic peak due to crystallization observed during the first temperature drop.
  • the exothermic peak width was obtained as the difference between the "extrapolation start point” and the "extrapolation end point” of the exothermic peak due to crystallization during the first temperature drop.
  • the "extrapolation start point” is the point (temperature) where the tangent line at the point of maximum slope on the high temperature side of the peak intersects with the baseline
  • the "extrapolation end point” is the point (temperature) where the tangent to the point of maximum slope on the low temperature side of the peak intersects the baseline.
  • the difference between "extrapolation start point” - "extrapolation end point” was determined using thermal analysis software "Pyris” manufactured by PerkinElmer.
  • the glass transition temperature Tg was obtained as the temperature at the midpoint of the transition (the midpoint of the displacement) by reading the baseline shift due to the glass transition observed during the second heating.
  • the melting point Tm was obtained as the peak top temperature by reading the endothermic peak due to melting observed during the second heating.
  • melt flow rate (MFR) The melt flow rate of the resulting polymer (sample) was measured using a melt indexer (L-220) manufactured by Tateyama Kagaku High Technologies Co., Ltd. in accordance with JIS K 7210-1: 2014 (ISO 1133-1: 2011). , was measured under the following measurement conditions.
  • MFR Melt flow rate
  • Samples were previously dried at 150° C. for 2 hours or longer.
  • Example 2 Example 1 except that the amount of HQ added was changed to 0.1455 mol, the amount of DHPE added was changed to 0.01617 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 10 mol%.
  • a polymer was obtained in the same manner as in 1.
  • Table 1 shows the results of evaluation in the same manner as in Example 1.
  • Example 3 Example 1 except that the amount of HQ added was changed to 0.1213 mol, the amount of DHPE added was changed to 0.0404 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 25 mol%.
  • a polymer was obtained in the same manner as in 1.
  • Table 1 shows the results of evaluation in the same manner as in Example 1. Also, the 1 H-NMR spectrum is shown in FIG.
  • Example 4 Example 1 except that the amount of HQ added was changed to 0.0809 mol, the amount of DHPE added was changed to 0.0809 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 50 mol%.
  • a polymer was obtained in the same manner as in 1.
  • Table 1 shows the results of evaluation in the same manner as in Example 1.
  • Example 5 Example 1 except that the amount of HQ added was changed to 0.0404 mol, the amount of DHPE added was changed to 0.1213 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 75 mol%.
  • a polymer was obtained in the same manner as in 1.
  • Table 1 shows the results of evaluation in the same manner as in Example 1.
  • Example 1 In Example 1, the same as Example 1 except that the amount of HQ added was changed to 0.1617 mol, the addition of DHPE was omitted, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 0 mol%. to obtain a polymer. Table 1 shows the results of evaluation in the same manner as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

An aromatic polyether copolymer which comprises a repeating unit represented by formula (1) and a repeating unit represented by formula (2).

Description

芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer
 本発明は、芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法に関する。
 具体的には、本発明は、加工性に優れる芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法に関する。
TECHNICAL FIELD The present invention relates to an aromatic polyether copolymer, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer.
Specifically, the present invention relates to an aromatic polyether copolymer excellent in workability, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer.
 結晶性芳香族ポリエーテルの一種であるポリエーテルエーテルケトン(略称「PEEK」)が知られている(特許文献1)。
 PEEKは、優れた耐熱性、機械強度を有し、その特徴から金属代替材料として使用されている。近年では車や航空機、医療分野などにも用途を広げている。
Polyetheretherketone (abbreviated as "PEEK"), which is a type of crystalline aromatic polyether, is known (Patent Document 1).
PEEK has excellent heat resistance and mechanical strength, and is used as a metal substitute material due to these characteristics. In recent years, its applications have expanded to include automobiles, aircraft, and the medical field.
特開昭59-93724号公報JP-A-59-93724
 PEEKを加工(例えば成形)する場合は、その優れた耐熱性故に高温条件での加工が必要になる。しかし、PEEKには種々の加工条件に適した熱物性を柔軟に付与することが困難であり、加工性に限界があった。 When processing (for example, molding) PEEK, processing under high temperature conditions is required due to its excellent heat resistance. However, it is difficult to flexibly impart thermophysical properties suitable for various processing conditions to PEEK, and its workability is limited.
 特許文献1をはじめとする従来の技術には、そのような加工性の観点でさらなる改善の余地が見出された。 In the conventional technology including Patent Document 1, there is room for further improvement in terms of such workability.
 本発明の目的の1つは、加工性に優れる芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法を提供することである。 One of the objects of the present invention is to provide an aromatic polyether copolymer excellent in workability, a method for producing the aromatic polyether copolymer, and a method for adjusting the thermophysical properties of the aromatic polyether copolymer. be.
 本発明者らは鋭意検討の結果、特定の芳香族ポリエーテル共重合体が、種々の加工条件に適した熱物性を柔軟に付与することが可能であり、加工性に優れることを見出し、本発明を完成した。
 本発明によれば、以下の芳香族ポリエーテル共重合体等を提供できる。
1.下記式(1)で表される繰り返し単位と、下記式(2)で表される繰り返し単位とを含む、芳香族ポリエーテル共重合体。
Figure JPOXMLDOC01-appb-C000003
2.H-NMRスペクトルにおいて、下記式(I)で表される積分比Xが0%を超える、1に記載の芳香族ポリエーテル共重合体。
 X[%]={(C/2)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Cは化学シフト7.42ppmから7.49ppmの範囲の積分値である。)
3.H-NMRスペクトルにおいて、下記式(I)で表される積分比Zが0%である、1又は2に記載の芳香族ポリエーテル共重合体。
 Z[%]={(D/2)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Dは化学シフト7.89ppmから7.93ppmの範囲の積分値である。)
4.H-NMRスペクトルにおいて、下記式(I)で表される積分比Yが0.1~99.9%である、1~3のいずれかに記載の芳香族ポリエーテル共重合体。
 Y[%]={(A/8)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値である。)
5.示差走査熱量測定において観測される結晶化による発熱ピーク幅が60℃以下である、1~4のいずれかに記載の芳香族ポリエーテル共重合体。
6.メルトフローレートが100g/10min以下である、1~5のいずれかに記載の芳香族ポリエーテル共重合体。
7.ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとを反応させることを含む、芳香族ポリエーテル共重合体の製造方法。
8.前記ジハロゲノベンゾフェノンがジフルオロベンゾフェノンである、7に記載の芳香族ポリエーテル共重合体の製造方法。
9.前記ジフルオロベンゾフェノンが4,4’-ジフルオロベンゾフェノンである、8に記載の芳香族ポリエーテル共重合体の製造方法。
10.前記2価フェノールがハイドロキノンである、7~9のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。
11.前記2価フェニルエーテルが4,4’-ジヒドロキシジフェニルエーテルである、7~10のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。
12.反応に供する前記2価フェノールと前記2価フェニルエーテルとの合計に対する前記2価フェニルエーテルのモル比を調整して、製造される芳香族ポリエーテル共重合体の熱物性を調整することを含む、7~11のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。
13.前記熱物性として前記芳香族ポリエーテル共重合体の結晶化温度Tを調整する、12に記載の芳香族ポリエーテル共重合体の製造方法。
14.前記熱物性として前記芳香族ポリエーテル共重合体の示差走査熱量測定において観測される結晶化による発熱ピーク幅を調整する、12又は13に記載の芳香族ポリエーテル共重合体の製造方法。
15.下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを含む芳香族ポリエーテル共重合体の熱物性の調整方法であって、
 前記式(1)で表される繰り返し単位と前記式(2)で表される繰り返し単位との合計に対する前記式(2)で表される繰り返し単位のモル比を調整して、前記芳香族ポリエーテル共重合体の熱物性を調整することを含む、前記方法。
Figure JPOXMLDOC01-appb-C000004
16.前記熱物性として前記芳香族ポリエーテル共重合体の結晶化温度Tを調整する、15に記載の芳香族ポリエーテル共重合体の熱物性の調整方法。
17.前記熱物性として前記芳香族ポリエーテル共重合体の示差走査熱量測定において観測される結晶化による発熱ピーク幅を調整する、15又は16に記載の芳香族ポリエーテル共重合体の熱物性の調整方法。
As a result of intensive studies, the present inventors found that a specific aromatic polyether copolymer can flexibly impart thermophysical properties suitable for various processing conditions and has excellent processability. completed the invention.
According to the present invention, the following aromatic polyether copolymer and the like can be provided.
1. An aromatic polyether copolymer comprising a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000003
2. 2. The aromatic polyether copolymer according to 1, wherein the integral ratio X represented by the following formula (I X ) exceeds 0% in the 1 H-NMR spectrum.
X [%] = {(C/2)/(A/8+B/4)} x 100 ( IX )
(In formula (I X ), A is the integrated value in the range of chemical shift 7.15 ppm to 7.23 ppm, B is the integrated value in the range of chemical shift 7.32 ppm to 7.42 ppm, C is the chemical shift from 7.42 ppm It is an integrated value in the range of 7.49 ppm.)
3. 3. The aromatic polyether copolymer according to 1 or 2, wherein the integral ratio Z represented by the following formula (I Z ) is 0% in the 1 H-NMR spectrum.
Z [%]={(D/2)/(A/8+B/4)}×100 (I Z )
(In formula (I Z ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm, D is the chemical shift from 7.89 ppm It is an integrated value in the range of 7.93 ppm.)
4. 4. The aromatic polyether copolymer according to any one of 1 to 3, wherein the integral ratio Y represented by the following formula (I Y ) is 0.1 to 99.9% in the 1 H-NMR spectrum.
Y [%] = {(A/8)/(A/8+B/4)} x 100 (I Y )
(In formula (I Y ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, and B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm.)
5. 5. The aromatic polyether copolymer according to any one of 1 to 4, which has an exothermic peak width of 60° C. or less due to crystallization observed in differential scanning calorimetry.
6. 6. The aromatic polyether copolymer according to any one of 1 to 5, which has a melt flow rate of 100 g/10 min or less.
7. A method for producing an aromatic polyether copolymer, comprising reacting a dihalogenobenzophenone, a dihydric phenol, and a dihydric phenyl ether.
8. 8. The method for producing an aromatic polyether copolymer according to 7, wherein the dihalogenobenzophenone is difluorobenzophenone.
9. 9. The method for producing an aromatic polyether copolymer according to 8, wherein the difluorobenzophenone is 4,4'-difluorobenzophenone.
10. 10. The method for producing an aromatic polyether copolymer according to any one of 7 to 9, wherein the dihydric phenol is hydroquinone.
11. 11. The method for producing an aromatic polyether copolymer according to any one of 7 to 10, wherein the divalent phenyl ether is 4,4'-dihydroxydiphenyl ether.
12. Adjusting the molar ratio of the divalent phenyl ether to the total of the divalent phenol and the divalent phenyl ether subjected to the reaction to adjust the thermophysical properties of the produced aromatic polyether copolymer, 12. A method for producing an aromatic polyether copolymer according to any one of 7 to 11.
13. 13. The method for producing an aromatic polyether copolymer according to 12, wherein the crystallization temperature Tc of the aromatic polyether copolymer is adjusted as the thermophysical property.
14. 14. The method for producing an aromatic polyether copolymer according to 12 or 13, wherein an exothermic peak width due to crystallization observed in differential scanning calorimetry of the aromatic polyether copolymer as the thermophysical property is adjusted.
15. A method for adjusting thermophysical properties of an aromatic polyether copolymer containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2),
By adjusting the molar ratio of the repeating unit represented by the formula (2) to the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2), the aromatic poly The above method, comprising adjusting the thermophysical properties of the ether copolymer.
Figure JPOXMLDOC01-appb-C000004
16. 16. The method for adjusting thermophysical properties of an aromatic polyether copolymer according to 15, wherein the crystallization temperature Tc of the aromatic polyether copolymer is adjusted as the thermophysical property.
17. 17. The method for adjusting the thermophysical properties of the aromatic polyether copolymer according to 15 or 16, wherein the exothermic peak width due to crystallization observed in differential scanning calorimetry of the aromatic polyether copolymer as the thermophysical property is adjusted. .
 本発明によれば、加工性に優れる芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法を提供することができる。 According to the present invention, it is possible to provide an aromatic polyether copolymer with excellent workability, a method for producing an aromatic polyether copolymer, and a method for adjusting thermophysical properties of an aromatic polyether copolymer.
実施例2において測定されたH-NMRスペクトルである。 1 H-NMR spectrum measured in Example 2. FIG.
 以下、本発明の芳香族ポリエーテル共重合体、芳香族ポリエーテル共重合体の製造方法及び芳香族ポリエーテル共重合体の熱物性の調整方法について詳述する。
 尚、本明細書において、数値範囲に関して記載された上限値及び下限値は任意に組み合わせることができる。
 また、以下において記載される本発明に係る態様の個々の実施形態のうち、互いに相反しないもの同士を2つ以上組み合わせることが可能であり、2つ以上の実施形態を組み合わせた実施形態もまた、本発明に係る態様の実施形態である。
Hereinafter, the aromatic polyether copolymer, the method for producing the aromatic polyether copolymer, and the method for adjusting the thermophysical properties of the aromatic polyether copolymer of the present invention will be described in detail.
In addition, in this specification, the upper limit value and the lower limit value described with respect to the numerical range can be arbitrarily combined.
It is also possible to combine two or more of the individual embodiments of the aspects according to the invention described below that are not mutually exclusive, and embodiments combining two or more embodiments are also 1 is an embodiment of an aspect according to the invention;
1.芳香族ポリエーテル共重合体
 本発明の一態様に係る芳香族ポリエーテル共重合体は、下記式(1)で表される繰り返し単位と、下記式(2)で表される繰り返し単位とを含む。
1. Aromatic polyether copolymer An aromatic polyether copolymer according to one aspect of the present invention includes a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2) .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 尚、式(1)で示される繰り返し単位と式(2)で示される繰り返し単位とは互いに異なるものであり、芳香族ポリエーテル共重合体において、式(2)で示される繰り返し単位に該当する部分構造は、式(2)で示される繰り返し単位とみなし、式(1)で示される繰り返し単位とはみなさない。 The repeating unit represented by formula (1) and the repeating unit represented by formula (2) are different from each other, and correspond to the repeating unit represented by formula (2) in the aromatic polyether copolymer. The partial structure is regarded as a repeating unit represented by formula (2) and not regarded as a repeating unit represented by formula (1).
 本態様に係る芳香族ポリエーテル共重合体によれば、加工性に優れる効果が得られる。
 本態様に係る芳香族ポリエーテル共重合体は、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とのモル比(例えば後述する「ピーク面積比」として)を調整することによって、該芳香族ポリエーテル共重合体の熱物性を調整することができる。熱物性を、種々の加工条件に応じて所望される値に向けて調整することで、加工性を向上できる。
 本態様に係る芳香族ポリエーテル共重合体は、熱物性として、例えば、結晶化温度T、ガラス転移温度T、融点T、結晶化温度Tと融点Tとの差(T-T)及び示差走査熱量測定において観測される結晶化による発熱ピーク幅(詳しくは後述するが、結晶化速度に対応する。)からなる群から選択される1以上を調整することができる。
According to the aromatic polyether copolymer according to this aspect, an effect of excellent workability can be obtained.
In the aromatic polyether copolymer according to this aspect, the molar ratio of the repeating unit represented by the formula (1) to the repeating unit represented by the formula (2) (for example, as a "peak area ratio" described later) is By adjusting, the thermophysical properties of the aromatic polyether copolymer can be adjusted. The processability can be improved by adjusting the thermophysical properties toward desired values according to various processing conditions.
The aromatic polyether copolymer according to this embodiment has thermophysical properties such as crystallization temperature T c , glass transition temperature T g , melting point T m , difference between crystallization temperature T c and melting point T m (T m −T c ) and an exothermic peak width due to crystallization observed in differential scanning calorimetry (details will be described later, but it corresponds to the crystallization speed). One or more selected from the group can be adjusted.
 本態様に係る芳香族ポリエーテル共重合体は、例えば、単純な構造の射出成形体を成形する場合(金型の構造が単純な場合)は結晶化温度Tを上昇させて生産効率を優先することができ、複雑な構造の射出成形体を成形する場合(金型の構造が複雑な場合)は結晶化温度Tを降下させて成形精度を優先することができる。 For the aromatic polyether copolymer according to this aspect, for example, when molding an injection-molded article having a simple structure (when the structure of the mold is simple), the crystallization temperature Tc is increased to give priority to production efficiency. When molding an injection-molded article with a complicated structure (when the mold has a complicated structure), the crystallization temperature Tc can be lowered to give priority to molding accuracy.
 本態様に係る芳香族ポリエーテル共重合体は、上述したモル比により結晶化温度Tを変化させても、ガラス転移温度Tや融点Tの変化は比較的緩やかである。別の観点でいえば、本態様に係る芳香族ポリエーテル共重合体は、上述したモル比を調整することによって、結晶化温度Tとガラス転移温度Tとの差、及び、結晶化温度Tと融点Tとの差をそれぞれ調整することができる。このことも加工性の向上に寄与する。 In the aromatic polyether copolymer according to this aspect, even if the crystallization temperature Tc is changed by the molar ratio described above, the glass transition temperature Tg and the melting point Tm change relatively slowly. From another point of view, the aromatic polyether copolymer according to this aspect can be adjusted to the difference between the crystallization temperature Tc and the glass transition temperature Tg , and the crystallization temperature The difference between Tc and melting point Tm can be adjusted respectively. This also contributes to the improvement of workability.
 本態様に係る芳香族ポリエーテル共重合体は、例えば、結晶化温度Tを上昇させることによって、結晶化温度Tと融点Tとの差を小さくすることができる。これにより、融解させた芳香族ポリエーテル共重合体を加工(例えば金型による成形)する際に、結晶化を十分に進めるための温度保持時間を短縮でき、成形サイクルを短縮できる。これにより、生産性を高め、加工性に優れ、かつ加工物(例えば成形体)に結晶性樹脂としての特徴を良好に付与できる。 The aromatic polyether copolymer according to this aspect can reduce the difference between the crystallization temperature Tc and the melting point Tm , for example, by increasing the crystallization temperature Tc . As a result, when the molten aromatic polyether copolymer is processed (for example, molded with a mold), the temperature holding time for sufficiently promoting crystallization can be shortened, and the molding cycle can be shortened. As a result, productivity can be increased, workability is excellent, and characteristics of a crystalline resin can be favorably imparted to a processed product (for example, a molded product).
 また、本態様に係る芳香族ポリエーテル共重合体は、例えば、結晶化温度Tを降下させることによって、結晶化温度Tと融点Tとの差を大きくすることができる。これにより、融解させた芳香族ポリエーテル共重合体を加工(例えば金型による成形)する際に、加工の途中(例えば金型への充填の途中)で結晶化が開始されることを防止できる。また、成形温度(例えば金型の温度)を低くすることもできる。これにより、加工性に優れ、かつ加工物(例えば成形体)に結晶性樹脂としての特徴を良好に付与できる。 In addition, the aromatic polyether copolymer according to this aspect can increase the difference between the crystallization temperature Tc and the melting point Tm , for example, by lowering the crystallization temperature Tc . As a result, when processing the molten aromatic polyether copolymer (for example, molding with a mold), it is possible to prevent the initiation of crystallization during processing (for example, during filling into a mold). . Also, the molding temperature (for example, the temperature of the mold) can be lowered. As a result, the processability is excellent, and the characteristics of a crystalline resin can be favorably imparted to a processed product (for example, a molded product).
 本態様に係る芳香族ポリエーテル共重合体は、上述したように、種々の加工条件に汎用性高く適用でき、加工条件に応じて優れた加工性を発揮できる。 As described above, the aromatic polyether copolymer according to this aspect can be applied to various processing conditions with high versatility, and can exhibit excellent processability depending on the processing conditions.
 尚、芳香族ポリエーテル共重合体が式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とを含むことは、実施例に記載の方法によって確認する。 Whether the aromatic polyether copolymer contains the repeating unit represented by formula (1) and the repeating unit represented by formula (2) is confirmed by the method described in Examples.
 式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とのモル比は格別限定されない。このモル比は、所望される結晶化温度Tが得られるように適宜調整できる。 The molar ratio between the repeating unit represented by formula (1) and the repeating unit represented by formula (2) is not particularly limited. This molar ratio can be adjusted appropriately so as to obtain the desired crystallization temperature Tc .
 上記モル比の一つの指標(あるいは上記モル比の一つの表現)として、芳香族ポリエーテル共重合体のH-NMR測定における下記式(I)で表される積分比Yを用いることができる。
 Y[%]={(A/8)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値である。)
 積分値Aに対応する積分範囲(化学シフト7.15ppmから7.23ppmの範囲)には、式(2)で表される繰り返し単位に由来するピークが観測される。
 積分値Bに対応する積分範囲(化学シフト7.32ppmから7.42ppmの範囲)には、式(1)で表される繰り返し単位に由来するピークが観測される。
 積分比Yは、芳香族ポリエーテル共重合体に含まれる式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位の合計に対する式(2)で表される繰り返し単位のモル比に一致する。
As one index of the molar ratio (or one expression of the molar ratio), the integral ratio Y represented by the following formula (I Y ) in 1 H-NMR measurement of the aromatic polyether copolymer can be used. can.
Y [%] = {(A/8)/(A/8+B/4)} x 100 (I Y )
(In formula (I Y ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, and B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm.)
A peak derived from the repeating unit represented by formula (2) is observed in the integral range corresponding to the integral value A (chemical shift range from 7.15 ppm to 7.23 ppm).
A peak derived from the repeating unit represented by formula (1) is observed in the integral range corresponding to the integral value B (chemical shift range from 7.32 ppm to 7.42 ppm).
The integral ratio Y is the ratio of the repeating units represented by the formula (2) to the total of the repeating units represented by the formula (1) and the repeating units represented by the formula (2) contained in the aromatic polyether copolymer. Match the molar ratio.
 積分比Yは、芳香族ポリエーテル共重合体に所望される熱物性が付与されるように適宜調整できる。
 一実施形態において、積分比Yは、0%を超え100%未満であり、好ましくは0.1~99.9%であり、好ましくは5~95%である。
 一実施形態において、積分比Yは、例えば、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%若しくは99%又はこれらの点値から上下のそれぞれに0%、0.1%、0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%、9.5%、9.9%若しくは10%までを含む範囲である。この範囲は、積分比Yが0%を超え100%未満である範囲内で選択できる。(例えば、点値が50%であり、該点値から上に5%、下に10%までを含む範囲は、40~55%である。)
 尚、積分比Yは、実施例に記載の方法によって測定される値である。
The integral ratio Y can be appropriately adjusted so that the aromatic polyether copolymer is imparted with desired thermophysical properties.
In one embodiment, the integral ratio Y is greater than 0% and less than 100%, preferably 0.1-99.9%, preferably 5-95%.
In one embodiment, the integral ratio Y is, for example, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60% , 65%, 70%, 75%, 80%, 85%, 90%, 95% or 99% or 0%, 0.1%, 0.5%, 1% above and below these point values, respectively, Ranges up to and including 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 9.5%, 9.9% or 10%. This range can be selected within a range in which the integral ratio Y exceeds 0% and is less than 100%. (For example, the point value is 50%, and the range including 5% above and 10% below the point value is 40 to 55%.)
The integral ratio Y is a value measured by the method described in Examples.
 積分比Yは、好ましくは0.1~49.9%、より好ましくは3~25%である。これにより、芳香族ポリエーテル共重合体は、加工性に優れるだけでなく、靭性に優れる効果も奏する。 The integral ratio Y is preferably 0.1-49.9%, more preferably 3-25%. As a result, the aromatic polyether copolymer not only has excellent processability, but also exhibits excellent toughness.
 芳香族ポリエーテル共重合体の結晶化温度Tは、格別限定されず、積分比Yによって適宜調整できる。通常は、積分比Yを大きくすることによって結晶化温度Tを低くすることができ、また、積分比Yを小さくすることによって結晶化温度Tを高くすることができる。後述する積分比Xが0%を超える場合、この傾向が強くなる。
 一実施形態において、芳香族ポリエーテル共重合体の結晶化温度Tは、260℃以上であり、また、300℃以下である。
 結晶化温度Tは、実施例に記載の方法により測定される値である。
The crystallization temperature Tc of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Normally, the crystallization temperature Tc can be lowered by increasing the integral ratio Y, and the crystallization temperature Tc can be increased by decreasing the integral ratio Y. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
In one embodiment, the crystallization temperature Tc of the aromatic polyether copolymer is 260°C or higher and 300°C or lower.
The crystallization temperature Tc is a value measured by the method described in Examples.
 芳香族ポリエーテル共重合体のガラス転移温度Tは、格別限定されず、積分比Yによって適宜調整できる。積分比Yを大きくすることによってガラス転移温度Tは低くなる傾向があり、また、積分比Yを小さくすることによってガラス転移温度Tは高くなる傾向がある。後述する積分比Xが0%を超える場合、この傾向が強くなる。
 一実施形態において、芳香族ポリエーテル共重合体のガラス転移温度Tは、130℃以上であり、また、150℃以下である。
 ガラス転移温度Tは、実施例に記載の方法により測定される値である。
The glass transition temperature Tg of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Increasing the integral ratio Y tends to lower the glass transition temperature Tg , and decreasing the integral ratio Y tends to raise the glass transition temperature Tg . This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
In one embodiment, the glass transition temperature T g of the aromatic polyether copolymer is 130° C. or higher and 150° C. or lower.
The glass transition temperature Tg is a value measured by the method described in Examples.
 芳香族ポリエーテル共重合体の融点Tは、格別限定されず、積分比Yによって適宜調整できる。通常は、積分比Yを大きくすることによって融点Tを低くすることができ、また、積分比Yを小さくすることによって融点Tを高くすることができる。後述する積分比Xが0%を超える場合、この傾向が強くなる。
 一実施形態において、芳香族ポリエーテル共重合体の融点Tは、320℃以上であり、また、350℃以下である。
 融点Tは、実施例に記載の方法により測定される値である。
The melting point Tm of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Normally, the melting point Tm can be lowered by increasing the integral ratio Y, and the melting point Tm can be increased by decreasing the integral ratio Y. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
In one embodiment, the aromatic polyether copolymer has a melting point T m of 320° C. or higher and 350° C. or lower.
The melting point Tm is a value measured by the method described in Examples.
 芳香族ポリエーテル共重合体の結晶化温度Tと融点Tとの差(T-T)は、格別限定されず、積分比Yによって適宜調整できる。積分比Yを大きくすることによって差(T-T)は大きくなる傾向があり、また、積分比Yを小さくすることによって差(T-T)は小さくなる傾向がある。後述する積分比Xが0%を超える場合、この傾向が強くなる。
 一実施形態において、差(T-T)は、52℃以上又は53℃以上であり、また、60℃以下である。
The difference (T m −T c ) between the crystallization temperature T c and the melting point T m of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integral ratio Y. Increasing the integral ratio Y tends to increase the difference (T m −T c ), and decreasing the integral ratio Y tends to decrease the difference (T m −T c ). This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%.
In one embodiment, the difference (T m −T c ) is 52° C. or higher or 53° C. or higher and is 60° C. or lower.
 芳香族ポリエーテル共重合体の示差走査熱量測定(DSC)において観測される結晶化による発熱ピーク幅は、格別限定されず、積分比Yによって適宜調整できる。積分比Yを大きくすることによって発熱ピーク幅は大きくなる傾向があり、また、積分比Yを小さくすることによって発熱ピーク幅は小さくなる傾向がある。後述する積分比Xが0%を超える場合、この傾向が強くなる。発熱ピーク幅は、芳香族ポリエーテル共重合体の結晶化速度に対応し、小さいほど結晶化速度が速いといえる。
 一実施形態において、芳香族ポリエーテル共重合体の示差走査熱量測定(DSC)において観測される結晶化による発熱ピーク幅は、15℃以下である。これにより、芳香族ポリエーテル共重合体の結晶化速度が向上し、加工性をさらに向上することができる。発熱ピーク幅の下限は格別限定されず、例えば7℃以上である。
 尚、発熱ピーク幅は、実施例に記載の方法により測定される値である。
The exothermic peak width due to crystallization observed in differential scanning calorimetry (DSC) of the aromatic polyether copolymer is not particularly limited, and can be appropriately adjusted by the integration ratio Y. The exothermic peak width tends to increase as the integral ratio Y increases, and the exothermic peak width tends to decrease as the integral ratio Y decreases. This tendency becomes stronger when the integral ratio X, which will be described later, exceeds 0%. The exothermic peak width corresponds to the crystallization speed of the aromatic polyether copolymer, and it can be said that the smaller the width, the faster the crystallization speed.
In one embodiment, the exothermic peak width due to crystallization observed in differential scanning calorimetry (DSC) of the aromatic polyether copolymer is 15° C. or less. As a result, the crystallization speed of the aromatic polyether copolymer can be improved, and the processability can be further improved. The lower limit of the exothermic peak width is not particularly limited, and is, for example, 7°C or higher.
The exothermic peak width is a value measured by the method described in Examples.
 一実施形態において、芳香族ポリエーテル共重合体は、H-NMRスペクトルにおいて、下記式(I)で表される積分比Xが0%を超える。
 X[%]={(C/2)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Cは化学シフト7.42ppmから7.49ppmの範囲の積分値である。)
In one embodiment, the aromatic polyether copolymer has a 1 H-NMR spectrum in which the integral ratio X represented by the following formula (I X ) exceeds 0%.
X [%] = {(C/2)/(A/8+B/4)} x 100 ( IX )
(In formula (I X ), A is the integrated value in the range of chemical shift 7.15 ppm to 7.23 ppm, B is the integrated value in the range of chemical shift 7.32 ppm to 7.42 ppm, C is the chemical shift from 7.42 ppm It is an integrated value in the range of 7.49 ppm.)
 式(I)で表される積分比Xについて説明する。
 積分値Aに対応する積分範囲(化学シフト7.15ppmから7.23ppmの範囲)には、式(2)で表される繰り返し単位に由来するピークが観測される。
 積分値Bに対応する積分範囲(化学シフト7.32ppmから7.42ppmの範囲)には、式(1)で表される繰り返し単位に由来するピークが観測される。
 積分値Cに対応する積分範囲(化学シフト7.42ppmから7.49ppmの範囲)には、芳香族ポリエーテル共重合体の主鎖末端に結合しているフッ素原子に由来するピークが観測される。
 積分比Xが0%を超えるということは、主鎖末端の少なくとも1つにフッ素原子が結合した芳香族ポリエーテル共重合体が存在することを示している。
 尚、積分比Xは、実施例に記載の方法によって測定される値である。
 積分比Xが0%を超える芳香族ポリエーテル共重合体を得る方法として、芳香族ポリエーテル共重合体の原料として用いるモノマーとして、フッ素原子を含むモノマー(例えばジフルオロベンゾフェノン等)を用いる方法が挙げられる。
The integral ratio X represented by the formula (I X ) will be described.
A peak derived from the repeating unit represented by formula (2) is observed in the integral range corresponding to the integral value A (chemical shift range from 7.15 ppm to 7.23 ppm).
A peak derived from the repeating unit represented by formula (1) is observed in the integral range corresponding to the integral value B (chemical shift range from 7.32 ppm to 7.42 ppm).
In the integral range corresponding to the integral value C (chemical shift range from 7.42 ppm to 7.49 ppm), a peak derived from fluorine atoms bonded to the main chain end of the aromatic polyether copolymer is observed. .
The fact that the integral ratio X exceeds 0% indicates the presence of an aromatic polyether copolymer having a fluorine atom bonded to at least one terminal of the main chain.
The integral ratio X is a value measured by the method described in Examples.
As a method of obtaining an aromatic polyether copolymer having an integral ratio X of more than 0%, a method of using a monomer containing a fluorine atom (for example, difluorobenzophenone, etc.) as a raw material for the aromatic polyether copolymer is mentioned. be done.
 積分比Xが0%を超えることにより、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とのモル比(あるいは積分比Y)と、上述した各熱物性との相関関係がより直線的になり、各熱物性の調整を精度よく行うことができる。 When the integral ratio X exceeds 0%, the molar ratio (or the integral ratio Y) between the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) and each thermophysical property described above becomes more linear, and each thermophysical property can be adjusted with high accuracy.
 一実施形態において、芳香族ポリエーテル共重合体は、H-NMRスペクトルにおいて、下記式(I)で表される積分比Zが0%である。
 Z[%]={(D/2)/(A/8+B/4)}×100   (I
(式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Dは化学シフト7.89ppmから7.93ppmの範囲の積分値である。)
In one embodiment, the aromatic polyether copolymer has an integral ratio Z represented by the following formula (I Z ) of 0% in the 1 H-NMR spectrum.
Z [%]={(D/2)/(A/8+B/4)}×100 (I Z )
(In formula (I Z ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm, D is the chemical shift from 7.89 ppm It is an integrated value in the range of 7.93 ppm.)
 式(I)で表される積分比Zについて説明する。
 積分値A及びBについては積分比Xについてした説明が援用される。
 積分値Dに対応する積分範囲(化学シフト7.89ppmから7.93ppmの範囲)には、芳香族ポリエーテル共重合体の主鎖末端に結合している塩素原子に由来するピークが観測される。
 積分比Zが0%を超えるということは、主鎖末端の少なくとも1つに塩素原子が結合した芳香族ポリエーテル共重合体が存在することを示している。
 尚、積分比Zは、実施例に記載の方法によって測定される値である。
The integral ratio Z represented by the formula (I Z ) will be explained.
For the integral values A and B, the explanation given for the integral ratio X is used.
In the integration range corresponding to the integrated value D (chemical shift range from 7.89 ppm to 7.93 ppm), a peak derived from chlorine atoms bonded to the main chain end of the aromatic polyether copolymer is observed. .
The fact that the integral ratio Z exceeds 0% indicates the presence of an aromatic polyether copolymer having a chlorine atom bonded to at least one terminal of the main chain.
The integral ratio Z is a value measured by the method described in Examples.
 積分比Zが0%であること、即ち、芳香族ポリエーテル共重合体の主鎖末端に塩素原子が結合していないことにより、本発明の効果がより好適に発揮される。
 積分比Zを0%にする方法として、芳香族ポリエーテル共重合体の原料として用いるモノマーとして、塩素原子を含むモノマー(例えばジクロロベンゾフェノン等)を用いない方法が挙げられる。
When the integral ratio Z is 0%, that is, when the main chain end of the aromatic polyether copolymer does not have a chlorine atom bonded thereto, the effects of the present invention are exhibited more favorably.
As a method for making the integral ratio Z 0%, there is a method in which a monomer containing a chlorine atom (eg, dichlorobenzophenone, etc.) is not used as a raw material for the aromatic polyether copolymer.
 芳香族ポリエーテル共重合体のメルトフローレートは格別限定されない。
 一実施形態において、芳香族ポリエーテル共重合体のメルトフローレートは、1500g/10min以下、1000g/10min以下、500g/10min以下、300g/10min以下、200g/10min以下、100g/10min以下、80g/10min以下、50g/10min以下、30g/10min以下、20g/10min以下又は10g/10min以下であり、また、0.0001g/10min以上、0.0005g/10min以上又は0.001g/10min以上である。
 芳香族ポリエーテル共重合体のメルトフローレートは100g/10min以下であることが好ましい。メルトフローレートが100g/10min以下である芳香族ポリエーテル共重合体は、十分に高分子量化されているため、例えば押出機等によってペレットにすることに適している。そのようなペレットは、射出成形等の用途に好ましく適用できる。
 メルトフローレートは、実施例に記載の方法により測定される値である。
The melt flow rate of the aromatic polyether copolymer is not particularly limited.
In one embodiment, the melt flow rate of the aromatic polyether copolymer is 1500 g/10 min or less, 1000 g/10 min or less, 500 g/10 min or less, 300 g/10 min or less, 200 g/10 min or less, 100 g/10 min or less, 80 g/ 10 min or less, 50 g/10 min or less, 30 g/10 min or less, 20 g/10 min or less, or 10 g/10 min or less, and 0.0001 g/10 min or more, 0.0005 g/10 min or more, or 0.001 g/10 min or more.
The melt flow rate of the aromatic polyether copolymer is preferably 100 g/10 min or less. An aromatic polyether copolymer having a melt flow rate of 100 g/10 min or less has a sufficiently high molecular weight and is therefore suitable for pelletization by an extruder or the like. Such pellets can be preferably applied to uses such as injection molding.
The melt flow rate is a value measured by the method described in Examples.
 芳香族ポリエーテル共重合体の末端構造は格別限定されず、任意の構造であってよいが、例えば、水素原子、ハロゲン原子等であり得る。ハロゲン原子としては、例えば、フッ素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。芳香族ポリエーテル共重合体の末端構造にフッ素原子を含む場合は特に、前記各熱物性(具体的には、結晶化温度T、ガラス転移温度T、融点T、結晶化温度Tと融点Tとの差(T-T)及び示差走査熱量測定において観測される結晶化による発熱ピーク幅)の前記の各傾向を踏まえて、種々の加工条件に適した熱物性を柔軟に付与することができる。 The terminal structure of the aromatic polyether copolymer is not particularly limited, and may be any structure, such as a hydrogen atom or a halogen atom. The halogen atom includes, for example, fluorine atom, bromine atom, iodine atom and the like, and fluorine atom is preferable. Especially when the terminal structure of the aromatic polyether copolymer contains a fluorine atom, each of the above thermophysical properties (specifically, the crystallization temperature T c , the glass transition temperature T g , the melting point T m , the crystallization temperature T c and melting point T m (T m - T c ) and exothermic peak width due to crystallization observed in differential scanning calorimetry), thermophysical properties suitable for various processing conditions can be flexibly adjusted. can be given to
 また、芳香族ポリエーテル共重合体の末端構造は、例えば、下記式(3)で表される末端構造であり得る。 Also, the terminal structure of the aromatic polyether copolymer may be, for example, the terminal structure represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 芳香族ポリエーテル共重合体に式(3)で表される末端構造を導入する方法は格別限定されない。 The method of introducing the terminal structure represented by formula (3) into the aromatic polyether copolymer is not particularly limited.
 芳香族ポリエーテル共重合体を構成する分子鎖の末端のうち、式(3)で表される末端構造を有する末端は、例えば、下記式(4)又は(5)で表される。 Among the ends of the molecular chains constituting the aromatic polyether copolymer, the ends having the terminal structure represented by formula (3) are represented by the following formulas (4) or (5), for example.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 即ち、芳香族ポリエーテル共重合体において、式(3)で表される末端構造は、式(4)又は(5)で表される末端を形成し得る。式(4)及び(5)中のカルボニル基は、式(1)又は式(2)中のカルボニル基に対応し得る。 That is, in the aromatic polyether copolymer, the terminal structure represented by formula (3) can form the terminal represented by formula (4) or (5). The carbonyl groups in formulas (4) and (5) can correspond to the carbonyl groups in formula (1) or (2).
 一実施形態において、芳香族ポリエーテル共重合体は、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位以外の他の繰り返し単位を含まない。但し、分子鎖の末端には上述したように末端構造を有することができる。 In one embodiment, the aromatic polyether copolymer does not contain repeating units other than the repeating units represented by formula (1) and the repeating units represented by formula (2). However, the end of the molecular chain can have a terminal structure as described above.
 一実施形態において、芳香族ポリエーテル共重合体は、本発明の効果を損なわない範囲で、式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位以外の他の構造単位を含む。他の構造単位は格別限定されず、例えば、式(1)又は式(2)で示される繰り返し単位における連結位置が異なるもの(連結位置がパラ位でないもの)等が挙げられる。 In one embodiment, the aromatic polyether copolymer has a structure other than the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2), as long as the effect of the present invention is not impaired. Including units. Other structural units are not particularly limited, and include, for example, repeating units represented by formula (1) or formula (2) in which the linking position is different (the linking position is not para-position).
 一実施形態において、
(i)芳香族ポリエーテル共重合体全体、
(ii)芳香族ポリエーテル共重合体全体から末端構造を除いた部分、又は
(iii)芳香族ポリエーテル共重合体を構成する全ての繰り返し単位の合計
に対する式(1)で表される繰り返し単位及び式(2)で表される繰り返し単位の合計の割合(質量%)は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は100質量%である。
In one embodiment,
(i) the entire aromatic polyether copolymer,
(ii) a portion excluding the terminal structure from the entire aromatic polyether copolymer, or (iii) the repeating unit represented by the formula (1) for the total of all repeating units constituting the aromatic polyether copolymer And the total ratio (% by mass) of the repeating units represented by formula (2) is 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more , 97% by mass or more, 99% by mass or more, 99.5% by mass or more, or 100% by mass.
2.芳香族ポリエーテル共重合体の製造方法
 本発明の一態様に係る芳香族ポリエーテル共重合体の製造方法は、ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとを反応させることを含む。
2. Method for Producing Aromatic Polyether Copolymer A method for producing an aromatic polyether copolymer according to one aspect of the present invention includes reacting a dihalogenobenzophenone, a dihydric phenol, and a dihydric phenyl ether. .
 ジハロゲノベンゾフェノン、2価フェノール、2価フェニルエーテルは、重合により芳香族ポリエーテル共重合体を製造するためのモノマーである。 Dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether are monomers for producing aromatic polyether copolymers by polymerization.
 本発明の一態様に係る芳香族ポリエーテル共重合体の製造方法においては、反応に供する2価フェノールと2価フェニルエーテルとのモル比(例えば、2価フェノールと2価フェニルエーテルとの合計に対する2価フェニルエーテルのモル比)を調整することによって、これらのモノマーを重合して得られる芳香族ポリエーテル共重合体の熱物性を調整することができる。そのため、加工性に優れる芳香族ポリエーテル共重合体を製造できる効果が得られる。本態様において調整可能な熱物性の具体例については、本発明の一態様に係る芳香族ポリエーテル共重合体についてした説明が援用される。 In the method for producing an aromatic polyether copolymer according to one aspect of the present invention, the molar ratio of dihydric phenol and divalent phenyl ether to be subjected to the reaction (for example, the total of dihydric phenol and divalent phenyl ether By adjusting the molar ratio of the divalent phenyl ether), the thermophysical properties of the aromatic polyether copolymer obtained by polymerizing these monomers can be adjusted. Therefore, the effect of being able to produce an aromatic polyether copolymer with excellent workability can be obtained. For specific examples of thermophysical properties that can be adjusted in this embodiment, the description of the aromatic polyether copolymer according to one embodiment of the present invention is used.
 一実施形態において、ジハロゲノベンゾフェノンは4,4’-ジハロゲノベンゾフェノンである。
 一実施形態において、2価フェノールはハイドロキノンである。
 一実施形態において、2価フェニルエーテルは4,4’-ジヒドロキシジフェニルエーテルである。
In one embodiment, the dihalogenobenzophenone is 4,4'-dihalogenobenzophenone.
In one embodiment, the dihydric phenol is hydroquinone.
In one embodiment, the divalent phenyl ether is 4,4'-dihydroxydiphenyl ether.
 一実施形態において、ジハロゲノベンゾフェノンとして4,4’-ジハロゲノベンゾフェノンを用い、2価フェノールとしてハイドロキノンを用い、2価フェニルエーテルとして4,4’-ジヒドロキシジフェニルエーテルを用いることによって、上述した本発明の一態様に係る芳香族ポリエーテル共重合体を製造することができる。ここで、4,4’-ジハロゲノベンゾフェノンとハイドロキノンとが連結して式(1)で表される繰り返し単位が形成され、4,4’-ジハロゲノベンゾフェノンと4,4’-ジヒドロキシジフェニルエーテルとが連結して式(2)で表される繰り返し単位が形成される。 In one embodiment, by using 4,4'-dihalogenobenzophenone as the dihalogenobenzophenone, hydroquinone as the dihydric phenol, and 4,4'-dihydroxydiphenyl ether as the dihydric phenyl ether, An aromatic polyether copolymer according to one aspect can be produced. Here, 4,4'-dihalogenobenzophenone and hydroquinone are linked to form a repeating unit represented by formula (1), and 4,4'-dihalogenobenzophenone and 4,4'-dihydroxydiphenyl ether By linking, a repeating unit represented by formula (2) is formed.
 4,4’-ジハロゲノベンゾフェノンは格別限定されず、2つのハロゲン原子は互いに同じでも異なってもよい。2つのハロゲン原子は、それぞれ独立にフッ素原子、臭素原子又はヨウ素原子であり得る。 The 4,4'-dihalogenobenzophenone is not particularly limited, and the two halogen atoms may be the same or different. The two halogen atoms can each independently be a fluorine atom, a bromine atom or an iodine atom.
 一実施形態において、ジハロゲノベンゾフェノンはジフルオロベンゾフェノンである。ここで、ジフルオロベンゾフェノンは4,4’-ジフルオロベンゾフェノンであることが好ましい。これにより、上述した積分比Xが0%を超える芳香族ポリエーテル共重合体が得られる。 In one embodiment, the dihalogenobenzophenone is difluorobenzophenone. Here, the difluorobenzophenone is preferably 4,4'-difluorobenzophenone. As a result, an aromatic polyether copolymer having an integral ratio X of more than 0% is obtained.
 モノマーとして、ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとを含む反応混合物中において、これらのモノマーを反応(重合)させることによって、芳香族ポリエーテル共重合体が得られる。
 一実施形態において、反応に供する2価フェノール及び2価フェニルエーテルの合計の物質量をamol、ジハロゲノベンゾフェノンの物質量をbmolとしたときに、b/a≧1.00の条件、好ましくはb/a>1.00の条件、より好ましくはb/a>1.001の条件、更により好ましくはb/a>1.002の条件を満たす。
An aromatic polyether copolymer is obtained by reacting (polymerizing) these monomers in a reaction mixture containing dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether as monomers.
In one embodiment, when the total substance amount of dihydric phenol and divalent phenyl ether to be subjected to the reaction is amol, and the substance amount of dihalogenobenzophenone is bmol, b/a≧1.00, preferably b /a>1.00, more preferably b/a>1.001, still more preferably b/a>1.002.
 一実施形態において、反応混合物は溶媒を含む。溶媒は格別限定されず、例えば、中性極性溶媒を用いることができる。中性極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、N,N-ジメチル安息香酸アミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-イソブチル-2-ピロリドン、N-n-プロピル-2-ピロリドン、N-n-ブチル-2-ピロリドン、N-シクロへキシル-2-ピロリドン、N-メチル-3-メチル-2-ピロリドン、N-エチル-3-メチル-2-ピロリドン、N-メチル-3,4,5-トリメチル-2-ピロリドン、N-メチル-2-ピペリドン、N-エチル-2-ピペリドン、N-イソプロピル-2-ピペリドン、N-メチル-6-メチル-2-ピペリドン、N-メチル-3-エチルピペリドン、ジメチルスルホキシド、ジエチルスルホキシド、1-メチル-1-オキソスルホラン、1-エチル-1-オキソスルホラン、1-フェニル-1-オキソスルホラン、N,N’-ジメチルイミダゾリジノン、ジフェニルスルホン等が挙げられる。反応混合物は、1種又は2種以上の溶媒を含むことができる。 In one embodiment, the reaction mixture includes a solvent. The solvent is not particularly limited, and for example, a neutral polar solvent can be used. Examples of neutral polar solvents include N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethyl Benzoamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, Nn-propyl-2-pyrrolidone, Nn- Butyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5- trimethyl-2-pyrrolidone, N-methyl-2-piperidone, N-ethyl-2-piperidone, N-isopropyl-2-piperidone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethylpiperidone, dimethylsulfoxide, diethylsulfoxide, 1-methyl-1-oxosulfolane, 1-ethyl-1-oxosulfolane, 1-phenyl-1-oxosulfolane, N,N'-dimethylimidazolidinone, diphenylsulfone and the like. The reaction mixture can contain one or more solvents.
 一実施形態において、反応混合物は塩基を含む。塩基は格別限定されず、例えば、アルカリ金属塩等が挙げられる。アルカリ金属塩としては、例えば、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩等が挙げられる。アルカリ金属炭酸塩としては、炭酸カリウム、炭酸リチウム、炭酸ルビジウム、炭酸セシウム等が挙げられる。アルカリ金属炭酸水素塩としては、例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等が挙げられる。反応混合物は、1種又は2種以上の塩基を含むことができる。 In one embodiment, the reaction mixture includes a base. The base is not particularly limited, and examples thereof include alkali metal salts and the like. Examples of alkali metal salts include alkali metal carbonates, alkali metal hydrogen carbonates, and the like. Examples of alkali metal carbonates include potassium carbonate, lithium carbonate, rubidium carbonate, and cesium carbonate. Examples of alkali metal hydrogencarbonates include lithium hydrogencarbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, rubidium hydrogencarbonate, and cesium hydrogencarbonate. The reaction mixture can contain one or more bases.
 一実施形態において、反応混合物における塩基の配合量(2種以上の塩基を配合する場合は合計の配合量)は、2価フェノール及び2価フェニルエーテルの合計の配合量を100mol部としたときに、100mol部以上であり、また、180mol部以下、160mol部以下、140mol部以下又は120mol部以下である。塩基の合計の配合量が、100mol部以上であれば、反応時間を短縮できる。塩基の合計の配合量が、180mol部以下であれば、ゲル成分の生成を抑制できる。 In one embodiment, the blending amount of the base in the reaction mixture (the total blending amount when blending two or more bases) is when the total blending amount of the dihydric phenol and the divalent phenyl ether is 100 mol parts. , 100 mol parts or more, and 180 mol parts or less, 160 mol parts or less, 140 mol parts or less, or 120 mol parts or less. If the total amount of the bases is 100 mol parts or more, the reaction time can be shortened. If the total amount of the bases is 180 mol parts or less, the formation of gel components can be suppressed.
 一実施形態において、反応に供する2価フェノールと2価フェニルエーテルとの合計に対する2価フェニルエーテルのモル比(百分率:「モル比y」ともいう)は、0mol%を超え100mol%未満であり、好ましくは0.1~99.9mol%であり、好ましくは5~95mol%である。 In one embodiment, the molar ratio of divalent phenyl ether to the total of divalent phenol and divalent phenyl ether subjected to the reaction (percentage: also referred to as "molar ratio y") is more than 0 mol% and less than 100 mol%, It is preferably 0.1 to 99.9 mol %, preferably 5 to 95 mol %.
 反応混合物におけるジハロゲノベンゾフェノン、2価フェノール及び2価フェニルエーテルの合計の濃度(配合量基準)は格別限定されない。
 一実施形態において、反応混合物におけるジハロゲノベンゾフェノン、2価フェノール及び2価フェニルエーテルの合計の濃度(配合量基準)は、1.0mol/l以上、1.2mol/l以上、1.3mol/l以上、1.4mol/l以上又は1.5mol/l以上であり、また、6.0mol/l以下、5.0mol/l以下又は4.0mol/l以下である。
The total concentration of dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether in the reaction mixture (based on the blending amount) is not particularly limited.
In one embodiment, the total concentration of dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether in the reaction mixture (based on the blending amount) is 1.0 mol/l or more, 1.2 mol/l or more, 1.3 mol/l 1.4 mol/l or more, or 1.5 mol/l or more, and 6.0 mol/l or less, 5.0 mol/l or less, or 4.0 mol/l or less.
 一実施形態において、上述した反応に供されるモノマーとして、ジハロゲノベンゾフェノン、2価フェノール及び2価フェニルエーテル以外の他のモノマーを用いない。 In one embodiment, monomers other than dihalogenobenzophenone, dihydric phenol and dihydric phenyl ether are not used as the monomers subjected to the reaction described above.
 一実施形態において、上述した反応に供されるモノマーには、本発明の効果を損なわない範囲で、ジハロゲノベンゾフェノン、2価フェノール及び2価フェニルエーテル以外の他のモノマーが含まれていてもよい。他のモノマーとして、例えば、上述した式(3)で表される末端構造を導入可能な末端封止剤(例えば4-フェノキシフェノール及び4-ハロゲノジフェニルエーテルからなる群から選択される1種以上)等が挙げられる。 In one embodiment, the monomers subjected to the reaction described above may contain monomers other than dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether to the extent that the effects of the present invention are not impaired. . Other monomers include, for example, a terminal blocking agent (eg, one or more selected from the group consisting of 4-phenoxyphenol and 4-halogenodiphenyl ether) capable of introducing a terminal structure represented by the above formula (3), and the like. are mentioned.
 一実施形態において、反応混合物における全モノマーの配合量に対して、ジハロゲノベンゾフェノン、2価フェノール及び2価フェニルエーテルの合計の配合量(質量%)は、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、97質量%以上、99質量%以上、99.5質量%以上又は100質量%である。 In one embodiment, the total amount (% by mass) of dihalogenobenzophenone, dihydric phenol and divalent phenyl ether is 50% by mass or more, 60% by mass or more, relative to the amount of all monomers in the reaction mixture, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 97% by mass or more, 99% by mass or more, 99.5% by mass or more, or 100% by mass.
 反応混合物は、ジハロゲノベンゾフェノン、2価フェノール、2価フェニルエーテル、塩基及び溶媒以外の他の成分を含んでも、含まなくてもよい。 The reaction mixture may or may not contain components other than dihalogenobenzophenone, dihydric phenol, dihydric phenyl ether, base and solvent.
 一実施形態において、反応開始時における反応混合物の70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、99.5質量%以上、99.9質量%以上又は実質的に100質量%が、ジハロゲノベンゾフェノン、2価フェノール、2価フェニルエーテル、塩基及び溶媒である。
 尚、「実質的に100質量%」の場合、不可避不純物を含んでもよい。
In one embodiment, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, 99.5% by mass or more, 99.9% by mass or more of the reaction mixture at the start of the reaction Or substantially 100% by weight is dihalogenobenzophenone, dihydric phenol, dihydric phenyl ether, base and solvent.
In addition, in the case of "substantially 100% by mass", unavoidable impurities may be included.
 ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとの反応は、不活性ガス雰囲気下で実施することができる。不活性ガスは格別限定されず、例えば窒素ガス、アルゴンガス等が挙げられる。 The reaction of dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether can be carried out under an inert gas atmosphere. The inert gas is not particularly limited, and examples thereof include nitrogen gas and argon gas.
 一実施形態において、ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとの反応に際して、反応混合物を加熱する。反応時における反応混合物の最高温度(最高到達温度)は、芳香族ポリエーテル共重合体が生成する温度であれば格別限定されず、例えば250~350℃であり得る。 In one embodiment, the reaction mixture is heated during the reaction of the dihalogenobenzophenone, dihydric phenol, and dihydric phenyl ether. The maximum temperature (maximum temperature) of the reaction mixture during the reaction is not particularly limited as long as it is the temperature at which the aromatic polyether copolymer is produced, and may be, for example, 250 to 350°C.
3.芳香族ポリエーテル共重合体の熱物性の調整方法。
 本発明の一態様に係る芳香族ポリエーテル共重合体の熱物性の調整方法は、下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを含む芳香族ポリエーテル共重合体の熱物性の調整方法であって、前記式(1)で表される繰り返し単位と前記式(2)で表される繰り返し単位との合計に対する前記式(2)で表される繰り返し単位のモル比を調整して、前記芳香族ポリエーテル共重合体の熱物性を調整することを含む。
3. Method for adjusting thermophysical properties of aromatic polyether copolymer.
A method for adjusting the thermophysical properties of an aromatic polyether copolymer according to one aspect of the present invention includes an aromatic A method for adjusting the thermophysical properties of a polyether copolymer, which is represented by the formula (2) for the sum of the repeating units represented by the formula (1) and the repeating units represented by the formula (2) and adjusting the molar ratio of the repeating units to adjust the thermophysical properties of the aromatic polyether copolymer.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本態様においては、熱物性として、例えば、結晶化温度T、ガラス転移温度T、融点T、結晶化温度Tと融点Tとの差(T-T)及び示差走査熱量測定において観測される結晶化による発熱ピーク幅からなる群から選択される1以上を調整することができる。
 一実施形態において、熱物性として、結晶化温度T及び示差走査熱量測定において観測される結晶化による発熱ピーク幅からなる群から選択される1以上を調整することができる。
 本態様に係る芳香族ポリエーテル共重合体の熱物性の調整方法によって熱物性が調整された芳香族ポリエーテル共重合体は、加工性に優れる効果を奏する。
In this embodiment, the thermophysical properties include, for example, the crystallization temperature T c , the glass transition temperature T g , the melting point T m , the difference between the crystallization temperature T c and the melting point T m (T m −T c ), and the differential scanning calorific value One or more selected from the group consisting of exothermic peak width due to crystallization observed in the measurement can be adjusted.
In one embodiment, as the thermophysical property, one or more selected from the group consisting of the crystallization temperature Tc and the exothermic peak width due to crystallization observed in differential scanning calorimetry can be adjusted.
An aromatic polyether copolymer whose thermophysical properties are adjusted by the method for adjusting thermophysical properties of an aromatic polyether copolymer according to this aspect exhibits an effect of excellent workability.
 本態様において、式(1)で表される繰り返し単位と式(2)で表される繰り返し単位との合計に対する式(2)で表される繰り返し単位のモル比を調整する方法としては、該芳香族ポリエーテル共重合体を製造する際に用いるモノマー(例えば、4,4’-ジハロゲノベンゾフェノン、ハイドロキノン及び4,4’-ジヒドロキシジフェニルエーテル)の割合を調整する方法を用いることができる。特に、ハイドロキノンと4,4’-ジヒドロキシジフェニルエーテルとのモル比(例えば、ハイドロキノンと4,4’-ジヒドロキシジフェニルエーテルとの合計に対する4,4’-ジヒドロキシジフェニルエーテルのモル比)を調整することによって、得られる芳香族ポリエーテル共重合体に含まれる式(1)で表される繰り返し単位と式(2)で表される繰り返し単位との合計に対する式(2)で表される繰り返し単位のモル比を調整することができる。 In this aspect, the method for adjusting the molar ratio of the repeating unit represented by formula (2) to the total of the repeating unit represented by formula (1) and the repeating unit represented by formula (2) includes: A method of adjusting the ratio of monomers (eg, 4,4'-dihalogenobenzophenone, hydroquinone and 4,4'-dihydroxydiphenyl ether) used in producing the aromatic polyether copolymer can be used. In particular, by adjusting the molar ratio of hydroquinone and 4,4'-dihydroxydiphenyl ether (for example, the molar ratio of 4,4'-dihydroxydiphenyl ether to the sum of hydroquinone and 4,4'-dihydroxydiphenyl ether), Adjusting the molar ratio of the repeating unit represented by the formula (2) to the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) contained in the aromatic polyether copolymer can do.
 本態様に用いられる芳香族ポリエーテル共重合体の製造方法としては、上述した本発明の一態様に係る芳香族ポリエーテル共重合体の製造方法についてした説明が援用される。モル比の調整は、モル比の一つの指標である上述した積分比Yの調整によって行ってもよい。 As for the method for producing the aromatic polyether copolymer used in this aspect, the above description of the method for producing the aromatic polyether copolymer according to one aspect of the present invention is used. The molar ratio may be adjusted by adjusting the integral ratio Y, which is one index of the molar ratio.
4.用途
 以上に説明した本発明の一態様に係る芳香族ポリエーテル共重合体、本発明の一態様に係る芳香族ポリエーテル共重合体の製造方法によって製造された芳香族ポリエーテル共重合体、及び本発明の一態様に係る芳香族ポリエーテル共重合体の熱物性の調整方法によって熱物性が調整された芳香族ポリエーテル共重合体(以下、これら芳香族ポリエーテル共重合体の総称として「芳香族ポリエーテル共重合体α」ともいう。)の用途は格別限定されない。芳香族ポリエーテル共重合体αは、加工性に優れることにより、種々の加工に好ましく適用できる。
4. Applications The aromatic polyether copolymer according to one aspect of the present invention described above, the aromatic polyether copolymer produced by the method for producing the aromatic polyether copolymer according to one aspect of the present invention, and An aromatic polyether copolymer whose thermophysical properties are adjusted by a method for adjusting thermophysical properties of an aromatic polyether copolymer according to one aspect of the present invention (hereinafter collectively referred to as “aromatic Group polyether copolymer α”) is not particularly limited. The aromatic polyether copolymer α can be preferably applied to various processing due to its excellent workability.
 芳香族ポリエーテル共重合体αを、加工の一例として成形に供することは好ましいことである。成形の例として、芳香族ポリエーテル共重合体αを溶融させた状態で成形し、次いで冷却して固化する方法が挙げられる。芳香族ポリエーテル共重合体αを成形することによって、成形体を製造することができる。成形には、射出成形、押出成形、ブロー成形等の既知の方法を用いることができる。また、芳香族ポリエーテル共重合体αをプレス成形することもでき、コールドプレス法、ホットプレス法等の既知の方法を用いることができる。さらに、芳香族ポリエーテル共重合体αを3Dプリンター用インクに用い、3Dプリンターによって成形することもできる。芳香族ポリエーテル共重合体αに、電磁放射を用いた選択的焼結によって粉末から三次元物体を成形する方法を適用してもよいし、適用しなくてもよい。 It is preferable to subject the aromatic polyether copolymer α to molding as an example of processing. As an example of molding, there is a method of molding the aromatic polyether copolymer α in a molten state and then cooling and solidifying it. A molded article can be produced by molding the aromatic polyether copolymer α. For molding, known methods such as injection molding, extrusion molding, and blow molding can be used. Also, the aromatic polyether copolymer α can be press-molded, and a known method such as a cold press method or a hot press method can be used. Furthermore, the aromatic polyether copolymer α can be used in 3D printer ink and molded by a 3D printer. The aromatic polyether copolymer α may or may not be subjected to a method of forming a three-dimensional object from powder by selective sintering using electromagnetic radiation.
 芳香族ポリエーテル共重合体αを、加工の一例として芳香族ポリエーテル共重合体αと繊維とを含む複合材料の形成に供してもよい。繊維は格別限定されず、例えば無機化合物の繊維等が挙げられる。無機化合物の繊維としては、例えば、ガラス繊維、炭素繊維等が挙げられる。複合材料において、繊維は芳香族ポリエーテル共重合体α中に分散されていてもよいし、繊維(例えばクロスの形態)中に芳香族ポリエーテル共重合体αが含浸されていてもよい。クロスは、面状に配置された繊維によって構成される。クロスは、例えば織布、不織布、一方向材等であり得る。一方向材は、一方向に引き揃えられた繊維によって構成される。複合材料を上述した成形に供してもよい。 As an example of processing, the aromatic polyether copolymer α may be used to form a composite material containing the aromatic polyether copolymer α and fibers. The fibers are not particularly limited, and examples thereof include fibers of inorganic compounds. Examples of inorganic compound fibers include glass fibers and carbon fibers. In the composite material, the fibers may be dispersed in the aromatic polyether copolymer α, or the fibers (for example, in the form of cloth) may be impregnated with the aromatic polyether copolymer α. A cloth is composed of fibers arranged in a plane. The cloth can be, for example, woven, nonwoven, unidirectional, or the like. A unidirectional material is composed of fibers aligned in one direction. The composite material may be subjected to molding as described above.
 以下に本発明の実施例を説明するが、本発明はこれらの実施例により限定されない。 Examples of the present invention are described below, but the present invention is not limited by these examples.
(実施例1)
 300mlセパラブルフラスコに、モノマーとして、ジフルオロベンゾフェノン(東京化成工業株式会社製、略称「DFBP」)を0.1641mol、ハイドロキノン(富士フィルム和光純薬株式会社製、略称「HQ」)を0.1568mol、4,4’-ジヒドロキシジフェニルエーテル(東京化成工業株式会社製、略称「DHPE」)を0.0049mol投入した。ここで、HQとDHPEとの合計に対するDHPEのモル比yは、3mol%である。このセパラブルフラスコに、塩基として炭酸カリウム(KCO)(純正化学株式会社製、特級グレード)を0.1860mol投入し、溶媒としてジフェニルスルホンを140g投入した。
(Example 1)
In a 300 ml separable flask, 0.1641 mol of difluorobenzophenone (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as "DFBP") and 0.1568 mol of hydroquinone (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., abbreviated as "HQ") are added as monomers. 0.0049 mol of 4,4′-dihydroxydiphenyl ether (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated as “DHPE”) was added. Here, the molar ratio y of DHPE to the sum of HQ and DHPE is 3 mol %. Into this separable flask, 0.1860 mol of potassium carbonate (K 2 CO 3 ) (manufactured by Junsei Chemical Co., Ltd., special grade) was added as a base, and 140 g of diphenyl sulfone was added as a solvent.
 セパラブルフラスコの上部にリボンヒーターを巻き付け、その上にガラスウールを巻き付けることで保温した。また、セパラブルフラスコの下部全体をマントルヒーターで包んだ。窒素下(流量:0.1L/min)で、セパラブルフラスコ内の反応混合物を、メカニカルスターラーを使用して加熱撹拌した。
 リボンヒーターを150℃、マントルヒーターを165℃に設定し、100rpmの撹拌速度で撹拌しながら30分加熱した後、撹拌速度を210rpmに変更し、30分かけて反応混合物を200℃まで昇温した。
 昇温後、200℃で1時間温度を保持し、再び30分かけて250℃まで昇温した。
 250℃で1時間温度を保持した後、撹拌速度を250rpmに変更し、300℃まで30分かけて昇温した。
 昇温後、300℃で2時間温度を保持した後、反応を終了し、母液を取り出した。回収した生成物を粉砕したのちアセトンと水で洗浄し、重合体を得た。
A ribbon heater was wound around the top of the separable flask, and glass wool was wound thereon to keep it warm. In addition, the entire lower portion of the separable flask was wrapped with a mantle heater. Under nitrogen (flow rate: 0.1 L/min), the reaction mixture in the separable flask was heated and stirred using a mechanical stirrer.
The ribbon heater was set to 150°C and the mantle heater to 165°C, and after heating for 30 minutes while stirring at a stirring speed of 100 rpm, the stirring speed was changed to 210 rpm, and the reaction mixture was heated to 200°C over 30 minutes. .
After the temperature was raised, the temperature was maintained at 200°C for 1 hour, and the temperature was again raised to 250°C over 30 minutes.
After maintaining the temperature at 250° C. for 1 hour, the stirring speed was changed to 250 rpm, and the temperature was raised to 300° C. over 30 minutes.
After raising the temperature and maintaining the temperature at 300° C. for 2 hours, the reaction was terminated and the mother liquor was taken out. The recovered product was pulverized and washed with acetone and water to obtain a polymer.
<評価方法>
(1)構造解析
 得られた重合体(試料)の同定及び一次構造解析を、H-NMRにより下記の測定条件で行った。
[測定条件]
・マグネット:Ascend500
・分光器:AVANCE III HD
・プローブ:直径5mm TCIクライオプローブ
・積算回数:256回
・待ち時間:10秒
・試料調整:試料約20mgに対してメタンスルホン酸0.6mLを加え1時間撹拌した。そこに重ジクロロメタン0.4mLを加えて測定試料とした。
<Evaluation method>
(1) Structural Analysis The obtained polymer (sample) was identified and primary structurally analyzed by 1 H-NMR under the following measurement conditions.
[Measurement condition]
・Magnet: Ascend500
・Spectrometer: AVANCE III HD
Probe: TCI cryoprobe with a diameter of 5 mm Accumulation times: 256 Waiting time: 10 seconds Sample preparation: 0.6 mL of methanesulfonic acid was added to about 20 mg of the sample and stirred for 1 hour. 0.4 mL of heavy dichloromethane was added thereto to prepare a measurement sample.
 重合体のH-NMR測定における積分比X、積分比Y及び積分比Zを、下記積分値A、B、C及びDに基づいて求めた。
 積分値Aは、化学シフト7.15ppmの強度と7.42ppmの強度とを直線(ベースライン)でつなぎ、このベースラインを基準とする強度(ベースラインの強度を0としたときの強度)を化学シフト7.15ppmから7.23ppmの範囲で積分した値として求めた。尚、化学シフト7.15ppmから7.23ppmの範囲にピークが観測されない場合は、積分値Aは0とする。
 積分値Bは、化学シフト7.15ppmの強度と7.42ppmの強度とを直線(ベースライン)でつなぎ、このベースラインを基準とする強度(ベースラインの強度を0としたときの強度)を化学シフト7.32ppmから7.42ppmの範囲で積分した値として求めた。尚、化学シフト7.32ppmから7.42ppmの範囲にピークが観測されない場合は、積分値Bは0とする。
 積分値Cは、化学シフト7.42ppmの強度と7.49ppmの強度とを直線(ベースライン)でつなぎ、このベースラインを基準とする強度(ベースラインの強度を0としたときの強度)を化学シフト7.42ppmから7.49ppmの範囲で積分した値として求めた。尚、化学シフト7.42ppmから7.49ppmの範囲にピークが観測されない場合は、積分値Cは0とする。
 積分値Dは、化学シフト7.89ppmの強度と7.93ppmの強度とを直線(ベースライン)でつなぎ、このベースラインを基準とする強度(ベースラインの強度を0としたときの強度)を化学シフト7.89ppmから7.93ppmの範囲で積分した値として求めた。尚、化学シフト7.89ppmから7.93ppmの範囲にピークが観測されない場合は、積分値Dは0とする。
 重合体が式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とを含むことは、積分比Yが0%を超え100%未満であることにより確認した。
Integral ratio X, integral ratio Y, and integral ratio Z in 1 H-NMR measurement of the polymer were obtained based on integral values A, B, C, and D below.
The integral value A is obtained by connecting the intensity of the chemical shift 7.15 ppm and the intensity of 7.42 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as an integrated value in the chemical shift range of 7.15 ppm to 7.23 ppm. If no peak is observed in the chemical shift range from 7.15 ppm to 7.23 ppm, the integrated value A is assumed to be 0.
The integral value B is obtained by connecting the intensity of the chemical shift 7.15 ppm and the intensity of 7.42 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.32 ppm to 7.42 ppm. When no peak is observed in the chemical shift range from 7.32 ppm to 7.42 ppm, the integrated value B is set to 0.
The integral value C is obtained by connecting the intensity of the chemical shift 7.42 ppm and the intensity of 7.49 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.42 ppm to 7.49 ppm. If no peak is observed in the chemical shift range from 7.42 ppm to 7.49 ppm, the integrated value C is assumed to be 0.
The integrated value D is obtained by connecting the intensity of the chemical shift 7.89 ppm and the intensity of 7.93 ppm with a straight line (baseline), and the intensity based on this baseline (the intensity when the intensity of the baseline is 0) It was obtained as a value integrated in the chemical shift range from 7.89 ppm to 7.93 ppm. When no peak is observed in the chemical shift range of 7.89 ppm to 7.93 ppm, the integrated value D is set to 0.
It was confirmed that the polymer contained the repeating unit represented by formula (1) and the repeating unit represented by formula (2) by checking that the integral ratio Y was more than 0% and less than 100%.
(2)熱物性の測定(示差走査熱量測定(DSC))
 得られた重合体(試料)5mgをアルミニウム製のパンに計り取り、示差走査熱量計(パーキンエルマー社製「DSC8500」)を用いて温度走査測定を行った。
 温度走査は、窒素を20ml/分で流通させた状態で、試料の温度として50℃から420℃まで20℃/分で昇温(1回目の昇温)、420℃で1分間の保持、420℃から50℃まで-20℃/分で降温(1回目の降温)、50℃で1分間の保持、50℃から420℃まで20℃/分で昇温(2回目の昇温)の順で行った。
(2) Measurement of thermophysical properties (differential scanning calorimetry (DSC))
5 mg of the obtained polymer (sample) was weighed into an aluminum pan and subjected to temperature scanning measurement using a differential scanning calorimeter (“DSC8500” manufactured by PerkinElmer).
The temperature scan was performed by increasing the temperature of the sample from 50°C to 420°C at a rate of 20°C/min (first temperature increase) with nitrogen flowing at 20 ml/min, holding at 420°C for 1 minute, 420°C. C. to 50.degree. C. at -20.degree. C./min (first temperature decrease), hold at 50.degree. gone.
 結晶化温度Tは、1回目の降温時に観測された結晶化による発熱ピークを読み取って求めた。また、発熱ピーク幅を、1回目の降温時における結晶化による発熱ピークの「補外開始点」-「補外終了点」の差として求めた。ここで、降温時における測定の場合、「補外開始点」は、ピークの高温側の最大斜度の点での接線とベースラインとが交わる点(温度)であり、「補外終了点」は、ピークの低温側の最大斜度の点での接線とベースラインとが交わる点(温度)である。ここでは、「補外開始点」-「補外終了点」の差を、パーキンエルマー社製の熱分析ソフトウェア「Pyris」を使用して求めた。
 ガラス転移温度Tは、2回目の昇温時に観測されたガラス転移によるベースラインのシフトを読み取り、変異中間点(変位の中点)の温度として求めた。
 融点Tは、2回目の昇温時に観測された融解による吸熱ピークを読み取り、ピークトップの温度として求めた。
The crystallization temperature Tc was determined by reading the exothermic peak due to crystallization observed during the first temperature drop. The exothermic peak width was obtained as the difference between the "extrapolation start point" and the "extrapolation end point" of the exothermic peak due to crystallization during the first temperature drop. Here, in the case of measurement at the time of temperature decrease, the "extrapolation start point" is the point (temperature) where the tangent line at the point of maximum slope on the high temperature side of the peak intersects with the baseline, and the "extrapolation end point" is the point (temperature) where the tangent to the point of maximum slope on the low temperature side of the peak intersects the baseline. Here, the difference between "extrapolation start point" - "extrapolation end point" was determined using thermal analysis software "Pyris" manufactured by PerkinElmer.
The glass transition temperature Tg was obtained as the temperature at the midpoint of the transition (the midpoint of the displacement) by reading the baseline shift due to the glass transition observed during the second heating.
The melting point Tm was obtained as the peak top temperature by reading the endothermic peak due to melting observed during the second heating.
(3)メルトフローレート(MFR)
 得られた重合体(試料)のメルトフローレートを、株式会社立山科学ハイテクノロジーズ製メルトインデクサ(L-220)を用いて、JIS K 7210-1:2014(ISO 1133-1:2011)に準拠し、下記の測定条件で測定した。
[測定条件]
・測定温度:380℃
・測定荷重:2.16kg
・シリンダ内径:9.550mm
・ダイ内径:2.095mm
・ダイ長さ:8.000mm
・ピストンヘッドの長さ:6.35mm
・ピストンヘッドの直径:9.474mm
・操作:
 試料は事前に150℃で2時間以上乾燥した。試料をシリンダに投入し、ピストンを差し込み6分間予熱した。荷重を加え、ピストンガイドを外してダイから溶融した試料を押し出した。ピストン移動の所定範囲および所定時間(t[s])で試料を切り取り、重量を測定した(m[g])。次式からMFRを求めた。MFR[g/10min]=600/t×m
(3) Melt flow rate (MFR)
The melt flow rate of the resulting polymer (sample) was measured using a melt indexer (L-220) manufactured by Tateyama Kagaku High Technologies Co., Ltd. in accordance with JIS K 7210-1: 2014 (ISO 1133-1: 2011). , was measured under the following measurement conditions.
[Measurement condition]
・Measurement temperature: 380°C
・Measurement load: 2.16 kg
・Cylinder inner diameter: 9.550 mm
・Die inner diameter: 2.095 mm
・Die length: 8.000 mm
・Piston head length: 6.35mm
・Piston head diameter: 9.474mm
·operation:
Samples were previously dried at 150° C. for 2 hours or longer. The sample was put into the cylinder, the piston was inserted, and it was preheated for 6 minutes. A load was applied and the piston guide was disengaged to force the molten sample out of the die. Samples were cut at given ranges of piston travel and given times (t [s]) and weighed (m [g]). MFR was obtained from the following equation. MFR [g/10 min] = 600/t x m
(4)引張試験(引張破壊呼びひずみ)
 180℃で2時間以上乾燥したサンプル(重合体)を用意し、サーモフィッシャーサイエンティフィック社製MinijetProでISO5A型ダンベル(2mmt)を射出成形した(シリンダー温度380℃、金型温度180℃、射出圧500bar、保圧500Bar、保圧時間15秒)。
 得られたダンベルを、インストロン社製万能試験機5567型を用いて、23℃、50%環境下にて試験速度20mm/分、チャック間距離50mmで引張試験を行い、引張破壊呼びひずみを測定した。引張破壊呼びひずみは応力が引張強度の10%以下にまで減少する直前の引張呼びひずみとして測定した。
(4) Tensile test (tensile fracture nominal strain)
A sample (polymer) dried at 180° C. for 2 hours or more was prepared, and an ISO5A dumbbell (2 mmt) was injection molded with a Minijet Pro manufactured by Thermo Fisher Scientific (cylinder temperature 380° C., mold temperature 180° C., injection pressure 500 bar, holding pressure 500 Bar, holding pressure time 15 seconds).
The resulting dumbbells were subjected to a tensile test at a test speed of 20 mm/min under a 50% environment at 23° C. using an Instron Universal Testing Machine Model 5567 at a chuck distance of 50 mm to measure the nominal tensile strain at break. did. The nominal tensile strain at break was measured as the nominal tensile strain immediately before the stress decreased to 10% or less of the tensile strength.
(実施例2)
 実施例1において、HQの投入量を0.1455molに、DHPEの投入量を0.01617molに変更して、HQとDHPEとの合計に対するDHPEのモル比yを10mol%にしたこと以外は実施例1と同様にして、重合体を得た。実施例1と同様に評価した結果を表1に示す。
(Example 2)
Example 1 except that the amount of HQ added was changed to 0.1455 mol, the amount of DHPE added was changed to 0.01617 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 10 mol%. A polymer was obtained in the same manner as in 1. Table 1 shows the results of evaluation in the same manner as in Example 1.
(実施例3)
 実施例1において、HQの投入量を0.1213molに、DHPEの投入量を0.0404molに変更して、HQとDHPEとの合計に対するDHPEのモル比yを25mol%にしたこと以外は実施例1と同様にして、重合体を得た。実施例1と同様に評価した結果を表1に示す。また、H-NMRスペクトルを図1に示す。
(Example 3)
Example 1 except that the amount of HQ added was changed to 0.1213 mol, the amount of DHPE added was changed to 0.0404 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 25 mol%. A polymer was obtained in the same manner as in 1. Table 1 shows the results of evaluation in the same manner as in Example 1. Also, the 1 H-NMR spectrum is shown in FIG.
(実施例4)
 実施例1において、HQの投入量を0.0809molに、DHPEの投入量を0.0809molに変更して、HQとDHPEとの合計に対するDHPEのモル比yを50mol%にしたこと以外は実施例1と同様にして、重合体を得た。実施例1と同様に評価した結果を表1に示す。
(Example 4)
Example 1 except that the amount of HQ added was changed to 0.0809 mol, the amount of DHPE added was changed to 0.0809 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 50 mol%. A polymer was obtained in the same manner as in 1. Table 1 shows the results of evaluation in the same manner as in Example 1.
(実施例5)
 実施例1において、HQの投入量を0.0404molに、DHPEの投入量を0.1213molに変更して、HQとDHPEとの合計に対するDHPEのモル比yを75mol%にしたこと以外は実施例1と同様にして、重合体を得た。実施例1と同様に評価した結果を表1に示す。
(Example 5)
Example 1 except that the amount of HQ added was changed to 0.0404 mol, the amount of DHPE added was changed to 0.1213 mol, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 75 mol%. A polymer was obtained in the same manner as in 1. Table 1 shows the results of evaluation in the same manner as in Example 1.
(比較例1)
 実施例1において、HQの投入量を0.1617molに変更し、DHPEの投入を省略して、HQとDHPEとの合計に対するDHPEのモル比yを0mol%にしたこと以外は実施例1と同様にして、重合体を得た。実施例1と同様に評価した結果を表1に示す。
(Comparative example 1)
In Example 1, the same as Example 1 except that the amount of HQ added was changed to 0.1617 mol, the addition of DHPE was omitted, and the molar ratio y of DHPE to the total of HQ and DHPE was set to 0 mol%. to obtain a polymer. Table 1 shows the results of evaluation in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<評価>
 表1より、芳香族ポリエーテル共重合体に含まれる式(1)で表される繰り返し単位と式(2)で表される繰り返し単位とのモル比を調整すること(例えば「積分比Y」として調整すること)によって、熱物性、例えば、結晶化温度T、ガラス転移温度T、融点T、結晶化温度Tと融点Tとの差(T-T)及び示差走査熱量測定において観測される結晶化による発熱ピーク幅を調整できることがわかる。このことから、本発明によれば、加工性に優れる芳香族ポリエーテル共重合体が得られることがわかる。
 また、仕込みモノマー比であるモル比yが大きいほど積分比Yも大きくなり相関があることから、モル比yによって積分比Yを調整できることがわかる。
<Evaluation>
From Table 1, adjusting the molar ratio of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2) contained in the aromatic polyether copolymer (for example, "integral ratio Y" thermophysical properties such as the crystallization temperature T c , the glass transition temperature T g , the melting point T m , the difference between the crystallization temperature T c and the melting point T m (T m −T c ), and the differential scanning It can be seen that the exothermic peak width due to crystallization observed in calorimetry can be adjusted. From this, it can be seen that according to the present invention, an aromatic polyether copolymer having excellent workability can be obtained.
Further, since the larger the molar ratio y, which is the charged monomer ratio, the larger the integral ratio Y, there is a correlation.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献、及び本願のパリ条約による優先権の基礎となる出願の内容を全て援用する。
Although several embodiments and/or examples of the present invention have been described above in detail, those of ordinary skill in the art may modify these exemplary embodiments and/or examples without departing substantially from the novel teachings and advantages of the present invention. It is easy to make many modifications to the examples. Accordingly, many of these variations are included within the scope of the present invention.
The documents mentioned in this specification and the contents of the applications from which this application has priority under the Paris Convention are incorporated in their entirety.

Claims (17)

  1.  下記式(1)で表される繰り返し単位と、下記式(2)で表される繰り返し単位とを含む、芳香族ポリエーテル共重合体。
    Figure JPOXMLDOC01-appb-C000001
    An aromatic polyether copolymer comprising a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
  2.  H-NMRスペクトルにおいて、下記式(I)で表される積分比Xが0%を超える、請求項1に記載の芳香族ポリエーテル共重合体。
     X[%]={(C/2)/(A/8+B/4)}×100   (I
    (式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Cは化学シフト7.42ppmから7.49ppmの範囲の積分値である。)
    2. The aromatic polyether copolymer according to claim 1, wherein the integral ratio X represented by the following formula (I X ) exceeds 0% in the 1 H-NMR spectrum.
    X [%] = {(C/2)/(A/8+B/4)} x 100 ( IX )
    (In formula (I X ), A is the integrated value in the range of chemical shift 7.15 ppm to 7.23 ppm, B is the integrated value in the range of chemical shift 7.32 ppm to 7.42 ppm, C is the chemical shift from 7.42 ppm It is an integrated value in the range of 7.49 ppm.)
  3.  H-NMRスペクトルにおいて、下記式(I)で表される積分比Zが0%である、請求項1又は2に記載の芳香族ポリエーテル共重合体。
     Z[%]={(D/2)/(A/8+B/4)}×100   (I
    (式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値、Dは化学シフト7.89ppmから7.93ppmの範囲の積分値である。)
    3. The aromatic polyether copolymer according to claim 1, wherein the integral ratio Z represented by the following formula (I Z ) is 0% in the 1 H-NMR spectrum.
    Z [%]={(D/2)/(A/8+B/4)}×100 (I Z )
    (In formula (I Z ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm, D is the chemical shift from 7.89 ppm It is an integrated value in the range of 7.93 ppm.)
  4.  H-NMRスペクトルにおいて、下記式(I)で表される積分比Yが0.1~99.9%である、請求項1~3のいずれかに記載の芳香族ポリエーテル共重合体。
     Y[%]={(A/8)/(A/8+B/4)}×100   (I
    (式(I)において、Aは化学シフト7.15ppmから7.23ppmの範囲の積分値、Bは化学シフト7.32ppmから7.42ppmの範囲の積分値である。)
    The aromatic polyether copolymer according to any one of claims 1 to 3, wherein in the 1 H-NMR spectrum, the integral ratio Y represented by the following formula (I Y ) is 0.1 to 99.9%. .
    Y [%] = {(A/8)/(A/8+B/4)} x 100 (I Y )
    (In formula (I Y ), A is the integrated value in the chemical shift range from 7.15 ppm to 7.23 ppm, and B is the integrated value in the chemical shift range from 7.32 ppm to 7.42 ppm.)
  5.  示差走査熱量測定において観測される結晶化による発熱ピーク幅が60℃以下である、請求項1~4のいずれかに記載の芳香族ポリエーテル共重合体。 The aromatic polyether copolymer according to any one of claims 1 to 4, wherein the exothermic peak width due to crystallization observed in differential scanning calorimetry is 60°C or less.
  6.  メルトフローレートが100g/10min以下である、請求項1~5のいずれかに記載の芳香族ポリエーテル共重合体。 The aromatic polyether copolymer according to any one of claims 1 to 5, which has a melt flow rate of 100 g/10 min or less.
  7.  ジハロゲノベンゾフェノンと、2価フェノールと、2価フェニルエーテルとを反応させることを含む、芳香族ポリエーテル共重合体の製造方法。 A method for producing an aromatic polyether copolymer, comprising reacting a dihalogenobenzophenone, a dihydric phenol, and a dihydric phenyl ether.
  8.  前記ジハロゲノベンゾフェノンがジフルオロベンゾフェノンである、請求項7に記載の芳香族ポリエーテル共重合体の製造方法。 The method for producing an aromatic polyether copolymer according to claim 7, wherein the dihalogenobenzophenone is difluorobenzophenone.
  9.  前記ジフルオロベンゾフェノンが4,4’-ジフルオロベンゾフェノンである、請求項8に記載の芳香族ポリエーテル共重合体の製造方法。 The method for producing an aromatic polyether copolymer according to claim 8, wherein the difluorobenzophenone is 4,4'-difluorobenzophenone.
  10.  前記2価フェノールがハイドロキノンである、請求項7~9のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。 The method for producing an aromatic polyether copolymer according to any one of claims 7 to 9, wherein the dihydric phenol is hydroquinone.
  11.  前記2価フェニルエーテルが4,4’-ジヒドロキシジフェニルエーテルである、請求項7~10のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。 The method for producing an aromatic polyether copolymer according to any one of claims 7 to 10, wherein the divalent phenyl ether is 4,4'-dihydroxydiphenyl ether.
  12.  反応に供する前記2価フェノールと前記2価フェニルエーテルとの合計に対する前記2価フェニルエーテルのモル比を調整して、製造される芳香族ポリエーテル共重合体の熱物性を調整することを含む、請求項7~11のいずれかに記載の芳香族ポリエーテル共重合体の製造方法。 Adjusting the molar ratio of the divalent phenyl ether to the total of the divalent phenol and the divalent phenyl ether subjected to the reaction to adjust the thermophysical properties of the produced aromatic polyether copolymer, A method for producing an aromatic polyether copolymer according to any one of claims 7 to 11.
  13.  前記熱物性として前記芳香族ポリエーテル共重合体の結晶化温度Tを調整する、請求項12に記載の芳香族ポリエーテル共重合体の製造方法。 The method for producing an aromatic polyether copolymer according to claim 12, wherein the crystallization temperature Tc of the aromatic polyether copolymer is adjusted as the thermophysical property.
  14.  前記熱物性として前記芳香族ポリエーテル共重合体の示差走査熱量測定において観測される結晶化による発熱ピーク幅を調整する、請求項12又は13に記載の芳香族ポリエーテル共重合体の製造方法。 14. The method for producing an aromatic polyether copolymer according to claim 12 or 13, wherein an exothermic peak width due to crystallization observed in differential scanning calorimetry of the aromatic polyether copolymer is adjusted as the thermophysical property.
  15.  下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを含む芳香族ポリエーテル共重合体の熱物性の調整方法であって、
     前記式(1)で表される繰り返し単位と前記式(2)で表される繰り返し単位との合計に対する前記式(2)で表される繰り返し単位のモル比を調整して、前記芳香族ポリエーテル共重合体の熱物性を調整することを含む、前記方法。
    Figure JPOXMLDOC01-appb-C000002
    A method for adjusting thermophysical properties of an aromatic polyether copolymer containing a repeating unit represented by the following formula (1) and a repeating unit represented by the following formula (2),
    By adjusting the molar ratio of the repeating unit represented by the formula (2) to the total of the repeating unit represented by the formula (1) and the repeating unit represented by the formula (2), the aromatic poly The above method, comprising adjusting the thermophysical properties of the ether copolymer.
    Figure JPOXMLDOC01-appb-C000002
  16.  前記熱物性として前記芳香族ポリエーテル共重合体の結晶化温度Tを調整する、請求項15に記載の芳香族ポリエーテル共重合体の熱物性の調整方法。 16. The method for adjusting the thermophysical properties of an aromatic polyether copolymer according to claim 15, wherein the crystallization temperature Tc of the aromatic polyether copolymer is adjusted as the thermophysical property.
  17.  前記熱物性として前記芳香族ポリエーテル共重合体の示差走査熱量測定において観測される結晶化による発熱ピーク幅を調整する、請求項15又は16に記載の芳香族ポリエーテル共重合体の熱物性の調整方法。 The thermophysical properties of the aromatic polyether copolymer according to claim 15 or 16, wherein the exothermic peak width due to crystallization observed in differential scanning calorimetry of the aromatic polyether copolymer is adjusted as the thermophysical properties. adjustment method.
PCT/JP2022/019058 2021-04-27 2022-04-27 Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer WO2022230932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021074773 2021-04-27
JP2021-074773 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022230932A1 true WO2022230932A1 (en) 2022-11-03

Family

ID=83848535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019058 WO2022230932A1 (en) 2021-04-27 2022-04-27 Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer

Country Status (1)

Country Link
WO (1) WO2022230932A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500021A (en) * 1983-09-29 1986-01-09 アモコ、コ−ポレ−ション Blends consisting of poly(arylketones)
JPS63500666A (en) * 1985-07-23 1988-03-10 アモコ コ−ポレ−シヨン Poly(aryletherketone) with extended molecular class
JPH0196213A (en) * 1987-09-12 1989-04-14 Bayer Ag Manufacture of aromatic polyether ketones
JPH02272025A (en) * 1989-03-08 1990-11-06 Bayer Ag Manufacture of aromatic polyether ketone
JPH02284921A (en) * 1989-03-30 1990-11-22 Bayer Ag Manufacture of aromatic polyether ketone
US5001200A (en) * 1987-04-16 1991-03-19 Amoco Corporation Poly(phenylene oxide)-poly(aryl ether ketone) blends
CN103980478A (en) * 2014-05-22 2014-08-13 吉林大学 Low melt viscosity polyaryletherketone copolymer and preparation method thereof
CN110437437A (en) * 2019-07-02 2019-11-12 南京清研高分子新材料有限公司 A kind of preparation method of the high fluidity poly(aryl ether ketone) terpolymer containing side group

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500021A (en) * 1983-09-29 1986-01-09 アモコ、コ−ポレ−ション Blends consisting of poly(arylketones)
JPS63500666A (en) * 1985-07-23 1988-03-10 アモコ コ−ポレ−シヨン Poly(aryletherketone) with extended molecular class
US5001200A (en) * 1987-04-16 1991-03-19 Amoco Corporation Poly(phenylene oxide)-poly(aryl ether ketone) blends
JPH0196213A (en) * 1987-09-12 1989-04-14 Bayer Ag Manufacture of aromatic polyether ketones
JPH02272025A (en) * 1989-03-08 1990-11-06 Bayer Ag Manufacture of aromatic polyether ketone
JPH02284921A (en) * 1989-03-30 1990-11-22 Bayer Ag Manufacture of aromatic polyether ketone
CN103980478A (en) * 2014-05-22 2014-08-13 吉林大学 Low melt viscosity polyaryletherketone copolymer and preparation method thereof
CN110437437A (en) * 2019-07-02 2019-11-12 南京清研高分子新材料有限公司 A kind of preparation method of the high fluidity poly(aryl ether ketone) terpolymer containing side group

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HSIEH K. H., CHERN Y. C., HOE K. S., WANG Y. Z., CHAN B. W., CHEN L. W.: "Effect of dihydroxydiphenyl ether on poly(ether ether ketone)", JOURNAL OF POLYMER RESEARCH, SPRINGER NETHERLANDS, DORDRECHT, vol. 3, no. 2, 1 April 1996 (1996-04-01), Dordrecht, pages 83 - 88, XP055980981, ISSN: 1022-9760, DOI: 10.1007/BF01492898 *

Similar Documents

Publication Publication Date Title
CA2745221C (en) High temperature melt processable semi-crystalline poly (aryl ether ketone) containing a (4-hydroxyphenyl) phthalazin-1(2h)-one comonomer unit
CN114746476B (en) Aromatic polyether, aromatic polyether composition, sheet, and process for producing aromatic polyether
WO2022230932A1 (en) Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for adjusting thermophysical properties of aromatic polyether copolymer
WO2022230943A1 (en) Aromatic polyether copolymer, method for producing aromatic polyether copolymer, and method for controlling crystallization temperature of aromatic polyether copolymer
KR102345854B1 (en) Polyarylene ether ketone resin, manufacturing method thereof, and molded article
KR20210106980A (en) Polyarylene ether ketone resin, manufacturing method thereof, and molded article
JP6819841B1 (en) Polyarylene ether ketone resin, its manufacturing method, and molded product
WO2022230934A1 (en) Polyether ether ketone and method for producing same
JP7279357B2 (en) Polyarylene ether ketone resin, method for producing the same, and molded article
JP7323891B2 (en) Polyarylene ether ketone resin, method for producing the same, and molded article
WO2023171407A1 (en) Aromatic polyether, method for producing aromatic polyether, composition, and sheet
JP2572268B2 (en) Aromatic ether ketone copolymer
JP2023163884A (en) Resin composition and method for manufacturing the same
JP2023005590A (en) Polyarylene ether ketone resin and method for producing the same, and molding
Huang et al. The Thermal Properties, Mechanical Performances and Crystallization behaviors of Poly (aryl Ether Ketone) Copolymers by the effect of Ether/Ketone Ratio
WO2020204109A1 (en) Polybiphenyl ether sulfone resin, method for producing same and molded article of same
JP2022165179A (en) Polyarylene ether ketone resin and production method thereof, and molding
JP2022165022A (en) Polyarylene ether ketone resin and method for producing the same, and molded body
GB2608369A (en) Copolymers and related methods, uses and components
JP2022165147A (en) Polyarylene ether ketone resin and production method thereof, and molding
WO2024085104A1 (en) Polyaryl ether ketone and method for producing same, and resin composition
JPS62530A (en) Crystalline poly(ether thioether aromatic ketone) copolymer and its production
JPH0417211B2 (en)
JPH0434567B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP