WO2022230880A1 - Control method, control system, and control device - Google Patents

Control method, control system, and control device Download PDF

Info

Publication number
WO2022230880A1
WO2022230880A1 PCT/JP2022/018899 JP2022018899W WO2022230880A1 WO 2022230880 A1 WO2022230880 A1 WO 2022230880A1 JP 2022018899 W JP2022018899 W JP 2022018899W WO 2022230880 A1 WO2022230880 A1 WO 2022230880A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
work
information
control
control device
Prior art date
Application number
PCT/JP2022/018899
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 太田
達也 吉本
英俊 片岡
孝博 松田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/287,415 priority Critical patent/US20240200309A1/en
Publication of WO2022230880A1 publication Critical patent/WO2022230880A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2041Automatic repositioning of implements, i.e. memorising determined positions of the implement
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller

Definitions

  • the present invention relates to technology for controlling work machines.
  • Patent Literature 1 describes a technique for setting a restricted swing area based on the loading position and excavating position of a hydraulic excavator.
  • the technology controls to limit the turning of the hydraulic excavator when the bucket is positioned in the turning restricted area.
  • Patent Document 2 describes a technique for detecting the position of a worker using a magnetic field generator fixed to a hydraulic excavator and a wireless tag carried by the worker. This technique determines an approach notification area corresponding to a range in which a magnetic field is generated according to the working state of the hydraulic excavator, and issues an approach notification when the determined approach notification area includes the worker's position.
  • Patent Documents 1 and 2 still have room for improvement in terms of safer operation of work machines.
  • the restricted turning area is determined based on the loading position and excavation position regardless of the actual work content. Therefore, this technology may not be able to sufficiently avoid contact with obstacles depending on the actual work content of the hydraulic excavator.
  • the range in which the magnetic field is generated does not necessarily correspond to the area where the actual approach notification should be made, and the approach notification area may not be set accurately. For this reason, this technology may not be able to sufficiently avoid contact between the work machine and the obstacle.
  • One aspect of the present invention has been made in view of the above problems, and an example of its purpose is to provide a technique for operating work machines more safely.
  • a control method includes an acquisition step of acquiring first work information indicating work content of a first work machine and position information of the first work machine, and work content indicated by the first work information.
  • a control system includes: first work information indicating work content of a first work machine; acquisition means for acquiring position information of the first work machine; and work content indicated by the first work information. with reference to range specifying means for specifying a first range including the range in which the first work machine operates and the periphery of the range, and the first range and the position information of the first work machine according to and motion control means for controlling the motion of the first working machine.
  • a control device includes: first work information indicating work content of a first work machine; acquisition means for acquiring position information of the first work machine; and work content indicated by the first work information. with reference to range specifying means for specifying a first range including the range in which the first work machine operates and the periphery of the range, and the first range and the position information of the first work machine according to and motion control means for controlling the motion of the first working machine.
  • working machines can be operated more safely.
  • FIG. 1 is a block diagram showing the configuration of a control system according to exemplary embodiment 1 of the present invention
  • FIG. 1 is a block diagram showing the configuration of a control device according to exemplary embodiment 1 of the present invention
  • FIG. 4 is a flow chart showing the flow of a control method according to exemplary embodiment 1 of the present invention
  • FIG. 3 is a block diagram showing the configuration of a control system according to exemplary embodiment 2 of the present invention
  • FIG. 7 is a flow diagram showing the flow of a control method according to exemplary embodiment 2 of the present invention
  • FIG. 10 is a flow diagram showing a detailed flow of processing for acquiring work information in exemplary embodiment 2 of the present invention
  • FIG. 10 is a flow diagram showing a detailed flow of processing for acquiring work information in exemplary embodiment 2 of the present invention
  • FIG. 10 is a flow diagram showing a detailed flow of processing for identifying a contact range in exemplary embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram showing a specific example of processing for determining a working radius in exemplary embodiment 2 of the present invention; It is the figure which looked at the backhoe shown in FIG. 8 from Z-axis positive direction.
  • FIG. 10 is a schematic diagram showing a specific example of a contact range in exemplary embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram showing another specific example of the contact area in the exemplary embodiment 2 of the present invention
  • FIG. 10 is a diagram schematically showing a specific example of the contact range of two backhoes in exemplary embodiment 2 of the present invention;
  • FIG. 10 is a flow diagram showing a detailed flow of processing for identifying a contact range in exemplary embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram showing a specific example of processing for determining a working radius in exemplary embodiment 2 of the present invention; It is the
  • FIG. 11 is a flow chart showing the flow of processing for specifying a contact range in Modification 1 of Exemplary Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram illustrating a specific example of determination processing in modification 1 of exemplary embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram showing a specific example of a contact range in modification 1 of exemplary embodiment 2 of the present invention
  • FIG. 11 is a schematic diagram showing another specific example of the contact range in modification 1 of exemplary embodiment 2 of the present invention
  • FIG. 10 is a diagram schematically showing a specific example of contact ranges of two backhoes in Modification 1 of Illustrative Embodiment 2 of the present invention
  • FIG. 10 is a diagram schematically showing a specific example of contact ranges of two backhoes in Modification 1 of Illustrative Embodiment 2 of the present invention
  • FIG. 10 is a diagram schematically showing a specific example of contact ranges of two backhoes in Modification 1 of Illustr
  • FIG. 10 is a flow diagram illustrating the flow of a control method according to Modification 2 of Illustrative Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram illustrating an overview of exemplary embodiment 3 of the present invention
  • FIG. 10 is a block diagram showing the configuration of a control system according to exemplary embodiment 3 of the present invention
  • FIG. 11 is a flow diagram showing the flow of a control method according to exemplary embodiment 3 of the present invention
  • FIG. 11 is a block diagram showing the configuration of a control system according to exemplary embodiment 4 of the present invention
  • FIG. 12 is a flow diagram showing the flow of a control method according to exemplary embodiment 4 of the present invention
  • FIG. 10 is a flow diagram illustrating the flow of a control method according to Modification 2 of Illustrative Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram illustrating an overview of exemplary embodiment 3 of the present invention
  • FIG. 10 is a block diagram showing the configuration of a control system according to exemplary
  • FIG. 11 is a block diagram showing the configuration of a control system according to exemplary embodiment 5 of the present invention
  • FIG. 11 is a flow diagram showing the flow of a control method according to exemplary embodiment 5 of the present invention
  • It is a block diagram which shows an example of the hardware constitutions of the control apparatus in each exemplary embodiment of this invention.
  • FIG. 1 is a block diagram showing the configuration of the control system 1. As shown in FIG.
  • the control system 1 includes an acquisition unit 11, a range identification unit 12, an operation control unit 13, and a work machine 90.
  • Lines connecting functional blocks in FIG. 1 indicate an example of the logical connection relationship between the functional blocks, and do not limit the connection relationship between them.
  • the work machine 90 is an example of the "first work machine” described in the claims.
  • the acquisition unit 11, the range identification unit 12, and the operation control unit 13 are included in the control device 10 as shown in FIG.
  • the control device 10 is a device that controls the work machine 90 .
  • the control device 10 is connected to the work machine 90 so as to be able to control the operation of the work machine 90 .
  • control device 10 may be implemented as a controller mounted on work machine 90 .
  • control device 10 may be realized by a computer mounted on the working machine 90 as a retrofit.
  • the control device 10 is connected by wire so as to be communicable with the controller.
  • Specific examples of wired connection include USB (Universal Serial Bus), serial communication, and the like.
  • control device 10 may be implemented as a computer that controls the operation of work machine 90 at a location different from work machine 90 .
  • the control device 10 may be installed near the work machine 90 or may be installed remotely.
  • the control device 10 is connected to the controller of the work machine 90 via a network.
  • networks include, for example, wireless LAN (Local Area Network), wired LAN, WAN (Wide Area Network), public line network, mobile data communication network (3G, LTE: Long Term Evolution, 4G, 5G, local 5G etc.), Wifi (registered trademark), or a combination of these networks.
  • the configuration for connecting the control device 10 and the work machine 90 is not limited to these.
  • the acquisition unit 11, the range identification unit 12, and the operation control unit 13 are not limited to one device, and may be distributed in a plurality of devices.
  • the control device 10 may be composed of a plurality of devices. Some or all of the multiple devices may be located on the cloud.
  • each device communicates by being connected by wire, wireless, or a combination thereof.
  • these functional blocks acquire information from each other through communication between the devices.
  • FIG. 2 is a block diagram showing the configuration of the control device 10.
  • the control device 10 includes an acquisition section 11 , a range identification section 12 and an operation control section 13 .
  • the acquisition unit 11 is an example of a configuration that implements the “acquisition unit” recited in the claims.
  • the range specifying unit 12 is an example of a configuration that implements the "range specifying means” described in the claims.
  • the operation control unit 13 is an example of a configuration that implements the "operation control means" recited in the claims.
  • the acquisition unit 11 acquires work information of the work machine 90 and position information of the work machine 90 .
  • the work information indicates the work content of the work machine 90 .
  • the work content includes, for example, the type of work performed by the work machine 90, the state of each part constituting the work machine 90, and the like.
  • the work content indicated by the work information includes, for example, the type of work performed by the work machine 90, the target position of the work, and the posture of the work machine 90 for performing the work.
  • the work information includes work type information indicating the type of work, target position information indicating the target position of the work, and posture information including the posture of the work machine 90 .
  • the range identifying unit 12 identifies the first range according to the work content indicated by the acquired work information.
  • the first range is a range including the range in which work machine 90 operates and the periphery of the range. Also, the first range is specified in order to operate the work machine 90 safely.
  • the first range may be a two-dimensional range or a three-dimensional range. In the case of a two-dimensional range, for example, the first range may be a range on a plane in which work machine 90 is viewed from above or may be a range on a plane when viewed from side. Also, for example, the first range may be a range in which the work machine may come into contact with an obstacle. Henceforth, "the 1st range" is also described as a "contact range.”
  • the motion control unit 13 refers to the specified contact range and the position information of the work machine 90 to control the motion of the work machine 90 .
  • FIG. 3 is a flowchart showing the flow of control method S1. As shown in FIG. 3, the control method S1 includes steps S11 to S13.
  • Step S11 Acquisition step
  • the acquisition unit 11 acquires work information of the work machine 90 and position information of the work machine 90 .
  • the acquisition unit 11 may acquire the work information by referring to the detected value of a sensor mounted on the work machine 90, may acquire the work information by reading from a memory, or may acquire the work information by communicably connecting. may be obtained by receiving from another device.
  • the acquisition unit 11 may acquire the position information of the work machine 90 by referring to the detected value of the positioning sensor mounted on the work machine 90 .
  • the acquisition unit 11 may further acquire the position information of the obstacle.
  • Step S12 range specifying step
  • the range identifying unit 12 identifies the contact range according to the work content indicated by the acquired work information.
  • the range specifying unit 12 may specify the contact range according to the type of work and the state of each part that configures the work machine 90 .
  • Step S13 Operation control step
  • the motion control unit 13 controls the motion of the work machine 90 with reference to the specified contact range and the position information of the work machine 90 .
  • the motion control unit 13 determines whether an obstacle is positioned within the identified contact range. The determination process can be executed, for example, by referring to detection values of a positioning sensor mounted on work machine 90 . Further, when the motion control unit 13 determines that an obstacle is positioned within the identified contact range, the operation control unit 13 controls the working machine 90 to reduce the possibility of contact with the obstacle.
  • Specific examples of control content include, but are not limited to, stopping, decelerating, and moving.
  • this exemplary embodiment controls the operation of work machine 90 by referring to the contact range specified according to the work content of work machine 90 and the position information of work machine 90 .
  • the contact range that fully reflects the work content of the work machine 90 is referred to, so that the work machine 90 can be operated more safely.
  • FIG. 4 is a block diagram showing the configuration of the control system 2.
  • the control system 2 includes a control system 2A and a control system 2B.
  • the control system 2A is a system that includes a backhoe 90A and a control device 20A and controls the backhoe 90A.
  • the control system 2B is a system that includes a backhoe 90B and a control device 20B and controls the backhoe 90B.
  • the control device 20A and the control device 20B are communicably connected via the network N1.
  • Specific examples of the network N1 include wireless LAN, wired LAN, WAN, public line network, mobile data communication network (3G, LTE, 4G, 5G, local 5G, etc.), or a combination of these networks.
  • the configuration for connecting the control device 20A and the control device 20B is not limited to this.
  • control device 20A is installed near or remotely from the backhoe 90A and is connected to the backhoe 90A so as to be able to control the operation of the backhoe 90A.
  • control device 20A may be wirelessly connected to the controller 94A mounted on the backhoe 90A, or may be connected via the network N1 described above.
  • the configuration for connecting the control device 20A and the backhoe 90A is not limited to these.
  • control device 20B is installed near or remotely from the backhoe 90B, and is connected to the backhoe 90B so as to be able to control the operation of the backhoe 90B.
  • the connection form of the control device 20B and the backhoe 90B will be described in the same manner by replacing the "A" at the end of the reference numerals with "B" in the above-described connection form of the control device 20A and the backhoe 90A.
  • Backhoe 90A A detailed configuration of the backhoe 90A will be described.
  • the backhoe 90A is an example of the "first working machine" described in the claims.
  • Backhoe 90A operates autonomously according to control by control device 20A. Note that the autonomous operation means an operation without sequential operation by an operator.
  • the backhoe 90A includes a turning section 91A, an arm section 92A, a traveling section 93A, and a controller 94A.
  • the traveling part 93A is a traveling part that enables the backhoe 90A to move forward, backward, turn right, and turn left.
  • the running section 93A runs using, for example, an endless track belt.
  • the turning portion 91A is attached to the traveling portion 93A.
  • the turning portion 91A can turn around the turning axis P1A within a plane perpendicular to the plane of the drawing. Note that when the backhoe 90A is on the horizontal ground, the plane perpendicular to the paper surface of FIG. 4 is a horizontal plane, so this plane is hereinafter referred to as a "horizontal plane" for convenience.
  • the arm part 92A includes a boom 921A attached to the revolving part 91A, an arm 922A attached to the tip of the boom 921A, and a bucket 923A attached to the tip of the arm 922A.
  • the boom 921A can reciprocate around the boom axis P2A within a plane substantially perpendicular to the horizontal plane.
  • the arm 922A can reciprocate around the arm axis P3A on the same plane as the boom 921A.
  • the bucket 923A can reciprocate around the bucket axis P4A on the same plane as that of the arm 922A.
  • the swivel part 91A and the arm part 92A are examples of the "operating part" described in the claims. That is, the backhoe 90A has a plurality of moving parts.
  • the controller 94A has a processor, memory and communication interface (none of which are shown). The controller 94A reads and executes a program stored in the memory to control each part of the backhoe 90A according to operation control signals received from the control device 20A via the communication interface.
  • the controller 94A causes the backhoe 90A to perform work such as excavation or loading by rotating part or all of the rotating section 91A, the boom 921A, the arm 922A, and the bucket 923A according to the operation control signal.
  • the controller 94A moves the backhoe 90A by causing the traveling section 93A to travel according to the operation control signal.
  • the backhoe 90A also includes various sensor groups (not shown) for detecting the posture and position of the backhoe 90A.
  • a sensor for detecting a posture includes, but is not limited to, a tilt sensor, an acceleration sensor, a gyro sensor, an encoder, a pressure sensor, a flow sensor, a cylinder sensor, an oil pressure sensor, or a stroke sensor. .
  • These sensors detect the turning angle of the turning section 91A, boom 921A, arm 922A, or bucket 923A.
  • a positioning sensor is an example of a sensor that detects a position. Examples of positioning sensors include, but are not limited to, sensors using received signals from GPS (Global Positioning System) satellite or cellular network base stations.
  • the backhoe 90A does not necessarily have to include a positioning sensor.
  • the position of the backhoe 90A is detected using a three-dimensional sensor (not shown) installed in the space where the backhoe 90A exists.
  • Three-dimensional sensors include three-dimensional laser scanners, cameras (e.g., depth cameras, stereo cameras, ToF (Time-of-Flight) cameras, etc.), laser sensors (e.g., 3DLiDAR, etc.), or radar sensors. , but not limited to these.
  • the backhoe 90B is an example of the "second working machine” described in the claims.
  • the backhoe 90B is configured similarly to the backhoe 90A.
  • the configuration of the backhoe 90B will be similarly described by replacing the suffix "A” with “B” in the description of the configuration of the backhoe 90A.
  • the backhoes 90A and 90B will be simply referred to as the backhoe 90 when there is no need to distinguish between the backhoes 90A and 90B.
  • the backhoe 90B may be described as "another backhoe 90" for the backhoe 90A.
  • backhoe 90A may be referred to as the "other backhoe 90" for backhoe 90B.
  • control device 20A (Configuration of control device 20A) A detailed configuration of the control device 20A will be described. As shown in FIG. 4, the control device 20A includes an acquisition section 21A, a range identification section 22A, an action control section 23A, and an action identification section 24A.
  • the acquisition unit 21A sequentially acquires work information A indicating the work content of the backhoe 90A and position information A of the backhoe 90A. Further, the acquisition unit 21A sequentially acquires the position information B of the backhoe 90B and the information indicating the contact range 80B. Details of the work information A, the position information A, the position information B, and the contact range 80B will be described later.
  • the range specifying unit 22A specifies the contact range 80A according to the work content indicated by the work information A and the operating range of the operating parts of the backhoe 90A.
  • the range specifying unit 22A specifies the contact range 80A having a shape corresponding to each of the plurality of operating parts of the backhoe 90A, according to the work content indicated by the work information A. Details of the contact range 80A will be described later.
  • the work information A includes work details determined by the motion specifying unit 24A, which will be described later. Details of the work information A will be described later. Further, the range specifying unit 22A sequentially changes the contact range 80A according to the work information A that is sequentially acquired.
  • the motion specifying unit 24A determines the work content of the backhoe 90A.
  • the action specifying unit 24A may determine the work content of the backhoe 90A by referring to the position information B of the backhoe 90B and the contact range 80B.
  • the operation specifying unit 24A may determine the work content of the backhoe 90A based on prior input by the operator, or may be determined according to a predetermined schedule.
  • the motion specifying unit 24A may autonomously determine the work content of the backhoe 90A. Autonomously determining the work content means, for example, determining according to the situation of the backhoe 90A.
  • the motion identifying unit 24A may autonomously determine the work content using a generative model that generates the work content of the backhoe 90A.
  • the generative model may be a model that has been learned by machine learning so that output values from various sensor groups for detecting the posture and position of the backhoe 90A are input, and work content is output.
  • the action specifying unit 24A may determine a type of work and information defining the type of work as the work content.
  • the information specifying the “excavation” work includes the position to be excavated, the method of excavation (for example, the depth of excavation, direction, angle, working trajectory, etc.).
  • the motion control unit 23A generates motion control information for controlling the motion of the backhoe 90A according to the work content of the backhoe 90A. Further, the motion control unit 23A transmits the generated motion control information to the backhoe 90A via a communication interface (not shown). Thereby, backhoe 90A operates autonomously. For example, the backhoe 90A may operate autonomously according to the work content determined in advance, or may operate autonomously according to the work content determined according to the situation during operation.
  • the operation control unit 23A also refers to the contact range 80A, the position information A, the position information B, and the contact range 80B to determine whether or not at least a portion of the contact range 80A and the contact range 80B overlap. Moreover, the operation control part 23A controls the backhoe 90A, when it is judged that it overlaps.
  • the content of control is control which reduces possibility that backhoe 90A will contact backhoe 90B.
  • the specific control content is control which stops the backhoe 90A.
  • the content of control for reducing the possibility of contact is not limited to this.
  • the content of the control may be control for running the backhoe 90A until the contact range 80A does not overlap the contact range 80B.
  • the control content may be control to change the work content of the backhoe 90A to a work content in which the contact range 80A does not overlap the contact range 80B.
  • control device 20B (Configuration of control device 20B)
  • the control device 20B is configured similarly to the control device 20A.
  • the configuration of the control device 20B will be described in the same manner by replacing the suffix "A" with “B” and "B” with "A” in the description of the configuration of the control device 20A.
  • Work information A is an example of "first work information" described in the claims.
  • the work information A is information indicating the work content of the backhoe 90A.
  • the work content indicated by the work information A includes, for example, the type of work performed by the backhoe 90A, the target position of the work, and the posture of the backhoe 90A for performing the work.
  • the work information A includes work type information indicating the type of work, target position information indicating the target position of the work, and posture information including the posture of the backhoe 90A.
  • the attitude is represented by the turning angle of each part of the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A, for example. That is, the work information A includes information about the direction (here, turning angle) of one or more operating parts (here, the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A) of the backhoe 90A.
  • the work information A includes information determined by the operation specifying unit 24A to operate the backhoe 90A autonomously.
  • work type information and target position information are examples of information determined by the motion identifying unit 24A. These pieces of information included in the work information A may be determined in advance or may be determined autonomously.
  • the work information A includes information indicating the current state of the backhoe 90A.
  • Information indicating the current state is detected by a group of sensors included in the backhoe 90A.
  • posture information is an example of information indicating the current state.
  • the posture information includes the turning angles of each part of the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A detected by the sensor group.
  • the position information A is information indicating the position of the backhoe 90A.
  • Position information A is represented by the same three-dimensional coordinate system as position information B.
  • FIG. For example, the position information A is detected by the positioning sensor or three-dimensional sensor described above.
  • Position information B The position information B will be described in the same manner by replacing the suffix 'A' with 'B' and 'B' with 'A' in the description of the position information A described above. Henceforth, when it is not necessary to distinguish between the position information A and B, they will simply be referred to as "position information".
  • the contact range 80A is a range including the range in which the work machine 90 operates and the periphery of the range in order to safely operate the backhoe 90A.
  • the contact range 80A is an example of the "first range” described in the claims.
  • the contact range 80A has a shape corresponding to the moving portion of the backhoe 90A.
  • the moving parts in the backhoe 90A are the revolving part 91A and the arm part 92A here. That is, the backhoe 90A has a plurality of moving parts.
  • the contact area 80A includes shapes corresponding to each of the plurality of moving parts.
  • the shape corresponding to the moving portion is, for example, a circle, an ellipse, or a sector shape having a radius corresponding to the moving portion.
  • the contact range 80A has a shape obtained by synthesizing a fan-shaped region having a radius corresponding to the turning portion 91A and a fan-shaped region having a radius corresponding to the arm portion 92A.
  • Contact range 80B The contact range 80B will be described in the same manner by replacing the suffix "A” with “B” and “B” with “A” in the above description of the contact range 80A.
  • the contact range 80B is an example of the "second range” described in the claims. Henceforth, when it is not necessary to specifically distinguish between the contact areas 80A and 80B, they will simply be referred to as the "contact area 80".
  • control device 20A sequentially executes the control method S2.
  • the sequential execution may be, for example, executing the control method S2 at predetermined intervals, or executing the control method S2 according to changes in the work information A.
  • FIG. The control device 20B also sequentially executes the control method S2, like the control device 20A.
  • FIG. 5 is a flowchart showing the flow of control method S2.
  • the control method S2 includes steps S21 to S27.
  • the case where 20 A of control apparatuses perform the control method S2 is demonstrated.
  • the case where the control method S2 is executed by the control device 20B will be described in the same manner by replacing the suffix "A" with "B" and "B” with "A” in the following description.
  • Step S21 21 A of acquisition parts acquire the work information A in step S21. The details of this step will be described later.
  • step S22 the acquisition unit 21A acquires the position information A of the backhoe 90A. Specifically, for example, the acquisition unit 21A acquires the position information A using a positioning sensor included in the backhoe 90A or a three-dimensional sensor installed in the space where the backhoe 90A exists. The details of this step will be described later.
  • step S23 the acquisition unit 21A acquires the position information B of the backhoe 90B (another backhoe 90). Specifically, the acquisition unit 21A receives the position information B by requesting it from the control device 20B.
  • step S24 the range specifying unit 22A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A. Specifically, the range specifying unit 22A specifies a contact range 80A obtained by synthesizing a contact range 82A having a shape corresponding to the arm part 92A and a contact range 81A having a shape corresponding to the turning part 91A. By sequentially executing the control method S2, the contact range 80A specified in this step can be sequentially changed. The details of this step will be described later.
  • Step S25 the acquisition unit 21A acquires the contact range 80B of the backhoe 90B (another backhoe 90). Specifically, the acquisition unit 21A receives the contact range 80B from the control device 20B.
  • control device 20B specifies contact range 80B in step S24 by executing control method S2 in the same manner as control device 20A. Therefore, the acquisition unit 21A receives the contact range 80B by requesting the control device 20B.
  • Step S26 the operation control unit 23A determines whether or not at least a portion of the contact range 80A and the contact range 80B overlap. A specific example of this step will be described later.
  • step S27 When it is determined Yes in step S26, the motion control unit 23A stops the backhoe 90A in step S27. Specifically, the operation control unit 23A transmits operation control information instructing a stop to the backhoe 90A. In this step, the backhoe 90A and the backhoe 90B are stopped by the control device 20A and the control device 20B executing the control method S2.
  • step S26 If the determination in step S26 is No, the control device 20A terminates the control method S2. In addition, if it is determined as Yes in step S26 in the control method S2 executed in the past and step S27 is executed, the backhoe 90A has already stopped. In such a state, the operation control section 23A may cause the backhoe 90A to restart the work when it is determined as No in step S26 in the current execution of the control method S2.
  • FIG. 6 is a flowchart showing a detailed flow of processing for acquiring work information.
  • the process of acquiring work information includes steps S211 to S213.
  • the case where 20 A of control apparatuses perform step S21 is demonstrated.
  • the case where the control device 20B executes step S21 will be described in the same manner by replacing the suffix "A" with "B” and "B” with “A” in the following description.
  • Step S211 the acquisition unit 21A acquires work type information.
  • the work type information is, for example, information indicating "excavation" or "loading", but is not limited to this.
  • the work type information is information determined by the motion specifying unit 24A to control the motion of the backhoe 90A.
  • the work type information is stored, for example, in a memory (not shown) of the control device 20A. Such work type information may change according to changes in the work content of the backhoe 90A.
  • the acquiring unit 21A acquires the most recently determined work type information by reading it from the memory. The most recently determined work type information may be determined in advance or may be determined autonomously.
  • the acquisition unit 21A acquires target position information.
  • the target position information is represented by the same three-dimensional coordinate system as the position information A and B.
  • FIG. the target position information includes one or both of digging position information and loading position information.
  • the excavation position information indicates the position where the object to be excavated exists.
  • the loading position information is coordinates indicating the position where the object is loaded.
  • the loading position information indicates the coordinates of the platform of the vehicle that loads and transports the object.
  • the target position information includes excavation position information.
  • the target position information includes excavation position information, which is the position at which turning for loading is started, and loading position information where the object is to be loaded. You can
  • the target position information includes one or both of the object position information and the destination position information.
  • the object position information indicates the position where the deposited object exists.
  • the destination position information indicates the destination position of the object.
  • the target position information is information determined by the motion specifying unit 24A to control the motion of the backhoe 90A.
  • the target position information is stored, for example, in the memory of the control device 20A. Also, the target position information may change according to changes in the work content of the backhoe 90A.
  • the acquisition unit 21A acquires the recently determined target position information by reading it from the memory. The most recently determined target position information may be determined in advance or may be determined autonomously.
  • step S213 the acquisition unit 21A acquires posture information.
  • the posture information includes information indicating the turning angle of each part of the turning section 91A, boom 921A, arm 922A, and bucket 923A.
  • the turning angle of each part is detected by a sensor group mounted on the backhoe 90A.
  • the acquisition unit 21A acquires the posture information by referring to the detected values of the sensor group.
  • FIG. 7 is a flow diagram showing a detailed flow of processing for specifying the contact area 80. As shown in FIG. As shown in FIG. 7, the process of specifying the contact area 80 includes steps S241 to S246. In addition, below, the case where 20 A of control apparatuses perform step S24 is demonstrated. The case where the control device 20B executes step S24 will be described in the same manner by replacing the suffix "A" with "B" and "B” with “A” in the following description.
  • step S241 the range identifying section 22A refers to the posture information included in the work information A to determine the working radius R2A of the arm section 92A.
  • the working radius R2A of the arm portion 92A is the radius of the fan-shaped region in which the arm portion 92A is expected to move due to the work of the backhoe 90A.
  • the working radius R2 is larger than the working radius R1A of the revolving portion 91A, which will be described later.
  • FIG. 8 is a schematic diagram showing a specific example of processing for determining the working radius R2A.
  • the horizontal direction of the drawing is defined as the X-axis direction
  • the vertical direction of the drawing is defined as the Z-axis direction
  • the Y-axis direction is defined to be orthogonal to the X-axis direction and the Z-axis direction.
  • ⁇ 1 indicates the turning angle of the boom 921A.
  • ⁇ 2 indicates the turning angle of the arm 922A.
  • ⁇ 3 indicates the turning angle of the bucket 923A.
  • the attitude information also includes the turning angle ⁇ 0 (not shown) of the turning section 91A.
  • the range specifying unit 22A calculates R2 by the following equation (1) based on the posture information including ⁇ 0 to ⁇ 4, and sets the calculated R2 as the working radius R2A.
  • r3 is the distance from the boom axis P2A to the arm axis P3A on the swing plane (xz plane) of the boom 921A, arm 922A, and bucket 923A.
  • r4 is the distance from the boom axis P2A to the bucket axis P4A on the turning plane.
  • r5 is the distance from the boom axis P2A to the tip P5A of the bucket 923A on the turning plane.
  • r6 is the distance from the boom axis P2A to the bottom P6A of the bucket 923A on the turning plane.
  • ⁇ x and ⁇ y will be described with reference to FIG.
  • FIG. 9 is a view of the backhoe 90A shown in FIG.
  • Range specifying unit 22A refers to information indicating the size of each part of backhoe 90A in addition to posture information when calculating r3 to r6. Information indicating the size of each part is stored in advance in the memory of the control device 20A.
  • the range identification unit 22A refers to the work type information included in the work information A to determine the work angle of the arm part 92A.
  • the work angle indicates the maximum angle at which the corresponding moving portion (here, the arm portion 92A) can rotate in the corresponding type of work.
  • the work angle may be determined in advance according to the work type information, for example. In addition to responding to the work type information, the work angle may be determined in consideration of the turning angle from when the operation control information instructing to stop turning is transmitted until turning is actually stopped. good.
  • FIG. 10 is a schematic diagram showing a specific example of the contact range 80A of the backhoe 90A.
  • the work type information included in the work information A indicates "excavation".
  • the range identification unit 22A determines the work angle ⁇ 1A according to the work type information “excavation”.
  • the working angle ⁇ 1A is determined in advance according to a range in which the arm portion 92A may move left and right with respect to the direction d1A as the revolving portion 91A revolves when the backhoe 90A excavates. .
  • the working angle ⁇ 1A may be determined in consideration of the time from when the motion control information for stopping the motion of the arm portion 92A is transmitted until when the arm portion 92A actually stops.
  • the contact range 80A indicates a range in which the backhoe 90A may move in the front-rear direction (that is, the direction d1A) and in the left-right direction according to the work content indicated by the work information A.
  • step S243 the range specifying unit 22A calculates the contact range 82A having a shape corresponding to the arm section 92A based on the determined work radius R2A and work angle and the target position information included in the work information A.
  • the target position information included in the work information A includes information indicating the excavation position D1A.
  • the direction from the turning axis P1A to the excavation position D1A is defined as d1A.
  • the direction d1A is the direction in which the arm portion 92A faces when the bucket 932A is placed at the excavation position D1A.
  • the range identifying unit 22A calculates a contact range 82A as a fan-shaped region having a working radius R2A centered on the pivot axis P1A and including the arm portion 92A.
  • the range specifying unit 22A defines a line segment extending in the directions of ⁇ 1A from the turning axis P1A with respect to the direction d1A as the boundary of the contact range 82A.
  • the clockwise direction in the drawing is defined as the + direction.
  • Step S244 the range specifying unit 22A determines the working radius R1A of the turning unit 91A.
  • the working radius R1A of the revolving part 91A is the radius of the fan-shaped region in which the revolving part 91A is expected to revolve due to the work of the backhoe 90A.
  • the working radius R1A is a constant determined by the size of the turning portion 91A. Normally, the working radius R1A is smaller than the working radius R2A of the arm portion 92A described above.
  • step S244 A specific example of step S244 will be described with reference to FIG.
  • the range specifying unit 22A uses the distance from the pivot axis P1A to the rear-side corner P7A of the swivel unit 91A on the swivel surface of the swivel unit 91A as the working radius R1A of the swivel unit 91A.
  • Such a working radius R1A is stored in advance in the memory of the control device 20A, for example.
  • step S245 the range specifying unit 22A calculates a contact range 81A having a shape corresponding to the swivel part 91A based on the determined working radius R1A.
  • the range identifying unit 22A calculates a sector-shaped area having a working radius R1A centered on the turning axis P1A and including the turning part 91A as a contact range 81A.
  • the contact range 81A is desirably configured by a region of a circle having a working radius R1A centered on the pivot axis P1A and not included in the contact range 82A.
  • step S246 the range specifying unit 22A specifies the contact range 80A of the backhoe 90A based on the contact ranges 82A and 81A having shapes corresponding to the respective moving parts (arm section 92A and turning section 91A).
  • step S246 A specific example of step S246 will be described with reference to FIG.
  • the range specifying unit 22A specifies, as a contact range 80A, a combined area of the contact range 82A of the arm section 92A and the contact range 81A of the turning section 91A.
  • step S24 executed by control device 20B
  • control device 20B identifies contact range 80B of backhoe 90B by executing step S24.
  • a specific example of the contact range 80B of the backhoe 90B will be described with reference to FIG.
  • FIG. 11 is a schematic diagram showing a specific example of the contact range 80B of the backhoe 90B.
  • work type information included in work information B indicates "loading".
  • the target position information included in the work information B includes information indicating the excavation position D1B and information indicating the loading position D2B.
  • the work content of the backhoe 90B is the work of "turning from the excavation position D1B to the loading position D2B, loading the object to the loading position D2B, and turning to the excavation position D1B".
  • the working radius R2B of the arm portion 92B is calculated by the formula (1) with reference to the posture information included in the work information B.
  • the working radius R1B of the turning portion 91B is the distance from the turning axis P1B to the rear side corner P7B of the turning portion 91B, and is stored as a constant in the memory of the control device 20B.
  • the work angles ⁇ 2B and ⁇ 3B are calculated by the operation specifying unit 24A according to the target position information (the excavation position D1B and the loading position D2B) included in the work information B, and stored in the memory of the control device 20B.
  • the working angle ⁇ 2B indicates an angle at which the arm portion 92B may move to the right with respect to the direction d1B.
  • a working angle ⁇ 3B indicates an angle at which the arm portion 92B may move leftward with respect to the direction d1B.
  • the contact range 80B is a combined area of the contact range 82B having a shape corresponding to the arm portion 92B and the contact range 82B having a shape corresponding to the turning portion 91B.
  • the contact range 82B is a fan-shaped area with a working radius R2B centered on the pivot axis P1B and including the arm portion 92B. Further, the contact range 82B is bounded by a line segment extending from the turning axis P1B in the + ⁇ 2B direction with respect to the direction d1B and a line segment extending in the ⁇ 2B direction with respect to the direction d2B.
  • the direction d1B is the direction from the pivot P1B to the excavation position D1B.
  • a direction d2B is a direction from the pivot P1B toward the loading position D2B.
  • the contact range 81B has a shape corresponding to the swivel portion 91B.
  • the contact range 81B is a fan-shaped region having a working radius R1B centered on the pivot axis P1B and including the pivot portion 91B.
  • the contact range 81B desirably includes a region of the circle with the working radius R1B centered on the pivot axis P1B, which is not included in the contact range 82B.
  • Step S26 Concrete example of processing for determining overlap of contact areas
  • FIG. 12 is a diagram schematically showing a specific example of the contact range 80 of the two backhoes 90.
  • the motion control unit 23A refers to the position information A and B, and arranges the contact ranges 80A and 80B in the virtual space. Specifically, the motion control unit 23A arranges the contact range 80A specified by the working angle ⁇ 1A, the working radii R2A and R1A, and the direction d1A at the position corresponding to the positional information A in the virtual space.
  • the motion control unit 23A arranges a contact range 80B specified by the working angle ⁇ 2B, the working radii R2B and R1B, and the directions d1B and d2B at the position corresponding to the position information B in the virtual space. Further, the operation control unit 23A determines whether or not at least a portion of the contact ranges 80A and 80B arranged in the virtual space overlap. In the specific example of FIG. 12, the contact range 80A of the backhoe 90A and the contact range 80B of the backhoe 90B partially overlap. Therefore, in this specific example, the operation control unit 23A determines Yes in step S26. Therefore, the operation control unit 23A of the control device 20A controls to stop the backhoe 90A. Similarly, the operation control section 23B of the control device 20B controls the backhoe 90B to stop.
  • the contact ranges 80A and 80B are two-dimensional ranges, and the virtual space in which the contact ranges 80A and 80B are arranged is a two-dimensional plane as shown in FIG.
  • the range specifying unit 22A may specify three-dimensional ranges as the contact ranges 80A and 80B.
  • the motion control unit 23A arranges the contact ranges 80A and 80B in a virtual three-dimensional space.
  • the three-dimensional contact ranges 80A and 80B include a contact range arranged on a horizontal plane and a contact range arranged on a vertical plane in a virtual three-dimensional space.
  • the contact areas arranged on the horizontal plane are explained in the same manner as the two-dimensional contact areas 80A and 80B described above.
  • the contact range located in the vertical plane includes the range over which arm portion 92A may move vertically.
  • the contact range arranged on the vertical plane includes a range in which the boom 921A may rotate in the vertical direction with the boom axis P2A as a starting point.
  • the contact range arranged on the vertical plane includes a range in which the arm 922A may pivot in the vertical direction with the arm axis P3A as the starting point.
  • the contact range arranged on the vertical plane includes a range in which the bucket 923A may turn in the vertical direction with the bucket axis P4A as the starting point.
  • the motion control unit 23A determines whether or not at least a portion of the contact ranges of the backhoes 90A and 90B arranged on the horizontal plane overlap. Further, the motion control unit 23A determines whether or not at least a part of the contact ranges of the backhoes 90A and 90B arranged on the vertical plane overlap.
  • the contact ranges 80A and 80B which are infinite in the vertical direction when arranged in a two-dimensional space, can be made finite in the vertical direction by arranging them in a three-dimensional space.
  • the contact ranges in the vertical direction of the contact ranges 80A and 80B are narrowed, and the possibility of contact between the backhoes 90A and 90B can be determined more accurately, thereby improving work efficiency.
  • this exemplary embodiment identifies the contact ranges 80A and 80B of the backhoes 90A and 90B by referring to the work contents of each backhoe 90A and 90B, and if at least a portion of these overlaps, the backhoe Control to stop 90A and 90B.
  • This allows the exemplary embodiment to flexibly set the contact range 80 for determining the possibility of contact, reflecting the work content. As a result, contact between the backhoes 90A and 90B can be more sufficiently avoided.
  • this exemplary embodiment sequentially changes the contact ranges 80A and 80B according to the work information A and B that are sequentially obtained.
  • this exemplary embodiment can reflect changes in the work content of the backhoes 90A and 90B and specify the contact range 80 more accurately. As a result, contact between the backhoes 90A and 90B can be more sufficiently avoided.
  • the contact areas 80A and 80B specified in this exemplary embodiment have shapes corresponding to each of the plurality of moving parts. As a result, the contact areas 80A and 80B become areas that more reflect the operating characteristics of the moving parts. As a result, the contact areas 80A and 80B are less likely to actually come into contact with each other, and the work areas of the backhoes 90A and 90B (that is, areas other than the contact area 80) are widened. Work efficiency is improved.
  • the contact range 82A corresponding to the arm portion 92A and the contact range 81A corresponding to the swivel portion 91A are combined to specify the contact range 80A of the backhoe 90A.
  • at least one of a plurality of moving parts (the arm part 92A and the turning part 91A) is selected according to the work content indicated by the work information A, and the contact is made according to the operation range of the selected moving part.
  • a range 80A may be identified.
  • either one of the contact range 82A corresponding to the arm portion 92A and the contact range 81A corresponding to the turning portion 91A may be specified as the contact range 80A of the backhoe 90A.
  • the contact range 80A includes one of the shapes corresponding to each of the plurality of moving parts (swivel part 91A and arm part 92A).
  • control device 20A executes step S24a instead of step S24 in the control method S2 described with reference to FIG.
  • step S24a is a flow chart showing the flow of processing for specifying the contact range 80 in this modified example.
  • the process of specifying the contact range 80 in this modification includes steps S241a to S246a.
  • steps S241a to S246a the case where 20 A of control apparatuses perform step S24a is demonstrated.
  • the case where the control device 20B executes step S24a will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A” in the following description.
  • step S241a the range identification unit 22A determines whether or not the backhoe 90B (another backhoe 90) exists around the target position. Specifically, the range specifying unit 22A makes the determination by referring to the target position information included in the work information A and the position information B of the backhoe 90B.
  • step S241a steps S242a to S244a
  • the range identifying section 22A calculates the contact range 82A of the arm section 92A by executing steps S242a to S244a.
  • the processing of steps S242a to S244a is the same as the processing of steps S241 to S243 described with reference to FIG.
  • the range identifying unit 22A identifies the calculated contact range 82A as the contact range 80A of the backhoe 90A.
  • step S241a steps S245a to S246a
  • the range identifying section 22A calculates the contact range 81A of the turning section 91A by executing steps S245a to S246a.
  • the processing of steps S245a to S246a is the same as the processing of steps S244 to S245 described with reference to FIG.
  • the range identifying unit 22A identifies the calculated contact range 81A as the contact range 80A of the backhoe 90A.
  • FIG. 14 is a schematic diagram illustrating a specific example of the process of determining whether or not another backhoe 90 exists in the area around the target position of the backhoe 90A.
  • the range specifying unit 22A of the control device 20A refers to the excavation position D1A and the position information B, and determines whether or not the backhoe 90B is included in the area surrounding the excavation position D1A. do.
  • the peripheral area is an area surrounded by straight lines extending ⁇ 1A with respect to the direction d1A from the turning axis P1A toward the excavation position D1A.
  • the range specifying unit 22A determines the surrounding area according to the work type information “excavation” included in the work information A.
  • FIG. In this example, the angle ⁇ 1A for specifying the peripheral area may be the same as the working angle for specifying the contact range 82A, but is not limited to this.
  • the range specifying unit 22B of the control device 20B refers to the excavation position D1B and the position information A in step S241a to determine whether the backhoe 90A is included in the peripheral area of the excavation position D1B. to judge.
  • the peripheral area is an area surrounded by straight lines extending ⁇ 2B with reference to the direction d1B from the turning axis P1B toward the excavation position D1B.
  • the range specifying unit 22B determines the surrounding area according to the work type information “excavation” included in the work information B.
  • the angle ⁇ 2B for specifying the peripheral area may be the same as the working angle for specifying the contact range 82B, but is not limited to this.
  • FIG. 15 is a schematic diagram showing a specific example of the contact range 80A specified for the backhoe 90A.
  • the range identification unit 22A determines Yes in step S241a, and therefore executes steps S242a to S244a.
  • the range specifying unit 22A specifies the fan-shaped region (contact range 82A) calculated with reference to the working radius R2A and the working angle ⁇ 1A as the contact range 80A.
  • the details of the process of calculating the contact range 82A are as described in the specific example of step S243.
  • FIG. 16 is a schematic diagram showing a specific example of the contact range 80B specified for the backhoe 90B.
  • the range identification unit 22B determines No in step S241a, it executes steps S245a to S246a.
  • the range specifying unit 22B specifies the fan-shaped region (contact range 81B) calculated with reference to the working radius R1B as the contact range 80B.
  • the details of the process of calculating the contact range 81B are as described in the specific example of step S245.
  • FIG. 17 is a diagram schematically showing a specific example of the contact range 80 of the two backhoes 90.
  • the motion control unit 23A refers to the position information A, B and arranges the contact ranges 80A, 80B in the virtual three-dimensional space.
  • the contact range 80A of the backhoe 90A and the contact range 80B of the backhoe 90B partially overlap. Therefore, in this specific example, the operation control unit 23A determines Yes in step S26. Therefore, the operation control unit 23A of the control device 20A controls to stop the backhoe 90A. Similarly, the operation control section 23B of the control device 20B controls the backhoe 90B to stop.
  • This modification changes the contact range depending on whether or not there is another backhoe 90 around the target position of the backhoe 90 to be controlled. Specifically, when there is another backhoe 90 around the target position (for example, in front), the contact range 80 widely includes the peripheral area of the target position. Including the opposite (eg, posterior) region. As a result, in the contact range 80, the present modification can reduce excessive portions that are unlikely to contribute to contact determination. As a result, working efficiency can be improved while avoiding contact between the backhoes 90A and 90B.
  • the control device 20A has been described as acquiring the contact range 80B from the control device 20B.
  • the control device 20A may acquire work information B from the control device 20B and specify the contact range 80B based on the work information B.
  • FIG. In this modified example, the control device 20B does not need to have the range specifying section 22B.
  • FIG. 18 is a flowchart for explaining the flow of control method S2b.
  • the control method S2b is configured almost similarly to the control method S2, but differs in that steps S25b-1 and S25b-2 are executed instead of step S25.
  • the control device 20B transmits the work information B acquired by the acquisition unit 21B to the control device 20A. The points of the control method S2b executed by the control device 20A that are different from the control method S2 will be described below.
  • Step S25b-1 the acquisition unit 21A acquires the work information B of the backhoe 90B.
  • the acquisition unit 21A receives work information B by requesting it from the control device 20B.
  • the range specifying unit 22A refers to the work information B and specifies the contact range 80B of the backhoe 90B. Specifically, the range specifying unit 22A specifies a contact range 80B obtained by synthesizing a contact range 82B having a shape corresponding to the arm part 92B and a contact range 81B having a shape corresponding to the turning part 91B. In order to specify the contact range 80B of the backhoe 90B, the range specifying unit 22A refers to the information indicating the size of each part of the backhoe 90B in addition to referring to the work information B.
  • Information indicating the size of each part of the backhoe 90B may be stored in the memory of the control device 20A, or may be received together with the work information B in step S25b-1. The detailed flow of this step is as described with reference to the flowchart of FIG.
  • the control device 20A identifies the contact range 80B of the backhoe 90B with reference to the work information B received from the control device 20B.
  • this modification controls to stop at least backhoe 90A, when at least one copy of contact ranges 80A and 80B overlaps. Therefore, even if the control device 20B does not have the function of specifying the contact range 80B, the collision of the backhoes 90A and 90B can be avoided more sufficiently.
  • the control device 20A receives the position information B and the contact range 80B or the work information B by requesting the control device 20B.
  • the control device 20B may be configured to sequentially transmit the position information B and the contact range 80B or the work information B without being requested by the control device 20A.
  • the control device 20B may transmit the position information B and the contact range 80B or the work information B to the control device 20A at predetermined intervals.
  • the control device 20B may transmit the position information B and the contact range 80B or the work information B to the control device 20A at the timing when each of them changes.
  • the control device 20B receives the position information A and the contact range 80A by requesting the control device 20A.
  • the control device 20A may be configured to sequentially transmit the position information A and the contact range 80A without being requested by the control device 20B.
  • the control device 20A may transmit the position information A and the contact range 80A to the control device 20B at predetermined intervals.
  • the control device 20A may transmit the position information A and the contact range 80A to the control device 20B at the timing when each of them changes.
  • control devices 20A and 20B obtain information about the other backhoes 90 without requesting each other, so that the load on the system can be reduced.
  • FIG. 19 is a schematic diagram for explaining the outline of the control system 3.
  • the physical space RS indicates the actual three-dimensional space in which the backhoes 90A and 90B exist.
  • a virtual space VS indicates a virtual three-dimensional space obtained by projecting the real space RS. Note that FIG. 19 shows the virtual space VS two-dimensionally, but this is a schematic projection of a virtual space that can be three-dimensional into a two-dimensional virtual space. However, the virtual space VS is not limited to being two-dimensional.
  • the virtual space VS includes areas corresponding to objects (backhoes 90A, 90B, other vehicles, equipment, buildings, workers, etc.) that exist in the real space RS.
  • the virtual space VS is generated by referring to detection values of a three-dimensional sensor installed in the real space RS, a positioning sensor mounted on each object, and the like.
  • the control system 3 calculates future contact ranges 80A and 80B of the backhoes 90A and 90B in the virtual space VS based on the information acquired from the real space RS. Identify by simulating. The control system 3 also controls the operation of the backhoes 90A and 90B in the physical space RS using the identified future contact ranges 80A and 80B.
  • the future information X may be information X at a certain time after the current time (when the control system 3 operates) or may be information X during a certain period after the current time.
  • information X refers to work information, position information, or contact range, for example.
  • the information X predicted at a certain point in time or in a certain period after the present time may also be expressed as future information X as an example.
  • future information X is assumed to be information X predicted for a certain period after the present time.
  • FIG. 20 is a block diagram showing the configuration of the control system 3.
  • the control system 3 includes a control system 3A and a control system 3B.
  • the control system 3A is a system that includes a backhoe 90A and a control device 30A and controls the backhoe 90A.
  • the control system 3B is a system that includes a backhoe 90B and a control device 30B and controls the backhoe 90B.
  • connection mode of the control device 30A and the control device 30B, the connection mode of the control device 30A and the backhoe 90A, and the connection mode of the control device 30B and the backhoe 90B are as described in the second exemplary embodiment.
  • the configurations of the backhoe 90A and the backhoe 90B are also the same as those described in the second exemplary embodiment.
  • control device 30A (Configuration of control device 30A) A detailed configuration of the control device 30A will be described. As shown in FIG. 20, the control device 30A includes an acquisition unit 31A, a range identification unit 32A, an operation control unit 33A, and an operation identification unit 34A.
  • the acquisition unit 31A acquires future work information A, future position information A, future position information B, and future contact range 80B.
  • the future work information A indicates the future work content of the backhoe 90A.
  • Future position information A indicates the future position of backhoe 90A.
  • Future position information B indicates the future position of backhoe 90B.
  • Future contact area 80B shows the future contact area 80B of backhoe 90B.
  • the future work information A includes future contents determined by the motion specifying unit 24A, which will be described later.
  • the range specifying unit 32A refers to the information acquired by the acquiring unit 31A to specify the future contact range 80A.
  • range identifying unit 32A identifies future contact range 80A in virtual space VS.
  • the operation control unit 33A controls the operation of the backhoe 90A by referring to the future contact range 80A and the information acquired by the acquisition unit 31A. More specifically, the operation control unit 33A controls the backhoe 90A to stop when at least a portion of the future contact range 80A and the future contact range 80B overlap.
  • the motion specifying unit 34A determines the future work content of the backhoe 90A. Note that the motion specifying unit 34A may determine the future work content of the backhoe 90A by referring to the future position information B of the backhoe 90B and the contact range 80B. Further, the operation specifying unit 34A may determine the future work content of the backhoe 90A based on the operator's input in advance or according to a predetermined schedule.
  • control device 30B (Configuration of control device 30B)
  • the control device 30B is configured similarly to the control device 30A.
  • the configuration of the control device 30B will be described in the same manner by replacing the suffix "A" with “B” and "B” with "A” in the description of the configuration of the control device 30A.
  • control device 30A executes the control method S3.
  • the control device 30A may execute the control method S3 at the timing when the work type information included in the future work information A changes.
  • the control device 30B also executes the control method S3, like the control device 30A.
  • the control device 30B may execute the control method S3 at the timing when the work type information included in the future work information B changes.
  • FIG. 21 is a flowchart showing the flow of control method S3.
  • the control method S3 includes steps S31 to S37.
  • the case where 30 A of control apparatuses perform the control method S3 is demonstrated.
  • the case where the control method S3 is executed by the control device 30B will be described in the same manner by replacing the suffix "A" with "B" and "B” with "A” in the following description. .
  • Step S31 the acquisition unit 21A acquires future work information A.
  • future work information A is a time series of work information A from time points t1 to tn in the future.
  • work information Ai work information A at time tx
  • Details of the work information Ai are the same as the work information A described in the second exemplary embodiment, and include work type information, target position information, and posture information.
  • the work type information and target position information from time t1 to tn are determined by the operation specifying unit 34A and stored in the memory of the control device 30A in order to operate the backhoe 90A autonomously.
  • the posture information from time t1 to tn can change according to the operation of the backhoe 90A.
  • the acquisition unit 31A may acquire the posture information from time t1 to tn by predicting it based on the work information A up to the current time.
  • Step S32 the acquisition unit 31A acquires future position information A of the backhoe 90A.
  • the future location information A is a time series of the location information A from time t1 to tn.
  • position information Ai position information A at time ti will be referred to as position information Ai.
  • the position information A1-An can change according to the operation of the backhoe 90A.
  • the acquisition unit 31A acquires the position information A1 to An by predicting based on the work information A and the position information A up to the present time.
  • Step S33 the acquisition unit 31A acquires future position information B of the backhoe 90B.
  • the future position information B is a time series of the position information B from time t1 to tn.
  • position information B at time ti will be referred to as position information Bi.
  • the position information B1-Bn may change according to the operation of the backhoe 90B.
  • the control device 30B specifies the position information B1 to Bn in step S32 by executing the control method S3 in the same manner as the control device 30A. Therefore, the acquisition unit 31A acquires the position information B1 to Bn by receiving them from the control device 30B.
  • Step S34 the range identification unit 32A identifies the future contact range 80A of the backhoe 90A.
  • Future contact area 80A is a time series of contact area 80A from time t1 to tn.
  • the contact range 80A at time ti will be referred to as a contact range 80Ai.
  • the range specifying unit 22A specifies the contact range 80Ai by executing the range specifying process shown in FIG. 7 for each time ti from time t1 to time tn.
  • Step S35 the acquisition unit 31A acquires the future contact range 80B of the backhoe 90B.
  • Future contact area 80B is a time series of contact area 80B from time t1 to tn.
  • the contact range 80B at time ti will be referred to as a contact range 80Bi.
  • the control device 30B specifies the contact ranges 80B1 to 80Bn in step S34 by executing the control method S3 in the same manner as the control device 30A. Therefore, the acquisition unit 31A receives the contact ranges 80B1 to 80Bn by requesting the control device 30B.
  • Step S36 the operation control unit 33A determines whether or not at least a portion of the contact range 80Ai and the contact range 80Bi overlap at least one of the time points ti from time points t1 to tn.
  • step S37 When it is determined as Yes in step S36, the motion control unit 33A stops the backhoe 90A in step S37. Specifically, the operation control unit 33A transmits operation control information instructing a stop to the backhoe 90A.
  • step S36 If the determination in step S36 is No, the control device 30A terminates the control method S3. In addition, if it is determined as Yes in step S36 in the control method S3 executed in the past and step S37 is executed, the backhoe 90A has already stopped. In such a state, the operation control section 33A may cause the backhoe 90A to restart the work when it is determined as No in step S36 in the current execution of the control method S3.
  • the work type information and the target position information included in the future work information Ai and Bi are determined by the operation specifying section 34A in order to operate the backhoe 90A autonomously.
  • the acquisition unit 31A may acquire these pieces of information by predicting them based on the work information A and B up to the present time.
  • the posture information included in the future work information Ai and Bi has been described as being predicted based on the work information A and B up to the present time.
  • the future position information Ai, Bi has been described as being predicted based on the work information A, B and the position information A, B up to the present time.
  • the acquisition unit 31A may acquire information determined by the motion identification unit 34A as the posture information and the future position information Ai and Bi included in the future work information Ai and Bi.
  • This exemplary embodiment simulates the future contact ranges 80A, 80B on the virtual space VS based on the future work information A, B and the future position information A, B of the backhoes 90A, 90B. . Further, this exemplary embodiment controls the backhoes 90A and 90B to stop when at least a portion of the contact ranges 80A and 80B overlap in the simulation on the virtual space VS. This allows the exemplary embodiment to anticipate and better avoid the likelihood of backhoe 90A, 90B contact in response to future changes in the work of backhoes 90A, 90B.
  • FIG. 22 is a block diagram showing the configuration of the control system 4.
  • the control system 4 includes a control system 4A, a control system 4B, and a central control device 60.
  • the control system 4A is a system that includes a backhoe 90A and a control device 40A and controls the backhoe 90A.
  • the control system 4B is a system that includes a backhoe 90B and a control device 40B and controls the backhoe 90B.
  • the general control device 60 is a device that supervises the control devices 40A and 40B.
  • the control device 40A, the control device 40B, and the general control device 60 are communicably connected via the network N1.
  • the manner of connection between the control device 40A and the backhoe 90A and the manner of connection between the control device 40B and the backhoe 90B are as described in the second exemplary embodiment.
  • the configurations of the backhoe 90A and the backhoe 90B are also the same as those described in the second exemplary embodiment.
  • the central control device 60 includes a range collection section 61 and a delivery destination identification section 62 .
  • the range collection unit 61 receives the contact range 80A from the control device 40A and the contact range 80B from the control device 40B. In addition, the range collection unit 61 transmits the contact range 80B to the control device 40A and also transmits the contact range 80A to the control device 40B. In other words, range collection unit 61 collects contact ranges 80A and 80B from control devices 40A and 40B, and distributes the collected contact ranges 80A and 80B to control devices 40A and 40B.
  • the distribution destination specifying unit 62 determines the distribution destinations of the collected contact ranges 80A and 80B. Specifically, the distribution destination specifying unit 62 determines the control device 40B that controls the backhoe 90B that exists in the vicinity of the contact range 80A as the distribution destination of the collected contact range 80A. Also, for example, the distribution destination specifying unit 62 determines the control device 40A that controls the backhoe 90A that exists in the vicinity of the contact range 80B as the distribution destination of the collected contact range 80B.
  • the delivery destination specifying unit 62 may receive the position information of the backhoes 90A and 90B from the control devices 40A and 40B, refer to the received position information, and determine the delivery destination. Specifically, when the backhoes 90A and 90B exist within a predetermined distance, the distribution destination specifying unit 62 determines the control device 40B as the distribution destination of the contact range 80A, and determines the control device 40A as the distribution destination of the contact range 80B. may be determined. Note that the delivery destination specifying unit 62 does not need to determine the delivery destinations of the contact ranges 80A and 80B when the backhoes 90A and 90B are separated by a predetermined distance or more. In this case, contact areas 80A and 80B are not distributed.
  • the general control device 60 may supervise three or more control devices including the control devices 40A and 40B.
  • Each of the three or more control devices is a device that controls different backhoes.
  • the central control device 60 determines some or all of the control devices other than the transmission source of the contact range as distribution destinations of each collected contact range.
  • the delivery destination specifying unit 62 selects, as a delivery destination of the contact range 80A, a control device that controls a backhoe existing in the vicinity of the contact range 80A among the control devices other than the control device 40A. Decide not to deliver to the device.
  • control device 40A (Configuration of control device 40A) A detailed configuration of the control device 40A will be described. As shown in FIG. 22, the control device 40A includes an acquisition unit 41A, a range identification unit 42A, an operation control unit 43A, and an operation identification unit 44A.
  • the acquisition unit 41A is configured in substantially the same manner as the acquisition unit 21A in the second exemplary embodiment. However, the difference is that the contact range 80B of the backhoe 90B is received from the overall control device 60 instead of being received from the control device 40B.
  • the range specifying unit 42A is configured almost similarly to the range specifying unit 22A in the second exemplary embodiment. However, it differs in that the identified contact range 80A of the backhoe 90A is transmitted to the central control device 60.
  • FIG. 1 is a diagrammatic representation of the range specifying unit 22A in the second exemplary embodiment.
  • the motion control unit 43A and the motion specifying unit 44A are configured in the same manner as the motion control unit 23A and the motion specifying unit 24A in the second exemplary embodiment.
  • control device 40B (Configuration of control device 40B)
  • the control device 40B is configured similarly to the control device 40A.
  • the configuration of the control device 40B will be described in the same manner by replacing the suffix "A" with “B” and "B” with "A” in the description of the configuration of the control device 40A.
  • the control system 4 configured as described above sequentially executes the control method S4.
  • the sequential execution may be, for example, executing the control method S4 at predetermined intervals, or executing the control method S4 according to changes in the work information A.
  • the control device 40B also sequentially executes the control method S4, like the control device 40A.
  • FIG. 23 is a flowchart showing the flow of control method S4.
  • the control method S4 includes steps S41 to S47 and steps S61 to S62.
  • steps S41 to S47 A case where the control device 40A executes steps S41 to S47 will be described below.
  • the case where the control device 40B executes steps S41 to S47 will be described in the same manner by replacing the suffix "A" with "B” and “B” with “A” in the following description. be.
  • Steps S41-S43 are similar to steps S21-S23 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 41A acquires the work information A and the position information A of the backhoe 90A and the position information B of the backhoe 90B.
  • step S44 the range specifying unit 42A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A.
  • the details of this process are substantially the same as step S24 described with reference to FIG. 5 in the second exemplary embodiment.
  • the range specifying unit 42A transmits the specified contact range 80A to the central control device 60.
  • step S61 the range collection unit 61 of the overall control device 60 collects the contact ranges 80A and 80B from the control devices 40A and 40B.
  • Step S62 the distribution destination specifying unit 62 determines the control device 40B as the distribution destination of the collected contact range 80A, and determines the control device 40A as the distribution destination of the contact range 80B. Further, the range collection unit 61 distributes the contact range 80B to the control device 40A. In addition, range collection unit 61 distributes contact range 80A to control device 40B.
  • Steps S45-S47 are substantially similar to steps S25-S27 described with reference to FIG. 5 in the second exemplary embodiment. However, in step S45, the operation control unit 43A receives the contact range 80B from the integrated control device 60. FIG. Thereby, the operation control unit 43A controls to stop the backhoe 90A when at least a part of the contact ranges 80A and 80B overlap.
  • the contact ranges 80A, 80B are collected and distributed by the general controller 60 for use in determining the likelihood of backhoe 90A, 90B contact. Accordingly, the control devices 40A and 40B do not need to be able to communicate with each other, and only need to be able to communicate with the central control device 60 . Thus, the exemplary embodiment can be easily extended to control more than two backhoes 90 .
  • FIG. 24 is a block diagram showing the configuration of the control system 5.
  • the control system 5 includes a control system 5A, a control system 5B, and a central control device 70.
  • the control system 5A is a system that includes a backhoe 90A and a control device 50A and controls the backhoe 90A.
  • the control system 5B is a system that includes a backhoe 90B and a control device 50B and controls the backhoe 90B.
  • the general control device 70 is a device that supervises the control devices 50A and 50B.
  • connection mode of the control device 50A, the control device 50B, and the integrated control device 70, the connection mode of the control device 50A and the backhoe 90A, and the connection mode of the control device 50B and the backhoe 90B are as described in the fourth exemplary embodiment. be. Also, the configurations of the backhoe 90A and the backhoe 90B are as described in the second exemplary embodiment.
  • the central control device 70 includes a range collection section 71 and a danger determination section 72 .
  • the range collection unit 71 receives the contact range 80A and the position information A from the control device 50A, and receives the contact range 80B and the position information B from the control device 50B. In other words, the range collection unit 71 collects the contact range 80 and position information from each of the control devices 50A and 50B.
  • the danger determination unit 72 refers to the collected contact range 80 and position information to determine whether there is a possibility that multiple backhoes 90 will come into contact. In addition, the danger determination unit 72 transmits information regarding control of the operation of the backhoes 90A and 90B to the control devices 50A and 50B according to the determination result.
  • control device 50A (Configuration of control device 50A) A detailed configuration of the control device 50A will be described. As shown in FIG. 24, the control device 50A includes an acquisition unit 51A, a range identification unit 52A, an operation control unit 53A, and an operation identification unit 54A.
  • the acquisition unit 51A is configured in substantially the same manner as the acquisition unit 21A in the second exemplary embodiment. However, the difference is that the contact range 80B of the backhoe 90B is received from the general control device 70 instead of being received from the control device 50B. Another difference is that the acquired position information A is transmitted to the central control device 70 .
  • the range specifying unit 52A is configured almost similarly to the range specifying unit 22A in the second exemplary embodiment. However, it differs in that the specified contact range 80A of the backhoe 90A is transmitted to the central control device 70.
  • FIG. 1 is a diagrammatic representation of the range specifying unit 52A.
  • the operation control unit 53A When the operation control unit 53A receives information instructing to stop the backhoe 90A from the integrated control device 70, it controls to stop the backhoe 90A.
  • the motion specifying unit 54A is configured in the same manner as the motion specifying unit 24A in the second exemplary embodiment.
  • control device 50B (Configuration of control device 50B)
  • the control device 50B is configured similarly to the control device 50A.
  • the configuration of the control device 50B will be described in the same way by replacing the suffix "A" with “B” and "B” with "A” in the description of the configuration of the control device 50A.
  • the control system 5 configured as described above sequentially executes the control method S5.
  • the sequential execution may be, for example, executing the control method S5 at predetermined intervals, or executing the control method S5 according to changes in the work information A.
  • the control device 50B also sequentially executes the control method S5, like the control device 50A.
  • FIG. 25 is a flowchart showing the flow of control method S5.
  • the control method S5 includes steps S51 to S55 and steps S71 to S73.
  • steps S51 to S55 A case where the control device 50A executes steps S51 to S55 will be described below.
  • the case where the control device 50B executes steps S51 to S55 will be described in the same manner by replacing "A" with "B” and “B” with “A” in the following description. be.
  • Step S51 is similar to step S21 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 51A acquires the work information A of the backhoe 90A.
  • Step S52 is substantially similar to step S22 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 51A acquires the position information A of the backhoe 90A. However, the acquisition unit 51A transmits the acquired position information A to the central control device 70 .
  • step S53 the range specifying unit 52A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A.
  • the details of this process are substantially the same as step S24 described with reference to FIG. 5 in the second exemplary embodiment.
  • the range specifying unit 52A transmits the specified contact range 80A to the central control device 70.
  • step S71 the range collection unit 71 of the overall control device 70 collects the contact ranges 80A and 80B and the position information A and B from the control devices 50A and 50B.
  • Step S72 the danger determination unit 72 refers to the position information A and B to determine whether or not at least a portion of the contact ranges 80A and 80B overlap.
  • step S73 When it is determined as Yes in step S72, the danger determination unit 72 transmits information instructing the backhoes 90A and 90B to stop.
  • step S54 the operation control unit 53A determines whether information instructing to stop has been received from the integrated control device 70 or not.
  • step S55 When it is determined Yes in step S54, in step S55, the operation control unit 53A controls the backhoe 90A to stop. Specifically, the operation control unit 53A transmits the operation control information instructing the stop to the backhoe 90A.
  • step S73 (No in step S73, No in step S54) If it is judged No in step S73, it is judged No in step S55, and the control method S5 ends.
  • the contact areas 80A, 80B used for determining the possibility of contact of the backhoes 90A, 90B are collected by the general control device 70, and information instructing to stop when there is a possibility of contact is provided. To deliver. Thereby, contact can be avoided more sufficiently regardless of the communication state between the control devices 50A and 50B.
  • the overall control device 70 can be modified to further include a range identifying section, and the control devices 50A and 50B can be modified not to include the range identifying sections 52A and 52B.
  • the control system 5A transmits the work information A acquired by the acquisition unit 51A to the central control device 70.
  • the control system 5B also transmits the work information B to the general control device 70 .
  • the range specifying unit of the integrated control device 70 specifies the contact ranges 80A and 80B according to the work contents indicated by the work information A and B.
  • the danger determination unit 72 transmits information instructing to stop the backhoes 90A and 90B when at least a part of the contact ranges 80A and 80B identified by the range identification unit of its own device overlaps. Thereby, the contact of the backhoes 90A and 90B can be avoided more sufficiently based on the comprehensively specified contact ranges 80A and 80B.
  • the overall control device 70 can be modified to include the motion specifying unit, and the control devices 50A and 50B can be modified to not include the motion specifying units 54A and 54B.
  • the acquisition unit 51A of the control system 5A acquires the position information and attitude information of the backhoe 90A and transmits them to the central control device .
  • the control system 5B acquires the position information and attitude information of the backhoe 90B and transmits them to the general control device 70 .
  • the operation specifying unit of the integrated control device 70 determines the work content of the backhoes 90A and 90B, and transmits information indicating the determined work content to the control devices 50A and 50B.
  • the range specifying unit of the central control device 70 specifies the contact ranges 80A and 80B according to the received position information and attitude information about the backhoes 90A and 90B and the determined work content.
  • the danger determination unit 72 transmits information instructing to stop the backhoes 90A and 90B when at least a part of the contact ranges 80A and 80B identified by the range identification unit of its own device overlaps.
  • the contact range 80 to be calculated differs depending on whether or not another backhoe 90 exists in the peripheral area of the target position. It can be transformed to fit.
  • Exemplary Embodiments 3-5 described above like Variation 2 of Exemplary Embodiment 2, can be modified to obtain work information from other backhoes 90 to identify the work ranges of other backhoes 90 .
  • Exemplary Embodiments 3-5 described above, like Variation 3 of Exemplary Embodiment 2 can be modified to sequentially transmit position information, contact range 80, or work information to other backhoes. .
  • one of the backhoes 90A, 90B may be a work machine operated remotely by an operator.
  • a control device any one of 20A, 30A, 40A, and 50A
  • each exemplary embodiment may control backhoes 90A and 90B to stop when at least a portion of contact areas 80A and 80B overlap, regardless of operator action.
  • each exemplary embodiment may output information instructing the operator to move the backhoe 90B to a position where the contact areas 80A and 80B no longer overlap when at least a portion of the contact areas 80A and 80B overlap. good.
  • Each exemplary embodiment may also control backhoe 90A to move to a position where contact areas 80A and 80B do not overlap when at least a portion of contact areas 80A and 80B overlap. Thereby, each exemplary embodiment can more sufficiently avoid contact of a plurality of backhoes 90 even when the object to be controlled includes the backhoe 90 operated by remote control of an operator.
  • exemplary embodiments 2-5 described above can be modified to control other work machines instead of the backhoes 90A, 90B. Also, in such variations, the work machines controlled by each exemplary embodiment need not necessarily operate similarly.
  • the controlled object of each exemplary embodiment may be a robot that operates autonomously.
  • a plurality of robots may perform component mounting operations in parallel.
  • the control device that controls the first robot is based on the contact range of the first robot and the contact range of the second robot existing in the same work area as or adjacent to the first robot. , may control the first robot.
  • a transport robot may transport the package, or a cleaning robot may clean the site.
  • the control device that controls the transport robot may specify the contact range from the motion of the transport robot and acquire or specify the contact range of the cleaning robot.
  • the control device that controls the transport robot may compare the contact ranges of the transport robot and the cleaning robot to control the transport robot.
  • the cleaning robot may clean the surrounding floor.
  • the control device that controls the cleaning robot may specify the contact range from the work information of the storage robot, or acquire the contact range of the storage robot from the control device that controls the storage robot.
  • the control device that controls the cleaning robot may control the cleaning robot by comparing the contact range of the storage robot and the contact range of the cleaning robot.
  • each of the multiple robots installed side by side may communicate with each other while performing tasks such as waving their arms and moving.
  • the controller of the first robot may control the first robot based on the contact range of the second robot.
  • each exemplary embodiment can more sufficiently avoid contact between robots by making each robot a control target.
  • each exemplary embodiment may include a robot that operates autonomously and a robot that operates remotely by an operator.
  • each exemplary embodiment may cause both robots to stop when at least a portion of the contact areas 80A and 80B overlap, regardless of action by the operator.
  • each exemplary embodiment includes information for instructing the operator to move the remotely operated robot to a position where the contact areas 80A and 80B do not overlap when at least a portion of the contact areas 80A and 80B overlap. may be output.
  • each exemplary embodiment may control the autonomously operating robot to move to a position where the contact areas 80A and 80B no longer overlap when at least a portion of the contact areas 80A and 80B overlap. . This makes it possible to more sufficiently avoid contact between the autonomously operating robot and the remotely operated robot.
  • control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the overall control devices 60, 70 are implemented by hardware such as integrated circuits (IC chips). Alternatively, it may be implemented by software.
  • control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the overall control devices 60, 70 are software that implements each function, for example. It is implemented by a computer that executes the instructions of a program.
  • An example of such a computer (hereinafter referred to as computer C) is shown in FIG.
  • Computer C comprises at least one processor C1 and at least one memory C2.
  • the memory C2 stores a program P for causing the computer C to operate as one of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the general control devices 60, 70.
  • the processor C1 reads the program P from the memory C2 and executes it, so that the corresponding one of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the general control devices 60, 70 Each function of the device to be performed is realized.
  • processor C1 for example, CPU (Central Processing Unit), GPU (Graphic Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), PPU (Physics Processing Unit) , a microcontroller, or a combination thereof.
  • memory C2 for example, a flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof can be used.
  • the computer C may further include a RAM (Random Access Memory) for expanding the program P during execution and temporarily storing various data.
  • Computer C may further include a communication interface for sending and receiving data to and from other devices.
  • Computer C may further include an input/output interface for connecting input/output devices such as a keyboard, mouse, display, and printer.
  • the program P can be recorded on a non-temporary tangible recording medium M that is readable by the computer C.
  • a recording medium M for example, a tape, disk, card, semiconductor memory, programmable logic circuit, or the like can be used.
  • the computer C can acquire the program P via such a recording medium M.
  • the program P can be transmitted via a transmission medium.
  • a transmission medium for example, a communication network or broadcast waves can be used.
  • Computer C can also obtain program P via such a transmission medium.
  • Appendix 1 an acquisition step of acquiring first work information indicating work content of the first work machine and position information of the first work machine; a range identifying step of identifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information; an operation control step of controlling the operation of the first work machine by referring to the first range and the position information of the first work machine; Control method including.
  • the first range which includes the range in which the first work machine operates and the periphery of the range, according to the work content of the first work machine.
  • the first working machine can be operated more safely.
  • the first range for operating the first working machine more safely is flexibly set according to the work content of the first working machine and the operation range of the moving parts of the first working machine. can do.
  • the first range for operating the first work machine more safely can be flexibly set according to the operating range of the selected operating portion.
  • Appendix 4 The control method according to any one of Appendices 1 to 3, wherein the first work information includes information regarding orientation of a moving part of the first work machine.
  • the first range is sequentially changed according to the sequentially acquired work information.
  • the first range can be set more accurately by reflecting changes in work information.
  • the first work machine can be operated more safely according to future changes in the work information of the first work machine.
  • the obtaining step further obtains information indicating a second range including a range in which a second work machine different from the first work machine operates and a periphery of the range,
  • the operation of the first work machine is controlled by further referring to the second range. 7.
  • the control method according to any one of appendices 1 to 6.
  • the first range and the second range for determining the possibility of contact between the first work machine and the second work machine are adapted to the work contents of each of the first work machine and the second work machine. can be flexibly set according to As a result, contact between the first working machine and the second working machine can be more sufficiently avoided.
  • (Appendix 9) Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine; range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information; an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine; Control system including.
  • the range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine. 9. The control system of clause 9.
  • Appendix 12 12. The control system according to any one of Appendices 9 to 11, wherein the first work information includes information regarding orientation of moving parts of the first work machine.
  • the acquisition means sequentially acquires the first work information, wherein the range identifying means sequentially changes the first range according to the first work information; 13.
  • a control system according to any one of clauses 9-12.
  • the acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine
  • the range specifying means specifies the future first range by referring to the information acquired in the acquiring step
  • the operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step. 14.
  • a control system according to any one of clauses 9-13.
  • the acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
  • the motion control means further refers to the second range to control the motion of the first work machine. 15.
  • a control system according to any one of clauses 9-14.
  • Appendix 16 16. The control system according to appendix 15, wherein the motion control means controls the motion of the first work machine when at least a portion of the first range and the second range overlap.
  • the range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine. 17. The control device according to appendix 17.
  • Appendix 20 20.
  • the acquisition means sequentially acquires the first work information, wherein the range identifying means sequentially changes the first range according to the first work information; 21.
  • Control device according to any one of appendices 17-20.
  • the acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine
  • the range specifying means specifies the future first range by referring to the information acquired in the acquiring step
  • the operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step. 22.
  • a control device according to any one of appendices 17 to 21.
  • the acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
  • the motion control means further refers to the second range to control the motion of the first work machine. 23.
  • a control device according to any one of appendices 17 to 22.
  • Appendix 24 24.
  • the range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine. 25. The program according to Appendix 25.
  • Appendix 27 said first work machine comprising a plurality of said moving parts;
  • the range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify, 27.
  • Appendix 28 28.
  • the acquisition means sequentially acquires the first work information, wherein the range identifying means sequentially changes the first range according to the first work information; 29.
  • a program according to any one of appendices 25-28.
  • the acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine
  • the range specifying means specifies the future first range by referring to the information acquired in the acquiring step
  • the operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step. 30.
  • the acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
  • the motion control means further refers to the second range to control the motion of the first work machine. 31.
  • Appendix 33 at least one processor, said processor comprising: Acquisition processing for acquiring first work information indicating work content of the first work machine and position information of the first work machine; a range identification process for identifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information; an operation control process for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine; A control device that carries out
  • the control device may further include a memory, and the memory stores a program for causing the processor to execute the acquisition process, the range identification process, and the operation control process. may Also, this program may be recorded in a computer-readable non-temporary tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

In order to cause a work machine to operate more safely, a control method (S1) includes: an acquisition step (S11) for acquiring location information for a first work machine, and first work information that indicates the work content of a work machine; a range specifying step (S12) for specifying, in accordance with the work content indicated by the first work information, a first range that includes the range in which the first work machine will operate and the perimeter of said range; and an action control step (S13) for referencing the first range and the location information for the first work machine and controlling an action of the first work machine.

Description

制御方法、制御システム、及び制御装置Control method, control system, and control device
 本発明は、作業機械を制御する技術に関する。 The present invention relates to technology for controlling work machines.
 作業機械を制御する技術が知られている。例えば、特許文献1には、油圧ショベルの積込位置と掘削位置とに基づいて、旋回制限領域を設定する技術が記載されている。当該技術は、積込先の運搬車両との接触を回避するため、旋回制限領域にバケットが位置する場合に、油圧ショベルの旋回を制限するよう制御する。 Technology for controlling work machines is known. For example, Patent Literature 1 describes a technique for setting a restricted swing area based on the loading position and excavating position of a hydraulic excavator. In order to avoid contact with the transport vehicle of the loading destination, the technology controls to limit the turning of the hydraulic excavator when the bucket is positioned in the turning restricted area.
 また、例えば、特許文献2には、油圧ショベルに固定した磁界発生装置と、作業員が携帯する無線タグとを用いて、作業員の位置を検出する技術が記載されている。当該技術は、油圧ショベルの作業状態に応じて、磁界が発生する範囲に相当する接近通知エリアを決定し、決定した接近通知エリアに作業員の位置が含まれる場合に接近通知を行う。 Also, for example, Patent Document 2 describes a technique for detecting the position of a worker using a magnetic field generator fixed to a hydraulic excavator and a wireless tag carried by the worker. This technique determines an approach notification area corresponding to a range in which a magnetic field is generated according to the working state of the hydraulic excavator, and issues an approach notification when the determined approach notification area includes the worker's position.
日本国特開2020-169515号公報Japanese Patent Application Laid-Open No. 2020-169515 日本国特開2019-060108号公報Japanese Patent Application Laid-Open No. 2019-060108
 しかしながら、特許文献1及び2に記載された技術では、作業機械をより安全に稼動させる点で改善の余地がある。 However, the techniques described in Patent Documents 1 and 2 still have room for improvement in terms of safer operation of work machines.
 例えば、特許文献1に記載された技術において、旋回制限領域は、実際の作業内容に関わらず積込位置と掘削位置とに基づいて決定される。そのため、当該技術は、油圧ショベルの実際の作業内容によっては、障害物との接触を充分に回避できない可能性がある。 For example, in the technology described in Patent Document 1, the restricted turning area is determined based on the loading position and excavation position regardless of the actual work content. Therefore, this technology may not be able to sufficiently avoid contact with obstacles depending on the actual work content of the hydraulic excavator.
 また、特許文献2に記載された技術において、磁界が発生する範囲は、必ずしも実際に接近を通知すべきエリアに相当するとは限らず、接近通知エリアを精度よく設定できない場合がある。このため、当該技術は、作業機械と障害物との接触を充分に回避できない可能性がある。 Also, in the technology described in Patent Document 2, the range in which the magnetic field is generated does not necessarily correspond to the area where the actual approach notification should be made, and the approach notification area may not be set accurately. For this reason, this technology may not be able to sufficiently avoid contact between the work machine and the obstacle.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、その目的の一例は、作業機械をより安全に稼動させる技術を提供することである。 One aspect of the present invention has been made in view of the above problems, and an example of its purpose is to provide a technique for operating work machines more safely.
 本発明の一態様に係る制御方法は、第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得工程と、前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定工程と、前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御工程と、を含む。 A control method according to an aspect of the present invention includes an acquisition step of acquiring first work information indicating work content of a first work machine and position information of the first work machine, and work content indicated by the first work information. a range specifying step of specifying a first range including the range in which the first work machine operates and the perimeter of the range, and referring to the first range and the position information of the first work machine according to and an operation control step of controlling the operation of the first work machine.
 本発明の一態様に係る制御システムは、第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、を含む。 A control system according to an aspect of the present invention includes: first work information indicating work content of a first work machine; acquisition means for acquiring position information of the first work machine; and work content indicated by the first work information. with reference to range specifying means for specifying a first range including the range in which the first work machine operates and the periphery of the range, and the first range and the position information of the first work machine according to and motion control means for controlling the motion of the first working machine.
 本発明の一態様に係る制御装置は、第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、を含む。 A control device according to an aspect of the present invention includes: first work information indicating work content of a first work machine; acquisition means for acquiring position information of the first work machine; and work content indicated by the first work information. with reference to range specifying means for specifying a first range including the range in which the first work machine operates and the periphery of the range, and the first range and the position information of the first work machine according to and motion control means for controlling the motion of the first working machine.
 本発明の一態様によれば、作業機械をより安全に稼動させることができる。 According to one aspect of the present invention, working machines can be operated more safely.
本発明の例示的実施形態1に係る制御システムの構成を示すブロック図である。1 is a block diagram showing the configuration of a control system according to exemplary embodiment 1 of the present invention; FIG. 本発明の例示的実施形態1に係る制御装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a control device according to exemplary embodiment 1 of the present invention; FIG. 本発明の例示的実施形態1に係る制御方法の流れを示すフロー図である。FIG. 4 is a flow chart showing the flow of a control method according to exemplary embodiment 1 of the present invention; 本発明の例示的実施形態2に係る制御システムの構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of a control system according to exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2に係る制御方法の流れを示すフロー図である。FIG. 7 is a flow diagram showing the flow of a control method according to exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2において作業情報を取得する処理の詳細な流れを示すフロー図である。FIG. 10 is a flow diagram showing a detailed flow of processing for acquiring work information in exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2において接触範囲を特定する処理の詳細な流れを示すフロー図である。FIG. 10 is a flow diagram showing a detailed flow of processing for identifying a contact range in exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2において作業半径を決定する処理の具体例を示す模式図である。FIG. 10 is a schematic diagram showing a specific example of processing for determining a working radius in exemplary embodiment 2 of the present invention; 図8に示したバックホウをZ軸正方向から見た図である。It is the figure which looked at the backhoe shown in FIG. 8 from Z-axis positive direction. 本発明の例示的実施形態2における接触範囲の具体例を示す模式図である。FIG. 10 is a schematic diagram showing a specific example of a contact range in exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2における接触範囲の他の具体例を示す模式図である。FIG. 10 is a schematic diagram showing another specific example of the contact area in the exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2における2つのバックホウの接触範囲の具体例を模式的に示す図である。FIG. 10 is a diagram schematically showing a specific example of the contact range of two backhoes in exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例1において接触範囲を特定する処理の流れを示すフロー図である。FIG. 11 is a flow chart showing the flow of processing for specifying a contact range in Modification 1 of Exemplary Embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例1における判断処理の具体例を説明する模式図である。FIG. 10 is a schematic diagram illustrating a specific example of determination processing in modification 1 of exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例1における接触範囲の具体例を示す模式図である。FIG. 10 is a schematic diagram showing a specific example of a contact range in modification 1 of exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例1における接触範囲の他の具体例を示す模式図である。FIG. 11 is a schematic diagram showing another specific example of the contact range in modification 1 of exemplary embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例1における2つのバックホウの接触範囲の具体例を模式的に示す図である。FIG. 10 is a diagram schematically showing a specific example of contact ranges of two backhoes in Modification 1 of Illustrative Embodiment 2 of the present invention; 本発明の例示的実施形態2の変形例2に係る制御方法の流れを説明するフロー図である。FIG. 10 is a flow diagram illustrating the flow of a control method according to Modification 2 of Illustrative Embodiment 2 of the present invention; 本発明の例示的実施形態3の概要を説明する模式図である。FIG. 10 is a schematic diagram illustrating an overview of exemplary embodiment 3 of the present invention; 本発明の例示的実施形態3に係る制御システムの構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of a control system according to exemplary embodiment 3 of the present invention; 本発明の例示的実施形態3に係る制御方法の流れを示すフロー図である。FIG. 11 is a flow diagram showing the flow of a control method according to exemplary embodiment 3 of the present invention; 本発明の例示的実施形態4に係る制御システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a control system according to exemplary embodiment 4 of the present invention; 本発明の例示的実施形態4に係る制御方法の流れを示すフロー図である。FIG. 12 is a flow diagram showing the flow of a control method according to exemplary embodiment 4 of the present invention; 本発明の例示的実施形態5に係る制御システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a control system according to exemplary embodiment 5 of the present invention; 本発明の例示的実施形態5に係る制御方法の流れを示すフロー図である。FIG. 11 is a flow diagram showing the flow of a control method according to exemplary embodiment 5 of the present invention; 本発明の各例示的実施形態における制御装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware constitutions of the control apparatus in each exemplary embodiment of this invention.
 〔例示的実施形態1〕
 本発明の第1の例示的実施形態について、図面を参照して詳細に説明する。本例示的実施形態は、後述する例示的実施形態の基本となる形態である。
[Exemplary embodiment 1]
A first exemplary embodiment of the invention will now be described in detail with reference to the drawings. This exemplary embodiment is the basis for the exemplary embodiments described later.
 <制御システム1の構成>
 本例示的実施形態に係る制御システム1の構成について、図1を参照して説明する。図1は、制御システム1の構成を示すブロック図である。
<Configuration of control system 1>
The configuration of a control system 1 according to this exemplary embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the control system 1. As shown in FIG.
 図1に示すように、制御システム1は、取得部11と、範囲特定部12と、動作制御部13と、作業機械90とを含む。なお、図1において各機能ブロックを結ぶ線は、機能ブロック間の論理的な接続関係の一例を示しており、これらの間の接続関係を限定するものではない。作業機械90は、特許請求の範囲に記載した「第1作業機械」の一例である。例えば、取得部11、範囲特定部12、及び動作制御部13は、図2に示すように、制御装置10に含まれる。この場合、制御装置10は、作業機械90を制御する装置である。制御装置10は、作業機械90の動作を制御可能に、当該作業機械90に接続される。例えば、制御装置10は、作業機械90に搭載されたコントローラとして実現されてもよい。また、制御装置10は、作業機械90に後付けで搭載されるコンピュータによって実現されてもよい。この場合、制御装置10は、コントローラと通信可能に有線接続される。有線接続の具体例としては、例えば、USB(Universal Serial Bus)、又は、シリアル通信等が挙げられる。また、制御装置10は、作業機械90とは異なる場所で作業機械90の動作を制御するコンピュータとして実現されてもよい。この場合、制御装置10は、作業機械90の近傍に設置されてもよいし、遠隔に設置されてもよい。また、この場合、制御装置10は、ネットワークを介して、作業機械90のコントローラに接続される。ネットワークの具体例としては、例えば、無線LAN(Local Area Network)、有線LAN、WAN(Wide Area Network)、公衆回線網、モバイルデータ通信網(3G、LTE:Long Term Evolution、4G、5G、ローカル5G等)、Wifi(登録商標)又は、これらのネットワークの組み合わせが挙げられる。ただし、制御装置10及び作業機械90を接続する構成は、これらに限定されない。また、取得部11、範囲特定部12、及び動作制御部13は、1つの装置に限らず、複数の装置に分散配置されてもよい。換言すると、制御装置10を、複数の装置によって構成してもよい。複数の装置の一部又は全部は、クラウド上に配置されてもよい。この場合、各装置は、有線、無線、又はこれらの組み合わせにより接続されて通信する。例えば、範囲特定部12及び動作制御部13が互いに異なる装置に配置される場合、これらの機能ブロックは装置間で通信することにより互いに情報を取得する。 As shown in FIG. 1, the control system 1 includes an acquisition unit 11, a range identification unit 12, an operation control unit 13, and a work machine 90. Lines connecting functional blocks in FIG. 1 indicate an example of the logical connection relationship between the functional blocks, and do not limit the connection relationship between them. The work machine 90 is an example of the "first work machine" described in the claims. For example, the acquisition unit 11, the range identification unit 12, and the operation control unit 13 are included in the control device 10 as shown in FIG. In this case, the control device 10 is a device that controls the work machine 90 . The control device 10 is connected to the work machine 90 so as to be able to control the operation of the work machine 90 . For example, control device 10 may be implemented as a controller mounted on work machine 90 . Moreover, the control device 10 may be realized by a computer mounted on the working machine 90 as a retrofit. In this case, the control device 10 is connected by wire so as to be communicable with the controller. Specific examples of wired connection include USB (Universal Serial Bus), serial communication, and the like. Further, control device 10 may be implemented as a computer that controls the operation of work machine 90 at a location different from work machine 90 . In this case, the control device 10 may be installed near the work machine 90 or may be installed remotely. Also, in this case, the control device 10 is connected to the controller of the work machine 90 via a network. Specific examples of networks include, for example, wireless LAN (Local Area Network), wired LAN, WAN (Wide Area Network), public line network, mobile data communication network (3G, LTE: Long Term Evolution, 4G, 5G, local 5G etc.), Wifi (registered trademark), or a combination of these networks. However, the configuration for connecting the control device 10 and the work machine 90 is not limited to these. In addition, the acquisition unit 11, the range identification unit 12, and the operation control unit 13 are not limited to one device, and may be distributed in a plurality of devices. In other words, the control device 10 may be composed of a plurality of devices. Some or all of the multiple devices may be located on the cloud. In this case, each device communicates by being connected by wire, wireless, or a combination thereof. For example, when the range identification unit 12 and the operation control unit 13 are arranged in different devices, these functional blocks acquire information from each other through communication between the devices.
 (制御装置10の構成)
 本例示的実施形態に係る制御装置10の詳細な構成について、図2を参照して説明する。図2は、制御装置10の構成を示すブロック図である。図2に示すように、制御装置10は、取得部11と、範囲特定部12と、動作制御部13とを含む。なお、取得部11は、特許請求の範囲に記載した「取得手段」を実現する構成の一例である。範囲特定部12は、特許請求の範囲に記載した「範囲特定手段」を実現する構成の一例である。動作制御部13は、特許請求の範囲に記載した「動作制御手段」を実現する構成の一例である。
(Configuration of control device 10)
A detailed configuration of the control device 10 according to this exemplary embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of the control device 10. As shown in FIG. As shown in FIG. 2 , the control device 10 includes an acquisition section 11 , a range identification section 12 and an operation control section 13 . Note that the acquisition unit 11 is an example of a configuration that implements the “acquisition unit” recited in the claims. The range specifying unit 12 is an example of a configuration that implements the "range specifying means" described in the claims. The operation control unit 13 is an example of a configuration that implements the "operation control means" recited in the claims.
 取得部11は、作業機械90の作業情報、及び作業機械90の位置情報を取得する。作業情報とは、作業機械90の作業内容を示す。作業内容とは、例えば、作業機械90が実施する作業の種別、作業機械90を構成する各部の状態等を含む。作業情報が示す作業内容とは、例えば、作業機械90が行う作業の種別、作業の目標となる位置、及び、当該作業を行うための作業機械90の姿勢を含む。換言すると、作業情報は、作業の種別を示す作業種別情報、作業の目標となる位置を示す目標位置情報、及び、作業機械90の姿勢を含む姿勢情報を含む。 The acquisition unit 11 acquires work information of the work machine 90 and position information of the work machine 90 . The work information indicates the work content of the work machine 90 . The work content includes, for example, the type of work performed by the work machine 90, the state of each part constituting the work machine 90, and the like. The work content indicated by the work information includes, for example, the type of work performed by the work machine 90, the target position of the work, and the posture of the work machine 90 for performing the work. In other words, the work information includes work type information indicating the type of work, target position information indicating the target position of the work, and posture information including the posture of the work machine 90 .
 範囲特定部12は、取得された作業情報が示す作業内容に応じて、第1範囲を特定する。第1範囲とは、作業機械90が稼働する範囲と当該範囲の周囲とを含む範囲である。また、第1範囲は、作業機械90を安全に稼働させるために特定される。なお、第1範囲は、二次元的な範囲であってもよいし、三次元的な範囲であってもよい。二次元的な範囲の場合、例えば、第1範囲は、作業機械90を上面視した平面における範囲であってもよいし、側面視した平面における範囲であってもよい。また、例えば、第1範囲は、作業機械が障害物に接触する可能性がある範囲であってもよい。以降、「第1範囲」を「接触範囲」とも記載する。 The range identifying unit 12 identifies the first range according to the work content indicated by the acquired work information. The first range is a range including the range in which work machine 90 operates and the periphery of the range. Also, the first range is specified in order to operate the work machine 90 safely. Note that the first range may be a two-dimensional range or a three-dimensional range. In the case of a two-dimensional range, for example, the first range may be a range on a plane in which work machine 90 is viewed from above or may be a range on a plane when viewed from side. Also, for example, the first range may be a range in which the work machine may come into contact with an obstacle. Henceforth, "the 1st range" is also described as a "contact range."
 動作制御部13は、特定された接触範囲、及び作業機械90の位置情報を参照して、作業機械90の動作を制御する。 The motion control unit 13 refers to the specified contact range and the position information of the work machine 90 to control the motion of the work machine 90 .
 <制御方法の流れ>
 以上のように構成された制御システム1において、制御装置10は、制御方法S1を実行する。制御方法S1の流れについて、図3を参照して説明する。図3は、制御方法S1の流れを示すフロー図である。図3に示すように、制御方法S1は、ステップS11~S13を含む。
<Flow of control method>
In the control system 1 configured as described above, the control device 10 executes the control method S1. The flow of control method S1 will be described with reference to FIG. FIG. 3 is a flowchart showing the flow of control method S1. As shown in FIG. 3, the control method S1 includes steps S11 to S13.
 (ステップS11:取得工程)
 ステップS11において、取得部11は、作業機械90の作業情報、及び作業機械90の位置情報を取得する。例えば、取得部11は、作業情報を、作業機械90に搭載されたセンサの検出値を参照して取得してもよいし、メモリから読み込むことにより取得してもよいし、通信可能に接続された他の装置から受信することにより取得してもよい。また、例えば、取得部11は、作業機械90の位置情報を、作業機械90に搭載された測位センサの検出値を参照して取得してもよい。また、例えば、取得部11は、障害物の位置情報をさらに取得してもよい。
(Step S11: Acquisition step)
In step S<b>11 , the acquisition unit 11 acquires work information of the work machine 90 and position information of the work machine 90 . For example, the acquisition unit 11 may acquire the work information by referring to the detected value of a sensor mounted on the work machine 90, may acquire the work information by reading from a memory, or may acquire the work information by communicably connecting. may be obtained by receiving from another device. Further, for example, the acquisition unit 11 may acquire the position information of the work machine 90 by referring to the detected value of the positioning sensor mounted on the work machine 90 . Also, for example, the acquisition unit 11 may further acquire the position information of the obstacle.
 (ステップS12:範囲特定工程)
 ステップS12において、範囲特定部12は、取得された作業情報が示す作業内容に応じて、接触範囲を特定する。例えば、範囲特定部12は、作業の種別、及び、作業機械90を構成する各部の状態に応じて、接触範囲を特定してもよい。
(Step S12: range specifying step)
In step S12, the range identifying unit 12 identifies the contact range according to the work content indicated by the acquired work information. For example, the range specifying unit 12 may specify the contact range according to the type of work and the state of each part that configures the work machine 90 .
 (ステップS13:動作制御工程)
 ステップS13において、動作制御部13は、特定された接触範囲、及び作業機械90の位置情報を参照して、作業機械90の動作を制御する。例えば、動作制御部13は、特定された接触範囲に障害物が位置するか否かを判断する。当該判断処理は、例えば、作業機械90に搭載された測位センサの検出値を参照することにより実行可能である。また、動作制御部13は、特定された接触範囲に障害物が位置すると判断した場合、障害物に接触する可能性を低減するよう作業機械90を制御する。制御内容の具体例としては、停止する、減速する、移動する等があるが、これらに限られない。
(Step S13: Operation control step)
In step S<b>13 , the motion control unit 13 controls the motion of the work machine 90 with reference to the specified contact range and the position information of the work machine 90 . For example, the motion control unit 13 determines whether an obstacle is positioned within the identified contact range. The determination process can be executed, for example, by referring to detection values of a positioning sensor mounted on work machine 90 . Further, when the motion control unit 13 determines that an obstacle is positioned within the identified contact range, the operation control unit 13 controls the working machine 90 to reduce the possibility of contact with the obstacle. Specific examples of control content include, but are not limited to, stopping, decelerating, and moving.
 <本例示的実施形態の効果>
 以上のように、本例示的実施形態は、作業機械90の作業内容に応じて特定した接触範囲と、作業機械90の位置情報とを参照して、作業機械90の動作を制御する。これにより、作業機械90の作業内容をより充分に反映した接触範囲が参照されるので、作業機械90をより安全に稼働させることができる。
<Effects of this exemplary embodiment>
As described above, this exemplary embodiment controls the operation of work machine 90 by referring to the contact range specified according to the work content of work machine 90 and the position information of work machine 90 . As a result, the contact range that fully reflects the work content of the work machine 90 is referred to, so that the work machine 90 can be operated more safely.
 〔例示的実施形態2〕
 本発明の第2の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
[Exemplary embodiment 2]
A second exemplary embodiment of the invention will now be described in detail with reference to the drawings. Components having the same functions as the components described in the exemplary embodiment 1 are denoted by the same reference numerals, and descriptions thereof are omitted as appropriate.
 <制御システム2の構成>
 本例示的実施形態に係る制御システム2の構成について、図4を参照して説明する。本例示的実施形態では、無人で作業するバックホウ90A及び90Bを制御対象とする制御システム2を例にとって説明する。図4は、制御システム2の構成を示すブロック図である。図4に示すように、制御システム2は、制御システム2Aと、制御システム2Bとを含む。制御システム2Aは、バックホウ90Aと、制御装置20Aとを含み、バックホウ90Aを制御するシステムである。制御システム2Bは、バックホウ90Bと、制御装置20Bとを含み、バックホウ90Bを制御するシステムである。
<Configuration of control system 2>
The configuration of the control system 2 according to this exemplary embodiment will be described with reference to FIG. In this exemplary embodiment, the control system 2 that controls unmanned backhoes 90A and 90B will be described as an example. FIG. 4 is a block diagram showing the configuration of the control system 2. As shown in FIG. As shown in FIG. 4, the control system 2 includes a control system 2A and a control system 2B. The control system 2A is a system that includes a backhoe 90A and a control device 20A and controls the backhoe 90A. The control system 2B is a system that includes a backhoe 90B and a control device 20B and controls the backhoe 90B.
 制御装置20A及び制御装置20Bは、ネットワークN1を介して通信可能に接続される。ネットワークN1の具体例としては、例えば、無線LAN、有線LAN、WAN、公衆回線網、モバイルデータ通信網(3G、LTE、4G、5G、ローカル5G等)、又は、これらのネットワークの組み合わせが挙げられる。ただし、制御装置20A及び制御装置20Bを接続する構成は、これに限定されない。 The control device 20A and the control device 20B are communicably connected via the network N1. Specific examples of the network N1 include wireless LAN, wired LAN, WAN, public line network, mobile data communication network (3G, LTE, 4G, 5G, local 5G, etc.), or a combination of these networks. . However, the configuration for connecting the control device 20A and the control device 20B is not limited to this.
 また、制御装置20Aは、バックホウ90Aの近傍又は遠隔に設置され、バックホウ90Aの動作を制御可能にバックホウ90Aに接続される。例えば、制御装置20Aは、バックホウ90Aに搭載されたコントローラ94Aと無線接続されてもよいし、上述したネットワークN1を介して接続されてもよい。ただし、制御装置20A及びバックホウ90Aを接続する構成は、これらに限定されない。 In addition, the control device 20A is installed near or remotely from the backhoe 90A and is connected to the backhoe 90A so as to be able to control the operation of the backhoe 90A. For example, the control device 20A may be wirelessly connected to the controller 94A mounted on the backhoe 90A, or may be connected via the network N1 described above. However, the configuration for connecting the control device 20A and the backhoe 90A is not limited to these.
 また、制御装置20Bは、バックホウ90Bの近傍又は遠隔に設置され、バックホウ90Bの動作を制御可能にバックホウ90Bに接続される。制御装置20B及びバックホウ90Bの接続形態については、制御装置20A及びバックホウ90Aの上述した接続形態の説明において、参照符号の末尾の「A」を「B」と読み替えることにより同様に説明される。 In addition, the control device 20B is installed near or remotely from the backhoe 90B, and is connected to the backhoe 90B so as to be able to control the operation of the backhoe 90B. The connection form of the control device 20B and the backhoe 90B will be described in the same manner by replacing the "A" at the end of the reference numerals with "B" in the above-described connection form of the control device 20A and the backhoe 90A.
 (バックホウ90A)
 バックホウ90Aの詳細な構成について説明する。バックホウ90Aは、特許請求の範囲に記載した「第1作業機械」の一例である。バックホウ90Aは、制御装置20Aによる制御に従って自律的に動作する。なお、自律的な動作とは、オペレータによる逐次的な操作によらずに動作することをいう。図4に示すように、バックホウ90Aは、旋回部91Aと、アーム部92Aと、走行部93Aと、コントローラ94Aとを含む。
(Backhoe 90A)
A detailed configuration of the backhoe 90A will be described. The backhoe 90A is an example of the "first working machine" described in the claims. Backhoe 90A operates autonomously according to control by control device 20A. Note that the autonomous operation means an operation without sequential operation by an operator. As shown in FIG. 4, the backhoe 90A includes a turning section 91A, an arm section 92A, a traveling section 93A, and a controller 94A.
 走行部93Aは、バックホウ90Aの前進、後進、右折、左折を可能とする走行部である。走行部93Aは、例えば無限軌道ベルトを用いて走行する。 The traveling part 93A is a traveling part that enables the backhoe 90A to move forward, backward, turn right, and turn left. The running section 93A runs using, for example, an endless track belt.
 旋回部91Aは、走行部93Aに取り付けられる。旋回部91Aは、旋回軸P1Aを中心に、図の紙面に垂直な平面内での旋回が可能である。なお、バックホウ90Aが水平な地面にある場合は、図4の紙面に垂直な平面は水平面となるため、以下ではこの面を便宜的に「水平面」と称する。 The turning portion 91A is attached to the traveling portion 93A. The turning portion 91A can turn around the turning axis P1A within a plane perpendicular to the plane of the drawing. Note that when the backhoe 90A is on the horizontal ground, the plane perpendicular to the paper surface of FIG. 4 is a horizontal plane, so this plane is hereinafter referred to as a "horizontal plane" for convenience.
 アーム部92Aは、旋回部91Aに取り付けられたブーム921Aと、ブーム921Aの先端部に取り付けられたアーム922Aと、アーム922Aの先端部に取り付けられたバケット923Aと、を含む。ブーム921Aは、ブーム軸P2Aを中心に、水平面に略垂直な平面内で往復旋回が可能である。アーム922Aは、ブーム921Aと同じ旋回面で、アーム軸P3Aを中心に往復旋回が可能である。バケット923Aは、アーム922Aの旋回面と同じ旋回面で、バケット軸P4Aを中心に往復旋回が可能である。 The arm part 92A includes a boom 921A attached to the revolving part 91A, an arm 922A attached to the tip of the boom 921A, and a bucket 923A attached to the tip of the arm 922A. The boom 921A can reciprocate around the boom axis P2A within a plane substantially perpendicular to the horizontal plane. The arm 922A can reciprocate around the arm axis P3A on the same plane as the boom 921A. The bucket 923A can reciprocate around the bucket axis P4A on the same plane as that of the arm 922A.
 旋回部91A及びアーム部92Aは、それぞれ、特許請求の範囲に記載した「稼動部分」の一例である。すなわち、バックホウ90Aは、複数の稼動部分を備えている。 The swivel part 91A and the arm part 92A are examples of the "operating part" described in the claims. That is, the backhoe 90A has a plurality of moving parts.
 コントローラ94Aは、プロセッサ、メモリ及び通信インタフェース(何れも不図示)を有する。コントローラ94Aは、メモリに記憶されたプログラムを読み込んで実行することにより、通信インタフェースを介して制御装置20Aから受信した動作制御信号にしたがって、バックホウ90Aの各部を制御する。 The controller 94A has a processor, memory and communication interface (none of which are shown). The controller 94A reads and executes a program stored in the memory to control each part of the backhoe 90A according to operation control signals received from the control device 20A via the communication interface.
 例えば、コントローラ94Aは、動作制御信号にしたがって、旋回部91A、ブーム921A、アーム922A、及びバケット923Aの一部又は全部を旋回させることにより、バックホウ90Aに、掘削、又は積込等の作業を実施させる。また、例えば、コントローラ94Aは、動作制御信号にしたがって走行部93Aを走行させることにより、バックホウ90Aを移動させる。 For example, the controller 94A causes the backhoe 90A to perform work such as excavation or loading by rotating part or all of the rotating section 91A, the boom 921A, the arm 922A, and the bucket 923A according to the operation control signal. Let Further, for example, the controller 94A moves the backhoe 90A by causing the traveling section 93A to travel according to the operation control signal.
 また、バックホウ90Aは、バックホウ90Aの姿勢及び位置を検出するための各種のセンサ群(図示せず)を含む。例えば、姿勢を検出するためのセンサの一例として、傾斜センサ、加速度センサ、ジャイロセンサ、エンコーダ、圧力センサ、流量センサ、シリンダセンサ、油圧センサ、又はストロークセンサ等が挙げられるが、これに限られない。これらのセンサは、旋回部91A、ブーム921A、アーム922A、又はバケット923Aの旋回角度を検出する。また、例えば、位置を検出するセンサの一例として、測位センサが挙げられる。測位センサの一例として、GPS(Global Positioning System)衛生又は携帯電話網の基地局からの受信信号を用いるセンサが挙げられるが、これらに限られない。なお、バックホウ90Aは、必ずしも測位センサを含んでいなくてもよい。この場合、バックホウ90Aの位置は、バックホウ90Aが存在する空間に設置される三次元センサ(図示せず)を用いて検出される。三次元センサとしては、三次元レーザスキャナ、カメラ(例えば、デプスカメラ、ステレオカメラ、ToF(Time-of-Flight)カメラ等)、レーザセンサ(例えば、3DLiDAR等)、又はレーダセンサ等が挙げられるが、これらに限られない。 The backhoe 90A also includes various sensor groups (not shown) for detecting the posture and position of the backhoe 90A. For example, an example of a sensor for detecting a posture includes, but is not limited to, a tilt sensor, an acceleration sensor, a gyro sensor, an encoder, a pressure sensor, a flow sensor, a cylinder sensor, an oil pressure sensor, or a stroke sensor. . These sensors detect the turning angle of the turning section 91A, boom 921A, arm 922A, or bucket 923A. Also, for example, a positioning sensor is an example of a sensor that detects a position. Examples of positioning sensors include, but are not limited to, sensors using received signals from GPS (Global Positioning System) satellite or cellular network base stations. In addition, the backhoe 90A does not necessarily have to include a positioning sensor. In this case, the position of the backhoe 90A is detected using a three-dimensional sensor (not shown) installed in the space where the backhoe 90A exists. Three-dimensional sensors include three-dimensional laser scanners, cameras (e.g., depth cameras, stereo cameras, ToF (Time-of-Flight) cameras, etc.), laser sensors (e.g., 3DLiDAR, etc.), or radar sensors. , but not limited to these.
 (バックホウ90B)
 バックホウ90Bは、特許請求の範囲に記載した「第2作業機械」の一例である。バックホウ90Bは、バックホウ90Aと同様に構成される。バックホウ90Bの構成は、バックホウ90Aの構成の説明において参照符号の末尾の「A」を「B」と読み替えることにより同様に説明される。以降、バックホウ90A、90Bを特に区別して説明する必要がない場合に、単にバックホウ90とも記載する。また、バックホウ90Bを、バックホウ90Aにとっての「他のバックホウ90」と記載することがある。同様に、バックホウ90Aを、バックホウ90Bにとっての「他のバックホウ90」と記載することがある。
(Backhoe 90B)
The backhoe 90B is an example of the "second working machine" described in the claims. The backhoe 90B is configured similarly to the backhoe 90A. The configuration of the backhoe 90B will be similarly described by replacing the suffix "A" with "B" in the description of the configuration of the backhoe 90A. Hereinafter, the backhoes 90A and 90B will be simply referred to as the backhoe 90 when there is no need to distinguish between the backhoes 90A and 90B. Moreover, the backhoe 90B may be described as "another backhoe 90" for the backhoe 90A. Similarly, backhoe 90A may be referred to as the "other backhoe 90" for backhoe 90B.
 (制御装置20Aの構成)
 制御装置20Aの詳細な構成について説明する。図4に示すように、制御装置20Aは、取得部21Aと、範囲特定部22Aと、動作制御部23Aと、動作特定部24Aとを含む。
(Configuration of control device 20A)
A detailed configuration of the control device 20A will be described. As shown in FIG. 4, the control device 20A includes an acquisition section 21A, a range identification section 22A, an action control section 23A, and an action identification section 24A.
 取得部21Aは、バックホウ90Aの作業内容を示す作業情報A、及びバックホウ90Aの位置情報Aを逐次的に取得する。また、取得部21Aは、バックホウ90Bの位置情報B、及び接触範囲80Bを示す情報を逐次的に取得する。作業情報A、位置情報A、位置情報B、及び接触範囲80Bの詳細については後述する。 The acquisition unit 21A sequentially acquires work information A indicating the work content of the backhoe 90A and position information A of the backhoe 90A. Further, the acquisition unit 21A sequentially acquires the position information B of the backhoe 90B and the information indicating the contact range 80B. Details of the work information A, the position information A, the position information B, and the contact range 80B will be described later.
 範囲特定部22Aは、作業情報Aが示す作業内容と、バックホウ90Aが備える稼動部分の稼動範囲とに応じて接触範囲80Aを特定する。例えば、範囲特定部22Aは、作業情報Aが示す作業内容に応じて、バックホウ90Aが有する複数の稼動部分の各々に応じた形状の接触範囲80Aを特定する。接触範囲80Aの詳細については後述する。作業情報Aには、後述する動作特定部24Aによって決定された作業内容が含まれる。作業情報Aの詳細については後述する。また、範囲特定部22Aは、逐次的に取得される作業情報Aに応じて、接触範囲80Aを逐次的に変化させる。 The range specifying unit 22A specifies the contact range 80A according to the work content indicated by the work information A and the operating range of the operating parts of the backhoe 90A. For example, the range specifying unit 22A specifies the contact range 80A having a shape corresponding to each of the plurality of operating parts of the backhoe 90A, according to the work content indicated by the work information A. Details of the contact range 80A will be described later. The work information A includes work details determined by the motion specifying unit 24A, which will be described later. Details of the work information A will be described later. Further, the range specifying unit 22A sequentially changes the contact range 80A according to the work information A that is sequentially acquired.
 動作特定部24Aは、バックホウ90Aの作業内容を決定する。なお、動作特定部24Aは、バックホウ90Aの作業内容を、バックホウ90Bの位置情報B、及び接触範囲80Bを参照して決定してもよい。また、動作特定部24Aは、バックホウ90Aの作業内容を、オペレータによる事前の入力に基づいて決定してもよいし、事前に定められたスケジュールにしたがって決定してもよい。また、動作特定部24Aは、バックホウ90Aの作業内容を、自律的に決定してもよい。作業内容を自律的に決定するとは、例えば、バックホウ90Aの状況に応じて決定することである。例えば、動作特定部24Aは、バックホウ90Aの作業内容を生成する生成モデルを用いて、作業内容を自律的に決定してもよい。この場合、生成モデルは、例えば、バックホウ90Aの姿勢及び位置を検出するための各種のセンサ群からの出力値を入力として作業内容を出力するよう、機械学習により学習済みのモデルであってもよい。また、動作特定部24Aは、作業内容として、作業の種別と、当該種別の作業を規定する情報とを決定してもよい。具体例として、例えば、動作特定部24Aは、作業の種別として「掘削」を決定した場合、当該「掘削」作業を規定する情報として、掘削する位置、掘削の手法(例えば、掘削する深さ、向き、角度、作業軌道など)を決定する。 The motion specifying unit 24A determines the work content of the backhoe 90A. Note that the action specifying unit 24A may determine the work content of the backhoe 90A by referring to the position information B of the backhoe 90B and the contact range 80B. In addition, the operation specifying unit 24A may determine the work content of the backhoe 90A based on prior input by the operator, or may be determined according to a predetermined schedule. Further, the motion specifying unit 24A may autonomously determine the work content of the backhoe 90A. Autonomously determining the work content means, for example, determining according to the situation of the backhoe 90A. For example, the motion identifying unit 24A may autonomously determine the work content using a generative model that generates the work content of the backhoe 90A. In this case, the generative model may be a model that has been learned by machine learning so that output values from various sensor groups for detecting the posture and position of the backhoe 90A are input, and work content is output. . Further, the action specifying unit 24A may determine a type of work and information defining the type of work as the work content. As a specific example, for example, when the operation specifying unit 24A determines “excavation” as the type of work, the information specifying the “excavation” work includes the position to be excavated, the method of excavation (for example, the depth of excavation, direction, angle, working trajectory, etc.).
 動作制御部23Aは、バックホウ90Aの作業内容に従って、バックホウ90Aの動作を制御するための動作制御情報を生成する。また、動作制御部23Aは、生成した動作制御情報を、通信インタフェース(図示せず)を介してバックホウ90Aに送信する。これにより、バックホウ90Aは、自律的に動作する。例えば、バックホウ90Aは、事前に決定される作業内容にしたがって自律的に動作してもよいし、動作中の状況に応じて決定される作業内容にしたがって自律的に動作してもよい。 The motion control unit 23A generates motion control information for controlling the motion of the backhoe 90A according to the work content of the backhoe 90A. Further, the motion control unit 23A transmits the generated motion control information to the backhoe 90A via a communication interface (not shown). Thereby, backhoe 90A operates autonomously. For example, the backhoe 90A may operate autonomously according to the work content determined in advance, or may operate autonomously according to the work content determined according to the situation during operation.
 また、動作制御部23Aは、接触範囲80A、位置情報A、位置情報B、及び接触範囲80Bを参照して、接触範囲80A及び接触範囲80Bの少なくとも一部が重なるか否かを判断する。また、動作制御部23Aは、重なると判断した場合、バックホウ90Aを制御する。一例として、制御内容は、バックホウ90Aがバックホウ90Bに接触する可能性を低減する制御である。以降では、具体的な制御内容は、バックホウ90Aを停止させる制御であるとして説明する。ただし、接触する可能性を低減する制御内容は、これに限られない。例えば、当該制御内容は、接触範囲80Aが接触範囲80Bと重ならなくなるまでバックホウ90Aを走行させる制御であってもよい。また、例えば、当該制御内容は、バックホウ90Aの作業内容を、接触範囲80Aが接触範囲80Bと重ならない作業内容に変更する制御であってもよい。 The operation control unit 23A also refers to the contact range 80A, the position information A, the position information B, and the contact range 80B to determine whether or not at least a portion of the contact range 80A and the contact range 80B overlap. Moreover, the operation control part 23A controls the backhoe 90A, when it is judged that it overlaps. As an example, the content of control is control which reduces possibility that backhoe 90A will contact backhoe 90B. Henceforth, it demonstrates that the specific control content is control which stops the backhoe 90A. However, the content of control for reducing the possibility of contact is not limited to this. For example, the content of the control may be control for running the backhoe 90A until the contact range 80A does not overlap the contact range 80B. Further, for example, the control content may be control to change the work content of the backhoe 90A to a work content in which the contact range 80A does not overlap the contact range 80B.
 (制御装置20Bの構成)
 制御装置20Bは、制御装置20Aと同様に構成される。制御装置20Bの構成は、制御装置20Aの構成の説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
(Configuration of control device 20B)
The control device 20B is configured similarly to the control device 20A. The configuration of the control device 20B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the description of the configuration of the control device 20A.
 (作業情報A)
 作業情報Aは、特許請求の範囲に記載した「第1作業情報」の一例である。作業情報Aは、バックホウ90Aの作業内容を示す情報である。
(Work information A)
Work information A is an example of "first work information" described in the claims. The work information A is information indicating the work content of the backhoe 90A.
 作業情報Aが示す作業内容とは、例えば、バックホウ90Aが行う作業の種別、作業の目標となる位置、及び、当該作業を行うためのバックホウ90Aの姿勢を含む。換言すると、作業情報Aは、作業の種別を示す作業種別情報、作業の目標となる位置を示す目標位置情報、及び、バックホウ90Aの姿勢を含む姿勢情報を含む。 The work content indicated by the work information A includes, for example, the type of work performed by the backhoe 90A, the target position of the work, and the posture of the backhoe 90A for performing the work. In other words, the work information A includes work type information indicating the type of work, target position information indicating the target position of the work, and posture information including the posture of the backhoe 90A.
 作業の種別の具体例としては、「積込」、「掘削」、「均し」、又は「押し込み」等が挙げられるが、これに限られない。また、目標となる位置の具体例としては、掘削位置、及び、積込位置が挙げられるが、これに限られない。また、姿勢は、例えば、旋回部91A、ブーム921A、アーム922A、及びバケット923Aの各部の旋回角度によって表される。つまり、作業情報Aは、バックホウ90Aが備える1又は複数の稼動部分(ここでは、旋回部91A、ブーム921A、アーム922A、及びバケット923A)の向き(ここでは、旋回角度)に関する情報を含む。 Specific examples of work types include, but are not limited to, "loading", "excavation", "leveling", and "pushing". Specific examples of target positions include an excavation position and a loading position, but are not limited to these. Also, the attitude is represented by the turning angle of each part of the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A, for example. That is, the work information A includes information about the direction (here, turning angle) of one or more operating parts (here, the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A) of the backhoe 90A.
 なお、作業情報Aは、バックホウ90Aを自律的に動作させるために動作特定部24Aが決定した情報を含む。例えば、作業種別情報、及び目標位置情報は、動作特定部24Aが決定した情報の一例である。なお、作業情報Aに含まれるこれらの情報は、事前に決定されたものであってもよいし、自律的に決定されたものであってもよい。 Note that the work information A includes information determined by the operation specifying unit 24A to operate the backhoe 90A autonomously. For example, work type information and target position information are examples of information determined by the motion identifying unit 24A. These pieces of information included in the work information A may be determined in advance or may be determined autonomously.
 また、作業情報Aは、バックホウ90Aの現在の状態を示す情報を含む。現在の状態を示す情報は、バックホウ90Aに含まれるセンサ群によって検出される。例えば、姿勢情報は、現在の状態を示す情報の一例である。姿勢情報は、センサ群によって検出された、旋回部91A、ブーム921A、アーム922A、及びバケット923Aの各部の旋回角度を含む。 Also, the work information A includes information indicating the current state of the backhoe 90A. Information indicating the current state is detected by a group of sensors included in the backhoe 90A. For example, posture information is an example of information indicating the current state. The posture information includes the turning angles of each part of the turning section 91A, the boom 921A, the arm 922A, and the bucket 923A detected by the sensor group.
 (作業情報B)
 作業情報Bについては、上述した作業情報Aの説明において参照符号の末尾の「A」を「B」と読み替えることにより同様に説明される。以降、作業情報A、Bを特に区別して説明する必要がない場合には、単に「作業情報」とも記載する。
(Work information B)
The work information B will be explained in the same manner by replacing the "A" at the end of the reference numeral with "B" in the explanation of the work information A described above. Henceforth, when it is not necessary to distinguish between the work information A and B, they will simply be referred to as "work information".
 (位置情報A)
 位置情報Aは、バックホウ90Aの位置を示す情報である。位置情報Aは、位置情報Bと同一の三次元座標系により表される。例えば、位置情報Aは、上述の測位センサ又は三次元センサによって検出される。
(Location information A)
The position information A is information indicating the position of the backhoe 90A. Position information A is represented by the same three-dimensional coordinate system as position information B. FIG. For example, the position information A is detected by the positioning sensor or three-dimensional sensor described above.
 (位置情報B)
 位置情報Bについては、上述した位置情報Aの説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。以降、位置情報A、Bを特に区別して説明する必要がない場合には、単に「位置情報」とも記載する。
(Location information B)
The position information B will be described in the same manner by replacing the suffix 'A' with 'B' and 'B' with 'A' in the description of the position information A described above. Henceforth, when it is not necessary to distinguish between the position information A and B, they will simply be referred to as "position information".
 (接触範囲80A)
 接触範囲80Aは、バックホウ90Aを安全に稼働させるために、作業機械90が稼働する範囲と当該範囲の周囲とを含む範囲であり、例えば、バックホウ90Aがバックホウ90Bに接触する可能性がある範囲である。接触範囲80Aは、特許請求の範囲に記載した「第1範囲」の一例である。接触範囲80Aは、バックホウ90Aにおける稼動部分に応じた形状を有している。バックホウ90Aにおける稼動部分とは、ここでは、旋回部91A、及びアーム部92Aである。つまり、バックホウ90Aは、複数の稼動部分を有している。換言すると、接触範囲80Aは、複数の稼動部分の各々に応じた形状を含む。稼動部分に応じた形状とは、例えば、稼動部分に応じた半径を有する円、楕円、又は扇形の形状である。例えば、接触範囲80Aは、旋回部91Aに応じた半径を有する扇形の領域と、アーム部92Aに応じた半径を有する扇形の領域とを合成した形状を有する。
(Contact range 80A)
The contact range 80A is a range including the range in which the work machine 90 operates and the periphery of the range in order to safely operate the backhoe 90A. For example, the range in which the backhoe 90A may contact the backhoe 90B. be. The contact range 80A is an example of the "first range" described in the claims. The contact range 80A has a shape corresponding to the moving portion of the backhoe 90A. The moving parts in the backhoe 90A are the revolving part 91A and the arm part 92A here. That is, the backhoe 90A has a plurality of moving parts. In other words, the contact area 80A includes shapes corresponding to each of the plurality of moving parts. The shape corresponding to the moving portion is, for example, a circle, an ellipse, or a sector shape having a radius corresponding to the moving portion. For example, the contact range 80A has a shape obtained by synthesizing a fan-shaped region having a radius corresponding to the turning portion 91A and a fan-shaped region having a radius corresponding to the arm portion 92A.
 (接触範囲80B)
 接触範囲80Bについては、上述した接触範囲80Aの説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。接触範囲80Bは、特許請求の範囲に記載した「第2範囲」の一例である。以降、接触範囲80A、80Bを特に区別して説明する必要がない場合には、単に「接触範囲80」とも記載する。
(Contact range 80B)
The contact range 80B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the above description of the contact range 80A. The contact range 80B is an example of the "second range" described in the claims. Henceforth, when it is not necessary to specifically distinguish between the contact areas 80A and 80B, they will simply be referred to as the "contact area 80".
 <制御方法S2の流れ>
 以上のように構成された制御システム2において、制御装置20Aは、制御方法S2を逐次的に実行する。逐次的な実行とは、例えば、所定間隔で制御方法S2を実行することであってもよいし、作業情報Aの変化に応じて制御方法S2を実行することであってもよい。また、制御装置20Bも、制御装置20Aと同様に、制御方法S2を逐次的に実行する。
<Flow of control method S2>
In the control system 2 configured as described above, the control device 20A sequentially executes the control method S2. The sequential execution may be, for example, executing the control method S2 at predetermined intervals, or executing the control method S2 according to changes in the work information A. FIG. The control device 20B also sequentially executes the control method S2, like the control device 20A.
 制御方法S2の流れについて、図5を参照して説明する。図5は、制御方法S2の流れを示すフロー図である。図5に示すように、制御方法S2は、ステップS21~S27を含む。なお、以下では、制御方法S2を制御装置20Aが実行する場合について説明する。制御方法S2を制御装置20Bが実行する場合については、以下の説明において、参照符号末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。 The flow of control method S2 will be described with reference to FIG. FIG. 5 is a flowchart showing the flow of control method S2. As shown in FIG. 5, the control method S2 includes steps S21 to S27. In addition, below, the case where 20 A of control apparatuses perform the control method S2 is demonstrated. The case where the control method S2 is executed by the control device 20B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description.
 (ステップS21)
 ステップS21において、取得部21Aは、作業情報Aを取得する。当該ステップの詳細については後述する。
(Step S21)
21 A of acquisition parts acquire the work information A in step S21. The details of this step will be described later.
 (ステップS22)
 ステップS22において、取得部21Aは、バックホウ90Aの位置情報Aを取得する。具体的には、例えば、取得部21Aは、バックホウ90Aに含まれる測位センサ、又はバックホウ90Aが存在する空間に設置された三次元センサを用いて、位置情報Aを取得する。当該ステップの詳細については後述する。
(Step S22)
In step S22, the acquisition unit 21A acquires the position information A of the backhoe 90A. Specifically, for example, the acquisition unit 21A acquires the position information A using a positioning sensor included in the backhoe 90A or a three-dimensional sensor installed in the space where the backhoe 90A exists. The details of this step will be described later.
 (ステップS23)
 ステップS23において、取得部21Aは、バックホウ90B(他のバックホウ90)の位置情報Bを取得する。具体的には、取得部21Aは、制御装置20Bに対して位置情報Bを要求することにより受信する。
(Step S23)
In step S23, the acquisition unit 21A acquires the position information B of the backhoe 90B (another backhoe 90). Specifically, the acquisition unit 21A receives the position information B by requesting it from the control device 20B.
 (ステップS24)
 ステップS24において、範囲特定部22Aは、作業情報Aが示す作業内容に応じて、バックホウ90Aの接触範囲80Aを特定する。具体的には、範囲特定部22Aは、アーム部92Aに応じた形状の接触範囲82Aと、旋回部91Aに応じた形状の接触範囲81Aとを合成した接触範囲80Aを特定する。制御方法S2が逐次的に実行されることにより、本ステップで特定される接触範囲80Aは逐次的に変化し得る。当該ステップの詳細については後述する。
(Step S24)
In step S24, the range specifying unit 22A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A. Specifically, the range specifying unit 22A specifies a contact range 80A obtained by synthesizing a contact range 82A having a shape corresponding to the arm part 92A and a contact range 81A having a shape corresponding to the turning part 91A. By sequentially executing the control method S2, the contact range 80A specified in this step can be sequentially changed. The details of this step will be described later.
 (ステップS25)
 ステップS25において、取得部21Aは、バックホウ90B(他のバックホウ90)の接触範囲80Bを取得する。具体的には、取得部21Aは、制御装置20Bから接触範囲80Bを受信する。ここで、制御装置20Bは、制御装置20Aと同様に制御方法S2を実行することにより、ステップS24において接触範囲80Bを特定している。そこで、取得部21Aは、制御装置20Bに対して接触範囲80Bを要求することにより受信する。
(Step S25)
In step S25, the acquisition unit 21A acquires the contact range 80B of the backhoe 90B (another backhoe 90). Specifically, the acquisition unit 21A receives the contact range 80B from the control device 20B. Here, control device 20B specifies contact range 80B in step S24 by executing control method S2 in the same manner as control device 20A. Therefore, the acquisition unit 21A receives the contact range 80B by requesting the control device 20B.
 (ステップS26)
 ステップS26において、動作制御部23Aは、接触範囲80A及び接触範囲80Bの少なくとも一部が重なるか否かを判断する。当ステップの具体例については後述する。
(Step S26)
In step S26, the operation control unit 23A determines whether or not at least a portion of the contact range 80A and the contact range 80B overlap. A specific example of this step will be described later.
 (ステップS26でYes:ステップS27)
 ステップS26でYesと判断された場合、ステップS27において、動作制御部23Aは、バックホウ90Aを停止する。具体的には、動作制御部23Aは、停止を指示する動作制御情報をバックホウ90Aに送信する。なお、制御装置20A及び制御装置20Bが制御方法S2を実行することにより、当該ステップにおいて、バックホウ90A及びバックホウ90Bが停止する。
(Yes in step S26: step S27)
When it is determined Yes in step S26, the motion control unit 23A stops the backhoe 90A in step S27. Specifically, the operation control unit 23A transmits operation control information instructing a stop to the backhoe 90A. In this step, the backhoe 90A and the backhoe 90B are stopped by the control device 20A and the control device 20B executing the control method S2.
 (ステップS26でNo)
 ステップS26でNoと判断された場合、制御装置20Aは、制御方法S2を終了する。なお、もし、過去に実行した制御方法S2においてステップS26でYesと判断してステップS27を実行した場合、既にバックホウ90Aは停止した状態である。このような状態では、動作制御部23Aは、今回の制御方法S2の実行においてステップS26でNoと判断された場合、バックホウ90Aに作業を再開させてもよい。
(No in step S26)
If the determination in step S26 is No, the control device 20A terminates the control method S2. In addition, if it is determined as Yes in step S26 in the control method S2 executed in the past and step S27 is executed, the backhoe 90A has already stopped. In such a state, the operation control section 23A may cause the backhoe 90A to restart the work when it is determined as No in step S26 in the current execution of the control method S2.
 <ステップS21:作業情報を取得する処理の詳細な流れ>
 ステップS21の詳細について、図6を参照して説明する。図6は、作業情報を取得する処理の詳細な流れを示すフロー図である。図6に示すように、作業情報を取得する処理は、ステップS211~S213を含む。なお、以下では、ステップS21を制御装置20Aが実行する場合について説明する。ステップS21を制御装置20Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
<Step S21: Detailed Flow of Processing for Acquiring Work Information>
Details of step S21 will be described with reference to FIG. FIG. 6 is a flowchart showing a detailed flow of processing for acquiring work information. As shown in FIG. 6, the process of acquiring work information includes steps S211 to S213. In addition, below, the case where 20 A of control apparatuses perform step S21 is demonstrated. The case where the control device 20B executes step S21 will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description.
 (ステップS211)
 ステップS211において、取得部21Aは、作業種別情報を取得する。作業種別情報は、例えば、「掘削」、又は「積込」を示す情報であるが、これに限られない。作業種別情報は、バックホウ90Aの動作を制御するために動作特定部24Aが決定した情報である。作業種別情報は、例えば、制御装置20Aのメモリ(図示せず)に記憶されている。このような作業種別情報は、バックホウ90Aの作業内容の変化に応じて変化し得る。取得部21Aは、直近に決定された作業種別情報を、メモリから読み込むことにより取得する。なお、直近に決定された作業種別情報は、事前に決定されたものであってもよいし、自律的に決定されたものであってもよい。
(Step S211)
In step S211, the acquisition unit 21A acquires work type information. The work type information is, for example, information indicating "excavation" or "loading", but is not limited to this. The work type information is information determined by the motion specifying unit 24A to control the motion of the backhoe 90A. The work type information is stored, for example, in a memory (not shown) of the control device 20A. Such work type information may change according to changes in the work content of the backhoe 90A. The acquiring unit 21A acquires the most recently determined work type information by reading it from the memory. The most recently determined work type information may be determined in advance or may be determined autonomously.
 (ステップS212)
 ステップS212において、取得部21Aは、目標位置情報を取得する。目標位置情報は、位置情報A、Bと同一の三次元座標系により表される。例えば、目標位置情報は、掘削位置情報、及び積込位置情報の一方又は両方を含む。掘削位置情報は、掘削する対象物が存在する位置を示す。積込位置情報は、対象物を積載する位置を示す座標である。例えば、積込位置情報は、対象物を積載して運搬する車両の荷台の座標を示す。作業種別情報が「掘削」を示す場合、目標位置情報は、掘削位置情報を含む。また、作業種別情報が「積込」を示す場合、目標位置情報は、積込のための旋回を開始する位置である掘削位置情報と、当該対象物を積み込むべき積込位置情報とを含んでいてもよい。
(Step S212)
In step S212, the acquisition unit 21A acquires target position information. The target position information is represented by the same three-dimensional coordinate system as the position information A and B. FIG. For example, the target position information includes one or both of digging position information and loading position information. The excavation position information indicates the position where the object to be excavated exists. The loading position information is coordinates indicating the position where the object is loaded. For example, the loading position information indicates the coordinates of the platform of the vehicle that loads and transports the object. When the work type information indicates "excavation", the target position information includes excavation position information. Further, when the work type information indicates "loading", the target position information includes excavation position information, which is the position at which turning for loading is started, and loading position information where the object is to be loaded. You can
 また、例えば、作業種別情報が「均し」又は「押し込み」を示す場合、目標位置情報は、対象物位置情報、及び移動先位置情報の一方又は両方を含む。対象物位置情報は、堆積した対象物が存在する位置を示す。移動先位置情報は、対象物の移動先の位置を示す。 Also, for example, when the work type information indicates "smoothing" or "push", the target position information includes one or both of the object position information and the destination position information. The object position information indicates the position where the deposited object exists. The destination position information indicates the destination position of the object.
 目標位置情報は、バックホウ90Aの動作を制御するために動作特定部24Aが決定した情報である。目標位置情報は、例えば、制御装置20Aのメモリに記憶されている。また、目標位置情報は、バックホウ90Aの作業内容の変化に応じて変化し得る。取得部21Aは、直近に決定された目標位置情報を、メモリから読み込むことにより取得する。なお、直近に決定された目標位置情報は、事前に決定されたものであってもよいし、自律的に決定されたものであってもよい。 The target position information is information determined by the motion specifying unit 24A to control the motion of the backhoe 90A. The target position information is stored, for example, in the memory of the control device 20A. Also, the target position information may change according to changes in the work content of the backhoe 90A. The acquisition unit 21A acquires the recently determined target position information by reading it from the memory. The most recently determined target position information may be determined in advance or may be determined autonomously.
 (ステップS213)
 ステップS213において、取得部21Aは、姿勢情報を取得する。姿勢情報は、前述したように、旋回部91A、ブーム921A、アーム922A、及びバケット923Aの各部の旋回角度を示す情報を含む。各部の旋回角度は、バックホウ90Aに搭載されたセンサ群により検出される。取得部21Aは、センサ群の検出値を参照して姿勢情報を取得する。
(Step S213)
In step S213, the acquisition unit 21A acquires posture information. As described above, the posture information includes information indicating the turning angle of each part of the turning section 91A, boom 921A, arm 922A, and bucket 923A. The turning angle of each part is detected by a sensor group mounted on the backhoe 90A. The acquisition unit 21A acquires the posture information by referring to the detected values of the sensor group.
 <ステップS24:接触範囲80を特定する処理の詳細な流れ>
 ステップS24の詳細について、図7を参照して説明する。図7は、接触範囲80を特定する処理の詳細な流れを示すフロー図である。図7に示すように、接触範囲80を特定する処理は、ステップS241~S246を含む。なお、以下では、ステップS24を制御装置20Aが実行する場合について説明する。ステップS24を制御装置20Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
<Step S24: Detailed Flow of Processing for Identifying Contact Range 80>
Details of step S24 will be described with reference to FIG. FIG. 7 is a flow diagram showing a detailed flow of processing for specifying the contact area 80. As shown in FIG. As shown in FIG. 7, the process of specifying the contact area 80 includes steps S241 to S246. In addition, below, the case where 20 A of control apparatuses perform step S24 is demonstrated. The case where the control device 20B executes step S24 will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description.
 (ステップS241)
 ステップS241において、範囲特定部22Aは、アーム部92Aの作業半径R2Aを、作業情報Aに含まれる姿勢情報を参照して決定する。アーム部92Aの作業半径R2Aとは、バックホウ90Aの作業によりアーム部92Aが動く可能性があると予測される扇形の領域の半径である。通常、作業半径R2は、後述する旋回部91Aの作業半径R1Aよりも大きい値となる。
(Step S241)
In step S241, the range identifying section 22A refers to the posture information included in the work information A to determine the working radius R2A of the arm section 92A. The working radius R2A of the arm portion 92A is the radius of the fan-shaped region in which the arm portion 92A is expected to move due to the work of the backhoe 90A. Normally, the working radius R2 is larger than the working radius R1A of the revolving portion 91A, which will be described later.
 (ステップS241の具体例)
 ステップS241の具体例について、図8を参照して説明する。図8は、作業半径R2Aを決定する処理の具体例を示す模式図である。なお、説明のため、図8では、図面の左右方向をX軸方向とし、図面の上下方向をZ軸方向とし、X軸方向及びZ軸方向に直交するようにY軸方向を定めている。図8において、α1は、ブーム921Aの旋回角度を示す。α2は、アーム922Aの旋回角度を示す。α3は、バケット923Aの旋回角度を示す。これらの旋回角度は、作業情報Aが含む姿勢情報に含まれている。なお、姿勢情報には、旋回部91Aの旋回角度α0(図示せず)も含まれている。
(Specific example of step S241)
A specific example of step S241 will be described with reference to FIG. FIG. 8 is a schematic diagram showing a specific example of processing for determining the working radius R2A. For the sake of explanation, in FIG. 8, the horizontal direction of the drawing is defined as the X-axis direction, the vertical direction of the drawing is defined as the Z-axis direction, and the Y-axis direction is defined to be orthogonal to the X-axis direction and the Z-axis direction. In FIG. 8, α1 indicates the turning angle of the boom 921A. α2 indicates the turning angle of the arm 922A. α3 indicates the turning angle of the bucket 923A. These turning angles are included in the posture information included in the work information A. FIG. The attitude information also includes the turning angle α0 (not shown) of the turning section 91A.
 図8に示すように、範囲特定部22Aは、α0~α4を含む姿勢情報に基づいて、次式(1)によりR2を算出し、算出したR2を作業半径R2Aとする。 As shown in FIG. 8, the range specifying unit 22A calculates R2 by the following equation (1) based on the posture information including α0 to α4, and sets the calculated R2 as the working radius R2A.
Figure JPOXMLDOC01-appb-M000001
 ここで、r3は、ブーム921A、アーム922A、及びバケット923Aの旋回面(xz平面)における、ブーム軸P2Aからアーム軸P3Aまでの距離である。r4は、当該旋回面における、ブーム軸P2Aからバケット軸P4Aまでの距離である。r5は、当該旋回面における、ブーム軸P2Aからバケット923Aの先端部P5Aまでの距離である。また、r6は、当該旋回面における、ブーム軸P2Aからバケット923Aの底部P6Aまでの距離である。また、Δx及びΔyについて、図9を参照して説明する。図9は、図8に示したバックホウ90AをZ軸正方向から見た図である。図9に示すように、Δxは、旋回部91Aの旋回面(xy平面)における旋回軸P1Aからブーム軸P2Aまでのx軸方向の距離である。Δyは、当該旋回面における旋回軸P1Aからブーム軸P2Aまでのy軸方向の距離である。なお、範囲特定部22Aは、r3~r6を算出する際に、姿勢情報に加えて、バックホウ90Aの各部の大きさを示す情報を参照する。このような各部の大きさを示す情報は、あらかじめ制御装置20Aのメモリに記憶されている。
Figure JPOXMLDOC01-appb-M000001
Here, r3 is the distance from the boom axis P2A to the arm axis P3A on the swing plane (xz plane) of the boom 921A, arm 922A, and bucket 923A. r4 is the distance from the boom axis P2A to the bucket axis P4A on the turning plane. r5 is the distance from the boom axis P2A to the tip P5A of the bucket 923A on the turning plane. Also, r6 is the distance from the boom axis P2A to the bottom P6A of the bucket 923A on the turning plane. Also, Δx and Δy will be described with reference to FIG. FIG. 9 is a view of the backhoe 90A shown in FIG. 8 as seen from the Z-axis positive direction. As shown in FIG. 9, Δx is the distance in the x-axis direction from the pivot axis P1A to the boom axis P2A on the pivot plane (xy plane) of the pivot section 91A. Δy is the distance in the y-axis direction from the pivot axis P1A to the boom axis P2A on the pivot plane. Range specifying unit 22A refers to information indicating the size of each part of backhoe 90A in addition to posture information when calculating r3 to r6. Information indicating the size of each part is stored in advance in the memory of the control device 20A.
 (ステップS242)
 ステップS242において、範囲特定部22Aは、アーム部92Aの作業角度を、作業情報Aに含まれる作業種別情報を参照して決定する。ここで、作業角度は、該当する種別の作業において該当する稼動部分(ここでは、アーム部92A)が旋回する可能性がある最大の角度を示す。作業角度は、例えば、作業種別情報に応じて事前に定められていてもよい。また、作業角度は、作業種別情報に応じることに加えて、旋回の停止を指示する動作制御情報を送信してから実際に旋回が停止するまでに旋回する角度を考慮して定められていてもよい。
(Step S242)
In step S242, the range identification unit 22A refers to the work type information included in the work information A to determine the work angle of the arm part 92A. Here, the work angle indicates the maximum angle at which the corresponding moving portion (here, the arm portion 92A) can rotate in the corresponding type of work. The work angle may be determined in advance according to the work type information, for example. In addition to responding to the work type information, the work angle may be determined in consideration of the turning angle from when the operation control information instructing to stop turning is transmitted until turning is actually stopped. good.
 (ステップS242の具体例)
 ステップS242の具体例について、図10を参照して説明する。図10は、バックホウ90Aの接触範囲80Aの具体例を示す模式図である。この具体例では、作業情報Aに含まれる作業種別情報は「掘削」を示す。例えば、範囲特定部22Aは、作業種別情報「掘削」に応じた作業角度Δθ1Aを決定する。例えば、作業角度Δθ1Aは、バックホウ90Aが掘削を行う際に旋回部91Aが旋回することでアーム部92Aが方向d1Aに対して左右に動く可能性のある範囲に応じて、事前に定められている。また、作業角度Δθ1Aは、更に、アーム部92Aの動作を停止する動作制御情報を送信してから実際に停止するまでの時間を考慮して定められていてもよい。このように、接触範囲80Aは、作業情報Aが示す作業内容に応じてバックホウ90Aが前後方向(すなわち方向d1A)及び左右方向に動く可能性がある範囲を示している。
(Specific example of step S242)
A specific example of step S242 will be described with reference to FIG. FIG. 10 is a schematic diagram showing a specific example of the contact range 80A of the backhoe 90A. In this specific example, the work type information included in the work information A indicates "excavation". For example, the range identification unit 22A determines the work angle Δθ1A according to the work type information “excavation”. For example, the working angle Δθ1A is determined in advance according to a range in which the arm portion 92A may move left and right with respect to the direction d1A as the revolving portion 91A revolves when the backhoe 90A excavates. . Further, the working angle Δθ1A may be determined in consideration of the time from when the motion control information for stopping the motion of the arm portion 92A is transmitted until when the arm portion 92A actually stops. Thus, the contact range 80A indicates a range in which the backhoe 90A may move in the front-rear direction (that is, the direction d1A) and in the left-right direction according to the work content indicated by the work information A.
 (ステップS243)
 ステップS243において、範囲特定部22Aは、決定した作業半径R2A及び作業角度と、作業情報Aに含まれる目標位置情報に基づいて、アーム部92Aに応じた形状の接触範囲82Aを算出する。
(Step S243)
In step S243, the range specifying unit 22A calculates the contact range 82A having a shape corresponding to the arm section 92A based on the determined work radius R2A and work angle and the target position information included in the work information A.
 (ステップS243の具体例)
 ステップS243の具体例について、図10を参照して説明する。この具体例では、作業情報Aに含まれる目標位置情報は、掘削位置D1Aを示す情報を含む。説明のため、旋回軸P1Aから掘削位置D1Aに向かう方向をd1Aとする。換言すると、方向d1Aは、バケット932Aを掘削位置D1Aに配置した場合にアーム部92Aが向く方向である。範囲特定部22Aは、旋回軸P1Aを中心とする作業半径R2Aの扇形であって、アーム部92Aを含む扇形の領域を、接触範囲82Aとして算出する。また、範囲特定部22Aは、方向d1Aを基準として旋回軸P1Aから±Δθ1Aの方向に伸びる線分を接触範囲82Aの境界とする。なお、図10では、説明の便宜上、図面において右回りの方向を+方向と定めている。
(Specific example of step S243)
A specific example of step S243 will be described with reference to FIG. In this specific example, the target position information included in the work information A includes information indicating the excavation position D1A. For the sake of explanation, the direction from the turning axis P1A to the excavation position D1A is defined as d1A. In other words, the direction d1A is the direction in which the arm portion 92A faces when the bucket 932A is placed at the excavation position D1A. The range identifying unit 22A calculates a contact range 82A as a fan-shaped region having a working radius R2A centered on the pivot axis P1A and including the arm portion 92A. Further, the range specifying unit 22A defines a line segment extending in the directions of ±Δθ1A from the turning axis P1A with respect to the direction d1A as the boundary of the contact range 82A. In addition, in FIG. 10, for convenience of explanation, the clockwise direction in the drawing is defined as the + direction.
 (ステップS244)
 ステップS244において、範囲特定部22Aは、旋回部91Aの作業半径R1Aを決定する。旋回部91Aの作業半径R1Aは、バックホウ90Aの作業により旋回部91Aが旋回することが予測される扇形の領域の半径である。また、作業半径R1Aは、旋回部91Aの大きさにより定まる定数である。通常、作業半径R1Aは、前述したアーム部92Aの作業半径R2Aよりも小さい値となる。
(Step S244)
In step S244, the range specifying unit 22A determines the working radius R1A of the turning unit 91A. The working radius R1A of the revolving part 91A is the radius of the fan-shaped region in which the revolving part 91A is expected to revolve due to the work of the backhoe 90A. Also, the working radius R1A is a constant determined by the size of the turning portion 91A. Normally, the working radius R1A is smaller than the working radius R2A of the arm portion 92A described above.
 (ステップS244の具体例)
 ステップS244の具体例について、図10を参照して説明する。図10に示すように、範囲特定部22Aは、旋回部91Aの作業半径R1Aとして、旋回部91Aの旋回面における、旋回軸P1Aから旋回部91Aの後方側の角P7Aまでの距離を適用する。このような作業半径R1Aは、例えば、事前に制御装置20Aのメモリに記憶されている。
(Specific example of step S244)
A specific example of step S244 will be described with reference to FIG. As shown in FIG. 10, the range specifying unit 22A uses the distance from the pivot axis P1A to the rear-side corner P7A of the swivel unit 91A on the swivel surface of the swivel unit 91A as the working radius R1A of the swivel unit 91A. Such a working radius R1A is stored in advance in the memory of the control device 20A, for example.
 (ステップS245)
 ステップS245において、範囲特定部22Aは、決定した作業半径R1Aに基づいて、旋回部91Aに応じた形状の接触範囲81Aを算出する。
(Step S245)
In step S245, the range specifying unit 22A calculates a contact range 81A having a shape corresponding to the swivel part 91A based on the determined working radius R1A.
 (ステップS245の具体例)
 ステップS245の具体例について、図10を参照して説明する。図10に示すように、範囲特定部22Aは、旋回軸P1Aを中心とする作業半径R1Aの扇形であって、旋回部91Aを含む扇形の領域を、接触範囲81Aとして算出する。なお、接触範囲81Aは、旋回軸P1Aを中心とする作業半径R1Aの円のうち接触範囲82Aに含まれない領域によって構成されることが望ましい。
(Specific example of step S245)
A specific example of step S245 will be described with reference to FIG. As shown in FIG. 10, the range identifying unit 22A calculates a sector-shaped area having a working radius R1A centered on the turning axis P1A and including the turning part 91A as a contact range 81A. The contact range 81A is desirably configured by a region of a circle having a working radius R1A centered on the pivot axis P1A and not included in the contact range 82A.
 (ステップS246)
 ステップS246において、範囲特定部22Aは、各稼動部分(アーム部92A及び旋回部91A)に応じた形状の接触範囲82A、81Aに基づいて、バックホウ90Aの接触範囲80Aを特定する。
(Step S246)
In step S246, the range specifying unit 22A specifies the contact range 80A of the backhoe 90A based on the contact ranges 82A and 81A having shapes corresponding to the respective moving parts (arm section 92A and turning section 91A).
 (ステップS246の具体例)
 ステップS246の具体例について、図10を参照して説明する。図10に示すように、範囲特定部22Aは、アーム部92Aの接触範囲82Aと、旋回部91Aの接触範囲81Aとを合成した領域を、接触範囲80Aとして特定する。
(Specific example of step S246)
A specific example of step S246 will be described with reference to FIG. As shown in FIG. 10, the range specifying unit 22A specifies, as a contact range 80A, a combined area of the contact range 82A of the arm section 92A and the contact range 81A of the turning section 91A.
 (制御装置20Bが実行するステップS24の具体例)
 同様に、制御装置20Bは、ステップS24を実行することにより、バックホウ90Bの接触範囲80Bを特定する。バックホウ90Bの接触範囲80Bの具体例について、図11を参照して説明する。図11は、バックホウ90Bの接触範囲80Bの具体例を示す模式図である。この具体例では、作業情報Bに含まれる作業種別情報は「積込」を示す。作業情報Bに含まれる目標位置情報は、掘削位置D1Bを示す情報と、積込位置D2Bを示す情報とを含む。つまり、バックホウ90Bの作業内容は、「掘削位置D1Bから積込位置D2Bまで旋回して対象物を積込位置D2Bに積み込み掘削位置D1Bまで旋回する」という作業である。
(Specific example of step S24 executed by control device 20B)
Similarly, control device 20B identifies contact range 80B of backhoe 90B by executing step S24. A specific example of the contact range 80B of the backhoe 90B will be described with reference to FIG. FIG. 11 is a schematic diagram showing a specific example of the contact range 80B of the backhoe 90B. In this specific example, work type information included in work information B indicates "loading". The target position information included in the work information B includes information indicating the excavation position D1B and information indicating the loading position D2B. In other words, the work content of the backhoe 90B is the work of "turning from the excavation position D1B to the loading position D2B, loading the object to the loading position D2B, and turning to the excavation position D1B".
 図11に示すように、アーム部92Bの作業半径R2Bは、作業情報Bに含まれる姿勢情報を参照して式(1)により算出される。旋回部91Bの作業半径R1Bは、旋回軸P1Bから旋回部91Bの後方側の角P7Bまでの距離であり、定数として制御装置20Bのメモリに記憶されている。作業角度Δθ2B及びΔθ3Bは、作業情報Bに含まれる目標位置情報(掘削位置D1B、及び積込位置D2B)に応じて動作特定部24Aによって算出され、制御装置20Bのメモリに記憶されている。ここで、作業角度Δθ2Bは、アーム部92Bが方向d1Bに対して右に動く可能性がある角度を示す。作業角度Δθ3Bは、アーム部92Bが方向d1Bに対して左に動く可能性がある角度を示す。これらの作業角度は、Δθ2B<Δθ3Bとなるように設定される。なお、Δθ3Bは、一例として、旋回軸P1Bを中心とする掘削位置D1Bから積込位置D2Bまでの角度とΔθ2Bとを加算した値であってもよい。 As shown in FIG. 11, the working radius R2B of the arm portion 92B is calculated by the formula (1) with reference to the posture information included in the work information B. The working radius R1B of the turning portion 91B is the distance from the turning axis P1B to the rear side corner P7B of the turning portion 91B, and is stored as a constant in the memory of the control device 20B. The work angles Δθ2B and Δθ3B are calculated by the operation specifying unit 24A according to the target position information (the excavation position D1B and the loading position D2B) included in the work information B, and stored in the memory of the control device 20B. Here, the working angle Δθ2B indicates an angle at which the arm portion 92B may move to the right with respect to the direction d1B. A working angle Δθ3B indicates an angle at which the arm portion 92B may move leftward with respect to the direction d1B. These working angles are set so that Δθ2B<Δθ3B. Δθ3B may be, for example, a value obtained by adding Δθ2B to the angle from the excavation position D1B to the loading position D2B about the pivot axis P1B.
 この場合、接触範囲80Bは、アーム部92Bに応じた形状を有する接触範囲82Bと、旋回部91Bに応じた形状を有する接触範囲82Bとを合成した領域となる。 In this case, the contact range 80B is a combined area of the contact range 82B having a shape corresponding to the arm portion 92B and the contact range 82B having a shape corresponding to the turning portion 91B.
 具体的には、接触範囲82Bは、旋回軸P1Bを中心とする作業半径R2Bの扇形であって、アーム部92Bを含む扇形の領域である。また、接触範囲82Bは、旋回軸P1Bから方向d1Bに対して+Δθ2Bの方向に伸びる線分と、方向d2Bに対して-Δθ2Bの方向に伸びる線分とを境界とする。なお、方向d1Bは、旋回軸P1Bから掘削位置D1Bに向かう方向である。方向d2Bは、旋回軸P1Bから積込位置D2Bに向かう方向である。 Specifically, the contact range 82B is a fan-shaped area with a working radius R2B centered on the pivot axis P1B and including the arm portion 92B. Further, the contact range 82B is bounded by a line segment extending from the turning axis P1B in the +Δθ2B direction with respect to the direction d1B and a line segment extending in the −Δθ2B direction with respect to the direction d2B. The direction d1B is the direction from the pivot P1B to the excavation position D1B. A direction d2B is a direction from the pivot P1B toward the loading position D2B.
 また、接触範囲81Bは、旋回部91Bに応じた形状を有する。具体的には、接触範囲81Bは、旋回軸P1Bを中心とする作業半径R1Bの扇形であって、旋回部91Bを含む扇形の領域である。なお、接触範囲81Bは、旋回軸P1Bを中心とする作業半径R1Bの円のうち接触範囲82Bに含まれない領域を含むことが望ましい。 Also, the contact range 81B has a shape corresponding to the swivel portion 91B. Specifically, the contact range 81B is a fan-shaped region having a working radius R1B centered on the pivot axis P1B and including the pivot portion 91B. The contact range 81B desirably includes a region of the circle with the working radius R1B centered on the pivot axis P1B, which is not included in the contact range 82B.
 (ステップS26:接触範囲の重なりを判定する処理の具体例)
 ステップS26の具体例について、図12を参照して説明する。図12は、2つのバックホウ90の接触範囲80の具体例を模式的に示す図である。動作制御部23Aは、位置情報A、Bを参照して、仮想的な空間に接触範囲80A、80Bを配置する。具体的には、動作制御部23Aは、仮想的な空間において位置情報Aに対応する位置に、作業角度θ1A、作業半径R2A、R1A、及び方向d1Aによって特定される接触範囲80Aを配置する。また、動作制御部23Aは、仮想的な空間において位置情報Bに対応する位置に、作業角度θ2B、作業半径R2B、R1B、及び方向d1B、d2Bによって特定される接触範囲80Bを配置する。また、動作制御部23Aは、仮想的な空間に配置した接触範囲80A、及び80Bの少なくとも一部が重なるか否かを判定する。図12の具体例では、バックホウ90Aの接触範囲80Aと、バックホウ90Bの接触範囲80Bとは、一部が重なり合う。したがって、この具体例では、動作制御部23Aは、ステップS26においてYesと判断する。そこで、制御装置20Aの動作制御部23Aは、バックホウ90Aを停止するよう制御する。同様に、制御装置20Bの動作制御部23Bは、バックホウ90Bを停止するよう制御する。
(Step S26: Concrete example of processing for determining overlap of contact areas)
A specific example of step S26 will be described with reference to FIG. FIG. 12 is a diagram schematically showing a specific example of the contact range 80 of the two backhoes 90. As shown in FIG. The motion control unit 23A refers to the position information A and B, and arranges the contact ranges 80A and 80B in the virtual space. Specifically, the motion control unit 23A arranges the contact range 80A specified by the working angle θ1A, the working radii R2A and R1A, and the direction d1A at the position corresponding to the positional information A in the virtual space. Further, the motion control unit 23A arranges a contact range 80B specified by the working angle θ2B, the working radii R2B and R1B, and the directions d1B and d2B at the position corresponding to the position information B in the virtual space. Further, the operation control unit 23A determines whether or not at least a portion of the contact ranges 80A and 80B arranged in the virtual space overlap. In the specific example of FIG. 12, the contact range 80A of the backhoe 90A and the contact range 80B of the backhoe 90B partially overlap. Therefore, in this specific example, the operation control unit 23A determines Yes in step S26. Therefore, the operation control unit 23A of the control device 20A controls to stop the backhoe 90A. Similarly, the operation control section 23B of the control device 20B controls the backhoe 90B to stop.
 なお、本例示的実施形態では、接触範囲80A、80Bは二次元的な範囲であり、接触範囲80A、80Bを配置する仮想的な空間が、図12に示すように二次元平面である例について説明している。ただし、これに限らず、範囲特定部22Aは、接触範囲80A、80Bとして三次元的な範囲を特定してもよい。この場合、動作制御部23Aは、接触範囲80A、80Bを、仮想的な三次元空間に配置する。 In this exemplary embodiment, the contact ranges 80A and 80B are two-dimensional ranges, and the virtual space in which the contact ranges 80A and 80B are arranged is a two-dimensional plane as shown in FIG. Explaining. However, without being limited to this, the range specifying unit 22A may specify three-dimensional ranges as the contact ranges 80A and 80B. In this case, the motion control unit 23A arranges the contact ranges 80A and 80B in a virtual three-dimensional space.
 例えば、三次元的な接触範囲80A、80Bは、仮想的な三次元空間において水平面に配置される接触範囲と、垂直面に配置される接触範囲とを含む。水平面に配置される接触範囲は、上述した二次元的な接触範囲80A、80Bと同様に説明される。垂直面に配置される接触範囲は、アーム部92Aが垂直方向に動く可能性がある範囲を含む。具体的には、垂直面に配置される接触範囲は、ブーム921Aがブーム軸P2Aを起点として垂直方向に旋回する可能性がある範囲を含む。また、垂直面に配置される接触範囲は、アーム922Aがアーム軸P3Aを起点として垂直方向に旋回する可能性がある範囲を含む。また、垂直面に配置される接触範囲は、バケット923Aがバケット軸P4Aを起点として垂直方向に旋回する可能性がある範囲を含む。動作制御部23Aは、水平面に配置されるバックホウ90A及び90Bの接触範囲の少なくとも一部が重なるか否かを判定する。また、動作制御部23Aは、垂直面に配置されるバックホウ90A及び90Bの接触範囲の少なくとも一部が重なるか否かを判定する。このように、二次元空間に配置する場合は垂直方向において無限であった接触範囲80A、80Bを、三次元空間に配置することにより垂直方向において有限にすることができる。その結果、接触範囲80A、80Bの垂直方向における接触範囲が狭まり、バックホウ90A及び90Bが接触する可能性をより精度よく判断可能となるので、作業効率が高まる。 For example, the three-dimensional contact ranges 80A and 80B include a contact range arranged on a horizontal plane and a contact range arranged on a vertical plane in a virtual three-dimensional space. The contact areas arranged on the horizontal plane are explained in the same manner as the two- dimensional contact areas 80A and 80B described above. The contact range located in the vertical plane includes the range over which arm portion 92A may move vertically. Specifically, the contact range arranged on the vertical plane includes a range in which the boom 921A may rotate in the vertical direction with the boom axis P2A as a starting point. Also, the contact range arranged on the vertical plane includes a range in which the arm 922A may pivot in the vertical direction with the arm axis P3A as the starting point. Also, the contact range arranged on the vertical plane includes a range in which the bucket 923A may turn in the vertical direction with the bucket axis P4A as the starting point. The motion control unit 23A determines whether or not at least a portion of the contact ranges of the backhoes 90A and 90B arranged on the horizontal plane overlap. Further, the motion control unit 23A determines whether or not at least a part of the contact ranges of the backhoes 90A and 90B arranged on the vertical plane overlap. Thus, the contact ranges 80A and 80B, which are infinite in the vertical direction when arranged in a two-dimensional space, can be made finite in the vertical direction by arranging them in a three-dimensional space. As a result, the contact ranges in the vertical direction of the contact ranges 80A and 80B are narrowed, and the possibility of contact between the backhoes 90A and 90B can be determined more accurately, thereby improving work efficiency.
 <本例示的実施形態の効果>
 以上のように、本例示的実施形態は、各バックホウ90A、90Bの作業内容を参照して、バックホウ90A、90Bの接触範囲80A、80Bを特定し、これらの少なくとも一部が重なる場合に、バックホウ90A、90Bを停止するよう制御する。これにより、本例示的実施形態は、接触の可能性を判定するための接触範囲80を、作業内容を反映して柔軟に設定することができる。その結果、バックホウ90A、90Bの接触をより充分に回避することができる。
<Effects of this exemplary embodiment>
As described above, this exemplary embodiment identifies the contact ranges 80A and 80B of the backhoes 90A and 90B by referring to the work contents of each backhoe 90A and 90B, and if at least a portion of these overlaps, the backhoe Control to stop 90A and 90B. This allows the exemplary embodiment to flexibly set the contact range 80 for determining the possibility of contact, reflecting the work content. As a result, contact between the backhoes 90A and 90B can be more sufficiently avoided.
 また、本例示的実施形態は、逐次的に取得する作業情報A、Bに応じて接触範囲80A、80Bを逐次的に変化させる。これにより、本例示的実施形態は、バックホウ90A、90Bの作業内容の変化を反映して、より精度よく接触範囲80を特定することができる。その結果、バックホウ90A、90Bの接触をより充分に回避することができる。 In addition, this exemplary embodiment sequentially changes the contact ranges 80A and 80B according to the work information A and B that are sequentially obtained. Thereby, this exemplary embodiment can reflect changes in the work content of the backhoes 90A and 90B and specify the contact range 80 more accurately. As a result, contact between the backhoes 90A and 90B can be more sufficiently avoided.
 また、本例示的実施形態において特定される接触範囲80A、80Bは、複数の稼動部分の各々に応じた形状を有する。これにより、接触範囲80A、80Bは、各稼動部分の動作特性をより反映した領域となる。その結果、接触範囲80A、80Bに、実際には接触の可能性が低い領域が含まれることが低減され、バックホウ90A、90Bの作業領域(すなわち、接触範囲80以外の領域)が広くなるので、作業効率が向上する。 Also, the contact areas 80A and 80B specified in this exemplary embodiment have shapes corresponding to each of the plurality of moving parts. As a result, the contact areas 80A and 80B become areas that more reflect the operating characteristics of the moving parts. As a result, the contact areas 80A and 80B are less likely to actually come into contact with each other, and the work areas of the backhoes 90A and 90B (that is, areas other than the contact area 80) are widened. Work efficiency is improved.
 〔変形例1〕
 上述した実施形態では、アーム部92Aに応じた接触範囲82Aと、旋回部91Aに応じた接触範囲81Aとを合成して、バックホウ90Aの接触範囲80Aを特定していた。これを変形し、作業情報Aが示す作業内容に応じて、複数の稼動部分(アーム部92A、及び旋回部91A)のうち少なくとも1つを選択し、選択した稼動部分の稼動範囲に応じて接触範囲80Aを特定してもよい。具体的には、本変形例では、アーム部92Aに応じた接触範囲82Aと、旋回部91Aに応じた接触範囲81Aとの何れか一方を、バックホウ90Aの接触範囲80Aとして特定してもよい。換言すると、本変形例では、接触範囲80Aは、複数の稼動部分(旋回部91A、及びアーム部92A)の各々に応じた形状の一方を含む。
[Modification 1]
In the embodiment described above, the contact range 82A corresponding to the arm portion 92A and the contact range 81A corresponding to the swivel portion 91A are combined to specify the contact range 80A of the backhoe 90A. By modifying this, at least one of a plurality of moving parts (the arm part 92A and the turning part 91A) is selected according to the work content indicated by the work information A, and the contact is made according to the operation range of the selected moving part. A range 80A may be identified. Specifically, in this modification, either one of the contact range 82A corresponding to the arm portion 92A and the contact range 81A corresponding to the turning portion 91A may be specified as the contact range 80A of the backhoe 90A. In other words, in this modified example, the contact range 80A includes one of the shapes corresponding to each of the plurality of moving parts (swivel part 91A and arm part 92A).
 <制御方法S2の変形例の流れ>
 本変形例では、制御装置20Aは、図5を参照して説明した制御方法S2において、ステップS24の代わりに、ステップS24aを実行する。
<Flow of Modified Example of Control Method S2>
In this modification, the control device 20A executes step S24a instead of step S24 in the control method S2 described with reference to FIG.
 ステップS24aの詳細について、図13を参照して説明する。図13は、本変形例において接触範囲80を特定する処理の流れを示すフロー図である。図13に示すように、本変形例において接触範囲80を特定する処理は、ステップS241a~S246aを含む。なお、以下では、ステップS24aを制御装置20Aが実行する場合について説明する。ステップS24aを制御装置20Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。 Details of step S24a will be described with reference to FIG. FIG. 13 is a flow chart showing the flow of processing for specifying the contact range 80 in this modified example. As shown in FIG. 13, the process of specifying the contact range 80 in this modification includes steps S241a to S246a. In addition, below, the case where 20 A of control apparatuses perform step S24a is demonstrated. The case where the control device 20B executes step S24a will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description.
 (ステップS241a)
 ステップS241aにおいて、範囲特定部22Aは、目標位置の周辺にバックホウ90B(他のバックホウ90)が存在するか否かを判断する。具体的には、範囲特定部22Aは、作業情報Aに含まれる目標位置情報と、バックホウ90Bの位置情報Bとを参照して、当該判断を行う。
(Step S241a)
In step S241a, the range identification unit 22A determines whether or not the backhoe 90B (another backhoe 90) exists around the target position. Specifically, the range specifying unit 22A makes the determination by referring to the target position information included in the work information A and the position information B of the backhoe 90B.
 (ステップS241aでYes:ステップS242a~S244a)
 ステップS241aでYesと判断した場合、範囲特定部22Aは、ステップS242a~S244aを実行することにより、アーム部92Aの接触範囲82Aを算出する。ステップS242a~S244aの処理は、図7を参照して説明したステップS241~S243の処理と同様である。この場合、範囲特定部22Aは、算出した接触範囲82Aを、バックホウ90Aの接触範囲80Aとして特定する。
(Yes in step S241a: steps S242a to S244a)
When it is determined as Yes in step S241a, the range identifying section 22A calculates the contact range 82A of the arm section 92A by executing steps S242a to S244a. The processing of steps S242a to S244a is the same as the processing of steps S241 to S243 described with reference to FIG. In this case, the range identifying unit 22A identifies the calculated contact range 82A as the contact range 80A of the backhoe 90A.
 (ステップS241aでNo:ステップS245a~S246a)
 ステップS241aでNoと判断した場合、範囲特定部22Aは、ステップS245a~S246aを実行することにより、旋回部91Aの接触範囲81Aを算出する。ステップS245a~S246aの処理は、図7を参照して説明したステップS244~S245の処理と同様である。この場合、範囲特定部22Aは、算出した接触範囲81Aを、バックホウ90Aの接触範囲80Aとして特定する。
(No in step S241a: steps S245a to S246a)
When it is determined No in step S241a, the range identifying section 22A calculates the contact range 81A of the turning section 91A by executing steps S245a to S246a. The processing of steps S245a to S246a is the same as the processing of steps S244 to S245 described with reference to FIG. In this case, the range identifying unit 22A identifies the calculated contact range 81A as the contact range 80A of the backhoe 90A.
 <変形例1の具体例>
 変形例1の具体例について説明する。この具体例では、バックホウ90A及びバックホウ90Bが並行して掘削を行う。制御装置20A及び20Bは、それぞれ、制御方法S2において処理S24aを実行する。
<Specific example of modification 1>
A specific example of Modification 1 will be described. In this example, backhoe 90A and backhoe 90B excavate in parallel. The control devices 20A and 20B each execute the process S24a in the control method S2.
 (ステップS241aの具体例)
 ステップS241aの具体例について、図14を参照して説明する。図14は、バックホウ90Aの目標位置の周辺領域に他のバックホウ90が存在するか否かを判断する処理の具体例を説明する模式図である。図14に示すように、制御装置20Aの範囲特定部22Aは、ステップS241aにおいて、掘削位置D1A及び位置情報Bを参照して、掘削位置D1Aの周辺領域にバックホウ90Bが含まれるか否かを判断する。図14に示す具体例では、周辺領域は、旋回軸P1Aから掘削位置D1Aに向かう方向d1Aを基準として、±Δθ1Aに伸びる直線に囲まれた領域である。なお、範囲特定部22Aは、作業情報Aに含まれる作業種別情報「掘削」に応じて周辺領域を定める。この例では、周辺領域を特定するための角度Δθ1Aは、接触範囲82Aを特定するための作業角度と同一であってもよいが、これに限られない。
(Specific example of step S241a)
A specific example of step S241a will be described with reference to FIG. FIG. 14 is a schematic diagram illustrating a specific example of the process of determining whether or not another backhoe 90 exists in the area around the target position of the backhoe 90A. As shown in FIG. 14, in step S241a, the range specifying unit 22A of the control device 20A refers to the excavation position D1A and the position information B, and determines whether or not the backhoe 90B is included in the area surrounding the excavation position D1A. do. In the specific example shown in FIG. 14, the peripheral area is an area surrounded by straight lines extending ±Δθ1A with respect to the direction d1A from the turning axis P1A toward the excavation position D1A. Note that the range specifying unit 22A determines the surrounding area according to the work type information “excavation” included in the work information A. FIG. In this example, the angle Δθ1A for specifying the peripheral area may be the same as the working angle for specifying the contact range 82A, but is not limited to this.
 また、図14に示すように、制御装置20Bの範囲特定部22Bは、ステップS241aにおいて、掘削位置D1B及び位置情報Aを参照して、掘削位置D1Bの周辺領域にバックホウ90Aが含まれるか否かを判断する。図14に示す具体例では、周辺領域は、旋回軸P1Bから掘削位置D1Bに向かう方向d1Bを基準として、±Δθ2Bに伸びる直線に囲まれた領域である。また、範囲特定部22Bは、作業情報Bに含まれる作業種別情報「掘削」に応じて周辺領域を定める。この例では、周辺領域を特定するための角度Δθ2Bは、接触範囲82Bを特定するための作業角度と同一であってもよいが、これに限られない。 Further, as shown in FIG. 14, the range specifying unit 22B of the control device 20B refers to the excavation position D1B and the position information A in step S241a to determine whether the backhoe 90A is included in the peripheral area of the excavation position D1B. to judge. In the specific example shown in FIG. 14, the peripheral area is an area surrounded by straight lines extending ±Δθ2B with reference to the direction d1B from the turning axis P1B toward the excavation position D1B. Further, the range specifying unit 22B determines the surrounding area according to the work type information “excavation” included in the work information B. FIG. In this example, the angle Δθ2B for specifying the peripheral area may be the same as the working angle for specifying the contact range 82B, but is not limited to this.
 (ステップS242a~S244aの具体例)
 ステップS242a~S244aの具体例について、図15を参照して説明する。図15は、バックホウ90Aについて特定された接触範囲80Aの具体例を示す模式図である。この具体例では、範囲特定部22Aは、ステップS241aでYesと判断したので、ステップS242a~S244aを実行する。これにより、範囲特定部22Aは、作業半径R2A及び作業角度Δθ1Aを参照して算出される扇形の領域(接触範囲82A)を、接触範囲80Aとして特定する。なお、接触範囲82Aを算出する処理の詳細については、ステップS243の具体例で説明した通りである。
(Specific example of steps S242a to S244a)
A specific example of steps S242a to S244a will be described with reference to FIG. FIG. 15 is a schematic diagram showing a specific example of the contact range 80A specified for the backhoe 90A. In this specific example, the range identification unit 22A determines Yes in step S241a, and therefore executes steps S242a to S244a. Thereby, the range specifying unit 22A specifies the fan-shaped region (contact range 82A) calculated with reference to the working radius R2A and the working angle Δθ1A as the contact range 80A. The details of the process of calculating the contact range 82A are as described in the specific example of step S243.
 (ステップS245a~S246aの具体例)
 ステップS245a~S246aの具体例について、図16を参照して説明する。図16は、バックホウ90Bについて特定された接触範囲80Bの具体例を示す模式図である。この具体例では、範囲特定部22Bは、ステップS241aでNoと判断したので、ステップS245a~S246aを実行する。これにより、範囲特定部22Bは、作業半径R1Bを参照して算出される扇形の領域(接触範囲81B)を、接触範囲80Bとして特定する。なお、接触範囲81Bを算出する処理の詳細については、ステップS245の具体例で説明した通りである。
(Specific example of steps S245a to S246a)
A specific example of steps S245a to S246a will be described with reference to FIG. FIG. 16 is a schematic diagram showing a specific example of the contact range 80B specified for the backhoe 90B. In this specific example, since the range identification unit 22B determines No in step S241a, it executes steps S245a to S246a. Thereby, the range specifying unit 22B specifies the fan-shaped region (contact range 81B) calculated with reference to the working radius R1B as the contact range 80B. The details of the process of calculating the contact range 81B are as described in the specific example of step S245.
 (ステップS26:接触範囲の重なりを判定する処理の具体例)
 本変形例におけるステップS26の具体例について、図17を参照して説明する。図17は、2つのバックホウ90の接触範囲80の具体例を模式的に示す図である。動作制御部23Aは、位置情報A、Bを参照して、仮想的な三次元空間に接触範囲80A、80Bを配置する。図17に示すように、バックホウ90Aの接触範囲80Aと、バックホウ90Bの接触範囲80Bとは、一部が重なり合う。したがって、この具体例では、動作制御部23Aは、ステップS26においてYesと判断する。そこで、制御装置20Aの動作制御部23Aは、バックホウ90Aを停止するよう制御する。同様に、制御装置20Bの動作制御部23Bは、バックホウ90Bを停止するよう制御する。
(Step S26: Concrete example of processing for determining overlap of contact areas)
A specific example of step S26 in this modification will be described with reference to FIG. FIG. 17 is a diagram schematically showing a specific example of the contact range 80 of the two backhoes 90. As shown in FIG. The motion control unit 23A refers to the position information A, B and arranges the contact ranges 80A, 80B in the virtual three-dimensional space. As shown in FIG. 17, the contact range 80A of the backhoe 90A and the contact range 80B of the backhoe 90B partially overlap. Therefore, in this specific example, the operation control unit 23A determines Yes in step S26. Therefore, the operation control unit 23A of the control device 20A controls to stop the backhoe 90A. Similarly, the operation control section 23B of the control device 20B controls the backhoe 90B to stop.
 <本変形例の効果>
 本変形例は、制御対象のバックホウ90の目標位置の周辺に他のバックホウ90が存在するか否かに応じて、接触範囲を変化させる。具体的には、目標位置の周辺(例えば、前方)に他のバックホウ90が存在する場合には、接触範囲80は、目標位置の周辺領域を広く含み、そうでない場合には、目標位置とは反対側の領域(例えば、後方)の領域を含む。これにより、本変形例は、接触範囲80において、接触の判定に寄与する可能性が低い過剰な部分を低減することができる。その結果、バックホウ90A、90Bの接触をより充分に回避しながら、作業効率を向上することができる。
<Effects of this modified example>
This modification changes the contact range depending on whether or not there is another backhoe 90 around the target position of the backhoe 90 to be controlled. Specifically, when there is another backhoe 90 around the target position (for example, in front), the contact range 80 widely includes the peripheral area of the target position. Including the opposite (eg, posterior) region. As a result, in the contact range 80, the present modification can reduce excessive portions that are unlikely to contribute to contact determination. As a result, working efficiency can be improved while avoiding contact between the backhoes 90A and 90B.
 〔変形例2〕
 上述した実施形態では、制御装置20Aは、制御装置20Bから接触範囲80Bを取得するものとして説明した。これを変形し、制御装置20Aは、制御装置20Bから作業情報Bを取得し、作業情報Bに基づいて接触範囲80Bを特定してもよい。本変形例では、制御装置20Bは、範囲特定部22Bを有していなくてもよい。
[Modification 2]
In the embodiment described above, the control device 20A has been described as acquiring the contact range 80B from the control device 20B. By modifying this, the control device 20A may acquire work information B from the control device 20B and specify the contact range 80B based on the work information B. FIG. In this modified example, the control device 20B does not need to have the range specifying section 22B.
 <制御方法S2bの流れ>
 本変形例では、制御装置20Aは、図5を参照して説明した制御方法S2を変形した制御方法S2bを実行する。制御方法S2bの流れについて、図18を参照して説明する。図18は、制御方法S2bの流れを説明するフロー図である。図18に示すように、制御方法S2bは、制御方法S2とほぼ同様に構成されるが、ステップS25の代わりにステップS25b-1、S25b-2を実行する点が異なる。制御装置20Bは、取得部21Bが取得した作業情報Bを、制御装置20Aに対して送信する。以下では、制御装置20Aが実行する制御方法S2bのうち制御方法S2と異なる点について説明する。
<Flow of control method S2b>
In this modification, the control device 20A executes a control method S2b that is a modification of the control method S2 described with reference to FIG. The flow of control method S2b will be described with reference to FIG. FIG. 18 is a flowchart for explaining the flow of control method S2b. As shown in FIG. 18, the control method S2b is configured almost similarly to the control method S2, but differs in that steps S25b-1 and S25b-2 are executed instead of step S25. The control device 20B transmits the work information B acquired by the acquisition unit 21B to the control device 20A. The points of the control method S2b executed by the control device 20A that are different from the control method S2 will be described below.
 (ステップS25b-1)
 ステップS25b-1において、取得部21Aは、バックホウ90Bの作業情報Bを取得する。例えば、取得部21Aは、制御装置20Bに対して、作業情報Bを要求することにより受信する。
(Step S25b-1)
In step S25b-1, the acquisition unit 21A acquires the work information B of the backhoe 90B. For example, the acquisition unit 21A receives work information B by requesting it from the control device 20B.
 (ステップS25b-2)
 ステップS25b-2において、範囲特定部22Aは、作業情報Bを参照して、バックホウ90Bの接触範囲80Bを特定する。具体的には、範囲特定部22Aは、アーム部92Bに応じた形状の接触範囲82Bと、旋回部91Bに応じた形状の接触範囲81Bとを合成した接触範囲80Bを特定する。なお、範囲特定部22Aは、バックホウ90Bの接触範囲80Bを特定するために、作業情報Bを参照することに加えて、バックホウ90Bの各部の大きさを示す情報を参照する。バックホウ90Bの各部の大きさを示す情報は、制御装置20Aのメモリに記憶されていてもよいし、ステップS25b-1において作業情報Bと共に受信されてもよい。当該ステップの詳細な流れについては、図7のフロー図を参照して説明した通りである。
(Step S25b-2)
In step S25b-2, the range specifying unit 22A refers to the work information B and specifies the contact range 80B of the backhoe 90B. Specifically, the range specifying unit 22A specifies a contact range 80B obtained by synthesizing a contact range 82B having a shape corresponding to the arm part 92B and a contact range 81B having a shape corresponding to the turning part 91B. In order to specify the contact range 80B of the backhoe 90B, the range specifying unit 22A refers to the information indicating the size of each part of the backhoe 90B in addition to referring to the work information B. Information indicating the size of each part of the backhoe 90B may be stored in the memory of the control device 20A, or may be received together with the work information B in step S25b-1. The detailed flow of this step is as described with reference to the flowchart of FIG.
 <本変形例の効果>
 本変形例では、制御装置20Aが、制御装置20Bから受信した作業情報Bを参照してバックホウ90Bの接触範囲80Bを特定する。これにより、本変形例は、接触範囲80A、80Bの少なくとも一部が重なる場合に、少なくともバックホウ90Aを停止するよう制御する。したがって、制御装置20Bが接触範囲80Bを特定する機能を有していない場合にも、バックホウ90A、90Bの衝突をより充分に回避することができる。
<Effects of this modified example>
In this modification, the control device 20A identifies the contact range 80B of the backhoe 90B with reference to the work information B received from the control device 20B. Thereby, this modification controls to stop at least backhoe 90A, when at least one copy of contact ranges 80A and 80B overlaps. Therefore, even if the control device 20B does not have the function of specifying the contact range 80B, the collision of the backhoes 90A and 90B can be avoided more sufficiently.
 〔変形例3〕
 上述した例示的実施形態2及び変形例1、2では、制御装置20Aは、位置情報Bと、接触範囲80B又は作業情報Bとを、制御装置20Bに要求することにより受信するものとして説明した。これに限らず、制御装置20Bが、位置情報Bと、接触範囲80B又は作業情報Bとを、制御装置20Aから要求されずとも逐次送信するよう構成されていてもよい。この場合、例えば、制御装置20Bは、位置情報Bと、接触範囲80B又は作業情報Bとを、所定間隔で制御装置20Aに送信してもよい。また、例えば、制御装置20Bは、位置情報Bと、接触範囲80B又は作業情報Bとを、それぞれが変化したタイミングで制御装置20Aに送信してもよい。
[Modification 3]
In the exemplary embodiment 2 and modified examples 1 and 2 described above, the control device 20A receives the position information B and the contact range 80B or the work information B by requesting the control device 20B. Without being limited to this, the control device 20B may be configured to sequentially transmit the position information B and the contact range 80B or the work information B without being requested by the control device 20A. In this case, for example, the control device 20B may transmit the position information B and the contact range 80B or the work information B to the control device 20A at predetermined intervals. Further, for example, the control device 20B may transmit the position information B and the contact range 80B or the work information B to the control device 20A at the timing when each of them changes.
 同様に、上述した例示的実施形態2及び変形例1では、制御装置20Bは、位置情報Aと接触範囲80Aとを、制御装置20Aに要求することにより受信するものとして説明した。これに限らず、制御装置20Aが、位置情報Aと接触範囲80Aとを、制御装置20Bから要求されずとも逐次送信するよう構成されていてもよい。この場合、例えば、制御装置20Aは、位置情報Aと接触範囲80Aとを、所定間隔で制御装置20Bに送信してもよい。また、例えば、制御装置20Aは、位置情報Aと接触範囲80Aとを、それぞれが変化したタイミングで制御装置20Bに送信してもよい。 Similarly, in the exemplary embodiment 2 and modification 1 described above, the control device 20B receives the position information A and the contact range 80A by requesting the control device 20A. Not limited to this, the control device 20A may be configured to sequentially transmit the position information A and the contact range 80A without being requested by the control device 20B. In this case, for example, the control device 20A may transmit the position information A and the contact range 80A to the control device 20B at predetermined intervals. Further, for example, the control device 20A may transmit the position information A and the contact range 80A to the control device 20B at the timing when each of them changes.
 <本変形例の効果>
 本変形例では、制御装置20A、20Bは、他のバックホウ90に関する情報を互いに要求することなく取得するので、システムの負荷を軽減することができる。
<Effects of this modified example>
In this modification, the control devices 20A and 20B obtain information about the other backhoes 90 without requesting each other, so that the load on the system can be reduced.
 〔例示的実施形態3〕
 本発明の第3の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1、2にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
[Exemplary embodiment 3]
A third exemplary embodiment of the invention will now be described in detail with reference to the drawings. Components having the same functions as the components described in exemplary embodiments 1 and 2 are denoted by the same reference numerals, and description thereof will not be repeated.
 <制御システム3の概要>
 本例示的実施形態に係る制御システム3の概要について、図19を参照して説明する。図19は、制御システム3の概要を説明する模式図である。図19において、現実空間RSは、バックホウ90A及び90Bが存在する現実の三次元空間を示す。また、仮想空間VSは、現実空間RSを投影した仮想的な三次元空間を示す。なお、図19では、仮想空間VSを二次元的に示しているが、これは、三次元的であり得る仮想空間を、模式的に二次元的な仮想空間に射影して示しているものであり、仮想空間VSが二次元的であることを限定するものではない。
<Overview of control system 3>
An overview of the control system 3 according to this exemplary embodiment will be described with reference to FIG. FIG. 19 is a schematic diagram for explaining the outline of the control system 3. As shown in FIG. In FIG. 19, the physical space RS indicates the actual three-dimensional space in which the backhoes 90A and 90B exist. A virtual space VS indicates a virtual three-dimensional space obtained by projecting the real space RS. Note that FIG. 19 shows the virtual space VS two-dimensionally, but this is a schematic projection of a virtual space that can be three-dimensional into a two-dimensional virtual space. However, the virtual space VS is not limited to being two-dimensional.
 仮想空間VSは、現実空間RSに存在する物体(バックホウ90A、90B、他の車両、設備、建造物、作業員等)に対応する領域を含む。仮想空間VSは、現実空間RSに設置された三次元センサ、各物体に搭載された測位センサ等の検出値を参照して生成される。 The virtual space VS includes areas corresponding to objects (backhoes 90A, 90B, other vehicles, equipment, buildings, workers, etc.) that exist in the real space RS. The virtual space VS is generated by referring to detection values of a three-dimensional sensor installed in the real space RS, a positioning sensor mounted on each object, and the like.
 図19に示すように、本例示的実施形態に係る制御システム3は、現実空間RSから取得する情報に基づいて、仮想空間VS上で、バックホウ90A及び90Bの将来的な接触範囲80A及び80Bをシミュレーションすることにより特定する。また、制御システム3は、特定した将来的な接触範囲80A及び80Bを用いて、現実空間RSにおけるバックホウ90A及び90Bの動作を制御する。 As shown in FIG. 19, the control system 3 according to this exemplary embodiment calculates future contact ranges 80A and 80B of the backhoes 90A and 90B in the virtual space VS based on the information acquired from the real space RS. Identify by simulating. The control system 3 also controls the operation of the backhoes 90A and 90B in the physical space RS using the identified future contact ranges 80A and 80B.
 ここで、将来的な情報Xとは、現時点(制御システム3が動作する時点)以降のある時点における情報Xであってもよいし、現時点以降におけるある期間における情報Xであってもよい。なお、「情報X」とは、例えば、作業情報、位置情報、又は接触範囲のことを指す。換言すれば、現時点以降におけるある時点又はある期間において予測される情報Xを、一例として将来的な情報Xとも表現するものとしてもよい。以下では、将来的な情報Xとは、現時点以降におけるある期間において予測される情報Xであるものとして説明する。 Here, the future information X may be information X at a certain time after the current time (when the control system 3 operates) or may be information X during a certain period after the current time. Note that "information X" refers to work information, position information, or contact range, for example. In other words, the information X predicted at a certain point in time or in a certain period after the present time may also be expressed as future information X as an example. Hereinafter, future information X is assumed to be information X predicted for a certain period after the present time.
 <制御システム3の構成>
 本例示的実施形態に係る制御システム3の構成について、図20を参照して説明する。図20は、制御システム3の構成を示すブロック図である。図20に示すように、制御システム3は、制御システム3Aと、制御システム3Bとを含む。制御システム3Aは、バックホウ90Aと、制御装置30Aとを含み、バックホウ90Aを制御するシステムである。制御システム3Bは、バックホウ90Bと、制御装置30Bとを含み、バックホウ90Bを制御するシステムである。制御装置30A及び制御装置30Bの接続態様、制御装置30A及びバックホウ90Aの接続態様、並びに制御装置30B及びバックホウ90Bの接続態様については、例示的実施形態2において説明した通りである。また、バックホウ90A及びバックホウ90Bの構成についても、例示的実施形態2において説明した通りである。
<Configuration of control system 3>
The configuration of the control system 3 according to this exemplary embodiment will be described with reference to FIG. FIG. 20 is a block diagram showing the configuration of the control system 3. As shown in FIG. As shown in FIG. 20, the control system 3 includes a control system 3A and a control system 3B. The control system 3A is a system that includes a backhoe 90A and a control device 30A and controls the backhoe 90A. The control system 3B is a system that includes a backhoe 90B and a control device 30B and controls the backhoe 90B. The connection mode of the control device 30A and the control device 30B, the connection mode of the control device 30A and the backhoe 90A, and the connection mode of the control device 30B and the backhoe 90B are as described in the second exemplary embodiment. The configurations of the backhoe 90A and the backhoe 90B are also the same as those described in the second exemplary embodiment.
 (制御装置30Aの構成)
 制御装置30Aの詳細な構成について説明する。図20に示すように、制御装置30Aは、取得部31Aと、範囲特定部32Aと、動作制御部33Aと、動作特定部34Aとを含む。
(Configuration of control device 30A)
A detailed configuration of the control device 30A will be described. As shown in FIG. 20, the control device 30A includes an acquisition unit 31A, a range identification unit 32A, an operation control unit 33A, and an operation identification unit 34A.
 取得部31Aは、将来的な作業情報A、将来的な位置情報A、将来的な位置情報B、及び将来的な接触範囲80Bを取得する。将来的な作業情報Aは、バックホウ90Aの将来的な作業内容を示す。将来的な位置情報Aは、バックホウ90Aの将来的な位置を示す。将来的な位置情報Bは、バックホウ90Bの将来的な位置を示す。将来的な接触範囲80Bは、バックホウ90Bの将来的な接触範囲80Bを示す。将来的な作業情報Aには、後述する動作特定部24Aによって決定された将来的な内容が含まれる。 The acquisition unit 31A acquires future work information A, future position information A, future position information B, and future contact range 80B. The future work information A indicates the future work content of the backhoe 90A. Future position information A indicates the future position of backhoe 90A. Future position information B indicates the future position of backhoe 90B. Future contact area 80B shows the future contact area 80B of backhoe 90B. The future work information A includes future contents determined by the motion specifying unit 24A, which will be described later.
 範囲特定部32Aは、取得部31Aが取得した情報を参照して、将来的な接触範囲80Aを特定する。換言すると、範囲特定部32Aは、仮想空間VSにおいて、将来的な接触範囲80Aを特定する。 The range specifying unit 32A refers to the information acquired by the acquiring unit 31A to specify the future contact range 80A. In other words, range identifying unit 32A identifies future contact range 80A in virtual space VS.
 動作制御部33Aは、将来的な接触範囲80A、及び、取得部31Aが取得した情報を参照してバックホウ90Aの動作を制御する。より具体的には、動作制御部33Aは、将来的な接触範囲80A、及び将来的な接触範囲80Bの少なくとも一部が重なる場合、バックホウ90Aを停止するよう制御する。 The operation control unit 33A controls the operation of the backhoe 90A by referring to the future contact range 80A and the information acquired by the acquisition unit 31A. More specifically, the operation control unit 33A controls the backhoe 90A to stop when at least a portion of the future contact range 80A and the future contact range 80B overlap.
 動作特定部34Aは、バックホウ90Aの将来的な作業内容を決定する。なお、動作特定部34Aは、バックホウ90Aの将来的な作業内容を、バックホウ90Bの将来的な位置情報B、及び接触範囲80Bを参照して決定してもよい。また、動作特定部34Aは、バックホウ90Aの将来的な作業内容を、オペレータによる事前の入力に基づいて決定してもよいし、事前に定められたスケジュールにしたがって決定してもよい。 The motion specifying unit 34A determines the future work content of the backhoe 90A. Note that the motion specifying unit 34A may determine the future work content of the backhoe 90A by referring to the future position information B of the backhoe 90B and the contact range 80B. Further, the operation specifying unit 34A may determine the future work content of the backhoe 90A based on the operator's input in advance or according to a predetermined schedule.
 (制御装置30Bの構成)
 制御装置30Bは、制御装置30Aと同様に構成される。制御装置30Bの構成は、制御装置30Aの構成の説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
(Configuration of control device 30B)
The control device 30B is configured similarly to the control device 30A. The configuration of the control device 30B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the description of the configuration of the control device 30A.
 <制御方法S3の流れ>
 以上のように構成された制御システム3において、制御装置30Aは、制御方法S3を実行する。例えば、制御装置30Aは、将来的な作業情報Aに含まれる作業種別情報が変化するタイミングで、制御方法S3を実行してもよい。また、制御装置30Bも、制御装置30Aと同様に、制御方法S3を実行する。例えば、制御装置30Bは、将来的な作業情報Bに含まれる作業種別情報が変化するタイミングで、制御方法S3を実行してもよい。
<Flow of control method S3>
In the control system 3 configured as described above, the control device 30A executes the control method S3. For example, the control device 30A may execute the control method S3 at the timing when the work type information included in the future work information A changes. The control device 30B also executes the control method S3, like the control device 30A. For example, the control device 30B may execute the control method S3 at the timing when the work type information included in the future work information B changes.
 制御方法S3の流れについて、図21を参照して説明する。図21は、制御方法S3の流れを示すフロー図である。図2に示すように、制御方法S3は、ステップS31~S37を含む。なお、以下では、制御方法S3を制御装置30Aが実行する場合について説明する。制御方法S3を制御装置30Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。 The flow of control method S3 will be described with reference to FIG. FIG. 21 is a flowchart showing the flow of control method S3. As shown in FIG. 2, the control method S3 includes steps S31 to S37. In addition, below, the case where 30 A of control apparatuses perform the control method S3 is demonstrated. The case where the control method S3 is executed by the control device 30B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description. .
 (ステップS31)
 ステップS31において、取得部21Aは、将来的な作業情報Aを取得する。例えば、将来的な作業情報Aは、将来における時点t1~tnまでの作業情報Aの時系列である。以降、時点txにおける作業情報Aを作業情報Ai(i=1、2、…、n)と記載する。作業情報Aiの詳細は、例示的実施形態2で説明した作業情報Aと同様であり、作業種別情報、目標位置情報、及び姿勢情報を含む。
(Step S31)
In step S31, the acquisition unit 21A acquires future work information A. FIG. For example, future work information A is a time series of work information A from time points t1 to tn in the future. Hereinafter, work information A at time tx will be referred to as work information Ai (i=1, 2, . . . , n). Details of the work information Ai are the same as the work information A described in the second exemplary embodiment, and include work type information, target position information, and posture information.
 例えば、時点t1~tnまでの作業種別情報及び目標位置情報は、バックホウ90Aを自律的に動作させるために動作特定部34Aによって決定され、制御装置30Aのメモリに記憶されている。また、時点t1~tnまでの姿勢情報は、バックホウ90Aの動作に応じて変化し得る。取得部31Aは、時点t1~tnまでの姿勢情報を、現時点までの作業情報Aに基づいて予測することにより取得してもよい。 For example, the work type information and target position information from time t1 to tn are determined by the operation specifying unit 34A and stored in the memory of the control device 30A in order to operate the backhoe 90A autonomously. Also, the posture information from time t1 to tn can change according to the operation of the backhoe 90A. The acquisition unit 31A may acquire the posture information from time t1 to tn by predicting it based on the work information A up to the current time.
 (ステップS32)
 ステップS32において、取得部31Aは、バックホウ90Aの将来的な位置情報Aを取得する。将来的な位置情報Aは、時点t1~tnまでの位置情報Aの時系列である。以降、時点tiにおける位置情報Aを位置情報Aiと記載する。位置情報A1~Anは、バックホウ90Aの動作に応じて変化し得る。取得部31Aは、位置情報A1~Anを、現時点までの作業情報A及び位置情報Aに基づいて予測することにより取得する。
(Step S32)
In step S32, the acquisition unit 31A acquires future position information A of the backhoe 90A. The future location information A is a time series of the location information A from time t1 to tn. Hereinafter, position information A at time ti will be referred to as position information Ai. The position information A1-An can change according to the operation of the backhoe 90A. The acquisition unit 31A acquires the position information A1 to An by predicting based on the work information A and the position information A up to the present time.
 (ステップS33)
 ステップS33において、取得部31Aは、バックホウ90Bの将来的な位置情報Bを取得する。将来的な位置情報Bは、時点t1~tnまでの位置情報Bの時系列である。以降、時点tiにおける位置情報Bを位置情報Biと記載する。位置情報B1~Bnは、バックホウ90Bの動作に応じて変化し得る。ここで、制御装置30Bは、制御装置30Aと同様に制御方法S3を実行することにより、ステップS32において位置情報B1~Bnを特定している。そこで、取得部31Aは、位置情報B1~Bnを、制御装置30Bから受信することにより取得する。
(Step S33)
In step S33, the acquisition unit 31A acquires future position information B of the backhoe 90B. The future position information B is a time series of the position information B from time t1 to tn. Hereinafter, position information B at time ti will be referred to as position information Bi. The position information B1-Bn may change according to the operation of the backhoe 90B. Here, the control device 30B specifies the position information B1 to Bn in step S32 by executing the control method S3 in the same manner as the control device 30A. Therefore, the acquisition unit 31A acquires the position information B1 to Bn by receiving them from the control device 30B.
 (ステップS34)
 ステップS34において、範囲特定部32Aは、バックホウ90Aの将来的な接触範囲80Aを特定する。将来的な接触範囲80Aは、時点t1~tnまでの接触範囲80Aの時系列である。以降、時点tiにおける接触範囲80Aを接触範囲80Aiと記載する。具体的には、範囲特定部22Aは、時点t1~tnまでの各時点tiについて、図7に示した範囲特定処理を実行することにより接触範囲80Aiを特定する。
(Step S34)
In step S34, the range identification unit 32A identifies the future contact range 80A of the backhoe 90A. Future contact area 80A is a time series of contact area 80A from time t1 to tn. Hereinafter, the contact range 80A at time ti will be referred to as a contact range 80Ai. Specifically, the range specifying unit 22A specifies the contact range 80Ai by executing the range specifying process shown in FIG. 7 for each time ti from time t1 to time tn.
 (ステップS35)
 ステップS35において、取得部31Aは、バックホウ90Bの将来的な接触範囲80Bを取得する。将来的な接触範囲80Bは、時点t1~tnまでの接触範囲80Bの時系列である。以降、時点tiにおける接触範囲80Bを接触範囲80Biと記載する。ここで、制御装置30Bは、制御装置30Aと同様に制御方法S3を実行することにより、ステップS34において接触範囲80B1~80Bnを特定している。そこで、取得部31Aは、制御装置30Bに対して接触範囲80B1~80Bnを要求することにより受信する。
(Step S35)
In step S35, the acquisition unit 31A acquires the future contact range 80B of the backhoe 90B. Future contact area 80B is a time series of contact area 80B from time t1 to tn. Hereinafter, the contact range 80B at time ti will be referred to as a contact range 80Bi. Here, the control device 30B specifies the contact ranges 80B1 to 80Bn in step S34 by executing the control method S3 in the same manner as the control device 30A. Therefore, the acquisition unit 31A receives the contact ranges 80B1 to 80Bn by requesting the control device 30B.
 (ステップS36)
 ステップS36において、動作制御部33Aは、時点t1~tnの少なくとも何れかの時点tiにおいて、接触範囲80Ai及び接触範囲80Biの少なくとも一部が重なるか否かを判断する。
(Step S36)
In step S36, the operation control unit 33A determines whether or not at least a portion of the contact range 80Ai and the contact range 80Bi overlap at least one of the time points ti from time points t1 to tn.
 (ステップS36でYes:ステップS37)
 ステップS36でYesと判断された場合、ステップS37において、動作制御部33Aは、バックホウ90Aを停止する。具体的には、動作制御部33Aは、停止を指示する動作制御情報をバックホウ90Aに送信する。
(Yes in step S36: step S37)
When it is determined as Yes in step S36, the motion control unit 33A stops the backhoe 90A in step S37. Specifically, the operation control unit 33A transmits operation control information instructing a stop to the backhoe 90A.
 (ステップS36でNo)
 ステップS36でNoと判断された場合、制御装置30Aは、制御方法S3を終了する。なお、もし、過去に実行した制御方法S3においてステップS36でYesと判断してステップS37を実行した場合、既にバックホウ90Aは停止した状態である。このような状態では、動作制御部33Aは、今回の制御方法S3の実行においてステップS36でNoと判断された場合、バックホウ90Aに作業を再開させてもよい。
(No in step S36)
If the determination in step S36 is No, the control device 30A terminates the control method S3. In addition, if it is determined as Yes in step S36 in the control method S3 executed in the past and step S37 is executed, the backhoe 90A has already stopped. In such a state, the operation control section 33A may cause the backhoe 90A to restart the work when it is determined as No in step S36 in the current execution of the control method S3.
 なお、本例示的実施形態において、将来的な作業情報Ai、Biに含まれる作業種別情報、及び目標位置情報は、バックホウ90Aを自律的に動作させるために動作特定部34Aによって決定されているものとして説明した。ただし、取得部31Aは、これらの情報を、現時点までの作業情報A、Bに基づいて予測することにより取得してもよい。また、将来的な作業情報Ai、Biに含まれる姿勢情報は、現時点までの作業情報A、Bに基づいて予測されるものとして説明した。また、将来的な位置情報Ai、Biは、現時点までの作業情報A、B及び位置情報A、Bに基づいて予測されるものとして説明した。ただし、取得部31Aは、将来的な作業情報Ai、Biに含まれる姿勢情報、及び将来的な位置情報Ai、Biとして、動作特定部34Aによって決定された情報を取得してもよい。 In this exemplary embodiment, the work type information and the target position information included in the future work information Ai and Bi are determined by the operation specifying section 34A in order to operate the backhoe 90A autonomously. explained as. However, the acquisition unit 31A may acquire these pieces of information by predicting them based on the work information A and B up to the present time. Also, the posture information included in the future work information Ai and Bi has been described as being predicted based on the work information A and B up to the present time. Further, the future position information Ai, Bi has been described as being predicted based on the work information A, B and the position information A, B up to the present time. However, the acquisition unit 31A may acquire information determined by the motion identification unit 34A as the posture information and the future position information Ai and Bi included in the future work information Ai and Bi.
 <本例示的実施形態の効果>
 本例示的実施形態は、バックホウ90A、90Bの将来的な作業情報A、B、及び将来的な位置情報A、Bに基づいて、将来的な接触範囲80A、80Bを仮想空間VS上でシミュレーションする。また、本例示的実施形態は、仮想空間VS上のシミュレーションにおいて接触範囲80A、80Bの少なくとも一部が重なる場合には、バックホウ90A、90Bを停止するよう制御する。これにより、本例示的実施形態は、バックホウ90A、90Bの作業内容の将来的な変化に応じて、バックホウ90A、90Bが接触する可能性を予測してより充分に回避することができる。
<Effects of this exemplary embodiment>
This exemplary embodiment simulates the future contact ranges 80A, 80B on the virtual space VS based on the future work information A, B and the future position information A, B of the backhoes 90A, 90B. . Further, this exemplary embodiment controls the backhoes 90A and 90B to stop when at least a portion of the contact ranges 80A and 80B overlap in the simulation on the virtual space VS. This allows the exemplary embodiment to anticipate and better avoid the likelihood of backhoe 90A, 90B contact in response to future changes in the work of backhoes 90A, 90B.
 〔例示的実施形態4〕
 本発明の第4の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1~3にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
[Exemplary embodiment 4]
A fourth exemplary embodiment of the invention will now be described in detail with reference to the drawings. Components having the same functions as those described in exemplary embodiments 1 to 3 are denoted by the same reference numerals, and description thereof will not be repeated.
 <制御システム4の構成>
 本例示的実施形態に係る制御システム4の構成について、図22を参照して説明する。図22は、制御システム4の構成を示すブロック図である。図22に示すように、制御システム4は、制御システム4Aと、制御システム4Bと、統括制御装置60とを含む。制御システム4Aは、バックホウ90Aと、制御装置40Aとを含み、バックホウ90Aを制御するシステムである。制御システム4Bは、バックホウ90Bと、制御装置40Bとを含み、バックホウ90Bを制御するシステムである。統括制御装置60は、制御装置40A及び40Bを統括する装置である。
<Configuration of control system 4>
The configuration of the control system 4 according to this exemplary embodiment will be described with reference to FIG. 22 . FIG. 22 is a block diagram showing the configuration of the control system 4. As shown in FIG. As shown in FIG. 22, the control system 4 includes a control system 4A, a control system 4B, and a central control device 60. The control system 4A is a system that includes a backhoe 90A and a control device 40A and controls the backhoe 90A. The control system 4B is a system that includes a backhoe 90B and a control device 40B and controls the backhoe 90B. The general control device 60 is a device that supervises the control devices 40A and 40B.
 制御装置40A、制御装置40B、及び統括制御装置60は、ネットワークN1を介して通信可能に接続される。制御装置40A及びバックホウ90Aの接続態様、並びに制御装置40B及びバックホウ90Bの接続態様については、例示的実施形態2において説明した通りである。また、バックホウ90A及びバックホウ90Bの構成についても、例示的実施形態2において説明した通りである。 The control device 40A, the control device 40B, and the general control device 60 are communicably connected via the network N1. The manner of connection between the control device 40A and the backhoe 90A and the manner of connection between the control device 40B and the backhoe 90B are as described in the second exemplary embodiment. The configurations of the backhoe 90A and the backhoe 90B are also the same as those described in the second exemplary embodiment.
 (統括制御装置60の構成)
 統括制御装置60の詳細な構成について説明する。図22に示すように、統括制御装置60は、範囲収集部61と、配信先特定部62とを含む。
(Configuration of integrated control device 60)
A detailed configuration of the overall control device 60 will be described. As shown in FIG. 22 , the central control device 60 includes a range collection section 61 and a delivery destination identification section 62 .
 範囲収集部61は、制御装置40Aから接触範囲80Aを受信するとともに、制御装置40Bから接触範囲80Bを受信する。また、範囲収集部61は、制御装置40Aに接触範囲80Bを送信するとともに、制御装置40Bに接触範囲80Aを送信する。換言すると、範囲収集部61は、各制御装置40A、40Bから接触範囲80A、80Bを収集し、収集した接触範囲80A、80Bを各制御装置40A、40Bに対して配信する。 The range collection unit 61 receives the contact range 80A from the control device 40A and the contact range 80B from the control device 40B. In addition, the range collection unit 61 transmits the contact range 80B to the control device 40A and also transmits the contact range 80A to the control device 40B. In other words, range collection unit 61 collects contact ranges 80A and 80B from control devices 40A and 40B, and distributes the collected contact ranges 80A and 80B to control devices 40A and 40B.
 配信先特定部62は、収集した接触範囲80A、80Bの配信先を決定する。具体的には、配信先特定部62は、収集した接触範囲80Aの配信先として、当該接触範囲80Aの近傍に存在するバックホウ90Bを制御する制御装置40Bを決定する。また、例えば、配信先特定部62は、収集した接触範囲80Bの配信先として、当該接触範囲80Bの近傍に存在するバックホウ90Aを制御する制御装置40Aを決定する。 The distribution destination specifying unit 62 determines the distribution destinations of the collected contact ranges 80A and 80B. Specifically, the distribution destination specifying unit 62 determines the control device 40B that controls the backhoe 90B that exists in the vicinity of the contact range 80A as the distribution destination of the collected contact range 80A. Also, for example, the distribution destination specifying unit 62 determines the control device 40A that controls the backhoe 90A that exists in the vicinity of the contact range 80B as the distribution destination of the collected contact range 80B.
 例えば、配信先特定部62は、制御装置40A、40Bからバックホウ90A、90Bの位置情報を受信し、受信した位置情報を参照して、配信先を決定してもよい。具体的には、配信先特定部62は、バックホウ90A及び90Bが所定距離以内に存在する場合に、接触範囲80Aの配信先として制御装置40Bを決定し、接触範囲80Bの配信先として制御装置40Aを決定してもよい。なお、配信先特定部62は、バックホウ90A及び90Bが所定距離以上離れている場合には、接触範囲80A、80Bの配信先を決定しなくてもよい。この場合、接触範囲80A、80Bは、配信されない。 For example, the delivery destination specifying unit 62 may receive the position information of the backhoes 90A and 90B from the control devices 40A and 40B, refer to the received position information, and determine the delivery destination. Specifically, when the backhoes 90A and 90B exist within a predetermined distance, the distribution destination specifying unit 62 determines the control device 40B as the distribution destination of the contact range 80A, and determines the control device 40A as the distribution destination of the contact range 80B. may be determined. Note that the delivery destination specifying unit 62 does not need to determine the delivery destinations of the contact ranges 80A and 80B when the backhoes 90A and 90B are separated by a predetermined distance or more. In this case, contact areas 80A and 80B are not distributed.
 また、例えば、統括制御装置60が、制御装置40A、40Bを含む3以上の制御装置を統括する場合がある。3以上の各制御装置は、それぞれ、互いに異なるバックホウを制御する装置である。この場合、統括制御装置60は、収集した各接触範囲の配信先として、当該接触範囲の送信元以外の制御装置のうち一部又は全部を決定する。例えば、配信先特定部62は、接触範囲80Aの配信先として、制御装置40A以外の制御装置のうち、当該接触範囲80Aの近傍に存在するバックホウを制御する制御装置を配信先とし、他の制御装置を配信先としないことを決定する。 Also, for example, the general control device 60 may supervise three or more control devices including the control devices 40A and 40B. Each of the three or more control devices is a device that controls different backhoes. In this case, the central control device 60 determines some or all of the control devices other than the transmission source of the contact range as distribution destinations of each collected contact range. For example, the delivery destination specifying unit 62 selects, as a delivery destination of the contact range 80A, a control device that controls a backhoe existing in the vicinity of the contact range 80A among the control devices other than the control device 40A. Decide not to deliver to the device.
 (制御装置40Aの構成)
 制御装置40Aの詳細な構成について説明する。図22に示すように、制御装置40Aは、取得部41Aと、範囲特定部42Aと、動作制御部43Aと、動作特定部44Aとを含む。
(Configuration of control device 40A)
A detailed configuration of the control device 40A will be described. As shown in FIG. 22, the control device 40A includes an acquisition unit 41A, a range identification unit 42A, an operation control unit 43A, and an operation identification unit 44A.
 取得部41Aは、例示的実施形態2における取得部21Aとほぼ同様に構成される。ただし、バックホウ90Bの接触範囲80Bを、制御装置40Bから受信する代わりに、統括制御装置60から受信する点が異なる。 The acquisition unit 41A is configured in substantially the same manner as the acquisition unit 21A in the second exemplary embodiment. However, the difference is that the contact range 80B of the backhoe 90B is received from the overall control device 60 instead of being received from the control device 40B.
 範囲特定部42Aは、例示的実施形態2における範囲特定部22Aとほぼ同様に構成される。ただし、特定したバックホウ90Aの接触範囲80Aを、統括制御装置60に送信する点が異なる。 The range specifying unit 42A is configured almost similarly to the range specifying unit 22A in the second exemplary embodiment. However, it differs in that the identified contact range 80A of the backhoe 90A is transmitted to the central control device 60. FIG.
 動作制御部43A、及び動作特定部44Aは、例示的実施形態2における動作制御部23A、及び動作特定部24Aと同様に構成される。 The motion control unit 43A and the motion specifying unit 44A are configured in the same manner as the motion control unit 23A and the motion specifying unit 24A in the second exemplary embodiment.
 (制御装置40Bの構成)
 制御装置40Bは、制御装置40Aと同様に構成される。制御装置40Bの構成は、制御装置40Aの構成の説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
(Configuration of control device 40B)
The control device 40B is configured similarly to the control device 40A. The configuration of the control device 40B will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the description of the configuration of the control device 40A.
 <制御方法S4の流れ>
 以上のように構成された制御システム4は、制御方法S4を逐次的に実行する。逐次的な実行とは、例えば、所定間隔で制御方法S4を実行することであってもよいし、作業情報Aの変化に応じて制御方法S4を実行することであってもよい。また、制御装置40Bも、制御装置40Aと同様に、制御方法S4を逐次的に実行する。
<Flow of control method S4>
The control system 4 configured as described above sequentially executes the control method S4. The sequential execution may be, for example, executing the control method S4 at predetermined intervals, or executing the control method S4 according to changes in the work information A. FIG. The control device 40B also sequentially executes the control method S4, like the control device 40A.
 制御方法S4の流れについて、図23を参照して説明する。図23は、制御方法S4の流れを示すフロー図である。図23に示すように、制御方法S4は、ステップS41~S47と、ステップS61~S62とを含む。なお、以下では、ステップS41~S47を制御装置40Aが実行する場合について説明する。ステップS41~S47を制御装置40Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。 The flow of control method S4 will be described with reference to FIG. FIG. 23 is a flowchart showing the flow of control method S4. As shown in FIG. 23, the control method S4 includes steps S41 to S47 and steps S61 to S62. A case where the control device 40A executes steps S41 to S47 will be described below. The case where the control device 40B executes steps S41 to S47 will be described in the same manner by replacing the suffix "A" with "B" and "B" with "A" in the following description. be.
 (ステップS41~S43)
 ステップS41~S43は、例示的実施形態2において図5を参照して説明したステップS21~S23と同様である。これにより、取得部41Aは、バックホウ90Aの作業情報A、位置情報A、バックホウ90Bの位置情報Bを取得する。
(Steps S41 to S43)
Steps S41-S43 are similar to steps S21-S23 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 41A acquires the work information A and the position information A of the backhoe 90A and the position information B of the backhoe 90B.
 (ステップS44)
 ステップS44において、範囲特定部42Aは、作業情報Aが示す作業内容に応じて、バックホウ90Aの接触範囲80Aを特定する。当該処理の詳細は、例示的実施形態2において図5を参照して説明したステップS24とほぼ同様である。ただし、範囲特定部42Aは、特定した接触範囲80Aを、統括制御装置60に送信する。
(Step S44)
In step S44, the range specifying unit 42A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A. The details of this process are substantially the same as step S24 described with reference to FIG. 5 in the second exemplary embodiment. However, the range specifying unit 42A transmits the specified contact range 80A to the central control device 60. FIG.
 (ステップS61)
 ステップS61において、統括制御装置60の範囲収集部61は、制御装置40A、40Bから、接触範囲80A、80Bを収集する。
(Step S61)
In step S61, the range collection unit 61 of the overall control device 60 collects the contact ranges 80A and 80B from the control devices 40A and 40B.
 (ステップS62)
 ステップS62において、配信先特定部62は、収集した接触範囲80Aの配信先として制御装置40Bを決定し、接触範囲80Bの配信先として制御装置40Aを決定する。また、範囲収集部61は、制御装置40Aに対して接触範囲80Bを配信する。また、範囲収集部61は、制御装置40Bに対して接触範囲80Aを配信する。
(Step S62)
In step S62, the distribution destination specifying unit 62 determines the control device 40B as the distribution destination of the collected contact range 80A, and determines the control device 40A as the distribution destination of the contact range 80B. Further, the range collection unit 61 distributes the contact range 80B to the control device 40A. In addition, range collection unit 61 distributes contact range 80A to control device 40B.
 (ステップS45~S47)
 ステップS45~S47は、例示的実施形態2において図5を参照して説明したステップS25~S27とほぼ同様である。ただし、ステップS45において、動作制御部43Aは、接触範囲80Bを、統括制御装置60から受信する。これにより、動作制御部43Aは、接触範囲80A、80Bの少なくとも一部が重なり合う場合には、バックホウ90Aを停止するよう制御する。
(Steps S45-S47)
Steps S45-S47 are substantially similar to steps S25-S27 described with reference to FIG. 5 in the second exemplary embodiment. However, in step S45, the operation control unit 43A receives the contact range 80B from the integrated control device 60. FIG. Thereby, the operation control unit 43A controls to stop the backhoe 90A when at least a part of the contact ranges 80A and 80B overlap.
 <本例示的実施形態の効果>
 本例示的実施形態は、バックホウ90A、90Bの接触の可能性を判定するために用いる接触範囲80A、80Bを、統括制御装置60が収集して配信する。これにより、制御装置40A、40Bは、互いに通信可能である必要がなく、統括制御装置60との間で通信可能であればよい。したがって、本例示的実施形態は、3以上のバックホウ90を制御対象とする場合に容易に拡張可能である。
<Effects of this exemplary embodiment>
In this exemplary embodiment, the contact ranges 80A, 80B are collected and distributed by the general controller 60 for use in determining the likelihood of backhoe 90A, 90B contact. Accordingly, the control devices 40A and 40B do not need to be able to communicate with each other, and only need to be able to communicate with the central control device 60 . Thus, the exemplary embodiment can be easily extended to control more than two backhoes 90 .
 〔例示的実施形態5〕
 本発明の第5の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1~4にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
[Exemplary embodiment 5]
A fifth exemplary embodiment of the present invention will now be described in detail with reference to the drawings. Components having the same functions as the components described in exemplary embodiments 1 to 4 are denoted by the same reference numerals, and description thereof will not be repeated.
 <制御システム5の構成>
 本例示的実施形態に係る制御システム5の構成について、図24を参照して説明する。図24は、制御システム5の構成を示すブロック図である。図24に示すように、制御システム5は、制御システム5Aと、制御システム5Bと、統括制御装置70とを含む。制御システム5Aは、バックホウ90Aと、制御装置50Aとを含み、バックホウ90Aを制御するシステムである。制御システム5Bは、バックホウ90Bと、制御装置50Bとを含み、バックホウ90Bを制御するシステムである。統括制御装置70は、制御装置50A及び50Bを統括する装置である。
<Configuration of control system 5>
The configuration of the control system 5 according to this exemplary embodiment will be described with reference to FIG. 24 . FIG. 24 is a block diagram showing the configuration of the control system 5. As shown in FIG. As shown in FIG. 24, the control system 5 includes a control system 5A, a control system 5B, and a central control device 70. The control system 5A is a system that includes a backhoe 90A and a control device 50A and controls the backhoe 90A. The control system 5B is a system that includes a backhoe 90B and a control device 50B and controls the backhoe 90B. The general control device 70 is a device that supervises the control devices 50A and 50B.
 制御装置50A、制御装置50B、及び統括制御装置70の接続態様、制御装置50A及びバックホウ90Aの接続態様、並びに制御装置50B及びバックホウ90Bの接続態様については、例示的実施形態4において説明した通りである。また、バックホウ90A及びバックホウ90Bの構成については、例示的実施形態2において説明した通りである。 The connection mode of the control device 50A, the control device 50B, and the integrated control device 70, the connection mode of the control device 50A and the backhoe 90A, and the connection mode of the control device 50B and the backhoe 90B are as described in the fourth exemplary embodiment. be. Also, the configurations of the backhoe 90A and the backhoe 90B are as described in the second exemplary embodiment.
 (統括制御装置70の構成)
 統括制御装置70の詳細な構成について説明する。図24に示すように、統括制御装置70は、範囲収集部71と、危険判定部72とを含む。
(Configuration of integrated control device 70)
A detailed configuration of the overall control device 70 will be described. As shown in FIG. 24 , the central control device 70 includes a range collection section 71 and a danger determination section 72 .
 範囲収集部71は、制御装置50Aから接触範囲80A及び位置情報Aを受信するとともに、制御装置50Bから接触範囲80B及び位置情報Bを受信する。換言すると、範囲収集部71は、各制御装置50A、50Bから、接触範囲80及び位置情報を収集する。 The range collection unit 71 receives the contact range 80A and the position information A from the control device 50A, and receives the contact range 80B and the position information B from the control device 50B. In other words, the range collection unit 71 collects the contact range 80 and position information from each of the control devices 50A and 50B.
 危険判定部72は、収集した接触範囲80及び位置情報を参照して、複数のバックホウ90が接触する可能性があるか否かを判定する。また、危険判定部72は、判定結果に応じて、バックホウ90A、90Bの動作の制御に関する情報を、制御装置50A、50Bに送信する。 The danger determination unit 72 refers to the collected contact range 80 and position information to determine whether there is a possibility that multiple backhoes 90 will come into contact. In addition, the danger determination unit 72 transmits information regarding control of the operation of the backhoes 90A and 90B to the control devices 50A and 50B according to the determination result.
 (制御装置50Aの構成)
 制御装置50Aの詳細な構成について説明する。図24に示すように、制御装置50Aは、取得部51Aと、範囲特定部52Aと、動作制御部53Aと、動作特定部54Aとを含む。
(Configuration of control device 50A)
A detailed configuration of the control device 50A will be described. As shown in FIG. 24, the control device 50A includes an acquisition unit 51A, a range identification unit 52A, an operation control unit 53A, and an operation identification unit 54A.
 取得部51Aは、例示的実施形態2における取得部21Aとほぼ同様に構成される。ただし、バックホウ90Bの接触範囲80Bを、制御装置50Bから受信する代わりに、統括制御装置70から受信する点が異なる。また、取得した位置情報Aを、統括制御装置70に対して送信する点も異なる。 The acquisition unit 51A is configured in substantially the same manner as the acquisition unit 21A in the second exemplary embodiment. However, the difference is that the contact range 80B of the backhoe 90B is received from the general control device 70 instead of being received from the control device 50B. Another difference is that the acquired position information A is transmitted to the central control device 70 .
 範囲特定部52Aは、例示的実施形態2における範囲特定部22Aとほぼ同様に構成される。ただし、特定したバックホウ90Aの接触範囲80Aを、統括制御装置70に送信する点が異なる。 The range specifying unit 52A is configured almost similarly to the range specifying unit 22A in the second exemplary embodiment. However, it differs in that the specified contact range 80A of the backhoe 90A is transmitted to the central control device 70. FIG.
 動作制御部53Aは、統括制御装置70からバックホウ90Aの停止を指示する情報を受信した場合に、バックホウ90Aを停止するよう制御する。 When the operation control unit 53A receives information instructing to stop the backhoe 90A from the integrated control device 70, it controls to stop the backhoe 90A.
 動作特定部54Aは、例示的実施形態2における動作特定部24Aと同様に構成される。 The motion specifying unit 54A is configured in the same manner as the motion specifying unit 24A in the second exemplary embodiment.
 (制御装置50Bの構成)
 制御装置50Bは、制御装置50Aと同様に構成される。制御装置50Bの構成は、制御装置50Aの構成の説明において参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。
(Configuration of control device 50B)
The control device 50B is configured similarly to the control device 50A. The configuration of the control device 50B will be described in the same way by replacing the suffix "A" with "B" and "B" with "A" in the description of the configuration of the control device 50A.
 <制御方法S5の流れ>
 以上のように構成された制御システム5は、制御方法S5を逐次的に実行する。逐次的な実行とは、例えば、所定間隔で制御方法S5を実行することであってもよいし、作業情報Aの変化に応じて制御方法S5を実行することであってもよい。また、制御装置50Bも、制御装置50Aと同様に、制御方法S5を逐次的に実行する。
<Flow of control method S5>
The control system 5 configured as described above sequentially executes the control method S5. The sequential execution may be, for example, executing the control method S5 at predetermined intervals, or executing the control method S5 according to changes in the work information A. FIG. The control device 50B also sequentially executes the control method S5, like the control device 50A.
 制御方法S5の流れについて、図25を参照して説明する。図25は、制御方法S5の流れを示すフロー図である。図25に示すように、制御方法S5は、ステップS51~S55と、ステップS71~S73とを含む。なお、以下では、ステップS51~S55を制御装置50Aが実行する場合について説明する。ステップS51~S55を制御装置50Bが実行する場合については、以下の説明において、参照符号の末尾の「A」を「B」と読み替え、「B」を「A」と読み替えることにより同様に説明される。 The flow of control method S5 will be described with reference to FIG. FIG. 25 is a flowchart showing the flow of control method S5. As shown in FIG. 25, the control method S5 includes steps S51 to S55 and steps S71 to S73. A case where the control device 50A executes steps S51 to S55 will be described below. The case where the control device 50B executes steps S51 to S55 will be described in the same manner by replacing "A" with "B" and "B" with "A" in the following description. be.
 (ステップS51)
 ステップS51は、例示的実施形態2において図5を参照して説明したステップS21と同様である。これにより、取得部51Aは、バックホウ90Aの作業情報Aを取得する。
(Step S51)
Step S51 is similar to step S21 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 51A acquires the work information A of the backhoe 90A.
 (ステップS52)
 ステップS52は、例示的実施形態2において図5を参照して説明したステップS22とほぼ同様である。これにより、取得部51Aは、バックホウ90Aの位置情報Aを取得する。ただし、取得部51Aは、取得した位置情報Aを、統括制御装置70に送信する。
(Step S52)
Step S52 is substantially similar to step S22 described with reference to FIG. 5 in the second exemplary embodiment. Thereby, the acquisition unit 51A acquires the position information A of the backhoe 90A. However, the acquisition unit 51A transmits the acquired position information A to the central control device 70 .
 (ステップS53)
 ステップS53において、範囲特定部52Aは、作業情報Aが示す作業内容に応じて、バックホウ90Aの接触範囲80Aを特定する。当該処理の詳細は、例示的実施形態2において図5を参照して説明したステップS24とほぼ同様である。ただし、範囲特定部52Aは、特定した接触範囲80Aを、統括制御装置70に送信する。
(Step S53)
In step S53, the range specifying unit 52A specifies the contact range 80A of the backhoe 90A according to the work content indicated by the work information A. The details of this process are substantially the same as step S24 described with reference to FIG. 5 in the second exemplary embodiment. However, the range specifying unit 52A transmits the specified contact range 80A to the central control device 70. FIG.
 (ステップS71)
 ステップS71において、統括制御装置70の範囲収集部71は、制御装置50A、50Bから、接触範囲80A、80B及び位置情報A、Bを収集する。
(Step S71)
In step S71, the range collection unit 71 of the overall control device 70 collects the contact ranges 80A and 80B and the position information A and B from the control devices 50A and 50B.
 (ステップS72)
 ステップS72において、危険判定部72は、位置情報A、Bを参照して、接触範囲80A、80Bの少なくとも一部が重なるか否かを判断する。
(Step S72)
In step S72, the danger determination unit 72 refers to the position information A and B to determine whether or not at least a portion of the contact ranges 80A and 80B overlap.
 (ステップS72でYes:ステップS73)
 ステップS72でYesと判断された場合、危険判定部72は、バックホウ90A、90Bに対して、停止を指示する情報を送信する。
(Yes in step S72: step S73)
When it is determined as Yes in step S72, the danger determination unit 72 transmits information instructing the backhoes 90A and 90B to stop.
 (ステップS54)
 ステップS54において、動作制御部53Aは、統括制御装置70から、停止を指示する情報を受信したか否かを判断する。
(Step S54)
In step S54, the operation control unit 53A determines whether information instructing to stop has been received from the integrated control device 70 or not.
 (ステップS54でYes:ステップS55)
 ステップS54でYesと判断された場合、ステップS55において、動作制御部53Aは、バックホウ90Aを停止するよう制御する。具体的には、動作制御部53Aは、停止を指示する動作制御情報をバックホウ90Aに送信する。
(Yes in step S54: step S55)
When it is determined Yes in step S54, in step S55, the operation control unit 53A controls the backhoe 90A to stop. Specifically, the operation control unit 53A transmits the operation control information instructing the stop to the backhoe 90A.
 (ステップS73でNo、ステップS54でNo)
 ステップS73でNoと判断された場合、ステップS55でNoと判断され、制御方法S5は終了する。
(No in step S73, No in step S54)
If it is judged No in step S73, it is judged No in step S55, and the control method S5 ends.
 <本例示的実施形態の効果>
 本例示的実施形態は、バックホウ90A、90Bの接触の可能性を判定するために用いる接触範囲80A、80Bを統括制御装置70が収集し、接触の可能性がある場合に停止を指示する情報を配信する。これにより、制御装置50A、50B間の通信状態に関わらず、より充分に接触を回避することができる。
<Effects of this exemplary embodiment>
In this exemplary embodiment, the contact areas 80A, 80B used for determining the possibility of contact of the backhoes 90A, 90B are collected by the general control device 70, and information instructing to stop when there is a possibility of contact is provided. To deliver. Thereby, contact can be avoided more sufficiently regardless of the communication state between the control devices 50A and 50B.
 〔変形例4〕
 上述した例示的実施形態5において、統括制御装置70を、さらに範囲特定部を含むよう変形し、制御装置50A、50Bを、範囲特定部52A、52Bを含まないよう変形することができる。この場合、制御システム5Aは、取得部51Aが取得した作業情報Aを、統括制御装置70に送信する。制御システム5Bも同様にして、作業情報Bを統括制御装置70に送信する。また、統括制御装置70の範囲特定部は、作業情報A、Bが示す作業内容に応じて、接触範囲80A、80Bを特定する。危険判定部72は、自装置の範囲特定部が特定した接触範囲80A、80Bの少なくとも一部が重なる場合に、バックホウ90A、90Bの停止を指示する情報を送信する。これにより、統括的に特定した接触範囲80A、80Bに基づいて、より充分にバックホウ90A、90Bの接触を回避することができる。
[Modification 4]
In the exemplary embodiment 5 described above, the overall control device 70 can be modified to further include a range identifying section, and the control devices 50A and 50B can be modified not to include the range identifying sections 52A and 52B. In this case, the control system 5A transmits the work information A acquired by the acquisition unit 51A to the central control device 70. FIG. Similarly, the control system 5B also transmits the work information B to the general control device 70 . Further, the range specifying unit of the integrated control device 70 specifies the contact ranges 80A and 80B according to the work contents indicated by the work information A and B. The danger determination unit 72 transmits information instructing to stop the backhoes 90A and 90B when at least a part of the contact ranges 80A and 80B identified by the range identification unit of its own device overlaps. Thereby, the contact of the backhoes 90A and 90B can be avoided more sufficiently based on the comprehensively specified contact ranges 80A and 80B.
 〔変形例5〕
 また、上述した変形例4において、統括制御装置70を、さらに、動作特定部を含むよう変形し、制御装置50A、50Bを、動作特定部54A、54Bを含まないよう変形することができる。この場合、制御システム5Aの取得部51Aは、バックホウ90Aの位置情報、及び姿勢情報を取得して統括制御装置70に送信する。制御システム5Bも同様にして、バックホウ90Bの位置情報、及び姿勢情報を取得して統括制御装置70に送信する。また、統括制御装置70の動作特定部は、バックホウ90A、90Bの作業内容を決定するとともに、決定した作業内容を示す情報を制御装置50A、50Bに送信する。また、統括制御装置70の範囲特定部は、バックホウ90A、90Bについて受信した位置情報、姿勢情報、及び決定した作業内容に応じて、接触範囲80A、80Bを特定する。危険判定部72は、自装置の範囲特定部が特定した接触範囲80A、80Bの少なくとも一部が重なる場合に、バックホウ90A、90Bの停止を指示する情報を送信する。これにより、統括的にバックホウ90A、90Bの動作を制御するとともに、統括的に特定した接触範囲80A、80Bに基づいて、より充分にバックホウ90A、90Bの接触を回避することができる。
[Modification 5]
Further, in Modification 4 described above, the overall control device 70 can be modified to include the motion specifying unit, and the control devices 50A and 50B can be modified to not include the motion specifying units 54A and 54B. In this case, the acquisition unit 51A of the control system 5A acquires the position information and attitude information of the backhoe 90A and transmits them to the central control device . Similarly, the control system 5B acquires the position information and attitude information of the backhoe 90B and transmits them to the general control device 70 . Further, the operation specifying unit of the integrated control device 70 determines the work content of the backhoes 90A and 90B, and transmits information indicating the determined work content to the control devices 50A and 50B. In addition, the range specifying unit of the central control device 70 specifies the contact ranges 80A and 80B according to the received position information and attitude information about the backhoes 90A and 90B and the determined work content. The danger determination unit 72 transmits information instructing to stop the backhoes 90A and 90B when at least a part of the contact ranges 80A and 80B identified by the range identification unit of its own device overlaps. Thereby, while controlling operation|movement of backhoe 90A, 90B centralizedly, based on contact range 80A, 80B specified centralizedly, contact of backhoe 90A, 90B can be avoided more fully.
 〔他の変形例〕
 上述した例示的実施形態3~5は、例示的実施形態2の変形例1と同様に、目標位置の周辺領域に他のバックホウ90が存在するか否かに応じて算出する接触範囲80を異ならせるよう変形できる。上述した例示的実施形態3~5は、例示的実施形態2の変形例2と同様に、他のバックホウ90から作業情報を取得して他のバックホウ90の作業範囲を特定するよう変形できる。また、上述した例示的実施形態3~5は、例示的実施形態2の変形例3と同様に、位置情報、接触範囲80、又は作業情報を、他のバックホウに逐次的に送信するよう変形できる。
[Other Modifications]
In the exemplary embodiments 3 to 5 described above, similarly to the modified example 1 of the exemplary embodiment 2, the contact range 80 to be calculated differs depending on whether or not another backhoe 90 exists in the peripheral area of the target position. It can be transformed to fit. Exemplary Embodiments 3-5 described above, like Variation 2 of Exemplary Embodiment 2, can be modified to obtain work information from other backhoes 90 to identify the work ranges of other backhoes 90 . Also, Exemplary Embodiments 3-5 described above, like Variation 3 of Exemplary Embodiment 2, can be modified to sequentially transmit position information, contact range 80, or work information to other backhoes. .
 (一方のバックホウが遠隔操作により動作する変形例)
 また、上述した例示的実施形態2~5において、バックホウ90A、90Bの一方は、オペレータによる遠隔操作により動作する作業機械であってもよい。例えば、バックホウ90Aが制御装置(20A、30A、40A、及び50Aの何れか)による制御の基に動作し、バックホウ90Bが遠隔操作により動作する場合について説明する。この場合、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、オペレータによる操作に関わらず、バックホウ90A及び90Bを停止するよう制御してもよい。また、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、接触範囲80A及び80Bが重ならなくなる位置までバックホウ90Bを移動するようオペレータに指示する情報を出力してもよい。また、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、接触範囲80A及び80Bが重ならなくなる位置までバックホウ90Aを移動するよう制御してもよい。これにより、各例示的実施形態は、制御対象に、オペレータの遠隔操作により動作するバックホウ90が含まれている場合であっても、複数のバックホウ90の接触をより充分に回避することができる。
(Modified example in which one backhoe operates by remote control)
Also, in the exemplary embodiments 2-5 described above, one of the backhoes 90A, 90B may be a work machine operated remotely by an operator. For example, a case will be described in which the backhoe 90A operates under the control of a control device (any one of 20A, 30A, 40A, and 50A) and the backhoe 90B operates by remote control. In this case, each exemplary embodiment may control backhoes 90A and 90B to stop when at least a portion of contact areas 80A and 80B overlap, regardless of operator action. Also, each exemplary embodiment may output information instructing the operator to move the backhoe 90B to a position where the contact areas 80A and 80B no longer overlap when at least a portion of the contact areas 80A and 80B overlap. good. Each exemplary embodiment may also control backhoe 90A to move to a position where contact areas 80A and 80B do not overlap when at least a portion of contact areas 80A and 80B overlap. Thereby, each exemplary embodiment can more sufficiently avoid contact of a plurality of backhoes 90 even when the object to be controlled includes the backhoe 90 operated by remote control of an operator.
 (バックホウ以外の作業機械を制御対象とする変形例)
 また、上述した例示的実施形態2~5は、バックホウ90A、90Bの代わりに、他の作業機械を制御対象とするよう変形できる。また、そのような変形において、各例示的実施形態が制御対象とする複数の作業機械は、必ずしも同様に動作する作業機械でなくてよい。
(Modified example in which a working machine other than a backhoe is controlled)
Also, the exemplary embodiments 2-5 described above can be modified to control other work machines instead of the backhoes 90A, 90B. Also, in such variations, the work machines controlled by each exemplary embodiment need not necessarily operate similarly.
 一例として、各例示的実施形態の制御対象は、自律的に動作するロボットであってもよい。例えば、複数のロボットが並行して部品の取り付け動作を行うことがある。その際、第1のロボットを制御する制御装置は、第1のロボットの接触範囲と、第1のロボットと同じ作業エリアや隣接する作業エリアに存在する第2のロボットの接触範囲とに基づいて、第1のロボットを制御しても良い。 As an example, the controlled object of each exemplary embodiment may be a robot that operates autonomously. For example, a plurality of robots may perform component mounting operations in parallel. At that time, the control device that controls the first robot is based on the contact range of the first robot and the contact range of the second robot existing in the same work area as or adjacent to the first robot. , may control the first robot.
 また、例えば、フォークリフトが荷物の積み下ろしを行う現場において、搬送ロボットが荷物を搬送したり、清掃ロボットが現場を清掃したりすることがある。その際、搬送ロボットを制御する制御装置は、搬送ロボットの動作から接触範囲を特定するとともに、清掃ロボットの接触範囲を取得または特定して良い。この場合、搬送ロボットを制御する制御装置は、搬送ロボットと清掃ロボットの接触範囲を比較し、搬送ロボットを制御しても良い。 Also, for example, at a site where a forklift loads and unloads packages, a transport robot may transport the package, or a cleaning robot may clean the site. At that time, the control device that controls the transport robot may specify the contact range from the motion of the transport robot and acquire or specify the contact range of the cleaning robot. In this case, the control device that controls the transport robot may compare the contact ranges of the transport robot and the cleaning robot to control the transport robot.
 また、例えば、収納ロボットが棚の中身を整理する間に、掃除ロボットが周辺の床を掃除することがある。その際、掃除ロボットを制御する制御装置は、収納ロボットの作業情報から接触範囲を特定するか、又は、収納ロボットを制御する制御装置から収納ロボットの接触範囲を取得して良い。この場合、掃除ロボットを制御する制御装置は、収納ロボットの接触範囲と、掃除ロボットの接触範囲とを比較して、掃除ロボットを制御しても良い。 Also, for example, while the storage robot organizes the contents of the shelf, the cleaning robot may clean the surrounding floor. At this time, the control device that controls the cleaning robot may specify the contact range from the work information of the storage robot, or acquire the contact range of the storage robot from the control device that controls the storage robot. In this case, the control device that controls the cleaning robot may control the cleaning robot by comparing the contact range of the storage robot and the contact range of the cleaning robot.
 また、並んで設置された複数のロボットの各々が、腕を振る、移動する等の作業を行いながら互いにコミュニケーションをとる掛け合い動作を行うことがある。その際、第1のロボットの制御装置が第2のロボットの接触範囲に基づいて、第1のロボットを制御しても良い。 In addition, each of the multiple robots installed side by side may communicate with each other while performing tasks such as waving their arms and moving. At that time, the controller of the first robot may control the first robot based on the contact range of the second robot.
 以上のように、各例示的実施形態は、各ロボットを制御対象とすることにより、ロボット同士の接触をより充分に回避することができる。 As described above, each exemplary embodiment can more sufficiently avoid contact between robots by making each robot a control target.
 また、他の一例として、各例示的実施形態の制御対象は、自律的に動作するロボットと、オペレータの遠隔操作により動作するロボットとを含んでいてもよい。この場合、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、オペレータによる操作に関わらず、双方のロボットを停止させてもよい。また、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、接触範囲80A及び80Bが重ならなくなる位置まで、遠隔操作に動作するロボットを移動するようオペレータに指示する情報を出力してもよい。また、各例示的実施形態は、接触範囲80A及び80Bの少なくとも一部が重なる場合に、接触範囲80A及び80Bが重ならなくなる位置まで、自律的に動作するロボットを移動するよう制御してもよい。これにより、自律的に動作するロボットと遠隔操作により動作するロボットとの接触をより充分に回避することができる。 As another example, the controlled objects of each exemplary embodiment may include a robot that operates autonomously and a robot that operates remotely by an operator. In this case, each exemplary embodiment may cause both robots to stop when at least a portion of the contact areas 80A and 80B overlap, regardless of action by the operator. Further, each exemplary embodiment includes information for instructing the operator to move the remotely operated robot to a position where the contact areas 80A and 80B do not overlap when at least a portion of the contact areas 80A and 80B overlap. may be output. Also, each exemplary embodiment may control the autonomously operating robot to move to a position where the contact areas 80A and 80B no longer overlap when at least a portion of the contact areas 80A and 80B overlap. . This makes it possible to more sufficiently avoid contact between the autonomously operating robot and the remotely operated robot.
 〔ソフトウェアによる実現例〕
 制御装置10、20A、20B、30A、30B、40A、40B、50A、50B、及び統括制御装置60、70の一部又は全部の機能は、集積回路(ICチップ)等のハードウェアによって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
Some or all of the functions of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the overall control devices 60, 70 are implemented by hardware such as integrated circuits (IC chips). Alternatively, it may be implemented by software.
 後者の場合、制御装置10、20A、20B、30A、30B、40A、40B、50A、50B、及び統括制御装置60、70の一部又は全部の各装置は、例えば、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータによって実現される。このようなコンピュータの一例(以下、コンピュータCと記載する)を図26に示す。コンピュータCは、少なくとも1つのプロセッサC1と、少なくとも1つのメモリC2と、を備えている。メモリC2には、コンピュータCを、制御装置10、20A、20B、30A、30B、40A、40B、50A、50B、及び統括制御装置60、70のうち該当する装置として動作させるためのプログラムPが記録されている。コンピュータCにおいて、プロセッサC1がプログラムPをメモリC2から読み取って実行することにより、制御装置10、20A、20B、30A、30B、40A、40B、50A、50B、及び統括制御装置60、70のうち該当する装置の各機能が実現される。 In the latter case, some or all of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the overall control devices 60, 70 are software that implements each function, for example. It is implemented by a computer that executes the instructions of a program. An example of such a computer (hereinafter referred to as computer C) is shown in FIG. Computer C comprises at least one processor C1 and at least one memory C2. The memory C2 stores a program P for causing the computer C to operate as one of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the general control devices 60, 70. It is In the computer C, the processor C1 reads the program P from the memory C2 and executes it, so that the corresponding one of the control devices 10, 20A, 20B, 30A, 30B, 40A, 40B, 50A, 50B and the general control devices 60, 70 Each function of the device to be performed is realized.
 プロセッサC1としては、例えば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)、FPU(Floating point number Processing Unit)、PPU(Physics Processing Unit)、マイクロコントローラ、又は、これらの組み合わせなどを用いることができる。メモリC2としては、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又は、これらの組み合わせなどを用いることができる。 As the processor C1, for example, CPU (Central Processing Unit), GPU (Graphic Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), PPU (Physics Processing Unit) , a microcontroller, or a combination thereof. As the memory C2, for example, a flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination thereof can be used.
 なお、コンピュータCは、プログラムPを実行時に展開したり、各種データを一時的に記憶したりするためのRAM(Random Access Memory)を更に備えていてもよい。また、コンピュータCは、他の装置との間でデータを送受信するための通信インタフェースを更に備えていてもよい。また、コンピュータCは、キーボードやマウス、ディスプレイやプリンタなどの入出力機器を接続するための入出力インタフェースを更に備えていてもよい。 Note that the computer C may further include a RAM (Random Access Memory) for expanding the program P during execution and temporarily storing various data. Computer C may further include a communication interface for sending and receiving data to and from other devices. Computer C may further include an input/output interface for connecting input/output devices such as a keyboard, mouse, display, and printer.
 また、プログラムPは、コンピュータCが読み取り可能な、一時的でない有形の記録媒体Mに記録することができる。このような記録媒体Mとしては、例えば、テープ、ディスク、カード、半導体メモリ、又はプログラマブルな論理回路などを用いることができる。コンピュータCは、このような記録媒体Mを介してプログラムPを取得することができる。また、プログラムPは、伝送媒体を介して伝送することができる。このような伝送媒体としては、例えば、通信ネットワーク、又は放送波などを用いることができる。コンピュータCは、このような伝送媒体を介してプログラムPを取得することもできる。 In addition, the program P can be recorded on a non-temporary tangible recording medium M that is readable by the computer C. As such a recording medium M, for example, a tape, disk, card, semiconductor memory, programmable logic circuit, or the like can be used. The computer C can acquire the program P via such a recording medium M. Also, the program P can be transmitted via a transmission medium. As such a transmission medium, for example, a communication network or broadcast waves can be used. Computer C can also obtain program P via such a transmission medium.
 〔付記事項1〕
 本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能である。例えば、上述した実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
[Appendix 1]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. For example, embodiments obtained by appropriately combining the technical means disclosed in the embodiments described above are also included in the technical scope of the present invention.
 〔付記事項2〕
 上述した実施形態の一部又は全部は、以下のようにも記載され得る。ただし、本発明は、以下の記載する態様に限定されるものではない。
[Appendix 2]
Some or all of the above-described embodiments may also be described as follows. However, the present invention is not limited to the embodiments described below.
 (付記1)
 第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得工程と、
 前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定工程と、
 前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御工程と、
を含む制御方法。
(Appendix 1)
an acquisition step of acquiring first work information indicating work content of the first work machine and position information of the first work machine;
a range identifying step of identifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
an operation control step of controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
Control method including.
 上記の構成によれば、第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を、第1作業機械の作業内容に応じて柔軟に設定することができる。その結果、第1作業機械をより安全に稼働させることができる。 According to the above configuration, it is possible to flexibly set the first range, which includes the range in which the first work machine operates and the periphery of the range, according to the work content of the first work machine. As a result, the first working machine can be operated more safely.
 (付記2)
 前記範囲特定工程では、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
付記1に記載の制御方法。
(Appendix 2)
In the range specifying step, the first range is specified according to the work content indicated by the first work information and the operating range of the operating parts of the first working machine.
The control method according to appendix 1.
 上記の構成によれば、第1作業機械をより安全に稼働させるための第1範囲を、第1作業機械の作業内容と第1作業機械が備える稼動部分の稼動範囲とに応じて柔軟に設定することができる。 According to the above configuration, the first range for operating the first working machine more safely is flexibly set according to the work content of the first working machine and the operation range of the moving parts of the first working machine. can do.
 (付記3)
 前記第1作業機械は複数の前記稼動部分を備え、
 前記範囲特定工程では、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
付記2に記載の制御方法。
(Appendix 3)
said first work machine comprising a plurality of said moving parts;
In the range identifying step, at least one of the plurality of operating parts is selected according to the work content indicated by the first work information, and the first range is selected according to the operating range of the selected operating part. Identify,
The control method according to appendix 2.
 上記の構成によれば、第1作業機械をより安全に稼働させるための第1範囲を、選択した稼動部分の稼動範囲に応じて柔軟に設定することができる。 According to the above configuration, the first range for operating the first work machine more safely can be flexibly set according to the operating range of the selected operating portion.
 (付記4)
 前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、付記1から3の何れか1つに記載の制御方法。
(Appendix 4)
4. The control method according to any one of Appendices 1 to 3, wherein the first work information includes information regarding orientation of a moving part of the first work machine.
 上記の構成によれば、第1作業機械をより安全に稼働させるための第1範囲を、稼動部分の各々に応じて柔軟に設定することができる。 According to the above configuration, it is possible to flexibly set the first range for operating the first working machine more safely according to each operating part.
 (付記5)
 前記取得工程では、前記第1作業情報を逐次的に取得し、
 前記範囲特定工程では、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
付記1から4の何れか1つに記載の制御方法。
(Appendix 5)
In the obtaining step, the first work information is obtained sequentially,
In the range specifying step, the first range is sequentially changed according to the first work information,
5. The control method according to any one of appendices 1 to 4.
 上記の構成によれば、逐次的に取得する作業情報に応じて第1範囲を逐次的に変化させる。その結果、作業情報の変化を反映してより精度よく第1範囲を設定することができる。 According to the above configuration, the first range is sequentially changed according to the sequentially acquired work information. As a result, the first range can be set more accurately by reflecting changes in work information.
 (付記6)
 前記取得工程では、前記第1作業機械の将来的な作業内容を示す将来的な第1作業情報、及び前記第1作業機械の将来的な位置情報の少なくとも何れかを更に取得し、
 前記範囲特定工程では、前記取得工程にて取得した情報を参照して将来的な前記第1範囲を特定し、
 前記動作制御工程では、前記将来的な第1範囲、及び、前記取得工程にて取得した情報を参照して前記第1作業機械の動作を制御する、
 付記1から5の何れか1つに記載の制御方法。
(Appendix 6)
In the acquisition step, further acquiring at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine;
In the range specifying step, specifying the future first range by referring to the information acquired in the acquiring step,
In the operation control step, the operation of the first work machine is controlled by referring to the future first range and the information acquired in the acquisition step;
6. The control method according to any one of appendices 1 to 5.
 上記の構成によれば、第1作業機械が将来的に稼働する範囲と当該範囲の周囲とを含む第1範囲をシミュレーションすることができる。その結果、第1作業機械の作業情報の将来的な変化に応じて、第1作業機械をより安全に稼動させることができる。 According to the above configuration, it is possible to simulate the first range including the range in which the first work machine will operate in the future and the surroundings of the range. As a result, the first work machine can be operated more safely according to future changes in the work information of the first work machine.
 (付記7)
 前記取得工程では、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
 前記動作制御工程では、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
付記1から6の何れか1つに記載の制御方法。
(Appendix 7)
The obtaining step further obtains information indicating a second range including a range in which a second work machine different from the first work machine operates and a periphery of the range,
In the operation control step, the operation of the first work machine is controlled by further referring to the second range.
7. The control method according to any one of appendices 1 to 6.
 上記の構成によれば、第1作業機械と第2作業機械との接触可能性を判定するための第1範囲及び第2範囲を、第1作業機械及び第2作業機械の各々の作業内容に応じて柔軟に設定することができる。その結果、第1作業機械と第2作業機械との接触をより充分に回避することができる。 According to the above configuration, the first range and the second range for determining the possibility of contact between the first work machine and the second work machine are adapted to the work contents of each of the first work machine and the second work machine. can be flexibly set according to As a result, contact between the first working machine and the second working machine can be more sufficiently avoided.
 (付記8)
 前記動作制御工程では、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、付記7に記載の制御方法。
(Appendix 8)
8. The control method according to appendix 7, wherein in the operation control step, the operation of the first work machine is controlled when at least a part of the first range and the second range overlap.
 上記の構成によれば、第1作業機械と第2作業機械との接触の可能性がある場合に第1作業機械の動作を制御するので、第1作業機械と第2作業機械との接触をより充分に回避することができる。 According to the above configuration, since the operation of the first work machine is controlled when there is a possibility of contact between the first work machine and the second work machine, contact between the first work machine and the second work machine is prevented. can be avoided more fully.
 (付記9)
 第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、
 前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、
 前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、
を含む制御システム。
(Appendix 9)
Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
Control system including.
 上記の構成によれば、付記1と同様の効果を奏する。 According to the above configuration, the same effect as Appendix 1 can be obtained.
 (付記10)
 前記範囲特定手段は、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
付記9に記載の制御システム。
(Appendix 10)
The range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine.
9. The control system of clause 9.
 上記の構成によれば、付記2と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 2 are obtained.
 (付記11)
 前記第1作業機械は複数の前記稼動部分を備え、
 前記範囲特定手段は、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
付記10に記載の制御システム。
(Appendix 11)
said first work machine comprising a plurality of said moving parts;
The range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify,
11. The control system of clause 10.
 上記の構成によれば、付記3と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 3 are obtained.
 (付記12)
 前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、付記9から11の何れか1つに記載の制御システム。
(Appendix 12)
12. The control system according to any one of Appendices 9 to 11, wherein the first work information includes information regarding orientation of moving parts of the first work machine.
 上記の構成によれば、付記4と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 4 are obtained.
 (付記13)
 前記取得手段は、前記第1作業情報を逐次的に取得し、
 前記範囲特定手段は、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
付記9から12の何れか1つに記載の制御システム。
(Appendix 13)
The acquisition means sequentially acquires the first work information,
wherein the range identifying means sequentially changes the first range according to the first work information;
13. A control system according to any one of clauses 9-12.
 上記の構成によれば、付記5と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 5 are obtained.
 (付記14)
 前記取得手段は、前記第1作業機械の将来的な作業内容を示す将来的な第1作業情報、及び前記第1作業機械の将来的な位置情報の少なくとも何れかを更に取得し、
 前記範囲特定手段は、前記取得工程にて取得した情報を参照して将来的な前記第1範囲を特定し、
 前記動作制御手段は、前記将来的な第1範囲、及び、前記取得工程にて取得した情報を参照して前記第1作業機械の動作を制御する、
 付記9から13の何れか1つに記載の制御システム。
(Appendix 14)
The acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine,
The range specifying means specifies the future first range by referring to the information acquired in the acquiring step,
The operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step.
14. A control system according to any one of clauses 9-13.
 上記の構成によれば、付記6と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 6 are obtained.
 (付記15)
 前記取得手段は、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
 前記動作制御手段は、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
付記9から14の何れか1つに記載の制御システム。
(Appendix 15)
The acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
The motion control means further refers to the second range to control the motion of the first work machine.
15. A control system according to any one of clauses 9-14.
 上記の構成によれば、付記7と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 7 are obtained.
 (付記16)
 前記動作制御手段は、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、付記15に記載の制御システム。
(Appendix 16)
16. The control system according to appendix 15, wherein the motion control means controls the motion of the first work machine when at least a portion of the first range and the second range overlap.
 上記の構成によれば、付記8と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 8 are obtained.
 (付記17)
 第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、
 前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、
 前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、
を含む制御装置。
(Appendix 17)
Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
Control device including.
 上記の構成によれば、付記1と同様の効果を奏する。 According to the above configuration, the same effect as Appendix 1 can be obtained.
 (付記18)
 前記範囲特定手段は、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
付記17に記載の制御装置。
(Appendix 18)
The range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine.
17. The control device according to appendix 17.
 上記の構成によれば、付記2と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 2 are obtained.
 (付記19)
 前記第1作業機械は複数の前記稼動部分を備え、
 前記範囲特定手段は、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
付記18に記載の制御装置。
(Appendix 19)
said first work machine comprising a plurality of said moving parts;
The range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify,
19. The control device according to appendix 18.
 上記の構成によれば、付記3と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 3 are obtained.
 (付記20)
 前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、付記17から19の何れか1つに記載の制御装置。
(Appendix 20)
20. The control device according to any one of Appendices 17 to 19, wherein the first work information includes information about orientation of moving parts provided in the first work machine.
 上記の構成によれば、付記4と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 4 are obtained.
 (付記21)
 前記取得手段は、前記第1作業情報を逐次的に取得し、
 前記範囲特定手段は、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
付記17から20の何れか1つに記載の制御装置。
(Appendix 21)
The acquisition means sequentially acquires the first work information,
wherein the range identifying means sequentially changes the first range according to the first work information;
21. Control device according to any one of appendices 17-20.
 上記の構成によれば、付記5と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 5 are obtained.
 (付記22)
 前記取得手段は、前記第1作業機械の将来的な作業内容を示す将来的な第1作業情報、及び前記第1作業機械の将来的な位置情報の少なくとも何れかを更に取得し、
 前記範囲特定手段は、前記取得工程にて取得した情報を参照して将来的な前記第1範囲を特定し、
 前記動作制御手段は、前記将来的な第1範囲、及び、前記取得工程にて取得した情報を参照して前記第1作業機械の動作を制御する、
 付記17から21の何れか1つに記載の制御装置。
(Appendix 22)
The acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine,
The range specifying means specifies the future first range by referring to the information acquired in the acquiring step,
The operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step.
22. A control device according to any one of appendices 17 to 21.
 上記の構成によれば、付記6と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 6 are obtained.
 (付記23)
 前記取得手段は、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
 前記動作制御手段は、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
付記17から22の何れか1つに記載の制御装置。
(Appendix 23)
The acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
The motion control means further refers to the second range to control the motion of the first work machine.
23. A control device according to any one of appendices 17 to 22.
 上記の構成によれば、付記7と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 7 are obtained.
 (付記24)
 前記動作制御手段は、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、付記23に記載の制御装置。
(Appendix 24)
24. The control device according to appendix 23, wherein the operation control means controls the operation of the first work machine when at least a part of the first range and the second range overlap.
 上記の構成によれば、付記8と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 8 are obtained.
 (付記25)
 コンピュータを、作業機械を制御する制御装置として機能させるプログラムであって、
 前記コンピュータを、
 第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、
 前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、
 前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、
として機能させるプログラム。
(Appendix 25)
A program that causes a computer to function as a control device that controls a working machine,
said computer,
Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
A program that acts as a
 上記の構成によれば、付記1と同様の効果を奏する。 According to the above configuration, the same effect as Appendix 1 can be obtained.
 (付記26)
 前記範囲特定手段は、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
付記25に記載のプログラム。
(Appendix 26)
The range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine.
25. The program according to Appendix 25.
 上記の構成によれば、付記2と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 2 are obtained.
 (付記27)
 前記第1作業機械は複数の前記稼動部分を備え、
 前記範囲特定手段は、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
付記26に記載のプログラム。
(Appendix 27)
said first work machine comprising a plurality of said moving parts;
The range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify,
27. The program according to Appendix 26.
 上記の構成によれば、付記3と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 3 are obtained.
 (付記28)
 前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、付記25から27の何れか1つに記載のプログラム。
(Appendix 28)
28. The program according to any one of Appendices 25 to 27, wherein the first work information includes information about orientations of moving parts of the first work machine.
 上記の構成によれば、付記4と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 4 are obtained.
 (付記29)
 前記取得手段は、前記第1作業情報を逐次的に取得し、
 前記範囲特定手段は、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
付記25から28の何れか1つに記載のプログラム。
(Appendix 29)
The acquisition means sequentially acquires the first work information,
wherein the range identifying means sequentially changes the first range according to the first work information;
29. A program according to any one of appendices 25-28.
 上記の構成によれば、付記5と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 5 are obtained.
 (付記30)
 前記取得手段は、前記第1作業機械の将来的な作業内容を示す将来的な第1作業情報、及び前記第1作業機械の将来的な位置情報の少なくとも何れかを更に取得し、
 前記範囲特定手段は、前記取得工程にて取得した情報を参照して将来的な前記第1範囲を特定し、
 前記動作制御手段は、前記将来的な第1範囲、及び、前記取得工程にて取得した情報を参照して前記第1作業機械の動作を制御する、
 付記25から29の何れか1つに記載のプログラム。
(Appendix 30)
The acquisition means further acquires at least one of future first work information indicating future work content of the first work machine and future position information of the first work machine,
The range specifying means specifies the future first range by referring to the information acquired in the acquiring step,
The operation control means controls the operation of the first work machine by referring to the future first range and the information acquired in the acquisition step.
30. A program according to any one of appendices 25-29.
 上記の構成によれば、付記6と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 6 are obtained.
 (付記31)
 前記取得手段は、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
 前記動作制御手段は、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
付記25から30の何れか1つに記載のプログラム。
(Appendix 31)
The acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
The motion control means further refers to the second range to control the motion of the first work machine.
31. A program according to any one of appendices 25-30.
 上記の構成によれば、付記7と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 7 are obtained.
 (付記32)
 前記動作制御手段は、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、付記31に記載のプログラム。
(Appendix 32)
32. The program according to appendix 31, wherein the motion control means controls the motion of the first work machine when at least part of the first range and the second range overlap.
 上記の構成によれば、付記8と同様の効果を奏する。 According to the above configuration, the same effects as in Supplementary Note 8 are obtained.
 (付記33)
 少なくとも1つのプロセッサを備え、前記プロセッサは、
  第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得処理と、
 前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定処理と、
 前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御処理と、
を実行する制御装置。
(Appendix 33)
at least one processor, said processor comprising:
Acquisition processing for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
a range identification process for identifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
an operation control process for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
A control device that carries out
 なお、この制御装置は、更にメモリを備えていてもよく、このメモリには、前記取得処理と、前記範囲特定処理と、前記動作制御処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The control device may further include a memory, and the memory stores a program for causing the processor to execute the acquisition process, the range identification process, and the operation control process. may Also, this program may be recorded in a computer-readable non-temporary tangible recording medium.
1、2、2A、2B、3、3A、3B、4、4A、4B、5、5A、5B 制御システム
10、20、20A、20B、24A、30A、30B、40A、40B、50A、50B 制御装置
11、21A、21B、31A、31B、41A、41B、51A、51B 取得部
12、22A、22B、32A、32B、42A、42B、52A、52B 範囲特定部
13、23A、23B、33A、33B、43A、43B、53A、53B 動作制御部
24A、24B、34A、34B、54A、54B 動作特定部
60、70 統括制御装置
61、71 範囲収集部
62 配信先特定部
72 危険判定部
90、90A、90B バックホウ
91A、91B 旋回部
92A、92B アーム部
93A、93B 走行部
94A、94B コントローラ
921A ブーム
922A アーム
923A バケット
C1 プロセッサ
C2 メモリ
N1 ネットワーク
P1A、P1B 旋回軸
P2A ブーム軸
P3A アーム軸
P4A バケット軸
P5A 先端部
P6A 底部
1, 2, 2A, 2B, 3, 3A, 3B, 4, 4A, 4B, 5, 5A, 5B control system 10, 20, 20A, 20B, 24A, 30A, 30B, 40A, 40B, 50A, 50B control device 11, 21A, 21B, 31A, 31B, 41A, 41B, 51A, 51B Acquisition unit 12, 22A, 22B, 32A, 32B, 42A, 42B, 52A, 52B Range identification unit 13, 23A, 23B, 33A, 33B, 43A , 43B, 53A, 53B motion control units 24A, 24B, 34A, 34B, 54A, 54B motion specifying units 60, 70 integrated control devices 61, 71 range collecting unit 62 distribution destination specifying unit 72 danger determining units 90, 90A, 90B backhoe 91A, 91B swivel parts 92A, 92B arm parts 93A, 93B travel parts 94A, 94B controller 921A boom 922A arm 923A bucket C1 processor C2 memory N1 network P1A, P1B swivel axis P2A boom axis P3A arm axis P4A bucket axis P5A tip part P6A bottom part

Claims (21)

  1.  第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得工程と、
     前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定工程と、
     前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御工程と、
    を含む制御方法。
    an acquisition step of acquiring first work information indicating work content of the first work machine and position information of the first work machine;
    a range identifying step of identifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
    an operation control step of controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
    Control method including.
  2.  前記範囲特定工程では、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
    請求項1に記載の制御方法。
    In the range specifying step, the first range is specified according to the work content indicated by the first work information and the operating range of the operating parts of the first working machine.
    The control method according to claim 1.
  3.  前記第1作業機械は複数の前記稼動部分を備え、
     前記範囲特定工程では、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
    請求項2に記載の制御方法。
    said first work machine comprising a plurality of said moving parts;
    In the range identifying step, at least one of the plurality of operating parts is selected according to the work content indicated by the first work information, and the first range is selected according to the operating range of the selected operating part. Identify,
    The control method according to claim 2.
  4.  前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、請求項1から3の何れか1項に記載の制御方法。 The control method according to any one of claims 1 to 3, wherein the first work information includes information regarding the orientation of moving parts provided in the first work machine.
  5.  前記取得工程では、前記第1作業情報を逐次的に取得し、
     前記範囲特定工程では、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
    請求項1から4の何れか1項に記載の制御方法。
    In the obtaining step, the first work information is obtained sequentially,
    In the range specifying step, the first range is sequentially changed according to the first work information,
    The control method according to any one of claims 1 to 4.
  6.  前記取得工程では、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
     前記動作制御工程では、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
    請求項1から5の何れか1項に記載の制御方法。
    The obtaining step further obtains information indicating a second range including a range in which a second work machine different from the first work machine operates and a periphery of the range,
    In the operation control step, the operation of the first work machine is controlled by further referring to the second range.
    The control method according to any one of claims 1 to 5.
  7.  前記動作制御工程では、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、請求項6に記載の制御方法。 The control method according to claim 6, wherein in the operation control step, the operation of the first working machine is controlled when at least a part of the first range and the second range overlap.
  8.  第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、
     前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、
     前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、
    を含む制御システム。
    Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
    range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
    an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
    Control system including.
  9.  前記範囲特定手段は、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
    請求項8に記載の制御システム。
    The range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine.
    A control system according to claim 8 .
  10.  前記第1作業機械は複数の前記稼動部分を備え、
     前記範囲特定手段は、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
    請求項9に記載の制御システム。
    said first work machine comprising a plurality of said moving parts;
    The range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify,
    A control system according to claim 9 .
  11.  前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、請求項8から10の何れか1項に記載の制御システム。 The control system according to any one of claims 8 to 10, wherein the first work information includes information regarding the orientation of moving parts provided in the first work machine.
  12.  前記取得手段は、前記第1作業情報を逐次的に取得し、
     前記範囲特定手段は、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
    請求項8から11の何れか1項に記載の制御システム。
    The acquisition means sequentially acquires the first work information,
    wherein the range identifying means sequentially changes the first range according to the first work information;
    Control system according to any one of claims 8 to 11.
  13.  前記取得手段は、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
     前記動作制御手段は、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
    請求項8から12の何れか1項に記載の制御システム。
    The acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
    The motion control means further refers to the second range to control the motion of the first work machine.
    Control system according to any one of claims 8 to 12.
  14.  前記動作制御手段は、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、請求項13に記載の制御システム。 14. The control system according to claim 13, wherein said motion control means controls the motion of said first working machine when at least part of said first range and said second range overlap.
  15.  第1作業機械の作業内容を示す第1作業情報、及び前記第1作業機械の位置情報を取得する取得手段と、
     前記第1作業情報が示す作業内容に応じて、前記第1作業機械が稼働する範囲と当該範囲の周囲とを含む第1範囲を特定する範囲特定手段と、
     前記第1範囲、及び前記第1作業機械の位置情報を参照して、前記第1作業機械の動作を制御する動作制御手段と、
    を含む制御装置。
    Acquisition means for acquiring first work information indicating work content of the first work machine and position information of the first work machine;
    range specifying means for specifying a first range including a range in which the first work machine operates and a periphery of the range, according to the work content indicated by the first work information;
    an operation control means for controlling the operation of the first work machine by referring to the first range and the position information of the first work machine;
    Control device including.
  16.  前記範囲特定手段は、前記第1作業情報が示す作業内容と前記第1作業機械が備える稼動部分の稼動範囲とに応じて、前記第1範囲を特定する、
    請求項15に記載の制御装置。
    The range specifying means specifies the first range according to the work content indicated by the first work information and the operating range of the operating portion of the first working machine.
    16. Control device according to claim 15.
  17.  前記第1作業機械は複数の前記稼動部分を備え、
     前記範囲特定手段は、前記第1作業情報が示す作業内容に応じて、前記複数の稼動部分のうち少なくとも1つを選択し、前記選択した稼動部分の稼動範囲に応じて、前記第1範囲を特定する、
    請求項16に記載の制御装置。
    said first work machine comprising a plurality of said moving parts;
    The range identifying means selects at least one of the plurality of operating parts according to the work content indicated by the first work information, and determines the first range according to the operating range of the selected operating part. Identify,
    17. Control device according to claim 16.
  18.  前記第1作業情報は、前記第1作業機械が備える稼動部分の向きに関する情報を含む、請求項15から17の何れか1項に記載の制御装置。 The control device according to any one of claims 15 to 17, wherein said first work information includes information regarding orientation of a moving part provided in said first work machine.
  19.  前記取得手段は、前記第1作業情報を逐次的に取得し、
     前記範囲特定手段は、前記第1作業情報に応じて、前記第1範囲を逐次的に変化させる、
    請求項15から18の何れか1項に記載の制御装置。
    The acquisition means sequentially acquires the first work information,
    wherein the range identifying means sequentially changes the first range according to the first work information;
    19. A control device as claimed in any one of claims 15 to 18.
  20.  前記取得手段は、前記第1作業機械とは異なる第2作業機械が稼働する範囲と当該範囲の周囲とを含む第2範囲を示す情報を更に取得し、
     前記動作制御手段は、前記第2範囲を更に参照して、前記第1作業機械の動作を制御する、
    請求項15から19の何れか1項に記載の制御装置。
    The acquisition means further acquires information indicating a second range including a range in which a second work machine different from the first work machine operates and a circumference of the range,
    The motion control means further refers to the second range to control the motion of the first work machine.
    20. A control device as claimed in any one of claims 15 to 19.
  21.  前記動作制御手段は、前記第1範囲及び前記第2範囲の少なくとも一部が重なる場合、前記第1作業機械の動作を制御する、請求項20に記載の制御装置。 The control device according to claim 20, wherein said motion control means controls the motion of said first working machine when at least a part of said first range and said second range overlap.
PCT/JP2022/018899 2021-04-28 2022-04-26 Control method, control system, and control device WO2022230880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/287,415 US20240200309A1 (en) 2021-04-28 2022-04-26 Control method, control system, control device, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076779A JP2022170572A (en) 2021-04-28 2021-04-28 Control method, control system, and control device
JP2021-076779 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230880A1 true WO2022230880A1 (en) 2022-11-03

Family

ID=83848425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018899 WO2022230880A1 (en) 2021-04-28 2022-04-26 Control method, control system, and control device

Country Status (3)

Country Link
US (1) US20240200309A1 (en)
JP (1) JP2022170572A (en)
WO (1) WO2022230880A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105807A (en) * 2001-09-27 2003-04-09 Komatsu Ltd Stop control method in intrusion-prohibitive region for service car and its controller
JP2010117882A (en) * 2008-11-13 2010-05-27 Hitachi Constr Mach Co Ltd On-site monitoring system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105807A (en) * 2001-09-27 2003-04-09 Komatsu Ltd Stop control method in intrusion-prohibitive region for service car and its controller
JP2010117882A (en) * 2008-11-13 2010-05-27 Hitachi Constr Mach Co Ltd On-site monitoring system

Also Published As

Publication number Publication date
JP2022170572A (en) 2022-11-10
US20240200309A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US11378964B2 (en) Systems and methods for autonomous movement of material
KR102242734B1 (en) Working machine
JP5110741B2 (en) Autonomous excavation and truck loading system
AU2017276225B2 (en) Systems and methods for preparing a worksite for additive construction
ES2914630T3 (en) System and method for the autonomous operation of heavy machinery
JP7071203B2 (en) Work machine
EP3749811B1 (en) Excavation by way of an unmanned vehicle
JP7143252B2 (en) working machine
US20140233790A1 (en) Motion estimation systems and methods
US20230053964A1 (en) Hierarchical planning for autonomous machinery on various tasks
US20230137344A1 (en) Work machine
US10377125B2 (en) Control systems and methods to optimize machine placement for additive construction operations
US20240068202A1 (en) Autonomous Control Of Operations Of Powered Earth-Moving Vehicles Using Data From On-Vehicle Perception Systems
WO2022230880A1 (en) Control method, control system, and control device
JP2020016147A (en) Shape measurement system and shape measurement method
WO2022097570A1 (en) Control device, control system, and control method
KR102637524B1 (en) working machine
US12006661B2 (en) Environment cognition system for construction machinery
JP2021050559A (en) Operation record analyzing system for construction machine
WO2022102429A1 (en) Control device, control system, and control method
JP7470539B2 (en) Construction history information management system
BR102022012468A2 (en) METHOD FOR OPERATING A WORKING MACHINE, AND, WORKING MACHINE
JP2021156000A (en) Work machine
CN118110233A (en) Control system, control method, apparatus, storage medium, and program product
CN114365199A (en) Modeling of underground construction sites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795793

Country of ref document: EP

Kind code of ref document: A1